Modeling, Control Analysis, and Multi-Physics Co-Simulation Supporting
High-Performance Hybrid-Electric Vehicles

A Thesis
Presented to
The Academic Faculty

By

Saeid Loghavi

In Partial Fulfilment
of the Requirements for the Degree
Master of Science in the
George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

August 2017

COPYRIGHT © 2017 BY SAEID LOGHAVI

Modeling, Control Analysis, and Multi-Physics Co-Simulation Supporting High-
Performance Hybrid-Electric Vehicles

Approved by:

Dr. Michael Leamy, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Aldo Ferri
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Kenneth Cunefare
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: 7/27/2017

DEDICATION

Dedicated to my father and mother.

ACKNOWLEDGEMENTS

| would like to express my deep gratitude to my advisor, Dr. Michael Leamy, for his
excellent guidance, caring and patience. For the past 2 years, he has devoted countless hours to
guide me through work submitted in this thesis and elsewhere. His technical and editorial advice
was not only essential to the completion of this thesis but have also taught me innumerable

lessons and insights for my work.

My special thanks goes to my committee members, Dr. Aldo Ferri and Dr. Kenneth
Cunefare. Their comments and suggestions have been invaluable and as a result added
significant value to my thesis. | would also like to thank Dr. Chris Paredis whose class in
Modeling and Simulation introduced me to the Modelica object-oriented language and Dymola

softwar,e which contributed greatly to my thesis.

I would also like to thank Ferrari S.p.A. for sponsoring my work. Special thanks goes to
Mr. Andrea Canaparo, who provided me with many challenging projects as well as support,
which has contributed greatly to my development as an engineer. Additionally, I would like to
thank my lab mates Justin, Amir, Matt, Oscar and Douglas. They have all been instrumental to
my success at Georgia Tech. Special thanks goes to Justin who provided me with great advice

and support.

Lastly, 1 would like to thank those who are closest to me in life. | would not have been
able to follow my dream of living and studying in the United States without the support of my
parents. My sisters, Laleh and Mina inspired me to work hard and stay disciplined. I could not
have asked for better role-models. Finally, my girlfriend Swarnika has been a constant source of

support and encouragement during the challenges of graduate school.

TABLE OF CONTENTS

Page
List of Tables viii
List of Figures IX
List of Abbreviations Xiii
List of Symbols XV
Summary XViii
Chapter 1: Introduction 1
1.1 Hybrid Electric Vehicle Technology 1
1.2 Evaluation of HEV Performance using Global Optimization Algorithms 5
1.3 Model-based Design and Ferrari Partnership 6
Chapter 2: Vehicle Model 7
2.1 Simple Vehicle Model (EV-mode only) 11
2.2 Simple battery and EM model 17
2.3 Simple Charging Logic 20
2.4 Improved Engine Model and Fuel Efficiency 22
2.5 Improved Battery Model 26
2.6 Improved EM Model 29

2.7 Conclusion
Chapter 3: Evaluation of Vehicle Performance using Dynamic Programming
3.1 Dynamic Programming
3.2 Application of DP to HEV Supervisory Control
Chapter 4: Multi-physics co-simulation of battery thermal model
4.1 Model Development
4.1.1 Electro-thermal Domain
4.1.2 Thermal-structural Domain
4.1.3 Fluid Domain
4.1.4 Co-simulation
4.2 Calibration
4.2 Battery module co-simulation
4.4 Performance under high loading conditions
4.5 Battery life estimation
4.6 High and low ambient temperature testing
4.7 Vehicle Integration
Chapter 5: Concluding Remarks and Future Work

5.1 Adaptation of Vehicle Model to Simulate and Control Hybrid Electric Vehicles

Vi

30

32

33

33

38

40

43

54

57

59

72

77

81

82

83

83

85

85

5.2 Battery Modeling and Multi-Physics Co-simulation 86

Appendix 88

References 174

Vii

Table 2.1:

Table 2.2:

Table 2.3:

Table 4.1:

Table 4.2:

Table 4.3:

Table 4.4:

Table 4.5;

Table 4.6:

LIST OF TABLES

Driving modes
Vehicle model variables
Vehicle model parameters

Common cell parameters

Calculated output variables from cell model

Material properties of the thermal-structural model components
Coolant thermal properties

Flow properties of the coolant

Definition of Connectors in co-simulation configuration file

viii

Page

12

14

45

49

54

57

58

69

LIST OF FIGURES

Figure 1.1: Classification of hybrid electric vehicles

Figure 2.1: Simulink utility blocks

Figure 2.2: Simulink functional blocks

Figure 2.3: Hybrid vehicle power paths.

Figure 2.4 Vehicle free body diagram (FBD)

Figure 2.5: Simple vehicle model, Simulink diagram including functional blocks

Figure 2.6: Vehicle speed profile

Figure 2.7: Normalized torque request

Figure 2.8: Vehicle speed profile, UDDS drive cycle

Figure 2.9: Simple EM model, utility blocks used in EM subcomponent

Figure 2.10: Simple battery model, Simulink diagram

Figure 2.11: Vehicle performance with application of simple battery and EM
model

Figure 2.12: Vehicle performance with application of d simple charging logic

Figure 2.13: Engine Torque map

Figure 2.14: Engine fuel consumption map

Figure 2.15: Improved engine model

Page

10

11

14

15

16

17

18

19

20

21

22

23

23

Figure 2.16: Vehicle performance, Engine charging enabled

Figure 2.17: BSFC map

Figure 2.18: Improved battery model

Figure 2.19: Battery Open Circuit VVoltage experimental data

Figure 2.20: Total series resistance-Discharge

Figure 2.21: Total series resistance-Charge

Figure 2.22: Electric machine torque curve

Figure 2.23: EM conversion efficiency map

Figure 3.1: Battery SOC

Figure 3.2: Power required vs. Power supplied/recovered

Figure 4.1: Battery model domains

Figure 4.2: Electric Energy Storage library, Batteries and Battery Management
subsystems

Figure 4.3: Normalized Cell VVoltage

Figure 4.4: Cell model with one ohmic impedance and num serially connected RC
elements

Figure 4.5: Cell model diagram

Figure 4.6: Diagram of module with 12 cells

Figure 4.7: Charging unit and model controller

24

25

27

27

28

28

29

30

36

37

41

44

46

48

48

50

51

Figure 4.8: Single cell model interaction with the co-simulation engine

Figure 4.9: CAD drawing and assembly of the battery module

Figure 4.10:

Figure 4.11:

Figure 4.12:

Figure 4.13:

Figure 4.14:

Figure 4.15:

Figure 4.16:

Figure 4.17:

Figure 4.18:

Figure 4.19:

Figure 4.20:

Figure 4.21:

Figure 4.22:

Figure 4.23:

Figure 4.24.

Figure 4.25:

Thermal-structural model

Fluid domain model interaction

Electro-thermal model interaction

Fluid domain model (discretized)

Fluid domain interactions

Co-simulation process

Definition of co-simulation parameters (Abaqus Standard model)

Definition of co-simulation parameters (Abaqus Fluid model).

Co-simulation configuration file document header

Configuration file sections: Components

Configuration file sections: Component Instances

Configuration file sections: Connectors

Configuration file sections: Connection sets

Configuration file sections: Execution

Co-simulation execution commands

Cell calibration, Discharge of fully charged cell

xi

52

53

55

55

56

58

58

60

64

65

66

68

70

71

72

74

Figure 4.26:

Figure 4.27:

Figure 4.28:

Figure 4.29:

Figure 4.30:

Figure 4.31:

Figure 4.32:

Figure 4.33:

Figure 4.34:

Verification of model calibration, normalized cell voltage - Discharge
Cell calibration, Charging

Cell current during charging

Cell normalized voltage during charging

Cooling plate temperature distribution

Coolant outflow temperature

Cell temperature distribution

Normalized module current

Module voltage under high-frequency-high-load conditions

xii

76

76

77

78

79

80

80

80

CAA

CCcv

CFD

CG

CSE

CVL

DP

DUT

DVL

ECMS

EES

EM

EV

FBD

FE

FEM

FMI

LIST OF ABBREVIATIONS

Clean Air Act

Constant Current, Constant VVoltage

Computational Fluid Dynamics

Center of Gravity

Co-simulation Engine

Charging Voltage Limit

Dynamic Programming

Device under Testing

Discharge Voltage Limit

Equivalent Consumption Minimization Strategy

Electric Energy Storage

Electric Machine

Electric Vehicle

Free Body Diagram

Fuel Economy

Finite Element Method

Functional Mock-up Interface

Xiii

FMU

HEV

ICE

MPG

MPGGE

oCcvVv

SOC

SOH

UDDS

USEPA

XML

Functional Mock-up Unit

Hybrid Electric Vehicle

Internal Combustion Engine

Miles per gallon

Miles per gallon of gasoline equivalent

Open Circuit Voltage

State of Charge

State of Health

Urban Dynamometer Driving Schedule

United States Environmental Protection Agency

eXtensible Mark-up Language

Xiv

< » ©

a, b

Fxf ’ Fxr

sz ’ Fzr

A3

LIST OF SYMBOLS

Gravitational acceleration

Incline angle

Vehicle mass

Height of vehicle CG above the ground

Distance of front and rear axles, respectively, from the normal
projection point of vehicle CG onto the common axle plane
Longitudinal vehicle velocity

Headwind speed

Number of wheels on each axle

Longitudinal forces on each wheel at the front and rear ground
contact points, respectively

Normal load forces on each wheel at the front and rear ground
contact points, respectively

Effective frontal cross-sectional area

Aerodynamic drag coefficient

Mass density of air

Aerodynamic drag force

Traction Torque

Effective gear ratio

Tire radius

Final velocity

XV

IBattery
VBattery

Ahconsumed

E:Battery

EElectrical
EFuel
ETotal
RSeries
RInternal
Xk
Uk
Fy
] 0,1t
8o
8N
bx
hy
rhfuel

SOCip;

OCVtablecharge

EM Torque

EM Speed

EM power

Battery Current

Battery Voltage

Amp-hour energy consumed
Battery energy use

Electrical energy stored in battery

Fuel energy used

Total energy used (sum of fuel and battery energy)

Series impedance

Battery internal resistance

State variable

Control variable

Function defining state variables

Total cost

Cost associated with the initial step

Cost associated with the final step

Cost associated with application of constraints
Incremental cost of application of controls
Mass fuel rate

Initial state of charge

Look-up table for the OCV vs. SOC during charge

XVi

OCVtabledischarge
Qini
Qtotal
Co
useHeatPort
Trer
alphaRs
Rgrer
Keqas
alphaC
Qneat
Qcooling

CHeat

Look-up table for the OCV vs. SOC during discharge

Initial transferred charge

Total transferable charge

Capacity at Tyeffor Qzprqy = 0andt =0
Boolean variable for using the heat port
Reference temperature

Linear temperature coefficient for R,
Ohmic resistance at reference temperature
Linear Qs dependency of capacity
Linear temperature coefficient for capacity
Cell heat generated

Heat removed from the cell

Cell heat capacity

XVii

SUMMARY

This thesis presents a series of model-based studies and associated considerations
supporting the development of a high-performance HEV. Due to increasingly strict
governmental regulations and consumer demand, automakers have taken steps to reduce fuel
consumption and greenhouse emissions. HEV's can provide a balance between fuel economy
and vehicle performance by exploiting engine load-point shifting, regenerative braking, pure
electric operation, and hybrid traction modes. The existence of a multitude of HEV architectures
with different emissions and performance characteristics necessitates the development of

simulation platforms which can assist in specifying and selecting critical components.

Recent advancements in the automotive industry, especially the introduction of hybrid
technology, have resulted in lower emissions and improved fuel economy; however, hybrid
technology can also be utilized in order to enhance the performance characteristics of traditional
internal combustion high-performance vehicles. The complexity of the hybrid systems and high
power demand of high-performance vehicles requires a detail analysis of critical system
components, such as the energy storage systems, to ensure safe and optimal operation. The
collaboration between Georgia Tech researchers and Ferrari S.p.A. is illustrative of the need for
the further development of innovative and model-based tools to enhance the design and

performance of high-performance hybrid electric vehicles.

This thesis also features a series hybrid electric vehicle model developed using Simulink
modeling software as part of a tutorial which may be provided to students in order to teach the

basic principles underlying the operation, control, and design of hybrid electric vehicles.

XViii

The final chapter of this thesis features a modeling approach developed in order to
analyze the battery pack in high-performance hybrid-electric vehicles using a multi-physics co-
simulation approach. This modeling capability can be extended to other multi-physics systems

in order to develop high fidelity models while significantly decreasing computational costs.

XiX

Chapter 1: Introduction

Vehicle electrification is being driven both by growing consumer awareness as well as
increasing efficiency standards. However both technical and market challenges remain. The
development of hybrid electric vehicles requires access to a high skilled workforce as well as the
necessary tools in order to reduce the development costs and expedite the evaluation of each
design alternative. Virtual simulations can alleviate the product development cost and enable
faster introduction of new vehicles. However, many new graduates lack the technical expertise to
utilize the new simulation tools available to product development engineers. The second chapter
of this thesis describes the development of a tutorial made available to engineering students in
order to introduce the sequential process of vehicle development. The third chapter provides a
brief description of the application of Bellman’s principle of optimality to evaluate the fuel
economy of hybrid electric vehicles. Chapter four provides a multi-physics co-simulation to

support development of energy storage systems.
1.1 Hybrid Electric Vehicle Technology

By the 1960’s, public awareness that improvements in quality of life are offset by
increased emissions and detrimental effects on the atmosphere led to the passage of the Clean
Air Act (CAA) and the establishment of the Environmental Protection Agency (USEPA). Since
then, both government and industry have taken major steps to reduce emissions and improve the

efficiency of our energy systems [1].

Since the early days of large scale vehicle manufacturing, which coincided with the
development of new technology that provided easy access to gasoline, the majority of vehicles

manufactured used an internal combustion power plant. The high energy density of gasoline

makes it a good source to power vehicles, providing an ideal balance between range and power.
However, the byproducts of combustion have been proven to have numerous negative

consequences.

Advancements in manufacturing and fuel technology has dramatically increased the
energy efficiency of internal combustion engines (ICE); however, even the most efficient
engines manufactured today are limited by the Carnot efficiency of the engine. In addition,
energy wasted due to friction of moving parts, cooling of engine block and incomplete

combustion in cold temperatures reduce the overall efficiency of the vehicle.

One of the major advancements by the transportation industry has been the development
of hybrid technology. With the addition of a secondary power plant to the vehicle, the ICE can
be used more efficiently. During periods of high power demand, the engine management system
can send power toward the secondary power source, which can significantly increase the
efficiency of the system. During periods of low power demand, the ICE can operate at higher and
more efficient operating points and the extra power is directed to energy storage devices such

batteries or capacitors [1].

Hybrid electric vehicles on the market today feature superior fuel efficiency compared to
their traditional competitors. While the hybrid technology can be used to dramatically increase
the fuel economy and decrease the emissions, Ferrari S.p.A. has shown that the same technology
can be used to dramatically increase vehicle performance. Unlike ICEs, electric machines (EM)
provide maximum torque at low speeds, which can significantly increase vehicle performance

[2-4].

With the addition of a secondary power plant, engineers need to carefully consider the
layout of the vehicle powertrain. Each individual layout of the powertrain is referred to as the
vehicle architecture. Traditionally HEVs have been classified into two categories: series and

parallel. Figure 1.1 illustrates the difference between different hybrid architectures.

The series HEV is the simplest architecture, featuring an ICE powering a generator which
charges a power storage device. The current from the generator, as well as the battery if needed,
is then used to power the traction motor that drives the wheels. In this configuration, the engine

does not provide torque directly to the wheels, rather it only produces electricity [1].

The advantage of the series architecture is in its simplicity as the engine can be designed
to run at its most efficient operating point as the secondary on-board generator, and otherwise the
vehicle is just an electric vehicle which simplifies the vehicle control strategy. Also a smaller
engine can be used, as the role of the engine is to provide a steady source of power rather than
provide a wide range of torques and speeds. The downside to this architecture, however, is in the
number of energy conversions, each adding an associated efficiency factor. It should also be
noted that as the traction motor is the only source of power to the wheels, it must be large enough

to power the vehicle in a range of driving scenarios [1].

A parallel HEV architecture takes a different approach to traction by providing parallel
energy paths. The ICE and any number of motors are connected directly to the wheels, and this
availability of multiple sources of power enables the selection of any combination or all for
different driving situations [1,5]. For example, the engine can be used for steady state highway
speeds where its operating characteristics will provide effective combustion, while the motor can
be used during stop-and-go urban driving where its regenerative braking capabilities will allow

for much of the energy spent during acceleration to be recouped while braking [5]. At times

3

when the driver demands high acceleration, all sources can be used to propel the vehicle, and if
the battery state of charge gets too low, the motor will only provide regenerative braking during
stopping events or even act against the engine, thus acting as a generator and forcing the engine

into a more efficient operating point.
Series Hybrid Parallel Hybrid

Fuel Fuel
Tank ICE Tank ICE

Generator

Power Power

e Electrical link

—— Mechanical link

------- - Fuel Line

Figure 1.1: Classification of hybrid electric vehicles

Beyond these control options, another benefit of the parallel architecture is in component
sizing [1,5]. As all power sources are available to provide power to the wheels, they can all be
used for high torque demands, and therefore components can be downsized. The use of gears,

shafts, and belts allow for this architecture to be laid out in numerous different configurations.

Due to the added complexity of HEVs and the growing demand for skilled talent, the
automotive industry has invested heavily in collaborative research with universities. Examples of
such work include the collaborative research between Georgia Tech and Ferrari S.p.A. One of

the main challenges for students recruited into the field of automotive research is the knowledge

gap between theoretical models for individual components and the overall system operation of
vehicles. Providing students with an overall systems preview of vehicle powertrain has proven to
significantly increase the performance of student teams. Chapter 2 of this thesis is dedicated to
work done on developing a tutorial designed to familiarize students with system level operation
of a vehicle. The tutorial features a sequential refinement approach to model development in

order to introduce students to complex model components.

1.2 Evaluation of HEV Performance using Global Optimization Algorithms

The global optimization of a HEV architecture can be realized for a known time horizon
and operating conditions, such as in the case of optimizing for a drive cycle. DP is used to find
the optimal operation regime for a specific drive cycle, and it serves as a benchmark for other
non-optimal control strategies [4,6-8]. Using DP multi-objective optimization is possible, as an
example, for optimizing fuel economy (FE) and CO, emissions simultaneously [7]. However, as
DP requires the future knowledge of the drive cycle conditions and large computational

resources, vehicle online implementation has not materialized [4].

DP is applied using a backward-looking approach where the simulation requires
knowledge of the complete drive cycle and simulation starts at the final simulation time and
progresses using a backward step size [2,4]. At each time step the incremental cost of applying
control is evaluated and penalty terms are applied to increase the cost of applying control. The
optimal control strategy of the power cycle is determined by minimizing the overall cost [4,9].

Chapter 3 of this thesis provides details about DP and approach used to implement in HEV.

Providing benchmarking on performance and emissions results for vehicle architectures

in the product development phase provides engineers with an unbiased metric to evaluate and

recognize the differences between different HEV architectures. Ferrari S.p.A. used the

benchmarking results to identify final vehicle architectures.

1.3 Model-based Design and Ferrari Partnership

In recent years, the development of automotive technology has changed from an
exclusively electrical or mechanical engineering discipline to include software engineering. This
shift has dramatically changed product development as well as methods, tools and engineering
skills required. Due to the complexity of design in the development of hybrid electric vehicles,
the need to use model-based design practices to evaluate the performance of each design

alternative has increased dramatically.

Ferrari S.p.A. and Georgia Tech have formed a research partnership with a focus on the
development of model-based analysis of HEVs. In the first stage of the partnership, focus was
given to benchmarking the performance and fuel economy of each powertrain architecture. Fuel
economy and CO, emissions were evaluated for each design alternative, using DP. Chapter 3 of

this thesis features an overview of DP and work done in the first phase of the partnership.

After the completion of the first stage, focus has shifted toward providing model-based
analysis of battery performance. One of the unique challenges when designing high-performance
HEVs is the design of the battery pack and providing an accurate model of battery performance
and aging under high load conditions. Due to high power demand, providing sufficient cooling is
crucial to ensure safe operation and preventing damage to battery cells. The ultimate goal of this
phase of the research partnership is to develop the capability to analyze the performance of
different battery pack layouts and incorporate this capability in a complete vehicle model.

Chapter 4 of this thesis is dedicated to work done on developing the battery model.

Chapter 2: Vehicle Model

The vehicle model presented in in this chapter was developed as part of a tutorial which

may be provided to students in order to:

1) teach the basic principles underlying the operation, control, and design of hybrid
electric vehicles,

2) educate students to model, formulate, and simulate the operation of hybrid vehicles,
and

3) provide an overview of the modeling capabilities of Simulink software.

The vehicle model developed next uses a sequential refinement methodology, to create a
complex system model using simple components and basic control strategies. The tutorial starts
by developing a simple, but complete, vehicle model and then makes further component

refinements in order to provide a more realistic model.

The vehicle model is developed using Matlab and Simulink 2016a software. Simulink is a
graphical programming environment within which models are created by creating links between
pre-defined function blocks and user-defined subcomponents. The predefined function blocks
can be categorized under two categories: utility and functional. Utility blocks can be used in a
wide array of applications such as applying simple and complex mathematical operations or
perform logical operations. Functional blocks however, are designed for specific applications
such as calculating the vehicle longitudinal dynamics, evaluating speed, torque and energy loss
of a compound planetary gear, or estimating the slip and braking force in a tire. Examples of

utility and functional blocks are presented in Figures 2.1 and 2.2.

The vehicle powertrain design is based on a series hybrid architecture. A diesel powered
ICE is mechanically connected to a generator (EM-A) with a 1-to-1 gear ratio that converts
engine power to electricity which can be stored in the battery or sent directly to EM-B. EM-B
then sends power to the wheels. The architecture is designed to operate within five different
power modes. Figure 2.3 provides a visual representation of the power modes and Table 2.1

describes the operating conditions as implement by the controller unit.

Simulink/Math Operations

4 Simulink: - -
Commenly Used Blocks @ E
Cantinuous
Dashboard Abs Add Algebraic Constraint.
Discontinuities . - ("
Discrete E A 00
Logic and Bit Operations v N Lop L
Lookup Tables Assignment Bias Complex to 3
Math Operations Magnitude-Angle
Mode! verification =B x
Model-wide Utiities {0f D
Ports & Subsystems - =
Signal Attributes Complex to Divide Dot Product

Real-Imag

Signal Routing

Sinks
ul
Sources D> u b

User-Defined Functions

» Additional Math & Discrete Find Nonzero Gain Magnitude-Angle
. Acrospace Blockset Elements o Complex
» Communications System Toolbox
> Communications System Toolbox HOL Support i P
» Computer Vision System Toolbox - -
Math Matrix MinMax
gg:'{;‘ i:s"_erm "':D'bm‘ Function Concatenate
> ystem Toalbox
> DSP System Toolbox HOL Suppart . | @ L
> Embedded Coder L ey o
> Fuzzy Logic Toolbox MinMax Permute Polynomial
> HDL Coder il Running Dimensions il
> HDL Yerifier Besatizhl

Figure 2.1: Simulink utility blocks

Simscape [Driveline/Gears
[Model Predictive Control Toolbox
Neural Network Toolbox Flrb
Phased Array System Toolbox Planetary Rotational- de IT*
Robotics System Toolbox | | | l sh
Robust Control Toobox 1
SimEvents Planetary Rotatonal- Compound Planetary
SimRF Subcomponents Translational Gear
4 Simscape
Foundation Library ot
Utiities o '._ 1w/
4 Driveline & o ds
Brakes & Detents e
Clutches Cydoidal Drive Differential Double-Pinion
4 Couplings &Drives Planetary Gear |
Springs & Dampers
Engines E — I
Gears _frp =
Inertias & Loads - 1] 1¢ rr
Sensors s’ = " LE
4 Tires & Vehides N
e Subconponents Harmonic Drive Planetary Gear Ravigneaux Gear
Transmissions |
4 Electronics
Actuators & Drivers ds T _Fp D‘R\ b dwl® sk
Integrated Circuits qe
Passive Devices b
Semiconductor Devices Simple Gear Simple Gear with Worm Gear
Sensors Variable Efficiency
Sources e i
/|

Figure 2.2: Simulink functional blocks

Table 2.1: Driving modes

Power Mode Battery state of charge Traffic conditions
Pure EV High Low power demand, Stop-and-go traffic
Pure ICE Low Constant high speed travel
Combined Mid rang or high High power demand, High performance setting
ICE — Charging Low Constant speed travel
Charging As needed Braking, cost down, hill descent

Based on the battery state of charge (SOC) and power demand, the vehicle controller
selects the appropriate power mode. If the battery SOC is above a pre-determined value and the
power demand can be supplied by the EM-B alone, the vehicle may operate in pure EV mode.
Reducing the emissions to zero while allowing the EM-B to use energy stored in the battery.
Under conditions that battery SOC is low, the controller will select the pure ICE driving mode to
prevent damage to the battery. If the power demand is low, the controller may go into ICE-
Charging mode and request additional power output from the ICE and store the extra energy in
the battery. Under conditions when the SOC is within a pre-determined range, the controller may
select the combined power model and reduce the fuel consumption by optimizing the power split
between the ICE and EM-B. During periods of deceleration the controller may select the
charging mode and allow EM-B to regenerate power and store the kinetic energy of the vehicle

in the battery pack.

