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Abstract

Probabilistic techniques have become the mainstay of robotic mapping, partic-
ularly for generating metric maps. In previous work, we have presented a hith-
erto nonexistent general purpose probabilistic framework for dealing with topo-
logical mapping. This involves the creation of Probabilistic Topological Maps
(PTMs), a sample-based representation that approximates the posterior distribution
over topologies given available sensor measurements. The PTM is inferred using
Markov Chain Monte Carlo (MCMC) that overcomes the combinatorial nature of
the problem. In this paper, we address the problem of integrating appearance mea-
surements into the PTM framework. Specifically, we consider appearance mea-
surements in the form of panoramic images obtained from a camera rig mounted
on a robot. We also propose improvements to the efficiency of the MCMC al-
gorithm through the use of an intelligent data-driven proposal distribution. We
present experiments that illustrate the robustness and wide applicability of our al-
gorithm.

1 Introduction

Mapping an unknown and uninstrumented environment is one of the foremost problems
in robotics. For this purpose, both metric maps [4][13] and topological maps [16][2]
have been explored in depth as viable representations of the environment. In both
cases, probabilistic approaches have had great success in dealing with the inherent
uncertainties associated with robot sensori-motor control and perception, that would
otherwise make map-building a very brittle process.

This work deals with the problem of topological mapping. Topological maps at-
tempt to capture the spatial connectivity of the environment by representing it as a
graph with arcs connecting the nodes that designate significant places in the environ-
ment, such as corridor junctions and room entrances [11]. Arguably the hardest prob-
lem in topological mapping is the perceptual aliasing problem, which is an instance of
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Figure 1: Camera rig mounted on the robot to obtain panoramic images

the data association problem, also variously known as “closing the loop” [6] or “the re-
visiting problem” [20]. It is the problem of determining whether sensor measurements
taken at different points in time correspond to the same physical location. When a
robot receives a new measurement, it has to decide whether to assign this measurement
to one of the locations it has visited previously, or to a completely new location. The
aliasing problem is hard because the number of possible choices grows combinatorially
with the number of measurements.

In previous work [15], we presented the concept of Probabilistic Topological Maps
(PTMs) that deal with the perceptual aliasing problem in a systematic probabilistic
manner. A PTM is a probability distribution over the discrete space of all possible
topologies, and is obtained by computing the posterior distribution over this space
given the measurements. However, due to the combinatorial size of the state space,
it is not possible to compute the PTM analytically, and hence, a sample-based ap-
proximation to the posterior distribution is used for this purpose. The sample-based
approximation, in turn, is computed using the Markov Chain Monte Carlo (MCMC)
sampling algorithm [5] that overcomes the combinatorial nature of the state space.

The intuitive reason for computing the posterior is to solve the aliasing problem
for topologies in a systematic manner. The set of all possible correspondences be-
tween measurements and the physical locations from which the measurements are
taken is exactly the set of all possible topologies. By inferring the posterior on this
set, whereby each topology is assigned a probability, it is possible to locate the more
probable topologies without committing to a specific correspondence at each step, as
most current algorithms do. Thus, a general solution to the perceptual aliasing problem
is obtained. Even in pathological environments, where almost all current algorithms



Figure 2: A panoramic image obtained from the robot camera rig

fail, our technique provides a quantification of uncertainty by pegging a probability of
correctness to each topology.

In [15], we considered the case where the measurements consist of odometry mea-
surements alone. We demonstrated that even in this case, with infinite perceptual alias-
ing, PTMs perform well. However, the use of appearance information, if available,
clearly provides an advantage which was not utilized in that work. Further, the pro-
posal distribution used to mix the Markov chain in state space was constructed using
a simple split-merge algorithm that does not take into account any domain knowledge.
This leads to slow mixing and results in inefficiency in some cases.

In this paper, we address both the above shortcomings in our previous work. Hence,
our contribution is two-fold. First, we present a general model for incorporating ap-
pearance measurements in the construction of PTMs. As a specific instance of this
model, we propose the use of panoramic images obtained from a camera rig mounted
on a robot (shown in Figure 1), to obtain appearance measurements. An example of
such a panoramic image is given in Figure 2.

