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Summary

Combustion chemical vapor deposition (combustion CVD) is a thin film deposition

process that uses a flame created by the ignition of an aerosol containing precursors

dissolved in a flammable solvent.  Combustion CVD is a relatively new technique for

creating thin film oxide coatings.  Combustion CVD has been successfully used to deposit

high quality thin oxide films for potential applications such as thermal barrier coatings,

dielectric thin films, composite interlayer coatings, etc.  The present work involved

developing the optimum parameters for deposition of thin films of yttria-stabilized zirconia

(YSZ), alumina (Al2O3), and YSZ-alumina composites followed by a determination of the

mechanical properties of the films (measured using nanoindentation) as a function of

composition.  

The optimized parameters for deposition of YSZ, alumina, and YSZ-alumina

composites onto single crystal a-plane alumina involved using an organic liquid as the

flammable solvent and Y 2-ethylhexanoate, Zr 2-ethylhexanoate and Al acetylacetonate as

the metal precursors at a 0.002 M concentration delivered at 4 ml/min at flame

temperatures of 1550EC and substrate temperatures of 1050EC.  The resulting films were

grown with deposition rates of ~ 1.5 µm/hr.  

Measurement of the mechanical properties (hardness, elastic modulus and fracture

toughness) of the films was performed using a mechanical properties microprobe called
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the Nanoindenter®.  In order to obtain valid results from nanoindentation, the combustion

CVD films were optimized for minimum surface roughness and grown to a thickness of

approximately 0.8 µm.  With the penetration depth of the indenter at approximately 150

nm, the 800 nm thickness of the film made influences of the substrate on the

measurements negligible.  

The hardnesses and elastic moduli of the YSZ-alumina films did not vary with the

composition of the film.  The fracture toughness, however, did show a dependence on the

composition.  It was found that second phase particles of alumina grown into a YSZ

matrix increased the fracture toughness of the films (on average, 1.76 MPa·m0.5 for 100%

YSZ to 2.49 MPa·m0.5 for 70 mol% YSZ/30 mol% alumina).  Similarly, second phase

particles of YSZ grown into an alumina matrix also increased the fracture toughness (on

average, 2.20 MPa·m0.5 for 100% alumina to 2.45 MPa·m0.5 for 37.2 mol% YSZ/62.8

mol% alumina). 

Modeling of the fracture toughness of the YSZ-alumina films was successfully

achieved by using the following toughening mechanisms:  crack deflection from the

second phase particles, grain bridging around the particles, and residual stress from the

CTE mismatch between the film and the substrate and between the second phase particles

and the matrix of the film.
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CHAPTER I

INTRODUCTION

The research presented in this dissertation studied the mechanical properties of

ceramic thin films grown by combustion chemical vapor deposition (combustion CVD). 

Combustion chemical vapor deposition is a relatively new technique for creating thin film

coatings.  In comparison to conventional CVD, combustion CVD is an open air, flame-

assisted, coating process that requires no reaction/vacuum chamber.  Combustion CVD

has been successfully used over the past several years to deposit high quality thin oxide

films for potential applications in thermal barrier coatings, dielectric thin films, composite

interlayer coatings, etc.  Various ceramic materials have been deposited including: yttrium

barium cuprate, yttria-stabilized zirconia, ceria, barium titanate, alumina, silica, lanthanum

phosphate, magnesium spinel and nickel spinel.  Now that the process has been developed

to the point of producing quality films of several materials, more research is necessary to

understand the deposition process and to quantify the quality of the films.

The mechanical properties of thin ceramic films are very important.  The fracture

toughness of a material is related to the amount of stress the material can withstand with

an existing crack without failing.  For thin films, failure is usually defined as the point 
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when spallation or delamination occurs.  The formation of a crack is one of the most

common processes leading to failure.  The toughness of a thin film ceramic is thus a key

mechanical property to study and control.

Increasingly harder films have been sought for applications in electronic, optical

and heavy wear environments.  The hardness of a material is now a common defining

factor in materials selection.  In metals Hall-Petch [1] has shown hardness to be a function

of the intrinsic hardness of a single grain and the grain size.  The hardness of ceramic

films, however, was found to be a function of more than just those two variables [2]. 

Examination of the hardness of ceramic films may lead to some important property

relationships and possibly the prediction of other film characteristics such as residual

stress.

Young’s modulus, or the elastic modulus, of thin ceramic films is another

significant mechanical property.  The modulus indicates how compliant or flexible a

material will be under stress or strain.  Therefore, knowing the modulus of a material to be

used in a particular application is important to the engineer in predicting the performance

of the material.

All of these mechanical properties (fracture toughness, hardness and elastic

modulus) are important in terms of evaluating the potential performance for bulk

materials, and are particularly important for films prepared by combustion CVD.  
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Combustion CVD grown films of yttria-stabilized zirconia (Y2O3 stabilized ZrO2 or

YSZ), alumina (Al2O3) and YSZ-alumina thin films were developed for applications with

the thermal barrier coatings (TBC’s) used in the hot regions of gas turbine engines.  In

order to increase the efficiency and extend the life of the engine, additional coatings are

being studied to reduce or eliminate failure of TBC’s.  It is hypothesized that inserting a

tough ceramic film under the TBC layer (between the ceramic top coat and bond coat)

may help increase service life of the TBC and the engine.  Combustion CVD films of YSZ,

alumina and YSZ-alumina combustion CVD films were studied here because they are

tough ceramics, stable at high temperature and can be readily deposited onto turbine blade

components.  

YSZ, in general, is a widely studied material because of its high toughness, high

bending strength and low thermal conductivity.  Plasma-sprayed and electron beam YSZ

coatings are used extensively as TBC’s.  It is known that YSZ’s mechanical properties,

such as toughness and strength, degrade with low temperature aging (423 to 673K)

particularly in environments containing water vapor [3, 4, 5, 6, 7].  This degradation

results in crack formation due to the partial transformation of the YSZ from the tetragonal

phase to the monoclinic phase and a decrease in strength.  Additions of alumina to YSZ

have been shown to prevent this low temperature degradation.  In other words, additions

of alumina to YSZ provide an increase in fracture toughness even though the fracture

toughness of alumina may be lower than that of YSZ [3, 8].  This toughened composite 
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for bulk materials provides the impetus to study potential toughening in YSZ-alumina

composite combustion CVD thin films. 

The deposition process for YSZ-alumina films was first developed and optimized

before the evaluation of turbine components with combustion CVD YSZ-alumina films. 

This was accomplished by varying the many process parameters used in the combustion

CVD technique, such as temperature, precursor solvent, precursor concentration, aerosol

size, precursor flowrate, oxidizer flowrate and others.  The fine adjustments of these

numerous parameters are necessary to provide the highest quality film based on

morphology, phase, composition, deposition rate, etc.

The determination of the toughest composition of YSZ and alumina thin films is

difficult due to the small dimensions.  The indenter must be of a small size and load such

that only the film properties are measured; no substrate influences included.  To

accomplish fracture toughness measurement, along with hardness and elastic modulus

measurements, the Nanoindenter® located at the High Temperature Materials Laboratory

of Oak Ridge National Laboratory in Oak Ridge, TN was used.  Nanoindentation is an

indentation technique similar to that of bulk hardness testers, except that its load ranges

are on the millinewton scale and its indentation depths are on the micron and nanometer

scale.  This range of loads and depths permits the evaluation of the mechanical properties

of a materials’ surface on the microscopic scale.  With nanoindentation, one is able to

confidently test very small specimens of material such as microchips, specific grains of 
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materials and, in the case of this research, combustion CVD thin films. 

To determine the feasibility and reliability of nanoindentation for thin films and to

develop the nanoindentation testing technique, specimens of various bulk materials were

tested along with the combustion CVD grown YSZ-alumina thin films.  Bulk ceramics

examined were silica (amorphous SiO2), zirconia (fully stabilized 9.5mol% Y2O3-ZrO2),

alumina (polycrystalline, r-plane and a-plane single crystal Al2O3) and magnesium oxide

(single crystal MgO).  Nanoindentation is a growing area of research, however, review of

the literature contains little on the nanoindentation of thin films.  The research presented in

this dissertation is some of the first work in this field.

The main objectives of this research were the following:  

! Develop and optimize the deposition of YSZ, alumina and YSZ-alumina via

combustion CVD.

! Determine the feasibility of nanoindentation for determining the fracture

toughness, hardness and elastic modulus of combustion CVD thin films.

! If practical, quantify the fracture toughness, hardness and elastic modulus of

combustion CVD YSZ-alumina composite films.
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CHAPTER II

BACKGROUND

Film Deposition

Combustion CVD

Combustion chemical vapor deposition (combustion CVD) is an open air, flame-

assisted, coating process that employs an aerosol to transport coating precursors

(chemical compounds containing the desired coating constituents) to the deposition region

[9, 10].  In liquid fuel combustion CVD (see below), which was used for this research, the

coating precursors are first dissolved in an organic solvent which is then atomized and

combusted to provide the energy necessary for chemical reactions to occur.  The

precursors react within the flame and form a coating on a substrate held in or near the

flame.  The experimental procedure, Chapter III, details the setup for the combustion

CVD process.

Combustion CVD is used to deposit thin oxide films.  The process has shown

promise for the deposition of oxides that are thermodynamically stable at high

temperatures.  Over the past few years, the combustion CVD process has been explored as

a deposition technique for use in thermal barrier coatings, dielectric thin films, composite

interlayer coatings, and many more applications.  Many different ceramic films have been
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deposited successfully including:  yttrium barium cuprate (YBa2Cu3Ox), yttria stabilized

zirconia (Y2O3-stabilized ZrO2), ceria (CeO2), barium titanate (BaTiO3), alumina (Al2O3),

silica (SiO2), lanthanum phosphate (LaPO4), magnesium spinel (MgAl2O4) and nickel

spinel (NiAl2O4) [10, 11, 12, 13, 14, 15].

In conventional CVD processing, gases carrying coating constituents flow into a

reaction vessel where deposition onto a heated substrate occurs.  Depositions may be

conducted at atmospheric or reduced pressure.  Both cold and hot wall reaction chambers

may be used.  Heat can be provided by a resistance furnace, RF induction, or high-

intensity radiation lamps.  Plasma, microwave, photon, RF and electron-enhanced CVD

processes have also been developed [2].  In contrast to these methods, for combustion

CVD, a flame provides the heat and the environment necessary for vapor phase deposition

and provides an excess of oxygen for the oxidation of the metals to be deposited.  

A major difference between combustion CVD and conventional CVD is the

elimination of the need for a reaction/vacuum chamber which is required in conventional

CVD.  Combustion CVD is performed in the open atmosphere.  The deposition process is

controlled by managing several variables: substrate temperature, precursor concentration,

precursor composition, aerosol size distribution, solvent composition and the apparatus

setup geometry.
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Figure 1 Gaseous Fuel Combustion CVD System.

Evolution of Combustion CVD

The design of the combustion CVD process has evolved over the last few years. 

There are two different basic types of systems: gaseous fuel and liquid fuel.  In the

gaseous fuel system, the metal precursors are dissolved into either an aqueous or organic

solution and fed into a chamber.  The solution is then atomized with a high velocity gas

such as O2, N2, Ar, or air followed by a particle discriminator to remove large droplets of

liquid.  A flammable gas (such as methane) is introduced at the exit of the chamber and

mixes with the atomized precursor solution.  As this gas mixture flows out of the chamber,

the Venturi effect draws outside air into the mix.  The final mixture passes through the

burner and is then ignited.  Figure 1 shows the setup of this system.
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System.

In the liquid fuel system, the metal precursors are dissolved into an organic

solution which is then fed through a nozzle and atomized.  As the atomized solution exits

the nozzle, oxygen or air is added and the mixture is ignited by a pilot flame.  The oxygen

added just prior to the pilot flame ensures the complete combustion of the atomized

flammable solution.  Figure 2 shows this system setup.

The first extensively used combustion CVD nozzle was a liquid fuel type

pneumatic nebulizer involving a tube for the flammable precursor liquid positioned 90E to

a separate tube supplied with high velocity oxygen with the ends of the two tubes

positioned close to one another.  The oxygen not only aided in complete combustion but

also atomized the liquid.  The atomized liquid was then ignited by a pilot flame.  After

several studies, it was found that smaller aerosol droplet sizes emitted from the nozzle

tended to produce better films [16].  Improvements were made to the setup to create 
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Figure 3 OCN (Oscillating Capillary Nebulizer) after Wang [17].

increasingly finer aerosol droplets.  The development of the oscillating capillary nebulizer

(OCN) nozzle by Wang [17] allowed some control of aerosol size distribution.  Figure 3

shows this nozzle in detail.

As the figure shows, the OCN consists of two concentric capillary tubes (made of

silica) where the flammable liquid flows through the inner capillary and the oxygen flows

through the space between the inner and outer capillaries.  The high velocity oxygen

causes the capillary tubes to oscillate at a high frequency which atomizes the liquid prior

to ignition.  By changing various parameters in this nozzle, such as the size of the capillary

tubes, the relative positions of the ends of the tubes, and the flow rates of oxygen and

precursor, the droplet aerosol sizes can be optimized.  This method of aerosol production

gave much finer aerosol droplet sizes than the original 90E nozzle.  The OCN has been

used heavily in creating combustion CVD films in the laboratory over the last few years.  
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Figure 4 High Performance Combustion CVD Nozzle.

A new, improved proprietary nebulizer design is now being employed in the laboratory

and was the used for all the depositions in this research, see Figure 4.

Similar Flame Techniques

The basic premise behind combustion CVD, utilization of a flame for deposition, is

not completely new.  Koguchi et al. [18] used a flame pyrolysis method for deposition of

YBa2Cu3OX on a substrate of yttria stabilized zirconia.  In their method the precursors are

dissolved in distilled water, agitated in a supersonic vibrator and then carried to the

hydrogen/oxygen flame with nitrogen gas.  Just prior to the flame, the aerosol is passed

through a cylindrical mist separator to remove large droplets.  This technique has a

problem with substrate cooling due to the high heat of vaporization of the water, but it is

successful in producing superconducting films.  

Another technique similar to combustion CVD is called “flaming solvent spray,”

and was used by McHale et al. [19].  Depositions of films of YBa2Cu3OX and 
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Bi7Pb0.3Sr2Ca2Cu3O10 were made onto MgO substrates.  Precursors were dissolved in

either ethanol, ethylene glycol or liquid ammonia and sprayed via a Pyrex air atomizing

nozzle, using a natural gas burner for ignition.  This technique does not have the substrate

cooling problem of the previously described method.  The major differences between

combustion CVD and these other techniques are that combustion CVD uses a new

nebulizing method, lower precursor concentrations and lower precursor solution

flowrates.

CVD Film Growth

The theory film formation from vaporous material applies to combustion CVD. 

Heterogeneous nucleation to form a solid film on a planar surface is one of the better

descriptions of film formation.  Capillarity theory gives a simple qualitative model.  In this

model, atoms in the vapor phase impinge upon the surface of the substrate and either

create film clusters that grow (nucleate) on the surface, or leave the surface due to

dissociation processes.  For a portion of film to begin to form, the change in chemical free

energy per unit volume, ∆GV, must be equal to or greater than the change in free energy of

formation for the film, ∆G.  The nuclei which have formed on the surface are assumed to

have the shape of a spherical cap with its surface free energies per unit area, γvf, γfs and γsv

(erg/m2 or Joule/m2) minimized.  The subscript vf denotes the interfacial surface energy

between the film and vapor.  Similarly the subscript fs refers to the interfacial surface

energy between the film and the surface of the substrate and sv indicates the
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Figure 5 Surface Energy of Deposition.

interfacial surface energy between the surface of the substrate and the vapor.  Figure 5

shows a nucleating particle and the surface free energies involved.  With the radius of the

spherical cap nucleus of film on the surface given by r, the following equation represents

the free energy balance [2]:

where a1, a2 and a3 are geometric constants for a spherical shaped nucleus,

a1 = 2π(1 - cos θ),

a2 = πsin3 θ,

and a3 = π(2 - 3cos θ + cos3 θ)/3.

The critical radius, r* (meter), for which a nucleated particle will continue growing

is found by setting  from equation (1).d G
dr
∆

= 0
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Substituting r* into equation (1) gives the critical free energy, ∆G* (Joule):

For r $ r*, the nucleus lowers its free energy by increasing in size and thus growth

proceeds.  These equations determine the critical size for a new particle on the surface to

continue growing, but they do not yield information regarding the rate of nucleation.  The

nucleation rate of particles on the surface of the substrate is also an important factor in

film formation and it can be derived starting from the gas impingement flux, Φ

(moles/cm2-sec), of molecules hitting a surface:

where P = vapor pressure (Pa),

M = molecular weight (g/mol),

NA = Avogadro’s number (mol-1),

R = Universal gas constant (J/mol-K),

and T = source temperature (K).
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After hitting the surface, atoms can either desorb or diffuse around on the surface.

The atoms which remain attached to the surface are termed adatoms.  The desorption rate,

ν (cm-2sec-1), follows an Arrhenius dependency,

where Edes (Joule) is the activation energy for desorption.  

By making substitutions in accordance with Ohring’s [2] derivation, the nucleation

rate of particles on the surface of the substrate is,

where a0 = the atomic dimension (m),

P = pressure (Pa),

M= molecular weight (g/mol),

and Es = activation energy for surface diffusion (Joule).

Following nucleation is the growth of the particles.  There are three widely

recognized modes of nuclei growth:  island growth (Vollmer-Weber), layer growth

(Frank-van der Merwe) and layer-plus-island (Stranski-Kranstanov).  Island growth

occurs when the neighboring film atoms bond more to each other than to the substrate.  In

the layer growth mode, the atoms bond more strongly to the substrate than to each other, 
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γ γ γ θsv fs vf= + cos (7)

γ γ γsv fs vf< + ⋅ (8)

γ γ γsv fs vf= + ⋅ (9)

opposite of island growth.  The layer growth mode leads to atoms attached all over the

substrate and eventually to a single (mono) layer of atoms.  The last mode is, as its name

states, a combination of island and layer growth.  

A balance of the surface energies shown in Figure 4 results in the equation:

For island growth, θ > 0, so equation (7) becomes:

With layer growth, θ = 0, and equation (7) becomes:

The island-plus-layer growth mode is a combination of these two.