At the highest level, the model consists of three subsystems: Driver, Plant, and Controller.
The Driver subsystem receives the speedometer and tachometer data and transmits torque request

signals to the controller. The Plant subsystem includes system component models including ICE,

EM-A and EM-B. The controller subsystem uses a state-flow controller which receives torque
request data from the Driver subsystem and based on pre-determined state conditions sends

appropriate control signals to the system components such as the ICE, EMs, and transmission.

The vehicle model can be used to simulate a pre-determined drive cycle and calculate the
vehicle performance parameters such as fuel consumption, speed, acceleration, and battery state
of charge. The Simulink control model can also be uploaded to a vehicle control unit and used

for testing purposes in Hardware-in-the-loop applications.

Fuel Fuel
Tank ICE A Tank ICE B
EM-A EM-A
Power Final Rear Power | | Final Rear
Battery Converter EM-8 Drive Wheels Battery Converter EM-8 Drive Wheels
< > —
Fuel Fuel
st ek | S e ICE
Tank C Tank D
EM-A EM-A
Power Final Rear Power Final Rear
Battery Converter EM-B Drive Wheels Battery Converter EM-B Drive Wheels
— —
Fuel .
Tank |77 CE . —_— Un-used link
I ﬁ Power path
EM-A
\ O Power Source
Power Final Rear H
Battery Converter EM-B Drive Wheels \ O Power Sink
——

Figure 2.3: Hybrid vehicle power paths. A:ICE-Charging, B:Pure ICE, C:Pure EV, D:Combined,
E:Charging

10

2.1 Simple Vehicle Model (EV-mode only)

The first step in the development of vehicle model is a simple vehicle subsystem with ideal
components. The vehicle is propelled only by an ideal EM and a single gear pair is used to
transmit power to the wheels. The main components of the simple vehicle subsystem are
developed using the following functional Simulink blocks: Vehicle body, Tire (Magic formula),

and Simple Gear blocks.

A vehicle body Simulink bock is used to model a vehicle with two axles in longitudinal
motion. The vehicle wheels are assumed to be identical in size. The vehicle is assumed to be in
normal equilibrium and does pitch or have any vertical movement. The vehicle axles are parallel
and form a plane. The longitudinal x direction lies in this plane and is perpendicular to the axels.
The model also includes traveling on an incline slope a, the normal z direction is not parallel to

gravity but is always perpendicular to the axel longitudinal plane.

Figure 2.4 Vehicle free body diagram (FBD)

11

The vehicle motion is determined by the net effect of all forces and torques acting on it.
The longitudinal tire forces push the vehicle forward or backward. The weight, mg, of the
vehicle acts through its center of gravity (CG). Depending on the incline angle, the weight pulls
the vehicle to the ground and pulls it either backward or forward. Whether the vehicle travels
forward or backward, aerodynamic drag force acts in the opposite direction of travel. It is
assumed that the drag force acts through the CG. Figure 2.4 and Table 2.2 define the vehicle

motion model variables.

Table 2.2: Vehicle model variables

Symbol Description and Unit

G Gravitational acceleration = 9.81 [m/SZ]

A Incline angle, [deg]

M Vehicle mass, [kg]

H Height of vehicle CG above the ground, [m]
ab Distance of front and rear axles, respectively, from the normal projection point of

vehicle CG onto the common axle plane, [m]
Vy Longitudinal vehicle velocity, [M/]

Vi Headwind speed, [M/]

n Number of wheels on each axle

Fu,Fy Longitudinal forces on each wheel at the front and rear ground contact points,
respectively, [N]

F,,F, |Normalload forces on each wheel at the front and rear ground contact points,
respectively [N]

A Effective frontal cross-sectional area [m?]
Cq Aerodynamic drag coefficient

p Mass density of air = 1.18, [kg/mg]

Fq Aerodynamic drag force, [N]

The vehicle dynamics are described as follows:

12

mV, = F, — F4 — mgsina (1)

Fx = n(Fxr + Fxf) (2)

1 2
Fq = 5 CapA(Vy — V)2 sgn(Vy, — Vi) (3)

In order to determine the normal force on each front and rear wheel, the normal force acting on

the front and rear wheels are expressed by:

_ —h(Fq + mgsina + mVy) + b.mgcosa

n(a + b))

sz

_ h(Fq + mgsina + mV,) + a.mgcosa
B n(a + b)

()

r

while the wheel normal forces satisfy F,¢ + F,. = mgcosa/n .

The Tire (Magic Formula) block is used to model a tire with longitudinal behavior given
by the Magic formula®. The block can calculate the tire slip, however do to the nature of drive
cycles used for analysis, it is assumed that tire slip is negligible. The effects of tire intertia,

stiffness, and damping are ignored. The vehicle longitudinal velocity is calculate by Vy; = r, w.

Where r,,, is the tire effective radius in meters and w is the wheel angular velocity in Tad/s.

A Simple Gear block represents a gearbox that constrains two connected driveline axles
to co-rotate with a fixed ratio. The output shaft rotates in the same direction as the input shaft. It
is assumed that energy loss in the gearbox due to meshing and viscous losses is negligible for the
purposes of this analysis. In practice, based on the type of gears used, the quality of the gear

meshing, and lubrication, the efficiency of the gear may be as low as 0.9. Gear inertia is

! Series of tire design models developed by Hans B. Pacejka. The term ‘magic formula’ refers to lack of physical
basis for the models. Magic formula models are widely used in the industry in a variety of tire constructions and
operating conditions.

13

assumed to be negligible compared to the engine and shaft inertia; therefore it is not included in

the model. This assumption is only valid if the gearbox dynamics are not relevant to the study.

Driver Shaft

Inertis

. PS5 F—m [Wehicle_Spesd ms]
) (kg m"2) | - i
fix)=0)
al
o
[| Fay
[—D N 55— FS 5 d—@
-
- 5 [A j
Vehicle Mechanical Port h Driver T y r = =
Tver lre
Reesr Diff))e ") :
w

% J ehicle Body
Drives haft @
Inertia = = .
kg m"2} = = FARNL
V ! I I
LLS +—=
— 5 FS [
e

Figure 2.5: Simple vehicle model, Simulink diagram including functional blocks (vehicle body,
Tire magic formula and simple gear)

Figure 2.5 illustrates the main components of the simple vehicle model developed using

functional Simulink blocks and Table 2.3 includes the model parameters.

Table 2.3: Vehicle model parameters

System parameter Value
Vehicle Mass 1200 kg
Tire Radius 0.3m

. . . kg
Driveshaft inertia 0.0015 —
m
. . . kg
Driver shaft inertia 0.003 —
m
Gear Ratio 2

14

In order to test the validity of the model at this initial step, a constant torque of 200 N.m
is supplied from EM-B for duration of 10 seconds. The velocity of the vehicle after 10 seconds

can be calculated as follows:

ey ®
fv .Vf dv, = ft .tf (%) dt 0
(200 Nm)(2)

- = 11.1 M/, = 24.9 mph 8
vt = (1200 kg) (0.3 m) /s mp ®)

Figure 2.6 illustrates the vehicle speed profile as described in Equations 6-8. The simple vehicle
model does not capture effects such as tire slip, therefore the application of a constant torque

results in a linear increase in speed with constant acceleration.

25 T T T T T T

20 - .

10 .

Vehicle Speed [mph]

Time [s]

Figure 2.6: Vehicle speed profile

15

The Driver subsystem functions as a proportional feedback loop and sends a normalized
torque signal to the controller. The proportional controller will send a maximum torque signal if
the speed error is larger than 2 mph. Figure 2.7 illustrates the design of the proportional feedback

loop which allows the vehicle to follow a drive cycle.

Torque Request

-4 -3 -2 -1 0 1 2 3 4
Speed Error [mph]

Figure 2.7: Normalized torque request

Using the first 500 seconds of the EPA Urban Dynamometer Driving Schedule (UDDS),
it can be shown that the torque request signal from the proportional feedback controller will
allow the vehicle to follow the drive cycle closely. Figure 2.8 illustrates the vehicle speed profile

as well as the torque request as it follows the UDDS.

16

S D
o o
T

Speed [mph]
S

T T T T T T T T T
Vehicle Speed
Drive Cycle

50 100 150 200 250 300 350 400 450 500
Time [s]

Torque Request
o

1 1 1 L 1 1 L 1 1 Il

50 100 150 200 250 300 350 400 450 500
Time [s]

Figure 2.8: Vehicle speed profile, UDDS drive cycle

2.2 Simple battery and EM model

Following the development of the simple vehicle model, battery and EM models are
developed using utility blocks as shown in Figure 2.9. The simple EM model features a constant

maximum torque, no rpm limits, and is modulated by the controller. The battery model features a

constant voltage power source with unlimited current and capacity.

17

@ |[Pa|Series_Hybrid_le2_d_final b [Pa|Plant b [FaMGA
@
[MGA_Torque Mmj
&
= ops - MGA Mechanical Port
— R {2
MGA Max <
1 Torque: (Nmj
]
I
(I) [MGA_Torque_Nmi » »
-~ MGA_Torque_Nm MGA_Diagnostics
System -Hiag MGA
Signals Diagnostics

Figure 2.9: Simple EM model, utility blocks used in EM subcomponent

The power output of the EM is calculated by evaluating the speed and torque of the EM. The

torque is directly proportional to the torque request from the driver subsystem as follows:

Tegm = TreqMaX(TEM) 9)
V,

WEM = TX N (10)

Pem = TemWEeMm (11)

The power generated by the EM, is directly proportional to the battery current draw and voltage

as described by:

PEM
IBattery = _VBattery (12)

and the battery state of charge (SOC) is calculated using:

1 .
S0C = 2= ft 0IBattery dt/Capacity + SOCppitial (13)

In this calculation, the battery capacity is in the units of Amp-hour. Equations 12 and 13 were

implemented using Simulink utility blocks as shown in Figure 2.10.

18

Battery

[C] @SeriasfH\;bndJe{bjna\ b [Pa[Plant ¥ [Py |Battery
2 [Battery_Curreri_A] Battery Volagel . (7
WMGA Current | Battery Voltage Ot
EI Y [r:; nput Battery Voltage i W)g put
= V)
[Battery_Vottage_V]
O
[Battery_Current_A] W SE— Y
Asec=Ahr +
Battery_Capacity +
[Battery_SOC]
Battery_Initial_SOC +
Add
Battery_Cument_A]
System Signals Battery_Gurrert_A
Battery_Voltage - » 1
@ - ae V] Battery_Voltage V Battery_Diagnostics C)
Battery Diagnostics
[[Battery_S0C]
Battery_SOC

«

Figure 2.10: Simple battery model, Simulink diagram

As shown in Figure 2.11, during periods of acceleration, negative battery current results
in lowering the SOC, whereas during deceleration, positive battery current results in an increase
in the SOC. Most traditional HEVs are designed to maintain the battery SOC within an operable
range. Continuous deep discharge and charge can damage the battery by lowering the battery
life. Allowing the battery to achieve a high or low SOC can also prevent the vehicle controller

from charging the battery when the SOC is high, or discharging the battery when the SOC is low.

(o2}
o

T T T
Vehicle Speed
Drive Cycle

ey
o
T

Speed [mph]
3
T

0 50 100 150 200 250 300 350 400 450 500
Time [s]

O
(]
n
Py
2
©
0
0 50 100 150 200 250 300 350 400 450 500
Time [s]

2 T T T T T

IS

<

=

o

5

(@]

falll

2

g ! ! | ! ! | ! | ! |

0 50 100 150 200 250 300 350 400 450 500
Time [s]

Figure 2.11: Vehicle performance with application of simple battery and EM model

2.3 Simple Charging Logic

AS shown in Figure 2.11, the vehicle SOC decreased which can lead to permanent damage to
the battery and decrease the range. A secondary EM, EM-A which is identical to EM-B, is added
to the model in order to charge the battery. EM-A is powered by an on-board generation unit in

the form of a diesel engine.

A rule based controller unit is added to the controller subsystem to turn EM-A on and off
based on the SOC. Applying this control strategy, referred to as charge sustaining, prevents the

vehicle from depleting the battery. The effects of applying the charge sustaining strategy are

20

shown in Figure 2.12. Controller prevents the SOC to drop below 60%, allowing EM-A to
recharge the battery. Similarly the controller EM-A is turned off as the SOC reaches 70% to

prevent overcharging.

60 T T T T T T T T
— Vehicle Speed
N .
g. 40 F Drive Cye |
=1
5
3 20 -
w
0 I I I |
0 50 100 150 200 250 300 350 400 450 500
Time [s]
0.7 T T T T T T T
3
o 0.65 -
>
2
T 06 i
o
055 | | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
Time [s]
Z 100 T T T T T T T
IS
<
T
g
5
@)
>
Q2
g -100 I I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
Time [s]

Figure 2.12: Vehicle performance with application of d simple charging logic

The Driver subsystem sends a normalized torque demand to EM-B, however the
controller unit only sends an on and off signal to EM-A. In order to prevent damage to the EM, a
feedback controller is implemented which sends a normalized torque request to EM-A. In order

to power EM-A, a diesel engine is added to the Plant subsystem.

21

2.4 Improved Engine Model and Fuel Efficiency

In order to increase the engine model fidelity, an experimental torque curve for the engine is
added to the engine model using look-up tables. The look-up table uses linear interpolation and
extrapolation methods to evaluate the engine torque output based on the engine speed and

throttle. An engine throttle request is provided from the controller unit. Figure 2.13 illustrates the

experimental torque data included in the model.

200

N
(&)
o
/

100

Engine Torque [Nm]

2000 0.6

1000 0.4
0.2

Engine Speed [rpm] 0 o Engine Throttle
Figure 2.13: Engine Torque map

Similar to experimental engine torque data, fuel consumption data is added to the engine
model using a look-up table. The look-up table uses linear interpolation and extrapolation

methods to evaluate the engine fuel consumption based on the engine speed and throttle. Figure

22

2.14 presents the experimental fuel consumption data and Figure 2.15 illustrates the application

of look-up blocks to incorporate the experimental data.

N w B

Fuel Consumption [g]

N
o
o
o o
v

0.8

2000 06

1000 04
0.2

Engine Speed [rpm] 0 o Engine Throttle

Figure 2.14: Engine fuel consumption map

Engine |

® |[Palseries_Hybrid_le7_a_final b [Ba/Plant b [Ba|Engine

Engine Torque (Nm) [Engine Torque Nmi| Enginelnettia L
2-D Tu) kgm'2) |

: : L e
SFS [N Port
- —» Wy
== D
Ar 7
o o
- 2-0 T{u) Solver
[Engine_Spesd _rpmi ul Configur ation
] [Engine_Fuel_gps]
[engine_throtile_requestl™ u2 fx) =0

Engine Fuel R ate
{gramssec)

o B
) Va
[Engine_Spesd _rpmj a0/ 2 i) SPS w £ RI—

Figure 2.15: Improved engine model

kg
\‘\.“.
)
/

23

The main advantage of using a series architecture in an HEV is the lack of direct

mechanical connection between the engine and wheels which allows the engine to operate at a

desired speed, independent from the wheels. The vehicle controller can operate the engine at the

most efficient operating points, and reduce fuel consumption.

a
o

Speed [mph]

100

0 50

T T T T
50 400 450 500

150 200 250 300 3
Time [s]

Battery SOC

o ﬁ\m\/—\/\/—v
06 .

0 50 100 150 200 250 300 350 400 450 500
Time [s]
z 100 T T T T T T T T
<
N VJ\V/\WAMW/\ J Mo NN
E -100 I I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
= Time [s]
£ 2000 T T T T T
°
8
a 1000 [Ny
(%2]
(0]
a 0 I I I | | I I I | |
UCJ 0 50 100 150 200 250 300 350 400 450 500

Time [s]

Figure 2.16: Vehicle performance, Engine charging enabled

Based on the engine fuel map and Brake specific fuel consumption (BSFC) map, the

engine efficiency is maximized at a speed of 1800 rpm and engine throttle? of 0.5. The controller

will operate the engine, exclusively at this operating point unless the battery SOC drops below a

pre-defined threshold, at which point the engine throttle request increases to provide more torque

2 Engine throttle is equal to the normalized torque request from the controller unit.

24

and to increase the SOC. Figure 2.16 presents the vehicle performance after the application of

experimental engine data and Figure 2.17 illustrates the BSFC map.

200 T T T T T 4.5
14
13.5
— 150
3 7 :
0]
3 |
g 25
o
|_
()
£
U) 2
c
W 100
1.5
1
/\ 0.5
50 1 1
1000 1500 2000 2500 3000 3500

Engine Speed [RPM]

Figure 2.17: BSFC map

Fuel economy is traditionally reported by dividing the distance traveled by the volume of
fuel consumed. However, in the case of HEVS, if the final battery SOC is lower than the initial
SOC, fuel required to replenish the battery to the initial SOC should be considered in fuel
economy calculations. Similarly if the final SOC is higher than the initial SOC, extra fuel

consumed to charge the battery above the initial SOC should be subtracted.
First the electrical energy to change the battery SOC should be calculated as follows:

Ahconsumed[Amp. hour] = (SOC; — SOCs) X Capacity (14)

25

E:Battery[vv- hour| = Ahconsumed X OCV[V] (15)
and the efficiency of the system in converting fuel energy into electrical energy stored in the

battery pack should also be considered by:

3.4123 X Egattery

Egjectrical[BTU] = (16)
Nconversion
and the gas equivalent fuel economy with SOC correction can be calculated as described by:
Eguel[BTU] = Fuelconsumea X 133393.14 (17)
ETotal [BTU] = EFuel[BTU] + EElectrical[BTU] (18)
Fuel — ETOL[BTU] (19)
consumed—RFG 114871.745

Distance Traveled
MPGGE = . (20)
FuelConsumed—RFG

The fuel economy reported for the vehicle model (MPGGE) is 103 mpg. The calculations are
unrealistic as the inefficiencies of regenerative braking, the battery, and the EMs are not included

in the model.
2.5 Improved Battery Model

Thus far the battery model featured: 1) a constant voltage equal to the open circuit voltage
(OCV), 2) no energy conversion losses, 3) infinite current draw. In order to increase the model
fidelity, a linear battery model as shown in Figure 2.18, is included where the battery voltage is a

function of current.

® The 3.412 converts W.hour to BTU
* The 1.33393.1 [BTU/gal] is the heating value of diesel fuel

> The 114871.74 [BTU/gal]is the heating value of RFG (Reformulated gasoline)

26

RSeries

—

IgaT

N O+

VBaT

o

Figure 2.18: Improved battery model

Veat = Voc + IgaT X Rseries

RSe

ries = Rinternal + Ro

(21)

(22)

Series resistance of the battery is the sum of battery internal resistance and the resistance

of other electrical components such as the wiring. The battery OCV is a function of temperature

and SOC. Experimental data, as shown in Figure 2.19, is used to include the temperature effects

on the battery performance.

Battery OCV
&
o

0.5

Battery SOC

Figure 2.19: Battery Open Circuit VVoltage experimental data

20

27

40

Temperature [degC]

60

Experiments have also shown that the battery internal resistance is different during
charge and discharge. Internal resistance is also a function of SOC and temperature. Figures 2.20

and 2.21 illustrate the internal resistance experimental data included in the model.

€
<
O, 15
8
&
.‘E 1
3 \\
e
»n 05
9
; \\
[0}
0
1
60
05 40
20
0
Battery SOC 0 20 Temperature [degC]
Figure 2.20: Total series resistance-Discharge
25 <
£,
o,
8
15
ko
R
g 1 \\
he \
[2]
50 \'
@
(]
0.

60

0.5 40
20

Battery SOC 0 -20 Temperature [degC]

Figure 2.21: Total series resistance-Charge

28

The experimental data is added using a look-up table. Look-up table uses linear
interpolation and extrapolation methods to evaluate the output based on the battery SOC and

temperature. The improved battery model lowers the fuel efficiency of the vehicle model

(MPGGE with SOC correction) to 90 mpg.

2.6 Improved EM Model

Thus far the EM model featured: 1) ideal conversion efficiency and, 2) constant maximum
torque output. In order to improve the fidelity of the EM model, experimental torque-speed data

is used which relates the maximum EM torque to the shaft speed as shown in Figure 2.22.

250 T T T

200

150

100

EM Torque [Nm]

50

O 1
0 1000 2000 3000 4000 5000 6000 7000

EM Speed [RPM]

Figure 2.22: Electric machine torque curve

29

o
©

0.8

0.7

Conversion Efficiency

200

2000
Current [Amps] 0 o EM Speed [RPM]

Figure 2.23: EM conversion efficiency map

Electromechanical energy conversion can go two ways: 1) electrical to mechanical and,
2) mechanical to electrical. Experimental results have shown that the conversion efficiency of the
EM is dependent on shaft speed and current. Figure 2.23 illustrates the EM conversion efficiency

data included in the model.

The addition of experimental data to the motor and generator model, increases the model

fidelity. The fuel economy of the model decreases to 65.4 mpg.

2.7 Conclusion

Using the sequential refinement modeling method described in this chapter, students and
engineers will be able to develop suitably complex vehicle models and develop the vehicle

control strategy to operate the vehicle. In addition, the model can also be used in Hardware-in-

30

the-loop tests where the model can be uploaded into the control unit and used for testing the

vehicle operation in the next steps of vehicle development.

The hybrid vehicle model developed in this chapter is a series design which features a simple
control strategy. However, the development of more complex control strategies, for example
parallel and power-split architectures, can be accomplished using the instructions provided in

this thesis and the supplementary tutorial in the Appendix.

In addition to the improvements to the vehicle model in Sections 2.4-2.6, further additions
and improvements to the model can improve the model fidelity and ensure better operation in
Hardware-in-the-loop scenarios. Simple additional improvements to the model can include the
addition of current limits, engine emergency defueling at high engine speeds and limiting the

auxiliary motor speed during engine startup.

31

Chapter 3: Evaluation of Vehicle Performance using Dynamic Programming

The introduction of HEVs into the fleet of performance vehicles manufactured by Ferrari
S.p.A. requires a new design approach which ensures that new vehicles meet improved fuel

economy and emissions standards while maximizing the utility and performance characteristics.

In order to evaluate each powertrain under consideration, a simulation-based design
approach can ensure an unbiased comparison. DP can provide an optimally controlled
performance metric for each architecture under consideration over pre-determined drive cycles.
Therefore it evaluates each architecture using a consistent control strategy and thus avoids the
uncertainty associated with different supervisory control approaches [4,9]. The DP algorithm has

been developed and used in many applications in order to determine the optimal control strategy.

DP provides a globally optimal control path for a predetermined drive cycle using
Bellman’s Principle of Optimality. Since DP requires the future knowledge of the operation
conditions and heavy computational loads, vehicle online implementation is not possible [9].
Nevertheless, attempts have been made to extract heuristic rules from dynamic programming
results. Vehicle control units use alternative non-optimal control regimes such as Equivalent

Consumption Minimization Strategy (ECMS) [4].

Bellman’s Principle of Optimality states that the optimality of a future control action will
not be affected by the optimality of any past control input [10]. DP uses this principle to
progress backwards in time through a pre-determined drive cycle with identified states and

control variables, and provides an optimal control path within constraints of the control space.

Chapter 3 provides a brief description of Dynamic Programming, followed by the method

used to implement DP in HEVs and an example is provided.

32

3.1 Dynamic Programming
The DP algorithm is used on a class of discrete-time models in the following form,

Xk+1 = Fk(XkJ uk), k = [O,N - 1] (23)
where k denotes the index of discretized time, X the state variable, u, the control variable, and Fy
the function defining the state variable. In addition, for application of DP, the state and control

variables are discretized.

The total cost of employing the control strategy = {uy, uy, ... uy_4 } with the initial state

X, Is defined by,

N-1

Joom(X0) = 80(X0) + gn(xn) + dn(xn) +) [hye (i, ug) + (X, ug)] (24)
k=0

where J, »(xo) represents the total cost, go(x,) and gy(xy) include the cost of initial and final
steps respectively, oy (X, ux) the penalty function enforcing the constraints on the state and
control variables, and hy(xy, ux) the incremental cost of applying the control at time k. The

optimal control path is one that minimizes the total cost represented in Equation 24.
3.2 Application of DP to HEV Supervisory Control

The DP algorithm is implemented in MATLAB 2016a as a backward-looking simulation
in which the vehicle follows a pre-determined drive cycle and the steady state kinematic and
torque relationships are used to compute component operation states. The main advantage of
implementing a backward-looking simulation is the faster computation time, which comes at the

cost of overlooking energy due to transient effects.

The DP control problem of the parallel HEV is characterized as,

33

X = (SOC,V, Freq) (25)

u = (Te, we, Tgm, WEM, in) (26)

hy = mge (%, 1) (27)

where myg,; is the mass rate of fuel consumed, v is the vehicle speed, and F.q refers to force

required.

The DP algorithm applied to HEVS, seeks to minimize the forward fuel consumption at
any point of discretized state-time space. This minimizing operation can be summarized in

Equation 28,

Ji(SOCL) = minJics1 (SOCiy1) + Mguer + i (28)
The system design constraints, based on the operational limit of each component, are

summarized as,

(Temin < Te < Temax

Parallel HEV ! We,min < We < (‘)e,max
Component capability TeMmin < Tem < TEM,max (29)
constraints l(’oEM,min < WgM < WEM max
in€liq, iy, i3,14, is]

where T, and w, refer to engine torque and speed respectively, and Tgy and wgy refer to the
EM torque and speed respectively, and i, refers to the transmission gear ratio. Choices of control

outside of the range specified in equation 29, results in application of a large penalty term.