As a second major contribution, we provide a new data-driven proposal distribution
for use in the MCMC sampler. The proposal uses domain knowledge in the form of
expected landmark locations, and leads to faster mixing of the Markov chain, thus
making the PTM algorithm more efficient. A more general aspect of this work is that it
demonstrates a means to include pose information into any MCMC proposal that deals
with the space of all possible clusterings. This is true since the space of topologies is
exactly the same as that of all possible clusterings of available measurements.

We use the Fourier signature [7] of a panoramic image as the appearance measure-
ments in our appearance model. Fourier signatures, which have previously been used
in the context of localization using omni-directional vision [12], are a low-dimensional
representation of images using Fourier coefficients. They allow inexpensive matching
of images to determine correspondence to physical locations. Further, due to the peri-
odicity of panoramic images, Fourier signatures are rotation-invariant. This property is
of prime importance when determining correspondence since the robot may be moving
in different directions when the images are obtained. We present a generative model for
the appearance measurements that enables their use in the PTM algorithm. The advan-
tage of using appearance measurements in addition to odometry is illustrated through
experiments.

In subsequent sections, after providing related work, we give a brief overview of
PTMs and the means for estimating the posterior over the space of topologies through
MCMC sampling. Subsequently, we describe our appearance model for use in the
PTM algorithm, and this is followed by an explanation of the data-driven proposal
distribution. In Section 6, we give details of the experiments we conducted and the



results obtained, following which we conclude.

2 Related Work

Maintaining the posterior distribution over the space of topologies results in a sys-
tematic and robust solution to the aliasing problem that plagues topological mapping.
Though probabilistic methods have been used in conjunction with topological maps
before, none exist that are capable of dealing with the inference of the posterior distri-
bution over the space of topologies. A recent approach by Remolina and Kuipers [16],
improved upon by Savelli and Kuipers [17], gives an algorithm to build a tree of all
possible topological maps that conform to the measurements, but in a non-probabilistic
manner . Most instances of previous work extant in the literature that incorporate un-
certainty in topological map representations do not deal with general topological maps,
but with the use of Markov decision processes to learn a policy that the robot follows
to navigate the environment.

Shatkay and Kaelbling [18] use the Baum-Welch algorithm, a variant of the EM
algorithm used in the context of HMMs, to solve the aliasing problem for topological
mapping. However, this approach is well-known to be prone to local minima in the
solution space. [1] uses a second order HMM to model the environment. The use of a
limited, multiple-hypothesis space over correspondences through the use of POMDPs
is prevalent also in the literature [19][22].

Others use a non-probabilistic approach to the perceptual aliasing problem by ap-
plying a clustering algorithm to the measurements to identify distinctive places, an
instance being [10]. Numerous approaches also exist for the use of local appearance
in place recognition, for example [21][3]. However, all these methods are inherently
brittle in the sense that they are prone to failing silently in environments with severe
perceptual aliasing.

Data-driven proposals have previously been used various fields - for example in
Computer Vision for image segmentation [23], and in Statistics to analyze mixture
models [8]. In general, data-driven proposals cause a significant speed-up in the sam-
pling algorithm in cases where the state space being considered is enormous. In such
cases, a normal proposal would provide a number of samples that are from regions
of low probability and hence get rejected, wasting the computation involved in their
generation. A proposal that utilizes the data, on the other hand, directs the proposed
samples towards regions of higher probability, thus increasing the MCMC acceptance
ratio and reducing the number of cases where the proposed sample is rejected.

3 Probabilistic Topological Maps

We begin by giving a brief overview of Probabilistic Topological Maps (PTMs). A
PTM is a sample-based representation that approximates the posterior distribution P(T |Z)
over topologies T given measurements Z. While the space of possible maps is combi-
natorial, a probability density over this space can be approximated by drawing a sample



of possible maps from the distribution. Using the samples, it is possible to construct a
histogram on the support of this sample set.

For the purpose of this work, we assume the availability of a “landmark detector”
that detects a landmark when it is near. While the problem of landmark detection is
an important one in itself, we do not consider it in this paper. No knowledge of the
correspondence between landmark measurements and the actual landmarks is given
to the robot - indeed, that is exactly the topology that we seek. The problem then
is to compute the discrete posterior probability distribution P(T |Z) over the space of
topologies.

