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SUMMARY 

 

This thesis presents a series of model-based studies and associated considerations 

supporting the development of a high-performance HEV. Due to increasingly strict 

governmental regulations and consumer demand, automakers have taken steps to reduce fuel 

consumption and greenhouse emissions. HEV's can provide a balance between fuel economy 

and vehicle performance by exploiting engine load-point shifting, regenerative braking, pure 

electric operation, and hybrid traction modes. The existence of a multitude of HEV architectures 

with different emissions and performance characteristics necessitates the development of 

simulation platforms which can assist in specifying and selecting critical components. 

Recent advancements in the automotive industry, especially the introduction of hybrid 

technology, have resulted in lower emissions and improved fuel economy; however, hybrid 

technology can also be utilized in order to enhance the performance characteristics of traditional 

internal combustion high-performance vehicles. The complexity of the hybrid systems and high 

power demand of high-performance vehicles requires a detail analysis of critical system 

components, such as the energy storage systems, to ensure safe and optimal operation. The 

collaboration between Georgia Tech researchers and Ferrari S.p.A. is illustrative of the need for 

the further development of innovative and model-based tools to enhance the design and 

performance of high-performance hybrid electric vehicles.  

This thesis also features a series hybrid electric vehicle model developed using Simulink 

modeling software as part of a tutorial which may be provided to students in order to teach the 

basic principles underlying the operation, control, and design of hybrid electric vehicles.  
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The final chapter of this thesis features a modeling approach developed in order to 

analyze the battery pack in high-performance hybrid-electric vehicles using a multi-physics co-

simulation approach. This modeling capability can be extended to other multi-physics systems 

in order to develop high fidelity models while significantly decreasing computational costs.  
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Chapter 1: Introduction 

Vehicle electrification is being driven both by growing consumer awareness as well as 

increasing efficiency standards. However both technical and market challenges remain. The 

development of hybrid electric vehicles requires access to a high skilled workforce as well as the 

necessary tools in order to reduce the development costs and expedite the evaluation of each 

design alternative. Virtual simulations can alleviate the product development cost and enable 

faster introduction of new vehicles. However, many new graduates lack the technical expertise to 

utilize the new simulation tools available to product development engineers. The second chapter 

of this thesis describes the development of a tutorial made available to engineering students in 

order to introduce the sequential process of vehicle development. The third chapter provides a 

brief description of the application of Bellman’s principle of optimality to evaluate the fuel 

economy of hybrid electric vehicles. Chapter four provides a multi-physics co-simulation to 

support development of energy storage systems. 

1.1 Hybrid Electric Vehicle Technology 

By the 1960’s, public awareness that improvements in quality of life are offset by 

increased emissions and detrimental effects on the atmosphere led to the passage of the Clean 

Air Act (CAA) and the establishment of the Environmental Protection Agency (USEPA). Since 

then, both government and industry have taken major steps to reduce emissions and improve the 

efficiency of our energy systems [1]. 

Since the early days of large scale vehicle manufacturing, which coincided with the 

development of new technology that provided easy access to gasoline, the majority of vehicles 

manufactured used an internal combustion power plant. The high energy density of gasoline 
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makes it a good source to power vehicles, providing an ideal balance between range and power. 

However, the byproducts of combustion have been proven to have numerous negative 

consequences.      

Advancements in manufacturing and fuel technology has dramatically increased the 

energy efficiency of internal combustion engines (ICE); however, even the most efficient 

engines manufactured today are limited by the Carnot efficiency of the engine. In addition, 

energy wasted due to friction of moving parts, cooling of engine block and incomplete 

combustion in cold temperatures reduce the overall efficiency of the vehicle.  

One of the major advancements by the transportation industry has been the development 

of hybrid technology. With the addition of a secondary power plant to the vehicle, the ICE can 

be used more efficiently. During periods of high power demand, the engine management system 

can send power toward the secondary power source, which can significantly increase the 

efficiency of the system. During periods of low power demand, the ICE can operate at higher and 

more efficient operating points and the extra power is directed to energy storage devices such 

batteries or capacitors [1]. 

Hybrid electric vehicles on the market today feature superior fuel efficiency compared to 

their traditional competitors. While the hybrid technology can be used to dramatically increase 

the fuel economy and decrease the emissions, Ferrari S.p.A. has shown that the same technology 

can be used to dramatically increase vehicle performance. Unlike ICEs, electric machines (EM) 

provide maximum torque at low speeds, which can significantly increase vehicle performance 

[2-4].  



3 
 

With the addition of a secondary power plant, engineers need to carefully consider the 

layout of the vehicle powertrain. Each individual layout of the powertrain is referred to as the 

vehicle architecture. Traditionally HEVs have been classified into two categories: series and 

parallel. Figure 1.1 illustrates the difference between different hybrid architectures.  

The series HEV is the simplest architecture, featuring an ICE powering a generator which 

charges a power storage device. The current from the generator, as well as the battery if needed, 

is then used to power the traction motor that drives the wheels. In this configuration, the engine 

does not provide torque directly to the wheels, rather it only produces electricity [1].  

The advantage of the series architecture is in its simplicity as the engine can be designed 

to run at its most efficient operating point as the secondary on-board generator, and otherwise the 

vehicle is just an electric vehicle which simplifies the vehicle control strategy. Also a smaller 

engine can be used, as the role of the engine is to provide a steady source of power rather than 

provide a wide range of torques and speeds. The downside to this architecture, however, is in the 

number of energy conversions, each adding an associated efficiency factor. It should also be 

noted that as the traction motor is the only source of power to the wheels, it must be large enough 

to power the vehicle in a range of driving scenarios [1].  

A parallel HEV architecture takes a different approach to traction by providing parallel 

energy paths. The ICE and any number of motors are connected directly to the wheels, and this 

availability of multiple sources of power enables the selection of any combination or all for 

different driving situations [1,5]. For example, the engine can be used for steady state highway 

speeds where its operating characteristics will provide effective combustion, while the motor can 

be used during stop-and-go urban driving where its regenerative braking capabilities will allow 

for much of the energy spent during acceleration to be recouped while braking [5]. At times 
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when the driver demands high acceleration, all sources can be used to propel the vehicle, and if 

the battery state of charge gets too low, the motor will only provide regenerative braking during 

stopping events or even act against the engine, thus acting as a generator and forcing the engine 

into a more efficient operating point.  

 

Figure 1.1: Classification of hybrid electric vehicles 

 

Beyond these control options, another benefit of the parallel architecture is in component 

sizing [1,5]. As all power sources are available to provide power to the wheels, they can all be 

used for high torque demands, and therefore components can be downsized. The use of gears, 

shafts, and belts allow for this architecture to be laid out in numerous different configurations. 

Due to the added complexity of HEVs and the growing demand for skilled talent, the 

automotive industry has invested heavily in collaborative research with universities. Examples of 

such work include the collaborative research between Georgia Tech and Ferrari S.p.A. One of 

the main challenges for students recruited into the field of automotive research is the knowledge 
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gap between theoretical models for individual components and the overall system operation of 

vehicles. Providing students with an overall systems preview of vehicle powertrain has proven to 

significantly increase the performance of student teams. Chapter 2 of this thesis is dedicated to 

work done on developing a tutorial designed to familiarize students with system level operation 

of a vehicle. The tutorial features a sequential refinement approach to model development in 

order to introduce students to complex model components. 

1.2 Evaluation of HEV Performance using Global Optimization Algorithms 

The global optimization of a HEV architecture can be realized for a known time horizon 

and operating conditions, such as in the case of optimizing for a drive cycle. DP is used to find 

the optimal operation regime for a specific drive cycle, and it serves as a benchmark for other 

non-optimal control strategies [4,6-8].  Using DP multi-objective optimization is possible, as an 

example, for optimizing fuel economy (FE) and CO2 emissions simultaneously [7]. However, as 

DP requires the future knowledge of the drive cycle conditions and large computational 

resources, vehicle online implementation has not materialized [4]. 

DP is applied using a backward-looking approach where the simulation requires 

knowledge of the complete drive cycle and simulation starts at the final simulation time and 

progresses using a backward step size [2,4]. At each time step the incremental cost of applying 

control is evaluated and penalty terms are applied to increase the cost of applying control. The 

optimal control strategy of the power cycle is determined by minimizing the overall cost [4,9]. 

Chapter 3 of this thesis provides details about DP and approach used to implement in HEV. 

 Providing benchmarking on performance and emissions results for vehicle architectures 

in the product development phase provides engineers with an unbiased metric to evaluate and 
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recognize the differences between different HEV architectures. Ferrari S.p.A. used the 

benchmarking results to identify final vehicle architectures. 

1.3 Model-based Design and Ferrari Partnership  

In recent years, the development of automotive technology has changed from an 

exclusively electrical or mechanical engineering discipline to include software engineering. This 

shift has dramatically changed product development as well as methods, tools and engineering 

skills required. Due to the complexity of design in the development of hybrid electric vehicles, 

the need to use model-based design practices to evaluate the performance of each design 

alternative has increased dramatically.  

Ferrari S.p.A. and Georgia Tech have formed a research partnership with a focus on the 

development of model-based analysis of HEVs. In the first stage of the partnership, focus was 

given to benchmarking the performance and fuel economy of each powertrain architecture. Fuel 

economy and CO2 emissions were evaluated for each design alternative, using DP. Chapter 3 of 

this thesis features an overview of DP and work done in the first phase of the partnership. 

After the completion of the first stage, focus has shifted toward providing model-based 

analysis of battery performance. One of the unique challenges when designing high-performance 

HEVs is the design of the battery pack and providing an accurate model of battery performance 

and aging under high load conditions. Due to high power demand, providing sufficient cooling is 

crucial to ensure safe operation and preventing damage to battery cells. The ultimate goal of this 

phase of the research partnership is to develop the capability to analyze the performance of 

different battery pack layouts and incorporate this capability in a complete vehicle model. 

Chapter 4 of this thesis is dedicated to work done on developing the battery model.  



7 
 

Chapter 2: Vehicle Model 

The vehicle model presented in in this chapter was developed as part of a tutorial which 

may be provided to students in order to: 

1) teach the basic principles underlying the operation, control, and design of hybrid 

electric vehicles, 

2) educate students to model, formulate, and simulate the operation of hybrid vehicles, 

and 

3) provide an overview of the modeling capabilities of Simulink software. 

The vehicle model developed next uses a sequential refinement methodology, to create a 

complex system model using simple components and basic control strategies. The tutorial starts 

by developing a simple, but complete, vehicle model and then makes further component 

refinements in order to provide a more realistic model.  

The vehicle model is developed using Matlab and Simulink 2016a software. Simulink is a 

graphical programming environment within which models are created by creating links between 

pre-defined function blocks and user-defined subcomponents. The predefined function blocks 

can be categorized under two categories: utility and functional. Utility blocks can be used in a 

wide array of applications such as applying simple and complex mathematical operations or 

perform logical operations. Functional blocks however, are designed for specific applications 

such as calculating the vehicle longitudinal dynamics, evaluating speed, torque and energy loss 

of a compound planetary gear, or estimating the slip and braking force in a tire.  Examples of 

utility and functional blocks are presented in Figures 2.1 and 2.2. 
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The vehicle powertrain design is based on a series hybrid architecture. A diesel powered 

ICE is mechanically connected to a generator (EM-A) with a 1-to-1 gear ratio that converts 

engine power to electricity which can be stored in the battery or sent directly to EM-B. EM-B 

then sends power to the wheels. The architecture is designed to operate within five different 

power modes. Figure 2.3 provides a visual representation of the power modes and Table 2.1 

describes the operating conditions as implement by the controller unit.     

 

Figure 2.1: Simulink utility blocks 

 

 

Figure 2.2: Simulink functional blocks 
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Table 2.1: Driving modes 

Power Mode Battery state of charge Traffic conditions 

Pure EV High Low power demand, Stop-and-go traffic 

Pure ICE Low Constant high speed travel 

Combined Mid rang or high High power demand, High performance setting 

ICE – Charging Low Constant speed travel 

Charging As needed Braking, cost down, hill descent 

 

Based on the battery state of charge (SOC) and power demand, the vehicle controller 

selects the appropriate power mode. If the battery SOC is above a pre-determined value and the 

power demand can be supplied by the EM-B alone, the vehicle may operate in pure EV mode. 

Reducing the emissions to zero while allowing the EM-B to use energy stored in the battery. 

Under conditions that battery SOC is low, the controller will select the pure ICE driving mode to 

prevent damage to the battery. If the power demand is low, the controller may go into ICE-

Charging mode and request additional power output from the ICE and store the extra energy in 

the battery. Under conditions when the SOC is within a pre-determined range, the controller may 

select the combined power model and reduce the fuel consumption by optimizing the power split 

between the ICE and EM-B. During periods of deceleration the controller may select the 

charging mode and allow EM-B to regenerate power and store the kinetic energy of the vehicle 

in the battery pack.  

 At the highest level, the model consists of three subsystems: Driver, Plant, and Controller. 

The Driver subsystem receives the speedometer and tachometer data and transmits torque request 

signals to the controller. The Plant subsystem includes system component models including ICE, 
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EM-A and EM-B. The controller subsystem uses a state-flow controller which receives torque 

request data from the Driver subsystem and based on pre-determined state conditions sends 

appropriate control signals to the system components such as the ICE, EMs, and transmission.   

 The vehicle model can be used to simulate a pre-determined drive cycle and calculate the 

vehicle performance parameters such as fuel consumption, speed, acceleration, and battery state 

of charge. The Simulink control model can also be uploaded to a vehicle control unit and used 

for testing purposes in Hardware-in-the-loop applications.   

 

Figure 2.3: Hybrid vehicle power paths. A:ICE-Charging, B:Pure ICE, C:Pure EV, D:Combined, 

E:Charging 
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2.1 Simple Vehicle Model (EV-mode only) 

The first step in the development of vehicle model is a simple vehicle subsystem with ideal 

components. The vehicle is propelled only by an ideal EM and a single gear pair is used to 

transmit power to the wheels. The main components of the simple vehicle subsystem are 

developed using the following functional Simulink blocks: Vehicle body, Tire (Magic formula), 

and Simple Gear blocks.   

A vehicle body Simulink bock is used to model a vehicle with two axles in longitudinal 

motion. The vehicle wheels are assumed to be identical in size. The vehicle is assumed to be in 

normal equilibrium and does pitch or have any vertical movement. The vehicle axles are parallel 

and form a plane. The longitudinal x direction lies in this plane and is perpendicular to the axels. 