In order to ensure the vehicle operates within a charge sustaining regime and the battery

charge is within an allowable range, the following constraints are also applied,

SOCpin < SOC < SOCyay (30)

SOCy = SOCy = SOC,ef (31)

34

using the penalty terms described earlier in Equation 24. The penalty terms are several orders of

magnitude larger than the incremental cost of using fuel; otherwise they are zero.

In general, the computation time of a DP algorithm increases exponentially with the number of
independent state and control variables since all permissible values of state and control variables
are visited at each time step. Due to the nature of a backward-looking simulation and the prior
knowledge of the vehicle speed at each time step, the drive cycle prescribes v and F..q, leaving
SOC as the only independent state variable. In addition, by applying the steady state constraints,
Equations 25-27, the independent control variables are reduced to u = (T, we). Following this
method, the control variables will be reduced to the set meeting the speed and torque
requirements at the wheels. Due to the transmission coupling constraint, w, choices are also
limited to at most the number of gear ratios in the transmission due the kinematic constraint from
Equation 27. Lastly, mg,e IS assumed to be only a function of engine operation points
characterized by T, and w.. During application of DP to an HEV, the discretized engine
operation point (T,, w,) candidates are searched exhaustively to find the minimization operation
point for Equation 25. An example Matlab code, for the application of the DP for a series
architecture as shown in Chapter 2 is included in the appendix. For the purposes of the DP
analysis a 9 speed transmission is added to the architecture to illustrate a more comprehensive

application of DP.
Calculating the force required to power the vehicle using Equation 32,
1 2
Freq = 8Mma + f,mg + 2 CaPaAfrontalV (32)

and estimating the incremental cost of using fuel by referring the experimental fuel data, the total

cost of applying control is calculated by adding the fixed costs as stated above. The DP

35

algorithm then determines the optimal control path by minimizing the total cost for the duration

of the drive cycle.

Figure 3.1 represents the changes in the battery SOC for the duration of the drive cycle.
In the design of hybrid electric vehicles, charge sustaining control strategies are utilized to
ensure battery is available to power the vehicle at all times and store energy as needed. Another
advantage of using charge sustaining control strategy is extended battery life. In order to ensure a
charge sustaining operation, a high penalty term is applied when the SOC drops below or rises

above the desirable SOC level.

0.6

0.598

0.596

0.594

SOC

0.592

0.59

0.588

0586 | 1 1 | |
0 200 400 600 800 1000 1200

Time, s

Figure 3.1: Battery SOC

36

Selecting the correct gear can also improve the efficiency of the drive as the engine can
operate at a more desirable speed. The efficiency of the power transmission through the gearbox
and other architecture components should also be considered when applying DP. Experimental
data provided by Ferrari S.p.A. were used in order to estimate the energy loss through the

powertrain.

80 T T T T T

Power delivered/recovered

Power request
60 7

Power, kW

R
o
T
1

A
o
T
I

-60 1 1 I I 1
0 200 400 600 800 1000 1200

Time, s

Figure 3.2: Power required vs. Power supplied/recovered

Figure 3.2 illustrates the effects of powertrain inefficiencies considered in the DP
algorithm. During periods of deceleration due to the inefficacies of the EM and other powertrain

components some of the power available for recovery in the energy storage unit is wasted.

37

Chapter 4: Multi-physics co-simulation of battery thermal model

The analysis and proper design of the energy storage system is a critical concern in the
product development phase of HEVs. Rechargeable Li-ion batteries (LIBs) feature many
advantages compared to alternative storage devices. LIBs provide high power and energy density
over a broad operating temperature range, as well as low self-discharge, stable chemistry, and
long battery life [11-12]. In addition, the growth in the market demand and production of high
power density LIBs has led to a sharp drop in price of such batteries. However, challenges
remain in the development of HEVs using LIBs due to stringent safety and performance
requirements. Some of the limitations of the current LIBs include local underutilization, capacity

drop, localized thermal degradation, and stress-induced material damage.

Significant efforts have been put forward to develop-simulation based tools to analyze
battery performance and predict operational states of LIBs. The porous electrode theory, which
predicts the lithium diffusion dynamics and charge transfer in an electrode system has been
investigated to predict the electrical dynamics of a cell [12-13]. This approach can be used to
investigate the microscopic behavior of the cell. Others have proposed and investigated an
equivalent circuit model to estimate the electrical response and heat generation [12, 14-15].
Researchers have also focused on the structural response of the LIBs and effects on performance
degradation. The volume change of electrode material has been investigated to estimate the
electro-thermal induced stress and strain [12] and the potential effects on capacity have been
thoroughly investigated. Several lumped parameter thermal models have been proposed and
validated through experiments [16-17]. Great effort has been placed on developing coupled

models between electro-chemical and heat transfer domains in order to investigate the coupled

38

effects of discharge/charge current, voltage, and temperature on the SOC and battery state of

health (SOH) [18-20].

Recent research has focused on development of coupled electro-thermal and heat transfer
models in order to investigate the cell’s temperature distribution under extreme conditions, such
as over-charging/discharging, internal short circuit, and extrusion [16]. Coupled heat transfer and
computational fluid dynamics models with a lumped value of heat generation were used to
visualize the temperature gradient for both time-dependent and steady state simulations [16,21-
22]. Multiple co-simulation platforms were used to simulate coupled thermo-electrical and heat
transfer models. The effects of manufacturing variations and battery pack organization on cell
thermal and power behavior were also investigated [21]. Moreover, researchers have been able to
characterize the effects of localized high temperature regions on cell performance and SOH [22].
However, research on development of fully coupled electro-thermal, heat transfer, and
computational fluid dynamics models to investigate temperature distribution at the battery pack
level, which identify hot spots, is still in early stages. To the knowledge of the author, the
coupled electro-thermal cell models have not been developed further to include the structural

layout of battery pack with high capacity cooling units.

This chapter proposes a co-simulation approach to simulate modular and fully-coupled
multi-physics models of a LIB battery with high fidelity thermal domain modeling using
commercial off the shelf (COTS) software. The proposed multi-physics model couples a discrete
electric model and continuous thermal model domains using the co-simulation capability of the
SIMULIA simulation platform for rapid and scalable model development. Furthermore, the
computational cost has been reduced by the development of a discrete electrical domain, as well

as limiting the data exchange between co-simulation model components to discrete

39

communication points. The main purpose of this multi-physics co-simulation is to predict the
temperature distribution and identify temperature hot spots. The critical system parameters,
which govern the electrical and thermal dynamics, were provided by the cell manufacturer.

Experimental test data was used to calibrate the system response and ensure high model fidelity.

4.1 Model Development

One of the unique challenges facing Ferrari engineers and others in development of
HEVs is the design and verification of the battery pack. Due to the high-performance
characteristics of the vehicle, the battery pack should be designed to operate under high-
frequency-high-load conditions, including high current charge and discharge which can lead to
areas of high temperature within the battery pack. As such, the battery pack model includes a

thermal domain in order to investigate:

1) The spatial distribution of temperature to identify hot spots,
2) The effects of high temperature on performance characteristics such as battery life,

3) The cooling power required to maintain battery temperature.

The modeling approach includes three simulation domains: electro-thermal, thermal-
structural and fluid. The discrete electrical model refers to the mathematical representation of the
battery dynamics, using ordinary differential equations, relating the transfer of chemical energy
to electrical energy and vice versa, during discharge and charge, respectively. The model also
relates the battery charge/discharge current to heat generated and uses ordinary differential
equations to estimate the heat loss to the environment and cell core temperature. The continuous
thermal-structural model, developed using COTS software, refers to the heat transfer from each

individual cell through the battery structure, which includes a cooling plate, to the flow of

40

coolant in the cooling system and the surroundings air through convection. The continuous fluid
domain refers to the heat transfer to the cooling fluid within the cooling plate. Figure 4.1

illustrates the interactions between the three model domains.

Electro-thermal Thermal-structural Fluid model
model model
1 | |

[) r 1 r Al

Cell thermal Cell electrical

model model
[L Y T A 1 Cooling Plate
Temp.
—d

Cooling Heat
Flux

Cell ~|Discrete
Temp. |electrical
model

Cell Skin Temp.

Heat Flux :
Heat Capacitance

Figure 4.1: Battery model domains, orange arrows represent the flow of communication signals
between co-simulation components. Note: Images representing the thermal-structural and fluid
domain models only represent the hypothetical layout of the battery module and the coolant flow

The three simulation domains were coupled based on the conservation of energy. The
heat loss from the electro-thermal model is imposed as heat flux input at the internal boundary of
the cell thermal-structural model. In turn the temperature at the internal surface of the cell
thermal-structural model is enforced as the temperature of the electro-thermal model. The
thermal-structural model is coupled with the fluid model at an interface surface region. At this
interface, the temperature of thermal-structure surface is imposed to the fluid model as a
boundary condition. In turn, the fluid model heat capacitance and heat flux are enforced as the

thermal-structural model boundary conditions and input heat flux.

41

Co-simulation requires the identification of master and slave components. The thermal-
structural model is identified as the master component, while the fluid and electro-thermal
domain function as slave components. The master initiates co-simulation by taking the first time
step. The results and co-simulation time are communicated to the slave components and each
slave takes appropriate steps to reach the co-simulation time, after which the results are
communicated to the master and other slave components. The co-simulation progresses as the

master takes the next step.

In order to establish communication between the three model components using a co-
simulation approach, the electro-thermal model is translated into a tool-independent library,
Functional Mock-up Unit (FMU), which can be used to execute the model in any Functional
Mock-up Interface (FMI) compatible environment and establish communication between the
electro-thermal model and other FMUs, or model components developed in the host, FMI
compatible, modeling environment. The electro-thermal domain includes an individual cell
(multiple cells can be arranged to form a battery module and/or pack), control unit, and power
cycle in the form of a look-up table. The thermal-structural heat transfer model is developed
using Finite Element Modeling (FEM) software, Abaqus 2016, and includes all the battery pack
components. Similarly, the fluid domain model is developed using Abaqus 2016 and includes the
model of cooling fluid that removes heat from the cooling plate. Abaqus 2016, which is part of
the SIMULIA simulation platform, can establish communication with the electro-thermal
domain FMU following the FMI standard. Development of high fidelity models for each domain
is discussed in Section 4.1. In Section 4.2, the cell model was calibrated using experimental test
results. Sections 4.3-4.7 focus on the next steps of the research partnership and potential

applications of the battery pack model.

42

4.1.1 Electro-thermal Domain

In order to develop a modular model of the battery cell, the Modelica language is used.
Modelica is an open-source, object-oriented, and equation-based modeling language which can
be used to easily model complex physical systems containing electrical, mechanical, hydraulic,
thermal, electronic, control and process oriented subcomponents [23,24]. A wide array of open-
source Modelica Libraries have been developed, providing rapid and scalable model

development capability.

Dymola is a commercial modeling and simulation environment based on the Modelica
modeling language. Dymola has a built-in capability to simulate object-oriented models as well
as export models as Functional Mock-up Units. FMUs are executable function files, generated
following the Functional Mock-up Interface, which is a tool-independent standard to support
model exchange and co-simulation of dynamic models. FMI allows for the coupling of several
independent simulation tools to develop modular coupled models. Data exchange is restricted to
discrete communication points, as specified by the host simulation tool, and each subsystem is
solved independently between the communication points. More information about FMI and its

functionality has been published elsewhere [25-26].

In order to streamline the development of a cell model, the open-source Electric Energy
Storage (EES) library developed jointly at the Austrian Institute of Technology and Vienna
University of Technology was used. The library contains sub-components of different
complexity, such as individual cells and stacks interacting with loads, battery management

components and charging devices.

43

The EES library components are designed as universal components allowing the end

users to easily simulate specific scenarios by varying their parameterization. The use of the

Modelica language allows seamless modifications of the equations used in each subcomponent.

For the purposes of this analysis, the built-in LinearDynamiclmpedance cell model was modified

in order to properly define the cell model, based on experimental data. The EES library is

structured as shown in Figure 4.2,

= @ Modelica_EnergyStorages

[|Examples
+-| @ |Batteries

+ _=:'J_' CellRecords

+ . DQ, BatteryManagement
+ (D Icons

+ -M[7Interfaces

+ . -’-P Sensors

*-|—=|Sources

+ 0 User's Guide of the EnergyStorages library

=t |® |Batteries

-) Cells
- =+ Basic

i StaticResistance

g- LinearDynamicImpedance

g- LinearDynamicImpedanceHyst

+- rrmWithMeasurement

- -@Stacks
+ =+ Basic

+- mWithMeasurement

+- i Components

5 o |BatteryManagement

; ’:]\.foltageCycling

i | B H] Components

Figure 4.2: Electric Energy Storage library, Batteries and Battery Management subsystems

The Batteries package includes models for individual cells as well as stacks of ng cells

connected in series and n,, cells in parallel. A single cell component is selected for the purpose

of this analysis. The single cell model features a positive (pin_p), a negative (pin_n) and an

optional temperature connector (heatPort) which is activated herein as cell parameters were

defined as a function of temperature [27]. The common parameters used in the cell model are

givenin Table 4.1.

44

Table 4.1: Common cell parameters [27]. Starred values* are calibrated

Name Unit | Description Value*
SO0Cip; Initial state of charge 0<SOC<1
OCVtablecharge V | Look-up table for the OCV vs. SOC during charge Figure 4.3
OCVtabledischarge | V | Look-up table for the OCV vs. SOC during Figure 4.3
discharge
Qini C | Initial transferred charge 0
Co C | Capacity at Ty.offor Q;; = 0and t = 0 2880
useHeatPort Boolean variable for using the heat port On/off
Trer K | Reference temperature 293
alphaRs K~1 | Linear temperature coefficient for R, 0.013*
Rsref Q | Ohmic resistance at reference temperature 0.014
alphaC K~1 | Linear temperature coefficient for capacity -1.6
Cheat J/IK | Cell heat capacity 96*

The model output guantities are given in Table 4.2 and the calculations are presented

next. The removed charge is given by,

tstop
I(t)dt

tstart

Q=

and the total transferred charge is,

Estop

Quvs = Qini + f 1O dt

tstart

45

(33)

(34)

The OCV of a battery cell changes with the SOC. Experimental results have shown that
the OCV function is different during charge and discharge of the cell. As shown in Figure 4.3,
OCV is provided using two linearly interpolated look-up tables for charge and discharge. The
open circuit voltage is limited between the charging voltage limit CVL (SOC=1) and the

discharge voltage limit DVL (SOC=0) [27].

1 T T T T T T T T

—— Charge

095k Discharge |

09 4

0.85 1

0.8 4

Normalized cell voltage

0.7 r 4

065 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SOC

Figure 4.3: Normalized Cell Voltage

The model can consider the effects of aging by considering both calendaric aging and
cycling. Calendaric aging is estimated from time, which for the purposes of the current analysis,
is minimal and therefore removed from the model. Cycling is directly proportional to absolute
transferred charge Q.,s. Aging of the cell mainly influences the performance by decreasing

capacity and increasing the internal impedance [27].

The cell capacity calculated by,

46

C= (CO + KCQabs X Qabs)[1 + alphaC X (TheatPort - Tref)] (35)
is temperature dependent and decreases with increased transferred charge due to cycling.

The single cell model features a single, temperature dependent, ohmic impedance, modeled as,

R = Rref[1 + alphaRs X (TheatPort - Tref)] (36)

which does not consider the increase in impedance due to aging.

The SOC is given at each time step as,

SOC = SOC;y; —% (37)
and the equivalent number of cycles
tstop |1(0)]
cycles = cycles;,; + ——dt (38)
Estart
with
Q. .
cyclesjpi = C l_tl C (39)

relates the total transferred charge to the cell capacity C. Therefore, one cycle is equivalent to the

charge transfer of one full charge and one full discharge of the capacity C [27].

The Cell model includes num serially connected RC elements, as shown in Figure 4.4.
The cell model was manually edited to include two sets of RC elements representing the cell
dynamics in charge and discharge. Based on the direction of cell current, a switch is used to

connect and disconnect the corresponding RC component.

47

oy CD Cl CZ Cnum

fixedTem
NN
= TUper...

T

s »
s
Socnchabl.;|_F t—|{)§

—> B %

Figure 4.5: Cell model diagram

A list of calculated output variables of the modified LinearDynamiclmpedance cell

model used in the analysis is available in Table 4.2.

48

Table 4.2: Calculated output variables from cell model [27]

Name Unit Description

soc State of charge

ocv \% Open circuit voltage

Qubs C Total transferred charge
cycles Number of equivalent cycles
t S Calendaric cell time

C C Cell capacity

1% VvV Cell voltage

The EES library contains a battery management block (Cycling) which is used to
implement a rule-based control of the battery cell. It has three Boolean outputs which control the
operation of the charging unit, power cycle look-up table and the cell. The battery management
block can be used to cycle the cell over a predefined voltage range [Viin, Vinax], While limiting
the maximum current draw during discharge and charging current. The EES also includes a
constant current, constant voltage (CCCV) charging device which charges the cell with constant
current until the constant voltage level is reached [27]. The battery module under study contains

twelve individual cells arranged in two series sets of six parallel cells, as shown in Figure 4.6.

49

D I

%&rgﬂj pattery1 2| |batteryl1 3 | pattery1_4| pattery1_5| pattery1 6

ID I I I F: load
: : 4 .
attery1_7||battery1_8||battery1_9 | pattery1_10] [pattery1_11 | pattery1_12

: i : : :

| L
I[oy l

ground

Figure 4.6: Diagram of module with 12 cells

The subcomponent labeled load includes the charging unit, power cycle look-up table, a
switch and the cycling rule-based control unit. The switch works by disconnecting the power
cycle when the cell/module drops below V,,;,, and connecting the charger. The switch features a
short delay to prevent numerical instability. Similarly, as the voltage reaches the constant voltage
level, the switch disconnects the charger and connects the power cycle to continue the power

cycle [27]. Figure 4.7 illustrates the construction of the load subcomponent.

50

Current

sensor

EM_Postive_terminal
currertSen..

Charger
. Voltage
— | iished sensor
= i
Positive I | cherdrg
terminal v '
h. fin. vMin
| <fJch.
.. vMax
EM_Negative_terminal
1 cycling

Negative
terminal

Figure 4.7: Charging unit and model controller

In order to study the effects of heating on battery performance and investigate the cooling
power needed to ensure the safe operation of the battery pack, the heat generated during cycling

is calculated by

Queat = Rsl2 (40)

and the temperature of the cell is calculated by the heatCapacitor model by solving,

T = .[tswp QHeat - Qcooling dt (41)
t

start CHeat

where Cyeq is the heat capacity of the battery cell and Q.4 01ing is the heat dissipated through the

cooling plate. An additional thermal resistance is included in the model to represent the heat

51

resistance of the skin of the cell. Figure 4.8 illustrates the application of Equations 40 and 41 to

the electric domain model.

pin_p1 Positive
T terminal jm
Jain
e
Joule
heating
Cell heat

capacity i laat flow
o out of cell
prescrib...

Cooling_Plate

<

Heat flow
Cell_Temperature 2 sensor

ﬁ-

- Thermal
Negapve resistance
terminal

Figure 4.8: Single cell model interaction with the co-simulation engine

Temperature
feedback from
module

Due to the complex geometry of the battery module shown in Figure 4.9, the heat transfer
model for the module and cooling plate is developed using FEM as discussed in Sections 4.1.2
and 4.1.3. The co-simulation approach used to communicate between the three domains is

introduced in Section 4.1.4.

52

fa— i

Figure 4.9: CAD drawing and assembly of the battery module. Module sections: 1: Cooling
plate, 2&8: Cover, 3&7: Connecting plate, 4&6: Housing, 5: Cylindrical cells and clips, 9:
Battery Management System (BMS) ** Image obscured for proprietary reasons.

53

4.1.2 Thermal-structural Domain

In order to create a high fidelity model of the battery module, a transient heat transfer

model is also developed. The thermal properties of each component is assigned as shown in

Table 4.3. Each part of the module was discretized on part using standard linear tetrahedron

elements (DC3D4). Figure 4.10 provides an overview of the thermal-structural heat transfer

model.
Table 4.3: Material properties of the thermal-structural model components
Sections Conductivity [ﬁ] Density [%] Specific Heat [@]
Cooling Plate 167 2700 902
Cover, Housing, Cell,

0.2 2000 1800

Clips, BMS cover
Connecting plate 400 8960 385
BMS circuit 149 2329 700

Under the assembly module a dependent instance was created containing all components

and a surface of type geometry, named INTERFACE, was created using the internal surfaces of

the cooling plate as shown in Figure 4.11 (marked in red). The surface is used to establish

interaction with the fluid model. Temperature at the surface is defined as in output from the

structural-thermal to the fluid model (applied as boundary condition in the fluid model). The

surface was used to define a heat flux interaction with the fluid domain model developed in

Section 4.1.3

54

In order to define heat transfer within the module, a conduction (contact) interaction
property is defined as a function of clearance between surfaces, with conductance of 20000
[W /m. K] with zero clearance and 0 conductance with 2mm clearance. Convection heat transfer
is also defined as an interaction property of type film condition, with a film coefficient of

0.01[W /m.K]. Convection is only defined on the external surface of the module.

Figure 4.10: Thermal-Structural model ** Image obscured for proprietary reasons.

Figure 4.11: Fluid model interaction. Internal surface (marked in red) is identified as
INTERACTION for interaction with fluid model** Image obscured for proprietary reasons.

55

Similar to interaction with the fluid model, an interface surface was created, named
INTERFACE2, in order to establish communication with the electro-thermal model. Figure 4.12
displays a cut section of the thermal-structural model with the cell internal surfaces marked in
red. Heat flux from the electro-thermal model, Q.o01ing, is identified as an input to the thermal-
structural model from the electro-thermal model. In turn, the surface temperature at

INTERFACE?2 is reported back to the electro-thermal model.

Figure 4.12: Electro-thermal model interaction. Internal surface of cells (marked in red) were
identified as INTERACTION2 for interaction with electro-thermal model ** Image obscured for
proprietary reasons.

In order to ensure correct initialization of the analysis, a constant initial temperature is
defined for the entire model at the initial time step. A transient step, named Co-simulation, of

length tgimuiation 1S Created with the maximum number of increments set at tgmuiation X 50 t0

56

ensure simulation is completed. A load of type Body heat flux is created and applied to all 12
cells representing input heat flux,Q.q01ing from the electro-thermal model. Finally an amplitude

of type Actuator, named BODYFLUX, was defined and the amplitude of the load was updated.

In order to define the co-simulation interaction property between electro-thermal,
thermal-structural, and fluid domain models, an input file, named Standard.inp, was generated
using the thermal-structural heat transfer model created. Abaqus CAE interface does not allow
the definition of the co-simulation interaction, thus the input file was edited as shown in Section

414,
4.1.3 Fluid Domain

In order to create a high fidelity model of the cooling fluid, a transient CFD model is
developed. The thermal properties of the coolant, which is a mixture of 50% water and 50%
Ethylene glycol, is assigned as shown in Table 4.4. The fluid model, which was generated to fill
the void in the cooling plate part, was discretized on part using CFD linear tetrahedron elements

(FC3D4), as shown in Figure 4.13.

Table 4.4: Coolant thermal properties

Fluid Conductivity [ﬁ] Density [%] Viscosity [%]

Coolant 0.43 1056 0.0085

Under the assembly module a dependent instance was created and three surfaces of type
mesh, named INLET, OUTLET, and INTERFACE were created as shown in Figure 4.14. The
INTERFACE surface was used to define a heat flux interaction with the thermal-structural

domain model as described in Section 4.1.2. The INLET surface was used to define the fluid inlet

57

boundary conditions. Similarly, the outlet boundary conditions were applied to the OUTLET

surface, as described in Table 4.5.

Figure 4.13: Fluid domain model (discretized) ** Image obscured for proprietary reasons.

Outlet

Figure 4.14: Fluid domain interactions (Marked in red). Left: Inlet, Middle: Outlet, Right:
Interface ** Image obscured for proprietary reasons.

Table 4.5: Flow properties of the coolant

Boundary Region Inlet Outlet
Thermal properties 15 ¢° 18 C°
] Lit]
Flow properties 0 min 0 relative pressure

58

In order to ensure correct initialization of the analysis, a constant initial temperature is
defined for the entire model at the initial time step. A transient step, named Co-simulation, of
length tgimuacion (€qual to duration of the thermal-structural heat transfer model) was created to

ensure compatible simulation time between the co-simulation components.

Similar to the thermal-structural heat transfer model, in order to define the Co-simulation
interaction property between electro-thermal, thermal-structural, and fluid domain models, an
input file, named Fluid.inp, was generated using the CFD model created. The Abaqus CAE
interface does not allow the definition of the co-simulation interaction, thus the input file was

edited as shown in Section 4.1.4.