3.1 Topologies as set partitions

To infer the PTM from the measurements, we exploit the equivalence between topolo-
gies of an environment and set partitions of landmark measurements, which group the
measurements into a set of equivalence classes. When all the measurements of the
same landmark are clustered together, this naturally defines a partition on the set of
measurements. Let the set of measurements be denoted as Z = {zi|i ∈ [1,N]}, where
N is the number of measurements (the number of landmarks seen by the robot). If the
number of distinct landmarks in the environment is M (M ≤ N), then a topology T can
be represented as the set partition of the set Z, T = {S j | j ∈ [1,M]}, where each S j is a
set of measurements such that S j1∩S j2 = φ ∀ j1, j2 ∈ [1,M], j1 6= j2 and

� M
j=1 S j = Z.

The set S j contains the measurements corresponding to the jth distinct landmark in
the environment. As an aside, we note that we only deal with planar topologies in this
work.

It can be seen that a topology is nothing but an assignment of measurements to sets
in the partition. This results in the above mentioned isomorphism between topologies
and set partitions. An example of the encoding of topologies as set partitions is shown
in Figure 3. The number of possible topologies is thus equal to the number of set par-
titions of the set of measurements (and hence, also to the set of all possible clusterings
of the set of measurements). This number is called the Bell number [14], and grows
hyper-exponentially with the number of measurements.

3.2 Inferring PTMs using Markov chain Monte Carlo

The aim of inference in the space of topologies is to obtain the posterior probability dis-
tribution on topologies P(T |Z). We use Markov chain Monte Carlo (MCMC) sampling
to perform inference in the combinatorial state space of topologies,

All MCMC methods work by running a Markov chain over the state space with the
property that the chain ultimately converges to the target distribution of interest, in this
case the posterior over topologies. Once the chain has converged, subsequent states
visited by the chain are considered to be samples from the target distribution. The
Markov chain itself is generated using a proposal distribution that is used to propose
the next state in the chain, a move in state space, possibly by conditioning on the
current state. The Metropolis-Hastings algorithm, a general MCMC method, provides
a technique whereby the Markov chain can converge to the target distribution using
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Figure 3: Two topologies with 6 observations each corresponding to set partitions (a) with six landmarks

({0},{1},{2},{3},{4},{5}) and (b) with five landmarks({0},{1,5},{2},{3},{4}) where the second and

sixth measurement are from the same landmark.

Algorithm 1 The Metropolis-Hastings algorithm
1. Start with a valid initial topology Tt , then iterate once for each desired sample

2. Propose a new topology T
′

t using the proposal distribution Q(Tt → T ′t )

3. Calculate the acceptance ratio

a =
P(T ′t |Z

t)

P(Tt |Zt)

Q(T ′t → Tt)

Q(Tt → T ′t )
(1)

where Zt is the set of measurements observed up to and including time t.

4. With probability p = min(1,a), accept T ′t and set Tt ← T ′t . If rejected we keep the state
unchanged (i.e. return Tt as a sample).

any arbitrary proposal distribution, the only important restriction being that the chain
be capable of reaching all the states in the state space.

The pseudo-code to generate a sequence of samples from the posterior distribu-
tion P(T |Z) over topologies T using the Metropolis-Hastings algorithm is shown in
Algorithm 1 (adapted from [5]). Intuitively, the algorithm samples from the desired
probability distribution P(T |Z) by rejecting a fraction of the moves generated by a pro-
posal distribution Q(T ′t ;Tt ), where Tt is the current state and T ′t is the proposed state.
The fraction of moves rejected is governed by the acceptance ratio a given by (1), the
computation of which requires the design of a proposal density and evaluation of the
target density.

The target distribution P(T |Z) is computed through the use of Bayes Law

P(T |Z) ∝ P(Z|T )P(T ) (2)

where P(T ) is a prior on topologies and P(Z|T ) is the observation likelihood. In [15],



we considered the case where Z is just the set of odometry measurements. The odom-
etry likelihood was computed by Rao-Blackwellization of landmark locations using a
prior distribution on the landmark locations. We used a simple split-merge proposal
distribution to move the Markov chain through the state space. For more details, see
[15].