With progressing island growth, islands will coalesce.  There are three different

mechanisms of coalescence as shown in Figure 6:  a. Ostwald ripening, b. sintering and c.

cluster migration.  Ostwald ripening involves the transportation of mass from smaller

nuclei to larger nuclei.  Sintering occurs when surface diffusion takes place between two

nuclei in contact with each other and one larger nuclei is formed.  The last type of

coalescence, cluster migration, results from the random movement, collision and 
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Figure 6 Types of Island Coalescence: a) Ostwald ripening,
b) sintering and c) cluster migration. [2]

subsequent joining of nuclei on the surface of the substrate.  These three mechanisms 

combine to coarsen the film’s grain structure on the substrate surface [2].  Once the entire

surface of the substrate is covered, thickening of the film begins.  The foundation of the

film’s microstructure is formed by these initial coarsened nuclei.

Yttria Stabilized Zirconia-Alumina

Yttria-stabilized zirconia is a material that continues to be greatly studied because

of its desirable mechanical and thermal properties.  Because of its low thermal

conductivity, YSZ has found one of its foremost uses as a thermal barrier in turbine

engines, particularly in the hottest regions of the engine.  In this location YSZ serves as a

coating on turbine blades and vanes and other hot section parts.  The thermal protection

provided by the YSZ allows the turbine inlet temperature of the engine to be increased on 
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the order of 80EC to 200EC without an accompanying increase in the temperature of the

blades, vanes and other parts coated with YSZ.  Higher operating temperatures are

desired by engine manufacturers because increased temperatures mean higher efficiencies,

resulting in more fuel efficient power production [20].  Much of the following background

information involves YSZ formed by sintering powders or by plasma-spray deposition,

which is conventionally used in application of thermal barrier coatings.

Zirconia is a very tough and strong ceramic material, particularly in the tetragonal

(denoted T) phase which occurs at higher temperatures (>1200EC).  However, it

undergoes a phase transformation from tetragonal to monoclinic when cooled below

~1200EC [21].  The monoclinic phase is not as strong as the tetragonal phase [22]. This

transformation also involves a large volume expansion (~ 3%) [23] because of the larger

lattice parameter and the larger crystal lattice of the monoclinic phase compared to the

metastable tetragonal phase.  This expansion is undesirable due to the stresses produced

and the crack initiation and propagation which often results.  Stabilizing the zirconia with

small additions of other elements, such as yttrium, has been done regularly over the years

to prevent this transformation and toughen the material.  

Figure 7 shows the phase diagram of the ZrO2-YO1.5 system in the low yttria

regime [24].  It can be seen that from ~4 to13 mol% YO1.5 (or ~2.0 to 6.5 mol% Y2O3)

the stable low temperature phase is nontransformable tetragonal, known as TN.  The 
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Figure 7 Low Mol% YO1.5 YSZ Phase Diagram [6].

monoclinic phase is only stable in the very low yttria region, 0 to 4 mol% YO1.5 (or 0 to 2

mol% Y2O3).  On the phase diagram from 0 to 13 mol% YO1.5 (or 0 to 6.5 mol% Y2O3)

the material is called yttria-partially stabilized zirconia (Y-PSZ) or most often simply

yttria-stabilized zirconia (YSZ).  Above 6.5 mol% YO1.5 (or 13 mol% Y2O3), the cubic

phase is the stable low temperature phase.  The material is called fully stabilized zirconia in

this region.
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It is also known that the tetragonal phase (T) of YSZ will spontaneously transform

to the monoclinic phase when a stress is applied [21].  Garvie et al. found that this

transformation is accompanied by an increase in strength and fracture toughness [25, 3,

26, 22, 27].  They described the increase in strength as most probably due to an increase in

the work of fracture via absorption of energy during the transformation from tetragonal to

monoclinic.  The increase in fracture toughness, they postulated, is due to the volume

change actually suppressing crack growth by internal stresses closing material together

about the crack tip [26].  The metastable TN phase does not undergo this stress-induced

transformation to the monoclinic phase [28].  This property of the TN phase is highly

desired.

Another problem that occurs with YSZ at low temperatures (200-500EC) is

degradation of the strength and toughness of the tetragonal phase, TN with time [3, 4, 5, 6,

7].  With the temperature maintained around 200EC for a significant period of time, the

tetragonal (TN) phase will transform to the monoclinic phase.  This is particularly true in

water or water vapor-containing environments.  This transformation results in severe

cracking and a large reduction in the strength of the material.  Numerous researchers, to

be discussed below, have worked to minimize this problem by including additives in YSZ. 

Note that in their research YSZ and YSZ-alumina was formed by sintering from powders

of yttria, zirconia and alumina.
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Li and Watanabe measured the fracture toughness of YSZ including alumina

additions varying from 10-30 vol % [3, 5].  They found that the addition of alumina

increased the fracture toughness by 17% to 30% and that the larger the alumina particles,

the larger the increase in fracture toughness and strength.  Yao-Yong et al. measured the

amounts of phases present and the material’s mechanical properties upon the addition of

20 wt % Al2O3 to YSZ with 2-5 mol % Y2O3 [8].  They found that only ~7% monoclinic

phase remained after transformation while the Young’s modulus increased 28%, hardness

increased 22% and fracture toughness increased 25%.  Tsubakino and Nozato studied the

propagation of the phase transformation from tetragonal to monoclinic into specimen grain

interiors during low temperature aging in water for YSZ (3 mol% Y2O3) with 1.2 to 12

wt% Al2O3 [4].  Their results show that the transformation to monoclinic only takes place

near the surface of the grains and is completely suppressed in the interior of the YSZ-

alumina sample.  

Tsukama and Shimada performed long term aging experiments on YSZ-alumina at

250EC [6].  Their materials ranged in content for Y2O3 (2.0-2.6 mol %) and Al2O3 (5-40

wt %).  They found that increased amounts of Al2O3 yielded decreased amounts of the

monoclinic phase after the aging, with the 40 wt% Al2O3 specimen showing no monoclinic

phase.  It was also found that there was no decrease in strength of any of the specimens

containing Al2O3 additions.  Sato and Shimada also tested 2-4 mol% YSZ with 
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Figure 8 Schematic of the Nanoindenter®.

0-40 wt% Al2O3 in 80-200EC water for extended times and found that the Al2O3 additions

limited the transformation to the monoclinic phase in all samples [7].

Alumina is a desirable material for use as an additive because of its higher elastic

modulus and hardness and lower cost compared to ZrO2 powders.  The fracture toughness

of Al2O3 is actually lower than that of ZrO2 but as stated above, additions of Al2O3 of up

to 30 vol% increase the fracture toughness, increase the strength and reduce or eliminate

the amount of monoclinic phase formed in the YSZ after low temperature aging.

Nanoindenter®

The Nanoindenter® (shown in Figure 8 [29]) located at the Oak Ridge National

Laboratory’s High Temperature Materials Laboratory was used for this research.  The

Nanoindenter® is a mechanical properties microprobe.  It is similar to hardness testing
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equipment used for large bulk properties of materials in that it indents materials with a

hard, sharp indenter tip.  The primary difference between the Nanoindenter® and the

common hardness testing machines is that it operates with extremely low loads:

millinewtons down to micronewtons.  This results in very small penetration depths:

microns down to nanometers.  It is this advantage of low loads and shallow penetration

depths that make the Nanoindenter® an ideal tool for characterizing the mechanical

properties of thin films and near-surface regimes of bulk materials.  The Nanoindenter®

was developed by Oliver et al. [30] at Nano Instruments, Inc. of MTS, Knoxville, TN and

is a registered trademark.

Microhardness 

Hardness is defined as the resistance of a material to permanent deformation [31]. 

The hardness of a material is an important mechanical property because it can provide

information on elastic and plastic behavior.  High hardness is greatly desired in optical and

mechanical applications.  Larger hardnesses are particularly sought for mechanical

applications in which wear resistance and friction are of serious concern.

The hardness of bulk material is often determined via a Knoop or Vickers

indentation test.  Most versions of these indenters cannot be used for films with

thicknesses on the submicron scale, due to high loads causing the indentation depths to

exceed the film thicknesses.  Smaller indenters, shallower indentations and much lower

applied loads are required (along with much more sensitive equipment) to determine the 
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hardness, or microhardness, of thin films.  It was not until the last decade or so that

submicron indentation became possible.  The development of a microhardness indenter,

such as the one used by Pethica, Hutchings and Oliver [30, 32], provided the ability to

perform such measurements with adequate accuracy and precision.  Indentation depths on

the order of tens of nanometers with an indentation width of less than half a micron are

achieved with the Nanoindenter®.  The resolution of this apparatus is enough so that

loads on the order of millinewtons (mN) down to micronewtons (µN) can be applied with

indentations less than one micon apart.  

The hardness of a material, H (Pa), is defined by the equation: 

where P (N) is the applied load and A(m2) is the projected area of the indentation after the

load is removed.  It has been determined that the hardness of metals is a function of the

grain size, d, of the material.  This relationship is described by the Hall-Petch equation,

where H0 is the intrinsic hardness for a single crystal, d (m) is the grain size and k 

(Pa·m0.5) is a material constant.  Ceramics, on the other hand, do not follow this

relationship.  The hardness relationship in ceramics is more complex than in metals.  In

ceramics it is not the size of the grains that is important, but it is the quality of the grains 
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and grain boundaries that is dominant.  Porosity and microcracks also affect the hardness

of ceramic materials  [2].

While the exact relationships of hardness to other properties of ceramics is not

always well known, it is very simple to measure the microhardness.  The Nanoindenter®

can be used to precisely measure the hardness of very thin films.  In order to obtain

adequate values of hardness, the depth of the indentation must be small compared to the

film thickness.  Usually a film thickness 5 to 10 times the indenter depth is sufficient to

prevent any substrate influence in the measurement [33].  The Nanoindenter® can have an

indentation depth as shallow as ~20 nm and an indentation width as narrow as 500 nm,

depending on the particular material being tested.  The YSZ-alumina thin films deposited

for this research were on the order of 0.5 to1.0 µm thick and the indentation depths were

approximately 45 to 200 nm (0.045 to 0.200 µm).  The measurements yielding the lower

values of this range were not influenced by substrate effects.

The resolution of the Nanoindenter’s ® depth measurements is ±0.05 nm.  This

high resolution is accomplished by the metal disks (capacitance measurement gages)

attached to the indenter shaft and the indenter housing.  As the indenter is displaced the

capacitance in the plates changes, this capacitance change is then calibrated to the

displacement depth.  Because of the ability to measure very small changes in capacitance,

extremely high displacement resolution is achieved.
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Figure 9 Load vs. Displacement Curve from
Nanoindenter®.

An indentation is produced by the Nanoindenter® as follows: the sample stage is

raised (while the indenter tip remains fixed) until the indenter tip touches the sample.  The

sample stage is then raised slowly as the applied load on the indenter tip and sample is

measured.  The displacement of the stage and the applied load are simultaneously and

continuously measured, producing a load versus indentation depth plot similar to that

shown in Figure 9 [34].  The displacement noted as hf is the final displacement of the film

after complete removal of the load.  The value hp is the effective plastic depth of the

indenter in contact with the deforming material while under maximum load.  The

schematic in Figure 10 [35] defines these dimensions.  The applied load can range from

0.25 µN to 120 mN in 0.1 µN increments.  The remaining dimension, hs, represents the

elastic recovery of the initial surface of the film.  
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Figure 10 Schematic of indentation in a material.

The total displacement, h, is the sum  

The stylus used is a diamond, usually with a triangular pyramidal geometry known

as the Berkovich indenter.  A sample indentation produced from a Berkovich indenter tip

is shown in Figure 11 [36].  Calculation of the microhardness is made using equation (10)

where the effective contact area, A (m2), for the Berkovich indenter is  

This area is an ideal value for a perfect indenter tip.  Because of non-uniformities and

rounding of the indenter tip, Oliver and Pharr [35] developed the following for the area 
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Figure 11 SEM micrograph in plan view of
an indentation in a film made with
a Berkovich indenter.

which is a ninth order polynomial fit of a plot of the area measured and the total

displacement measured for this particular tip.  The manufacturer of the tip,

Nanoinstruments® determined the constants as C0= 718.02, C1= -0.00090549, C2= -

0.062832, C3= 0.004929, C4= 0.019922, C5= 5.78E-5, C6= -0.0064202 and C7=

0.0014305.  

Another triangular pyramidal indenter stylus used is a ‘cube-corner’.  As its name

suggests, it is merely a cube-shaped diamond with one of its corners used as the indenter. 

The advantage of this type of indenter is that it is sharper than the Berkovich and will

displace a greater amount of material than the Berkovich for a given load.  Some authors,

however, have utilized Vickers and Knoop indenters for nanoindentation.  
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Figure 12 Radius of Curvature of Stylus, R.

The first indenter tips used for nanoindentation had a radius of curvature on the

order of 300 nm, see Figure 12 [34].  Because of the assumption of an atomically sharp

indenter tip, the effective plastic depth, hp, is somewhat greater than the actual plastic

depth due to the radius of curvature.  Indenters with even smaller dimensions (100 nm

radius of curvature) have been used by Kulkarni and Bhushan  [37].  Still smaller indenters

of 30-60 nm are available.  The Berkovich tip used in this research has a radius on the

order of 40 nm. 

It should be noted that the contact area is only a function of the effective plastic

depth, hp.  The Nanoindenter®, however, measures only the total depth, h.  The plastic

depth required for the contact area can be found by rearranging equation (12)
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From Sneddon’s [38] solution hs is given as 

where g is a geometric constant based on the type of indenter tip (for this research g =

0.72 was used) and S (N/m) is the stiffness, which can be obtained from the slope of the

upper portion of the load displacement curve as shown by the dashed line in Figure 9.  The

Nanoindenter® can determine the stiffness continuously throughout an indentation by the

application of a small sinusoidal oscillation on the applied load.  The indenter apparatus

and the specimen can be modeled as a simple harmonic oscillator.  The phase and

amplitude of the indenter oscillations are continuously measured along with the phase and

amplitude of the imposed AC signal.  The stiffness of the indenter frame, the mass of the

of the indenter assembly, the damping constant for the capacitor plates and the spring

constant of the supports for the indenter are all known values.  This leaves the stiffness of

the contact zone as the only unknown, which is easily computed during each indentation. 

This more detailed method is called the continuous stiffness measurement (CSM) option

and was used for this research [39].  The stiffness can also be written as

The equation used for the effective plastic depth in this research is
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There have been numerous studies involving the measurement of the

microhardness of thin films using a nanoindentation device [40, 41, 31, 36, 42, 43, 44,

45].  A few of these are discussed here.  Tsukamoto et al. performed some of the first

tests on the nanoindenter, working on various films deposited on silicon: 0.1-0.4 µm thick

carbon coating via magnetron sputtering and CVD, 0.15 µm thick SiO2 via magnetron

sputtering, 0.4µm thick SiO2 via CVD and 0.3µm thick SiO2 via oxidation [40].  These

oxide film thicknesses are on the same order as the films in this research, 0.5 to 1.0µm. 

The load-displacement curves also show indentation depths of approximately 0.1 µm,

which is also similar to the range in this work.

Other early work was by Quinto et al. [41] with TiN and HfN films of 8 µm

thickness deposited via CVD and physical vapor deposition.  These coatings were

examined with a Vickers indenter to relate hardness to temperature variations.  Bhushan et

al. [31] performed nanoindentation on several substrates: 3 mm thick plexiglas, 3 mm

thick tool steel, 23.4 µm thick polyethyleneterephthalate (PET), and a 4 µm thick

magnetic coating on PET.  The most notable trend they found was that the microhardness

tended to be load dependent.

Additional researchers have worked a great deal on thin films.  Nix et al. [36]

measured the microhardness of 1 µm thick aluminum on silicon substrates with 

indentation depths up to 20 nm.  Work done by Chou et al. [42] with radio frequency

magnetron sputtering of films of 0.05 µm and 1.2 µm thick Al2O3 onto Si and NaCl was 



32

done to compare the mechanical properties of γ and α alumina.  Bell et al. [43] reviewed

the performance of the Nanoindenter® on a 2 µm thick TiN coating on stainless steel, a 5

µm thick ZnAl coating on steel and a 1.25 µm thick solgel-formed ceramic coating on

steel.  Hjort et al. [44] utilized a Vickers indenter to find the microhardness of a 10 µm

thick AlxGa1-xAs coating on a GaAs substrate and related the hardness as a function of

stoichiometry (x in AlxGa1-xAs).  Haanappel et al. [45] deposited Al2O3 via metal-organic

CVD on stainless steel in 0.07 µm and 0.5 µm thicknesses and related how the process

parameters affected various mechanical properties, including the hardness.  The indenter

they used was developed by Shimadzu and had a Vickers-type stylus.

Elastic Modulus

The elastic modulus (Young’s modulus) of any material is a significant property. 

From Hooke’s Law, the elastic modulus indicates how compliant or flexible a material 

will be under stress.  For thin films, stresses are always present to some degree, usually

due to the manner in which the film is formed on the substrate.  The exact mechanisms

behind these inherent stresses are not fully understood and this area is a topic of on-going

research [2].  How a thin film behaves under stress is largely dependent on its elastic

modulus.  For example, if the film has a high elastic modulus it may spall or peel off of 

the substrate due to the significant internal stresses created during deposition, whereas a

low elastic modulus material may be able to withstand these stresses.  Regardless of how

the stresses and strains are created, it is important to know the elastic modulus of a 
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material for a particular application.  Additionally, the elastic modulus of a material in thin

film form can be very different from the elastic modulus of the same material in bulk form. 

The difference may be attributed to the variances in microstructure.  For example, the

density of voids and interfaces can affect the resulting elastic modulus of the thin film

more so than the elastic modulus of the bulk material.

The elastic modulus can be determined from the Nanoindenter’s ® load versus

displacement curve, Figure 8.  Loubet et al. [46] showed that the slope of the unloading

curve is given by 

where P =  load (N),

h =  depth of indentation (m),

A = contact area (m2),

β = constant dependent on indenter shape (dimensionless),

and E*= effective modulus (Pa) of the system given by

where E0 = elastic modulus of indenter (Pa),

E  = elastic modulus of film (Pa)

ν0 = Poisson’s ratio of indenter

and ν  = Poisson’s ratio of film.
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For the triangular Berkovich indenter, β= 1.167.  Measuring the slope of the unloading

curve and knowing the material properties of the indenter allows the determination of the

elastic modulus of the film from equation (20).  However, it should be noted that equation

(19) is equal to the stiffness as shown in the previous section: 

Using this equation and the continuous stiffness measurement method (the method used in

this research) the elastic modulus can be determined. 