4.1.4 Co-simulation

Co-simulation between Abaqus/Standard (standard heat transfer model) and Abaqus/CFD
(fluid domain model) is governed by an additional process, the SIMULIA Co-Simulation Engine
(CSE) director. Typically, the CSE director is automatically invoked and the co-simulation
parameters are stored in the co-simulation configuration file. The co-simulation as specified by
the CSE director is illustrated in Figure 4.15. An overview of the Abaqus co-simulation

procedure is described in Section 17.2.1 of the Abaqus User’s Guide [28].

In order to execute co-simulation between models generated using Abaqus products and co-
simulation format FMU files, the Abaqus command line should be used to invoke the CSE
director and the co-simulation configuration file should be manually generated. Proper execution

of co-simulation requires:

1) Proper definition of the interaction between the three models as outlined in the CSE

User’s Guide [29] and API reference Guide [30].

59

2) Compatible and consistent definition of co-simulation time and step size.
3) Definition of co-simulation parameters in the co-simulation configuration file as specified
by the CSE director.

4) Definition of the co-simulation master and slave.

CFD Model Standard Model
CFD to Standard CFD to Standard
Heat Flux Heat Flux
Heat Heat EMU
Capacitance Capacitance

Standard : FMU

Standard : FMU

Body Flux Body Flux
\ Temperature Temperature

\ Standard to CFD

Temperature

Standard to CFD

Temperature

Figure 4.15: Co-simulation process

The CSE establishes communication between co-simulation models by assigning priority to
individual models. The model designated as the master leads the co-simulation by taking the next
time step, t,ex:t, and results are communicated to slave models. The slave models will then
individually take appropriate step sizes to advance to t,.,. and report the results the CSE
director, which communicates the information to the master. The master will then take the next

time step, t,..:+1, and the co-simulation will continue, so on and such forth.

In preparing the Dymola model of the battery module for co-simulation, an FMU of type co-
simulation and version 1.0 was generated. More information about generating an FMU using
Dymola is available in the Dymola User’s Guide [31]. The FMU file generated using Dymola is

a compressed file which contains a Dynamic-link library (DLL) executable file as well as a

60

model description file in XML (eXtensible Mark-up Language) format. The CSE director

automatically assigns FMU model instances as slave models.

As stated previously in Section 4.1.2, definition of the interaction between the three co-
simulation models required manually editing the thermal-structural model input file,
Standard.inp. Lines, listed in Figure 4.16, were added to the input file within the definition of the
transient time step in order to stablish proper communication between the standard heat transfer

model and fluid model.

** STEP: Transient Step Name

** Interaction: Name

*Co-simulation, name=Name, controls=Name_Ctrls, program=MULTIPHYSICS

*Co-simulation Region, import, type=SURFACE

interface, CFL

interface, LUMPEDHEATCAPACITANCE

*Co-simulation Region, export, type=SURFACE

interface, NT

*Co-simulation Controls, name=Name_Ctrls, coupling scheme=gauss-seidel, time incrementation=subcycle, time
marks=yes,

step size=min, scheme modifier=Ilead

;‘-l;:nd Step
Figure 4.16: Definition of co-simulation parameters (Abaqus Standard model). *Sections of the

code referring to definition of boundary conditions and other step parameters are omitted to
ensure generality and replaced with ...

For the purpose of this analysis, communication between three models was defined using
surface regions. For a complete description of fields available for exchange between co-
simulation models interface regions, please refer to Section 17.2.1 of the Abaqus User’s Guide

[28]. As shown in Figure 4.15, the co-simulation controls, using the keyword scheme modifier,

61

was used to assign the thermal-structural heat transfer model as the master. The keyword

incrementation, was used to allow the master to independently take an appropriate step size.

Similar to the thermal-structural heat transfer model, definition of the interaction between
the three co-simulation models required manually editing the thermal-structural model input file,
Fluid.inp. Lines, listed in Figure 4.17, were added to the input file within the definition of the
time step in order to stablish proper communication between the standard heat transfer model

and fluid model.

** STEP: Fluid Step Name

** Interaction: Name

*Co-simulation, name=Name, controls=Name_Ctrls, program=MULTIPHYSICS

*Co-simulation Region, import, type=SURFACE

interface, TEMP

*Co-simulation Region, export, type=SURFACE

interface, HFL

interface, LUMPEDHEATCAPACITANCE

*Co-simulation Controls, name=Name_Ctrls, coupling scheme=gauss-seidel, time incrementation=lockstep, time
marks=yes,

step size=min, scheme modifier=lag

;‘-l;:nd Step
Figure 4.17: Definition of co-simulation parameters (Abaqus Fluid model). *Sections of the code

referring to definition of boundary conditions and other step parameters are omitted to ensure
generality and replaced with ...

The co-simulation controls, using the keyword scheme modifier, was used to assign the
fluid model as a slave. The keyword incrementation, was used to force the slave to take

appropriate step sizes and report the results at time t,,ox¢-

62

The co-simulation configuration file defines the simulation properties of the system and the

numerical methods employed to simulate the system in its defined environment. This includes:

components: subsystem simulator programs used in the co-simulation,

e component instances: subsystem simulations performed using identified simulators,

e connectors: available input and output simulation results from each subsystem,

e connection sets: pairing of subsystem simulation results,

e connection categories: time in the co-simulation when these pairings are relevant or

active, and

model of computation: numerical method used in the co-simulation.

In order for the configuration file to correctly identify the co-simulation parameters and be

accepted by the CSE director, the following requirements must be satisfied:

1) XML well-formedness. The CSE director or any other XML authoring tool can confirm the
well-formedness.

2) Abiding by the CSE schema definition. The rules and constraints are described formally in
the CSE API kit.

3) Internal consistency of references.

4) Topological and algorithmic consistency. The definition of co-simulation and model
parameters within the configuration file should be consistent with the problem definition in
each subcomponent.

5) External consistency of references. The author of the configuration file should ensure

consistency of names registered with the CSE director and each subcomponent.

63

The first four requirements can be verified by using the datacheck option. External

consistency of references can only be verified at run time.

The configuration file contains six sections as described in the following paragraphs. The
complete text of the configuration file created for the purpose of this analysis is include in the
Appendix. For more details about the co-simulation configuration file refer to the CSE User’s

Guide and the CSE configuration schema documentation.

1) Document header

The first two lines, illustrated in Figure 4.18, in the file identify the document as an XML
compliant and define the XML root element as <CoupledMultiphysicsSimulation>, which
uniquely defines the document as relevant to the CSE. The next line segment will add the
header. Various information can be included within the header however the only required

information is the schema version.

<?xml version="1.0" encoding="UTF-8"?>
<CoupledMultiphysicsSimulation>

<header>
<SchemaVersion>1.1</SchemaVersion>
</header>

Figure 4.18: Co-simulation configuration file document header

2) Components

The components section of the configuration file defines each model included in the co-
simulation (purple highlighting). As illustrated in Figure 4.19, using the keyword
<bottomUpImplementation>, the XML file introduces co-simulation components that are

developed within the SIMULIA package, and the phrase <topDownlmplementation> identifies

64

external components such as FMUs (green highlighting). In addition, a brief description of the
master model, including the unit definitions (yellow highlighting) and co-simulation variables,
will identify the master subcomponent to the CSE director. For example, the co-simulation
parameters associated with the thermal-structural model, BODYFLUX and TEMP, are identified

as well as their respective units. The CSE director can only recognize base units, therefore units

such as kcal/kg and degC are further defined in regards to their respective base unit 7:—22 and K.

For further details about the different implementation techniques refer to API User’s kit [30].

<components>
<component name="" ">

<codeName>Abaqus/Standard</codeName>
<modelDescription>
<UnitDefinitions>
<Unit name="kcal/kg">
<BaseUnit factor="4186.8" m="2" s="-2"></BaseUnit>
</Unit>
<Unit name="degC">
<BaseUnit K="1" factor="1.0" offset="273.15"></BaseUnit>
</Unit>
</UnitDefinitions>
<ModelVariables>
<ScalarVariable name="BODYFLUX">
<Real unit="kcal/kg"></Real>
</ScalarVariable>
<ScalarVariable name="TEMP">
<Real unit="degC"></Real>
</ScalarVariable>
</ModelVariables>
</modelDescription>
</bottomUplImplementation>
</component>
<component name=" ">

<codeName>Abaqus/Cfd</codeName>
</bottomUplImplementation>
</component>
<component name="" ">

<identifier>BatteryCoSim_System</identifier>
</topDownImplementation>

</component>
</components>

Figure 4.19: Configuration file sections: Components

65

3) Component Instances

This section identifies the subsystem models participating in the co-simulation, highlighted
by yellow, and associates these models with the simulation executables, highlighted purple,
defined in the components section. Each co-simulation sub-component (Abaqus/Standard, CFD,
and BatteryCoSim_System), can be used to identify num independent component instances
which allows rapid and scalable model development. The XML text in Figure 4.20, Fluid,
Standard, and BatteryCoSim_System instances are created using the CFD, Abaqus/Standard,

and BatteryCosim_System subcomponents respectively.

<componentlnstances>
<componentInstance name="Fluid">
<component>{liill</component>
<timelncrementation>
<lockstep>false</lockstep>
</timelncrementation>
<initialConditions>

</initialConditions>

</componentlnstance>

<componentlnstance name="Standard">
<component>|SaGUSISIandard </component>
<timelncrementation>

<lockstep>false</lockstep>

</timelncrementation>

</componentlnstance>

<componentInstance name="BatteryCoSim_System">
<component>EallCICOSIMBSysiem</component>

</componentlnstance>

</componentInstances>

Figure 4.20: Configuration file sections: Component Instances

For the purpose of the co-simulation performed for this study, the two Abaqus simulation
products each correspond to a single model (there is a one-to-one relation between the

simulation executable and the simulation model). In a more general use, one-to-many

66

relationships can be defined; for example, an Abaqus/CFD to Abaqus/Standard pairing of two

separate models.

Using the initial conditions option and setting the sendBeforeReceive option to false, the
Fluid model will not communicate its initial conditions until it receives the initial conditions
from the master model (Standard). The default mode for the sendBeforeReceive option is true

and therefore it is not included the Standard component instant definition.

4) Connectors

Connectors define the variables that enter or leave a component instance. The connector
element provides the association between the component instance and the variable name and
declares whether the variable is input or output. Text included in Figure 4.21 describes six
connectors, highlighted in purple, and defines the model variables, highlighted in green, which
stablish communication between the co-simulation components. The Connector named
CFD_to_STD_INPUT defines the input variables to the Standard model instance while the
connector named CFD_to_STD_OUTPUT assigns the same variable as outputs from the Fluid
model instance. Table 4.6 includes the complete list of connectors as defined in the co-

simulation configuration file.

The name attribute for the connector element is used for internal reference in the
configuration file. For Abaqus simulation models and FMUs, there is no need to match the

variables listed in input files with corresponding variables in the configuration file.

<connectors>
<connector name="{ GGG >
<componentlnstance>Standard</componentinstance>
<variables>
<input>

67

<variab|e>ﬂble>
<variable> </variable>
</input>
</variables>
</connector>
<connector name="{ NI >
<componentinstance>Fluid</componentinstance>
<variables>
<output>
<variab|e>ﬂble>
<variable> </variable>
</output>
</variables>
</connector>
<connector name="{ GGG >
<componentInstance>Fluid</componentinstance>
<variables>
<input>
<variable>femperature</variable>
</input>
</variables>
</connector>
<connector name="{lEEGNGEGEGEGEGEE >
<componentinstance>Standard</componentinstance>
<variables>
<output>
<variable>femperature</variable>
</output>
</variables>
</connector>
<connector name="EEG_G_G >
<componentinstance>Standard</componentinstance>
<variables>
<output>
<variable>Cell Temperature</variable>
</output>
<input>
<variable>Co0lingIPIate</variable>
</input>
</variables>
</connector>
<connector name="{ GG ">
<componentinstance>BatteryCoSim_System</componentinstance>
<variables>
<input>
<variable>gelllfémperature</variable>
</input>
<output>
<variable>go0linguplate</variable>
</output>
</variables>
</connector>
</connectors>

Figure 4.21: Configuration file sections: Connectors

68

Table 4.6: Definition of Connectors in co-simulation configuration file

Connector Name Model Instance Connector Role Variable(s)
heat_flux
CFD_to STD_INPUT Standard Input
heat_capacitance
) heat_flux
CFD_to STD_OUTPUT Fluid Output
heat_capacitance
STD_to_CFD_INPUT Fluid Input temperature
STD to CFD_OUTPUT Standard Output temperature
Output Cell_Temperature
STD_from_FMI Standard
Input Cooling_Plate
Input cell_temperature
FMI_from_STD BatteryCoSim_System
Output cooling_plate

5) Connection Sets

Connection sets establish the associations between Connectors. As illustrated in Figure 4.22,
pairing between all input and output variables is checked by the CSE director. In cases where
connector elements have multiple variables defined, the connection elements must pair two

connector elements that exactly complement each other in the sense that one connector’s input

variable count match the other’s output variable count, and vice versa.

In the case of co-simulation performed for this analysis, three independent connection sets
are defined. The first two connection sets, of type field, establish communication between the
fluid and standard model. The first set defines the communication from the CFD to the Standard

model, and the second set defines communication from the Standard to the CFD model. Type

69

field connection ports will communicate both the variable magnitude as well as field units. The
third connection set establishes communication of signals between the Standard model and the

FMU.

<connectionSets>
<connectionSet name="CFD_to_STD" type="FIELD">
<connection>
<connector>CFD_to_STD_INPUT</connector>
<connector>CFD_to_STD_OUTPUT</connector>
</connection>
</connectionSet>
<connectionSet name="STD_to_CFD" type="FIELD">
<connection>
<connector>STD_to_CFD_INPUT</connector>
<connector>STD_to_CFD_OUTPUT</connector>
</connection>
</connectionSet>
<connectionSet name="STD_and_FMI{type="SIGNAL">
<connection>
<connector>STD_from_FMI</connector>
<connector>FMI_from_STD</connector>
</connection>
</connectionSet>
</connectionSets>

Figure 4.22: Configuration file sections: Connection sets

6) Execution

The execution element describes all the details of the numerical method used to perform the
co-simulation. As shown in Figure 4.23, execution is generalized to enable a hierarchical
arrangement of an arbitrary number of component instances. The term atomicActor, highlighted
in green, refers to each individual simulation participant in co-simulation; whereas, a
compositeactor, highlighted in yellow, refers to a group of simulation participants. Model
instance(s) defined within a single compositeactor will communicate using the assigned solver,

highlighted in purple, and negotiation method, highlighted in gray.

70

In the case of the co-simulation performed for this analysis, the CSE uses the Gauss-Seidel
algorithm and the CSE will negotiate the variable exchange time between participants by
selecting the maximum of the time increments preferred by the three codes. Two connection
categories, highlighted in blue, are defined, InitialConditions and CouplingStep. Each category
defines the connection sets participating in the respective connection category. For more
information about the algorithm types and exchange time negotiation options, please refer to the
CSE configuration schema.

;éxecution>

<compositeActors>
<compositeActor name="twoCodeContinuousTime">

<actors>

< >Standard</atomicActor>

< >Fluid</atomicActor>

< >BatteryCoSim_System</atomicActor>
</actors>

<modelOfComputation>
<continuousTime>
<algorithm>[EINUSSISEIBEN</ 21 gorithm>
<negotiationMethod>MAX</negotiationMethod>
</continuousTime>
</modelOfComputation>
</compositeActor>
</compositeActors>
<connectionGroups>
<connectionCategory name="1InitialConditions">
<connectionSet>CFD_to_STD</connectionSet>
<connectionSet>STD_to_CFD</connectionSet>
<connectionSet>STD_and_FMI</connectionSet>
</connectionCategory>
<connectionCategory name="CouplingStep">
<connectionSet>CFD_to_STD</connectionSet>
<connectionSet>STD_to_CFD</connectionSet>
<connectionSet>STD_and_FMlI</connectionSet>
</connectionCategory>
</connectionGroups>
<scenario>
<duration>300.</duration>
</scenario>
</execution>

Figure 4.23: Configuration file sections: Execution

71

Finally, in order to perform the co-simulation, all input files (Abaqus input files and the
FMU) as well as the co-simulation configuration file are stored in the current directory where
the the Abaqus Command is issued. The commands, listed in Figure 4.24, will initiate the co-
simulation on machine earth and communication with the CSE director is established through
port 65533. For a complete list of available ports for co-simulation refer to the Abaqus User’s

Guide [28].

call abaqus cse -j Confige_File -config Confige_File.xml -listener 65533

call abaqus fmu -fmu Electrical_System.fmu -instance Electrical _System -csedirector earth:65533
call abaqus -j Standard -csedirector earth:65533

call abaqus -j Fluid -csedirector earth:65533

Figure 4.24: Co-simulation execution commands

After the first command prompt is used, the CSE director waits for the other co-
simulation components, which can be invoked in an arbitrary order. During co-simulation, the
CSE director generates individual log files for each co-simulation file, which can be used for
debugging. A separate .msg file is also generated which provides a brief description of the co-

simulation steps and possible errors encountered during co-simulation.

4.2 Calibration

The calibration of the battery model will be completed using experimental data in three
phases: 1) Cell model calibration, 2) Battery module calibration, and 3) Battery pack calibration.
The calibration of the cell model focuses on the calibration of the electro-thermal domain model.
Cell parameters such internal resistance, OCV, and capacity are provided by the manufacturer.
However, parameters such as cell thermal capacity, cell skin thermal conductance, temperature
dependency of parameters such as internal resistance and capacity, and RC components are

calibrated using experimental test results. Calibrating the battery module and battery pack

72

models require further testing of the battery module and battery pack, which will be completed

in the next phase of the research partnership.

In order to calibrate the cell model, a single battery cell was tested under high current
charge and discharge conditions and experimental results were provided. For the purposes of the
discharge test, the ambient temperature was at 23+2°C. The cell was initially charged fully.
Afterwards, the sample was paused for 1 hour. The test cell was placed under a thermal camera
and the device under testing (DUT) was discharged with a current of 40 A until the voltage
dropped below the minimum cell voltage, or until the thermal camera detected a temperature of
over 80°C. For the purpose of the calibration, the distribution of temperature was constant over

the surface.

During discharge the cell is discharged with a current of 40A and after 210 seconds the
cell reaches 80°C, at which point the discharge is stopped. In order to calibrate the model,
system parameters were adjusted until good agreement between the cell temperature
experimental results and the model output temperature was reached. Figure 4.25 illustrates the

cell skin temperature as recorded by the thermal camera and the cell model temperature.

73

90 T T T T T

—¥— Model calibration
—3¥— Experimental Data

80

a (2] ~
o o o

Cell Temperature, degC

N
o

30

0 200 400 600 800 1000 1200
Time, s

Figure 4.25: Cell calibration, discharge of fully charged cell

In order to test the effectiveness of the model calibration, the calibrated model was
simulated at a discharge rate of 40 A. Figure 4.26 illustrates good agreement between the model
predicted and experimental normalized cell voltage. During the cell discharge (first 210
seconds), the model predicted voltage drops at a slower pace compared to the experimental
results. The cell electro-thermal domain model dynamic in fast discharge is governed by the cell
capacity and internal resistance, both of which are defined as functions of temperature and
calendric aging. The time constant of the cell thermal domain model (governed by the thermal
capacity and conductance) is much larger compared to the electro-thermal domain. Therefore the
slow change in temperature, and in turn cell internal resistance, results in the discrepancy
between the model prediction and experimental results. After the discharge is completed, both
experimental results and model-predicted results illustrate a fast voltage recovery (from 210 to
400 seconds). However, the model prediction fails to capture the slow continued voltage

recovery beyond 400 seconds. Redefining the cell internal resistance and capacity as functions of

74

current, temperature, and calendric aging may reduce the discrepancy between model prediction

and experimental results.

1 T T T T T

Model Prediction

0.95) b
Experimental Data

0.9 | 7

0.85 [J

Normalized cell voltage

0.75 4

07 1 1 1 1
0 200 400 600 800 1000 1200

Time, s

Figure 4.26: Verification of model calibration, normalized cell voltage - Discharge

Similar to the discharge test, during the charge test, the ambient temperature was at
23+2°C and the cell was discharged with a current of 2.6 A until the cell voltage dropped below
the minimum cell voltage. After a 1 hour pause period the cell was charged with a maximum

current of 30A for one hour or until the thermal camera detected a temperature of 80°C.

In order to calibrate the model, system parameters were adjusted until good agreement
between the cell temperature experimental results and the model output temperature was
reached. Figure 4.27 illustrates the cell skin temperature as recorded by the thermal camera and

the cell model temperature.

75

80 T T T

—%¥— Model calibration
—¥— Experimental Data

Cell Temperature, degC

20 1 1 1 1 1

0 200 400 600 800 1000 1200
Time, s

Figure 4.27: Cell calibration, Charging

Figures 4.27 and 4.28 illustrate a comparison between the model predicted and

experimental current and normalized cell voltage respectively.

32 T T T T T T T
Model Prediction
Experimental Data
30 b
28 b

Current, A
N
o

22 - 3

20 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Time, s

Figure 4.28: Cell current during charging

76

During the first 100 seconds of cell charging, both experimental and model-predicted
discharge current is at the maximum allowed limit of 30 A. After the first 100 seconds, the
charge current decreases rapidly until at 200 seconds the cell temperature reaches 80°C. Figures

4.28 and 4.29 illustrate good agreement between the experimental results and model prediction.

Model Prediction

Experimental Data

0.9

0.85 [

Normalized cell voltage

0.8

0.75 |

0 20 40 60 80 100 120 140 160 180 200
Time, s

Figure 4.29: Cell normalized voltage during charging

After the first 100 seconds the cell model predicts a more rapid decline in charge current than
experimental results. Similar to the discharge test, this discrepancy may be corrected by

redefining the cell internal resistance and capacity as a function of charge current.
4.3 Battery module co-simulation

A battery module, following the model development and co-simulation execution
procedure outlined in section 4.1, and using the calibrated cell parameters as described in 4.2,
was created. Results presented in this section display the capability to identify hot spots and
predict the system dynamics; however, the module has not yet been calibrated and thus

predicted results are only of qualitative value. System parameters such as fluid film coefficient

77

and thermal contact conductance coefficient were extracted from reference text [32]. Calibration
of the battery module model using experimental data will be completed in the next phase of the

research project.

Outlet

Figure 4.30: Cooling plate temperature distribution. Temperature contour displays areas of high
temperature in red and low temperature in blue ** Image obscured for proprietary reasons.

Figure 4.30 illustrates the temperature distribution on the cooling plate. The initial
module temperature was set at 30 C°. The cooling fluid temperature at the inlet was fixed at 15

C° and the fluid temperature at the outlet is presented in Figure 4.31.

78

15.2
15.18
15.16
15.14
15.12

15.1
15.08
15.06
15.04
15.02

15
14.98

Temperature, degC

0 50 100 150 200 250 300
Time, sec

Figure 4.31: Coolant outflow temperature.

Similar to the cooling plate, hot spots can be identified on the cells as shown in Figure
4.32. The minimum cell temperature occurs at the contact points with the cooling plate at the top
and bottom of each cell, while the heat loss through convection reduces the cell skin temperature
on all sides. Maximum temperature regions, marked in red, occur at the top and bottom of the

cell due to reduced heat transfer with the cooling plate and minimal heat loss through convection.

79

Cooling
plate contact

Heat loss

through
convection

Hot spot

Figure 4.32: Cell temperature distribution. Temperature contour displays areas of high
temperature in red and low temperature in blue. ** Image obscured for proprietary reasons.

08 v I —W r M | [—.|,_,ﬂr_r_

0g t -
=
S 04 \ -
e UL M J
o 0.2 |
=
B I
: ol Al
el
H-02F | | I
£ | | | | 1
E st ‘ -
E u |. | J _| 1] LL | J |u 1
08+ -
08k :
1 L L ! L L
0 &0 100 180 200 260 300

Time, =

Figure 4.33: Normalized module current

In addition to the temperature distribution in the thermal-structural model, the electro-

thermal model output is also calculated. Figure 4.33 displays the normalized module current

80

operating under a high-frequency-high-load power cycle. Similarly, Figure 4.34 illustrates the

module voltage during the co-simulation.

8.4

[mx)
T

[n}
ka
T
—J
—
— |
—
—
—— = m
—
—
e
———
—

-
fua]

|

o

-—
—

-
[

Module Yaoltage, V'
|
=

m
m
[
L
L
| =—

o
o

m
.

a0 100 1580 200 260 300
Time, s

]

Figure 4.34: Module voltage under high-frequency-high-load conditions

4.4 Performance under high loading conditions

Performance of the battery pack under high loading conditions is of great concern in the
development of high-performance HEVs. The current draw from the battery pack can be
limited; however, extended high current draw can result in development of local high
temperature regions which can significantly reduce the battery performance and battery life. The
purpose of this study is to estimate the effects of high current draw on battery life and ensure the

cooling system can efficiently remove heat and eliminate high temperature regions.

For the purpose of this study the model will undergo two types of loading conditions. In

order to study the long term effects on battery life, the model will be executed with loading

81

cycles that represent the long term use of the battery pack. In order to study the temperature
profile in the battery pack, the loading cycle will feature long periods with maximum current
draw. In order to complete this analysis, which will be completed in the next phase of research, a
model of the battery pack to include hundreds of battery modules will be developed. This model
will also include control logic that will monitor the temperature of the battery pack at
predetermined locations and limit the current draw to prevent thermal or electrical damage to the

battery pack.