The model also includes traveling on an incline slope α, the normal z direction is not parallel to 

gravity but is always perpendicular to the axel longitudinal plane.     

 

Figure 2.4 Vehicle free body diagram (FBD) 
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The vehicle motion is determined by the net effect of all forces and torques acting on it. 

The longitudinal tire forces push the vehicle forward or backward. The weight, mg, of the 

vehicle acts through its center of gravity (CG). Depending on the incline angle, the weight pulls 

the vehicle to the ground and pulls it either backward or forward. Whether the vehicle travels 

forward or backward, aerodynamic drag force acts in the opposite direction of travel. It is 

assumed that the drag force acts through the CG. Figure 2.4 and Table 2.2 define the vehicle 

motion model variables. 

Table 2.2: Vehicle model variables 

Symbol Description and Unit 

G Gravitational acceleration = 9.81 [m s2⁄ ] 

Α Incline angle, [deg] 

M Vehicle mass, [kg] 

H Height of vehicle CG above the ground, [m] 

a, b Distance of front and rear axles, respectively, from the normal projection point of 

vehicle CG onto the common axle plane, [m] 

Vx Longitudinal vehicle velocity, [m s⁄ ] 

Vw Headwind speed, [m s⁄ ] 

n Number of wheels on each axle  

Fxf , Fxr 
Longitudinal forces on each wheel at the front and rear ground contact points, 

respectively, [N]  

Fzf , Fzr 
Normal load forces on each wheel at the front and rear ground contact points, 

respectively [N] 

A Effective frontal cross-sectional area [𝑚2] 

Cd Aerodynamic drag coefficient  

ρ Mass density of air = 1.18, [
kg

m3⁄ ] 

Fd Aerodynamic drag force, [N] 

 

The vehicle dynamics are described as follows:  



13 
 

mV̇x = Fx − Fd −mgsinα (1) 

Fx = n(Fxr + Fxf) (2) 

Fd =
1

2
CdρA(Vx − Vw)

2. sgn(Vx − Vw) (3) 

In order to determine the normal force on each front and rear wheel, the normal force acting on 

the front and rear wheels are expressed by:  

Fzf =
−ℎ(Fd +𝑚𝑔𝑠𝑖𝑛𝛼 + mV̇x) + 𝑏.𝑚𝑔𝑐𝑜𝑠𝛼

𝑛(𝑎 + 𝑏)
 (4) 

Fzr =
ℎ(Fd +𝑚𝑔𝑠𝑖𝑛𝛼 + mV̇x) + 𝑎.𝑚𝑔𝑐𝑜𝑠𝛼

𝑛(𝑎 + 𝑏)
 (5) 

while the wheel normal forces satisfy Fzf + Fzr = mgcosα n⁄  . 

The Tire (Magic Formula) block is used to model a tire with longitudinal behavior given 

by the Magic formula
1
. The block can calculate the tire slip, however do to the nature of drive 

cycles used for analysis, it is assumed that tire slip is negligible. The effects of tire intertia, 

stiffness, and damping are ignored. The vehicle longitudinal velocity is calculate by Vx = rwω. 

Where rw, is the tire effective radius in meters and ω is the wheel angular velocity in 𝑟𝑎𝑑 𝑠⁄ . 

A Simple Gear block represents a gearbox that constrains two connected driveline axles 

to co-rotate with a fixed ratio. The output shaft rotates in the same direction as the input shaft. It 

is assumed that energy loss in the gearbox due to meshing and viscous losses is negligible for the 

purposes of this analysis. In practice, based on the type of gears used, the quality of the gear 

meshing, and lubrication, the efficiency of the gear may be as low as 0.9.  Gear inertia is 

                                                           
1
 Series of tire design models developed by Hans B. Pacejka. The term ‘magic formula’ refers to lack of physical 

basis for the models. Magic formula models are widely used in the industry in a variety of tire constructions and 

operating conditions.  
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assumed to be negligible compared to the engine and shaft inertia; therefore it is not included in 

the model. This assumption is only valid if the gearbox dynamics are not relevant to the study. 

 

Figure 2.5: Simple vehicle model, Simulink diagram including functional blocks (vehicle body, 

Tire magic formula and simple gear) 

 

Figure 2.5 illustrates the main components of the simple vehicle model developed using 

functional Simulink blocks and Table 2.3 includes the model parameters.  

Table 2.3: Vehicle model parameters 

System parameter Value 

Vehicle Mass 1200 kg 

Tire Radius 0.3 m 

Driveshaft inertia 0.0015 
kg

m3
 

Driver shaft inertia 0.003 
kg

m3
 

Gear Ratio 2 
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In order to test the validity of the model at this initial step, a constant torque of 200 N.m 

is supplied from EM-B for duration of 10 seconds. The velocity of the vehicle after 10 seconds 

can be calculated as follows:  

dvx
dt

=
1

m
(
TN

r
) (6) 

∫ dvx = ∫ (
TN

mr
) dt

tf

ti

vf

vi

 (7) 

vf =
(200 Nm)(2)

(1200 kg)(0.3 m)
= 11.1 m s⁄ = 24.9 mph (8) 

 

Figure 2.6 illustrates the vehicle speed profile as described in Equations 6-8. The simple vehicle 

model does not capture effects such as tire slip, therefore the application of a constant torque 

results in a linear increase in speed with constant acceleration.  

 

Figure 2.6: Vehicle speed profile  
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The Driver subsystem functions as a proportional feedback loop and sends a normalized 

torque signal to the controller. The proportional controller will send a maximum torque signal if 

the speed error is larger than 2 mph. Figure 2.7 illustrates the design of the proportional feedback 

loop which allows the vehicle to follow a drive cycle. 

 

Figure 2.7: Normalized torque request  

 

Using the first 500 seconds of the EPA Urban Dynamometer Driving Schedule (UDDS), 

it can be shown that the torque request signal from the proportional feedback controller will 

allow the vehicle to follow the drive cycle closely. Figure 2.8 illustrates the vehicle speed profile 

as well as the torque request as it follows the UDDS. 
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Figure 2.8: Vehicle speed profile, UDDS drive cycle 

 

2.2 Simple battery and EM model 

Following the development of the simple vehicle model, battery and EM models are 

developed using utility blocks as shown in Figure 2.9. The simple EM model features a constant 

maximum torque, no rpm limits, and is modulated by the controller. The battery model features a 

constant voltage power source with unlimited current and capacity. 
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Figure 2.9: Simple EM model, utility blocks used in EM subcomponent 

 

The power output of the EM is calculated by evaluating the speed and torque of the EM. The 

torque is directly proportional to the torque request from the driver subsystem as follows:    

TEM = TreqMax(TEM) (9) 

ωEM =
Vx
r
N (10) 

PEM = TEMωEM (11) 

The power generated by the EM, is directly proportional to the battery current draw and voltage 

as described by:    

IBattery = −
PEM

VBattery
 (12) 

and the battery state of charge (SOC) is calculated using: 

SOC =
1

3600
∫ IBattery

t

t0

dt Capacity⁄ + SOCInitial (13) 

In this calculation, the battery capacity is in the units of Amp-hour. Equations 12 and 13 were 

implemented using Simulink utility blocks as shown in Figure 2.10.   
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Figure 2.10: Simple battery model, Simulink diagram 

 

As shown in Figure 2.11, during periods of acceleration, negative battery current results 

in lowering the SOC, whereas during deceleration, positive battery current results in an increase 

in the SOC. Most traditional HEVs are designed to maintain the battery SOC within an operable 

range. Continuous deep discharge and charge can damage the battery by lowering the battery 

life. Allowing the battery to achieve a high or low SOC can also prevent the vehicle controller 

from charging the battery when the SOC is high, or discharging the battery when the SOC is low. 
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Figure 2.11: Vehicle performance with application of simple battery and EM model  

 

2.3 Simple Charging Logic 

AS shown in Figure 2.11, the vehicle SOC decreased which can lead to permanent damage to 

the battery and decrease the range. A secondary EM, EM-A which is identical to EM-B, is added 

to the model in order to charge the battery. EM-A is powered by an on-board generation unit in 

the form of a diesel engine.  

A rule based controller unit is added to the controller subsystem to turn EM-A on and off 

based on the SOC. Applying this control strategy, referred to as charge sustaining, prevents the 

vehicle from depleting the battery. The effects of applying the charge sustaining strategy are 
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shown in Figure 2.12. Controller prevents the SOC to drop below 60%, allowing EM-A to 

recharge the battery. Similarly the controller EM-A is turned off as the SOC reaches 70% to 

prevent overcharging. 

 

Figure 2.12: Vehicle performance with application of d simple charging logic 

 

The Driver subsystem sends a normalized torque demand to EM-B, however the 

controller unit only sends an on and off signal to EM-A. In order to prevent damage to the EM, a 

feedback controller is implemented which sends a normalized torque request to EM-A. In order 

to power EM-A, a diesel engine is added to the Plant subsystem.   
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2.4 Improved Engine Model and Fuel Efficiency 

In order to increase the engine model fidelity, an experimental torque curve for the engine is 

added to the engine model using look-up tables. The look-up table uses linear interpolation and 

extrapolation methods to evaluate the engine torque output based on the engine speed and 

throttle. An engine throttle request is provided from the controller unit. Figure 2.13 illustrates the 

experimental torque data included in the model. 

 

Figure 2.13: Engine Torque map 

Similar to experimental engine torque data, fuel consumption data is added to the engine 

model using a look-up table. The look-up table uses linear interpolation and extrapolation 

methods to evaluate the engine fuel consumption based on the engine speed and throttle. Figure 
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2.14 presents the experimental fuel consumption data and Figure 2.15 illustrates the application 

of look-up blocks to incorporate the experimental data. 

 

Figure 2.14: Engine fuel consumption map 

 

Figure 2.15: Improved engine model 
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The main advantage of using a series architecture in an HEV is the lack of direct 

mechanical connection between the engine and wheels which allows the engine to operate at a 

desired speed, independent from the wheels. The vehicle controller can operate the engine at the 

most efficient operating points, and reduce fuel consumption.  

 

Figure 2.16: Vehicle performance, Engine charging enabled 

Based on the engine fuel map and Brake specific fuel consumption (BSFC) map, the 

engine efficiency is maximized at a speed of 1800 rpm and engine throttle
2
 of 0.5. The controller 

will operate the engine, exclusively at this operating point unless the battery SOC drops below a 

pre-defined threshold, at which point the engine throttle request increases to provide more torque 

                                                           
2
 Engine throttle is equal to the normalized torque request from the controller unit.  
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and to increase the SOC. Figure 2.16 presents the vehicle performance after the application of 

experimental engine data and Figure 2.17 illustrates the BSFC map.         

 

Figure 2.17: BSFC map 

 

Fuel economy is traditionally reported by dividing the distance traveled by the volume of 

fuel consumed. However, in the case of HEVs, if the final battery SOC is lower than the initial 

SOC, fuel required to replenish the battery to the initial SOC should be considered in fuel 

economy calculations. Similarly if the final SOC is higher than the initial SOC, extra fuel 

consumed to charge the battery above the initial SOC should be subtracted. 

First the electrical energy to change the battery SOC should be calculated as follows: 

Ahconsumed[Amp. hour] = (SOCi − SOCf) × Capacity  (14) 
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EBattery[W. hour] = Ahconsumed × OCV[V] (15) 

and the efficiency of the system in converting fuel energy into electrical energy stored in the 

battery pack should also be considered by: 

EElectrical[BTU] =
3.4123 × EBattery

ηconversion
 (16) 

and the gas equivalent fuel economy with SOC correction can be calculated as described by:   

EFuel[BTU] = Fuelconsumed × 133393.14 (17) 

ETotal[BTU] = EFuel[BTU] + EElectrical[BTU] (18) 

Fuelconsumed−RFG =
ETotal[BTU]

114871.745
 (19) 

MPGGE =
Distance Traveled

Fuelconsumed−RFG
. (20) 

The fuel economy reported for the vehicle model (MPGGE) is 103 mpg. The calculations are 

unrealistic as the inefficiencies of regenerative braking, the battery, and the EMs are not included 

in the model.   

2.5  Improved Battery Model 

Thus far the battery model featured: 1) a constant voltage equal to the open circuit voltage 

(OCV), 2) no energy conversion losses, 3) infinite current draw. In order to increase the model 

fidelity, a linear battery model as shown in Figure 2.18, is included where the battery voltage is a 

function of current.   

                                                           
3
 The 3.412 converts W.hour to BTU 

4
 The 1.33393.1 [𝐵𝑇𝑈 𝑔𝑎𝑙⁄ ] is the heating value of diesel fuel 

5
 The 114871.74 [𝐵𝑇𝑈 𝑔𝑎𝑙⁄ ]is the heating value of RFG (Reformulated gasoline)  
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Figure 2.18: Improved battery model 

VBAT = VOC + IBAT × RSeries (21) 

RSeries = RInternal + Ro (22) 

Series resistance of the battery is the sum of battery internal resistance and the resistance 

of other electrical components such as the wiring. The battery OCV is a function of temperature 

and SOC. Experimental data, as shown in Figure 2.19, is used to include the temperature effects 

on the battery performance.  

 

Figure 2.19: Battery Open Circuit Voltage experimental data 
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Experiments have also shown that the battery internal resistance is different during 

charge and discharge. Internal resistance is also a function of SOC and temperature. Figures 2.20 

and 2.21 illustrate the internal resistance experimental data included in the model.  

 

Figure 2.20: Total series resistance-Discharge 

 

Figure 2.21: Total series resistance-Charge 
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The experimental data is added using a look-up table. Look-up table uses linear 

interpolation and extrapolation methods to evaluate the output based on the battery SOC and 

temperature. The improved battery model lowers the fuel efficiency of the vehicle model 

(MPGGE with SOC correction) to 90 mpg.  

2.6 Improved EM Model      

Thus far the EM model featured: 1) ideal conversion efficiency and, 2) constant maximum 

torque output. In order to improve the fidelity of the EM model, experimental torque-speed data 

is used which relates the maximum EM torque to the shaft speed as shown in Figure 2.22.   

 

Figure 2.22: Electric machine torque curve 
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Figure 2.23: EM conversion efficiency map 

Electromechanical energy conversion can go two ways: 1) electrical to mechanical and, 

2) mechanical to electrical. Experimental results have shown that the conversion efficiency of the 

EM is dependent on shaft speed and current. Figure 2.23 illustrates the EM conversion efficiency 

data included in the model. 

The addition of experimental data to the motor and generator model, increases the model 

fidelity. The fuel economy of the model decreases to 65.4 mpg. 