Several researchers have worked with the Nanoindenter® or a similar

microhardness apparatus to determine the microhardness as well as the elastic modulus of

coatings.  Nix reviewed elastic modulus determination via nanoindentation and found that

it was valid for thin films of soft materials but produced greater values of modulus than

expected for hard materials [36].  Possible explanations for this are the high pressures

created beneath the indentation which may cause densification of that material, or the

combination of plastic deformation of material under the stylus and elastic recovery after

indentation may cause a higher modulus than expected.  Bell et al. [43] agree that this

method for determining modulus (and hardness) is best for materials with a low hardness

to modulus ratio, i.e. metals, but the large elastic recovery during unloading for high

hardness to modulus materials, i.e. ceramics, confounds the determination of the actual

penetration depth and hence the modulus.  This is the justification for using the effective 
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plastic depth in the calculations as shown in Figure 9.  Chou et al. [42], however, found

that the moduli for amorphous Al2O3 and γ-Al2O3 thin films were actually lower than

expected.  Other authors who have investigated thin films of these materials have found

varying values for their moduli.  Chou et al. attributes these differences to the various

methods by which the films were deposited.  One particular deposition method will result

in a different microstructure than another method, resulting in differing properties.

Fracture Toughness

The fracture toughness of a material is a major topic of interest for many

applications.  The fracture toughness is related to the amount of stress a cracked material

can endure without failing.  This property is particularly important for thin ceramic films

such as those investigated here.  As previously mentioned, the deposition process of thin

films can leave significant internal stresses which may lead to crack formation and/or

growth.  Failure of a thin film is usually defined as the point where spallation or

delamination occurs, and the formation of a crack is the usual initiation event.  Therefore

the tougher a material is, the better its resistance to failure due to internal stresses and

cracking.

Measurement of the fracture toughness of thin films by a Nanoindenter® or similar

instrument has not been pursued heavily until recently.  Lawn et al. developed the

following equation to determine the fracture toughness, KC (MPa·m0.5), of a material from 
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radial “half-penny” cracks formed during an indentation from a stylus such as that of a

Nanoindenter® [47]  

where α = empirical constant which is ~0.016 for a Berkovich and ~0.032 for a cube-

corner shaped diamond stylus

E = elastic modulus (Pa),

H = hardness (Pa),

P = applied load (N),

and c = crack length (m).

The elastic modulus and the hardness are both calculated from the Nanoindenter® data as

discussed previously.  The length of the racial crack is measured from the center of the

indentation to the end of the crack tip as shown in Figure 13.

Lawn et al.’s model requires that the cracking be radial emanating from the

indenter points and half-penny in shape within the material, i.e. no lateral cracking. 

Additionally, their model requires that the crack must be a “well-developed crack”,

meaning the length, c, must extend past the plastic zone created by the indenter tip. 

Figure 14 [47] shows a cross-sectional schematic of an indenter tip, the plastic zone and

radial cracking.  Lawn et al. also developed a relationship between the plastic zone size

and the elastic modulus to hardness ratio (E/H) for a material, Figure 15 [47] where b is
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Figure 13 Indentation and Crack Measurement.

the plastic zone radius and r0 is the cavity radius (the distance from the center of the indent

to a point of the indent, also referred to as the indent size).  The E/H for the films studied

in this research was on the order of 20 which from Figure 15 was a b/r0 value of about

2.1.  From this the acceptable crack length, c, that can be used in equation (22) was

approximately twice the indent size (c > 2 r0).
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Figure 15 Plot showing plastic zone size, b, to cavity
radius r0 ratio versus modulus to hardness ratio
for several materials.
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Figure 14 Schematic of indentation showing plastic zone
and radial crack.
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As with the measurement of microhardness and elastic modulus, the best type of

indenter for fracture toughness is the Berkovich indenter according to Bell et al. [43]. 

They studied the various types of indenters along with fracture toughness.  Compared to

the Vickers indenter, Bell et al. achieved more reliable results, particularly at low loads,

with the Berkovich indenter.  Some materials, however, may not crack under the

Berkovich indenter because of their high toughness.  Harding et al. [48] found that brittle

materials have a load threshold below which the applied load will not cause the formation

of cracks from an indentation.  Changing from a Berkovich indenter to a cube-corner

indenter, which has a much sharper angle and a greater displacement, will reduce the load

threshold.  With the same applied load, the cube-corner indenter will crack material that

the Berkovich indenter will not crack.  Utilizing the cube-corner indenter tip, Harding et

al. reduced the threshold load for cracking to less than 1 mN.  

One of the potential problems with measuring mechanical properties of thin films,

as mentioned in a previous section, is the influence of the substrate.  Hjort et al. [44] and

Haanappel et al. [45] used a Vickers indenter to determine the fracture toughness of 0.5

µm thick Al2O3 on stainless steel and 10 µm thick AlxGa1-xAs on GaAs, respectively. 

Cross-section examinations of the indentations showed that the indentations were deep

enough to fracture the substrate under the coating for both groups.  This particular

concern was taken into consideration during the reduction of fracture toughness data. 
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Kant et al. [49] reviewed the dependence of fracture toughness on the grain size

and grain orientation in their measurements of CVD deposited diamond coatings.  They

found the fracture toughness to be independent of the grain size and orientation.  Other

background work includes De Boer and Gerberich’s [50] study of the toughness of 0.8

µm thick tungsten films on SiO2 and Weppelmann et al.’s [51] measurement of the

toughness of 2.47 to 4.5 µm thick PVD TiN coatings on Si.  These numerous reports

supported the belief that the fracture toughness of YSZ-alumina thin films can be

determined via nanoindentation and they helped provide the impetus to attempt this work.
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Figure 16 Combustion CVD Schematic.

CHAPTER III

EXPERIMENTAL PROCEDURE

Combustion CVD Deposition Apparatus

A general schematic of the combustion chemical vapor deposition (combustion

CVD) system is shown in Figure 16.  Solutions were prepared by dissolving organic or

inorganic salts in reagent grade toluene or other similar organic solvent or solvents in

order to place the desired metals (Y, Zr and Al in this case) in solution.  The solution was

then pumped by a Constametric 4100 high performance liquid chromatography (HPLC)

pump to the nozzle, see Figure 16. 
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Figure 17 Apparatus for Suspending Substrate in
Flame.

The liquid precursor solution exited the nozzle through a small central capillary tube.  The

proprietary nozzle produces an aerosol out of this tube.  Additional dry oxygen necessary

for complete combustion was provided concentrically around the aerosol as shown.  The

oxygen flow rate was controlled by varying the regulator back pressure and flow control

valve, and by monitoring the mass flow meter.  The aerosol is ignited by a pilot flame

fueled by hydrogen.  The substrates for the depositions were mounted on a Kanthal wire

frame (high temperature wire Kanthal A-1, Kanthal Corp., Bethel, CT) and suspended

near or just inside the tip of the flame, see Figure 17.  The substrate was mounted such

that the flame approached at an angle of approximately 45Ewith respect to the substrate

normal.
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Deposition Parameters

In order to deposit high quality thin ceramic films with combustion CVD, the

optimum deposition parameters were determined.  The optimum parameters were those

conditions that produced the densest-appearing film with a maximum adhesion to the

substrate and the fastest deposition rate.  Both trial and error and the advice of

experienced combustion CVD scientists helped to shorten the time necessary to determine

the optimum conditions.  The different parameters that were optimized include the

temperature, solution flowrate, metal ion concentration,  type of solvent, type of substrate

material and oxygen flowrate.  

Temperature

By varying the location of the substrate relative to the tip of the flame the surface

temperature of the substrate was controlled.  The substrate was positioned near or just

inside the flame tip.  Type K and type B thermocouples were used to monitor the substrate

surface temperature and the flame temperature just above the substrate.  Flame

temperatures just above the substrate surface during deposition were in the range of

1000EC to 1650° C, while substrate temperatures were in the range of 800EC to 1150° C. 

Substrate temperature was measured by attaching a type K thermocouple to the back of

the substrate using Ceramabond high temperature ceramic adhesive.
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Solution Concentration

Yttrium 2-ethylhexanoate (Y 2-EH), zirconium 2-ethylhexanoate (Zr 2-EH) and

aluminum acetylacetonate (Al ac-ac) were used as precursors.  These compounds were

dissolved into toluene for total metal ion concentrations ranging from 0.001 M to 0.1 M.

Substrates 

Pieces of single crystal a-plane alumina, approximately 1 cm x 1 cm x 1 mm in size

were used as substrates.  These ceramic substrates were selected because of the high

temperatures necessary for the deposition of YSZ-alumina.  There were several

depositions performed with substrates of single crystal r-plane alumina, amorphous silica,

single crystal MgO, single crystal 9.5 mol% Y2O3-ZO2 and polycrystalline alumina.  These

other substrates were used in the development of the deposition technique for the YSZ-

alumina combustion CVD films.

Film Materials

Film thickness

Based on a minimum indentation depth of 20 nm and the guideline that the film

thickness be 5 to 10 times the indentation depth, the film thickness were greater than 0.8

µm, to avoid the influence of the substrate on the films’ mechanical properties.  Coatings

were deposited on substrates using the parameters shown in Table 1.
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Table 1:  Deposition Parameters

Solvent Toluene

Precursors:

        

Yttrium 2-EH1

Zirconium 2-EH
 Aluminum acac2

Solution Flow Rate 4 ml/min

Concentration of Precursor Solution:   0.002 M

Nebulizer Proprietary

Oxidizer Oxygen

Oxidizer Flow Rate 20 lpm

Deposition Rate 1.8-2.5 µm/hr

Flame Temperature 1350 - 1650°C

Substrate Temperature 800 - 1150°C

Substrate a-plane alumina

Pilot Flame Fuel Hydrogen

Deposition duration 30 min
12-ethylhexanoate
2acetylacetonate

YSZ-alumina Components

The amount of yttria in the zirconia was 8 wt% or 4.5 mol%.  This is the most

common yttria partially stabilized zirconia compound used and studied in TBC’s.  The

amount of alumina present in the YSZ was varied between 0% and 100% with the
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Figure 18 Alumina-Zirconia Phase Diagram.

zirconia-alumina eutectic, which occurs at 57.4 wt% Al2O3 (62.8 mol%), as one of the

testing points (refer to the phase diagram in Figure 18).  The specific mole percentages of

alumina used in the depositions were 0, 15, 30, 45, 62.8, 80 and 100%.
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Repeatability Study

Experience with the present combustion CVD nozzle has shown that several

factors may change the characteristics of the films deposited.   One factor was that the

nozzle tip (capillary tube) became clogged after numerous hours of depositions requiring

replacement of the nozzle tip.  The clogging of the nozzle tip was found to be due to the

deposition of alumina on the inner surface of the capillary tube.  It was observed that a

new nozzle tip had some flame characteristics different from the previous tip, such as the

direction of the flame and completeness of combustion of the flame.  Each new nozzle tip

(capillary tube) was prepared by polishing both ends with silicon carbide grinding paper 

in order to give a round, clear open end for unrestricted flow of the precursor.  Upon

installation the aerosol produced by the nozzle tip may not be centered among the pilot

flames because of the mechanical polishing and the design of the holder for the nozzle 

tip.  Centering of the aerosol was accomplished manually.  This hand polishing and hand

manipulation of the nozzle tip is not exactly reproducible, however to be as reproducible

as possible, the nozzle tip’s geometry was adjusted until the general appearance of the

aerosol and the flame was similar to previous depositions.  

Another factor was that the position of the substrate in the flame was adjusted

based on the flame temperature just above the substrate surface.  In other words, the

substrate was moved in the flame until a desired temperature was reached.  Because

measurement of this flame temperature was not extremely precise, ±50EC, the position of 
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the substrate in the flame was not exactly the same for different depositions performed at

the same temperature.  These factors may affect the characteristics of the films deposited.

In order to provide confidence in the ability to deposit consistent thin films via

combustion CVD, a repeatability study was conducted.  Several substrates were coated

with one type of film under as similar as possible conditions.  The differences from one

deposition to the next was movement and reconfiguration of the apparatus.  This included

removing, adjusting and replacing the nozzle tip.  Characterization and mechanical testing

of these films were performed to show that a film grown on a substrate under a certain set

of conditions on one particular day could be reproduced.

Characterization

Films were characterized with various materials analysis tools.  A Phillips θ/2θ

Automated Powder Diffractometer was utilized for phase identification and residual 

stress analysis. A Hitachi S-800 scanning electron microscope (SEM) was used to

characterize film morphology and film thickness.  Using secondary electron imagery the

SEM allowed the microstructures to be determined in a relatively straightforward manner. 

The samples with deposited films were cross-sectionally fractured to expose the

microstructure of the film and substrate. This cross-section allowed the examination of 

the growth morphology and direct measurement of the film thickness.  Back scatter
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 electron imagery was used for compositional analysis as well as energy dispersive

spectroscopy (EDS).

A Hitachi HF-2000 Field Emission Transmission Electron Microscope (TEM) was

used for more detailed studies of microstructure, grain orientation, and composition. 

Electron diffraction was used to identify phases, to evaluate grain crystal structure and to

verify possible crystal orientation preferences.  Grain sizes were measured from the dark

field images obtained on the TEM.  The composition of individual grains examined within

the TEM were obtained using oxygen-sensitive EDS.  Several TEM specimens were

prepared by scraping the film with a clean sharp stainless steel blade onto a copper TEM

specimen grid.  Other TEM specimens of thin plan-views and cross-sections were

prepared using standard thin foil preparation techniques.

Mechanical Properties Measurements

Microhardness

The microhardness of all the YSZ-alumina films deposited via combustion CVD

were measured with the Nanoindenter® at Oak Ridge National Laboratory’s High

Temperature Materials Laboratory, Oak Ridge, TN.  Several indentations were made on

each sample for a good statistical sampling.  The Berkovich indenter tip was used for each

sample.  The usual setup was an array of 15 indentations in a 5 by 3 matrix with a 15µm

spacing, see Figure 19.  As described in a previous section, each indentation 
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15µm

15µm

Figure 19 Indentation matrix for hardness and elastic modulus
measurements.

produced a load versus displacement curve.  From this curve, the maximum load and the

effective plastic depth were used to determine the hardness based on the equations

presented above.

Elastic Modulus

The elastic modulus was also determined using the Nanoindenter®.  As discussed

in Chapter II, from the load versus displacement plot, the slope of the unloading curve was

used to find the modulus.  The same indentations used for measuring the hardness were

used to determine the elastic modulus.
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Figure 20 Indentation Matrix for Fracture Toughness Measurements.

Fracture Toughness

Fracture toughness of the thin films was evaluated using additional indentations

made in each sample.  The cube-corner indenter tip was used to crack the films because

preliminary indentations with the Berkovich indenter tip did not cause cracking.  Several

indentations were made at various loads.  The usual setup was five indentations at 400

mN, five at 250 mN, five at 100 mN, five at 50 mN and five at 25 mN.  This resulted in a

5 by 5 matrix of 25 indentations, Figure 20.  Some of the films and substrates tested would

not crack at the lowest loads.  The heaviest loads produced indentations which were
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necessary for locating the matrix of indentations in the scanning electron microscope.  For

the combustion CVD coated specimens the smaller indentations do not penetrate through

the film into the substrate, which provided a truer measure of the film properties than the

heavy indentations which broke completely through the film.  Crack initiation in the films

was from the points of the indentations and continued radially outward from the center of

the indentation.  In determining the fracture toughness, when no cracks developed from

the lighter loads, the indentations from higher loads which did produce cracks were used. 

The calculation of the fracture toughness was derived from the crack length as described

in Chapter II.
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CHAPTER IV

RESULTS

Deposition Parameters

Over 200 depositions were made during the development of the YSZ-alumina thin

films used in this research.  The appropriate parameters used for the depositions were

obtained within the first eighty or so runs.  Table 1 from Chapter III shows the deposition

parameters used in this study.  The optimum deposition flame temperature found was

1550EC ± 50E. while the substrate temperature was 1050EC ± 10E.  The results presented

here will detail the characterization of the deposited films and their mechanical properties

obtained from the Nanoindenter®.  The images and data shown will only be from

representative samples.

Characterization 

Scanning Electron Microscopy

The bulk of the information gathered for this research was from SEM micrographs. 

The morphology of the films was examined and characterized by secondary electron SEM

imaging as was the observation and measurement of the cracks required for fracture

toughness determination.  Figure 21 shows the plan-views and cross-section views 
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of the films made for each of the compositions studied (0, 15, 30, 45, 62.8, 80 and 100

mol% alumina).   

The deposition rates, Table 2, were determined from the film thicknesses measured

from the SEM images and the total deposition time.  The deposition rate is seen to

increase from a rate of 1.3 ± 0.10 µm/hr for the deposition of pure YSZ to a maximum

rate of 1.7 ± 0.10 µm/hr for the eutectic composition and to then fall off to 0.76 ± 0.18

µm/hr for pure alumina.  The film thickness was also a significant factor as mentioned in

the background section of this thesis.  The film had to have a large enough thickness such

that the substrate did not influence the indenter.  It was also found that actual thickness of

the 100% alumina film was difficult to judge.  This was because both the film and the

substrate were alumina making the film-substrate interface indistinct.  This may be a 

Table 2:  Film Deposition Rates

Precursor mol% Precursor vol% Deposition Rate, (µm/hr)

0 0 1.3 ± 0.10

15 16.7 1.4 ± 0.15

30 32.7 1.6 ± 0.20

45 48.1 1.6 ± 0.08

62.8 65.7 1.7 ± 0.10

80 81.9 1.5 ± 0.09

100 100 0.76 ± 0.18
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factor in the relatively low deposition rate measured at this composition. Several

observations in addition to film thickness may be noted from the figures:  the surface

roughness of the films and the distribution of the two phases.  Surface roughness of the

films was an important factor in the Nanoindenter® work, as the smoother the film, the

more reliable the results and the quicker the data acquisition.

The two distinct phases of YSZ and alumina were visible in secondary electron

images, see Figure 21.  However, they were very distinct in backscatter electron images,

see Figure 22, which shows the plan-views for both the secondary electron images and

back-scatter electron images for every two-phase film.  The lighter atomic weight

elements (aluminum from the Al2O3) appear dark, while the heavier elements (yttrium and

zirconium from the YSZ) appear light in contrast.  For ease of discussion the majority

phase of the film will be referred to as the matrix and the minority phase will be the second

phase, i.e. for volume percent less than 50% alumina, the matrix is YSZ and the second

phase is alumina and for greater than 50% alumina, the matrix is alumina and the second

phase is YSZ.   It is noted that for the lower alumina compositions the second phase of

alumina appears as swirls, see Figure 22a,  b and c, while for higher alumina content films

the second phase of YSZ appears more uniform as spherical particles, see Figure 22e, for

example.
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Figure 22 SEM micrographs of YSZ-alumina films, secondary (left
image) and backscatter electron (right image) images; 
a) 15 mol% Al2O3, b) 30 mol% Al2O3, c) 45 mol%
Al2O3, d) 62.8 mol% Al2O3, and e) 80 mol% Al2O3.
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Figure 22 Continued,  d) 62.8 mol% Al2O3, and e) 80 mol% Al2O3.
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Figure 23 SEM micrographs of YSZ-62.8mol% Al2O3 films deposited at 
a) 1550EC and  b) 1650EC flame temperature.