The development of the battery pack model will also require further testing of an
individual battery cell to better define the fast and slow transient behavior of the cell. The

transient behavior is represented by several RC elements included in the cell model.

4.5 Battery life estimation

In order to study the battery life and characterize the battery aging, three battery
parameters are studied. Battery current draw/ charging current, temperature and SOC
significantly influence the battery life. A 2.5 year study documented in [32] has shown that cell
temperature, depth-of-discharge, and current rates are the primary factors influencing battery

state of health and its useful life.

The cell model included in the EES library has built-in functionality to estimate the
battery life. The capacity, as well as the internal impedance of the cell, can change due to aging.
The effects of aging on the battery state of health are identified by the battery state of health

(SOH).

SOH = SOH x SOH, (42)

82

For each cell, SOH. and SOH, are estimated by calibrating aging factors, x. and x,
respectively [27]. Characterizing the battery life and the effects of high current draw and

charging will be investigated in the next steps of the study.

Xc
Ho=————%xC-— 4
SOH, CO(1—xC)XC T (43)
X
SOH, = z (44)

_— X7 —
Zo(l_xZ) 1_xZ

4.6 High and low ambient temperature testing

Vehicle manufactures are required to ensure the vehicle can perform in both high and low
ambient temperature conditions. A significant area of interest is performance in high ambient
temperatures as the high ambient temperature can reduce the ability of the cooling system to
remove heat from the battery pack, and additional cooling may be required in order to prevent

long term damage to the battery pack.

Each battery cell model is temperature dependent and therefore the effects of ambient
temperature will be investigated in later stages of the analysis. In order to ensure the safe
operation of the battery pack, it is highly encouraged that each battery pack design is tested

before final integration in the vehicle.
4.7 Vehicle integration

The final stage of this project will include the integration of the battery pack model into
the vehicle model. The battery pack model developed in this chapter is an example of a high
fidelity multi-physics model which can take supersede models of lower fidelity. The

development of high fidelity models within a single modeling environment, such as Matlab or

83

Simulink, is often unfeasible, or at best can lead to a significant increase in the computational
costs as many functional components of the vehicle feature multi-physics systems. It should also
be noted that the development of finite element model of system components in junction with
equation-based models and rule-based control is often impossible within a single modeling
environment. Therefore the use of co-simulation in the development of subcomponent models
and integration with the vehicle model can lead to a significant increase in model fidelity and
reduced computational cost. It is highly encouraged that the battery pack model developed as
part of this analysis be integrated with the vehicle model after model verification and

development of the complete vehicle model.

84

Chapter 5: Concluding Remarks and Future Work

This thesis presented simulation tools, control analysis, and a multi-physics co-simulation
approach supporting high-performance HEVs. It focused on the development of vehicle
simulation and control of HEVs using a sequential approach, as well as a multi-physics modeling
approach to develop high fidelity battery models. This chapter will provide concluding remarks

for the thesis and suggest future work.
5.1 Adaptation of Vehicle Model to Simulate and Control Hybrid Electric Vehicles

A sequential modeling approach was introduced in Chapter 2 in order to develop a
vehicle model for a series HEV. The same modeling approach can be adapted to develop vehicle

supervisory control strategies for parallel and power-split HEVS.

The supervisory control strategy applied to the vehicle model in Chapter 2 was a rule-
based strategy which provides a good compromise between vehicle performance and efficiency
for series hybrid architectures. Parallel and power-split hybrid architectures, however, require
the application of more complex supervisory control strategies such Equivalent Cost
Minimization Strategy (ECMS), which assigns an equivalent fuel for battery power. Application
of ECMS can be further enhanced by utilizing DP results to choose and update the equivalence

factor.

In Chapter 3, DP and its application to a series hybrid architecture was introduced. DP is
a Backward-Looking simulation which can be used as an unbiased tool to evaluate the controller
performance. Applying DP to hybrid architectures and comparing the vehicle emissions and
performance against the vehicle model can provide further insight in the development of the

vehicle supervisory controller.

85

In both Chapters 2 and 3 the controller performance was evaluated based on fuel
economy and CO, emissions. While the fuel economy and CO, emissions are of great
importance in the design of vehicles, manufacturers require each new vehicle design to meet a
long list of design goals, such as emission, drivability, and performance. One area for future
work is to develop a robust supervisory control that can simultaneously minimize fuel economy
in normal city driving conditions and maximize vehicle performance. Another possible
improvement is to investigate the use of traffic light and congestion data, to interactively

influence driver behavior and improve the fuel economy.

5.2 Battery Modeling and Multi-Physics Co-simulation

In Chapter 4 a multi-physics co-simulation approach was used to develop a high fidelity
battery model in order to investigate the temperature distribution in the spatial framework of the
battery pack. The co-simulation approach provides a fast computational time by incorporating a
discrete electro-thermal domain model developed using Modelica, an open-source, object-
oriented, and equation-based modeling language. The spatial context of the heat transfer
problem was captured by the Finite Element Model (FEM) of battery components including a
transient thermal-structural heat transfer model and a fluid heat transfer model of the cooling

system.

Communication between the three model components was established following the
Functional Mock-up Interface (FMI), a tool-independent standard to support model exchange
and co-simulation of dynamic models. FMI allowed for the coupling of the discrete electro-
thermal domain model and the FEM heat transfer models to develop a modular coupled model.
Data exchange is established at discrete communication points, as specified by the host

simulation tool, and each subsystem is solved independently between the communication points.

86

The battery model developed will be used in future studies to investigate the effects of
high current charge/discharge in high performance applications to ensure safe operation of the
battery pack. The model will also be used to design the cooling system and study the effects of
high current on the battery life. Another area for future work is to incorporate the battery model
into a vehicle model. Simulink software used to develop the vehicle model in Chapter 2 is an
FMI compliant software which allows for the integration of the battery pack model. The high
fidelity multi-physics models can replace the battery model developed using experimental
results. In addition to improved fidelity, the model can be used to identify the areas of high
temperature, design the cooling system to allow for proper cooling, investigate the effects of
current draw on life, and in turn observe the effects of battery inefficacy on vehicle

performance.

87

Appendix:

1) MBSD Tutorial

Course Goals

Present and emphasize MBSD approach
MBSD Lecture 0 Simple models

Complex system
Basic control

Iterative refinement
Overview Utilize simulation tools

Matlab

Simulink

Stateflow

Course Outline Model Overview - System
Simple Series Electric Vehicle G R —
Model hierarchy Euip
Ideal Component Models e
Controls

Improved Component Models

Inefficiencies

Experimental Data
Improved Controls

Model Overview - Plant Model Overview - Plant

88

Model Overview - Plant Model Overview - Plant

e A T e T T v

=, |
> e =< oo

Model Overview - Vehicle Model Overview - MG

m.-.w_ e

Model Overview — Battery Model Overview - Engme

N R e T

89

Model Overview - Controller Model Overview - GentSet

MBSD Lecture 1

Getting Started with the High Level
System

90

Lecture Goals

Getting Started with Simulink
Developing model hierarchy (subsystems)
Establishing CAN bus

Getting Started

Getting Started

@®

Simulink is a graphical programming environment
which enables you to link function blocks to create
simulations

In the Simulink model window, select library
browser pESssEEREw— s

B

91

Getting Started

Start Matlab
Make sure you are in the correct directory

Current Folder

Name

*a Series_Hybrid_lel_a.six
) Vehicle_Init_File.m

Type simulink in the command window

Getting Started

Getting Started

20

Get yourself familiar with the libraries and blocks in

the library browser

Getting Started Getting Started

We will primarily use the following libraries Save the Simulink model as :
Simulink \ Commonly Used Blocks Series_Hybrid_le1_a
Simulink \ Signal Routing Do not use spaces or variable names in file names
Simulink \ Lookup Tables e St R

Simulink \ Sinks
Simulink \ Sources
Simscape \ Driveline
Stateflow

High Level Model High Level Model

We will first create the high level plant and controller
model

From
Simulink \ Commonly Used Blocks

Drag three Subsystem blocks into the model
Driver block

Controller block

Vehicle block

High Level Model High Level Model
Rename the upper subsystem You can change the font size by right clicking on
Driver each subsystem/Format/Font Style...
The middle subsystem B
Plant BB wg®P = b
The lower subsystem . — ‘
Controller : Drver ;

30

92

High Level Model High Level Model

At this high level, signals will be sent out by the Open Model Browser by selecting the arrow
Driver, Plant, and Controller Shows an outline form of the model

Driver Torque Request
Battery State of Charge

Engine Throttle Request
These signals will be put onto a common bus so ‘ -
that all three subsystems can receive all signals @ o
| |
Only desired signals will be selected | |
n(xxvllu'k-' /
31 — 2

Driver Subsystem Driver Subsystem

The Driver receives information Open the Driver subsystem by:
clicking on Driver in Model Browser or
double click on the Driver block

Speedometer
Tachometer

Idiot lights (engine hot,) Delete the wire that connects the In1 block to out1
The Driver sends information block
Torque request (gas/brake pedal position) Rename

In1 to System Signals
Out1 to Driver Diagnostics

Gear selection

3 34
Driver Subsystem Driver Subsystem - CAN
From
Simulink \ Commonly Used Blocks
- Drag in a Bus Selector and a Bus Creator
i The Bus Creator puts signals on the bus
= The Bus Selector extracts them from the bus
. B <0] XD : ;
| Sy S v agnodcs Connect the System Signals input to the Bus Selector
il Connect the Driver Signals input to the Bus Creator
" e
3

93

Driver Subsystem CAN Driver Subsystem - CAN

s i e e sk For now, the Driver is not going to do anything
S N P T PP T Y From

= Simulink \ Commonly Used Blocks

i Drag in two Terminators and two Grounds

Connect the two outputs of the Bus Selector to the
Terminators

Connect the two inputs of the Bus Selector to the

Grounds
e S 1 :
Driver Subsystem CAN Driver Subsystem - CAN
S R T The symbols for the ground and terminator are
- i;,“: TR R T — ‘ pretty obvious — there is no need for them to be
] - - labeled

© |[Faseres pyord Je1 s b [rmiomver -

= On one of the Terminators
S _ Right Click
- > Select Format

System
Sgnals

Deselect Show Block Name
We will do this for many of the blocks
Hide the name of all terminator and ground blocks

Driver Subsystem CAN Driver Subsystem - CAN

Whlle no signals are being sent by the Driver, the
Driver Diagnostics signal should be identified on the
& bus
On the wire connecting the Bus Creator to the
Driver Diagnostics output
Right Click
Select Properties

: For the Signal name enter Driver_Diagnostics
e Click OK

94

Driver Subsystem - CAN Driver Subsystem - CAN

Move the blocks around, enlarge if necessary, and
make things look nice

Controller Subsystem Controller Subsystem

For now, the controller is not going to do anything

VB Sies b e Contrater - Simlik academic Loe e Sl
Tl E6t Vew Oeply Diam Simusion Ansye Code TodsHep
Repeat everything done to the Driver subsystem for Beo W e 4 B0 -M-® 4P b o/ = Jo-la-
the Controller subsystem :
. T in Bt =
Rename the Out1 to Controller Signals :‘:;" @
Rename the CAN signal to Controller_Signals u =
al o =32 B
= Sys?)mi D [c;m)ler
Signals Signals
=
Ready - 100% VerisbleStepAute

Plant Subsystem Plant Subsystem

For now, the Plant is not going to do anything

& Series_Hybrid_le1_a/Plant * - Simulk academic use o (55
Repeat everything done to the Controller subsystem e oo o0
for the Plant subsystem Bro-B e ¢ BEOE-eeOP » [w0 e 2| @

e =T
Rename the Out1 to Plant Diagnostics * B e s & [Fusors ropre et n b frnt 5
Rename the CAN signal to Plant_Diagnostics B =
= =
¢ T D
o= I
Signals L Diagnostics
-
£
4 48

95

Return to the top level of the model

Increase the size of the subsystems to make them
legible

Drag in a Bus Creator % N mws}

Drver

Double click of the Bus Creator

Change the number of inputs to 3

Click OK
Connect each subsystem to the Bus Creator
If you Double click on the Bus Creator after
connecting the subsystem you can view the input | -
signals L

Spsem Sgnas Plant Dagpostes

‘Controller

High Level

Connect the output of the Bus Creator to each of
the subsystem inputs

Rename the output signal of the Bus Creator to
System_Signals

High Level

Congratulations! You have
Created a high level hierarchical system

MBSD Lecture 2

Established communication between the three key
subsystems

Gained experience with Simulink
Simple Vehicle Model

96

Lecture Goals Simple Vehicle

Create the Vehicle subsystem Save your previous model (Series_Hybrid_le1_a.slx)
Create the MGA subsystem with a preposterous as Series_Hybrid_le2_a

motor model In the Model Browser window, click on the Plant
Observe and assess the results subsystem

Move the buses to the bottom of the window

Simple Vehicle Simple Vehicle

Drag two Subsystems into the Plant window
e e c Rename them
= Vehicle
- MGA
Right click on the Vehicle subsystem
Select Rotate & Flip
Flip Block Name

Repeat for the MGA subsystem

58

Simple Vehicle Simple Vehicle

T e n e ————a Lets also color code our subsystems to make things
easy to identify

Right click on the subsystem

Format/Background Color

L7 t ' Make the vehicle gray and MGA red

97

Simple Vehicle Vehicle Subsystem

The Vehicle subsystem will mechanically receive
torque via a shaft from MGA

We will skip mechanical brakes and use exclusively
regenerative braking as applied by MGA

The Vehicle subsystem will contain
Posi-trac rear axle

Rear tires

Vehicle solver

'I" B B 1 Inertias for the driveshaft and axle half shafts
Vehicle Subsystem Vehicle Subsystem

Delete the In1 and Out1 blocks as well as the From
connecting wire Simscape / Driveline / Tires & Vehicles
Copy the In1, Out1, Bus, Terminator, and Ground Drag in the Vehicle Body and one Tire(Magic
blocks from the Plant subsystem Formula) blocks
Rename Plant to Vehicle From
From Simscape / Driveline / Gears

Simscape / Utilities Drag in a Simple Gear block

Drag in a Connection Port and rename it Vehicle
Mechanical Port

Vehicle Subsystem Vehicle Subsystem

Double click on the Simple Gear

We can specify the gear ratio and relative rotational
directions

Change the output shaft rotation to the same direction
as input shaft

Leave the ratio as 2

98

Vehicle Subsystem Vehicle Subsystem

Double click on the Tire block Double click on the Vehicle Body block
This block converts the applied torque to force in the This block solves linear momentum (with drag and
x-direction pitch) from the tire force
It also determined whether or not the tire slips Keep the default values

Keep the default values

Vehicle Subsystem Vehicle Subsystem

[T —

Connect the Vehicle Mechanical Port to the Base
side of the Simple Gear

Connect the Follower side of the Simple Gear to the
A port on the Tire

We now have a model of the driveshaft, rear ‘ E ~ [
differential, and axle shaft P

69

Vehicle Subsystem Vehicle Subsystem

Note the difference in between the Driveline Every shaft must have a mass moment of inertia

connection ports and the Simulink connection ports ﬁ:zfna R st s used

They will not connect to each other Simscape | Foundation Library / Mechanical / Rotational Eiements
Driveline blocks are used to solve the Drag in two Inertia blocks

Conservation of Angular Momentum principle F’°[“

. . Simscape / Utilities
dunng each time Step Drag in a Solver Configuration block

99

Vehicle Subsystem Vehicle Subsystem

Connect the Inertias to the driveshaft and rear axle and
Rename them:

Driveshaft Inertia (kg m"2)
=] Driver Halfshaft Inertia (kg m”2)
- - Connect the Solver Configuration to the driveshaft
= e ; Hide its name

Rename the Tire to Driver Tire
Rename the Simple Gear to Rear Diff

Vehicle Subsystem Vehicle Subsystem

W D et - Sl it

Rename and save you your model as Series_Hybrid_le2_b
g Now we can connect the H port of the Drive Tire block to
o] f the H port of the Vehicle Body block

! T From

! Simscape / Utilities

e F L Drag in two Simulink-PS Converter blocks

= These blocks transfer Simulink signals to physical signals
Drag in two Ground blocks

- { | B 1 Hide their names

= = T e Connect the Ground blocks to the Simulink-PS Converters

Connect the Simulink-PS Converters to the beta and W
E— | ports of the Vehicle Body block

Vehicle Subsystem Vehicle Subsystem

T IEETE The NR port of the Vehicle Body block is a physical
T : signal reporting the normal force applied on the rear
wheels

: =) e Connect the NR port of the Vehicle Body block to
@ the N port of the Driver Tire block

- 5o Rearrange the block and wire to make model look
3 4 good
—a @ e S port of the Drive Tire block is a physical signal
I R e reporting tire slip

Diagnostics

D
System
Signals

=38 B

100

Vehicle Subsystem

Vehicle Subsystem

S port of the Drive Tire block is a physical signal reporting tire slip
z NF port of the Vehicle Body block reports the normal load on the front
} tires
We are not interested in tire slip or the normal force on the front tire (this
e is a rear wheel vehicle)
From

Grab two PS-Simulink Converter blocks (opposite of Simulink-PS
Converter)

Grab two Terminator blocks

Hide name of PS-Simulink Converter and Terminator both blocks
Connect the PS-Simulink Converter blocks to the Terminators
Connect the S port of the Drive Tire block and NF port of the Vehicle
Body block to the PS-Simulink Converter blocks

Rearrange the block to make the model look good and compact

=3 &
D— - D)
System | [VRt yehicie

Signais Diagnostics

Vehicle Subsystem Vehicle Subsystem

It is preferred for the wires not to cross as much as
possible. You should place your blocks in position
to avoid the wire crossing as much as possible

Vehicle Subsystem Vehicle Subsystem
We need to send the vehicle velocity signal (from Double click on the Goto block and change the tag to
the V port of the Vehicle Body block) to other parts Vehicle_Speed_ms
of the model Make sure the visibility is set to local
Grab a PS-Simulink Converter block and connect e) -
the V port of the Vehicle Body block to the PS- Drag the sides of the Goto block to make the name visible
Simulink Converter Hide the name of Goto and PS-Simulink Converter blocks

-

From
Simulink / Signal Routing
Grab a Goto block

Connect the PS-Simulink Converter to the Goto
block

©) [| e 8

101

Vehicle Subsystem Vehicle Subsystem

From
Simulink / Signal Routing
Grab a From block
s) J— Double click on the From block
— 3 @ Open the Goto tag bar and select Vehicle_Speed_ms
.- " oo | Note: if i t sad s pk

you don'’t see Vehicle_Sp li

again

k on Update Tags

ot S

Click OK
Hide the name of the From block

e spechied g, ¥ the tog

Vehicle Subsystem Vehicle Subsystem

Congratulations — you have a model of a vehicle that will
e — = (hopefully) move when subjected to a torque

From a vehicle diagnostics perspective, we are interested in

® Bl two things
= ki = - Speed (mph)
o . :4‘1) ks Distance Traveled (miles)

Move the Vehicle_Speed_ms From block down near the
Vehicle Diagnostics Bus

From

Simulink / Commonly Used Blocks
Drag in two Gain blocks and one Integrator block
Hide the name of the Integrator block

Vehicle Subsystem Vehicle Subsystem

Congratulations — you have a model of a vehicle that will Set the first Gain to 2.2374 (m/s to mph)

(hopefully) move when subjected to a torque Set the second Gain to 6.214 e-4 (m/s to miles/s)
From a vehicle diagnostics perspective, we are interested in Name them accordingly

o g Connect the output of the From block to the input of the Gain
Speed (mph) blocks
Distance Traveled (miles)

Connect the second Gain block to the Integrator block
Delete the Grounds going into the Bus

Connect the two signals

Name them: (Double click on the wires)

Vehicle_Speed _mp

Move the Vehicle_Speed_ms From block down near the
Vehicle Diagnostics Bus

From

Simulink / Commonly Used Blocks
Drag in two Gain blocks and one Integrator block
Hide the name of the Integrator block

Vehicle Distance miles

102

Vehicle Subsystem Vehicle Subsystem

The Vehicle subsystem is done
Note that we did not use any of the system

signals
- Ris J ——
When we get around to mechanical brakes we =3 i § [T
will need a brake signal o O -2
—~ 2
Take some time to move things around and make it = ¥
look nice g 8
- { a ST -
v @ e |

MGA Subsystem MGA Subsystem
Our motor model is going to be preposterously simple Delete the In1, Out1, and the connecting wire
s E Copy the Bus from the Plant subsystem
Constant torque output 2
Rename according!
=) A ite = 3
No RPM limits Drag in a Constant block and rename it MGA Max Torque (Nm)
No input power required Set the constantvalue at 200 Nm
Rename and save you model as: L

Simscape / Foundation Library / Mechanical / Mechanical Sources
Drag in an Ideal Torque Source block and hide its name

Use the Model Browser to go to the MGA subsystem Drag in a Connection Port and rename it MGA Mechanical Port

Drag in a Simulink-PS Converter and hide its name

From

Series_Hybrid_le2_c

Grab a Mechanical Rotational Reference block and hide its name
Wire everything together as shown in the next page

MGA Subsystem MGA Subsystem

The only MGA diagnostic is the torque
Delete the Terminators

= Double click on the Bus Creator and change the
- - Number of inputs to 1 =
Click OK :
, -8 B i ——

103

MGA Subsystem

Drag in a pair of Goto and From blocks
Name them accordingly

Use them to route the MGA torque signal to the Bus
Creator block

Name the signal going into the Bus
Compare with next slides

MGA Subsystem

Congratulations — you’'ve made a motor model
It is now time to connect MGA to the Vehicle and
see what happens
Save your model as
Series_Hybrid_le2 d
Use the Model Browser to go to the Plant level of
the model
Make the MGA and Vehicle subsystems larger

»

Plant Level

The MGA Mechanical Port is on the wrong side of the block
Go into the MGA subsystem and double click on the Port
Change the location from left to right

Click OK

[%3 Block Parameters: MGA Machanicat Port il
C_port
Physical Modelng Connecton Port blck or subsystems
Parameters
Port pumber
1

Port location on perent subsystem: |Rght

oK Cancel Help

104

e E
D e S D
System — MOA_Disgnasscs G
Slgnais Diagnostes

5 :I o

i T

& ani_Dognowcs pray
Diagnostes

Connect the two Mechanical Ports

Route the Vehicle and MGA Diagnostics to the Plant Signal
CAN Bus

Name the signal inputs accordingly
Change the foreground of the Vehicle routing blocks to gray
Change the foreground of the MGA routing blocks to red

MGA Subsystem

Plant Level

Plant Level

102

Plant Level Plant Level

AII that is left is to route the System Signals to the
Vehicle and MGA

Delete the Terminators and the Bus Selector

Use the Goto and From blocks to route the System
Signals to MGA and the Vehicle

Plant Level Running the Model

It is now time to run the model
Go to the Vehicle subsystem
From
Simulink / Sinks
. E == ! Drag in a Scope
Connect it to the Vehicle_Speed_mph signal
l Click on the Run button to start the simulation

105

Running the Model

Since we do not yet need any signals from the
System Diagnostics bus, replace the Bus Selector
with a Terminator in the

Driver

Controller

Plant / Vehicle g

Plant / MGA
subsystems
109
Simple Vehicle
Review

Vehicle subsystem
Receives torque from MGA
Solves vehicle velocity
Sends/Receives CAN messages
MGA subsystem
Provides torque to Vehicle
Sends/Receives CAN messages

Lecture Goals

Create an initialization file for data management
Select the correct ODE solver

Create a Data Logging and Visualization subsystem
Create a Driver subsystem

Have the vehicle follow a drive cycle

Experiment with feedback gain

13

106

Running the Model

Rerun the model

If the scope is not open, double
click on the block

Observe the results
0 to 25 mph in 10 seconds

You can check the results by
hand

anr
mm——zl}

dv, _ 1 (TN
o)
Y dv= [(1",’)
f:‘. oy = JI. mr. dt
(200 Nm)(2)

i S ittty S m o
Y = ookgyoam — 111 /s = 24.9 mph

110

MBSD Lecture 3

Initialization, Solver, Logging &
Visualization, and Driver

ia > GBeerg® W Woodrul) Sei

Initialization File

Save your previous model as
Series_Hybrid_|e3_a
Go to the System Level of the model
Right click on any vacant white space on the model
Select Model Properties
Select the Callbacks tab
Click on the InitFcn
Type Vehicle_Init_File_L3 in the second column

114

Initialization File Initialization File

%3l Mode! Properties Series Hybrid Je3_a

This is going to be a Matlab M-file which will
B > St b automatically execute each time the model is run

Vehicle_Init_File_L3|

All of our component parameters will go in this file
EZ“:::‘M Start by going to the Matlab window
o Open file

ClosaFen

Vehicle Init File L3.m

o Cancel Help Apply

Initialization File Initialization File

We will replace the numeric values in the blocks
with these variable names
This consolidates all key parameters into one
location

oghaviZ\Desktop\ME013_TutoriahVehicle_modeNVehicie Jnit_File_L3m TN o =S

T jmnseas

iCompare v SGoTow .
Bresigoets Ren Runand | Agvance Runand
- v iamm e Fma - v Adance e

e ; Help prevent making mistakes
Tip: copy the variable names from the M-file and
paste into the block to prevent spelling errors

Update all relevant blocks

18

Initialization File ODE Solver

While the Solver Configuration calls the hooks for
solving the driveline angular momentum, an overall
ODE solver must be specified

Our model contains a set of stiff ODEs and as

recommended by The MathWorks, best solver
suited for this type of ODEs is ODE23t

19 120

107

ODE Solver

As with the Init file, right click on the model
background
Select
Model Configuration Parameters
Solver: ode23t (mod. stiff/Trapezoidal)
Click OK
Run the model and note how much faster it runs!