4 Incorporating appearance models in PTMs

If, in addition to odometry, appearance measurements are also taken into considera-
tion, the set of measurements Z consists of odometry measurements O and appearance
measurements A, so that Z = {A,O}. Also, note that the odometry and appearance
measurements are conditionally independent given the topology T , since the topology
determines the correspondence between measurements and physical landmarks. Using
this independence in (2), we get

P(T | O,A) = kP(O,A|T )P(T )

= kP(O|T )P(A|T )P(T ) (3)

where k is the normalization constant. The evaluation of the odometry likelihood
P(O|T ) is discussed in [15] and is not considered here. We deal with modeling ap-
pearance to evaluate the appearance likelihood P(A|T ) in this section.

Fourier signatures, which we use as appearance measurements, are computed by
calculating the 1-D Fourier transform of each row of the panoramic image and stor-
ing only the first few coefficients corresponding to the lower spatial frequencies [12].
While more popular dimensionality reduction techniques such as PCA [9] exist, the
drawback of such systems is the need to further preprocess the measurement images
in order to obtain rotational invariance. In contrast, the magnitudes of Fourier coeffi-
cients in a Fourier signature are rotation-invariant since panoramic images are periodic.
Hence, a Fourier signature yields a low-dimensional, rotation-invariant representation
of the image. We use images obtained from an eight-camera rig mounted on a robot
to produce panoramic images as shown in Figures 1 and 2. The eight images thus
obtained are mosaicked automatically to form a 3600 view of the environment.

In our case, Fourier signatures are calculated using a modification of the procedure
given in [12]. First, a single row image obtained by averaging the rows of the input
image is calculated and subsequently, the one-dimensional Fourier transform of this
image is performed. This gives us the Fourier signature of the image. It is to be noted
that Fourier signatures do not comprise an error-free source of measurements. If that
were the case, then the need for a probabilistic treatment would not arise. Most of the
errors in the measurements take the form of false positives, in the sense that images
from distinct physical locations often yield similar Fourier signatures. This is due
to perceptual aliasing and the extreme compression of the image data into a Fourier
signature. However, when used in the PTM algorithm in conjunction with odometry,
they still produce good results as we demonstrate in Section 6.

We begin by denoting the set of appearance measurements as A = {ai|1≤ i ≤ N},
where N is the number of measurements (the number of landmarks observed by the
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Figure 4: The Bayesian network (b) that encodes the independence assumptions for the appearance mea-

surements in the topology (a) given the true appearance Y = {y1, . . . ,y5} at all the landmark locations.

robot during its run). Let the number of distinct landmarks in the environment be M
(M ≤N). Evaluation of the appearance likelihood is performed by introducing the hid-
den parameter Y = {y j|1≤ j ≤M}, where each y j corresponds to a distinct landmark.
The hidden parameter denotes the “true appearance” of each landmark in the topology.
As we do not need to compute Y when inferring topologies, we marginalize over it so
that

P(A | T ) =
�

Y
P(A | Y,T )P(Y | T ) (4)

where P(A|Y,T ) is the measurement model and P(Y | T ) is the prior on the appearance.
We assume that the appearance of a landmark is independent of all other landmarks, so
that each y j is independent of all other y j′ . The prior P(Y | T ) can thus be factored into
a product of priors on the individual y j.

P(Y | T ) =
M

∏
j=1

P(y j) (5)

As seen in Section 3.1, the topology T introduces a partition on the set of appear-
ance measurements by determining which “true appearance” y j each measurement ai

actually measures, i.e the partition encodes the correspondence between the set A and
the set Y . Also, given Y , the likelihood of the appearance can be factored into a prod-
uct of likelihoods of the individual appearance instances. This is illustrated using an



example topology in Figure 4, where the Bayesian network encodes the independence
assumptions in the appearance measurements. Hence, denoting the jth set in the parti-
tion as S j, we rewrite P(A | Y,T ) as -

P(A | Y,T ) =
M

∏
j=1

∏
ai∈S j

P(ai | y j) (6)

where the dependence on T is subsumed in the partition. Combining Equations (4), (5)
and (6), we get the expression for the appearance likelihood as

P(A | T ) =
M

∏
j=1

�
y j

P(y j) ∏
ai∈S j

P(ai | y j) (7)