During the development of the YSZ-alumina films it was noted that the second

phase particle size was different for different deposition temperatures, particularly for the

eutectic composition of 62.8 mol% alumina.  Figure 23 shows the 62.8 mol% alumina

films deposited with flame temperatures of 1550EC and 1650EC.  Again for these images

the light regions were YSZ while the darker matrix was alumina.  The YSZ regions for the

1550EC deposition were smaller than that of the 1650EC deposition.  To help analyze this

phenomenon, a series of anneals at 1500EC for 2.5 hrs, 5 hrs and 10 hrs was performed on

the 62.8 mol% alumina film deposited at 1450EC, see Figure 24.  As the anneal time

increased the size of the YSZ particles increased and the distance between particles

(nearest neighbor distances) also increased.
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Figure 24 SEM micrographs of YSZ-62.8mol% Al2O3 films annealed at
1500EC for a) 0 hrs,  b) 2.5 hrs, c) 5 hrs and d) 10 hrs.
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Figure 25 Particle sizes for 62.8 mol% Al2O3 anneal series.

Quantitative image analysis was performed on these images yielding the average

particle sizes, see Figure 25, and the three nearest neighbor distances for the YSZ

particles,  Figure 26.  The error bars represent two standard deviations (or ± one standard

deviation) of the particle size and distance for each figure.  The error bars on the sample

that was not annealed data point cannot be discerned on the figure because they were very

tight compared to the error bars for the other anneal times.  
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Figure 26 Nearest neighbor distances for 62.8 mol% Al2O3 anneal series.

It can be seen from Figure 25 that the particle size increases with anneal time at

1500EC to maximum of ~ 0.43 µm.  Additional annealing did not significantly alter the

particle size.  The particle spacing (nearest neighbor distance) as shown in Figure 26

continuously increased as the annealing time increased.
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Figure 27 APD x-ray diffraction pattern of a 62.8 mol% Al2O3 film
deposited onto amorphous silica.

X-ray Diffraction

An x-ray diffraction θ-2θ scan from an APD for a 62.8 mol% alumina film

deposited on an amorphous silica substrate is shown in Figure 27.  It was found that x-ray

analysis of the films produced diffraction peaks for the YSZ but did not produce

diffraction peaks for the alumina.  The amorphous nature of the substrate was easily

apparent by the size of the background and the characteristic hump at 20E 2θ.  The

zirconia powder diffraction card peaks were noted on the figure and matched with the

YSZ peaks in the scan.  However, no peaks were present from the alumina in the film.
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Figure 28 APD x-ray diffraction pattern of a 100% YSZ film deposited
onto a-plane alumina.

An APD scan of a 100% YSZ film was performed to identify the phase of the YSZ

film, Figure 28.  Indexing this scan provided only verification that the film contained

zirconia, in either the cubic or tetragonal phase.  If the phase of YSZ was tetragonal, the

the faint {1 1G2}-type reflections would be present.  There was no evidence of this peak in

the x-ray scan.  Proper identification of the phase was performed later via TEM electron

diffraction.
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Residual Stress

Film Stress:  Film stress, σF (Pa), in the film was calculated directly from the

coefficient of thermal expansion differences between the film and the substrate with this

equation [2]:

where αs = coefficient of thermal expansion (CTE) for the substrate (EC-1),

αf = coefficient of thermal expansion for the film (EC-1),

νf = Poisson’s ratio for the film,

∆T = difference between the deposition temperature (substrate temperature) and

room temperature (EC), Troomm - Tsubstrate.

 and Ef = elastic modulus of the film (Pa).

The film properties are determined from a simple rule of mixtures and the volume

percent  of the second phase particle, Vf:
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q V
E
Af

m= −2 βα * (27)

where the subscript m if for the matrix and p is for the second phase particles.  

Literature values for the materials properties of Poisson’s ratio, CTE and elastic modulus

are shown in Table 3 .

Table 3:  Material Properties

Material ν, α, x 10-6, EC-1 E, GPa

Al2O3
[52] 0.27 7.9 390

YSZ[53] 0.31 10.4 200

Assuming a linear distribution of stress from maximum at the interface of the

substrate and film to zero at the surface of the film (zero because the film is unrestrained

at the surface), the reported average film stress of the deposited films is half of the

maximum, Table 4.  The results of film stress calculation show that the stress was in

tension for all compositions.  The maximum was near 100% YSZ at 9 vol% alumina while

the minimum was at 100% alumina, Figure 29.

Matrix Stress:  An additional stress in the film is the matrix stress.  Matrix stress is

the stress due to the CTE mismatch between the matrix material and the second phase

material.   The matrix stress, q (Pa), was determined from Taya et al. [54] as follows:
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( )( )( ) ( )A V Vf m f m= − + + + −1 2 1 3 1β ν β ν (29)

( )α α α* = −p m T∆ (30)

and β (dimensionless) is a ratio of elastic moduli given by 

The term A (dimensionless) is given by

and α* (EC-1)is 
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with the Poisson’s ratio, elastic modulus, coefficient of thermal expansion, change in

temperature as defined previously.  

The resulting matrix stress for the films is also shown in Table 4.  The results show

that the matrix stress was in tension for the low volume percent alumina and in

compression for the high compositions of alumina.  The matrix stress was zero at the

100% YSZ and the 100% alumina compositions with a maximum at 45 mol% alumina and

a minimum at 62.8 mol% alumina.  Figure 30 shows the matrix stress versus the alumina

composition.

Table 4:  Film Stress Determined by CTE Mismatch

Precursor
mol%
Al2O3

Film stress, σF
(MPa) 

Matrix
stress, q
(MPa)

Film and
matrix stress,
σF + q, (MPa) 

0 300 0 300

15 301 77.9 379

30 282 148.0 430

45 246 211 457

62.8 184 -239 -55.1

80 107 -119 -13.1

100 0 0 0
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Figure 30 Film stress due to matrix/second phase CTE mismatch versus
Al2O3 content in films.

Transmission Electron Microscopy

Because of the inability to see alumina peaks with x-ray diffraction and the small

size of the second phase particles in the unannealed 62.8 mol% alumina film, 

transmission electron microscopy was performed.  Specimen preparation was performed

by thinning the substrate to ~100 µm thick with a hand grinder and 15 µm, 9 µm and 6 

µm diamond polishing paper.  The thinned specimen was then dimple grinded with a

diamond wheel and 6 µm, 3 µm, 1 µm and 1/4 µm grit diamond paste until its center

thickness was ~35 µm.  Final thinning was performed using the Gatan Precision Ion

Polishing System at 5 keV and a 6E milling angle.  The specimen was milled until a small 



71

hole was formed in the center of the sample.  With the geometry of the ion milling at

6Eand knowing the thickness of the film was ~ 0.75 µm, it was safe to assume that the

TEM results were from the film only with no substrate material in the analysis.  

The TEM work detailed the small second phase particles and provided electron

diffraction patterns of alumina (as well as the YSZ).  Figure 31 is a TEM brightfield image

showing a 62.8 mol% alumina film.  The morphology of this film can be seen to have 10

nm to 20 nm sized YSZ particles (dark) in an alumina matrix (light).  This film can be

compared to the SEM secondary electron and backscatter electron images of  the same

composition film, Figure 22d.  In Figure 22d, the fine morphology is barely visible, but

nonetheless present as evidenced by Figure 31.  Figure 32 is an electron diffraction pattern

for the 62.8 mol% alumina film.  The diffraction pattern shows spots in discontinuous

rings which were indexed as alumina and zirconia.  Figure 33 is the [ 1G11] zone axis electron

diffraction pattern for the YSZ.  The diffraction pattern tilted onto the [ 1G11] zone axis

allows the {1 1G2}-type reflections to be seen, if the phase is tetragonal.  Indexing the pattern

confirmed the {1 1G2}-type reflections thus verifying the non-transformable tetragonal, TN,

phase of zirconia.
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Figure 31 TEM brightfield image of 62.8 mol% alumina film
showing 10 nm to 20 nm sized YSZ particles (dark) in
an alumina matrix (light).
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Figure 32 TEM electron diffraction pattern for 62.8
mol% alumina film.

Figure 33 TEM electron diffraction pattern, [ 1G11] zone
axis for YSZ in the films.
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Figure 34 TEM EDS spectrum for 62.8mol% Al2O3 film.

Energy Dispersive Spectroscopy

EDS in the TEM was also used to aid in evaluation of the composition of  the

deposited films, see Figure 34.  Quantification of the films from EDS was performed using

the ZAF standardless method for alumina and YSZ.  However, a standard was employed

in determining the amount of yttria in the YSZ.  The standard, obtained from Ceries, Inc.,

202 Boston Rd, N. Billerica, MA 01862, was 9.795322 mol% Y2O3 (or 17.84 mol%

YO1.5) with the balance being zirconia (ZrO2).  EDS performed on a TEM specimen

prepared from the standard resulted in a measured yttria content of 10.78713 mol% (or

19.47125 mol% YO1.5).
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The amount of yttria in the films was determined by the following linear calibration

equation [55]:

where ROIX= Region of Interest (area under peak X) in total counts.  The Kα peak was

used for both yttrium and zirconium.  Table 5 shows the EDS quantitative analysis results.

Table 5:  TEM-EDS Quantitative Analysis

Precursor
mol% Al2O3

mol% Y2O3 mol% ZrO2 mol% YSZ mol% Al2O3

0 5.70 94.30 100 0

15 6.16 93.84 85.9 14.1

30 6.64 93.36 70.5 29.5

45 7.81 92.19 54.6 45.4

62.8 6.68 93.32 36.9 63.1

80 7.76 92.24 18.9 81.1

100 0 0 0 100
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Quantitative Image Analysis

Quantitative image analysis was performed on all two-phase films.  Backscatter

and TEM images were used for this work.  For each composition the average particle size

and area percentage (approximately equivalent to volume percent assuming uniform

distribution of the two phases in the third dimension) were determined.  For the low

percentages of alumina (15, 30 and 45 mol% Al2O3), the second phase (alumina) was in

the form of swirls as opposed to distinct particles.  In these cases the calculated particle

size was essentially an effective particle size, derived from the assumption that the second

phase was uniformly distributed as round (spherical in three dimensions) particles.  

For the compositional range studied, Table 6 shows the particle size and area

percentage (~ volume percent) from quantitative image analysis along with the mole

percentage determined from EDS.  Table 7 shows the particle size, area percentage (~

volume percent) from quantitative image analysis and the mole percentage determined

from EDS for the 1500EC anneal series on the eutectic composition.  The volume

percentage and area percentage had a significant standard deviation.  Examination of the

plan-views of these films tilted in the SEM showed that the second phase (YSZ in this

case) also grew out of the plane of the alumina matrix, see Figure 35.  This may account

for the deviations in calculated volume percent.
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Table 6:  Film Composition and Particle Size via Quantitative Image Analysis and TEM-
EDS Analysis

Precursor
mol% Al2O3

Precursor
vol% Al2O3

 Particle Size,
(µm)

 Area % Al2O3
(~vol%)

TEM-EDS 
mol% Al2O3

0 0 n/a n/a 0

15 16.7 1.27 ± 0.18 12.8 ± 4.9 14.1 ± 2.5

30 32.7 0.608 ± 0.18 28.4 ± 9.1 29.5 ± 2.1 

45 48.1 0.371 ± 0.33 57.1 ± 11.0 45.4 ± 2.9

62.8 65.7 0.131 ± 0.087 69.2 ± 5.5 63.1 ± 4.4

80 81.9 0.116 ± 0.035 83.9 ± 4.5 81.1 ± 3.9

100 100 n/a n/a 100

Table 7:  Eutectic Composition Anneal Series:  Particle size and Area/Volume Percentage 

Precursor
mol% Al2O3

Precursor
vol% Al2O3

Anneal
Time, (hr)

Particle
Size, (µm)

 Area %
Al2O3 (~vol%)

TEM-EDS
mol%
Al2O3

62.8 65.7 0 0.131 ±
0.087

70.4 ± 3.6 63.1 ± 4.4

62.8 65.7 2.5 0.284 ±
0.078

65.5 ± 4.7 67.7 ± 1.7

62.8 65.7 5 0.435 ±
0.151

59.8 ± 4.7 65.5 ± 1.7

62.8 65.7 10 0.464 ±
0.167

68.4 ± 5.7 58.3 ± 2.1
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Figure 35 High angle tilt SEM image of 62.8mol% Al2O3
film with 10hr anneal showing the growth of the
YSZ particles out of the plane of the matrix.
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Nanoindentation

In presenting the results from the Nanoindenter® average values of harness, elastic

modulus and fracture toughness were obtained from the numerous indents performed on

each specimen.  For the hardness and elastic modulus results, the average was from the

fifteen indents made with the Berkovich tip.  The error bars came from the different values

obtained from each of the fifteen indents per sample.  For example, on each particular

sample, there were fifteen indents made with the Berkovich tip.  Each indent produced a

load-displacement curve and a hardness value and an elastic modulus value were obtained

as described in the background chapter.  For the fracture toughness results, the average

was from the three cracks formed from each of the twenty-five indents made with the

cube-corner tip.  The error bars were from the different lengths of the cracks.  For

example, on each particular sample, there were 25 indents made with the cube-corner tip. 

Each indent produced up to three cracks and in turn up to three fracture toughness values.

In accordance with the equation for fracture toughness developed by Lawn et al.

[47] (which was used here), not all cracks formed by an indent were used in determining

the average fracture toughness for a specimen.  As described in Chapter II, only “well-

developed” radial cracks were measured and included, i.e. cracks shorter than ~ 2 times

the indent size were excluded and lateral cracks were excluded.
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Bulk Material Specimens

The mechanical properties of the films were determined via the Nanoindenter®. 

To provide a basis for indentation of the films, the procedure was developed by indenting

various bulk material samples.  Table 8 shows the bulk materials used.

Nanoindentation of these materials gave three important mechanical properties:

hardness, elastic modulus and fracture toughness.  As described in Chapter III, the 

hardness and elastic modulus were found directly from the Nanoindenter®’s load

displacement curves using the continuous stiffness method.  Fracture toughness

determination additionally required SEM examination of each specimen to measure crack

lengths.  Figure 36 shows the results of the hardness and elastic modulus versus the 

Table 8:  Bulk Materials Tested with Nanoindentation.

Material Crystal Structure

Al2O3 1 a-plane rhombohedral

Al2O3 1 r-plane rhombohedral

Al2O3 polycrystalline

ZrO2 (9.5mol% Y2O3) 2 cubic (100)

MgO 3 polycrystalline

SiO2 4 amorphous
1 Saphikon Inc., 33 Powers St, Milford, NH 03055
2 Zirmat Corp., P.O. Box 968, Westford, MA 01886
3 Canadian Substrate Supplies Ltd., M.P.O. Box 2597, Niagara Falls, NY 14302
4 Quartz Scientific, 819 T East St, Fairport Harbor, OH 44077
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indentation depth for the bulk samples.  Figures 36a and b show the six different 

materials tested.  Figures 36c and d show three different tests of a-plane alumina and two

different tests of amorphous silica; shows the repeatability properties measurements for

the bulk materials.  And Figures 36e and f show the a-plane alumina tested at three

different orientations with respect to the cleavage plane.  

All hardness and elastic modulus data from these substrates had very tight standard

deviations, see Figure 36a and b.  The hardness and modulus values for the three a-plane

alumina were within two standard deviations from each other (numbers 1 through 3 in

Figure 36c and d) as were the two silica tests (numbers 1 and 2 in Figure 36c and d).  The

r-plane alumina and polycrystalline alumina were also within two standard deviations from

that of the a-plane alumina, as seen in Figure 36c and d.

Figure 36e and f shows the set of tests performed on a-plane alumina where the

orientation of the single crystal was set at different angles from the cleavage plane:  0E,

30E and 90E.  The modulus did not vary with this change of orientation, but the hardness

was significantly higher (much greater than two standard deviations) for the 0E orientation

compared to the 30E and 90E tests.  Typical cracks measured for determination of the

fracture toughness of the bulk materials can be seen in Figure 37.  The resulting values of

the fracture toughness are shown in Figure 38.  All of the a-plane substrates produced

very similar toughness values (within one standard deviation) no matter what the

orientation of the indenter.
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Figure 36 Hardness and elastic modulus for various substrates and substrate
orientation:  a) and b) comparison of different materials, c) and d)
display of repeatability of tests and e) and f) comparison of three
orientations on one material.



83

0

200

400

600

800

0 50 100 150 200 250
Indentation depth, nm

E
la

st
ic

 M
od

ul
us

, G
Pa

a-plane alumina (1) a-plane alumina (2)
a-plane alumina (3) r-plane alumina
Silica (1) Silica (2)

0

10

20

30

40

0 50 100 150 200 250
Indentation depth, nm

H
ar

dn
es

s, 
G

Pa

a-plane alumina (1) a-plane alumina (2)
a-plane alumina (3) r-plane alumina
Silica (1) Silica (2)

c

d

Figure 36 Continued, c) and d) comparison of repeatability,



84

0

200

400

600

800

0 50 100 150
Indentation depth, nm

E
la

st
ic

 M
od

ul
us

, G
Pa

0 degrees
30 degrees
90 degrees

20

25

30

35

40

0 50 100 150
Indentation depth, nm

H
ar

dn
es

s, 
G

Pa

0 degrees
30 degrees
90 degrees

e

f

Figure 36 Continued, e) and f) comparison of three orientations on a-plane Al2O3.



85

Figure 37 Indentations in substrates: a) a-plane Al2O3, b) r-plane Al2O3, c)
polycrystalline Al2O3, d) MgO, e) amorphous SiO2 and f) YSZ.
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Figure 38 Fracture toughness for various substrates.
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Figure 39 ‘Good’ load-displacement curve showing a smooth increase
then decrease in the load with displacement of the indenter tip.