Logging & Visualization

Let's now create a subsystem to represent the on-
board data logger

This will also be a good place for having all the
visualization

First, go to the Vehicle subsystem and delete the
Scope block

Having scopes in the model is bad for auto-code
generation

Logging & Visualization

i Seres.Hybrid_e3_a/Plant/Logging & Visvatation * - Simulik academec use I
Fie ESt View Diplyy Disgram Smuision Anslris Code Took Help

SRR RY IR P ES-E-WLOP A~ we
Vo = [yt
4 [Pa] series riybrd Je3 2 ® |[Pajseres Hyorid le3 o b Palstant b [Pajtoggng & Vimsskaaton -
#, Controber
3 o a
e
75 vea 4]
[y
Lu vehide
= o—4
=

Ready View 1 warning 100% odelito

108

Logging & Visualization
G s S -

ODE Solver

Contguration Parameters. Seis Hybrd 1w Condiguestion (Acie]

Logging & Visualization

Drag a new Subsystem into the Plant level of the
model

Rename it Logging & Visualization
Rename the In1 block to System Signals
Delete the Out1 block

The logger does not send any diagnostics
Drag a Bus Selector into the subsystem
Go back into the Plant level of the model

Copy a System Signals From block and connect it
to System Signals of Logging & Visualization
subsystem

Logging & Visualization Logging & Visualization

In the Logging & Visualization subsystem -
Double click on the Bus Selector block e

This block accepts 3 bus

input which can be created from a Bus Creator, Bus Selector or o block that defines ts output

2 using 3 bus object listbox shows the signals in the input bus. Use the Select button to select the output signals.
In the Selected signals column T g s shows e slcaors: Lo he up, Dow o hareve bkion s rerdr e sulctons. Chac- Ok 88
bus’ to output 3 single bus signal.

Click on signal1 and then Remove Forameters
Click on signal1 and then Remove —
In the Signals in the bus column

Click on Driver_Diagnostics and then Select

Rafresh | | Controfier_Signais

Click on Plant_Diagnostics and then Select

Click on Controller_Diagnostics and then select

Click OK 9

Output as bus

[Cancel Heip Aoply

Logging & Visualization Logging & Visualization

Drag in three Goto blocks and name them Double click on the Bus Selector
Driver_Diagnostics, Plant_Diagnostics, and
Controller_Signals

Wire them to the Bus Selector

Drag in three From blocks

Terminate the Driver_Diagnostics and the
Controller_Signals From blocks

Drag in a Bus Selector and wire it to the
Plant_Diagnostics From block

Remove signal1 and signal2

Select the Vehicle_Diagnostics and the
MGA_Diagnostics signals

Drag in two more Goto blocks
Connect them to the Bus Selector
Name them accordingly

Color them accordingly

Logging & Visualization Logging & Visualization

-

Drag in two more From and Bus Selector blocks
Select
Vehicle_Diagnostics - first From block
MGA_Diagnostics — second From block
Connect the From blocks to the Bus Selector blocks
Use the Bus Selector blocks to select all signals

131

109

Logging & Visualization Logging & Visualization

Logging & Visualization

From
Simulink / Sinks
Drag in a To Workspace block
This will write the desired signal values to an array
for review when the simulation is done
Double click on the To Workspace block
| Make the following changes
Variable name - Vehicle Speed mph
Sample time - Logging_Sample_Time_s
Save format — Array
Update the input file

133

Logging & Visualization

cure in 2 workspace. For menu-based
rkspace. Data is ot svadable urbl the

= Connect the To Workspace block to the Bus

Selector

Repeat for the remaining signals coming from the
Plant

Color everything accordingly

[

Logging & Visualization

Rather than using Scope blocks, we will use the
| Signal and Scope Manager to view the signals

Right click on the Vehicle_Speed_mph signal and
select
Create & Connect Viewer / Simulink / Scope

110

Logging & Visualization

Note the scope figure on the Vehicle_Speed_mph
signal — that denotes that the signal is being scoped

Logging & Visualization

13 S A S S e

Driver Subsystem Driver Subsystem

The Driver subsystem will be our first proportional Save the model as Series_Hybrid_le3_b

feedback loop Use the Model Browser to go into the established
The vehicle will be at a certain speed Driver subsystem
The driver will want to go a different speed Drag in a Bus Selector, a Goto, and a From block
The driver will send a torque request (-1 to 1) to the Delete the Terminator and connect the Bus Selector
controller block

The vehicle will change speed

Select the Vehicle_Speed_mph signal

Repeat for the duration of the drive cycle -
- [; " i Connect this signal to the Goto block

Driver Subsystem Driver Subsystem

The drive cycle will be read in from the workspace
It will contain time (s) and desired speed (mph) at
that time

We will use the standard FUS505 drive cycle

seconds long
Collected data
The data is stored as a .mat file

The .mat file will be loaded with the init file

111

Driver Subsystem

From
Simulink / Sources

Drag in a From Workspace block
Double click on it
Rename the Data to: Sch_Cycle
Click OK

Driver Subsystem

a5 B I
| ep————
) B

Signals Dagnostics

146

From
Simulink / Commonly Used Blocks
Drag in a Sum, Gain, and Saturation block
Make the Sum block rectangular with a +-
Drag in another two Goto and From blocks
Arrange, wire, and name as shown on the next slide

Driver Subsystem

We must now determine the value of the error amplifier
Classical controls theory would have us generate a transfer function and
look for poles
This system will soon become so complex that classic approaches do not
work
Instead use some experience
If you are driving a car and want to go
ik fastar

20 mpl
You step on the gas (torque request)

ery little

149

112

The torque request will vary from
+1
full positive torque requested

20 mph+ too slow

Full negative torque requested

20 mph+ too fast
A gain of 0.05 will send a + 1 at 20 mph error
A Saturation will limit the request to +1

Driver Subsystem Driver Subsystem

¥ Seves o Jed D - ik scademsc wie -—

The final step in the Driver subsystem is to add the
desired drive cycle to the initialization file

Driver Subsystem Controller Subsystem

Run the init file manually to load the drive cycle The Driver torque request will next be sent through
At the Matlab command line type the CAN bus to the Controller subsystem
plot(Sch_Cycle(:,1),Sch_Cycle(:,2)) Go to the Controller subsystem, delete the

Terminators and Grounds, and drag in a Gain, a
Bus Selector, two Goto, and two From blocks

On the Bus Selector, select the
Driver_Torque_Request signal
Wire and label as shown on the next slide

Controller Subsystem Controller Subsystem

The driver torque request passes through the
controller where it is sent to MGA

Just like a real vehicle
Crem) The Gain block can be modified
Sporty : increase request

Economy : decrease request

Naming convention

All Control signals will be lowercase

- End with either “request” or “enable’

113

MGA Subsystem MGA Subsystem

The last step is to pass the torque request to MGA

Drag in a Bus Selector, a Goto, a From, and a
Product block

Delete the Terminator
Select the mga_torque_request signal
Wire and label as shown on the next slide

Run the simulation Results

Go to the model level and Run the model Run the model and observe the scope

2 Viewer e [<Venie fpend g ——

It only ran for 10 seconds

160

Results Results
Open the Configuration Parameters Run the simulation again
= Awesome! The vehicle is doing something!
Change the Stop Time to

Note: in the Scope, go to Tools / Axes Scaling
Select: Automatically Scale Axis Limits

Sch_Cycle(end,1)

But How well?

161

114

Go to the Logging & Visualization subsystem

Delete the Terminator on the Driver_Diagnostics
From block

Use a Bus Selector to extract all Driver signals

Drag in two To Workspace blocks to log the Driver
Data

Repeat for the Controller Signals

¥ e e 5oy B Viaaion - Lok

Logging & Visualization Logging & Visualization
Right click on the Driver_Speed_Desired_mph e — @
signal 3

o |
|

Select
Connect to Existing Viewer o> I
Rerun the simulation and observe the scope yq S = i T J
Results Results
Our vehicle does a poor job of following the drive Even with 1000 Nm, the vehicle still can not follow
cycle the trace exactly

Ve S (AN Bheed e, <D Spued Do

Increase the MGA max torque in the init file until the
traces are similar Put the torque back to 200 Nm

167

115

Let's see what the driver

is doing
On the scope
Select

View / Layout

Choose a 2 x 1 layout

Now we can add signals
to both Axis 1 and Axis 2

In the Logging & Visualization subsystem
Right click on the Driver_Torque
Select

Connect to Viewer / Scope / Axes 2

This will put the Driver torque request directly below

the drive cycle

Rerun the simulation

Request si

Results ‘ Results

Wow — the driver torque request never goes above
about 0.7

e Ve S RS KDt Spees,Desemd myh <G Toroe Pty ———

Why?

Note that the vehicle is “chasing” a velocity and only
occasionally off by more than 10 mph

Change the error amplifier in the Driver subsystem
to make the driver more aggressive

Increasing the gain
Decr:

the proportional error

(em 10 respor

ter

Can cause overshoot and oscillations

An error amplifier of 1 should work quite well

As we expected, error amplifier of 1 worked quite well for this
drive cycle ... = I -

What about for a different drive cycle?

116

In the init file Definitely some overshoot

Change the dr o Schedule Boston Cab.mat & Viewe Scope (el Speed.mghs. <O Speed Desres . <D Torae Fogest) —

Fle Tods Vew Smusmen Welp ~

G- ® §m a-C

Increase the MGA torque to 1000 Nm

Rerun the simulation

In the init file This provides a good balance of trace correlation
Chan cycle back to the FU505 and driver torque request
Change the MGA torque back to 200 Nm 8 o o R Do e N |

In the Driver subsystem JRLICE AL E
Change the error amplifier to 0.5

Rerun the simulation

Initialization, Solver, and Driver

Review
e T—— MBSD Lecture 4
Created an initialization file to manage data
Changed to appropriate ODE solver

Created a logging and graphics subsystem

Developed driver proportional feedback loop
Velocity mismatch generates an error signal Improved MGA and Simple Battery
Error signal converted to a driver torque request

Driver torque request goes to controller

Controller requests MGA torque
System response very sensitive to feedback gain
value

117

Make MGA an ideal electromechanical device
Create a preposterous battery to power MGA
Track the battery state of charge (SOC)

181

MGA

From

mscape / Foundation
Drag in an Ideal Rotational Motion Sensor block
From

brary / Mechanical / Mechanical Sensors

scape / Foundation Library / Mechanical / Rotational Elements

Drag in a Mechanical Rotational Reference block

Also drag in three Gotos, two Froms, two Gains,
two PS-Simulink Converters, One Terminator and a
Product block

Arrange and wire as shown on the next slide

Save your model as Series_Hybrid_le4_a.slx
Go into the MGA subsystem
MGA will still

Have a constant maximum torque

Have no rpm limits

Be modulated by the Controller
By providing torque at a given RPM, power is
transferred to the Vehicle

Add the MGA_Speed_rpm and
MGA_Mechanical_Power_kW to the MGA
diagnostics bus

In the Logging & Visualization subsystem, extract
and log these signals

118

To make the mechanical power, the motor will need
to receive electrical power from the battery

This power will be the battery voltage times the
current drawn

Let's now add an ideal battery to the Plant
Drag in a Subsystem and rename it Battery
Make the background orange

Battery

The Battery will receive the system signals and
broadcast its diagnostics
Delete the wire connecting the In1 and Out1 blocks
and rename them System Signals and Battery
Diagnostics

Terminate the System Signals

Drag in a Bus Creator, connect it to the Battery
Diagnostics, and ground the inputs

i

Battery

Fa Series pybnd Jod uPlnaBarery * - Sl cademc vie

L)1

Electrically, the battery will

Tell MGA its voltage

Receive a current demand from MGA
From

Simulink / Commonly Used Blocks
Drag in an In1 and an Out1 block
Rename them

MGA Current Input (A)

Battery Voltage Output (V)

For now, the battery voltage will be constant and
defined in the init file

Drag in a Constant block
Rename it Battery Voltage (V)

Give it a variable name of Battery_Voltage
Connect it to the Battery Voltage Output
Update the init file for the battery voltage to be 336V

Our magic battery can provide any amount of
current required by the motor

Put the battery current and the battery voltage on
the Battery Diagnostics bus

192

Battery

¥ Series_Hybrid Jed_/Plant/Battery * - Simusbnk academic use.
| .

ety Brgroes

Battery
l’ﬁﬁ?ﬁ,—;}%
e — Diagnostics
is w_sgus > siSystem Signals Battery Disgnostics.
B - iorcumnimm |
Battery
195

MGA

Save the model as Series Hybrid le4 b.slx
In the MGA subsystem, drag in an In1 and Out1
block
Rename them

Battery Voltage Input (V)

MGA Current Output (A)
For now, the electrical power from the battery will
equal the mechanical power from the motor

120

Battery

Battery

Outstanding, we now have a constant voltage
power source with unlimited amperage and capacity
Return to the Plant level of the model

Make the Battery subsystem larger

Drag in three From and two Goto blocks

Wire and label as shown on the next slide
Convention

Physical signals get colored background

CAN signals get colored foreground

194

Place the Battery Diagnostics onto the Plant CAN
bus

Extract the Battery signals in the Logging &
Visualization subsystem

MGA

1%

Thus the current required will be the mechanical
power divided by the battery voltage

From
Simulink / Math Operations
Drag in a Divide block

When MGA is drawing current, it will come out of
the battery

Drag in a Gain block and give it a value of -1

198

Place the MGA Current signal onto the diagnostics

- i | bus
: Label it MGA Current A

) 5
Extract the signal in the Logging & Visualization
=S 5w o
e el o =R...
199 200
o Return to the Plant level of the model
ST Make the MGA subsystem larger
] Use a Goto and a From block to connect MGA to
e the Battery
P ”" = = Color accordingly

201 202

e BB zerve the MGA current as it follows the
FUS505 drive cycle
Go to the Logging & Visualization subsystem

Add a third axis to the Scope

Place the MGA_Current_A signal on the third axis

S S ‘ Run the simulation

204

121

ired_mph>, <Driver. Torgue Reques
File Tools View Simulation Help

@-4@p @

Rescy T+505.000

Battery SOC Battery SOC

T i e T e W~ %

In the Battery subsystem, drag in
An Integrator block

A Gain block
1/3600

Two Constant blocks
Battery Capacity 8.5 Ahrs
Battery_Initial_SOC 0.7

A Divide block
And a Sum block
Arrange as shown on the next slide

Battery SOC

Add the Battery SOC signal to the Battery
Diagnostics bus

Extract the signal in the Logging & Visualization
subsystem
Right click on the Driver_Torque_Request signal
Select Disconnect Viewer
Select Scope
Select Axes 2

Add the SOC signal to Axes 2

122

Lets add battery charge to our model
Battery Capacity is in units of Amp hours

The amount of charge transferred by a constant
current of one amp for one hour
Thus we can integrate the battery current to find
out how much charge has been removed
This value can be non-dimensionalized by dividing
by the maximum capacity of the battery to get the
State of Charge (SOC)

1 fully charged
0 fully discharged

206

210

Initialization Results

< Viewer Scope (<Vehile_ Speed.mphs, <Driver_Speed Desired mph>, <Battery SOC>, <MGA Curent A>) 1= = b

The last step is to add the two new battery e
parameters to the init file 0- 40P 8

n 22 Cod

Run the Simulation e

Review

Developed an electromechanical model of MGA
100% efficient
Constant torque capable

MBSD Lecture 5

No rpm limits
Developed an electrical battery model
100% efficient

Constant voltage capable

Simple Charging logic

No current limits
SOC ready

Georgia s George W Woodrultf Sl
Tech VMiecha = eI

Outline Battery SOC .

While having our vehicle follow a drive cycle, the
Battery SOC decreased
Eventually, the Battery SOC will get too low

Permanent damage

Simple Battery charging
Simple GenSet charge logic

Stranded motorist
This will require an on-board power generating unit
Diesel engine and MGB

123

Battery SOC / GenSet MGB

The net effect of the GenSet is to provide power to In the MGB subsystem
the battery Delete the connecting wire
MGB current at Battery voltage Create the System Signals and MGB Diagnostics bus
Let's make a ridiculously simple MGB Drag in a Constant block
Constant current output Rename it MGB Current (A)
Rename the model Series Hybrid le5 a.slx Give it a value of 5
In the plant level of the model, drag in a new Drag in an Out1 block
Subsystem and rename it MGB Rename it MGB Current Output (A)

Make the background green Put the current on the Diagnostics Bus

Return to the Plant level and put the MGB
Diagnostics on the Plant Diagnostics Bus

Connect a System Signals From block

Go to the Logging & Visualization subsystem and
extract the MGB diagnostics

Color accordingly!

T Return to the Plant level of the model and use a
; Goto and a From block to make the electrical
I i connection to the Battery

124

MGB / Battery

Battery

Drag in an In1 block and rename it MGB Current

Input (A)
Drag in a Sum block and add the two Current Inputs
: together
| [e EE— bClon‘r(lect the output to the Battery_Current Goto
| oc
=, ' — | == Excellent — both MGs can remove/provide current

from/to the Battery

‘ [ore > ioensons mw i Return to the Plant level and connect the

| o <@ MGB_Current_A From block

Battery Battery

In the Logging & Visualization subsystem
Right click on the Battery_SOC signal
Create a new scope
Give it three axis

Axis 1 — Battery SOC

Axis 2 — Battery Current

Axis 3 — MGA and MGB Current
Run the simulation

The “trickle charge” of a constant 5 amps kept the
SOC up but the Battery was still charge depleting

Vary the value of the MGB current until the Battery
is relatively charge sustaining

125

Our series electric vehicle will use a genset which
will be activated intermittently
SOC too low : start
SOC too high : stop charging
Let's make the idealized genset do exactly that via
MGB and a state machine
Go to the Controller level of the model

charging battery

pattery

230

GenSet Controls Stateflow

From
Simulink / Stateflow
Drag in a Chart block
Rename it GenSet Controller
Double click on it
The first logical state will be the “no charge” state

The Battery SOC is above the lower limit

Left click on the
State icon

Left click on the

window

Name the state
No_Charge

On entry, set the

MGB charge
enable to 0

Create a charge ‘ '
state

¢
m

Stateflow Stateflow

“,_—:m_—*

29
a5
3

126

To go from one state to another, a transition must
occur

These transitions are controlled by parameters
called guards

If, at the instance the guard is queried, the
parameters are true then the transition occurs
Let's now create the transitions followed by the
guards

Stateflow

Place the mouse
over the
No_Charge state
Left Click

Hold and drag to
the Charge state
Connect the : |
Charge back to the .
No_Charge -

Stateflow

Stateflow needs to
know which state toL
“wake up” in

The default
transition was
created when the
first state was

placed 2
Stateflow
P o e e ey N

Stateflow

Left click on the
right transition
Replace the
question mark with 5=
the code at right
Enclosed in 1
square brackets ’ G
Repeat for the '
second transition =

26

Stateflow

We need to add the Battery_SOC input from
Simulink into Stateflow

Select

Chart / Add Inputs & Outputs / Data Input From Simulink

Change the Name to Battery_ SOC

Click OK
If you select

Tools / Model Explorer
You can see that Battery SOC has been added
Close Model Explorer

Stateflow

Similarly we need to add the value of mgb_charge_enable to
Simulink
Select
Chart/ Add Inputs & Outputs / Data Output to Simulink
Change the Name to mgb_charge_enable
Click OK
We also need to add the guards as parameters
Select
Chart/ Add Other Elements / Parameter...
Change the Name to battery_soc_low
Click OK
Repeat for battery_soc_high

240

Stateflow Model Explorer

The final step is to set the frequency at which the e
guards are queried
Select
Chart / Add Inputs & Outputs / Event Input From
Simulink
Change the Name to Clock
Click OK
After this step, Model Explorer should be as shown
in the next slide

GenSet Controller

Return to the Controller level of the model
Make the GenSet Controller subsystem larger

Extract the Battery SOC from the System Signals
bus and route it to the GenSet Controller

Route the mga_charge_enable signal to the Control
Signals bus and add it

GenSet Controller GenSet Controller

[T S

From
Simulink / Sources
Drag in a Sine Wave block
Rename it 10ms
Connect it to the Clock Port
Double Click on it
Change the Frequency to 100*(2*pi)
Click OK

128

GenSet Controller GenSet Controller

Excellent, we have built a simple two state controller
which, based on the Battery SOC, will determine
whether or not it should be charged
This check will be performed every 10 ms
In the init file, we need to add guards

Low SOC : 0.6

High SOC : 0.7

Add to the init file

MGB MGB

53 Seris b a3 APNGR = ek s .

Return to the MGB subsystem

Extract the mgb_charge_enable signal from the
System Signals

Drag in a Product block and multiply the
mgb_charge_enable signal with the MGB Current
block

Run the simulation

249 250

In the init file, change the drive cycle to
Schedule_FU505_Ten_Times.mat
Increase the MGB current to 50 amps
Run the simulation
MGB now cycles on and off
Watch the Stateflow chart
The current state is highlighted during the simulation

129

Results: MGB not charging Results: MGB charging

" ey Jes e Sk soodi pr— 3 Stteio ()i Hybed 5 & ConkalieGensel Cooroler - il scadersc e

Fle ESt Vew Doplyy Chat Seulstion Anshws Code Took Help

Fle St Vew Disply Chat Senulsticn Anhus Code Took Hep

- @ @ - hose

ves Ty Je5_a b BulControer b []Ganet Contoter

.
o o
@ o
¢ ¢
m =

(O
s Q)
i
g

¥ @

253 254
GenSet and Stateflow
Review
Created a simple GenSet which provides current to SD Lecture 6
recharge the battery
Tweaked the trickle charge current for charge
sustaining
Created a state controller to turn the charge on and Improved GenSet and Controls
off
255 Ge?r'eg‘:g
Outline Improved GenSet
Improved MGB model Previously, the GenSet simply provided a constant
Simple diesel engine model current
Charging logic Improvements
Diesel Engine
Constant torque
Speed control
MGB
Recycle MGA model
Rename your model
Series _Hybrid le6 a.slx
2 258

130

Improved MGB Improved MGB

DeIete the MGB model you just got done making
Copy the MGA model
Make it green . T
Rename EVERYTHING from MGA to MGB ol =]l g
Add the MGB max torque to the init file 3
200 Nm T
Update the Logging & Visualization for MGB ‘ Tl o
Note: We will create the signal for -
mgb_torque_request later in the controller subsystem o=

Return to the Plant level, drag in a Subsystem, and
‘ rename it Engine

Make it yellow
In the Engine subsystem, create the System Signals
and Engine Diagnostics bus

Drag in a Connection Port for the mechanical
e connection to MGB

l——
<i08_soses_romr

———
P

<08 _Curem

262

o e ©

— Drag in
2 ._‘9-3’?-«; o B e = 31014 - One Constant
= = e Simulink-PS Converter
One |deal Torque Source
One Inertia
e |deal Rotational Motion Sensor
e Gain
One Terminator
)ne Product
) Goto

O E’—-H—Dk oy Two PS-Simulink Converters
System o ngne_DAgrosics £none
Signals W

Daagnostics Two Mechanical Rotational References
Arrange and label as shown on the next slide

Egne

et n b papiant » (jEgne -

131

Py Our engine torque will be modulated with a throttle
12' _____ request from the Controller
% T e Range of 0 to 1

Analogous to a driver stepping on the accelerator
pedal
Place the engine torque and speed on the
Diagnostic bus

D H - Engine Diagnostics
| =
@ | System Engine

x| Signals Diagnostics
Engine Engine
‘.’""’:’"‘Z ey Return to the Plant level of the model

e e

Connect a System Signals From block

Place the Engine Diagnostics on the CAN Bus
Connect the Engine mechanical port to the MGB
mechanical port

Go to the Logging & Visualization and extract the
Engine diagnostics

((((((

‘‘‘‘‘‘‘‘‘‘

= | oar =
o | Sonais Disghasiics
6 268
Engme Loggmg & Visualization
| a
S
269 270

132

Engine

Now place the Engine parameters into the init file

To keep things simple

Engine Max_ Torque =200 Nm

Engine_lInertia = 1.5e-3 kg m"2

Fing P g s

ETIR I ~ R 2 B3 2 T Gmeseam (2
e T R

taw Open Seve T Buslookin Rua Runand | Advesce Renand

s v e eme Fw - v Aaoce T
-

Controller

Loggng & euskzston

#ajSenes yoybrd Jes s b BafControler b [JGenset Controter -

s Os Ol

CHSE

AREE

Engine / GenSet

Return to the Engine subsystem and extract the
throttle request signal

Excellent, the first pass Engine and associated
improved GenSet is complete

Drag in a Solver Configuration block and connect
the block as shown in the next slide

No Charge State
MGB charge enable =0
Engine throttle request =0
Charge State
MGB charge enable =1
Engine throttle request = 0.5
Add the new engine throttle data to the Stateflow
Controller

Place the engine throttle signal on the bus

Controller

S T —r— ey—— . N
= s " = D
= - Coniromer_SOnais Comoiler
» Signals
"

274

Seves oot ies s - | Eore X | convoler

[PhSeres 7o jes_a b [Bytant b BajEngre -

s Erpraies

s o Ergrw MEremea

= &

otgaen
Engine Diagnostics -
- Engine
| Sionals Diagnostics
osedit

275 276

133

Controller Controller

The controller will need to send a torque request to
MGB to hold the engine at a constant desired speed
Engine too fast — increase torque
Engine too slow — decrease torque
Go to the Controller level of the model
Extract the engine speed signal

Controller Controller

As done with the Driver subsystem = ———

The actual engine speed will be subtracted from the
desired speed

This will create an error signal

The error signal will be amplified

The amplified signal will be saturated

The resulting torque request will be sent to MGB
Implement this feedback controller
Update the Control Signals bus

MGB and Visualization Visualization .