In our case, each appearance measurement ai is a Fourier signature vector given
as ai = {ai1,ai2, . . . ,aiK}, where aik is the kth Fourier component in the Fourier sig-
nature. Also, we assume a similar vector form for the hidden appearance variables yi,
so that yi = {yi1,yi2, . . . ,yiK}. Moreover, we assume that the frequency components
of the Fourier signature given the corresponding appearance variable are independent,
and hence, can be factored, as can be the prior over the hidden appearance variables.
Consequently, we can rewrite (7) to get the expression for the appearance likelihood as

P(A | T ) =
M

∏
j=1

K

∏
k=1

�
y jk

P(y jk) ∏
ai∈S j

P(aik | y jk) (8)

In the above equation, P(y jk) is a prior on appearance in the environment, and
P(aik | y jk) is the appearance measurement model. Evaluation of the appearance likeli-
hood requires the specification of these two quantities.

We assume the measurement noise in the Fourier signatures to be Gaussian dis-
tributed so that the model for appearance instance aik, belonging to the jth set S j, is
also a Gaussian centered around the “true appearance” y jk with variance σ2

jk. Since
we do not know either of these parameters, we further model them hierarchically in a
proper Bayesian manner. Hierarchical conjugate priors are placed on σ2

jk and y jk : the

prior on σ2
jk being an inverse gamma distribution while the prior on y jk is taken to be

a Gaussian distribution with mean µ and variance
σ2

jk
κ . This particular choice of conju-

gate priors allows the integration in (8) to be performed analytically. The appearance
model can then be summarized as

aik � N (aik;y jk,σ2
jk) where ai ∈ S j

y jk � N (y jk;µ,
σ2

jk

κ
) (9)

σ2
jk � IG(σ−2

jk ;αk,βk)

where IG denotes the inverse gamma distribution. Note that while the value of κ is
generally chosen so that the prior on y jk is vague, we usually have some extra “world
knowledge” that can be used to set the values of the hyper-parameters αk and βk. For



example, if we expect the value of the Fourier signature to vary by only a small amount
in the neighborhood of a given location, the prior on σ2

jk should reflect this knowledge
by being peaked about a specific value.

The generative model for Fourier signature measurements specified by (9) is now
used to compute the appearance likelihood given by (8). In addition to integrating over
y jk, we also integrate over the variance σ2

jk as we are not interested in its value. It
follows that

P(A | T ) =
M

∏
j=1

K

∏
k=1

�
σ2

jk

IG(αk,βk)×

�
y jk

N (µ,
σ2

jk

κ
)
(

N (y jk,σ2
jk)

)|S j| (10)

Due to the use of conjugate priors, this computation can be performed analytically.
Now that the appearance likelihood can be evaluated from (10), this can be used

in (3) to compute the target distribution. The target distribution, in turn, is needed
to compute the acceptance ratio in the Metropolis-Hastings algorithm, as has been
mentioned before.

The appearance model presented above is not specific to Fourier signatures. Indeed,
it is a general purpose clustering model that assumes that the data to be clustered are
distributed as a mixture of Gaussians. A topology labels each data instance as arising
out of one of the mixture components, where the number of mixture components is
determined by the number of sets in the set partition corresponding to the topology.

5 Data-driven Proposal distribution

Consider a topology T = {S j| j ∈ [1,M]}, where the S j are sets in a set partition of the
measurements as before. If the Markov chain is currently in the state T , the task of the
proposal distribution is to propose a new topology T ′ from T . With reference to the
calculation of the Metropolis-Hastings acceptance ratio in (1), the probability of the
step from T to T ′ as well as the reverse step has to be computed. We now present a
data-driven proposal distribution that accomplishes this task in an efficient manner so
that the Markov chain mixes rapidly across the state space.

The basic steps of the proposal consist of the merge and the split moves as in [15].
A merge move occurs when two of the sets in the set partition corresponding to T are
merged to yield T ′. Analogously, a split move occurs when a set in T is split into two.
The number of ways in which a merge move can occur is given as NM =

(M
2

)

, M > 1.
To calculate the number of possible ways a split move can occur, let NSt be the number
of non-singleton sets in the partition. Clearly, NSt is the number of sets in the partition
that can be split. Out of these NSt sets, we pick a random set R to split. The number
of possible ways to split R into two subsets is given by

{|R|
2

}

. Here
{n

m

}

denotes the
Stirling number of the second kind that gives the number of possible ways to split a set
of size n into m subsets [14]. Hence, the total number of ways a split move can occur
on T is given by NS = NSt

{|R|
2

}

.



