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JNotation and Terminology. 

Sz. ND = open unit disc 
is thefj = closed unit disc 

FaD = unit circle 

H = open right half plane 

Ii = closed right half plane 

H= IiU{oo} 
 a, b,
HP(X) = the standard Hardy p-space (1 ~ P ~ (0) on X where X = D or H. See funda 

Duren [6] or Rudin [19] for details. We will also use some elementary zero),
facts about LP-spaces and Hilbert spaces. Again see [6] or [19] for details. appro

H 2(X)8uH 2(X) = orthogonal complement of UH2(X) in H 2(X) where UE 
route 

Hoo(X) is an inner function. 
1.Let S denote an arbitrary Hilbert space with inner product ( , ). Then for x, yES, 

materix®y denotes the operator defined by (x®y)w:=(w,y)x for WES. 
weigh1On the unit circle aD we identify z and 1/ z in the usual way. 
that inFinally we use all the standard notation from Hilbert space theory. See, e.g., [6], 
somer[19], [24]. 
more r 

Introduction. This paper is the sequel to [9]. We recall that in [9], the authors that of 
solved the weighted Roo-minimization problem for a plant consisting of a pure delay W 
and arbitrary stable (with stable inverse) real rational proper weighting function. We for SU 
saw that in contrast to the unweighted problem, which reduces to a simple classical SISO, 
Nevanlinna-Pick interpolation problem for a large class of distributed systems (7], W(s). 
[16], even for the simplest weighting function (W(s) = 1/(as+ 1), a> 0), the weighted system 
problem reflects the distributed nature of systems with delays. TI 

In this paper, we give a general procedure for computing the optimal weighted 
sensitivity for an arbitrary real rational stable (with stable inverse) weight, and for 
plants of the form e-hSPo(s) where Po{s) is a proper real rational function with no Thepn 

poles or zeros on the jw-axis. 
In point of fact, we give a general procedure for solving the following kind of 

where I
problem: Let P(s) be a plant (perhaps distributed) and suppose that we have a 
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H OO-OPTIMAL SENSITIVITY PROBLEM 

factorization P( s) = P, (s) P2( s). Then for given weight, we can write down an expression 
for the H oo-optimal sensitivity of P(s) in terms of data determined by P,(s) and Pis). 
Moreover in this expression (see (3.2) below for a more precise statement) the data 
given by P,(s) is decoupled from the data given by P2(s). So for example when 
P(s) = e- hs Po(s) as above, we can apply our procedure to P, (s) = e- hs and Pis) = Po(s), 
aproper real rational function for which the optimal sensitivity problem is easy to solve. 

Our methods are in a certain sense a generalization in the rational weighting case 
of the one-step extension technique of Adamjan, Arov and Krein [1 J, [2] and actually 
give new proofs to certain of their results (see Theorem 3.2, § 3.4 and Theorem 3.9 
below for details). Basically what we have solved is an "n-step" or even an "oo-step" 
extension problem Theorem 3.2. Thus our techniques even give a new viewpoint to 
certain problems in Nevanlinna-Pick interpolation theory [14]. 

As in [9], our methods are heavily influenced by the results of Sarason [20] and 
Sz. Nagy and Foias [23], [24]. Consequently, we will be working in H2(D) where D 
is the unit disc. Moreover, the techniques we use have a strong complex-analytic flavor. 

Finally in § 4, we will apply our procedure to the case 

p(s)=e-
hS (;:!), W(s)= aS~I' 

a, b, h > O. This will allow us to understand the coupling and effect of the three 
fundamental parameters a (the inverse of the bandwidth), b (the nonminimum phase 
zero), and h (the delay) on the optimal sensitivity. As expected for b ~ 00, our formula 
approaches that of[9] (see also § 1), and so our method here actually gives an alternative 
route to some of the results of [9]. 

1. Preliminaries. In this section we would like to briefly review some of the 
material from our paper [9], and set up some of the notation connected with the 
weighted sensitivity H oo -minimization problem posed by Zames [26]. We should note 
that independently David Flamm in his thesis [8] (done while at M.LT.) has derived 
some results very similar to tbe ones that we will describe in this section. Israel Gohberg 
more recently discussed with the authors an approach to derive (1) below, similar to 
that of Flamm's using the Hankel operator. 