Go to the MGB subsystem and extract the Create a new scope
mgb_torque_request signal Axis 1 : Battery SOC
Go to the Logging & Visualization subsystem Axis 2 : Engine Torque and MGB Torque
Right click on the Vehicle_Speed_mph signal Axis 3 : Engine Speed
Open the Scope Run the FU505 cycle to save time

Add the MGB_Current_A signal to the third axis

Create a fourth axis and put the Engine_Speed_RPM
signal on it

281 28

134

Improved GenSet & Controls .

Review
Made MGB a duplicate of MGA

Created a very simple c ngine
Updated the controller to intermittently obtain current
from the GenSet

284
Lectures 0 - 6 Lectures 0 - 6
We built a model of a series electric vehicle - =
Plant =T
Driver e am T L ‘
Controller \
All of the plant components are crude e o |
System response could be intuited -Mﬁd,_, =
Complex system was established = _::i_“ =0
f . : . - e e
Component refinement is next .
Controller will need to be updated o I ;

Lectures 0 - 6

Driver torque request S8
will not change

There will be a
continuous feedback
controller

The state controller
will get more
complicated!

The Driver will not change!

135

Improve Engine model
MBSD Lecture 7 i o _

xperimental data for torque curves
Experimental data for fuel consumption
Controller refinements

Fuel Efficiency
Calculate MPG, MPGGE, and MPGGE with SOC

Improved Engine Model and
MPGGE SOC Fuel Efficiency

correction
Gogtln R callEr ick
Experimental Data Experimental Data
Using the engine dynamometer at Rose-Hulman, a In the Matlab Window, go to
small diesel engine was tested at various engine Current Directory window
speeds and throttle posititions Double click on the Component_Data folder
Data for torque (Nm) and fuel consumption At the command line, type
(grams/sec) were collected lear varisbles
Let's add this to our model load Engine_Diesel Data
Rename your model The loaded variables will appear in the Workspace
Series_Hybrid_le7 _a.slx window
21 2
Experimental Data Experimental Data
TP B Note the size of the matrices
2 G Gmm 22 e 2 Engine_Fuel_Data : 15x21
e § Engine_Fuel RPM_Axis: 15x1
. Engine_Fuel_Throttle_Axis: 1x21
Thus
The data rows are for given rpms
The data columns are for given throttle positions
At the command line type
293 294

136

Experimental Data Experimental Data

This engine does not have an idle circuit
750 rpm is the lowest it can run
A throttle signal of zero will send no fuel
It will stall out
This is great!
Our controller completely rules the throttle signal

Modify the previous surf command to view the
torque data

Engine Speed [rpm]

Experimental Data Engine

We will need to read in this data with a 2-d lookup
table
Go to the Engine subsystem and delete the
Engine_Max_Torque Constant
engine_throttle_request From
Product block
Engine_Torque_Nm Goto

200

Engine Torque [Nm]

X 02
Engine Speed [rpm] 0 0 Throttle

At zero rpm, the engine
produces zero torque

297 298
Engine @ Engine
- From
a Simulink / Lookup Tables
2 N s drag in two
s 3 . 2-D Lookup Table blocks
] Rename them
Engine Torque (Nm)
'E] Engine Fuel Rate (grams/sec)
o Engine
Diagnostics
299 300

137

et D

Engine

[Fa) Block Parameters: Engine Torque (Ne)

Lookup Table (-D)
Perform n-dimensional interpolated table lookup including index searches. The table is a samph

d
representation of function in N variables. Breakpoint sets relate the input values to positions in the table. The
first dimension corresponds to the top (or left) input port

Table and Breakpoints | Algorithm | Dota Types
Number of table dimensions: 2

Table deta: Engine_Torque_Data
Breakpoints specification: | Explot vakues =
Breakpoints 1 Engine _Torque_RPM_Axis
Breakpoints 2 Engine_Torque_Throttie_Avs

Edit table and breakpoints...

9 oK Cancel Help

[Fa) Loskaup Table Editor: Series Hybrid e7_a/Plant/Engine/Engine Torgue (N o -
Fle it Plot Welp

i C o B2

Models Table” block data [TE0F

[ral Seres Hybrd o1 s v G m v @)

Table blocks: 0 005 01 015 02 -

959999... 611999998 6.11599999..| 6 11999985,
1990999..|-6.11999990._| 6.11999999... 6.119999%8.
= e

B Engine

k; Enimz’ud Rate

750 2550.77958999.

1000 56,3845999999,

1250 [} a2

1500 0 3618

1750 0 18 01

2000 0 31.2/5 2799999568195
2250 4,

Tits Type Row: double = Column: |double v Table double =

-L"rm Selector:

Diagnostics

et

30!

303

1

138

Double click on the Engine Torque table
In the dialogue box, change
Table data: Engine_Torque Data
1: Engine_Torque RPM_Axis
Breakpoints 2: Engine_Torque_Throttle Axis
Click OK

Note the shape of the table _ ‘
It looks like the datal
Repeat for the Fuel Rate table ;

Breakpoints

Engine Torque (Nmj

Double click on the Engine Torque table

Click the Edit table and breakpoints... button
Note that all the data shows up

Click on the Mesh Plot icon

Verify that the shape is correct

Easy to make a mistake, especially with square

matrix data!
Close the mesh plot and the Editor
Click Cancel on the dialogue box

Table and breakpoints data for block: Series_Hybrid_le7_a/PlantEngine/Engine Torque (Nm)

‘Eﬁi’:ﬁs

302

Engine & Logging Engine & Logging

In the Engine subsystem, route
An engine rpm signal to each table
Top input
A throttle request signal to each table
Bottom input
The torque output to the Simulink-PS Converter
The fuel rate output to the Engine Diagnostics bus
Put a Goto block on the Engine Torque signal:
Engine_Torque Nm
In the Logging & Visualization subsystem

Extract the engine fuel rate signal

D
Engine
Diagnostics

Engine & Logging Engine & Initialization

In the init file, add the line

load Component_Data/Engine_Diesel_Data.mat
Update the engine inertia to 0.12

The crankshaft and flywheel

sloghami3\Desktop\ME4013 Tutonsf\Vehicle_mode\Vehicle it Fée L3m L (o) -

scrpt Ln 35 Col 43 310

Directory Results

Recall that we used the Matlab window to browse
into the Component_Data directory

Matlab MUST be in the same working directory as
the Simulink model

In the Matlab window
Click on the Go up one level icon

Run the Simulink model

The results look very similar to those previous
The model still appears to be responding correctly
At 1800 rpm and 0.5 throttle, the engine torque
should be about 150 Nm

Verify

139

Use the Zoom
icon to zoom in
on the time when
the engine is
starting

261 seconds
Lets’'s make a
new scope for

further
investigation
Results Results & Controller
Forthe new scope [l EEETEINEEIRERDe v - We don’t want the engine to start making power
Axis 1 ®- 9Ob® S® [0| Fd- until it is closer to the operating point
Engine speed An addltlonal Ioglc state will be needed
Axis 2 e e to 1 to start engine
Engine torque thrott Iv request to 0 until “close” to
MGB torque rating rpm
Axis 3 Then go into the Charge state
Engine fuel rate
Rerun the
simulation
Controller Controller
Go to the Controller subsystem B e —

Fln

Open the Sta v GenSet Controller
Add this new state
Engine_Speed_RPM is a Simulink input
Engine_Speed_Desired is a parameter

What is a good value for “close” to 18007

140

319

320

X -axis zoom in on
the engine ramp up

Y-axis zoom in on
the engine speed

The fuel rate is
about 90 rpm late

Why?

X-axis zoom in on
the engine coast
down
Everything here
looks fine
Fuel shuts off
Engine coasts
down in about 4

seconds

141

The tran:s (
lw 10ms the engir
00 rpm

The transition point was almost missed!
Engine ramp-up rate will be addressed after we
improve the MGB model

Let’'s now calculate the vehicle fuel efficiency
MPG
SOC correction
GE (g > alent)

We will do this with a post-processing file

Simply for experience

e Logging & Visualization

Calculating MPG is easy!
Distance traveled / gallons consumed
We already have a signal for distance traveled in
miles
We need a fuel consumed signal

Add an Integrator into the Engine subsystem to
calculate the amount of fuel consumed in grams

Add the signal to the Engine Diagnostics bus
Extract it in the Logging & Visualization
All of the remaining calculations are done in post file

If we removed energy from the battery during the
drive cycle, we must calculate the additional amount
of fuel required to replace it

If we added energy to the battery, we must calculate
the amount of fuel required to produce that energy
and subtract the fuel from our total

SOC

=,
UGS _Toraon_s

GE_Spwed_rom

Ergre_Tora N

S ——
Ergre_Speed P

" |
T

Step 1 — Amp Hours Consumed
Ah_Consumed = (Initial_ SOC — Final_SOC) *
Battery_Capacity
Battery capacity is in Ah (8.5 Ah for our model)
Step 2 — Convert to Energy
Electrical_Energy = Ah_Consumed * Battery_OCV
OCV (open circuit voltage) is determined

experimentally from V-I plots (366 V in our model) and
changes with the SOC. Energy is in Watt-hr.

Step 3 — Conversion Efficiency
Electrical_Energy BTU = (3.412*Electrical_Energy)
Efficiency
Conversion efficiency is also determined
experimentally by ANL (25% approximation generous)
The 3.412 converts Watt-hrto BTU
Excellent — we now know the energy in BTU needed
to account for the charge added to or removed from
the battery

142

As a standard for comparison, we employ the
MPGGE with SOC correction

This gives the equivalent amount of RFG required
to produce the same energy used in the drive cycle
We already know the BTUs of energy needed to
correct the SOC

MPGGE

Step 4 — Fuel Energy BTU
Fuel Energy BTU = Fuel_Consumed_Gallons*
133393.1102

Step 5 — Total Energy BTU
Total_Energy BTU = Electrical_Energy BTU +
Fuel Energy BTU

133393.1102 BTU/Gal is the fuel heating value of

MPGGE

Step 6 — RFG Required

Fuel Consumed RFG = Total Energy BTU /
114871.7446
This gives us the gallons of RFG required to produce
the same energy
114871.7446 BTU/gal is the fuel heating value of RFG

Step 7 — MPGGE with SOC Correction

B-20 MPGGE = Distance_Travelled /

Fuel_Consumed_RFG
Excellent — we now know the total energy . Constmed i
consumed by our vehicle over the drive cycle

331

Vehicle_Post_File.m File

Post Processing File

Like the init file, the
post file should run
after every simulation
Right click on the
model and
Select Model
Properties
Select Callbacks
Select StopFnc

Enter the name of the ' omd \n e amitly |
post processing file
without the .m

Results

Rerun the simulation

Review

Improve Engine model

Not bad Experimental data for torque curves
102 MPGGE w/SOC * o Experimental data for fuel consumption
123 MPG straight R Controller refinements
s Total Distance Traveled (miles) 355087
Unrealistic? rtan e Fuel Efficiency
Bloctrical Energy Consumed (BTU) -151.694) "
100% regen braking UG08 ok s00 Cammln S e s Calculate MPG, MPGGE, and MPGGE with SOC

100% efficient battery correction
100% efficient MGs
We'll watch there

numbers go down!

143

MBSD Lecture 8

Improved Battery Model

Simple Battery

Thus far, the battery model

Has had a constant voltage of 336V

Has had a constant OCV of 366V

Been able to provide infinite current

Has had no energy conversion losses
Let's now improve the battery model by including
the internal resistance

Vgar = Voc + Ipar X Rseries
The battery voltage is now a function of the current

339

Future Improvements

For now, the open circuit voltage V¢ and the
battery series resistance Rggies are a constant
As our understanding of the model increases, we
can make the battery model less ideal by:
Making Vi a function of SOC and temperature
Having a different charge and discharge series
resistances, both of which are a function of SOC and
temperature
These will all involve experimental (or
manufacturer) data and 2-d lookup tables

144

Battery Terminal Voltage

First Order Model

Improve Battery model
First order math model
Variable battery voltage
Algebraic loops
Variable open circuit voltage
Variable charge/discharge resistance
Numeric error

338

Rseries
Igat

— +
o
t ‘

Vat
Voo

Current is defined as positive into the battery

Positive current charges the battery and increases
the battery SOC

The battery OCV and series resistance will be
constants read from the init file
Battery OCV = 366
Battery Resistance = 0.4
Add to the init file
Remove the Battery Voltage
Remove the OCV from the post file

Rename your model Series Hybrid _|e8 a.slx and
implement the battery voltage equation

Run the Simulation — Dooh!

Algebralc Loop Algebraic Loop

Aha' The loop involves the battery voltage which is
a function of the battery current which is a function
of the battery voltage ...

To break the algebraic loop a delay will be used to
have either
The battery voltage signal lag the battery current
calculation or

MGS_Mecharncal_Power_kW]

The battery current signal lag the battery voltage
calculation

Close the Simulations Diagnostics box

Algebraic Loop MGA/MGB Voltage Delay

Go to the MGB subsystem where the algebraic loop
was first identified

From
Simulink / Discrete
Drag in a Memory block
Insert it just after the Voltage Input block

Thinking ahead, MGA is also used to calculate the
battery current

Put a Memory block there too

145

Results @ Not finite (infinity)

Run the simulation and...

(%3] Disgnostic Viewer = | E
= R REVRE SAR MY - @
Series_Hybrid_le8_a

349 View 1 ermer 100% odeit 350

Not finite (infinity) Not finite (infinity)

At the start of the simulation (time zero), there is no
delayed value of voltage
What does the memory block do?

Double click on it

Ahal It uses zero as its first value...

which results in a divide by zero error at time zero
The first strategy of delaying the Battery voltage
signal was a bad one
Undo the MGA/MGB improvements

Algebraic Loop

Let’s try strategy two, delaying the Battery current in
calculating the Battery Voltage
Close the Simulation Diagnostics box
Close the MPGGE dialogue boxes
Go to the Battery subsystem
Insert the Memory block into the Battery voltage
calculation
Verify that there are no downstream divides that
could result in division by zero

Run the simulation

146

ThIS simple improvement has substantially
decreased our SOC corrected MPGGE

Let’'s improve the model further and see how the
fuel economy is affected
First, we will add a variable OCV as a function of
SOC and temperature
At the Matlab command line type

clear variables

load Component_Data/Battery Data.mat;

Click on the Workspace tab

At the command I|ne type

Repeat for the re5|stance data

ocv

Charge Discharge

Battery Data Variable OCV

Add the loading of the battery data to the init file Save your model as
Series_Hybrid_le8 b.slx
Go to the Battery subsystem
Delete the Battery OCV Constant block
Drag in a
2-D Look up Table block
Constant block

Add the OCV signal to the Battery Diagnostics Bus
and extract it in the Logger

359 360

147

Variable OCV Variable OCV

[Fal Block Paras Battery OCV (V)

Lookup Table
ble loakup inchding nderx sear S Tho b o maind

Dles. Breskpont sets relats the S postions 1t taba. The
sonds to the top (or lef) input port.

Aigorthm | Data Types.

nsions: 2

Battery_OCV_Deta

Expict values

Eda table and breakpoints.

361 362

T — We've got a lot of scopes — delete them all
— rm— Create a new one
I S Axis 1 — Vehicle Speed (Desired & Actual)
" Axis 2 — Battery SOC
"l Axis 3 — Battery, MGA, & MGB current
P : | Axis 4 — Battery OCV and Voltage
] i Run the simulation

The internal resistance of the battery is also a
function of the temperature and SOC

It also varies for charging and discharging
Drag in

A Subsystem block
And rename it

Battery Internal Resistance (Ohms)

36

148

Variable Internal Resistance Variable Internal Resistance

It will have three inputs
Battery Current
Battery SOC
Battery Temperature
Add one output
Battery Internal Resistance

Put the Battery Resistance on the Diagnostics Bus
and extract it in the Logger

Variable Internal Resistance Variable Internal Resistance

We will use the current to tell if we are charging or
discharging
From

Simulink / Commonly Used Blocks
Drag a Switch block into the Battery Resistance
subsystem
Also drag in

two 2-D Lookup Table blocks

three Goto and five From blocks

39 370

Variable Internal Resistance Variable Internal Resistance

Put the resistance on a new scope and run the simulation

swr&rel Man | signal Attibutes
|| crtara for pessing first mput: [u2 > Threshold

@D Thweshola
s T
o

{|1# Enable zero-crossing detection

Sy e

149

Results Results

2 Vemer et (<Ot S o) T e Higher internal resistance lowered the fuel economy
i Took Wow- St -
°-SOP® fm A Fid- Run the FU505_Ten_Times.mat drive cycle

Seady 74505000

Review

Results

Improved the battery model
Used first order model battery model to incorporate
internal resistance, making battery voltage a function
of battery current
Discovered and corrected an algebraic loop with a
memory block
Improved the model with open circuit voltage data
based on SOC and battery temperature
Improved the model with variable charge and
di rge internal resistances based on SOC and
battery temperature

376

Improved Motor/Generator model

Variable torque

MBSD Lecture 9

Constant conversion efficiency

Variable conversion efficiency

Improved MG Model

ia
Tech

150

MG Data Initialization

At the Matlab command line type Add the MG data loading to the init file
clear variables Also add an MG inertia of 0.1 kg mA2
load Component_Data/MG_Data.mat :
220 Soncommiian B B e B

Variable Torque Variable Torque

We will start with the MGA subsystem

Once we have it refined, we will copy it to MGB
Rename your model

Series_Hybrid_le9_a.slx
Go to the MGA subsystem

Change the name of all Goto and From blocks to MG

Drag in 8ot e - = ICEE
An Inertia block ; ne_om fmn .

A 1-D Lookup Table block B ’
Delete the MGA_Max_Torque block a |
Arrange as shown on the next slide = | = ’

Add the L “ |
MG_Torque RPM_Axis == e j
MG_Torque Data

to the Lookup Table B] B

383 384

151

Lets create a new scope
Axis 1 — Vehicle speed (desired and actual)
Axis 2 — Battery SOC
Axis 3 — MGA Torque
Axis 4 — MGA Speed rpm
Run the simulation for the FU505 drive cycle

Efficiency

Electromechanical energy conversion can go two
ways
Electrical to mechanical
Accelerating the vehicle
Mechanical to Electrical
Regenerative braking

This is a little more challenging than the battery
efficiency

We will start by assuming a constant conversion
efficiency of 0.85

Efficiency

Drag a Subsystem block into MGA and
Rename

Subsystem to Conversion Efficiency
In1 to Mechanical P r (W)
Out1 to Electrical Power (W)

vV

Add a Gain and a Goto for the Electrical Power

388

152

Go to the Conversion Efficiency subsystem
Drag in

A Constant block

A Switch block

Two Product blocks

A Goto block

Two From blocks

3%

Efficiency Efficiency

If the mechanical power is positive 4 Seres Pt 1 Ao sy - o st o i

Oiplay Diagraam Simulation Amalysis Code Tooks Help

Top of switch LEEG-E-weOP

The motor is ¢ erating the vehicle
A higher electrical power is required
Therefore divide MP by the efficiency

If the mechanical power is negative

Bottom of switch

The generator is making power

A lower electrical power is made 5
Therefore multiply MP by the efficiency A) o 0% o
Arrange as shown on the next slide
£ 392

Efficiency Results

Add the Electrical Power to the Diagnostics bus
Extract it in the Logging & Visualization subsystem

Create a scope
Axis 1 — Vehicle Speed (actual)

Axis 2 — Mechanical and Electrical Power

Variable Efficiency Variable Efficiency

Conversion efficiency is a function of both MG Drag in

speed and current Two 2-D Lookup Table blocks

Let's add that in Two In1 blocks

Rename you model Two Goto blocks
Series_Hybrid_le9_b.slx Four From blocks

In the Conversion Efficiency subsystem Arrange and label as shown on the next slide
Delete the Efficiency block and Goto/From blocks

153

VEUEL Eff|0|ency Variable EfflClency

Hybrid_le3.

398

Variable Efficiency Variable EfflClency

Hmmm our efficiency data is for positive values of
current and MG speed
Can either of these be negative?
From
Simulink / Math Operations
Drag in two Absolute Value blocks
Return to the MGA subsystem
Connect the necessary From blocks
Run the simulation

Variable Efficiency

401

154

9 e AMOAComerson [cenc - Sk scrdeme

402

Variable Efficiency MGB

Outstanding, we now have a pretty good model of a
motor/generator
Go to the Plant level of the model

Delete MGB

y MGA

Update the names accordingly
Extract the MGB electrical power in the Logging &) = "]
Visualization subsystem S o = |

404

Results Results

One last new scope
Axis 1 — Vehicle speed (actual and desired)
Axis 2 - SOC

Axis 3 — Battery, MGA, & MGB current

Axis 4 — Engine

Run the Simulation

rpm

Aha — our desired engine speed is 1800 rpm
Engine torque).5 throttle 145 Nm
MGB max torque 140 Nm

MGB can't control the engine!

Decrease the desired engine speed to 1500 rpm

155

Future Direction

Improved MG Model We blew up our battery
Variable maximum torque wrt MG speed Need to add current limits
Constant efficiency to explore electromechanical We blew up our engine

conversion losses Need to add an emergency defuel at redline engine
Variable efficient wrt MG speed and current speeds
We are destroying the engine
Need to limit MGB speed for starting engine
We haven'’t done that much control work
Other ways to control the system?

409 410

156

2) Dynamic Programming Matlab code

o)

% Dynamic Programming HEV script
SWritten by Saeid Loghavi, August, 2015
clc

clear all

close all

tic

global max engine RPM

global radius;

global i final;

global gear ratios;

global EM gear ratio;

global Engine Fuel Data;

global Engine Fuel RPM Axis;

global Engine Fuel Throttle _Axis;
global Engine Torque Data;

global Engine Torque RPM Axis;
global Engine Torque Throttle Axis;

[

% fuel consumption rate (next 3 lines taken from Rose-Hulman tutorial)

load Engine Diesel Data.mat; % This is NOT BSFC, but instead grams/sec
as a function of throttle request and engine RPM
engine max torque = 200; % Engine Max Torque, Nm

o

engine inertia = 0.12; Engine Inertia, kg m"2
max engine RPM = max (Engine Fuel RPM Axis);

% Vehicle data based on a 2011 VW Jetta
mass = 1389; mass in kg (2011 Prius)

oe

g = 9.81; % accel of gravity in m/s”2

Area = 2.642; % frontal area in m"2 (guessed)
rho air = 1.25; % density of air in kg/m"3

Cd = 0.32; % drag coefficient (guessed)
delta M = 1.2; % mass factor

fr = 0.013; % rolling resistance coefficient
radius = 0.25;% displaced tire radius, m

eta = 0.97; % transmission efficiency

[

% http://www.bebo.com/new-cars/2011-volkswagen-jetta-sportwagen/specs/
i final = 3.65; % Final drive ratio

gear ratios = [3.78 2.12 1.36 1.03 0.84]; % Gear ratios

[nnn,NUM GEARS] = size(gear ratios);

% Additional Hybrid data (made up, and from http://www.eaa-
phev.org/wiki/Toyota Prius Battery Specs)

battery capacity = 1.5; % energy capacity in kW-h

o\°

SOC_low range = 0.4;
SoC hlgh range = 0.8;
SOC initial=0.8;

low desirable operating range for battery
high desirable operating range for battery

o\°

oe

SOC final low = 0.7; low SOC at final step (otherwise penalized)
SOC final hlgh = 0.8; % high SOC at final step (otherwise penalized)

157

SOC_penalty = 100000.0; % proportional penalty parameter for operating
outside of SOC desirable (or final) range
NOT ALLOW PENALTY = 100000;

EM max torque = 600; % Prius motor maximum torque is 400 Nm from Ehsani,
2nd ed for just one motor

EM gear ratio = 1.0; % Gear ratio between EM and the final drive

regen efficiency = 0.60; % The efficiency of regenerative braking, taken into

account only braking at front can occur
EM efficiency=0.6;

o° oo

Drive cycle

o\

%load Schedule FU505 Ten Times.mat
load Schedule FU505.mat;
%load Schedule Boston Cab.mat;

[NUM STEPS,n] = size(Sch Cycle);
t = Sch Cycle(:,1);
t final = Sch Cycle (NUM STEPS,1);

o

Convert vehicle speed from mph to m/s and compute acceleration
= Sch Cycle(:,2)*0.44704;
diff(v)./diff (t);

o g

o

Remove last data points for velocity and time since not present in
acceleration
v(end) = [];
t(end) = [1;

[NUM STEPS,n] = size(v);

% Calculate tractive force and power at each point in the drive cycle
force = delta M*mass*a + fr*mass*g + 0.5*Cd*rho_air*Area*v.”"2;
power required = force.*v;

oe

oe

Establish the state and control grid points

o\°

state GRID size = 400;

SOC grid size=state GRID size;

control GRID size = 400;

% engine throttle grid size=length(Engine Torque Throttle Axis);
ICE thr grid size=control GRID size;

thr vec = linspace(0,1,control GRID size);

SOC vector=linspace (SOC_low range,SOC_high range,state GRID size);
% Evaluate the recursive cost starting at the last step in the drive cycle

158

o\

and working backwards. The only state variable is SOC, so the cost
function J cost is size NUM _STEPS X SOC grid size.