2.7 Conclusion  

Using the sequential refinement modeling method described in this chapter, students and 

engineers will be able to develop suitably complex vehicle models and develop the vehicle 

control strategy to operate the vehicle. In addition, the model can also be used in Hardware-in-
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the-loop tests where the model can be uploaded into the control unit and used for testing the 

vehicle operation in the next steps of vehicle development.  

The hybrid vehicle model developed in this chapter is a series design which features a simple 

control strategy. However, the development of more complex control strategies, for example 

parallel and power-split architectures, can be accomplished using the instructions provided in 

this thesis and the supplementary tutorial in the Appendix.  

In addition to the improvements to the vehicle model in Sections 2.4-2.6, further additions 

and improvements to the model can improve the model fidelity and ensure better operation in 

Hardware-in-the-loop scenarios. Simple additional improvements to the model can include the 

addition of current limits, engine emergency defueling at high engine speeds and limiting the 

auxiliary motor speed during engine startup.   
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Chapter 3: Evaluation of Vehicle Performance using Dynamic Programming  

The introduction of HEVs into the fleet of performance vehicles manufactured by Ferrari 

S.p.A. requires a new design approach which ensures that new vehicles meet improved fuel 

economy and emissions standards while maximizing the utility and performance characteristics. 

In order to evaluate each powertrain under consideration, a simulation-based design 

approach can ensure an unbiased comparison. DP can provide an optimally controlled 

performance metric for each architecture under consideration over pre-determined drive cycles. 

Therefore it evaluates each architecture using a consistent control strategy and thus avoids the 

uncertainty associated with different supervisory control approaches [4,9]. The DP algorithm has 

been developed and used in many applications in order to determine the optimal control strategy. 

DP provides a globally optimal control path for a predetermined drive cycle using 

Bellman’s Principle of Optimality. Since DP requires the future knowledge of the operation 

conditions and heavy computational loads, vehicle online implementation is not possible [9].  

Nevertheless, attempts have been made to extract heuristic rules from dynamic programming 

results. Vehicle control units use alternative non-optimal control regimes such as Equivalent 

Consumption Minimization Strategy (ECMS) [4].  

Bellman’s Principle of Optimality states that the optimality of a future control action will 

not be affected by the optimality of any past control input [10].  DP uses this principle to 

progress backwards in time through a pre-determined drive cycle with identified states and 

control variables, and provides an optimal control path within constraints of the control space. 

Chapter 3 provides a brief description of Dynamic Programming, followed by the method 

used to implement DP in HEVs and an example is provided.    
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3.1 Dynamic Programming  

The DP algorithm is used on a class of discrete-time models in the following form, 

xk+1 = Fk(xk, uk),    k = [0, N − 1] (23) 

where k denotes the index of discretized time, xk the state variable, uk the control variable, and Fk 

the function defining the state variable. In addition, for application of DP, the state and control 

variables are discretized.  

The total cost of employing the control strategy π = {u0, u1, … uN−1} with the initial state 

x0 is defined by,  

J0,π(x0) = g0(x0) + gN(xN) + ϕN(xN) + ∑[hk(xk, uk) + ϕk(xk, uk)]

N−1

k=0

 (24) 

where J0,π(x0) represents the total cost, g0(x0) and gN(xN) include the cost of initial and final 

steps respectively, ϕk(xk, uk) the penalty function enforcing the constraints on the state and 

control variables, and hk(xk, uk) the incremental cost of applying the control at time k.  The 

optimal control path is one that minimizes the total cost represented in Equation 24. 

3.2 Application of DP to HEV Supervisory Control 

The DP algorithm is implemented in MATLAB 2016a as a backward-looking simulation 

in which the vehicle follows a pre-determined drive cycle and the steady state kinematic and 

torque relationships are used to compute component operation states. The main advantage of 

implementing a backward-looking simulation is the faster computation time, which comes at the 

cost of overlooking energy due to transient effects. 

The DP control problem of the parallel HEV is characterized as, 
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x = (SOC, v, Freq) (25) 

u = (Te, ωe, TEM, ωEM, in) (26) 

hk = ṁfuel(x, u) (27) 

where ṁfuel is the mass rate of fuel consumed, v is the vehicle speed, and Freq refers to force 

required. 

The DP algorithm applied to HEVs, seeks to minimize the forward fuel consumption at 

any point of discretized state-time space.  This minimizing operation can be summarized in 

Equation 28, 

Jk(SOCk
i ) = min[Jk+1(SOCk+1

i ) + ṁfuel + ϕk] (28) 

The system design constraints, based on the operational limit of each component, are 

summarized as,  

Parallel HEV 
Component capability

constraints

:

{
 
 

 
 

Te,min ≤ Te ≤ Te,max
ωe,min ≤ ωe ≤ ωe,max

TEM,min ≤ TEM ≤ TEM,max
ωEM,min ≤ ωEM ≤ ωEM,max

inϵ[i1, i2, i3, i4, i5]

 (29) 

where Te and  ωe refer to engine torque and speed respectively, and TEM and  ωEM refer to the 

EM torque and speed respectively, and in refers to the transmission gear ratio. Choices of control 

outside of the range specified in equation 29, results in application of a large penalty term.  

In order to ensure the vehicle operates within a charge sustaining regime and the battery 

charge is within an allowable range, the following constraints are also applied, 

SOCmin ≤ SOC ≤ SOCmax (30) 

SOC0 = SOCN = SOCref (31) 
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using the penalty terms described earlier in Equation 24.  The penalty terms are several orders of 

magnitude larger than the incremental cost of using fuel; otherwise they are zero. 

In general, the computation time of a DP algorithm increases exponentially with the number of 

independent state and control variables since all permissible values of state and control variables 

are visited at each time step. Due to the nature of a backward-looking simulation and the prior 

knowledge of the vehicle speed at each time step, the drive cycle prescribes v and Freq, leaving 

SOC as the only independent state variable. In addition, by applying the steady state constraints, 

Equations 25-27, the independent control variables are reduced to u = (Te, ωe).  Following this 

method, the control variables will be reduced to the set meeting the speed and torque 

requirements at the wheels. Due to the transmission coupling constraint, 𝜔𝑒 choices are also 

limited to at most the number of gear ratios in the transmission due the kinematic constraint from 

Equation 27. Lastly, ṁfuel is assumed to be only a function of engine operation points 

characterized by Te and ωe. During application of DP to an HEV, the discretized engine 

operation point (Te, ωe) candidates are searched exhaustively to find the minimization operation 

point for Equation 25. An example Matlab code, for the application of the DP for a series 

architecture as shown in Chapter 2 is included in the appendix. For the purposes of the DP 

analysis a 9 speed transmission is added to the architecture to illustrate a more comprehensive 

application of DP.   

Calculating the force required to power the vehicle using Equation 32, 

Freq = δMma + 𝑓𝑟𝑚𝑔 +
1

2
𝐶𝑑𝜌𝑎𝐴𝑓𝑟𝑜𝑛𝑡𝑎𝑙𝑣

2 (32) 

and estimating the incremental cost of using fuel by referring the experimental fuel data, the total 

cost of applying control is calculated by adding the fixed costs as stated above. The DP 
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algorithm then determines the optimal control path by minimizing the total cost for the duration 

of the drive cycle.    

 Figure 3.1 represents the changes in the battery SOC for the duration of the drive cycle. 

In the design of hybrid electric vehicles, charge sustaining control strategies are utilized to 

ensure battery is available to power the vehicle at all times and store energy as needed. Another 

advantage of using charge sustaining control strategy is extended battery life. In order to ensure a 

charge sustaining operation, a high penalty term is applied when the SOC drops below or rises 

above the desirable SOC level. 

 

Figure 3.1: Battery SOC 
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Selecting the correct gear can also improve the efficiency of the drive as the engine can 

operate at a more desirable speed. The efficiency of the power transmission through the gearbox 

and other architecture components should also be considered when applying DP. Experimental 

data provided by Ferrari S.p.A. were used in order to estimate the energy loss through the 

powertrain.  

 

Figure 3.2: Power required vs. Power supplied/recovered 

 

Figure 3.2 illustrates the effects of powertrain inefficiencies considered in the DP 

algorithm. During periods of deceleration due to the inefficacies of the EM and other powertrain 

components some of the power available for recovery in the energy storage unit is wasted.    
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Chapter 4: Multi-physics co-simulation of battery thermal model 

The analysis and proper design of the energy storage system is a critical concern in the 

product development phase of HEVs. Rechargeable Li-ion batteries (LIBs) feature many 

advantages compared to alternative storage devices. LIBs provide high power and energy density 

over a broad operating temperature range, as well as low self-discharge, stable chemistry, and 

long battery life [11-12]. In addition, the growth in the market demand and production of high 

power density LIBs has led to a sharp drop in price of such batteries. However, challenges 

remain in the development of HEVs using LIBs due to stringent safety and performance 

requirements. Some of the limitations of the current LIBs include local underutilization, capacity 

drop, localized thermal degradation, and stress-induced material damage.    

Significant efforts have been put forward to develop-simulation based tools to analyze 

battery performance and predict operational states of LIBs. The porous electrode theory, which 

predicts the lithium diffusion dynamics and charge transfer in an electrode system has been 

investigated to predict the electrical dynamics of a cell [12-13]. This approach can be used to 

investigate the microscopic behavior of the cell. Others have proposed and investigated an 

equivalent circuit model to estimate the electrical response and heat generation [12, 14-15]. 

Researchers have also focused on the structural response of the LIBs and effects on performance 

degradation. The volume change of electrode material has been investigated to estimate the 

electro-thermal induced stress and strain [12] and the potential effects on capacity have been 

thoroughly investigated. Several lumped parameter thermal models have been proposed and 

validated through experiments [16-17]. Great effort has been placed on developing coupled 

models between electro-chemical and heat transfer domains in order to investigate the coupled 
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effects of discharge/charge current, voltage, and temperature on the SOC and battery state of 

health (SOH) [18-20].    

Recent research has focused on development of coupled electro-thermal and heat transfer 

models in order to investigate the cell’s temperature distribution under extreme conditions, such 

as over-charging/discharging, internal short circuit, and extrusion [16]. Coupled heat transfer and 

computational fluid dynamics models with a lumped value of heat generation were used to 

visualize the temperature gradient for both time-dependent and steady state simulations [16,21-

22]. Multiple co-simulation platforms were used to simulate coupled thermo-electrical and heat 

transfer models. The effects of manufacturing variations and battery pack organization on cell 

thermal and power behavior were also investigated [21]. Moreover, researchers have been able to 

characterize the effects of localized high temperature regions on cell performance and SOH [22]. 

However, research on development of fully coupled electro-thermal, heat transfer, and 

computational fluid dynamics models to investigate temperature distribution at the battery pack 

level, which identify hot spots, is still in early stages. To the knowledge of the author, the 

coupled electro-thermal cell models have not been developed further to include the structural 

layout of battery pack with high capacity cooling units.  

This chapter proposes a co-simulation approach to simulate modular and fully-coupled 

multi-physics models of a LIB battery with high fidelity thermal domain modeling using 

commercial off the shelf (COTS) software. The proposed multi-physics model couples a discrete 

electric model and continuous thermal model domains using the co-simulation capability of the 

SIMULIA simulation platform for rapid and scalable model development. Furthermore, the 

computational cost has been reduced by the development of a discrete electrical domain, as well 

as limiting the data exchange between co-simulation model components to discrete 
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communication points. The main purpose of this multi-physics co-simulation is to predict the 

temperature distribution and identify temperature hot spots. The critical system parameters, 

which govern the electrical and thermal dynamics, were provided by the cell manufacturer. 

Experimental test data was used to calibrate the system response and ensure high model fidelity.    

4.1 Model Development 

One of the unique challenges facing Ferrari engineers and others in development of 

HEVs is the design and verification of the battery pack. Due to the high-performance 

characteristics of the vehicle, the battery pack should be designed to operate under high-

frequency-high-load conditions, including high current charge and discharge which can lead to 

areas of high temperature within the battery pack. As such, the battery pack model includes a 

thermal domain in order to investigate: 

1) The spatial distribution of temperature to identify hot spots, 

2) The effects of high temperature on performance characteristics such as battery life, 

3) The cooling power required to maintain battery temperature.  

The modeling approach includes three simulation domains: electro-thermal, thermal-

structural and fluid. The discrete electrical model refers to the mathematical representation of the 

battery dynamics, using ordinary differential equations, relating the transfer of chemical energy 

to electrical energy and vice versa, during discharge and charge, respectively. The model also 

relates the battery charge/discharge current to heat generated and uses ordinary differential 

equations to estimate the heat loss to the environment and cell core temperature. The continuous 

thermal-structural model, developed using COTS software, refers to the heat transfer from each 

individual cell through the battery structure, which includes a cooling plate, to the flow of 
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coolant in the cooling system and the surroundings air through convection. The continuous fluid 

domain refers to the heat transfer to the cooling fluid within the cooling plate. Figure 4.1 

illustrates the interactions between the three model domains.     

 

Figure 4.1: Battery model domains, orange arrows represent the flow of communication signals 

between co-simulation components. Note: Images representing the thermal-structural and fluid 

domain models only represent the hypothetical layout of the battery module and the coolant flow   

  

The three simulation domains were coupled based on the conservation of energy. The 

heat loss from the electro-thermal model is imposed as heat flux input at the internal boundary of 

the cell thermal-structural model. In turn the temperature at the internal surface of the cell 

thermal-structural model is enforced as the temperature of the electro-thermal model. The 

thermal-structural model is coupled with the fluid model at an interface surface region. At this 

interface, the temperature of thermal-structure surface is imposed to the fluid model as a 

boundary condition. In turn, the fluid model heat capacitance and heat flux are enforced as the 

thermal-structural model boundary conditions and input heat flux.    
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Co-simulation requires the identification of master and slave components. The thermal-

structural model is identified as the master component, while the fluid and electro-thermal 

domain function as slave components. The master initiates co-simulation by taking the first time 

step. The results and co-simulation time are communicated to the slave components and each 

slave takes appropriate steps to reach the co-simulation time, after which the results are 

communicated to the master and other slave components. The co-simulation progresses as the 

master takes the next step.    