We begin by recalling the general weighted sensitivity H oo-minimization problem 
for SISO, LTI plants (see [11] for an excellent survey on all of this). We are given a 
SISO, L TI plant P(s), and a stable (with stable inverse) proper real rational weight 
W(s). Let C(s) denote an internally stabilizing LTI controller for P(s) in the feedback 
system of Fig. 1. 

Then following [26], we define the weighted sensitivity : 


Sw(s):= W(s)(1 + P(s) C(s) )- '. 


The problem in which we are interested is in determining the existence of and computing 

inf {II Sw(s) 11 00 : C stabilizing} 

where II 11 00 denotes the H oo -norm in the right half plane H. 

U(S)---,+~ 

FIG. I . Standard feedback configuration. 
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In the finite-dimensional case, this problem is discussed and solved in [13], [12], 
[15]. In our previous paper [9], we considered the case in which P(s) = e- hs

, and W(s) 
a stable strictly proper real rational weighting function with stable inverse. Basically 
we showed that the problem of the computation of the optimal sensitivity could be 
reduced to computing the eigenvalues of a certain linear ordinary differential operator 
with constant coefficients of order 2n subject to 2n boundary conditions, where 
n = number of poles of W(s). From the associated Wronskian determinant of the 
problem, we could then find the required minimal sensitivity (actually all of the singular 
values of the associated Hankel operator). 

To see how this goes, let us briefly sketch the argument from [9]. (See [9] for all 
the rigorous details.) First of all using the results of [26], one can show that the 
computation of the optimal sensitiyity amounts to finding: 

Jl.:= inf II W(s) - e-IrSq(s)II<XJ' 
qE HOC> 

H OO	 hsH 2(Throughout this section H2:= H 2(H), := H<XJ(H).) Let 0: H2 ~ H 2e e-
denote orthogonal projection. Moreover, we denote by Mw the operator H2 ~ H2 
defined by multiplication by W Then by [1], [20], [23], 

Jl. = IIOMw IH 2ee- lrsH2 11· 

Computing this norm is not difficult. Indeed we can show via the Fourier or 
Laplace transform (see [20]) that there exists an isometric isomorphism 

4>: H 28e- hsH 2=; L2[0, h]. 

Setting 

f:= 4> 0 (OMw IH 2ee-h S H 2 ) 0 4>-1 

we are reduced to computing llfil. (Notice f: L2[0, h] ~ L2[0, /1].) But again from [20] 
it follows that we can identify the operator" 1/s" on H 28 e- hs H2 with the Volterra 
operator 

V: L2[0, h] ~ L2[0, h] 

Vf(x):= J~f(t) dt via 4>. The inverse operator (of course unbounded) of V is the 
derivative operator Df = f' with domain consisting of 

(i.e. 	the operator D corresponds to "s"). 
Now to compute llfil, we need to compute the largest eigenvalue of f*r (since r 

is compact), or equivalently the smallest positive eigenvalue of (f*f)-I. To do this we 
clearly only need identify the adjoint D* of D. But it is easy to compute (using 
integration by parts) that D* = - D with domain 

With these remarks one can derive the eigenvalue problem alluded to above [9]. 
In the part icular case in which 

1
W(s)=--, a>O, 

as+ 1 

we ! 
posi; 

Fron 
PI, tl 
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HCO-OPTIMAL SENSITIVITY PROBLEM 

we get r == (aD + I)-I and one derives the eigenvalue problem of finding the largest 
positive P (it is straightforward to check P < I) such that 

From the associated Wronskian, one is reduced to finding the largest P E (0, I), say 
PI, that satisfies 

(1) 

Then PI is the required norm (and the first singular value of the associated Hankel 
operator). 

Note that if P2 E (0, 1), P2 < PI, is the next largest root of (I), then P2 will be the 
second singular value of the associated Hankel, and so on. In other words we have 
an explicit procedure for computing all of the singular values of the associated Hankel 
from the Wronskian of a certain elementary eigenvalue problem. Moreover we can 
clearly even write down the Schmidt vectors using this procedure. (See [18] for the 
relevant definitions.) 

In §§ 3 and 4 below, we will offer another procedure for computing the optimal 
sensitivity applicable to more general delay systems. Our new method only makes use 
of elementary properties of H2(D) and HOO(D) and reduces the optimal sensitivity 
problem to an algebraic one. We will generalize (1) in § 4 to the case of a plant with 
a delay and a nonminimum phase zero. 