YSZ-alumina

Data from Indents:  In nanoindentation it was found that certain films would

produce good data while other films would result in bad data.  Bad data is defined as an

indent that does not produce a load-displacement that has a smooth increase in load with

an increase in displacement followed by a smooth decrease in both.  Figure 39 is an

example of a smooth load-displacement curve, termed a ‘good’ indent.  If the indenter

encountered a pore just beneath the surface of the film, the indenter displacement would

increase with no change in load.  Figure 40 shows a typical load-displacement curve where

this phenomenon occurred.  There was a significant flat plateau region, as the indenter

displacement increased without an increase in load.  This load-displacement curve was an

example of a ‘bad’ indent.
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Figure 40 ‘Bad’ load-displacement curve showing plateaus of indenter
displacement without an increase in load.

Another type of ‘bad’ indent may be caused by significant surface roughness of the

film or other discontinuity in the film, see Figure 41.  This load-displacement curve

showed at initial contact the indenter touched the surface, the load increased and

displacement increased.  Three points on the plot (approximately 45 nm, 90 nm and 175

nm indent depth) show the load decreasing as the displacement increased. 
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Figure 41 ‘Bad’ load-displacement curve showing erratic behavior
possibly due to  slippages of the indenter tip on a rough surface
or discontinuities in the film.

Solution Concentration:   Figure 42 shows two films deposited under the same

conditions except for the concentration of precursors in the solvent, 0.002 M and 

0.005 M.  The higher concentration deposition had a much rougher appearing surface. 

Figure 43 shows the hardness, elastic modulus and fracture toughness for these films. 

There was a large difference in the hardness and modulus for the two concentrations

throughout the range of compositions.  However, the fracture toughness was only

significantly different at low amounts of alumina (0 and 15 mol% alumina) while it was the

same at higher alumina content (30 and 45 mol% alumina).
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Figure 42 SEM micrograph of 100% YSZ film deposited with solution
concentrations of a) 0.002M and  b) 0.005M, and a 30 mol% 
Al2O3 film deposited with solution concentrations of c) 0.002M
and d) 0.005M.
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Repeatability Study:  In order to determine the reliability of the deposition process

and the indentation technique, five depositions each were made at two different

compositions 100% YSZ and 30 mol% alumina then tested with the Nanonindenter®. 

The general appearance of each film (for each composition) and the thickness of each film

did not vary noticeably from one to the next.  The mechanical properties of each film did

have slight variations as can be seen in Figures 44 and 45.

Figure 44 shows the hardness, elastic modulus and the fracture toughness

determined from nanoindentation for the five 100% YSZ films (numbered 1 through 5). 

Figure 45 shows the same properties but for the 30 mol% alumina films (numbered 1

through 5).
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YSZ films.
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Figure 45 Hardness, elastic modulus and fracture toughness for 30mol%
Al2O3 films.



94

0

1

2

3

4

0.0 0.1 0.2 0.3 0.4 0.5
Particle size, µm

K
c,

 M
Pa

 m
0.

5 

2.5 hr

5 hr

10 hr
Anneal time:
0 hr

Figure 46 Fracture toughness of 1500EC annealed series of 62.8 mol%
Al2O3 films.

Anneal Series: For the 1500EC annealed series of films deposited at 62.8 mol%

alumina (the eutectic composition of YSZ-alumina), the resulting fracture toughnesses are

shown in Figure 46.  It was found that the fracture toughness increases significantly as the

particle size increases and then drops suddenly near the 0.45 µm particle size (between the

5 hr and 10 hr anneals). 
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Compositional Study:  Mechanical properties for the full series of YSZ-alumina

compositions are shown in the next few figures.  Typical images of the indents and

cracked films made by the cube-corner tip are shown in Figure 47.   The cracks in the

100% YSZ and the 15 mol% alumina films are easily visible, see Figure 47a and b.  The

resolution of the images here make it difficult see the cracks for the other compositions. 

Figure 48 presents the hardness and modulus values extracted from the load-

displacement curves and the CSM technique as described in Chapter II versus indentation

depth.  These figures show that there was not much variation in properties with the depth

of the indentations.  For the hardness, the100% alumina composition was the only

composition that changed more than a standard deviation from the shallowest indent depth

to the deepest.  All other compositions were well within one standard deviation for all

indent depths.   For the elastic modulus, each composition except the 100% alumina

composition increased (nearly one standard deviation) as the indentation depth increased. 

Figure 49 is the hardness and modulus versus alumina content.  Both of these

properties values decreased slightly then rose as the alumina content increased.  This was

very significant in the hardness results as opposed to the elastic modulus.   Figure 50

provides the final results of the fracture toughness data, which were the average of results

from two sets of specimens.  It is observed that the toughness increases to a maximum at

30 mol% alumina where it reaches a plateau and decreases slowly to 100% alumina. 
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Figure 47 SEM micrographs of cube-corner indentations in  YSZ-alumina
films;  a) 100% YSZ, b) 15 mol% Al2O3, c) 30 mol% Al2O3, d)
45 mol% Al2O3, e) 62.8 mol% Al2O3, f) 80 mol% Al2O3, and g)
100 mol% Al2O3.
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Figure 47 Continued, e) 62.8 mol% Al2O3, f) 80 mol% Al2O3, and g) 100
mol% Al2O3.
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Figure 48 Hardness and elastic modulus vs indentation depth for entire
compositional range studied.
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Figure 50 Fracture toughness vs the Al2O3 amount in the film for entire
compositional range studied.

Confidence in Fracture Toughness Data

Because of the significant standard deviations found with the fracture toughness

data there was concern regarding the reliability of the data.  To provide additional

confidence in the measured data, the distribution of the fracture toughness values for each

composition was plotted to determine that the data was a normal distribution (Gaussian)

and not bi-modal or multi-modal.  Figure 51 shows the results of these histograms. 

Although the sample sizes were not large for a few of the compositions, the results were

fairly normal in distribution.
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Figure 51 Histograms showing frequency of indentations with certain fracture
toughness for each Al2O3 composition.

The second step in testing the confidence of the data was the reliability test (t-test). 

A t-test was performed on the data to determine if the average fracture toughness at 
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one composition was indeed significantly different from the fracture toughness at other

compositions.  The following paragraphs detail the t-test form that assumes the variances

of two ranges of data are unequal (it is referred to as a heteroscedastic t-test). The

statistics involved require the testing of a hypothesis, Ho, and either the acceptance of that

hypothesis or the rejection of the hypothesis in favor of an alternate hypothesis, Ha.  Given

that xG1, xG2 are the means for two ranges of data, the two hypothesis are the following:

Ho:  xG1  =  xG2  or  Ho: xG1 - xG2 = 0  i.e., there is no significant difference in the

means,

Ha:  xG1  =/   xG2  or  Ho: xG1 - xG2 =/  0  i.e., there is a significant difference in the means.

The test statistic (xG1 - xG2) was transformed into a t-score, tov, by the following equation:

where S1, S2 = standard deviation for each range of data,

n1, n2 = sample sizes for each range of data, 

Sp = pooled standard deviation (weighted average of the standard deviations of the

two ranges of data).  The pooled standard deviation was given by the next equation:
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To test the hypothesis, the observed t-score, tov, was compared to the critical t-score, tcv,

from the known statistical tables for the t-test.  In order to determine the critical t-score,

tcv, the degrees of freedom, dof, and a confidence level were chosen.  The degrees of

freedom for the t-test is usually given as n1 + n2 - 2, but because the variances (S1
2 and S2

2)

or standard deviations (S1 and S2) were not equal, dof was actually smaller.  The following

equation was used instead  

A commonly accepted confidence level is 95%, which implies that the level of significance,

α, is 5%.  Because the hypothesis was only concerned that the two means were different, a

two-tailed test was used.  Had the hypothesis been such that the concern was if the second

mean was larger than the first, then a one-tailed test would have been used.  Using α =

0.05 (or 0.025 for each tail) and the degrees of freedom from equation (34), the tables

provided the critical t-score, tcv.  

The final determination of the t-test was performed by comparing the two t-scores,

tov and tcv.  If |tov | > | tcv | then Ho was rejected and Ha was accepted; i.e. there was a

significant difference in the means of the two ranges of data.  However if |tov | < | tcv | then 
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Ho was retained and Ha was rejected; i.e.  there was no significant difference in the means

of the two ranges of data.

Applying the t-test to the repeatability study, it was found that the hardness and

elastic modulus that were measured were found to be statistically the same (using the t-

test) for each of the five different depositions at each composition.  However, the fracture

toughness values for the set of five films for both compositions were somewhat different,

refer to Figures 44 and 45.  For the 100% YSZ set, the fourth deposition was found to be

statistically different (using the t-test) from the second and third depositions but was

statistically the same as the first and fifth depositions.  For clarity, Table 8 shows the

fracture toughness combinations that were the same or different.  For the 30 mol%

alumina see Table 10 for the comparison chart of the t-test.  The first deposition was

different from the fourth but statistically the same as the second, third and fifth.  However,

the second and third were found to be statistically different.
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Table 9:  100% YSZ Fracture Toughness Repeatability Comparison Chart

Deposition Number

D
ep

os
iti

on
 N

um
be

r

1 2 3 4 5

1 n/a S N S S

2 S n/a S N S

3 N S n/a N S

4 S N N n/a S

5 S S S S n/a
    S = average Kc’s were statistically the same
    N = average Kc’s were not statistically the same

Table 10:  30 mol% Alumina Fracture Toughness Repeatability Comparison Chart

Deposition Number

D
ep

os
iti

on
 N

um
be

r

1 2 3 4 5

1 n/a S S N S

2 S n/a N N S

3 S N n/a N N

4 N N N n/a N

5 S S N N n/a
    S = average Kc’s were statistically the same
    N = average Kc’s were not statistically the same
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Applying the t-test to the compositional study fracture toughness data, it was

found that in the steep portions of the curve, Figure 50, neighboring compositions had

fracture toughness data that were significantly different; i.e. 0% alumina compared to 15%

and 80% to100%.  For the flat part of the curve neighboring compositions’ fracture

toughness’s were not statistically different; however the t-test did show that for several

composition combinations the data were significantly different; i.e. 0% compared to 30%,

15% to 45% and 62.8% compared to 100%.   Additionally for the two samples tested at

each particular composition, it was found that their means were not significantly different. 

Table 11 is a comparison table showing the fracture toughness results of the t-test

between each of the various compositions.

Table 11:  Compositional Study Fracture Toughness Comparison Chart

mol% Al2O3

m
ol

%
 A

l 2O
3

0 15 30 45 62.8 80 100

0 n/a N N N N N N

15 N n/a S N N N S

30 N S n/a S S S N

45 N N S n/a S S N

62.8 N N S S n/a S N

80 N N S S S n/a N

100 N S N N N N n/a
    S = means were statistically the same
    N = means were not statistically the same
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CHAPTER V

DISCUSSION

Primary Goal

The primary goal of this research was to use nanoindentation to determine the

relationship between the mechanical properties, in particular the fracture toughness, and

the amount of alumina present in combustion CVD grown YSZ-alumina thin films.  To

achieve this, the relationship of the combustion CVD process parameters with the amount

of alumina in the YSZ-alumina films, the film grain size, the film morphology, and the

films’ mechanical properties was also studied.  Finally, the mechanical properties of

several bulk materials were measured. 

Deposition Parameters

Optimization of the deposition parameters for obtaining quality films required

performing many depositions.  The goal was to obtain the smoothest, densest-appearing

films possible such that the nanoindentation results would be reasonable and acceptable;

the details of this are discussed in the following pages.  Considering the numerous trials

and problems, the SEM micrographs show that the films at each composition were

relatively smooth with no apparent voids, see Figures 21 and 22.
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The two most difficult deposition parameters to control were the aerosol size and

the temperature.  The aerosol size was controlled with a proprietary nozzle, so the details

cannot be discussed here.  But, in general, the problem was the nozzle would clog after

several depositions.  For each new nozzle tip the settings for an optimum aerosol size

distribution were slightly different.  The procedure for obtaining the optimum aerosol size

was also not ideal, such that each nozzle tip probably produced a unique aerosol size

distribution.  This resulted in the fact that each different nozzle tip produced a slightly

different flame behavior.

The other difficult parameter to control was the temperature of the deposition.  At

least two different temperatures were measured during each deposition, the flame

temperature just above the substrate and the substrate temperature.  Theses temperatures

differed somewhat; for example, a deposition at a substrate temperature of 850EC would

correspond to a flame temperature above the substrate of 1350EC.  The substrate

temperature was measured by a thermocouple attached to the substrate with Ceramabond,

a high-temperature ceramic adhesive.  The substrate temperature was used as the guide for

depositions.  It was a more reliable measure for the deposition, varying only on the order

of ± 10EC while the flame temperature measured above the substrate varied ± 50EC.
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Characterization

Scanning Electron Microscopy

Film Thickness:  The deposition rates for the films were determined by dividing the

average film thickness obtained at several points on SEM cross-sectional images by the

total deposition time.  The error involved in measuring the thickness was dependent on the

resolution of the SEM image.  The resolution was approximately 0.05 µm.  Film

thicknesses were on the order of 0.7 to 1.0 µm for the entire compositional range studied. 

The interface of the film with the substrate was very distinct for the YSZ and YSZ-

alumina films, but this was not so for the pure alumina film.  This was expected because

both the film and the substrate were the same material, alumina.  It was believed that the

film was growing epitaxially, which resulted in the indistinct interfaces found in the SEM

micrographs.  Because of the poor resolution, the thickness of the film could not be

determined accurately for the 100% alumina film; therefore the deposition rate for the

100% alumina film is not considered to be a very reliable result.

As mentioned in Chapter II, the thickness of the film was required to be at least 5

to 10 times the indentation depth in order to prevent any influence from the substrate on

hardness or elastic modulus data [34].  The indentation depths for the mechanical

properties measurements from the Nanoindenter® were from 45 nm for the shallowest

portions of the load displacement curve used in determining the hardness and elastic

modulus to 710 nm used for some of the heavier loaded cube-corner indentations for 
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determination of fracture toughness.  Compared to the film thickness were 0.7 to 1.0 µm,

there was no expected substrate influence on the hardness or elastic modulus.  The effect

of the substrate on the fracture toughness determination was unknown.  However, it was

found, for the most part, all the films’ fracture toughnesses were not a function of indent

load.  Regardless, the shallowest indents were still used as much as possible for fracture

toughness determination in order to avoid potential for substrate influences.

Anneal Series:  During the deposition of the eutectic composition (62.8 mol%

alumina) it was noted that the temperature had a significant effect on the final

microstructure.  The higher the deposition temperature, the more distinct the two phases

and the larger the size of the second phase (YSZ) particles.  In order to aid in quantifying

this phenomenon, subsequent depositions were made at different temperatures.  However,

this proved nonproductive because of the difficulties in controlling the deposition

temperatures.  Instead, a series of anneals was performed to help quantify the growth of

the second phase particles.  First it was found that the films were stable when annealed at

temperatures below 1450EC.  Both an anneal at 1200EC for 12 hrs and at 1450EC for 24

hrs were exhibited no noticeable change in the microstructure.  It was found that at

1500EC there was noticeable changes in the size and distribution of the second phase

particles in the alumina matrix.  A series of anneals at 1500EC was then performed for 2.5

hrs, 5 hrs and 10 hrs; the SEM micrographs of these films were shown in Figure 24. 
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Quantitative analysis of the resulting films showed that the particle size grew as the

anneal time increased as did the inter-particle spacing (nearest neighbor distances).   This

phenomenon is known as coarsening.  To analyze the coarsening the natural log of the

particle size radius was plotted versus the natural log of time, see Figure 53.  The slope of

this plot provided the indication as to the controlling mechanism for the coarsening.  A

slope of ½ is interface-controlled while a slope of a is diffusion-controlled.  The slope of

the data in Figure 53 is 0.452 which lies in between ½ and a.  Spherical particles are an

indication of diffusion-controlled coarsening, however the best fit line’s slope was

somewhat closer to interface-controlled coarsening of ½.  The rate equation follows the

following form with the power of the rate equation as the inverse of the slope from the ln r

vs ln t plot (diffusion-controlled coarsening rate equation is shown):

where r and r0 (µm) are the particle size radius and initial particle size radius respectively,

t (hrs) is time and k (µm3/hr) is the rate constant for diffusion-controlled coarsening. 

Plotting equation (35) results in a coarsening rate constant of 0.0013 µm3/hr for diffusion-

controlled or 0.0055 µm2/hr for interface-controlled as seen in Figure 52.  The measured

data seems to fit the diffusion-controlled coarsening rate better than the interface-

controlled.  However, these results may not be accurate because of the few data points 
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r2 = 0.0055t + 0.0049

r3 = 0.0013t + 0.0003

0

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12

Time, hrs

rn

r^2
r^3

Figure 52 1500EC anneal series coarsening rate plot, particle radius, rn versus
anneal time, t.
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available for the plots.  Additional data points should be acquired to provide more

accurate data on this coarsening phenomenon.

In accordance with the coarsening rate equation, the particle size grew significantly

between the 0 hr and 2.5 hr and between the 2.5 and 5 hr anneals, but did not grow

significantly between the 5 hr and the 10 hr anneals.  The particle spacing, however,

continued to increase.  Modeling of coarsening by others also predicts this behavior.  The

particle size and spacing results contribute to the fracture toughness of these films, as will

be discussed later in this Chapter.

X-ray Diffraction

Films were deposited onto a-plane and r-plane alumina substrates which made it

impossible to distinguish between any peaks from the substrate from those of the film. 

Because of this depositions of YSZ-alumina were made on amorphous silica substrates.  It

was observed that the alumina in the film would not produce x-ray diffraction peaks in the

APD.  Previous work by Hendrick [56] et al. also showed this problem.  In this earlier

work, it was shown by transmission electron diffraction that the alumina films deposited

were nanocrystalline θ-phase alumina for depositions at 800EC and 1000EC, and that at

1200EC, both θ and α-phases were codeposited.  Thus, the grain size of the θ-alumina film

deposited was so small that the APD could not resolve the peaks.  In order to determine

the presence and the phase of the alumina in the film produced in the current research,

TEM electron diffraction was also performed, as detailed in the next section.



114

X-ray diffraction of the 100% YSZ films deposited onto the alumina substrates

was very useful.  The results showed that zirconia was definitely present and was either in

the cubic or the tetragonal phase.  Because the addition of yttria to zirconia shifts the

zirconia peaks only a fraction of the its original d-spacing, the exact phase of the YSZ

could not be determined.  For example, zirconia with a 6.0 mol% YO1.5 addition (which is

tetragonal) would result in the [111] reflection shifted 0.16% (2.956 to 2.961D).  Instead,

electron diffraction in the TEM was used to find this information.  Table 12 [57, 58]

shows the effect of yttria content on the lattice parameters of zirconia.