In order to establish communication between the three model components using a co-

simulation approach, the electro-thermal model is translated into a tool-independent library, 

Functional Mock-up Unit (FMU), which can be used to execute the model in any Functional 

Mock-up Interface (FMI) compatible environment and establish communication between the 

electro-thermal model and other FMUs, or model components developed in the host, FMI 

compatible, modeling environment. The electro-thermal domain includes an individual cell 

(multiple cells can be arranged to form a battery module and/or pack), control unit, and power 

cycle in the form of a look-up table. The thermal-structural heat transfer model is developed 

using Finite Element Modeling (FEM) software, Abaqus 2016, and includes all the battery pack 

components. Similarly, the fluid domain model is developed using Abaqus 2016 and includes the 

model of cooling fluid that removes heat from the cooling plate. Abaqus 2016, which is part of 

the SIMULIA simulation platform, can establish communication with the electro-thermal 

domain FMU following the FMI standard. Development of high fidelity models for each domain 

is discussed in Section 4.1. In Section 4.2, the cell model was calibrated using experimental test 

results. Sections 4.3-4.7 focus on the next steps of the research partnership and potential 

applications of the battery pack model.  
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4.1.1 Electro-thermal Domain 

In order to develop a modular model of the battery cell, the Modelica language is used. 

Modelica is an open-source, object-oriented, and equation-based modeling language which can 

be used to easily model complex physical systems containing electrical, mechanical, hydraulic, 

thermal, electronic, control and process oriented subcomponents [23,24]. A wide array of open-

source Modelica Libraries have been developed, providing rapid and scalable model 

development capability.  

Dymola is a commercial modeling and simulation environment based on the Modelica 

modeling language. Dymola has a built-in capability to simulate object-oriented models as well 

as export models as Functional Mock-up Units. FMUs are executable function files, generated 

following the Functional Mock-up Interface, which is a tool-independent standard to support 

model exchange and co-simulation of dynamic models. FMI allows for the coupling of several 

independent simulation tools to develop modular coupled models. Data exchange is restricted to 

discrete communication points, as specified by the host simulation tool, and each subsystem is 

solved independently between the communication points. More information about FMI and its 

functionality has been published elsewhere [25-26]. 

In order to streamline the development of a cell model, the open-source Electric Energy 

Storage (EES) library developed jointly at the Austrian Institute of Technology and Vienna 

University of Technology was used. The library contains sub-components of different 

complexity, such as individual cells and stacks interacting with loads, battery management 

components and charging devices. 
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The EES library components are designed as universal components allowing the end 

users to easily simulate specific scenarios by varying their parameterization. The use of the 

Modelica language allows seamless modifications of the equations used in each subcomponent. 

For the purposes of this analysis, the built-in LinearDynamicImpedance cell model was modified 

in order to properly define the cell model, based on experimental data. The EES library is 

structured as shown in Figure 4.2. 

 

Figure 4.2: Electric Energy Storage library, Batteries and Battery Management subsystems 

 

The Batteries package includes models for individual cells as well as stacks of 𝑛𝑠 cells 

connected in series and 𝑛𝑝 cells in parallel. A single cell component is selected for the purpose 

of this analysis. The single cell model features a positive (pin_p), a negative (pin_n) and an 

optional temperature connector (heatPort) which is activated herein as cell parameters were 

defined as a function of temperature [27]. The common parameters used in the cell model are 

given in Table 4.1. 
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Table 4.1: Common cell parameters [27]. Starred values* are calibrated   

Name Unit Description Value* 

𝑆𝑂𝐶𝑖𝑛𝑖  Initial state of charge 0≤ SOC ≤1 

𝑂𝐶𝑉𝑡𝑎𝑏𝑙𝑒𝑐ℎ𝑎𝑟𝑔𝑒 V Look-up table for the OCV vs. SOC during charge  Figure 4.3 

𝑂𝐶𝑉𝑡𝑎𝑏𝑙𝑒𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 V Look-up table for the OCV vs. SOC during 

discharge  

Figure 4.3 

𝑄𝑖𝑛𝑖 C Initial transferred charge 0 

𝐶0 C Capacity at 𝑇𝑟𝑒𝑓for 𝑄𝑖𝑛𝑖 = 0 and 𝑡 = 0  2880 

𝑢𝑠𝑒𝐻𝑒𝑎𝑡𝑃𝑜𝑟𝑡  Boolean variable for using the heat port On/off 

𝑇𝑟𝑒𝑓 K Reference temperature 293 

𝑎𝑙𝑝ℎ𝑎𝑅𝑠 K−1 Linear temperature coefficient for 𝑅𝑠 0.013* 

𝑅𝑠𝑟𝑒𝑓 Ω Ohmic resistance at reference temperature 0.014 

𝑎𝑙𝑝ℎ𝑎𝐶 K−1 Linear temperature coefficient for capacity -1.6 

𝐶𝐻𝑒𝑎𝑡 J/K Cell heat capacity 96* 

 

The model output quantities are given in Table 4.2 and the calculations are presented 

next. The removed charge is given by, 

Q = ∫ I(t)dt
tstop

tstart

 (33) 

and the total transferred charge is, 

Qabs = Qini +∫ |I(t)|dt
tstop

tstart

 (34) 
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The OCV of a battery cell changes with the SOC. Experimental results have shown that 

the OCV function is different during charge and discharge of the cell. As shown in Figure 4.3, 

OCV is provided using two linearly interpolated look-up tables for charge and discharge. The 

open circuit voltage is limited between the charging voltage limit CVL (SOC=1) and the 

discharge voltage limit DVL (SOC=0) [27].   

 

Figure 4.3: Normalized Cell Voltage 

 

The model can consider the effects of aging by considering both calendaric aging and 

cycling. Calendaric aging is estimated from time, which for the purposes of the current analysis, 

is minimal and therefore removed from the model. Cycling is directly proportional to absolute 

transferred charge Qabs. Aging of the cell mainly influences the performance by decreasing 

capacity and increasing the internal impedance [27].  

The cell capacity calculated by,  
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𝐶 = (C0 + 𝐾𝐶𝑄𝑎𝑏𝑠 × 𝑄𝑎𝑏𝑠)[1 + 𝑎𝑙𝑝ℎ𝑎𝐶 × (𝑇ℎ𝑒𝑎𝑡𝑃𝑜𝑟𝑡 − 𝑇𝑟𝑒𝑓)] (35) 

is temperature dependent and decreases with increased transferred charge due to cycling.  

The single cell model features a single, temperature dependent, ohmic impedance, modeled as, 

𝑅𝑠 = 𝑅𝑟𝑒𝑓[1 + 𝑎𝑙𝑝ℎ𝑎𝑅𝑠 × (𝑇ℎ𝑒𝑎𝑡𝑃𝑜𝑟𝑡 − 𝑇𝑟𝑒𝑓)] (36) 

which does not consider the increase in impedance due to aging.  

The SOC is given at each time step as, 

SOC = SOCini −
Q

C
 (37) 

and the equivalent number of cycles  

cycles = cyclesini +∫
|I(t)|

2C
dt

tstop

tstart

 (38) 

with 

cyclesini =
Qini
C0 + C

 (39) 

relates the total transferred charge to the cell capacity C. Therefore, one cycle is equivalent to the 

charge transfer of one full charge and one full discharge of the capacity C [27].   

The Cell model includes num serially connected RC elements, as shown in Figure 4.4. 

The cell model was manually edited to include two sets of RC elements representing the cell 

dynamics in charge and discharge. Based on the direction of cell current, a switch is used to 

connect and disconnect the corresponding RC component.  
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Figure 4.4: Cell model with one ohmic impedance and num serially connected RC elements 

 

 

Figure 4.5: Cell model diagram 

 

A list of calculated output variables of the modified LinearDynamicImpedance cell 

model used in the analysis is available in Table 4.2.  
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Table 4.2: Calculated output variables from cell model [27] 

Name Unit Description 

𝑆𝑂𝐶  State of charge 

𝑂𝐶𝑉 V Open circuit voltage  

𝑄𝑎𝑏𝑠 C Total transferred charge  

𝑐𝑦𝑐𝑙𝑒𝑠  Number of equivalent cycles 

𝑡 S Calendaric cell time 

𝐶 C Cell capacity 

𝑉 V Cell voltage 

 

The EES library contains a battery management block (Cycling) which is used to 

implement a rule-based control of the battery cell. It has three Boolean outputs which control the 

operation of the charging unit, power cycle look-up table and the cell. The battery management 

block can be used to cycle the cell over a predefined voltage range [𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥], while limiting 

the maximum current draw during discharge and charging current. The EES also includes a 

constant current, constant voltage (CCCV) charging device which charges the cell with constant 

current until the constant voltage level is reached [27]. The battery module under study contains 

twelve individual cells arranged in two series sets of six parallel cells, as shown in Figure 4.6. 
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Figure 4.6: Diagram of module with 12 cells 

 

The subcomponent labeled load includes the charging unit, power cycle look-up table, a 

switch and the cycling rule-based control unit. The switch works by disconnecting the power 

cycle when the cell/module drops below 𝑉𝑚𝑖𝑛 and connecting the charger. The switch features a 

short delay to prevent numerical instability. Similarly, as the voltage reaches the constant voltage 

level, the switch disconnects the charger and connects the power cycle to continue the power 

cycle [27]. Figure 4.7 illustrates the construction of the load subcomponent.  
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Figure 4.7: Charging unit and model controller 

 

In order to study the effects of heating on battery performance and investigate the cooling 

power needed to ensure the safe operation of the battery pack, the heat generated during cycling 

is calculated by 

𝑄𝐻𝑒𝑎𝑡 = 𝑅𝑠𝐼
2 (40) 

and the temperature of the cell is calculated by the heatCapacitor model by solving, 

𝑇 = ∫
𝑄𝐻𝑒𝑎𝑡 − 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔

𝐶𝐻𝑒𝑎𝑡
𝑑𝑡

𝑡𝑠𝑡𝑜𝑝

𝑡𝑠𝑡𝑎𝑟𝑡

 (41) 

where 𝐶𝐻𝑒𝑎𝑡 is the heat capacity of the battery cell and 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔 is the heat dissipated through the 

cooling plate.  An additional thermal resistance is included in the model to represent the heat 
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resistance of the skin of the cell. Figure 4.8 illustrates the application of Equations 40 and 41 to 

the electric domain model. 

 

Figure 4.8: Single cell model interaction with the co-simulation engine 

 

Due to the complex geometry of the battery module shown in Figure 4.9, the heat transfer 

model for the module and cooling plate is developed using FEM as discussed in Sections 4.1.2 

and 4.1.3. The co-simulation approach used to communicate between the three domains is 

introduced in Section 4.1.4. 
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Figure 4.9: CAD drawing and assembly of the battery module. Module sections: 1: Cooling 

plate, 2&8: Cover, 3&7: Connecting plate, 4&6: Housing, 5: Cylindrical cells and clips, 9: 

Battery Management System (BMS) ** Image obscured for proprietary reasons.  
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4.1.2 Thermal-structural Domain 

In order to create a high fidelity model of the battery module, a transient heat transfer 

model is also developed. The thermal properties of each component is assigned as shown in 

Table 4.3. Each part of the module was discretized on part using standard linear tetrahedron 

elements (DC3D4). Figure 4.10 provides an overview of the thermal-structural heat transfer 

model. 

Table 4.3: Material properties of the thermal-structural model components 

Sections Conductivity  [
W

m.K
] Density [

kg

m3] Specific Heat [
J

kg.K
] 

Cooling Plate 167 2700 902 

Cover, Housing, Cell, 

Clips, BMS cover 

0.2 2000 1800 

Connecting plate 400 8960 385 

BMS circuit 149 2329 700 

 

Under the assembly module a dependent instance was created containing all components 

and a surface of type geometry, named INTERFACE, was created using the internal surfaces of 

the cooling plate as shown in Figure 4.11 (marked in red). The surface is used to establish 

interaction with the fluid model. Temperature at the surface is defined as in output from the 

structural-thermal to the fluid model (applied as boundary condition in the fluid model). The 

surface was used to define a heat flux interaction with the fluid domain model developed in 

Section 4.1.3 



55 
 

In order to define heat transfer within the module, a conduction (contact) interaction 

property is defined as a function of clearance between surfaces, with conductance of 20000 

[𝑊 𝑚.𝐾⁄ ] with zero clearance and 0 conductance with 2mm clearance. Convection heat transfer 

is also defined as an interaction property of type film condition, with a film coefficient of 

0.01[𝑊 𝑚.𝐾⁄ ]. Convection is only defined on the external surface of the module.  

 

Figure 4.10: Thermal-Structural model ** Image obscured for proprietary reasons. 

 

 

Figure 4.11: Fluid model interaction. Internal surface (marked in red) is identified as 

INTERACTION for interaction with fluid model** Image obscured for proprietary reasons. 
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Similar to interaction with the fluid model, an interface surface was created, named 

INTERFACE2, in order to establish communication with the electro-thermal model. Figure 4.12 

displays a cut section of the thermal-structural model with the cell internal surfaces marked in 

red. Heat flux from the electro-thermal model, 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔, is identified as an input to the thermal-

structural model from the electro-thermal model. In turn, the surface temperature at 

INTERFACE2 is reported back to the electro-thermal model.  

 

Figure 4.12: Electro-thermal model interaction. Internal surface of cells (marked in red) were 

identified as INTERACTION2 for interaction with electro-thermal model ** Image obscured for 

proprietary reasons. 

 

In order to ensure correct initialization of the analysis, a constant initial temperature is 

defined for the entire model at the initial time step. A transient step, named Co-simulation, of 

length 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 is created with the maximum number of increments set at 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 50 to 
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ensure simulation is completed. A load of type Body heat flux is created and applied to all 12 

cells representing input heat flux,𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔 from the electro-thermal model. Finally an amplitude 

of type Actuator, named BODYFLUX, was defined and the amplitude of the load was updated.  

In order to define the co-simulation interaction property between electro-thermal, 

thermal-structural, and fluid domain models, an input file, named Standard.inp, was generated 

using the thermal-structural heat transfer model created. Abaqus CAE interface does not allow 

the definition of the co-simulation interaction, thus the input file was edited as shown in Section 

4.1.4.  

4.1.3 Fluid Domain 

In order to create a high fidelity model of the cooling fluid, a transient CFD model is 

developed. The thermal properties of the coolant, which is a mixture of 50% water and 50% 

Ethylene glycol, is assigned as shown in Table 4.4. The fluid model, which was generated to fill 

the void in the cooling plate part, was discretized on part using CFD linear tetrahedron elements 

(FC3D4), as shown in Figure 4.13. 