2. Triangular operators. In this section we collect some standard facts about 
certain types of lower block triangular operators. Our basic references are [22], [23]. 

Let Hit H2 denote (complex) Hilbert spaces, and set H:= HI ffi H2. Let S: H ~ H 
be a bounded linear operator such that H2 is S-invariant subspace of H, i.e., S I H 2 : H2 ~ 
H2 . Then clearly we can write 

where SI:=(S*IHI)*, s2:=sIH2, and Y:HI~H2 is the coupling operator. 
Next let A: H ~ H be an arbitrary contraction, i.e., IIAII ~ 1. Then in the usual 

way [24] we can define the associated defect operators and defect spaces: 

0)A:= DAH, 

We can now state one of the key results of [22]. 
THEOREM 2.1. With the above notation, IISII ~ P if and only if IISdl ~ P (i = 1, 2) 

and Y = D 511 pLD Sd p for some L: 0) Sd p~ 0) S~Ip such that II LII ~ p. Moreover, if we set 
O:=max {IISIII, II S 211}' and assume p> a, then IISII =p if and only if IILII =p. 

Proof The first statement is Theorem 1 of [22]. The second statement is standard, 
but since we do not know a convenient reference, we will include the proof. By scaling 
we can assume P = 1. Therefore under the hypothesis that 1 > a, we want to show 
IISII = 1 if and only if II LII = 1. 
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Suppose first 11511 = 1. Then following [22, pp. 205-207], one can define an isometry 
a: f0s ~ f0 L EB f0s , such that 

- aDh=[ DLDs, O][hl] 
S -Sf LDs, Dsz h2 ' 

Now" 511 = 1 if and only if there exists a sequence 

hen) = [h\n)] 
h~n) , 

Ilh(n)1I = 1 such that Dsh(n) ~ 0, which in turn is equivalent to 

We claim now that 

lim sup IIDs,h~n)II =: q> 0. 
n~ OO 

Indeed, suppose not. Then IIh\n)II ~°since Ds, is invertible (51 by hypothesis is 
a strict contraction), and therefore by (*) "Ds,h~n)II ~ 0, and so II h~n)II ~ 0 since D~ is 
invertible (52 is a strict contraction). But this c~ntradicts our hypothesis that IIh(n)II = 1. 

Choose a subsequence {h\n')} such that IIDs,h\n'»)II>O, and IIDs,h\n')II~q. Since 
by (*) IIDLDs,h\n)1I ~ 0, we get that IIDL(Ds,h~n')/IIDs,h\n')Ii) II ~°which implies IILII = 1. 

Conversely suppose II LII = 1 (and 1 > 8). By hypothesis DSII exists. Then we can 
choose a sequence {h\n)} such that IIDs,h\n)II = 1, and IIDLDs,h\n)II ~ 0. Set h~"):= 
D Sz 

1SfLDs, h\n) (note D Sz 
1 exists). Then clearly 

and hence Dsh(n) ~°where 

To complete the proof therefore we need only show II h(II)II ~ M > 0 for fixed 
positive constant M for all n. But clearly 

Remark 2.2. For results related to (2.1) see [5] in which arbitrary block 2x 
matrices are considered. 

So far we have been considering results about general contractions. In point 
fact however, for our purposes the contractions we will need have a special form, 

More precisely, let m), m2E HOO(D) be inner functions. Let Hi := H 28m;H2i= 

2 and set H:= H 2 e m l m2H2 (where throughout this section H2:= H 2(D)). We 
by T the compression (i.e. projection) of the unilateral shift on H2 (defined 
multiplication by z) to H. (Recall T:= ilMz IH where M z : H2 ~ H2 denotes multipl' 
tion by z and il: H2 ~ H is the orthogonal projection.) 

Next we have that 

1 

1: 
w 

wI 

co 

w 
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H OO-OPTIMAL SENSITIVITY PROBLEM 

Note that by abuse of notation, the direct sum symbol in H/f) mlH2 stands for 
"orthogonal direct sum," while the direct sum symbol in HI EB H2 stands for "external 
direct sum." (See [19] for the relevant definitions .) 

Moreover, we have the following. 
LEMMA 2.3. mlH 2e mlm2H2 is an invariant subspace ofH 2e mlm2H 2 with respect 

to T. 
Proof Let VE mlH2emlm2H2. Set m = mlm2' Clearly mv.1.H2. Let V_I =(mv, z). 