Table 12:  Effect of Yttria Content on Zirconia Lattice Parameters

Phase Lattice Parameter, D Relationship of d-spacing to
lattice parameters

Tetragonal1 a = 3.5963 + 0.00227 x 1
2

2 2

2

2

2d
h k

a
l
c

=
+

+
c = 5.1892 - 0.00256 x

Cubic a = 5.1038 + 0.016628 x
1

2

2 2 2

2d
h k l

a
=

+ +

x = mol% YO1.5
1Lattice Parameters given here are for Primitive tetragonal; the PDF card is given
with Pseudofluorite indexing.  Meaning, for example, the PDF card’s  hkl of 111
becomes the primitive hkl of 101 using the transformation of hp = (hf + kf)/2, kp =
-(hf - kf)/2 and lp = lf.  The primitive hkl’s and lattice parameters are used in Table
12 to obtain the proper d-spacing.
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Residual Stress

Residual stress from CTE mismatch, both between the film and substrate (film

stress, σF) and between the matrix and second phase particles of the film (matrix stress, q),

was determined for each composition of films.  

Film Stress:  The film stress was a tensile stress for all compositions.  This was

because the CTE for the YSZ was higher than that of the substrate, alumina.  At the

deposition temperature both film and substrate were expanded.  Upon cooling the film

wanted to retract more than the substrate, but because of the large dimension of the

substrate compared to the film, the film was restrained by the substrate.  Because the film

was very adherent to the substrate, the result was the tensile stress in the film.  The

maximum film stress occurred very close to that of 100% YSZ, as expected, because of

the large CTE mismatch between YSZ and the substrate, alumina.  The minimum 

occurred at 100% alumina as expected, because both film and substrate were the same

materials.  The maximum did not occur at 100% YSZ but somewhat higher at 9 vol%

alumina.  This was due to the film stress equation containing the elastic modulus for the

film.  The film elastic modulus was calculated using the rule of mixtures.  The high

modulus for the alumina (380 Gpa) was much greater than that for YSZ (200 Mpa), 

which for the 15 mol% alumina film resulted in a film modulus higher than the 100% 

YSZ film.  This made up for the slightly lower CTE mismatch and gave a slightly higher

film stress.
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Matrix Stress:  The matrix stress was in tension for the low alumina compositions

and in compression for the high alumina compositions.  This was because the CTE for

YSZ was higher than the alumina.  When the YSZ was the matrix material (low alumina)

and the film was formed at high temperature, the two phases were both expanded.  Upon

cooling the YSZ contracted more than the alumina, resulting in the compression of the

alumina particles.  Because of the many particles in the matrix (all under compression by

the YSZ) and the necessity for the composite to be in equilibrium, the matrix must

subsequently be in tension.  The reverse was true when the alumina was the matrix

material.

The matrix stress was zero at the extremes (100% YSZ and 100% alumina) as

expected because there were no second phase particles present.  The maximum was 

211 MPa at 45 mol% alumina and the minimum was -322 MPa at 55 mol% alumina. 

Chapter VI will detail more on the matrix stress (and film stress) for application in the

fracture toughness model.

Transmission Electron Microscopy

The TEM provided the necessary means for the determination of the presence of

alumina in the films as well as the phase of that alumina.  These studies were presented in

Figures 31, 32 and 33.  Recall the films were produced with flame temperatures of

1550EC and substrate temperatures of 1050EC.  EDS on the YSZ-alumina films indicated

the presence of aluminum as well as the presence of zirconium and yttrium consistent 
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with the SEM results.  The electron diffraction of the YSZ-alumina films produced ring

patterns when a large selected area aperture (500 µm) was used.  Indexing of these rings

confirmed the presence of zirconia and alumina.  However, using the ring patterns alone

could not distinguish between cubic or tetragonal zirconia nor could it distinguish between

alpha or theta alumina.  

Utilizing the microdiffraction allowed the isolation of very small areas for

diffraction.  After confirming a particle in the film contained zirconium using EDS, the

electron beam was converged to a small point on the YSZ where a single crystal spot

pattern was obtained, see Figure 33.  Indexing this pattern showed that the phase of YSZ

was indeed the non-transformable, TN, tetragonal phase.  The tetragonal phase has the

distinctive {1 1G2}-type reflections when on the [ 1G11] zone axis [59].  Using a similar

technique on the alumina part of the film also resulted in a single crystal electron

diffraction pattern, but the indexing of those reflections did not exclude alpha or theta.  It

was concluded that both alpha and theta phases of alumina were present.

High resolution imaging by TEM provided the ability to view the small second

phase (YSZ) of a 62.8mol% alumina (non-annealed) film which could not be resolved in

the SEM.  The micrograph showed that the sizes of the second phase particles were on the

order of 25 nm in diameter for that particular film.  Other 62.8 mol% alumina films had

YSZ particles ranging in size from 40 to 240 nm.  For those films the YSZ was large

enough to be resolved in the SEM and so TEM imaging was not necessary. 
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Energy Dispersive Spectroscopy

EDS was performed on the films in the SEM, but the results were not conclusive

due to the aluminum present in both the film and the substrate.  The Lα peaks of yttrium

and zirconium were located at 1.922 and 2.042 keV, respectively, and were not

distinguishable from each other.  Therefore high accelerating voltages (>25kV) were

necessary to excite the separated Kα peaks of yttrium and zirconium, located at 14.957

and 15.774 keV, respectively.   Attempts to perform EDS just on the film while in cross-

section inherently included aluminum from the substrate because of the large interaction

volume of the electrons due to the high accelerating voltages required.

EDS performed in the TEM allowed the quantification of the aluminum in the film

without substrate contributions.  It also permitted differentiation between the zirconium

and yttrium because of the very high voltage (200 kV) exciting the Kα peaks.  The TEM

specimen prepared from the YSZ standard was used to provide a basis for the amount of

yttria in the films.  Because the amount of yttria in the films was relatively small, a more

accurate measure of the yttria content was possible utilizing the standard.  No YSZ-

alumina standard was available.  The resulting amount of the yttria (5.7 to 7.81 mol%) in

the YSZ-alumina films was somewhat higher than the goal of 4.53 mol% (8 wt%) yttria to

which the precursor solutions were prepared, indicating possibly a tendency for yttria to

deposit more readily than zirconia.  However the amount of alumina in each of the films

was within 1.1% or less of the solution composition.
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Quantitative Image analysis

Zeiss KS-400 computer software was used for the quantitative image analysis to

determine average particle sizes, area percentages and nearest neighbor distances from the

SEM backscatter electron images and the high resolution TEM images.  The particle sizes

for the 62.8 and 80 mol% alumina films were actual average diameters of the second

phase particles.  However for the 15, 30 and 45 mol% films, the particle sizes calculated

were an effective size determined using the equivalent circle diameter method [60].  For a

each second phase particle (alumina “swirl” for these mol%’s) this method found the area

of that swirl, arranged it into a circle and calculated the effective diameter.  

The average particle size decreased steadily as the amount of alumina in the film

increased.  The size increased for the 62.8 mol% alumina anneal series with increasing

anneal time.  This was expected as anneal time increases as there was sufficient time and

driving force for diffusion in the matrix of alumina to cause coalesence into larger

particles.  

The nearest neighbor distances for the 62.8 mol% anneal series increased

significantly as the anneal time increased.  This was also attributed to the diffusion of the

YSZ in the alumina matrix.  At the lower anneal times there were some large particles

present but still many small particles, which kept the nearest neighbor distance from

becoming large.  In the longest anneal of 10 hours at 1500EC there were many large

particles and very few small particles in between.  The diffusion of the YSZ from the 
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small particles was thus much more complete at the 10 hour point than after the 2.5 or 5

hour anneals.  As discussed previously in this chapter, this was a coarsening behavior

resulting in a diffusion-controlled coarsening rate of 0.0013 µm3/hr.

The area percentage of YSZ particles determined by the quantitative image

assumed to be analysis was approximately equal to their volume percentage.  This follows

from assuming uniform sizes and shapes of the microstructure in two dimensions and

extending them into three dimensions.  This gave volume percentages of YSZ particles

that were all within 9% of the precursor starting amounts.  For the eutectic composition

(62.8 mol% alumina) anneal series each of the measured volume percentages were within

6% of the precursor amounts.

Nanoindentation

Bulk Material Specimens

The various bulk material specimens tested with the Nanoindenter® were selected

because of their relationship to the film materials (alumina, YSZ) or because of their

availability, see Table 13.  The testing parameters, which include the indenter tip

geometry, load ranges, indent spacing, number of indents per sample, etc., was the same

for the bulk materials as for the films.  The hardness and elastic modulus of the bulk

materials were close to their literature values, which were obtained from large scale

testing; for hardness, Vickers, Knoop, Brinell or Rockwell testing equipment were used, 
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and for elastic modulus, tensile tests, three point bend tests, etc. were used  [48, 61, 62,

63].  The hardness and elastic modulus error bars were very tight compared to those of

the films, compare Figure 36 with, for example, Figures 48 and 49.  This was an indication

of the greater homogeneity of the bulk materials versus the films.

Table 13:  Bulk Materials Mechanical Properties, Nanoindentation and Literature

Material
Hardness, GPa Elastic Modulus,

GPa
Fracture Toughness, 

MPa·m0.5

Nano. Lit. Nano. Lit. Nano. Lit.

Al2O3 30.9 25.9[48] 481 433[48] 2.3 2.2[61]

SiO2 8.7 8.3[48] 72.2 72.4[64] 0.70 0.58[48]

MgO 8.4 7[65] 290 300[62] 1.2 1.77[66]

ZrO2
(9.5mol%

Y2O3)

19 13[62] 309 200[62] 1.30 2.8[63]

Additional nanoindentation tests on different specimens of bulk materials

performed at different times showed that the hardness and elastic modulus did not vary

significantly, which was as expected.  This showed that the nanoindentation equipment

was stable.  The a-plane alumina was tested on six different samples, three at random

orientations and three at 0E, 30E and 90E rotations, see Figure 36c-f.  The elastic moduli

for the six orientations were not statistically different, but hardness for the 0E test was 
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significantly higher than the 30E and 90E orientations.  The hardness value for the second

a-plane alumina sample was closer to values for the 30E and 90E orientations while the

hardeness for the first and third a-plane alumina samples were closer to the value for the

0E orientation.  This leads to the conclusion that the second a-plane alumina sample was

oriented closer to 30E or 90E while the first and third a-plane alumina samples were

oriented near 0E.  

Two amorphous silica samples were tested, see Figure 36c and d.  Both the

hardness and the elastic modulus were statistically identical.  Because of the tight error

bars and the closeness of the results from additional tests, it is concluded that the

nanoindentation procedure and testing for hardness and modulus were repeatable and

reliable.

The nanoindentation fracture toughnesses of the bulk materials were also similar to

the literature values of fracture toughness obtained by larger scale testing.  However, the

r-plane alumina had a significantly higher measured toughness than the measured and

literature values of the a-plane and polycrystalline aluminas.  The error bars for fracture

toughness were on the order of ± 0.5 MPa·m0.5 which was similar to fracture toughnesses

reported in the literature [48, 67, 68]. 

YSZ-Alumina Films

Data from Indents:  Large error bars in hardness and modulus for the films were 

an indication of inhomogeneities such as porosity or possibly surface roughness.  When 
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the indenter encountered a pore just beneath the surface of the film, the indenter tip would

be loaded briefly until the material above the pore gave way.  This resulted in a

displacement of the tip with no change in load, as shown in Figure 40.

Surface roughness of the film can cause the indenter tip to slip due to the contact

angle being other than normal to the plane of the substrate, see Figure 41.  The load was

increased and once it reached a certain point the tip slipped, causing an abrupt

displacement with no change in load.  Depending on the geometry of the surface, slippage

could occur several times during the indentation, as shown in Figure 41.

The ‘bad’ load-displacement curves result in values of hardness and elastic

modulus for the films that were several orders of magnitude lower than expected.  For

example, hardnesses of 0.01 to 0.08 GPa were observed for ‘bad” indents compared to 1

to 35 GPa for ‘good’ indents.  ‘Bad’ indents such as this were not included in the final

data presented in this thesis.  Additionally, comparing the error bars for the bulk material

nanoindentation tests to the error bars of the films studied, it was observed that the bulk

materials’ error bars were very tight relative to the films’.  The combustion CVD

technique used to grow the films inherently leaves small amounts of porosity and small

variations in roughness.  Because of this, even with the omission of the ‘bad’ indents,

there is significant variability for the hardness and elastic modulus for the films (as

compared with bulk standard materials).
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Elastic Modulus/Hardness Ratio:  The determination of the fracture toughness

using equation (22) includes the ratio of elastic modulus to hardness of the film.  It was

found that this ratio was in the range of 20 to 25 for all of the YSZ-alumina films

regardless of composition, deposition parameters or film morphology.  Noting this fact

can allow the replacement of the E/H term in equation (22) with a constant as shown here

for a cube-corner indenter tip.  

Eliminating this term removes uncertainty in the results that originate from the large error

bars of the elastic modulus and hardness values determined from the indents.  It also helps

nullify any influence the removal of ‘bad’ indents has on the calculated fracture toughness.

Solution Concentration:  As reflected in the direct comparison of the 0.002 M and

0.005 M solution concentration films, the hardnesses and elastic moduli were 

substantially lower for the 0.005 M set of films, see Figure 43.  The number of ‘bad’

indents (i.e. discontinuous load-displacement curves) was significantly higher for the 

0.005 M set; out of 15 indents per sample over 50% of those indents were thrown out. 

Less than 15% of the indents were thrown out for the 0.002 M set of films.  The lower the

concentration of the precursor solution, the smoother appearing and denser appearing the

YSZ-alumina combustion CVD film.  It was concluded that nanoindentation for hardness 
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and elastic modulus determination for combustion CVD films was less reliable for rougher

coatings (roughnesses on the order of the indenter tip size) and higher concentration

precursor solutions.  And the more homogeneous, smooth and dense-appearing the film,

see Figure 42, the better the hardness and elastic modulus data obtained from the

Nanoindenter®.

Fracture Toughness Crack Analysis:  The fracture toughness values calculated

from the cracks formed during nanoindentation also had significant error bars.  These

error bars were obtained directly from the differing crack lengths measured from each

indent.  There were cases where the indent created cracks in the film but the recorded

crack length was not included in the results; these were designated ‘bad’ cracks because

these types crack were not allowed under Lawn et al.’s [47] model for fracture toughness. 

Two types of ‘bad’ cracks existed for all of the films tested.  The first type was

lateral cracking in the film, as seen, for example,  in Figure 54.  This particular sample was

a 100% YSZ film grown for 30 minutes at 1550EC.  Lateral cracking usually occurred

when the indent depth was very large compared to the film thickness and caused

delamination of the film from the substrate.  For the lateral cracks are shown in Figure 54,

the film thickness was ~ 0.7 µm and the indent depth was ~1.8 µm.  Li et al. [69] observed

the same phenomenon with when performing nanoindentation of 400 nm films of

amorphous carbon on silicon substrates and theorized the lateral cracking was related to

discontinuities in the load-displacement curves.  
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Figure 54 SEM micrograph showing lateral
cracking and delaminating of the
film.

The second type of ‘bad’ crack was short cracks that did not extends past the

plastic deformation zone created by the indenter.  Lawn et al. [47] showed that the plastic

zone extends a certain distance around an indent and in order to provide a true measure of

the films properties, the crack must propagate past this zone.  As explained in Chapter II

the procedure used was to include cracks lengths, c, greater than twice the indent size (c >

2 r0), where r0 was the indent size (distance from the center of the indent to a point of the

indent).  Figure 55 shows an example of a short crack in a film that did not extend past the

plastic zone.  This particular film was a 45 mol% alumina film grown for 30 minutes at

1550EC.
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Figure 55 SEM micrograph showing short
crack that does not extend past
the plastic zone.

The direct comparison of the 0.002M and 0.005M solution concentration films’

fracture toughnesses obtained from nanoindentation showed that the 0.005M set was

tougher throughout the compositional range.  This was attributed to the voids in the film

which can slow or arrest the propagation of a crack.  Recall that approximately 50% of

the nanoindentation measurements were not used due to ‘bad’ indents such as those

produced by encountering pores beneath the surface.  Thus the observations of the films’

morphology were consistent with the fracture toughness results.

It was also noted that the error bars for the poor quality films (the 0.005M set)

were on the order of ± 1.5 to 2.0 MPa·m0.5 while the deviation for the better quality films 
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(the 0.002M set) was ± 0.5 MPa·m0.5.  Because the error in the fracture toughness of the

higher quality films was similar to that of the bulk materials, it was concluded that the

fracture toughness from the nanoindentations was an acceptable measure of the film’s

properties.

Repeatability Study:  The films examined for the repeatability study were a set of

100% YSZ and 30 mol% alumina films deposited for 30 minutes at 1550EC.  Each

deposition was set up and performed with the same conditions.  However, there were

slight differences in the depositions due to the nature of the combustion CVD procedure

as described in the Deposition Parameters section earlier in this section.  The nozzle tips

were not always the same; hence the aerosol size was not necessarily the same.  The 

position of the substrate in the flame was not always exactly the same; therefore the

temperatures of the depositions were not identical.

The hardness and elastic modulus that were measured were found to be statistically

the same (using the t-test) for each of the five different depositions at each composition. 

The error bars for a particular specimen were based on the different values obtained from

each of the fifteen indents that specimen.  

The fracture toughness values for each set of five films were somewhat different,

as shown in Figures 44 and 45.  The error bars for all ten films in the repeatability study

were on the order of ± 0.5 MPa·m0.5.  The magnitude of these error bars were similar to

the error bars for the bulk materials’ fracture toughness.  It should be noted that the 
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average fracture toughnesses of each set of five films (100% YSZ set and 30 mol%

alumina set) agrees with the average toughness of the final 100% YSZ films and 30 mol%

alumina films, Table 14.  This is encouraging since the ten reliability study films were

deposited under different conditions than those of the final set of films (solution flowrate

was 3 ml/min to 4 ml/min, oxygen flowrate was 18 liters/min to 20 liters/min, nozzle tips

were different).  It was concluded from the reasonable magnitude of the error bars and the

fracture toughness agreement that the fracture toughness values of the repeatability study

were reliable.