Table 4.4: Coolant thermal properties 

Fluid Conductivity  [
W

m.K
] Density [

kg

m3] Viscosity [
N.s

𝑚2] 

Coolant 0.43 1056 0.0085 

 

Under the assembly module a dependent instance was created and three surfaces of type 

mesh, named INLET, OUTLET, and INTERFACE were created as shown in Figure 4.14. The 

INTERFACE surface was used to define a heat flux interaction with the thermal-structural 

domain model as described in Section 4.1.2. The INLET surface was used to define the fluid inlet 
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boundary conditions. Similarly, the outlet boundary conditions were applied to the OUTLET 

surface, as described in Table 4.5.    

 

Figure 4.13: Fluid domain model (discretized) ** Image obscured for proprietary reasons. 

 

Figure 4.14: Fluid domain interactions (Marked in red). Left: Inlet, Middle: Outlet, Right: 

Interface ** Image obscured for proprietary reasons. 

 

Table 4.5: Flow properties of the coolant 

Boundary Region Inlet Outlet 

Thermal properties 15 𝐶𝑜 18 𝐶𝑜 

Flow properties 10 
𝐿𝑖𝑡

𝑚𝑖𝑛
 0 relative pressure 
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In order to ensure correct initialization of the analysis, a constant initial temperature is 

defined for the entire model at the initial time step. A transient step, named Co-simulation, of 

length 𝑡𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (equal to duration of the thermal-structural heat transfer model) was created to 

ensure compatible simulation time between the co-simulation components. 

Similar to the thermal-structural heat transfer model, in order to define the Co-simulation 

interaction property between electro-thermal, thermal-structural, and fluid domain models, an 

input file, named Fluid.inp, was generated using the CFD model created. The Abaqus CAE 

interface does not allow the definition of the co-simulation interaction, thus the input file was 

edited as shown in Section 4.1.4. 

4.1.4 Co-simulation 

Co-simulation between Abaqus/Standard (standard heat transfer model) and Abaqus/CFD 

(fluid domain model) is governed by an additional process, the SIMULIA Co-Simulation Engine 

(CSE) director. Typically, the CSE director is automatically invoked and the co-simulation 

parameters are stored in the co-simulation configuration file. The co-simulation as specified by 

the CSE director is illustrated in Figure 4.15. An overview of the Abaqus co-simulation 

procedure is described in Section 17.2.1 of the Abaqus User’s Guide [28].   

In order to execute co-simulation between models generated using Abaqus products and co-

simulation format FMU files, the Abaqus command line should be used to invoke the CSE 

director and the co-simulation configuration file should be manually generated. Proper execution 

of co-simulation requires: 

1) Proper definition of the interaction between the three models as outlined in the CSE 

User’s Guide [29] and API reference Guide [30]. 



60 
 

2) Compatible and consistent definition of co-simulation time and step size. 

3) Definition of co-simulation parameters in the co-simulation configuration file as specified 

by the CSE director. 

4) Definition of the co-simulation master and slave.   

 

Figure 4.15: Co-simulation process 

 

The CSE establishes communication between co-simulation models by assigning priority to 

individual models. The model designated as the master leads the co-simulation by taking the next 

time step, 𝑡𝑛𝑒𝑥𝑡, and results are communicated to slave models. The slave models will then 

individually take appropriate step sizes to advance to 𝑡𝑛𝑒𝑥𝑡 and report the results the CSE 

director, which communicates the information to the master. The master will then take the next 

time step, 𝑡𝑛𝑒𝑥𝑡+1, and the co-simulation will continue, so on and such forth.   

In preparing the Dymola model of the battery module for co-simulation, an FMU of type co-

simulation and version 1.0 was generated. More information about generating an FMU using 

Dymola is available in the Dymola User’s Guide [31]. The FMU file generated using Dymola is 

a compressed file which contains a Dynamic-link library (DLL) executable file as well as a 
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model description file in XML (eXtensible Mark-up Language) format. The CSE director 

automatically assigns FMU model instances as slave models.   

As stated previously in Section 4.1.2, definition of the interaction between the three co-

simulation models required manually editing the thermal-structural model input file, 

Standard.inp. Lines, listed in Figure 4.16, were added to the input file within the definition of the 

transient time step in order to stablish proper communication between the standard heat transfer 

model and fluid model.  

** STEP: Transient Step Name 

… 

… 

… 

 

** Interaction: Name 

*Co-simulation, name=Name, controls=Name_Ctrls, program=MULTIPHYSICS 

*Co-simulation Region, import, type=SURFACE 

interface, CFL 

interface, LUMPEDHEATCAPACITANCE 

*Co-simulation Region, export, type=SURFACE 

interface, NT 

*Co-simulation Controls, name=Name_Ctrls, coupling scheme=gauss-seidel, time incrementation=subcycle, time 

marks=yes,  

step size=min, scheme modifier=lead 

… 

… 

… 

*End Step 

 

Figure 4.16: Definition of co-simulation parameters (Abaqus Standard model). *Sections of the 

code referring to definition of boundary conditions and other step parameters are omitted to 

ensure generality and replaced with … 

 

For the purpose of this analysis, communication between three models was defined using 

surface regions. For a complete description of fields available for exchange between co-

simulation models interface regions, please refer to Section 17.2.1 of the Abaqus User’s Guide 

[28]. As shown in Figure 4.15, the co-simulation controls, using the keyword scheme modifier, 
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was used to assign the thermal-structural heat transfer model as the master. The keyword 

incrementation, was used to allow the master to independently take an appropriate step size. 

Similar to the thermal-structural heat transfer model, definition of the interaction between 

the three co-simulation models required manually editing the thermal-structural model input file, 

Fluid.inp. Lines, listed in Figure 4.17, were added to the input file within the definition of the 

time step in order to stablish proper communication between the standard heat transfer model 

and fluid model.  

** STEP: Fluid Step Name 

… 

… 

… 

 

** Interaction: Name 

*Co-simulation, name=Name, controls=Name_Ctrls, program=MULTIPHYSICS 

*Co-simulation Region, import, type=SURFACE 

interface, TEMP 

*Co-simulation Region, export, type=SURFACE 

interface, HFL 

interface, LUMPEDHEATCAPACITANCE 

*Co-simulation Controls, name=Name_Ctrls, coupling scheme=gauss-seidel, time incrementation=lockstep, time 

marks=yes,  

step size=min, scheme modifier=lag 

… 

… 

… 

*End Step 

 

Figure 4.17: Definition of co-simulation parameters (Abaqus Fluid model). *Sections of the code 

referring to definition of boundary conditions and other step parameters are omitted to ensure 

generality and replaced with … 

 

The co-simulation controls, using the keyword scheme modifier, was used to assign the 

fluid model as a slave. The keyword incrementation, was used to force the slave to take 

appropriate step sizes and report the results at time 𝑡𝑛𝑒𝑥𝑡. 
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The co-simulation configuration file defines the simulation properties of the system and the 

numerical methods employed to simulate the system in its defined environment. This includes: 

 components: subsystem simulator programs used in the co-simulation, 

 component instances: subsystem simulations performed using identified simulators, 

 connectors: available input and output simulation results from each subsystem, 

 connection sets: pairing of subsystem simulation results, 

 connection categories: time in the co-simulation when these pairings are relevant or 

active, and 

 model of computation: numerical method used in the co-simulation.  

In order for the configuration file to correctly identify the co-simulation parameters and be 

accepted by the CSE director, the following requirements must be satisfied: 

1) XML well-formedness. The CSE director or any other XML authoring tool can confirm the 

well-formedness. 

2) Abiding by the CSE schema definition. The rules and constraints are described formally in 

the CSE API kit. 

3) Internal consistency of references. 

4) Topological and algorithmic consistency. The definition of co-simulation and model 

parameters within the configuration file should be consistent with the problem definition in 

each subcomponent. 

5) External consistency of references. The author of the configuration file should ensure 

consistency of names registered with the CSE director and each subcomponent.  
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The first four requirements can be verified by using the datacheck option. External 

consistency of references can only be verified at run time. 

The configuration file contains six sections as described in the following paragraphs. The 

complete text of the configuration file created for the purpose of this analysis is include in the 

Appendix. For more details about the co-simulation configuration file refer to the CSE User’s 

Guide and the CSE configuration schema documentation.  

1) Document header 

The first two lines, illustrated in Figure 4.18, in the file identify the document as an XML 

compliant and define the XML root element as <CoupledMultiphysicsSimulation>, which 

uniquely defines the document as relevant to the CSE. The next line segment will add the 

header. Various information can be included within the header however the only required 

information is the schema version. 

<?xml version="1.0" encoding="UTF-8"?> 

<CoupledMultiphysicsSimulation> 

… 

<header> 

      <SchemaVersion>1.1</SchemaVersion> 

   </header> 

 

Figure 4.18: Co-simulation configuration file document header 

  

2) Components 

The components section of the configuration file defines each model included in the co-

simulation (purple highlighting). As illustrated in Figure 4.19, using the keyword 

<bottomUpImplementation>, the XML file introduces co-simulation components that are 

developed within the SIMULIA package, and the phrase <topDownImplementation> identifies 
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external components such as FMUs (green highlighting). In addition, a brief description of the 

master model, including the unit definitions (yellow highlighting) and co-simulation variables, 

will identify the master subcomponent to the CSE director. For example, the co-simulation 

parameters associated with the thermal-structural model, BODYFLUX and TEMP, are identified 

as well as their respective units. The CSE director can only recognize base units, therefore units 

such as kcal/kg and degC are further defined in regards to their respective base unit 
𝑚2

𝑠2
 and K. 

For further details about the different implementation techniques refer to API User’s kit [30]. 

<components> 

      <component name="Abaqus/Standard"> 

         <bottomUpImplementation> 

            <codeName>Abaqus/Standard</codeName> 

            <modelDescription> 

               <UnitDefinitions> 

                  <Unit name="kcal/kg"> 

                     <BaseUnit factor="4186.8" m="2" s="-2"></BaseUnit> 

                  </Unit> 

                  <Unit name="degC"> 

                     <BaseUnit K="1" factor="1.0" offset="273.15"></BaseUnit> 

                  </Unit> 

               </UnitDefinitions> 

               <ModelVariables> 

                  <ScalarVariable name="BODYFLUX"> 

                     <Real unit="kcal/kg"></Real> 

                  </ScalarVariable> 

                  <ScalarVariable name="TEMP"> 

                     <Real unit="degC"></Real> 

                  </ScalarVariable> 

               </ModelVariables> 

            </modelDescription> 

         </bottomUpImplementation> 

      </component>  

      <component name="CFD"> 

         <bottomUpImplementation> 

            <codeName>Abaqus/Cfd</codeName> 

         </bottomUpImplementation> 

      </component> 

      <component name="BatteryCoSim_System"> 

         <topDownImplementation> 

            <identifier>BatteryCoSim_System</identifier> 

         </topDownImplementation> 

      </component> 

   </components> 

Figure 4.19: Configuration file sections: Components 
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3) Component Instances 

This section identifies the subsystem models participating in the co-simulation, highlighted 

by yellow, and associates these models with the simulation executables, highlighted purple, 

defined in the components section. Each co-simulation sub-component (Abaqus/Standard, CFD, 

and BatteryCoSim_System), can be used to identify num independent component instances 

which allows rapid and scalable model development. The XML text in Figure 4.20, Fluid, 

Standard, and BatteryCoSim_System instances are created using the CFD, Abaqus/Standard, 

and BatteryCosim_System subcomponents respectively.  

… 

<componentInstances> 

      <componentInstance name="Fluid"> 

         <component>CFD</component> 

         <timeIncrementation> 

            <lockstep>false</lockstep> 

         </timeIncrementation> 

         <initialConditions> 

            <sendBeforeReceive>false</sendBeforeReceive> 

         </initialConditions> 

      </componentInstance> 

      <componentInstance name="Standard"> 

         <component>Abaqus/Standard</component> 

         <timeIncrementation> 

            <lockstep>false</lockstep> 

         </timeIncrementation> 

      </componentInstance> 

      <componentInstance name="BatteryCoSim_System"> 

         <component>BatteryCoSim_System</component> 

      </componentInstance> 

   </componentInstances> 

Figure 4.20: Configuration file sections: Component Instances 

 

For the purpose of the co-simulation performed for this study, the two Abaqus simulation 

products each correspond to a single model (there is a one-to-one relation between the 

simulation executable and the simulation model). In a more general use, one-to-many 



67 
 

relationships can be defined; for example, an Abaqus/CFD to Abaqus/Standard pairing of two 

separate models.  

Using the initial conditions option and setting the sendBeforeReceive option to false, the 

Fluid model will not communicate its initial conditions until it receives the initial conditions 

from the master model (Standard). The default mode for the sendBeforeReceive option is true 

and therefore it is not included the Standard component instant definition.  

4) Connectors 

Connectors define the variables that enter or leave a component instance. The connector 

element provides the association between the component instance and the variable name and 

declares whether the variable is input or output. Text included in Figure 4.21 describes six 

connectors, highlighted in purple, and defines the model variables, highlighted in green, which 

stablish communication between the co-simulation components. The Connector named 

CFD_to_STD_INPUT defines the input variables to the Standard model instance while the 

connector named CFD_to_STD_OUTPUT assigns the same variable as outputs from the Fluid 

model instance. Table 4.6 includes the complete list of connectors as defined in the co-

simulation configuration file. 

The name attribute for the connector element is used for internal reference in the 

configuration file. For Abaqus simulation models and FMUs, there is no need to match the 

variables listed in input files with corresponding variables in the configuration file. 