Then it is easy to compute that 

But then Tv is divisible by ml , i.e., Tv E mlH 2e mlm2H2. 0 
Lemma 2.3 means that if we identify H2 = mlH 2e mlm2H2, then we can regard 

H2 as an invariant subspace of H with respect to T. Thus with these identifications, 
we can write 

where the T; are defined as above. Clearly T I , T2, T are contractions. 
Now in this case it is well known [24] that D Tl , Dn are of rank l. Indeed we can 

compute that 

where 

arid where (x ® y) w:= (w, y)x. 

For such TI and T2, it is easy to compute X . 
PROPOSITION 2.4. X = J.L2*® J.LI' 
Proof Since T is a contraction, by (2.1) we can write X = DnLDTI where L: ~TI-+ 

~T2 is a contraction between the corresponding defect spaces. Set 

2 2 2(note that 11J.L1112 = 1-I ml(0)1 and II J.L2*" = 1-I m2(0)1 ). Then L: ~TI ~ ~n is such that 
LJ11 = AJ12* for some constant A (since the defect spaces are one-dimensional) . Hence, 

using the facts that D T1 =1IJ.L111(J1I®J1I)' DT2 ="J.L2*"(J12*®J12*), and X=DnLDTl , 

we get that X = AJ.L2* ® J.L I' Note that since T is a contraction IA 1 ~ 1. We have still not 
used the fact that T is the compression to H 2e m 1m2H 2 of the shift. We do this now. 

Indeed we can apply T to J.LI' It is easy to compute that 

TJ.LI = ZJ.LI - m 2(O)(I -I m l (O)n m l m2 

= ZJ.LI-(I -lm l(0)1 2)m 1 

+(1 -lm](O)12)ml+m2(O)(I-lml(O)12)mlm2' 

Under our isomorphisms, 

H 2e m]m2 H 2 = (H2emIH2)EB(mlH2emlm2H2) 

=(H 2e mIH 2)EB(H2e m2 H2 ), 
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we can write 

Fimilly it is easy to compute that 

[ 
T. 

A/-L2*®/-Ll 

Thus A = 1 as required. o 
3. Weighted sensitivity minimization. In this section we explicitly solve the weigh. 

ted sensitivity minimization problem for L 00 -plants of the form e-hSPo{s), where Po(s) 
is a real rational proper function with no poles or zeros on the jw-axis. Actually our 
procedure does much more. Basically for given weight W(s) (with the hypotheses 
discussed in § 1), we give a technique for solving the weighted H oo -minimization 
problem for a plant pes) = p.{s)P2{s) in terms of data determined independently by 
p.(s), and independently by P2{s). Our method only depends on one knowing the 
maximum of the optimal sensitivities of p.{s) and Pis), and from this one can find 
the optimal sensitivity for pes). 

As in [9], for simplicity we initially will take a weight of the form 

W{s)= qs+r 
ms+n 

stable with stable inverse, and such that II W{ s) 1100 ~ 1. In § 3.8 we will explain how 
our method immediately applies to general real rational weights. Moreover we will 
assume that P{s) is proper and stable with no zeros on the jw-axis. Again in Remarks 
3.10 we show how to extend our method to unstable plants. The example to keep in 
mind is pes) = e-hSPo{s) where Po{s) is a stable proper plant with no zeros on the 
jw-axis. However, the technique we give applies much more generally. 

Let 4> : H ~ D be a fixed conformal equivalence. Set 

Let P; ( z) be the inner part of P{z). Then we assume P;{z) = m.(z)m2(z) where 
the mj{z) are inner functions. As in § 2, set (H 2:= H2{D)): 

H:= H2emlm2H2, 

i = 1,2, 

T:= compression of the unilateral shift on H2{D) to H. 