We also need to store the optimal control decisions at each time step.
This is given as U store and is size NUM STEPS X SOC grid size X 3
since we have three control variables (gear ratio, throttle request,
EM torque)

o oP

o° oo

o\

J cost = zeros(NUM STEPS,SOC grid size);
U store = zeros (NUM STEPS,SOC grid size,3);

o\

o\°

First calculate J cost (NUM STEPS,:) - i.e., for all SOC in the grid at
the last point on the drive cycle. Penalize any SOC not between
SOC _final low and SOC final high.

o oe

o

for L = 1:50C grid size;
if SOC vector(l,L)>SOC final low;
J cost (NUM_STEPS,L)=0;
end
if SOC _vector(l,L)<=sS0OC final low;
J_Cost(NUM_STEPS,L)=NOT_ALLOW_PENALTY;
end
end;

o

o

Next do the cost at all other points on the drive cycle using the
recursive statement

oe

[

igl grid, thr grid] = meshgrid (gear ratios, thr vec);
for STEP=(NUM STEPS-1):-1:1
STEP

ICE RPM choices=v (STEP) ./radius.*i final.*igl grid./2./pi.*60;%RPM
choices for the time step (5 options based on gear)

ICE torque choices=interp2 (Engine Torque Throttle Axis,Engine Torque RPM Axis
,Engine Torque Data,thr grid, ICE RPM choices);
ICE torque choices(isnan (ICE torque choices))=0;

ICE fuel consumption choices=interp2 (Engine Fuel Throttle Axis,Engine Fuel RP
M Axis,Engine Fuel Data,thr grid, ICE RPM choices);

Torque tran=force (STEP) *radius/i final;

P Wheel=power required(STEP);

Power ICE=ICE torque choices.*ICE RPM choices*2*pi/60;

for L = 1:50C grid size;
EM Analysis; % Move up, and only compute a delta SOC
min cost = inf; % This keeps track of the minimum cost of using the

three controls

phi cost choices=Not Possible*NOT ALLOW PENALTY;
if STEP==1 & L~=SOC _grid size;

phi cost choices=phi cost choices+NOT ALLOW PENALTY;
end

J cost next=zeros(control GRID size,NUM GEARS);
for s=1:NUM GEARS

159

J cost next geari=interpl (SOC vector,J cost(STEP+1,:),SOC next possible(:,s))
J cost next(:,s)=J cost next geari;
check=isnan (J_cost next);
for ch=1:5;
for ch2=1:100;
if check(ch2,ch)==
J cost next (ch2,ch)=NOT_ ALLOW PENALTY;
end
end
end
end

Cost possible=Possible options.*ICE fuel consumption choices+phi cost choices
+J _cost next;

% For each SOC on the grid, seek the controls gear ratio, engine
throttle, and battery current at this time

% step which minimize the cost from this point in the drive cycle
forward

[M,min cost indicies row]=min (Cost possible);

SOC location=zeros(1l,5);

for count=1:5;

SOC_location(1l,count)=SOC next possible(min cost indicies row (count), count);

end

[min cost,min cost indicies column]=min (M) ;

minimum row index = min cost indicies row(min cost indicies column);
optimal next state(STEP,L) = SOC next possible (minimum row index,

min cost indicies column) ;
SOC next possible indicies=interpl (SOC vector, l:state GRID size ,
SOC next possible, 'nearest', 'extrap');

optimal next state index(STEP,L)=SOC next possible indicies (minimum row index
,min _cost indicies column);
for S=1:NUM GEARS;
if S==1;
if M(S)==min cost;
Store Gear=S;
Store thr=min cost indicies row(S);
end
end
if S==2;
if M(S)==min cost & M(S-1)~=min cost;
Store Gear=S;
Store thr=min cost indicies row(S);
end
end
if S==3;
if M(S)==min cost & M(S-1)~=min cost & M(S-2)~=min_cost;
Store Gear=S;
Store thr=min cost indicies row(S);
end
end
if S==4;

160

if M(S)==min cost & M(S-1)~=min cost & M(S-2)~=min_cost &
M(S-3) ~=min_cost;
Store Gear=S;
Store thr=min cost indicies row(S);
end
end
if S==5;
if M(S)==min cost & M(S-1)~=min cost & M(S-2)~=min cost &
M(S-3) ~=min cost & M(S-4)~=min cost;
Store Gear=S;
Store thr=min cost indicies row(S);
end
end
end
U store 1(STEP,L)=Store Gear;
U store 2(STEP,L)=Store_ thr;
U Store 3(STEP,L)=SOC_location(Store Gear):;

J cost (STEP,L) = min cost;
end;
% U store(STEP,L, 3)=SO0C vector (L) ;
end;
toc

close all
[global min global min indices]=min(J cost(l,:));
SOC_indices = global min indices;
for count3=1:NUM STEPS-1
O_SOC (count3)=SOC_vector (SOC_indices);
O_Throttle(count3)=U store 2 (count3,SOC indices);
O _gear (count3)=U_store 1 (count3,SOC indices);
if O _Throttle (count3)==
O _gear (count3)=0;
end
SOC_indices = optimal next state index(count3,SOC _indices);
end
O_SOC (end) =SOC_vector (SOC_indices);

161

3) Co-simulation components

Configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<CoupledMultiphysicsSimulation xmlns:cse="http://www.simulia.com/CSESchema">
<header>
<SchemaVersion>1.1</SchemaVersion>
</header>
<components>
<component name="Abaqus/Standard">
<bottomUpImplementation>
<codeName>Abaqus/Standard</codeName>
<modelDescription>
<UnitDefinitions>
<Unit name="kcal/kg">
<BaseUnit factor="4186.8" m="2" s="-2"></BaseUnit>
</Unit>
<Unit name="degC">
<BaseUnit K="1" factor="1.0" offset="273.15"></BaseUnit>
</Unit>
</UnitDefinitions>
<ModelVariables>
<ScalarVariable name="BODYFLUX">
<Real unit="kcal/kg"></Real>
</ScalarVariable>
<ScalarVariable name="TEMP">
<Real unit="degC"></Real>
</ScalarVariable>
</ModelVariables>
</modelDescription>
</bottomUpImplementation>
</component>
<component name="CEFD">
<bottomUpImplementation>
<codeName>Abaqus/Cfd</codeName>
</bottomUpImplementation>

</component>

162

<component name="BatteryCoSim System">
<topDownImplementation>
<identifier>BatteryCoSim System</identifier>
</topDownImplementation>
</component>
</components>
<componentInstances>
<componentInstance name="Fluidz">
<component>CFD</component>
<timeIncrementation>
<lockstep>false</lockstep>
</timeIncrementation>
<initialConditions>
<sendBeforeReceive>false</sendBeforeReceive>
</initialConditions>
</componentInstance>
<componentInstance name="Modulel">
<component>Abaqus/Standard</component>
<timeIncrementation>
<lockstep>false</lockstep>
</timeIncrementation>
</componentInstance>
<componentInstance name="BatteryCoSim System">
<component>BatteryCoSim System</component>
</componentInstance>
</componentInstances>
<connectors>
<connector name="CFD_to_ STD INPUT">
<componentInstance>Modulel</componentInstance>
<variables>
<input>
<variable>heat flux</variable>
<variable>heat capacitance</variable>
</input>
</variables>
</connector>
<connector name="CFD_to_ STD OUTPUT">

<componentInstance>Fluidz</componentInstance>

163

<variables>
<output>
<variable>heat flux</variable>
<variable>heat capacitance</variable>
</output>
</variables>
</connector>
<connector name="STD_to CFD_ INPUT">
<componentInstance>Fluidz</componentInstance>
<variables>
<input>
<variable>temperature</variable>
</input>
</variables>
</connector>
<connector name="STD_to_ CFD_ OUTPUT">
<componentInstance>Modulel</componentInstance>
<variables>
<output>
<variable>temperature</variable>
</output>
</variables>
</connector>
<connector name="STD from FMI">
<componentInstance>Modulel</componentInstance>
<variables>
<output>
<variable>TEMP</variable>
</output>
<input>
<variable>BODYFLUX</variable>
</input>
</variables>
</connector>
<connector name="FMI_ from STD">
<componentInstance>BatteryCoSim System</componentInstance>
<variables>

<input>

164

<variable>temp</variable>
</input>
<output>
<variable>bodyflux</variable>
</output>
</variables>
</connector>
</connectors>
<connectionSets>
<connectionSet name="CFD to STD" type="FIELD">
<connection>
<connector>CFD to STD INPUT</connector>
<connector>CFD to STD OUTPUT</connector>
</connection>
</connectionSet>
<connectionSet name="STD to CFD" type="FIELD">
<connection>
<connector>STD to CFD INPUT</connector>
<connector>STD to CFD OUTPUT</connector>
</connection>
</connectionSet>
<connectionSet name="STD and FMI" type="SIGNAL">
<connection>
<connector>STD from FMI</connector>
<connector>FMI from STD</connector>
</connection>
</connectionSet>
</connectionSets>
<execution>
<compositeActors>
<compositeActor name="twoCodeContinuousTime">
<actors>
<atomicActor>Modulel</atomicActor>
<atomicActor>Fluidz</atomicActor>
<atomicActor>BatteryCoSim System</atomicActor>
</actors>
<modelOfComputation>

<continuousTime>

165

<algorithm>GAUSS-SEIDEL</algorithm>
<negotiationMethod>MIN</negotiationMethod>
</continuousTime>
</modelOfComputation>
</compositeActor>
</compositeActors>
<connectionGroups>
<connectionCategory name="InitialConditions">
<connectionSet>CFD to STD</connectionSet>
<connectionSet>STD to CFD</connectionSet>
<connectionSet>STD and FMI</connectionSet>
</connectionCategory>
<connectionCategory name="CouplingStep">
<connectionSet>CFD to STD</connectionSet>
<connectionSet>STD to CFD</connectionSet>
<connectionSet>STD and FMI</connectionSet>
</connectionCategory>
</connectionGroups>
<scenario>
<duration>300.</duration>
</scenario>
</execution>

</CoupledMultiphysicsSimulation>

Standard Model:

*Heading

** Job name: Modulel Model name: Model-1

** Generated by: Abaqus/CAE 2016

*Preprint, echo=NO, model=NO, history=NO, contact=NO

* %

% PARTS

* %

*Part, name=Module
*Node

1, 7.94627619, 10.1000004, 64.5999985

166

25426, -0.0205669049, -10.0534954, -1.76602697
*Element, type=DC3D4

1, 14320, 14464, 14449, 14450

72829, 14137, 24455, 24456, 24487

*Surface, type=ELEMENT, name=s_Surf-26

s _Surf-26_8S3, 83

s Surf-26_81, S1

s Surf-26_S4, S4

s Surf-26_S2, S2

*End Assembly

*Amplitude, name=BODYFLUX, definition=ACTUATOR

* Kx

** MATERIALS
* *
*Material, name=Aluminum
*Conductivity
167.,
*Density
2700.,
*Specific Heat
902.,
*Material, name=Copper
*Conductivity
400.,
*Density
8960.,
*Specific Heat
385.,
*Material, name=Plastic
*Conductivity
0.2,
*Density
2000.,
*Specific Heat
1800.,
*Material, name=Silicon

*Conductivity

167

149.,

*Density
2329.,
*Specific Heat
700.,

*Kx

** INTERACTION PROPERTIES
*Kx
*Surface Interaction, name=Conduction
1.,
*Gap Conductance
20000.,0.
0.,2.

* *

** PREDEFINED FIELDS

* Kx

** Name: Predefined Field-1 Type: Temperature

*Initial Conditions, type=TEMPERATURE
Set-5, 30.

* *

** INTERACTIONS

* %

** Interaction: Int-1

*Contact Pair, interaction=Conduction,
s_Surf-1, m Surf-1

** Interaction: Int-2

*Contact Pair, interaction=Conduction,
m Surf-3, s_Surf-3

** Interaction: Int-3

*Contact Pair, interaction=Conduction,
m_Surf-5, s_Surf-5

** Interaction: Int-4

*Contact Pair, interaction=Conduction,
m_Surf-9, s_Surf-9

** Interaction: Int-5

*Contact Pair, interaction=Conduction,
m Surf-11, s Surf-11

** Interaction: Int-6

type=SURFACE

type=SURFACE

type=SURFACE

type=SURFACE

type=SURFACE

168

TO

TO

TO

TO

TO

SURFACE

SURFACE

SURFACE

SURFACE

SURFACE

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE
s_Surf-15, m Surf-13

** Interaction: Int-7

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE
s_Surf-16, m Surf-16

** Interaction: Int-8

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE
s _Surf-18, m Surf-18

** Interaction: Int-9

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE
m Surf-20, s _Surf-20

** Interaction: Int-10

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE
s_Surf-22, m Surf-22

** Interaction: Int-11

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE
s_Surf-24, m Surf-24

** Interaction: Int-12

*Contact Pair, interaction=Conduction, type=SURFACE TO SURFACE

s_Surf-26, m Surf-26

* %

** STEP: Step-1

* %

*Step, name=Step-1, nlgeom=NO, inc=1000
*Heat Transfer, end=PERIOD, deltmx=4.
0.1, 300., 0.003, 250.,

* x

** LOADS

* x

** Name: Load-1 Type: Body heat flux

*Dflux, amplitude=BODYFLUX

Set-6, BF, 500000.

** Interaction: Int-1

*Co-simulation, name=Int-1, controls=Int-1 Ctrls, program=MULTIPHYSICS
*Co-simulation Region, import, type=SURFACE

interface, CFL

interface, LUMPEDHEATCAPACITANCE

169

*Co-simulation Region, export, type=SURFACE
interface, NT

*Co-simulation Controls, name=Int-1 Ctrls, coupling scheme=gauss-seidel, time
incrementation=subcycle, time marks=yes,

step size=min, scheme modifier=lead

* *

** OUTPUT REQUESTS

*Kx

*Restart, write, frequency=0

*Kx

% FIELD OUTPUT: F-Output-1

* Kx

*Output, field, variable=PRESELECT
*Output, history, frequency=0

*End Step

Fluid Model:

*Heading

** Job name: Fluidz Model name: Model-1

** Generated by: Abaqus/CAE 2016

*Preprint, echo=NO, model=NO, history=NO, contact=NO

* %

** PARTS

* %

*Part, name=Shell2-1
*Node

1, 16.4462757, 40.3134003, -11.5000019

1155, 15.4851465, 31.3644524, -14.9610233
*Element, type=FC3D4
1, 578, 995, 576, 35

3412, 1002, 998, 508, 507

*Surface, type=ELEMENT, name=INTERFACE

_INTERFACE_S3, S3

170

_INTERFACE S4, S4

_INTERFACE_S2, S2

_INTERFACE_S1, Sl

*Elset, elset= OUTLET S3, internal, instance=Shell2-1-1
21, 214, 479, 480, 2183

*Elset, elset= OUTLET S1, internal, instance=Shell2-1-1
139, 1432

*Elset, elset= OUTLET S4, internal, instance=Shell2-1-1
477, 879, 2252

*Surface, type=ELEMENT, name=OUTLET

_OUTLET S3, S3

_OUTLET_S1, S1

_OUTLET_S4, S4

*Elset, elset= PDF WholeModel, internal, instance=Shell2-1-1, generate

1, 3412, 1
*End Assembly

* Kx

** MATERTIALS
* Kx
*Material, name=COOLANT
*Conductivity
0.43,
*Density
1056.,
*Specific Heat, type=CONSTANTPRESSURE
50.,
*Viscosity
0.008495,

* Kx

** PREDEFINED FIELDS

* %

** Name: Predefined Field-1 Type: Fluid thermal energy
*Initial Conditions, type=TEMPERATURE, Element Average
_PDF_WholeModel, 15.

** Name: Predefined Field-2 Type: Fluid velocity
*Initial Conditions, type=VELOCITY, Element Average
_PDF_WholeModel, 1, 0.

_PDF_WholeModel, 2, 0.

171

_PDF_WholeModel, 3, 0.

* *

** STEP: Step-1

* %

*Step, name=Step-1

*CFD, incompressible navier stokes, energy equation=TEMPERATURE
0.01, 300., 0.025, 0.45, 1
le-10, 0.5, , 0.5, 0.5
*Momentum Equation Solver
250, 2, le-05

*Pressure Equation Solver
250, 2, le-05

Icc, 1, 1, CG

*Transport Equation Solver
250, 2, le-05

* Kx

% BOUNDARY CONDITIONS

* Kx

** Name: BC-1 Type: Fluid wall condition

*Fluid Boundary, type=PHYSICAL, wall, surface=INTERFACE

** Name: BC-2 Type: Fluid inlet/outlet

*Fluid Boundary, type=PHYSICAL, velocity inlet, surface=INLET
VELX, 0.

VELY, -0.07536

VELZ, O.

TEMP, 15.

** Name: BC-3 Type: Fluid inlet/outlet

*Fluid Boundary, type=PHYSICAL, pressure outlet, surface=OUTLET
P, O.

passiveoutflow, 0.0

TEMP, 18.

** Interaction: Int-1

*Co-simulation, name=Int-1, controls=Int-1 Ctrls, program=MULTIPHYSICS
*Co-simulation Region, import, type=SURFACE

interface, TEMP

*Co-simulation Region, export, type=SURFACE

interface, HFL

172

interface, LUMPEDHEATCAPACITANCE

*Co-simulation Controls, name=Int-1 Ctrls, coupling scheme=gauss-seidel, time
incrementation=lockstep, time marks=yes,

step size=min, scheme modifier=lag

* *

** OUTPUT REQUESTS

* *

*Restart, write, frequency=0

*Kx

** FIELD OUTPUT: F-Output-1

*Kx
*Output, field, variable=PRESELECT
*Output, history, frequency=0

*End Step

173

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

References

M. Ehsani, Y. Gao, S. Gay and A. Ahmadi, Modern Electric, Hybrid Electric, and Fuel
Cell Vehicles: Fundamentals, Theory, and Design, CRC Press, 2004.

Y. Ho, J. Park, J. T. Lee, J. Seo and S. Park, "Estimation of CO2 reduction by parallel hard-type
power hybridizationfor gasoline and diesel vehicles," Science of the Total Environment,
vol. 595, pp. 2-12, 2017.

G. Wu and Z. Dong, "Design, analysis and modeling of a novel hybrid powertrain system
based on hybridized automated manual transmission," Mechanical Systems and Signal
Processing, no. 93, pp. 688-705, 2017.

D. Pei and M. Leamy, "Dynamic Programming-Informed Equivalent Cost Minimization
Control Strategies for Hybrid-Electric Vehicles," Journal of Dynamic Systems,
Measurement, and Control, vol. 135, 2013.

Y. Zhao, M. Kuang, B. Nefcy, D. Colvin, S. Ford and Z. Liu, "Regenerative Braking
Control Development for P2 Parallel Hybrid Electric Vehicles," SAE, 11 January 2017.

L. Serrao, S. Onori and G. Rizzoni, "A Comparative Analysis of Energy Management
Strategies for Hybrid Electric Vehicles," Journal of Dynamic Systems, Measurement, and
Control, 25 March 2011.

D. Kum, H. Peng and N. Bucknor, "Supervisory Control of Parallel Hybrid Electric
Vehicles for Fuel and Emission Reduction,”" Journal of Dynamic Systems, Measurement,
and Control, 11 November 2011.

N. Kim, S. Cha and H. Peng, "Optimal Control of Hybrid Electric Vehicles Based on
Pontryagin's Minimum Principle,” IEEE Transactions on Control Systems Technology,
pp. 1279-1287, 5 September 2011.

J. Wilbanks, F. Favaretto, F. Cimatti and M. Leamy, "High-Performance Plug-In Hybrid
Electric Vehicle Design Studies and Considerations,” SAE Technical Papers, 21 April
2015.

J. Arata, M. Leamy and K. Cunefare, "Power-split HEV control strategy development
with refined engine transients,” SAE Technical Papers, pp. 119-133, 24 April 2012.

B. Scrosati and J. Garche, "Lithium batteries: Status, prospects and future,” Journal of
Power Sources, vol. 195, no. 9, pp. 2419-2430, 2010.

174

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K.-Y. Oh, N. Samad, Y. Kim, J. Siegel, A. Stefanopoulou and B. Epureanu, "A novel
phenomenological multi-physics model of Li-ion battery cells,” Journal of Power
Sources, vol. 326, pp. 447-458, 2016.

M. Doyle, T. Fuller and J. Newman, "Modeling of Galvanostatic Charge and Discharge
of the Lithium/Polymer/Insertion Cell," Journal of Electrochemical Society, vol. 140, no.
6, pp. 1526-1533, 1993.

L. Xiwen, M. Yan and Y. Zhenhua, "Research of SOC Estimation for Lithium-ion
Battery of Electric Vehicle Based on AMEsim-Simulink Co-Simulation,” in 32nd
Chinese Control Conference, Xi'an,China, 2013.

K. Murashko, J. Pyrhénen and L. Laurila, "Optimization of the passive thermal control
system of a lithium-ion battery with heat pipes embedded in an aluminum plate," in
15th European Conference on Power Electronics and Applications, EPE, Lille, France,
2013.

M. R. Khan and S. K. Kaer, "Three Dimensional Thermal Modeling of Li-lon Battery
Pack Based on Multiphysics and Calorimetric Measurement,” in 2016 IEEE Vehicle
Power and Propulsion Conference, VPPC, Hangzhou, China, 2016.

S. Peck, T. Olszanski, S. Zanardelli and M. Pierce, "Validation of a Thermal-Electric Li-
lon Battery Model," SAE International Journal of Passenger Cars, vol. 121, no. 7, pp.
154-163, 2012.

G.-H. Kim, K. Smith, K.-J. Lee, S. Santhanagopalan and A. Pesaran, "Multi-Domain
Modeling of Lithium-lon Batteries Encompassing Multi-Physics in Varied Length
Scales," Journal of Electrochemical Society, vol. 158, no. 8, pp. 955-969, 2011.

Y. Xie, J. Liand C. Yuamn, "Multiphysics modeling of lithium ion battery capacity
fading process with solid-electrolyte interphase growth by elementary reaction kinetics,"
Journal of Power Sources, vol. 248, pp. 172-179, 2014.

S. U. Kim, P. Albertus, D. Cook, C. Monroe and J. Christensen, "Thermoelectrochemical
simulations of performance and abuse in 50-Ah automotive cells,” Journal of Power
Sources, vol. 268, pp. 625-633, 2014.

R. Melville, N. Clauvelin and J. Milios, "A High-performance Model Solver for "in-the-
Loop" Battery Simulations," in American Control Conference (ACC), Boston, MA, 2016.

L. Jiang, S. Yuan, H. Wu, C. Yin and W. Miao, "Electro-Thermal Modeling and
Experimental Verification for 18650 Li-lon Cell," in Vehicle Power and Propulsion

175

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Conference (VPPC), Hangzhou, China, 2016.

M. Reiner and D. Zimmer, "Object-oriented modelling of wind turbines and its
application for control design based on nonlinear dynamic inversion," Mathematical and
Computer Modelling of Dynamical Systems, vol. 23, pp. 319-240, 2017.

R. Montafiés, J. Windahl, J. Palsson and M. Thern, "Dynamic Modeling of a Parabolic
Trough Solar Thermal Power Plant with Thermal Storage Using Modelica,” Heat
Transfer Engineering, vol. 0, pp. 1-16, 2017.

T. Schwan, R. Unger and J. Pipiorke, "Aspects of FMI in Building Simulation,” in
Proceedings of the 12th International Modelica Conference, Prague, Czech Republic,
2017.

M. Association, "FMI standard,” Modelica Association, [Online]. Available:
http://www.fmi-standard.org.

M. Einhorn, F. V. Conte, C. Kral, C. Niklas, H. Popp and J. Fleig, "A Modelica Library
for Simulation of Electric Energy Storages," in Proceedings of the 8th International
Modelica Conference, Dresden, Germany, 2011.

Dassault Systemes, "Abaqus 2016 CAE User's Guide," Dassault Systémes, 2015.

Dassault Systemes, "Co-Simulation Engine user's guide," Dassault Systemes, 2016.

Dassault Systemes, "API reference guide," Dassault Systemes, 2016.

Dynasim AB, "Dymola User's Manual," Dynasim AB, Lund, Sweden, 2016.

T. Bergman, A. Lavine, F. Incropera and D. DeWitt, Fundamentals of Heat and Mass

Transfer, Hoboken,NJ: John Wiley & Sons,Inc., 2011.

J. de Hoog, J.-M. Timmermans, D. loan-Stroe, M. Swierczynski, J. Jaguemont, S.
Goutam, N. Omar, J. Van Mierlo and P. Van Den Bossche, "Combined cycling and
calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life
profile validation,” Applied Energy, vol. 200, pp. 47-61, 2017.

176