Algorithm 2 The Proposal Distribution

1. Select a merge or a split with probability
{

NM
NM+NS

,
NS

NM+NS

}

2. Merge move:

• if T contains only one set, re-propose T ′ = T , hence r = 1

• otherwise select two sets at random, say R and S

(a) Let D be the distance between the locations corresponding to R and S obtained
by optimizing the odometry wrt T

(b) T ′ = (T −{R}−{S})∪{R∪S} and Q(T → T ′) =
exp

(

− D2

σ2

)

NM+NS

(c) Q(T ′→ T ) is obtained from the reverse case 3(c), hence r = NM+NS
N ′M+N ′S

exp
(

D2

σ2

)

,

where N′M and N′s are the number of merge and split moves possible from T ′

3. Split move:

• if T contains only singleton sets, re-propose T ′ = T , hence r = 1

• otherwise select a non-singleton set U at random from T and split it into two sets R
and S.

(a) T ′ = (T −{U})∪{R,S}

(b) Let D be the distance between the locations corresponding to R and S obtained
by optimizing the odometry wrt T ′

(c) Q(T → T ′) = 1
NM+NS

(d) Q(T ′ → T ) is obtained from the reverse case 2(b), hence r =
NM+NS
N ′M+N ′S

exp
(

−D2

σ2

)

, where N′M and N′s are as defined in 2(c)



The data-driven proposal distribution, which computes the proposal ratio r used in
the calculation of the acceptance ratio in (1), is given in Algorithm 2. The proposal
begins by picking a split or merge move according to the proportion of the number of
ways these moves are possible.

Subsequently, if a merge move is chosen, two random sets from the partition are
chosen to be merged. Now, however, the knowledge of the odometry measurements
is used to calculate the probability of the proposal. Intuitively, measurements that are
taken when the robot pose is almost the same have a higher probability of being from
the same landmark, and should have a higher probability of being merged.

The landmark locations corresponding to the sets to be merged are obtained from
the optimal robot trajectory, which in turn is obtained by optimizing the odometry un-
der the constraints required by topology T [15]. The topology T requires certain land-
mark measurements to correspond to the same physical landmark, i.e to occur at the
same physical location. However, enforcing this constraint causes the trajectory of the
robot to diverge from the odometry measurements. The optimal trajectory minimizes
the total error due to divergence from the odometry measurements and not enforcing
the constraints dictated by the topology T . The probability of the merge step is then
obtained using the distance D between the landmarks that we are proposing to merge

as exp
(

−D2

σ2

)

, where σ2 is a variance that encodes our belief in the distance between

landmarks, or equivalently, the scale of the environment.
The analogous calculation for the split step is now simple since the probability

of the split itself is just the inverse of total possible moves from T . Note that the
merge moves proposed in the above scheme will often have a low probability since the
majority of landmarks chosen for merging will not be close together. To prevent this, a
gating scheme is used that selects the landmarks to be merged preferentially based on
their being closer together than a pre-defined threshold.

6 Experiments

We now present experiments to validate our algorithm. The experiments were per-
formed on an ATRV-Mini robot mounted with an eight camera rig and the landmarks
in the runs were selected manually.

The first experiment was conducted over an entire floor of a building and consisted
of a robot run containing two loops, a bigger loop enclosing a smaller loop. Twelve
landmarks were observed by the robot during the run, shown overlaid on a floorplan
of the experimental area in Figure 6. The odometry of the robot with the laser plotted
on top is shown in Figure 5. Using only the odometry measurements, the ground
truth topology received a low probability mass due to noisy odometry. The five most
probable topologies in the PTM obtained are given in Figure 9.

We now repeat the experiment, but this time also using the appearance measure-
ments in addition to the odometry. The first five frequencies of the Fourier signatures
were used for this purpose. The values of the variance hyper-parameters in the ap-
pearance model were set so that the prior over the variance is centered at 500 with a
variance of 50. When appearance is also included, the results (shown in Figure 10)



Figure 5: Odometry of the robot plotted with the laser measurements for the first experiment.

Figure 6: Schematic of robot path overlaid on a floorplan of the environment for the first experiment.
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Figure 7: Landmark locations obtained from simulated odometry for the second experiment.