Table 14:  Comparison of 100% YSZ and 30 mol% Alumina Fracture Toughness 

mol% Al2O3

Average Kc, MPa·m0.5

Repeatability Study Compositional Study

0 1.75 ± 0.41 1.76 ± 0.46

30 2.73 ± 0.46 2.49 ± 0.32

Anneal Series:  The fracture toughness of the eutectic composition (62.8 mol%

alumina) anneal series resulted in an interesting trend:  the toughness increased as the

particle size grew, then dropped abrubtly, see Figure 46.  Plotting the same fracture

toughness versus the first nearest neighbor distance showed a similar drop in toughness

but not as severe, Figure 56.  This leads to the conclusion that not only was the particle

size important in the fracture toughness, but that the distribution of the particles in the 
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matrix was also important.  The succeeding section on fracture toughness modeling

discusses this issue in more detail.

Hardness and Elastic Modulus, Compositional Study vs Indentation Depth:  The hardness

values for the range of compositions studied were relatively constant as the indentation

depth increased.  Hardnesses of several compositions (15, 30, 45 and 62.8 mol% alumina)

increased slightly while those of three (100% YSZ, 80 mol% alumina and 100 mol%

alumina) decreased.  A significant increase in hardness with indentation depth is usually an

indication of substrate effects influencing the measurement [36]; this occurs when the

substrate (alumina) is harder than the film and plastic zone under the indenter reaches the 
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film-substrate interface.   However, the change in the hardness for these films was not

significant as determined by the t-test.  

The elastic modulus for every composition increased as the indentation depth

increased which is also an indication of substrate effects influencing the measurement. 

The elastic modulus at the largest indentation depth approached that of the substrate. With

the thickness of the films between 0.7 and 1.0 µm, the two shallowest indentation depths

of ~40 nm and ~75 nm were well within the rule-of-thumb being five to ten times less than

the film thickness to allow no substrate influence.  The depth of the largest indentation

was approximately 175 nm (or 0.175 µm) which encroached on the rule-of-thumb value

(film thickness for a 175 nm indentation should be 875 to 1750 nm thick).  Therefore the

elastic modulus for the deepest indentation depth was considered to be influenced (at least

somewhat) by the substrate. 

Hardness and Elastic Modulus, Compositional Study vs Alumina Content:  The

hardness of the films decreased as the amount of alumina increased (minimum at 30 

mol%) then increased to maximum at 100% alumina, while the elastic modulus did not

change significantly with the alumina content.  Because hardness is similar to a stress, i.e.

hardness is a load divided by an area as is stress, it was theorized [70] that the hardness

followed the theoretical residual stress in the film.  For example, at 100% YSZ, because

the CTE for YSZ is greater than the substrate (alumina), the film is in tension and when

the external stress (indenter tip) is applied, the resulting hardness is lower than the 
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hardness determined for an unstressed film.  At the 100% alumina composition the CTE

mismatch was the least (zero) which results in no thermal film stress contribution to the

hardness and therefore a maximum hardness.  The indentation was a compressive stress on

the film and added to that was the tensile film stress resulting in a minimum hardness at

100% YSZ.  

However, this was an over-simplification of the indentation mechanics.  As

detailed by Suresh et al. [71] the stresses involved must be resolved into forces by

multiplying by the appropriate contact areas.  For a tensile stress in the film, the force due

to the indenter tip acts in the same direction as the differential force resulting from the

tensile stress, effectively decreasing the load required to create the same size indent. This

results in a lower hardness for materials with tensile residual stress.  This coincides with

that observed with the YSZ-alumina films.

This may not be the complete explanation because of the relative magnitude of the

stresses (and forces) involved.  The maximum theoretical thermal film stress calculated 

for the 100% YSZ film on alumina was 300 MPa tensile.  Multiplying by a nominal area

for an indent (0.9 µm2) gives a force of 0.27 mN.  The applied load to create for such an

indent is on the order of 10-25 mN depending on the material.  Based on these numbers

the order of magnitude of the thermal stress alone would not be sufficient to affect the

hardness.  Additional stresses may be present in the films which could contribute to the

measured hardness, such as the matrix stress caused by the mismatch of CTE’s between 
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particles and the matrix.  The order of magnitude for the matrix stress was similar to the

thermal stress calculated from the film-substrate CTE mismatch, 0 to 239 MPa

compressive.  Summing the two forces from these stresses (thermal and matrix) yields a

force of 0.49 mN.  Based on these results, the residual stresses present in the film were

still too small to cause a significant shift in the hardness.  The actual film stresses may be

different but at the present time their measurement has not been possible.  

Additional insight into the residual stress effect on hardness is provided by Pharr et

al. [72].  In their nanoindentation of aluminum they concluded that the hardness (and

elastic modulus) were not functions of the stress in the material; the observation of a

decrease in hardness with the presence of tensile stresses and an increase in hardness with

compressive stress was a result of the method for determining the area of the indent used

in the calculations.  Nanoindentation uses the calculated area based on the geometry of 

the indenter tip.  For a ductile material, like aluminum, there is substantial pile-up of

material around the indenter tip while the load is applied; this makes the actual indent 

area during contact larger than that assumed by the calculated area.  Pharr et al. applied

various stress states to aluminum and compared hardnesses determined from the

calculated area and from the actual area measured by examining the indents to arrive at

their conclusion:  hardnesses and modulii computed from actual contact area

measurements are essentially independent of stress.  They also found that compressive

stresses had a much more significant effect on the pile-up (and hardness) than tensile 
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stresses.  For the ceramic materials in this research, there was not significant pile-up

around the indenter tips, leading to the conclusion that the calculated contact area used for

the hardness and elastic modulus did not underestimate the actual contact area.  Therefore

it was inconclusive what the exact contribution the thermal or intrinsic film stress has on

the hardness.

Fracture Toughness:  The compositional study showed the fracture toughness

initially increased with alumina content, reached a plateau and then decreases somewhat

near the highest alumina percentages.  Each composition in these results was an average of

fracture toughnesses from two films, each with at least twenty indents and each indent

with one to three cracks.  The error bars for each of the compositions was a function of

the various crack lengths measured.  As with the previous films’ fracture toughnesses, the

error bars were close to that recorded for the bulk materials’ fracture toughnesses, all

were within ± 0.5 MPa·m0.5.  The t-test on the fracture toughness for the compositional

study showed that the low and high alumina films were statistically different, while the

mid-range of compositions were statistically the same, as detailed in Table 11 of Chapter

IV. 

The matrix of indents for the cube-corner tip included five different loads ranging

from 400 mN to 25 mN.  As noted in Chapter III, the highest loads were used for locating

the indents in the electron microscope so that measurement of the cracks could be

performed.  The cracks for the 400 mN indents were not included in the fracture 
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toughness results presented in the previous discussion because the size of those indents

produced delamination of the film and penetrated completely through the film into the

substrate.  Depending on the film composition and the film thickness, the indenter depths

for the 250 mN and 100 mN loads were close to the film thickness.  The indents for the 50

mN and lower loads were always less than the film thickness.   It is interesting to note that

even though some of the 250 mN and 100 mN loads had indent depths on the order of the

film thickness, the fracture toughnesses for the 250, 100, 50 and 25 mN loads do not differ

significantly, see Figure 57.  However, the fracture toughnesses determined from the 400

mN loads tend to be lower, possibly due to delamination of the film from the substrate.  It

was concluded that fracture toughness of the films was not a function of the applied load

as long as the film and substrate was not penetrated to the extent that significant

delamination occured.
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CHAPTER VI

FRACTURE TOUGHNESS MODELING

For fracture toughness, several factors must be taken into account when analyzing

the cracking of a material under a load, particularly a thin film.  As discussed by Evans et

al. [67, 73], Clarke and Faber [74], and Becher [75], several toughening mechanisms 

exist:  crack deflection, grain bridging, residual stress, phase transformation toughening

and micro-cracking.  Depending on the material in question, some or all of these

mechanisms may occur.  For the system studied here, the first three (crack deflection,
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grain bridging and residual stress) were considered significant contributors to the

toughening of the films.  The last two mechanisms (phase transformation toughening and

micro-cracking) were found to not contribute to the toughening of the films, as discussed

below.

Many researchers have added particles of a second phase to materials for

toughening; a few will be discussed here.  In 1977, Claussen et al. [68] examined bulk

materials of alumina dispersed with zirconia particles and found the fracture toughness to

increase (on the order of 2 to 4 MPa·m0.5) with increasing volume percent of the second

phase and increasing size of the particles.  However, they attributed all of the toughening

to microcracking and did not consider crack deflection.  Also in 1977, Khaund et al. [76],

developed a model for toughening based solely on the CTE difference between the matrix

and particles and applied it to a system consisting of an alumina sphere in a glass.  It was

not until 1983, when crack deflection was used by Faber and Evans [77] to describe the

toughening mechanism occurring as a result of a second phase addition to the matrix.  

Faber and Evans applied their model to describe the toughening of lithium-alumino-silicate

glass containing Li2Si2O5 crystal particles [78],  SiC with Al2O3 particles and SiC with

ZrO2 particles [79].  Faber et al. [80] also examined MgO and found toughness increases

with LiF additions from crack deflection.  Additionally, Wei and Becher [81] studied SiC

with TiC particles and found ~ 2 MPa·m0.5 increase in toughness all attributed to crack

deflection.
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Other researchers have achieved toughening on various ceramic composite

systems.  DePortu et al. [82] found an increase in toughness with the addition of YSZ to

alumina and attributed it to transformation toughening and possible grain bridging but

provided no model.  Taya et al. [54] found toughness increased due to crack deflection

and residual stress in a SiC matrix with TiB2 additions, and developed an expression for

the toughening due to residual stress in the matrix.  This is to be used later in this chapter. 

Lawn et al. developed a model for microcracking [83] and for grain bridging [84], then

applied both to Al2O3 with particles of Al2TiO5.  Their grain bridging model is discussed

later in this chapter.  Li and Watanabe [3] detailed the increase of fracture toughness in

YSZ with Al2O3 additions up to 30 vol%.  Their model included the following toughening

mechanisms:  crack deflection, phase transformation, residual matrix stress and grain

bridging.  Their model was similar to that developed in this thesis for the toughening of

combustion CVD YSZ films by the addition of alumina.

The toughening of ceramics continues to be heavily investigated, particularly by

Faber who has continued to do extensive work in this field including the modeling of

microcrack toughening [85] as well as studying grain/crack bridging, all in addition to the

crack deflection work previously mentioned.  Faber et al. has reported fracture toughening

with TiB2 particles in SiC by microcracking and crack deflection [86, 87, 88], Al2O3 in

borosilicate glass by microcracking and crack deflection [89], SiC fiber in glass
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[90] by grain bridging, SiC whiskers in Al2O3 by crack bridging [91] and Al2O3 in ZrO2 by

transformation toughening [92] to name several of many.

Phase Transformation Toughening

As described in Chapter II, one form of phase transformation toughening occurs

when monoclinic YSZ is under stress and spontaneously changes phases to tetragonal. 

The accompanying volume change (an increase) can produce enough local compressive

stresses near a crack tip to slow or stop growth of the crack.  

For this research, the content of yttria in the zirconia was approximately 8wt%

which meant that the YSZ was assumed to be the stable non-transformable tetragonal

phase.   This was also verified by electron diffraction in the TEM. Because the particular

phase of YSZ in this study was tetragonal, no contribution due to phase transformation

toughening was included in the modeling of the fracture toughness for the films. 

Microcracking

On bulk materials tested with large scale indentations, it is was found by Claussen

et al. [68] that the large cracks (on the order of millimeters long) originating from the

points of the indent had smaller cracks branching off into increasingly smaller cracks.  The

nucleation and extension of these microcracks releases strain energy which slows the crack

growth [68]. 
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For the small cracks (on the order of microns long) involved in the nanoindentation

of the films in this research, there was no occurrence of branching of the original crack

from the indent point into smaller cracks.  This includes the measurements from at least

fifteen indents per sample for over twenty different YSZ-alumina films.  Based on the

observed lack of branching, no contribution from micro-cracking toughening was included

in the fracture toughness model.

Crack Deflection

The addition of small second phase particles can increase the fracture toughness of

a material by the phenomenon of crack deflection.  Stated simply, when a crack tip

encounters a second phase particle, one of three things will occur: the crack will cease

propagating, the crack will continue to grow straight through the particle or the crack will

divert around the particle and continue growing.  Which occurs depends on the relative

amount of the second phase present, the stress state surrounding the second phase and the

strain energy driving the crack growth.  In this research, upon encountering a particle, the

crack continued propagating either through or around the particle.  The complete arresting

of a crack by a second phase particle only occurred after the crack had grown for a

distance (2.2 and 1.6 µm for the two cracks shown in Figure 58a) and lost a significant

amount of energy.  In some cases the crack actually continued on its original path through
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 the second phase particle, Figure 58b.  However, many cracks were influenced by second

phase particles and only deflected somewhat around the particle, Figure 59.
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Faber and Evans [77] developed their crack deflection model for four cases:

spherical particles uniformly distributed, spherical particles with a spacing distribution

(such as Gaussian), rod-shaped particles uniformly distributed and disc-shaped particles

uniformly distributed in a matrix.  The shape of the second phase particles for many of the

films deposited in this research was essentially spherical (particularly for the higher

alumina compositions).  For this reason and for simplicity, this thesis used the two

spherical particle cases for the crack deflection model.

The crack deflection model derived by Faber and Evans was based on the

geometric approach of a crack deflected from its main crack plane with no consideration

of the stresses induced because of the two different phases.  Treatment of the influence of

stress is discussed in subsequent sections.  The crack deflection model was based on a

relative toughness calculated from the strain energy release rates, G (N/m).  The following

equations describe the model by Faber and Evans. 

Gc = toughening due to crack deflection,

Gm = strain energy release rate for undeflected crack,

<G> = net crack driving force )or average strain energy release rate across the

crack front,

Gm
c = toughness of deflection free material.
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The relative toughness Gm/<G> is a function of the volume percent of the second

phase material Vf, the twist angle of the crack φ, the tilt angle of the crack, θ and Poisson’s

ratio of the film, ν.  The superscripts t and T refer to tilt and twist, respectively.  The

following equation was derived for spherical second phase particles of uniform spacing,

Where φmax is the maximum tilt angle given by

r (m) is the second phase particle radius {d (m) is the diameter} and λ (m) is the average

particle spacing.  Figures 60 and 61 [77] show the geometry of cracks, σ is the stress in

the matrix acting on the crack.  The particle spacing can be measured or for a uniform

spacing of particles, λ can be determined empirically from

The ratio of particle spacing to particle radius is 
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The Mode I stress intensity is KI (MPa·m0.5) and the value of κ (dimensionless) is 

given by

The local stress intensity factors, ki
t (MPa·m0.5), for a tilted crack subject to Mode I 

applied loading are

K11 and K21 (dimensionless) are angular functions associated with the tilted crack.

The stress intensity factors, ki
t (MPa·m0.5), for the twisted crack are
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The associated dimensionless angular functions are

The following equation was derived by Faber and Evans for spherical second phase

particles with variable interparticle spacing incorporating a standard normal distribution:

where 
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K EG2 = . (57)

∆K K KFE m= − (58)

and

with S being the standard deviation of the particle spacing.

The strain energy release rates, G, are related to the stress intensity factor, K

(MPa·m0.5), by [93]

This equation is for elastic materials under plane stress conditions where E is the elastic

modulus.  The incremental toughening due crack deflection by Faber-Evans, ∆KFE 

(MPa·m0.5), is the difference in fracture toughness of the material with the second phase

particles, K, from equation (57) to the fracture toughness of the matrix material with no

second phase present, Km.
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It is interesting to note that the crack deflection model is not a function of the

particle size.  The ratio of interparticle spacing to the particle size (λ/r) was used in both

equation (39) for φmax and equation (41) for λ/r, which results in the crack deflection being

a function of volume percent.  Figure 62 shows the relative toughness, Gm/<G>, versus

the volume percent of the second phase for the uniform particle spacing and distributed

particle spacing obtained from the above equations.  The only material property involved

in the crack deflection model was Poisson’s ratio; those values used are shown in the

Results chapter.  The solution of the numerous integrals was performed a combination of

symbolic integration using MathCad® where possible and numeric integration.

Converting the relative toughness, Gm/<G>, into the incremental toughening, 

∆KFE, via equations (57) and (58), produces Figure 63.  The discontinuity in these curves

comes from the Km value in equation (58).  For the low alumina compositions (0 to 50

vol% Al2O3), YSZ was the matrix and therefore Km = 1.76 MPa·m0.5, the fracture

toughness for 100% YSZ.  Similarly for the high alumina compositions (50 to 100 vol%

Al2O3), alumina was the matrix and therefore Km = 2.20 MPa·m0.5, the fracture toughness

for 100% alumina.  Thus the starting point for each end of the incremental toughening

curve was different, producing the jump in the curves at 50 volume percent.  Note:

Because of the complexity of this model, the incremental toughening due to crack

deflection was solved for discrete values of second phase volume percent (0, 5, 10, 15, 
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30, 45, 55, 62.8, 80, 90 and 100 vol% Al2O3), hence the slope at 50 vol% versus the

expected vertical jump.
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Residual Stress 

The crack deflection model by Faber and Evans did not consider the local stresses

at and near the interface between the particle and the matrix.  The stresses that exist in the

film are residual stresses due to thermal expansion mismatch between the two different

phases, thermal mismatch between the substrate and the film and intrinsic stresses

inherently created during the formation of the film.  There is no direct way to quantify the

exact amount of the intrinsic stresses in the film; however experiments involving the

measurement of the total stress in the film via x-ray diffraction were investigated.  The

thermal stresses from the difference in coefficient of thermal expansion between the two

phases present in the film, will be referred to as matrix stress, and the difference in

coefficient of thermal expansion between the film and the substrate, will be referred to as

film stress. 

The effect of residual stress on the fracture toughness of a material can either

promote or slow crack growth depending if the local stress around the crack is tensile or

compressive.  A crack propagating through a compressive zone will be slowed by that

stress because of the closure action of the forces involved.  In a tensile zone the crack

growth will be encouraged because of the opening action imparted on the crack. 

Therefore, up to a point, compressive stresses will increase the film’s fracture toughness

while tensile stresses will decrease its fracture toughness.
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Cutler and Vikar developed a model for the residual stress effects on the fracture

toughness.  However, their model was applicable to only a double cantilever beam test

specimen.  A more general model for a two-phase material was developed by Taya et al.