 
…  

  <connectors> 

      <connector name="CFD_to_STD_INPUT"> 

         <componentInstance>Standard</componentInstance> 

         <variables> 

            <input> 
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               <variable>heat_flux</variable> 

               <variable>heat_capacitance</variable> 

            </input> 

         </variables> 

      </connector> 

      <connector name="CFD_to_STD_OUTPUT"> 

         <componentInstance>Fluid</componentInstance> 

         <variables> 

            <output> 

               <variable>heat_flux</variable> 

               <variable>heat_capacitance</variable> 

            </output> 

         </variables> 

      </connector> 

      <connector name="STD_to_CFD_INPUT"> 

         <componentInstance>Fluid</componentInstance> 

         <variables> 

            <input> 

               <variable>temperature</variable> 

            </input> 

         </variables> 

      </connector> 

      <connector name="STD_to_CFD_OUTPUT"> 

         <componentInstance>Standard</componentInstance> 

         <variables> 

            <output> 

               <variable>temperature</variable> 

            </output> 

         </variables> 

      </connector> 

      <connector name="STD_from_FMI"> 

         <componentInstance>Standard</componentInstance> 

         <variables> 

            <output> 

               <variable>Cell_Temperature</variable> 

            </output> 

            <input> 

               <variable>Cooling_Plate</variable> 

            </input> 

         </variables> 

      </connector> 

      <connector name="FMI_from_STD"> 

         <componentInstance>BatteryCoSim_System</componentInstance> 

         <variables> 

            <input> 

               <variable>cell_temperature</variable> 

            </input> 

            <output> 

               <variable>cooling_plate</variable> 

            </output> 

         </variables> 

      </connector> 

   </connectors> 

Figure 4.21: Configuration file sections: Connectors 
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Table 4.6: Definition of Connectors in co-simulation configuration file 

Connector Name Model Instance Connector Role Variable(s) 

CFD_to_STD_INPUT Standard Input 
heat_flux 

heat_capacitance 

CFD_to_STD_OUTPUT Fluid Output 
heat_flux 

heat_capacitance 

STD_to_CFD_INPUT Fluid Input temperature 

STD_to_CFD_OUTPUT Standard Output temperature 

STD_from_FMI Standard 

Output Cell_Temperature 

Input Cooling_Plate 

FMI_from_STD BatteryCoSim_System 

Input cell_temperature 

Output cooling_plate 

 

5) Connection Sets 

Connection sets establish the associations between Connectors. As illustrated in Figure 4.22, 

pairing between all input and output variables is checked by the CSE director. In cases where 

connector elements have multiple variables defined, the connection elements must pair two 

connector elements that exactly complement each other in the sense that one connector’s input 

variable count match the other’s output variable count, and vice versa.  

In the case of co-simulation performed for this analysis, three independent connection sets 

are defined. The first two connection sets, of type field, establish communication between the 

fluid and standard model. The first set defines the communication from the CFD to the Standard 

model, and the second set defines communication from the Standard to the CFD model. Type 
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field connection ports will communicate both the variable magnitude as well as field units. The 

third connection set establishes communication of signals between the Standard model and the 

FMU. 

… 

<connectionSets> 

      <connectionSet name="CFD_to_STD" type="FIELD"> 

         <connection> 

            <connector>CFD_to_STD_INPUT</connector> 

            <connector>CFD_to_STD_OUTPUT</connector> 

         </connection> 

      </connectionSet> 

      <connectionSet name="STD_to_CFD" type="FIELD"> 

         <connection> 

            <connector>STD_to_CFD_INPUT</connector> 

            <connector>STD_to_CFD_OUTPUT</connector> 

         </connection> 

      </connectionSet> 

      <connectionSet name="STD_and_FMI" type="SIGNAL"> 

         <connection> 

            <connector>STD_from_FMI</connector> 

            <connector>FMI_from_STD</connector> 

         </connection> 

      </connectionSet> 

   </connectionSets> 

Figure 4.22: Configuration file sections: Connection sets 

 

6) Execution 

The execution element describes all the details of the numerical method used to perform the 

co-simulation. As shown in Figure 4.23, execution is generalized to enable a hierarchical 

arrangement of an arbitrary number of component instances. The term atomicActor, highlighted 

in green, refers to each individual simulation participant in co-simulation; whereas, a 

compositeactor, highlighted in yellow, refers to a group of simulation participants. Model 

instance(s) defined within a single compositeactor will communicate using the assigned solver, 

highlighted in purple, and negotiation method, highlighted in gray.  
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In the case of the co-simulation performed for this analysis, the CSE uses the Gauss-Seidel 

algorithm and the CSE will negotiate the variable exchange time between participants by 

selecting the maximum of the time increments preferred by the three codes. Two connection 

categories, highlighted in blue, are defined, InitialConditions and CouplingStep. Each category 

defines the connection sets participating in the respective connection category. For more 

information about the algorithm types and exchange time negotiation options, please refer to the 

CSE configuration schema.       

… 

<execution> 

      <compositeActors> 

         <compositeActor name="twoCodeContinuousTime"> 

            <actors> 

               <atomicActor>Standard</atomicActor> 

               <atomicActor>Fluid</atomicActor> 

               <atomicActor>BatteryCoSim_System</atomicActor> 

            </actors> 

            <modelOfComputation> 

               <continuousTime> 

                  <algorithm>GAUSS-SEIDEL</algorithm> 

                  <negotiationMethod>MAX</negotiationMethod> 

               </continuousTime> 

            </modelOfComputation> 

         </compositeActor> 

      </compositeActors> 

      <connectionGroups> 

         <connectionCategory name="InitialConditions"> 

            <connectionSet>CFD_to_STD</connectionSet> 

            <connectionSet>STD_to_CFD</connectionSet> 

            <connectionSet>STD_and_FMI</connectionSet> 

         </connectionCategory> 

         <connectionCategory name="CouplingStep"> 

            <connectionSet>CFD_to_STD</connectionSet> 

            <connectionSet>STD_to_CFD</connectionSet> 

            <connectionSet>STD_and_FMI</connectionSet> 

         </connectionCategory> 

      </connectionGroups> 

      <scenario> 

         <duration>300.</duration> 

      </scenario> 

   </execution> 

Figure 4.23: Configuration file sections: Execution 
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Finally, in order to perform the co-simulation, all input files (Abaqus input files and the 

FMU) as well as the co-simulation configuration file are stored in the current directory where 

the the Abaqus Command is issued. The commands, listed in Figure 4.24, will initiate the co-

simulation on machine earth and communication with the CSE director is established through 

port 65533. For a complete list of available ports for co-simulation refer to the Abaqus User’s 

Guide [28].   

call abaqus cse -j Confige_File -config Confige_File.xml -listener 65533 

call abaqus fmu -fmu Electrical_System.fmu -instance Electrical _System -csedirector earth:65533 

call abaqus -j Standard -csedirector earth:65533 

call abaqus -j Fluid -csedirector earth:65533 

Figure 4.24: Co-simulation execution commands 

 

After the first command prompt is used, the CSE director waits for the other co-

simulation components, which can be invoked in an arbitrary order. During co-simulation, the 

CSE director generates individual log files for each co-simulation file, which can be used for 

debugging. A separate .msg file is also generated which provides a brief description of the co-

simulation steps and possible errors encountered during co-simulation. 

4.2 Calibration 

 The calibration of the battery model will be completed using experimental data in three 

phases: 1) Cell model calibration, 2) Battery module calibration, and 3) Battery pack calibration. 

The calibration of the cell model focuses on the calibration of the electro-thermal domain model. 

Cell parameters such internal resistance, OCV, and capacity are provided by the manufacturer. 

However, parameters such as cell thermal capacity, cell skin thermal conductance, temperature 

dependency of parameters such as internal resistance and capacity, and RC components are 

calibrated using experimental test results. Calibrating the battery module and battery pack 
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models require further testing of the battery module and battery pack, which will be completed 

in the next phase of the research partnership.       

In order to calibrate the cell model, a single battery cell was tested under high current 

charge and discharge conditions and experimental results were provided. For the purposes of the 

discharge test, the ambient temperature was at 23±2𝑜C. The cell was initially charged fully. 

Afterwards, the sample was paused for 1 hour. The test cell was placed under a thermal camera 

and the device under testing (DUT) was discharged with a current of 40 A until the voltage 

dropped below the minimum cell voltage, or until the thermal camera detected a temperature of 

over 80𝑜C. For the purpose of the calibration, the distribution of temperature was constant over 

the surface.     

During discharge the cell is discharged with a current of 40A and after 210 seconds the 

cell reaches 80𝑜C, at which point the discharge is stopped. In order to calibrate the model, 

system parameters were adjusted until good agreement between the cell temperature 

experimental results and the model output temperature was reached. Figure 4.25 illustrates the 

cell skin temperature as recorded by the thermal camera and the cell model temperature.    
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Figure 4.25: Cell calibration, discharge of fully charged cell 

 

In order to test the effectiveness of the model calibration, the calibrated model was 

simulated at a discharge rate of 40 A. Figure 4.26 illustrates good agreement between the model 

predicted and experimental normalized cell voltage. During the cell discharge (first 210 

seconds), the model predicted voltage drops at a slower pace compared to the experimental 

results. The cell electro-thermal domain model dynamic in fast discharge is governed by the cell 

capacity and internal resistance, both of which are defined as functions of temperature and 

calendric aging. The time constant of the cell thermal domain model (governed by the thermal 

capacity and conductance) is much larger compared to the electro-thermal domain. Therefore the 

slow change in temperature, and in turn cell internal resistance, results in the discrepancy 

between the model prediction and experimental results. After the discharge is completed, both 

experimental results and model-predicted results illustrate a fast voltage recovery (from 210 to 

400 seconds). However, the model prediction fails to capture the slow continued voltage 

recovery beyond 400 seconds. Redefining the cell internal resistance and capacity as functions of 
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current, temperature, and calendric aging may reduce the discrepancy between model prediction 

and experimental results.         

 

Figure 4.26: Verification of model calibration, normalized cell voltage - Discharge  

 

Similar to the discharge test, during the charge test, the ambient temperature was at 

23±2𝑜C and the cell was discharged with a current of 2.6 A until the cell voltage dropped below 

the minimum cell voltage. After a 1 hour pause period the cell was charged with a maximum 

current of 30A for one hour or until the thermal camera detected a temperature of 80𝑜C.  

In order to calibrate the model, system parameters were adjusted until good agreement 

between the cell temperature experimental results and the model output temperature was 

reached. Figure 4.27 illustrates the cell skin temperature as recorded by the thermal camera and 

the cell model temperature.    
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Figure 4.27: Cell calibration, Charging 

 

Figures 4.27 and 4.28 illustrate a comparison between the model predicted and 

experimental current and normalized cell voltage respectively. 

 

Figure 4.28: Cell current during charging 
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During the first 100 seconds of cell charging, both experimental and model-predicted 

discharge current is at the maximum allowed limit of 30 A. After the first 100 seconds, the 

charge current decreases rapidly until at 200 seconds the cell temperature reaches 80𝑜C. Figures 

4.28 and 4.29 illustrate good agreement between the experimental results and model prediction.  

 

Figure 4.29: Cell normalized voltage during charging 

 

After the first 100 seconds the cell model predicts a more rapid decline in charge current than 

experimental results. Similar to the discharge test, this discrepancy may be corrected by 

redefining the cell internal resistance and capacity as a function of charge current. 

4.3 Battery module co-simulation 

A battery module, following the model development and co-simulation execution 

procedure outlined in section 4.1, and using the calibrated cell parameters as described in 4.2, 

was created. Results presented in this section display the capability to identify hot spots and 

predict the system dynamics; however, the module has not yet been calibrated and thus 

predicted results are only of qualitative value. System parameters such as fluid film coefficient 
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and thermal contact conductance coefficient were extracted from reference text [32]. Calibration 

of the battery module model using experimental data will be completed in the next phase of the 

research project.   

 

Figure 4.30: Cooling plate temperature distribution. Temperature contour displays areas of high 

temperature in red and low temperature in blue ** Image obscured for proprietary reasons. 

 

Figure 4.30 illustrates the temperature distribution on the cooling plate. The initial 

module temperature was set at 30 𝐶0. The cooling fluid temperature at the inlet was fixed at 15 

𝐶0 and the fluid temperature at the outlet is presented in Figure 4.31.  
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Figure 4.31: Coolant outflow temperature.  

 

Similar to the cooling plate, hot spots can be identified on the cells as shown in Figure 

4.32. The minimum cell temperature occurs at the contact points with the cooling plate at the top 

and bottom of each cell, while the heat loss through convection reduces the cell skin temperature 

on all sides. Maximum temperature regions, marked in red, occur at the top and bottom of the 

cell due to reduced heat transfer with the cooling plate and minimal heat loss through convection.    
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Figure 4.32: Cell temperature distribution. Temperature contour displays areas of high 

temperature in red and low temperature in blue. ** Image obscured for proprietary reasons. 

 

 

Figure 4.33: Normalized module current 

 

In addition to the temperature distribution in the thermal-structural model, the electro-

thermal model output is also calculated. Figure 4.33 displays the normalized module current 
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operating under a high-frequency-high-load power cycle. Similarly, Figure 4.34 illustrates the 

module voltage during the co-simulation.   

 

Figure 4.34: Module voltage under high-frequency-high-load conditions  

 

4.4 Performance under high loading conditions 

Performance of the battery pack under high loading conditions is of great concern in the 

development of high-performance HEVs. The current draw from the battery pack can be 

limited; however, extended high current draw can result in development of local high 

temperature regions which can significantly reduce the battery performance and battery life. The 

purpose of this study is to estimate the effects of high current draw on battery life and ensure the 

cooling system can efficiently remove heat and eliminate high temperature regions.  

 For the purpose of this study the model will undergo two types of loading conditions. In 

order to study the long term effects on battery life, the model will be executed with loading 
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cycles that represent the long term use of the battery pack. In order to study the temperature 

profile in the battery pack, the loading cycle will feature long periods with maximum current 

draw. In order to complete this analysis, which will be completed in the next phase of research, a 

model of the battery pack to include hundreds of battery modules will be developed. This model 

will also include control logic that will monitor the temperature of the battery pack at 

predetermined locations and limit the current draw to prevent thermal or electrical damage to the 

battery pack.  

The development of the battery pack model will also require further testing of an 

individual battery cell to better define the fast and slow transient behavior of the cell. The 

transient behavior is represented by several RC elements included in the cell model.  

4.5 Battery life estimation 

In order to study the battery life and characterize the battery aging, three battery 

parameters are studied. Battery current draw/ charging current, temperature and SOC 

significantly influence the battery life. A 2.5 year study documented in [32] has shown that cell 

temperature, depth-of-discharge, and current rates are the primary factors influencing battery 

state of health and its useful life. 

The cell model included in the EES library has built-in functionality to estimate the 

battery life. The capacity, as well as the internal impedance of the cell, can change due to aging. 

The effects of aging on the battery state of health are identified by the battery state of health 

(SOH). 

𝑆𝑂𝐻 = 𝑆𝑂𝐻𝐶 × 𝑆𝑂𝐻𝑍 (42) 
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For each cell, 𝑆𝑂𝐻𝐶 and 𝑆𝑂𝐻𝑍 are estimated by calibrating aging factors, 𝑥𝑐 and 𝑥𝑍, 

respectively [27]. Characterizing the battery life and the effects of high current draw and 

charging will be investigated in the next steps of the study. 