Then if we make the identifications 

H=H 2em.m.H2 

= (H 2e m.H2)EB{m.H 2e m.m2 H2 ) 

=H.EBH2 

we can regard H2 as an invariant subspace of H with respect to T 
When pes) = e-hSPo{s) as above, we can take m.{z) to be the Blaschke product 

in D whose zeros consist of the images under 4> of the nonminimum phase zeros of 
Po(s), and m

2
{z) = e- h<l>-I(z). 

p 

c 

P 
tl 

n 

1\ 

al 
II 
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Then following the notation of § 1 and the constructions of [26], [13], [12] the 
problem of computing the optimal sensitivity 

in(. "W(I + PC)-llloo
C stabiliZing 

can be reduced to computing 

J..L:= inf II W(Z) - ml(z)miz)q(z)IIoo. 
qEHoo(D) 

Remark 3.1. We should note that the existence of a q(z), achieving the infimum 
It for the given m(z) = m l (z)m2 (z) inner as above, only depends on the hypothesis 
that W(Z)E HOO(D). See [14], [20]. 

Now as in § 2, we have 

T= [~ ~J 
relative to the decomposition H == HI EB H 2 • If we write 

A az + f3 
W(z)=-­

'}'z+ 8 

where ~:=a8-f3'}'~0, then IIW(z)IIoo~I since we assumed "W(s)IIoo~1. Moreover 
without loss of generality we may clearly assume II W(z) 1100 = 1. (Indeed, if necessary, 
we can always replace W(z) by W(z)/II W(z)IIoo.) Thus 

II W(T)II ~ 1, II W(TI)II ~ 1, II W(T2 )11 ~ 1. 

Moreover it is easy to compute that 

Now it is well known (see [20], [23], [24]) that the infimum 

inf II W(z) - ml (z)miz)q(z)lloo = II W( T)II, 
qE HOO(D) 

and what we will do now is give an explicit procedure for computing the latter norm 
in terms of data determined separately by the W( TI) and W( T2 ) parts of W( T). In 
effect we will decouple these in order to compute 1/ W( T) 1/. First note, however, that 

II W(T)II ~ II W(z)lIoo= 1, 


II W( T)II ~ 8:= max {II W( TI)II, II W(T2)1I} 


and so 8 = 1 implies that" W( T)" = 1. Therefore we can clearly assume 8 < 1. 
Using the defect operator notation of § 2 (as well as the functions J..LI and J..L2*), 

define for j = 1, 2 and p E (0,1] such that p> 8 

(j) - D-j 
( -T* + 8)-1J..LI - W(T,)/p')' I J..L(, 

We can now state (finally!) the following key result. 

THEOREM 3.2. With the above notation II W( T) II ~ p if and only if 


«( -T*+~)-I (2) ) «( T+~)-I (2) )< 2A-2
(2) '}' 2 u J..L2*,J..L2*· '}' I U J..LI ,J..LI =p U. • 
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Moreover II W( T) II = p if and only if (2) is an equality. (Note we are assuming p E (0, 1] Theref< 
is such that p> 0.) 

Proof by Theorem 2.1. II W( T) II ~ p if and only if 

1 (3)-Ll( yT2 + 8) - 1 X( yTI + 8)-1 = D W(T,)* / pLpD W(T,) / p 
P ­

where where 

defines a contraction of the corresponding defect spaces. But then it is easy to compute 

that 

=.!. LlII( I) t)(\ III I)Lp r-2* 1Cl r-1 . 
p 

Indeed this follows immediately from the definition of the f-L~~ and f-L ~ I) once we show 
that 

No 

But to see this just apply the first operator to an element 1/1. We get (4) 

f-L~~0 f-LI( yTI + 8)-1 D~(T,)/p l/l =« yTI + 8)-1 D~(T,)/p l/l, f-L1)f-L~~ where 1 

- (,1, V-I (-T* + ~)-I ) (I) 
- 0/, W(T1) / p 'Y 1 U f-LI f-L2* 

since V~(TI)/p is self-adjoint. 
Co

Therefore 

(5)II Lp II ~ 1<=> II f-L W1111 f-L \ I) II ~ PLl-
1 

<=>the inequality (2) holds. Fil 
followi 

Finally, under the assumption that p> 0, by (2.1) II W( T) II = p if and only if 
II Lp II = 1 if and only if (2) is an equality. 0 (6) 

Remarks 3.3. (i) In case ml(z) = (z - a)j(l- tlz), lal < 1, (2) is equivalent to certain 
(Note tinequalities derived by Adamjan, Arov and Krein [1], [2] in connection with the 
all theone-step extension problem. Hence what we have derived here is an expression for 

Wthe norm of an "n-step extension" (in case m l is a finite Blaschke product), or even 
are suean "oo-step extension" (e.g., when m l is an infinite Blaschke product). 
engine· (ii) We will assume from now on that p ~ II W( T)II, and p> 0. Note that in our 