Data-driven pro-
posal

General proposal

1st experiment 9 minutes 46 minutes
2nd experiment 51 minutes > 6 hours

Figure 8: Running times for computing the PTM using the two proposals in both the experiments. The

data-driven proposal speeds up the algorithm by at least a factor of five.

shift dramatically since there is little perceptual aliasing in this environment. Although
five topologies appear in the PTM, the ground truth topology receives almost all of the
probability mass. This experiment illustrates the fact that when reliable measurements
are available, our approach produces a PTM that is sharply peaked in the space of
topological maps. More specifically, the appearance measurements help disambiguate
noisy odometry data in this case. The improvement in running time using the data-
driven proposal is given in Table 8.To demonstrate the scalability of our algorithm, we
conducted a second experiment in simulation in an environment where the robot was
made to traverse a number of loops. A total of 33 landmarks were observed by the
robot in the run. The landmark locations obtained from odometry generated during
the simulated run are shown in Figure 7. Using the data-driven proposal speeds up the
algorithm by a factor of six (Table 8) as compared to the general split-merge proposal
[15]. The four most likely topologies in the PTM are shown in Figure 11.

In the above experiments, we test the convergence of the MCMC procedure by ini-
tializing the chain randomly and observing if the chains converge to the same distribu-
tion. While this provides a rough estimate of convergence, it is not a robust theoretical
measure. Implementing a theoretically-grounded convergence criterion is future work.
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Figure 9: Topologies with highest posterior probability mass for the first experiment using only odometry.

(a) receives 43% of the probability mass while (b), (c), (d) and (e) receive 14%, 7.3%, 3.9% and 2.8% of the

probability mass respectively. The ground truth topology is (c).
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Figure 10: Topologies constituting the PTM for the first experiment using both odometry and appearance.

(a) receives 99.5% of the probability mass while (b), (c), (d) and (e) receive 0.25%, 0.14%, 0.12% and

0.01% of the probability mass respectively. The ground truth topology is (a).
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Figure 11: Topologies with highest posterior probability mass for the second experiment. (a) the ground

truth topology receives 71% of the probability mass while (b), (c), and (d) receive 9.1%, 8.2%, and 6% of

the probability mass respectively. The ground truth topology is (a).

7 Conclusion

We presented a generative model for appearance and used it in addition to odometry to
generate Probabilistic Topological Maps. It is seen from the experiments that addition
of appearance information improves the results significantly by disambiguating noisy
odometry. This is in spite of the fact that the appearance measurements are themselves
noisy. In addition, we presented a data-driven proposal that significantly speeds up the
algorithm by enabling rapid mixing of the Markov chain. This speed-up is at least by a
factor of five as seen from the results we have presented.

It is to be noted that the improvement in the results upon addition of appearance
information is solely due to the fact that we have a more confident inference of the
PTM. The PTM itself is simply the posterior over the space of topologies, and hence,
the PTM obtained using only odometry is not incorrect in any sense. Addition of more
information simply makes the posterior more peaked in the space of topologies. This
improvement in the posterior upon use of more information is a feature of Bayesian
inference in general.

Currently, the appearance model requires three parameters to be chosen by the user.



These are the α and β variance hyper-parameters and the number of frequency compo-
nents to be considered in the Fourier signature. The variance hyper-priors encode the
variation in appearance values from the same location in the environment. Changes in
lighting, camera distortion and other measurement noise may make this variation large.
Hence, the values of the hyper-parameters need to be empirically determined for each
environment. It is our experience that there is rarely need to use more than the first
five frequency components in the appearance model. This is because the higher fre-
quency components mainly contain noise, which we do not seek to model. It is also to
be noted that while we use Fourier signatures in this work, any other rotation-invariant
dimensionality reduction technique can be used instead.

While we only use models for odometry and appearance, a simple extension to laser
data is also possible. 3600 laser scans at the landmark locations can be used to compute
the likelihood between scans after an optimal alignment. This likelihood, extended
to multiple scan comparison, can be used to sample over partitions. Similarly, we
have only considered the use of odometry measurements in the data-driven proposal.
Clearly, appearance information can also be used in a similar manner in conjunction
to odometry. However, it is our experience that the use of odometry alone is sufficient
to provide good proposals and hence, in the interests of space, we have not provided
details of the analogous use of appearance measurements here.
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