𝑆𝑂𝐻𝐶 =
1

𝐶0(1 − 𝑥𝐶)
× 𝐶 −

𝑥𝐶
1 − 𝑥𝐶

 (43) 

𝑆𝑂𝐻𝑍 =
1

𝑍0(1 − 𝑥𝑍)
× 𝑍 −

𝑥𝑍
1 − 𝑥𝑍

 
(44) 

 

4.6 High and low ambient temperature testing 

Vehicle manufactures are required to ensure the vehicle can perform in both high and low 

ambient temperature conditions. A significant area of interest is performance in high ambient 

temperatures as the high ambient temperature can reduce the ability of the cooling system to 

remove heat from the battery pack, and additional cooling may be required in order to prevent 

long term damage to the battery pack. 

Each battery cell model is temperature dependent and therefore the effects of ambient 

temperature will be investigated in later stages of the analysis. In order to ensure the safe 

operation of the battery pack, it is highly encouraged that each battery pack design is tested 

before final integration in the vehicle. 

4.7 Vehicle integration 

The final stage of this project will include the integration of the battery pack model into 

the vehicle model. The battery pack model developed in this chapter is an example of a high 

fidelity multi-physics model which can take supersede models of lower fidelity. The 

development of high fidelity models within a single modeling environment, such as Matlab or 
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Simulink, is often unfeasible, or at best can lead to a significant increase in the computational 

costs as many functional components of the vehicle feature multi-physics systems. It should also 

be noted that the development of finite element model of system components in junction with 

equation-based models and rule-based control is often impossible within a single modeling 

environment. Therefore the use of co-simulation in the development of subcomponent models 

and integration with the vehicle model can lead to a significant increase in model fidelity and 

reduced computational cost. It is highly encouraged that the battery pack model developed as 

part of this analysis be integrated with the vehicle model after model verification and 

development of the complete vehicle model.  
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Chapter 5: Concluding Remarks and Future Work 

This thesis presented simulation tools, control analysis, and a multi-physics co-simulation 

approach supporting high-performance HEVs. It focused on the development of vehicle 

simulation and control of HEVs using a sequential approach, as well as a multi-physics modeling 

approach to develop high fidelity battery models. This chapter will provide concluding remarks 

for the thesis and suggest future work. 

5.1 Adaptation of Vehicle Model to Simulate and Control Hybrid Electric Vehicles  

 A sequential modeling approach was introduced in Chapter 2 in order to develop a 

vehicle model for a series HEV. The same modeling approach can be adapted to develop vehicle 

supervisory control strategies for parallel and power-split HEVs.  

The supervisory control strategy applied to the vehicle model in Chapter 2 was a rule-

based strategy which provides a good compromise between vehicle performance and efficiency 

for series hybrid architectures. Parallel and power-split hybrid architectures, however, require 

the application of more complex supervisory control strategies such Equivalent Cost 

Minimization Strategy (ECMS), which assigns an equivalent fuel for battery power. Application 

of ECMS can be further enhanced by utilizing DP results to choose and update the equivalence 

factor.            

 In Chapter 3, DP and its application to a series hybrid architecture was introduced. DP is 

a Backward-Looking simulation which can be used as an unbiased tool to evaluate the controller 

performance. Applying DP to hybrid architectures and comparing the vehicle emissions and 

performance against the vehicle model can provide further insight in the development of the 

vehicle supervisory controller. 
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In both Chapters 2 and 3 the controller performance was evaluated based on fuel 

economy and CO2 emissions.  While the fuel economy and CO2 emissions are of great 

importance in the design of vehicles, manufacturers require each new vehicle design to meet a 

long list of design goals, such as emission, drivability, and performance.  One area for future 

work is to develop a robust supervisory control that can simultaneously minimize fuel economy 

in normal city driving conditions and maximize vehicle performance. Another possible 

improvement is to investigate the use of traffic light and congestion data, to interactively 

influence driver behavior and improve the fuel economy.   

5.2 Battery Modeling and Multi-Physics Co-simulation  

In Chapter 4 a multi-physics co-simulation approach was used to develop a high fidelity 

battery model in order to investigate the temperature distribution in the spatial framework of the 

battery pack. The co-simulation approach provides a fast computational time by incorporating a 

discrete electro-thermal domain model developed using Modelica, an open-source, object-

oriented, and equation-based modeling language. The spatial context of the heat transfer 

problem was captured by the Finite Element Model (FEM) of battery components including a 

transient thermal-structural heat transfer model and a fluid heat transfer model of the cooling 

system.  

Communication between the three model components was established following the 

Functional Mock-up Interface (FMI), a tool-independent standard to support model exchange 

and co-simulation of dynamic models. FMI allowed for the coupling of the discrete electro-

thermal domain model and the FEM heat transfer models to develop a modular coupled model. 

Data exchange is established at discrete communication points, as specified by the host 

simulation tool, and each subsystem is solved independently between the communication points. 
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The battery model developed will be used in future studies to investigate the effects of 

high current charge/discharge in high performance applications to ensure safe operation of the 

battery pack. The model will also be used to design the cooling system and study the effects of 

high current on the battery life. Another area for future work is to incorporate the battery model 

into a vehicle model. Simulink software used to develop the vehicle model in Chapter 2 is an 

FMI compliant software which allows for the integration of the battery pack model. The high 

fidelity multi-physics models can replace the battery model developed using experimental 

results. In addition to improved fidelity, the model can be used to identify the areas of high 

temperature, design the cooling system to allow for proper cooling, investigate the effects of 

current draw on life, and in turn observe the effects of battery inefficacy on vehicle 

performance. 
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Appendix: 

1) MBSD Tutorial 
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2) Dynamic Programming Matlab code 

% Dynamic Programming HEV script 
%Written by Saeid Loghavi, August, 2015 
clc 
clear all 
close all 
tic 
global max_engine_RPM 
global radius; 
global i_final; 
global gear_ratios; 
global EM_gear_ratio; 

  
global Engine_Fuel_Data; 
global Engine_Fuel_RPM_Axis; 
global Engine_Fuel_Throttle_Axis; 
global Engine_Torque_Data; 
global Engine_Torque_RPM_Axis; 
global Engine_Torque_Throttle_Axis; 

  
% fuel consumption rate (next 3 lines taken from Rose-Hulman tutorial) 
load Engine_Diesel_Data.mat;        % This is NOT BSFC, but instead grams/sec 

as a function of throttle request and engine RPM 
engine_max_torque = 200;            % Engine Max Torque, Nm 
engine_inertia = 0.12;              % Engine Inertia, kg m^2 
max_engine_RPM = max(Engine_Fuel_RPM_Axis); 

  
% Vehicle data based on a 2011 VW Jetta 
mass = 1389;    % mass in kg (2011 Prius) 
g = 9.81;       % accel of gravity in m/s^2 
Area = 2.642;   % frontal area in m^2 (guessed) 
rho_air = 1.25; % density of air in kg/m^3 
Cd = 0.32;      % drag coefficient (guessed) 
delta_M = 1.2;  % mass factor 
fr = 0.013;     % rolling resistance coefficient 
radius = 0.25;% displaced tire radius, m 
eta = 0.97;     % transmission efficiency 
% http://www.bebo.com/new-cars/2011-volkswagen-jetta-sportwagen/specs/ 
i_final = 3.65; % Final drive ratio 
gear_ratios = [3.78 2.12 1.36 1.03 0.84]; % Gear ratios 
[nnn,NUM_GEARS] = size(gear_ratios); 

  
% Additional Hybrid data (made up, and from http://www.eaa-

phev.org/wiki/Toyota_Prius_Battery_Specs) 
battery_capacity = 1.5; % energy capacity in kW-h 

  
SOC_low_range = 0.4;    % low desirable operating range for battery 
SOC_high_range = 0.8;   % high desirable operating range for battery 
SOC_initial=0.8; 

  
SOC_final_low = 0.7;    % low SOC at final step (otherwise penalized) 
SOC_final_high = 0.8;   % high SOC at final step (otherwise penalized) 
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SOC_penalty = 100000.0;   % proportional penalty parameter for operating 

outside of SOC desirable (or final) range 
NOT_ALLOW_PENALTY = 100000; 

  
EM_max_torque = 600;    % Prius motor maximum torque is 400 Nm from Ehsani, 

2nd ed for just one motor 
EM_gear_ratio = 1.0;    % Gear ratio between EM and the final drive 

  
regen_efficiency = 0.60; % The efficiency of regenerative braking, taken into 

account only braking at front can occur 
EM_efficiency=0.6; 

  
% 
% Drive cycle 
% 

  
%load Schedule_FU505_Ten_Times.mat 
load Schedule_FU505.mat; 
%load Schedule_Boston_Cab.mat; 

  
[NUM_STEPS,n] = size(Sch_Cycle); 
t = Sch_Cycle(:,1); 
t_final = Sch_Cycle(NUM_STEPS,1); 

  
% Convert vehicle speed from mph to m/s and compute acceleration 
v = Sch_Cycle(:,2)*0.44704; 
a = diff(v)./diff(t); 

  
% Remove last data points for velocity and time since not present in 

acceleration 
v(end) = []; 
t(end) = []; 

  
[NUM_STEPS,n] = size(v); 

  
% Calculate tractive force and power at each point in the drive cycle 
force = delta_M*mass*a + fr*mass*g + 0.5*Cd*rho_air*Area*v.^2; 
power_required = force.*v; 

  

  
% 
% Establish the state and control grid points 
% 

  
state_GRID_size = 400; 
SOC_grid_size=state_GRID_size; 
control_GRID_size = 400; 
% engine_throttle_grid_size=length(Engine_Torque_Throttle_Axis); 
ICE_thr_grid_size=control_GRID_size; 
thr_vec = linspace(0,1,control_GRID_size); 

  
SOC_vector=linspace(SOC_low_range,SOC_high_range,state_GRID_size); 

  
% Evaluate the recursive cost starting at the last step in the drive cycle 
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% and working backwards.  The only state variable is SOC, so the cost 
% function J_cost is size NUM_STEPS X SOC_grid_size. 
% We also need to store the optimal control decisions at each time step. 
% This is given as U_store and is size NUM_STEPS X SOC_grid_size X 3 
% since we have three control variables (gear ratio, throttle request, 
% EM torque) 

  
J_cost = zeros(NUM_STEPS,SOC_grid_size); 
U_store = zeros(NUM_STEPS,SOC_grid_size,3); 

  
% 
% First calculate J_cost(NUM_STEPS,:) - i.e., for all SOC in the grid at 
% the last point on the drive cycle.  Penalize any SOC not between 
% SOC_final_low and SOC_final_high. 
% 
for L = 1:SOC_grid_size; 
    if SOC_vector(1,L)>SOC_final_low; 
        J_cost(NUM_STEPS,L)=0; 
    end 
    if SOC_vector(1,L)<=SOC_final_low; 
        J_cost(NUM_STEPS,L)=NOT_ALLOW_PENALTY; 
    end 
end; 
% 
% Next do the cost at all other points on the drive cycle using the 
% recursive statement 
% 
[ig1_grid, thr_grid] = meshgrid (gear_ratios, thr_vec); 
for STEP=(NUM_STEPS-1):-1:1 
    STEP 
    ICE_RPM_choices=v(STEP)./radius.*i_final.*ig1_grid./2./pi.*60;%RPM 

choices for the time step (5 options based on gear) 
    

ICE_torque_choices=interp2(Engine_Torque_Throttle_Axis,Engine_Torque_RPM_Axis

,Engine_Torque_Data,thr_grid,ICE_RPM_choices); 
    ICE_torque_choices(isnan(ICE_torque_choices))=0; 
    

ICE_fuel_consumption_choices=interp2(Engine_Fuel_Throttle_Axis,Engine_Fuel_RP

M_Axis,Engine_Fuel_Data,thr_grid,ICE_RPM_choices); 
    Torque_tran=force(STEP)*radius/i_final; 
    P_Wheel=power_required(STEP); 
    Power_ICE=ICE_torque_choices.*ICE_RPM_choices*2*pi/60; 

     
    for L = 1:SOC_grid_size; 
        EM_Analysis; % Move up, and only compute a delta_SOC 
        min_cost = inf;  % This keeps track of the minimum cost of using the 

three controls 

  
        phi_cost_choices=Not_Possible*NOT_ALLOW_PENALTY; 
        if STEP==1 & L~=SOC_grid_size; 
            phi_cost_choices=phi_cost_choices+NOT_ALLOW_PENALTY; 
        end 

             
        J_cost_next=zeros(control_GRID_size,NUM_GEARS); 
        for s=1:NUM_GEARS 
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J_cost_next_geari=interp1(SOC_vector,J_cost(STEP+1,:),SOC_next_possible(:,s))

; 
            J_cost_next(:,s)=J_cost_next_geari; 
            check=isnan(J_cost_next); 
            for ch=1:5; 
                for ch2=1:100; 
                    if check(ch2,ch)==1 
                        J_cost_next(ch2,ch)=NOT_ALLOW_PENALTY; 
                    end 
                end 
            end 
        end 

         
        

Cost_possible=Possible_options.*ICE_fuel_consumption_choices+phi_cost_choices

+J_cost_next; 
        % For each SOC on the grid, seek the controls gear ratio, engine 

throttle, and battery current at this time 
        % step which minimize the cost from this point in the drive cycle 

forward 
        [M,min_cost_indicies_row]=min(Cost_possible); 
        SOC_location=zeros(1,5); 
        for count=1:5; 
        

SOC_location(1,count)=SOC_next_possible(min_cost_indicies_row(count),count); 
        end 
        [min_cost,min_cost_indicies_column]=min(M); 
        minimum_row_index = min_cost_indicies_row(min_cost_indicies_column); 
        optimal_next_state(STEP,L) = SOC_next_possible(minimum_row_index, 

min_cost_indicies_column); 
        SOC_next_possible_indicies=interp1(SOC_vector, 1:state_GRID_size , 

SOC_next_possible,'nearest', 'extrap'); 
        

optimal_next_state_index(STEP,L)=SOC_next_possible_indicies(minimum_row_index

,min_cost_indicies_column); 
        for S=1:NUM_GEARS; 
            if S==1; 
                if M(S)==min_cost; 
                    Store_Gear=S; 
                    Store_thr=min_cost_indicies_row(S); 
                end 
            end 
            if S==2; 
                if M(S)==min_cost & M(S-1)~=min_cost; 
                    Store_Gear=S; 
                    Store_thr=min_cost_indicies_row(S); 
                end 
            end 
            if S==3; 
                if M(S)==min_cost & M(S-1)~=min_cost & M(S-2)~=min_cost; 
                    Store_Gear=S; 
                    Store_thr=min_cost_indicies_row(S); 
                end 
            end 
            if S==4; 
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                if M(S)==min_cost & M(S-1)~=min_cost & M(S-2)~=min_cost & 