[54].  Their expression for the incremental change in the fracture toughness was based on

the coefficient of thermal expansion differences between the two phases.  A brief

description of their derivation is shown here.  Their expression started with the fracture

toughness of a particulate composite, KIC (MPa·m0.5), due to a periodic stress field from

Evans et al. [67],

where KI0 (MPa·m0.5) is the critical stress intensity factor of the matrix,  λ is the length of

the stress zone between particles (average particle spacing) and q is the matrix stress

(MPa) in the film due to the misfit strain caused by the different coefficients of thermal

expansion for the two phases present, as defined in Chapter IV.  This was applicable to the

two-phase film because of the periodic nature of the compressive and tensile zones in the

film due to the CTE mismatch between the particles and the matrix.  For example, if the

CTE of the particle is greater than the CTE of the matrix at room temperature, there will

be a local region of tensile stress in the particle and in its immediate vicinity and

compressive stress in the remainder of the matrix, assuming the film was formed at a

higher temperature.  
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The Eshelby model [94] for the determination of elastic fields with ellipsoidal

inclusions modified for a finite volume of particles was included in Taya’s derivation (refer

to Taya et al. [54] for the complete derivation), resulting in the following expression for

∆Kσ (MPa·m0.5):

where d is the average particle size of the second phase material.  This was the expression

used by Li et al. [3] in their modeling of fracture toughness increase due to residual matrix

stress.

Because of the additional thermal stress in the film from the CTE mismatch

between the substrate and the film, an additional term was added to equation (60)

resulting in a revised ∆Kσ (MPa·m0.5):

The film stress, σF (MPa), is the same as defined previously in Chapter IV:
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Figure 64 Model of matrix stress incremental fracture toughness versus
volume percent Al2O3 (balance YSZ) for a range of particle
sizes.

Compositional Study

Uniform Particle Size and Spacing:  Figure 64 shows the results of this matrix

stress model for YSZ-alumina composites using a uniform particle spacing as defined in

Chapter IV.  For this figure the incremental toughness of the film is negative for low

alumina compositions and positive for high alumina compositions, resulting in a

discontinuity at 50%.  This was a direct result of the sign of the matrix stress, q, which

was tensile at low alumina and compressive for high alumina (tensile stresses tend to open

cracks thus decreasing the fracture toughness while compressive stresses close 
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Figure 65 Schematic of stress regions in the matrix and the second phase
particles and their immediate vicinity:  a) high Al2O3 content and
b) low Al2O3 content [54].

cracks and thus increasing the fracture toughness, see Figure 65.  This large discontinuity 

is unreasonable for the actual film; it implies that toughening from residual stresses does

not fully explain the toughening involved with second phase particle additions. 

Additionally, the actual films’ particle sizes vary as the amount of alumina increases; this is

shown in the following sections.  For Figure 64, the largest particle size has the greatest

influence on the toughening while the smallest size has the least, as expected. 

Figure 66 shows the toughening increment for only the film stress versus the

alumina content for several particle sizes.  Because this stress was tensile for all

compositions, the toughening increment was negative, decreasing the toughness.  The

greatest decrease in toughness was at the 100% YSZ composition because that film had

the largest tensile stress due to the largest CTE mismatch between the film and the 
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Figure 66 Model of film stress incremental fracture toughness versus
volume percent Al2O3 (balance YSZ) for a range of particle
sizes.

substrate.  The largest particle size had the greatest effect on the toughening while the

smallest particle size had the least.

The overall contribution of the thermal stresses combined is shown in Figure 67. 

This model resulted in large negative toughening increments for the low alumina

compositions and small (relatively) positive toughening increments for the high alumina

composition films.  Again the largest particle size had the greatest effect on the model

while the smallest particle size had the least effect.
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stress versus volume percent Al2O3 (balance YSZ) for a range
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Measured Particle Size and Spacing:  The previous figures show the general trend

for the toughening due to stress in a film based on uniform particle sizes and spacings for

each composition.  The actual particle sizes and nearest neighbor distances were not

uniform or constant for all compositions fabricated and tested in this work.  Figure 68

shows the total model of stress effects on the fracture toughness using the measured

particle sizes and nearest neighbor distances.  Similar to the uniform particle size and

spacing figures shown above, the matrix stress starts negative due to tensile stress and

goes to positive values at high alumina content where the stresses were compressive.  The
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Figure 68 Model of incremental fracture toughness of matrix stress, film
stress and their sum versus volume percent Al2O3 (balance
YSZ) for measured particle sizes and spacings.

film stress was negative for all compositions due to the tensile film stress with the

maximum effect on fracture toughness at the lowest alumina compositions.  The

combination of the matrix stress and the film stress toughening increments was very low at

the lowest alumina compositions; a large negative value indicating weakening (or lower

final fracture toughness) of the film.  At the high alumina compositions the combined

stresses acted to produce in a relatively small positive incremental toughness.
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Figure 69 Model of incremental fracture toughness of matrix stress, film
stress and their sum versus particle size for the 1500EC anneal
series of 62.8 mol% Al2O3.

Anneal Series

The same matrix stress and film stress models were applied to the eutectic

composition (62.8 mol% or 65.7 vol%) using the measured particle sizes and spacing for

the series of films annealed at 1500EC.  Figure 69 shows the calculated toughening due to

the matrix stress, film stress and their total.  The incremental toughness from the matrix

stress for these films was all positive and it increased as the particle size of the second

phase increased.  However the film stress caused a negative incremental toughness and

decreased as the particle size increased.  The combined effect from these two stresses

resulted in an overall increase in the incremental toughness as the particle size increased; 
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Figure 70 Schematic of the grain bridging toughening mechanism, where
the crack is held together by the second phase particle or
friction between the particle and the matrix.

the total incremental toughness with this stress contribution is compared to the actual

measurements later in this chapter.

Grain Bridging

The last factor included in the model for the fracture toughening of the thin films

stems from the grain bridging phenomenon.  This mechanism occurs where a second phase

particle ‘bridges’ the crack and hinders the opening of the crack any further by the friction

and adhesion of the particle with the matrix material, see Figure 70 [73].  There are

several types of bridging mechanisms: ductile reinforcement, fiber or whisker

reinforcement and large grains (or particles).  The ductile reinforcement model was not

applicable to this research since both phases present are brittle ceramics and the fiber
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(whisker) reinforcement model is applicable to only to short and continuous fiber

composites.  

The research for this thesis involved toughening by the addition of a brittle phase

to another brittle phase.  Several very detailed models for the fracture toughness effects of

the bridging mechanism for ductile particles in a ceramic matrix exist; however there has

not been much modeling of a brittle phase in brittle matrix.  One model for grain bridging

was developed by Shum [95] and has been used by several other researchers (e.g. Li et al.

[3] and  Becher [75]) for predicting the change in fracture toughness.   The following

expression used for this thesis was Shum’s model for the incremental change in toughness

due to grain bridging, ∆KGB (MPa·m0.5)

All of the terms in this equation have been defined in previous chapters.  The expression

for this mechanism is similar to that of the toughening due to residual stress; it is a

function of the particle size but it is not a function of the particle spacing.  

Anneal Series

Grain bridging was a possible mechanism involved in the annealed eutectic

composition films.  Figure 71 shows the modeled fracture toughness change due to grain

bridging for these films.  The incremental toughness was negative for this composition 
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Figure 71 Model of incremental fracture toughness of grain bridging
versus particle size for the 1500EC anneal series of 62.8 mol%
Al2O3.

because of the predicted local tensile stresses near the second phase particles.  As the

particle size increased the model shows a continued decrease because the predicted area of

tensile stress increases with the particle size.
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Figure 72 Model of incremental fracture toughness of grain bridging
versus volume percent Al2O3 for various uniform particle sizes.

Compositional Study

The results of the grain bridging model for the full range of second phase

compositions and various uniform particle sizes are shown in Figure 72.  The incremental

toughening is positive for alumina compositions up to 50 vol%.  This region provides an

increase in toughness due to the predicted local compressive stress near the second phase

particles.  This compressive stress acts to hold the particle by friction preventing further

opening of the crack.  For the alumina compositions above 50 vol% the incremental

toughening is negative due to the predicted local tensile stress near the second phase

particles. The large discontinuity is unreasonable for the actual film; it implies that grain

bridging toughening does not fully explain the toughening involved with the second 
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Figure 73 Model of incremental fracture toughness of grain bridging
versus volume percent Al2O3 for measured particle sizes.

phase addition for these films.  Additionally the actual films’ particle sizes vary as the

amount of alumina increases; this is shown in the following sections.

Using the actual particle sizes measured from the quantitative image analysis

shown in Chapter IV produces the grain bridging results depicted in Figure 73.  Similar to

the uniform particle size plot, the incremental toughening for the measured particle sizes is

positive for the low alumina compositions and negative for the high alumina compositions. 

Again this is due to the predicted compressive and tensile stresses, respectively, near the

second phase particles.
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∆ ∆ ∆ ∆K K K Ktotal FE GB= + +σ (63)

Model Total

The total fracture toughness model developed for this thesis was obtained by

summing each of the toughening contributions from the various mechanisms detailed

above.  Equation (63) shows the sum of crack deflection, ∆KFE, residual stress from both

matrix stress and film stress, ∆Kσ, and grain bridging, ∆KGB.  

The error bars on the model come from the possible range of substrate temperatures at

which the depositions were made (750 to 950EC) and the range of different values

provided in the literature for the various materials properties used in the model, E, ν, and

CTE.  Table 15 shows the high, nominal and low values used in the model.

Anneal Series

For the annealed films the total toughness change is shown in Figure 74.  This

shows the general trend found in the measured data, however when both are plotted on

the same axes, the magnitude of the slope of the model is substantially lower, Figure 75. 

The model is not as strong a function of the particle size as the measured toughness.  One

possible explanation for this large difference was that the anneal series consisted of only

one specimen tested per anneal time.  The repeatability for the annealed samples is not

known.  Another possibility is that the actual film stress is different than that determined

from calculations; which may be reasonable because of the long anneal performed on these

samples.
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Figure 74 Total model of incremental fracture toughness versus particle
size for the 1500EC anneal series of 62.8 mol% Al2O3.

Table 15:  Properties and Parameters Used in the Model

Property/Parameter Low Nominal High

ν Al2O3 0.26 0.27 0.32

ν YSZ 0.23 0.31 0.32

E Al2O3, GPa 365 380 460

E YSZ, GPa 151 200 220

CTE Al2O3, x10-6 EC-1 6.8 7.9 8.0

CTE YSZ, x10-6 EC-1 10.0 10.4 10.6

T, EC 750 850 950
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Figure 76 Total incremental fracture toughness model and measured
toughening versus volume percent Al2O3 for uniform particle
sizes and spacings with uniform spacing crack deflection model.

Compositional Study

The total model using uniform particle sizes and uniform spacing for the complete

range of compositions is shown in Figure76 along with the measured toughening.  This

figure shows that the model agrees with the measured toughening for the high

compositions of alumina, but it did not agree well for the low compositions of alumina. 

Substituting the distributed spacing crack deflection model into the total results in Figure

77.  This model was closer to the measured toughening for the low alumina compositions

but greater than the measured toughening for the high alumina compositions.
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Figure 77 Total incremental fracture toughness model and measured
toughening versus volume percent Al2O3 for uniform particle
sizes and distributed spacing.

The total model using the measured particle size and spacing with the uniform

spacing crack deflection model is shown in Figure 78.  Similar to the model using the

uniform particle size and uniform spacing, Figures 76 and 77, this model falls below the

measured values in the lower alumina compositions while it is fairly close for the high

alumina compositions.  Using the measured particle size and spacing with the distributed

spacing crack deflection model in the total model, Figure 79, shows close agreement in the

low alumina compositions and poor agreement in the high alumina compositions.

An explanation for the low toughness prediction in the low alumina region for the

model total with uniform spacing crack deflection, Figure 78,  may be due to the 
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Figure 78 Total incremental fracture toughness model and measured
toughening versus volume percent Al2O3 for measured particle
sizes and spacings with the uniform-spacing crack deflection
model.
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Figure 79 Total incremental fracture toughness model and measured
toughening versus volume percent Al2O3 for measured particle
sizes and spacings with the distributed-spacing crack deflection
model.
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assumption of spherical particles of uniform spacing.  Recall from the SEM imaging that

the low alumina compositions’ second phase was randomly distributed swirls and not

spheres, while the high alumina compositions’ second phase (YSZ) were observed as

uniformly distributed spheres; no swirls were present.  With the swirl microstructure it can

be assumed that the tortuosity experienced by the crack would be greater than that for

spherical particles.  Therefore, because of the swirls, the low alumina compositions have

more toughening of the film from crack deflection than that predicted by the uniform

spacing case, but by how much is unknown. 

  The distributed spacing crack deflection model reflects a reasonable increase in

toughness and its assumed microstructure more closely resembles that of the actual swirl

microstructure than the uniform spacing’s assumed microstructure.  For these

microstructural observations the distributed spacing crack deflection model was applied to

the low alumina range and the uniform spacing crack deflection model was applied to the

high alumina range, Figure 80.  This version of the model resulted in a close agreement

between the model total and the measured toughening.
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Figure 80 Total incremental fracture toughness model and measured
toughening versus volume percent Al2O3 for measured particle
sizes and spacings with the distributed-spacing  crack deflection
model (0-50 vol%) and the uniform-spacing crack deflection
model (50-100 vol%).



173

CHAPTER VII

CONCLUSIONS

1.  Yttria-stabilized zirconia-alumina composites can be deposited at the rate of ~ 1.5

µm/hr onto single crystal a-plane alumina substrates via combustion chemical vapor

deposition using toluene as the flammable solvent with a Y 2-ethylhexanoate, Zr 2-

ethylhexanoate and Al acetylacetonate as precursors in a concentration of 0.002 M.

2.  The amounts of YSZ and alumina in the resulting combustion CVD YSZ-alumina films

are equal to the stoichiometric amounts of YSZ and alumina in the precursor solutions.

3.  A precursor amount of 4.5 mol% yttria results in approximately 6.8 mol% yttria in the

final combustion CVD YSZ film.

4.  Precursor solution concentrations of 0.002 M result in denser-appearing and smoother

films than the higher concentration of 0.005 M with all other parameters constant.

5.  Combustion CVD can be used to deposit YSZ particles sized 10 to 20 nm in diameter

in an alumina matrix for the 62.8 mol% alumina composition.
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6.  Annealing the 62.8 mol% alumina film at temperatures up to 1500EC for up to 12 hrs

has no detectible effect on the second phase (YSZ) particle sizes.  Annealing the 62.8

mol% alumina film at 1500EC for as little as 2.5 hrs coarsens the microstructure.

7.  Combustion CVD of YSZ-alumina films resulted in the formation of both the alpha and

theta phases of alumina and the tetragonal phase of YSZ, although the cubic phase of YSZ

could not be ruled out.

8.  Nanoindentation for hardness and elastic modulus determination was a repeatable and

reliable technique for bulk materials as verified by the small error bars and the repeatability

of the results from multiple tests on the same material.

9.  Nanoindentation for fracture toughness determination was a repeatable and reliable

technique for bulk materials as verified by the repeatability of the results from multiple

tests on the same material and by the consistent error bars comparable to those from  large

scale testing equipment (such as Vickers or Knoop indenters) on similar materials.

10.  The fracture toughness of a-plane alumina was a function of the indenter tip

orientation with respect to the primary cleavage plane of the alumina.  The hardness and

elastic modulus of a-plane alumina was not a function of indenter tip/crystal orientation.
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11.  Nanoindentation for hardness and elastic modulus determination for combustion CVD

films is a feasible technique.  The hardnesses and elastic moduli are less reliable for

rougher coatings (roughnesses on the order of the indenter tip size) and for higher

concentration precursor solutions.  The 0.005 M solution produced films on which many

indents (over 50% of the total) were unusable (i.e. discontinuous load-displacement

curves) and the 0.002 M solutions produced films which had very few (less than 15% of

the total) unusable indents.  

12.  The resulting elastic modulus to hardness ratios for all the YSZ-alumina films grown

by combustion CVD were approximately 20 to 25 regardless of the differences in the

deposition parameters and the nature of the load-displacement curves.  

13.  Nanoindentation for fracture toughness determination was a feasible, repeatable and

reliable technique for combustion CVD films as verified by the repeatability of the results

from tests on multiple specimens of the same film composition and the magnitude of their

error bars.  Repeatability was shown for the 100% YSZ films and 70 mol% YSZ/30 mol%

alumina films.  Additionally, the fracture toughnesses of the combustion CVD 100% YSZ

films were comparable to literature values of conventional CVD YSZ films.

14.  Fracture toughness of the films was not a function of the applied load as long as the

film and substrate were not penetrated to the extent that significant delamination of the

film occured.
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15.  1500EC anneals in air performed for 0,  2.5, 5 and 10 hrs on the eutectic composition

(62.8 mol% alumina) film resulted in fracture toughnesses that varied with the particle size

and spacing.  Fracture toughness increased with annealing time (and particle size and

spacing) up to 5 hrs.  Anneal times greater than 10 hours coarsened the film so much that

the fracture toughness decreased.

16.  Second phase particles of alumina grown into a YSZ matrix via combustion CVD

increases the fracture toughness of the films on average, from 1.8 ± 0.5 MPa·m0.5 for

100% YSZ to 2.5 ± 0.3 MPa·m0.5 for 70 mol% YSZ/30 mol% alumina.  Similarly, second

phase particles of YSZ grown into an alumina matrix also increased the fracture toughness

on average, from 2.2 ± 0.3 MPa·m0.5 for 100% alumina to 2.5 ± 0.4 MPa·m0.5 for 37.2

mol% YSZ/62.8 mol% alumina.  Similarly, second phase particles of YSZ grown into an

alumina matrix via combustion CVD also increase the fracture toughness of the films.  

17.   Fracture toughness for the YSZ-alumina films can be modeled using expressions

developed for the following toughening mechanisms:  crack deflection from the second

phase particles, grain bridging around the particles and residual stress from the 

CTE mismatch of film to the substrate and CTE mismatch from the particles to the matrix

of the film.  



177

CHAPTER VIII

RECOMMENDATIONS FOR FUTURE WORK

There are several areas where additional work could be performed.  Some of these

are as follows:

1.  Relate the load-displacement curve for individual cracks to the crack growth

characteristics for each particular indentation. 

2.  Relate mechanical properties to deposition temperature.

3.  Measure the residual stress versus process parameters.

4.  Perform depositions with a different yttria composition and compare the resulting

morphologies and properties.

5.  Measure the porosity (or density) of the films and relate it to the measured hardness,

elastic modulus and fracture toughness.
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6.  Determine coarsening behavior versus composition. 

7.  Deposit films on a different substrate other than a-plane alumina and determine the

film’s morphologies and properties.
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