M(S-3)~=min_cost; 
                    Store_Gear=S; 
                    Store_thr=min_cost_indicies_row(S); 
                end 
            end  
            if S==5; 
                if M(S)==min_cost & M(S-1)~=min_cost & M(S-2)~=min_cost & 

M(S-3)~=min_cost & M(S-4)~=min_cost; 
                    Store_Gear=S; 
                    Store_thr=min_cost_indicies_row(S); 
                end 
            end              
        end 
        U_store_1(STEP,L)=Store_Gear; 
        U_store_2(STEP,L)=Store_thr; 
        U_Store_3(STEP,L)=SOC_location(Store_Gear); 
        J_cost(STEP,L) = min_cost; 

         
    end; 
%     U_store(STEP,L,3)=SOC_vector(L); 

     
end; 
toc 
%%  
close all 
[global_min global_min_indices]=min(J_cost(1,:)); 
SOC_indices = global_min_indices; 
for count3=1:NUM_STEPS-1 
    O_SOC(count3)=SOC_vector(SOC_indices);  
    O_Throttle(count3)=U_store_2(count3,SOC_indices);  
    O_gear(count3)=U_store_1(count3,SOC_indices);  
    if O_Throttle(count3)==1 
        O_gear(count3)=0; 
    end 
    SOC_indices = optimal_next_state_index(count3,SOC_indices); 
end 
O_SOC(end)=SOC_vector(SOC_indices);  
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3) Co-simulation components  

Configuration file: 

<?xml version="1.0" encoding="UTF-8"?> 

<CoupledMultiphysicsSimulation xmlns:cse="http://www.simulia.com/CSESchema"> 

   <header> 

      <SchemaVersion>1.1</SchemaVersion> 

   </header> 

   <components> 

      <component name="Abaqus/Standard"> 

         <bottomUpImplementation> 

            <codeName>Abaqus/Standard</codeName> 

            <modelDescription> 

               <UnitDefinitions> 

                  <Unit name="kcal/kg"> 

                     <BaseUnit factor="4186.8" m="2" s="-2"></BaseUnit> 

                  </Unit> 

                  <Unit name="degC"> 

                     <BaseUnit K="1" factor="1.0" offset="273.15"></BaseUnit> 

                  </Unit> 

               </UnitDefinitions> 

               <ModelVariables> 

                  <ScalarVariable name="BODYFLUX"> 

                     <Real unit="kcal/kg"></Real> 

                  </ScalarVariable> 

                  <ScalarVariable name="TEMP"> 

                     <Real unit="degC"></Real> 

                  </ScalarVariable> 

               </ModelVariables> 

            </modelDescription> 

         </bottomUpImplementation> 

      </component> 

      <component name="CFD"> 

         <bottomUpImplementation> 

            <codeName>Abaqus/Cfd</codeName> 

         </bottomUpImplementation> 

      </component> 
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      <component name="BatteryCoSim_System"> 

         <topDownImplementation> 

            <identifier>BatteryCoSim_System</identifier> 

         </topDownImplementation> 

      </component> 

   </components> 

   <componentInstances> 

      <componentInstance name="Fluidz"> 

         <component>CFD</component> 

         <timeIncrementation> 

            <lockstep>false</lockstep> 

         </timeIncrementation> 

         <initialConditions> 

            <sendBeforeReceive>false</sendBeforeReceive> 

         </initialConditions> 

      </componentInstance> 

      <componentInstance name="Module1"> 

         <component>Abaqus/Standard</component> 

         <timeIncrementation> 

            <lockstep>false</lockstep> 

         </timeIncrementation> 

      </componentInstance> 

      <componentInstance name="BatteryCoSim_System"> 

         <component>BatteryCoSim_System</component> 

      </componentInstance> 

   </componentInstances> 

   <connectors> 

      <connector name="CFD_to_STD_INPUT"> 

         <componentInstance>Module1</componentInstance> 

         <variables> 

            <input> 

               <variable>heat_flux</variable> 

               <variable>heat_capacitance</variable> 

            </input> 

         </variables> 

      </connector> 

      <connector name="CFD_to_STD_OUTPUT"> 

         <componentInstance>Fluidz</componentInstance> 
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         <variables> 

            <output> 

               <variable>heat_flux</variable> 

               <variable>heat_capacitance</variable> 

            </output> 

         </variables> 

      </connector> 

      <connector name="STD_to_CFD_INPUT"> 

         <componentInstance>Fluidz</componentInstance> 

         <variables> 

            <input> 

               <variable>temperature</variable> 

            </input> 

         </variables> 

      </connector> 

      <connector name="STD_to_CFD_OUTPUT"> 

         <componentInstance>Module1</componentInstance> 

         <variables> 

            <output> 

               <variable>temperature</variable> 

            </output> 

         </variables> 

      </connector> 

      <connector name="STD_from_FMI"> 

         <componentInstance>Module1</componentInstance> 

         <variables> 

            <output> 

               <variable>TEMP</variable> 

            </output> 

            <input> 

               <variable>BODYFLUX</variable> 

            </input> 

         </variables> 

      </connector> 

      <connector name="FMI_from_STD"> 

         <componentInstance>BatteryCoSim_System</componentInstance> 

         <variables> 

            <input> 
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               <variable>temp</variable> 

            </input> 

            <output> 

               <variable>bodyflux</variable> 

            </output> 

         </variables> 

      </connector> 

   </connectors> 

   <connectionSets> 

      <connectionSet name="CFD_to_STD" type="FIELD"> 

         <connection> 

            <connector>CFD_to_STD_INPUT</connector> 

            <connector>CFD_to_STD_OUTPUT</connector> 

         </connection> 

      </connectionSet> 

      <connectionSet name="STD_to_CFD" type="FIELD"> 

         <connection> 

            <connector>STD_to_CFD_INPUT</connector> 

            <connector>STD_to_CFD_OUTPUT</connector> 

         </connection> 

      </connectionSet> 

      <connectionSet name="STD_and_FMI" type="SIGNAL"> 

         <connection> 

            <connector>STD_from_FMI</connector> 

            <connector>FMI_from_STD</connector> 

         </connection> 

      </connectionSet> 

   </connectionSets> 

   <execution> 

      <compositeActors> 

         <compositeActor name="twoCodeContinuousTime"> 

            <actors> 

               <atomicActor>Module1</atomicActor> 

               <atomicActor>Fluidz</atomicActor> 

               <atomicActor>BatteryCoSim_System</atomicActor> 

            </actors> 

            <modelOfComputation> 

               <continuousTime> 
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                  <algorithm>GAUSS-SEIDEL</algorithm> 

                  <negotiationMethod>MIN</negotiationMethod> 

               </continuousTime> 

            </modelOfComputation> 

         </compositeActor> 

      </compositeActors> 

      <connectionGroups> 

         <connectionCategory name="InitialConditions"> 

            <connectionSet>CFD_to_STD</connectionSet> 

            <connectionSet>STD_to_CFD</connectionSet> 

            <connectionSet>STD_and_FMI</connectionSet> 

         </connectionCategory> 

         <connectionCategory name="CouplingStep"> 

            <connectionSet>CFD_to_STD</connectionSet> 

            <connectionSet>STD_to_CFD</connectionSet> 

            <connectionSet>STD_and_FMI</connectionSet> 

         </connectionCategory> 

      </connectionGroups> 

      <scenario> 

         <duration>300.</duration> 

      </scenario> 

   </execution> 

</CoupledMultiphysicsSimulation> 

 

Standard Model: 

*Heading 

** Job name: Module1 Model name: Model-1 

** Generated by: Abaqus/CAE 2016 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Module 

*Node 

      1,   7.94627619,   10.1000004,   64.5999985 

… 
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25426, -0.0205669049,  -10.0534954,  -1.76602697 

*Element, type=DC3D4 

   1, 14320, 14464, 14449, 14450 

… 

72829, 14137, 24455, 24456, 24487 

*Surface, type=ELEMENT, name=s_Surf-26 

_s_Surf-26_S3, S3 

_s_Surf-26_S1, S1 

_s_Surf-26_S4, S4 

_s_Surf-26_S2, S2 

*End Assembly 

*Amplitude, name=BODYFLUX, definition=ACTUATOR 

**  

** MATERIALS 

**  

*Material, name=Aluminum 

*Conductivity 

167., 

*Density 

2700., 

*Specific Heat 

902., 

*Material, name=Copper 

*Conductivity 

400., 

*Density 

8960., 

*Specific Heat 

385., 

*Material, name=Plastic 

*Conductivity 

 0.2, 

*Density 

2000., 

*Specific Heat 

1800., 

*Material, name=Silicon 

*Conductivity 
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149., 

*Density 

2329., 

*Specific Heat 

700., 

**  

** INTERACTION PROPERTIES 

**  

*Surface Interaction, name=Conduction 

1., 

*Gap Conductance 

20000.,0. 

    0.,2. 

**  

** PREDEFINED FIELDS 

**  

** Name: Predefined Field-1   Type: Temperature 

*Initial Conditions, type=TEMPERATURE 

Set-5, 30. 

**  

** INTERACTIONS 

**  

** Interaction: Int-1 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

s_Surf-1, m_Surf-1 

** Interaction: Int-2 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

m_Surf-3, s_Surf-3 

** Interaction: Int-3 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

m_Surf-5, s_Surf-5 

** Interaction: Int-4 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

m_Surf-9, s_Surf-9 

** Interaction: Int-5 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

m_Surf-11, s_Surf-11 

** Interaction: Int-6 
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*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

s_Surf-15, m_Surf-13 

** Interaction: Int-7 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

s_Surf-16, m_Surf-16 

** Interaction: Int-8 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

s_Surf-18, m_Surf-18 

** Interaction: Int-9 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

m_Surf-20, s_Surf-20 

** Interaction: Int-10 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

s_Surf-22, m_Surf-22 

** Interaction: Int-11 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

s_Surf-24, m_Surf-24 

** Interaction: Int-12 

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE 

s_Surf-26, m_Surf-26 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=NO, inc=1000 

*Heat Transfer, end=PERIOD, deltmx=4. 

0.1, 300., 0.003, 250.,  

**  

** LOADS 

**  

** Name: Load-1   Type: Body heat flux 

*Dflux, amplitude=BODYFLUX 

Set-6, BF, 500000. 

** Interaction: Int-1 

*Co-simulation, name=Int-1, controls=Int-1_Ctrls, program=MULTIPHYSICS 

*Co-simulation Region, import, type=SURFACE 

interface, CFL 

interface, LUMPEDHEATCAPACITANCE 
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*Co-simulation Region, export, type=SURFACE 

interface, NT 

*Co-simulation Controls, name=Int-1_Ctrls, coupling scheme=gauss-seidel, time 

incrementation=subcycle, time marks=yes,  

step size=min, scheme modifier=lead 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT 

*Output, history, frequency=0 

*End Step 

 

Fluid Model: 

*Heading 

** Job name: Fluidz Model name: Model-1 

** Generated by: Abaqus/CAE 2016 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Shell2-1 

*Node 

      1,   16.4462757,   40.3134003,  -11.5000019 

… 

… 

      1155,   15.4851465,   31.3644524,  -14.9610233 

*Element, type=FC3D4 

   1,  578,  995,  576,   35 

3412, 1002,  998,  508,  507 

…. 

*Surface, type=ELEMENT, name=INTERFACE 

_INTERFACE_S3, S3 
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_INTERFACE_S4, S4 

_INTERFACE_S2, S2 

_INTERFACE_S1, S1 

*Elset, elset=_OUTLET_S3, internal, instance=Shell2-1-1 

   21,  214,  479,  480, 2183 

*Elset, elset=_OUTLET_S1, internal, instance=Shell2-1-1 

  139, 1432 

*Elset, elset=_OUTLET_S4, internal, instance=Shell2-1-1 

  477,  879, 2252 

*Surface, type=ELEMENT, name=OUTLET 

_OUTLET_S3, S3 

_OUTLET_S1, S1 

_OUTLET_S4, S4 

*Elset, elset=_PDF_WholeModel, internal, instance=Shell2-1-1, generate 

    1,  3412,     1 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=COOLANT 

*Conductivity 

 0.43, 

*Density 

1056., 

*Specific Heat, type=CONSTANTPRESSURE 

50., 

*Viscosity 

 0.008495, 

**  

** PREDEFINED FIELDS 

**  

** Name: Predefined Field-1   Type: Fluid thermal energy 

*Initial Conditions, type=TEMPERATURE, Element Average 

_PDF_WholeModel, 15. 

** Name: Predefined Field-2   Type: Fluid velocity 

*Initial Conditions, type=VELOCITY, Element Average 

_PDF_WholeModel, 1, 0. 

_PDF_WholeModel, 2, 0. 
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_PDF_WholeModel, 3, 0. 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1 

*CFD, incompressible navier stokes, energy equation=TEMPERATURE  

0.01, 300., 0.025, 0.45, 1 

1e-10, 0.5,  , 0.5, 0.5 

*Momentum Equation Solver 

250, 2, 1e-05 

*Pressure Equation Solver 

250, 2, 1e-05 

ICC, 1, 1, CG 

*Transport Equation Solver 

250, 2, 1e-05 

**  

** BOUNDARY CONDITIONS 

**  

** Name: BC-1 Type: Fluid wall condition 

*Fluid Boundary, type=PHYSICAL, wall, surface=INTERFACE 

** Name: BC-2 Type: Fluid inlet/outlet 

*Fluid Boundary, type=PHYSICAL, velocity inlet, surface=INLET 

VELX, 0. 

VELY, -0.07536 

VELZ, 0. 

TEMP, 15. 

** Name: BC-3 Type: Fluid inlet/outlet 

*Fluid Boundary, type=PHYSICAL, pressure outlet, surface=OUTLET 

P, 0. 

passiveoutflow, 0.0 

TEMP, 18. 

** Interaction: Int-1 

*Co-simulation, name=Int-1, controls=Int-1_Ctrls, program=MULTIPHYSICS 

*Co-simulation Region, import, type=SURFACE 

interface, TEMP 

*Co-simulation Region, export, type=SURFACE 

interface, HFL 
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interface, LUMPEDHEATCAPACITANCE 

*Co-simulation Controls, name=Int-1_Ctrls, coupling scheme=gauss-seidel, time 

incrementation=lockstep, time marks=yes,  

step size=min, scheme modifier=lag 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT 

*Output, history, frequency=0 

*End Step 
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