C,procedure below, we can compute II W( T) II explicitly once we know 0. Thus if we can 
find the optimal sensitivity for plants PI(S), P2(s) we can find it for pes) = P1(S)P2(S). (7)

We now come to the crucial question of how to compute the inner products of 
(2). Again we can give an explicit procedure. Note t 

3.4. Computation of inner products. We will start with the computation of unit di 

« yTj: + 8)-1 f-L~~, f-L2*)' 

Set v*:= (yTj: + 8)-1f-L~~. Since f-L2* = 1 - m2(z )m2(0), and since v* E H 2e m2H2, (8) 

we have that (v*, f-L2*) = v*(O). Thus we must show how to find v*(O). We give a simple (9)
algebraic procedure for doing this. 

First note that u 

(10) 

11 
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Therefore 

(3) 

1"" ~ [( yT, +8)( i'Tf + S) ~ :' (aT, + J3)(aTf +Ill]", 
= (A + BT2 + BTf + CT2Tf) v* 

where 

(4) 

(5) 

B := ( yS ~ (;,) aJ3) , 

C:= (IYI'~ (;,)1a I') 
Now (I ­ T2 Tn v* = (v*, ~2*)~2* = V*(0)~2*. Therefore, from (3) we see that 

(I + Cv*(0))~2* = (F+ BT2 + BTnv* 

Tf lJ* = z( v* ­ v*(O)), 

Consequently, from (4) we see that 

(I + CV*(0))~2* + Bzv*(O) + Brnzv_ 1= (F+ Bz+ Bz)v*. 

Finally, multiplying both sides of (4) by z and rearranging terms, we derive the 
following key relationship: 

(6) 

(Note that even though this relationship has been derived on the boundary on D, since 
all the functions are in H 2 (D), they can be analytically continued to D.) 

We are almost done! Indeed it is easy to see that the roots z., Z2 of BZ2 + Fz + B 
are such that IZ IZ21 = 1. If B = B is real (which always occurs in cases of interest in 
engineering) Z\Z2 = 1. We can always assume Iz\1 ~ 1. We have three cases. 

CASE (i). IFI> 21BI. Then Zl ED, Z2 = 1/z\. Now mUltiply (5) by m2 to get 

(7) (Cm2~2*z + Bm2) v*(O) + Bzv_1 = (Bz 2+ Fz + B)mzlJ* ­ m2~2*z. 

Note that m2~2* and m2v* can be continued analytically in the complement of the 
unit disc and are 0 at 00. (On the boundary of D we identify z and 1/ z.) 

(8) 

(9) 

(10) 

Then plugging Zl into (6) and Z2 into (7) we get 

(C~2*(Z\)ZI + B) v*(O) + Brn2(ZI)ZI V_I = -~2*(Z\)Z\, 

(C( m2~2*)( Z2) . Z2 + Brn2(Z2)) v*(O) + BZ2 V_I = ~(m2~2*)(z2) . Z2· 

Using the fact that Z2 = 1/ z\, one can solve these equations for v*(O) and show 

_1_= IA-C+!JF2_4IBI2I+lrn2(Z\)121. 
IV * ( 0) I 2 2 1-I m2 ( Z I) 12 
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Note that the case in which B = 0 is a limiting case of Case (i) in which z, = 0, 
Z2 = 00. When this occurs one can compute 

1 IA+clm2(0) 12 
(11) 	 1 

Iv*(O)1 = l-lm2(0)f . 

Before stating Cases (ii) and (iiO we will need the following lemma. 
LEMMA 3.S. Let z, be such that Bz;+ FZI + Ii = 0, and such that IZII = 1. Then m2(z) 

admits an analytic extension to a neighborhood of z" and Im2(t) I= 1 for all t in an arc 
neighborhood of z, on the unit circle. 

Proof First we claim z, e 0"(T2) (where 0"(T2) denotes the spectrum of the contrac­
tion T2)' Indeed if to the contrary z, E 0"(T2), then W(z,) E 0"( W(T2)). But by definition, 
since Bz;+ Fz, + Ii = 0, we have that (1- (I W(z,)1 2/ p2)) = 0, that is IW(z,)1 = p. But this 
would imply that II W( T2 ) II ~ p, which contradicts our assumption in Remark 3.3(i0 
that II W( T2 ) II < p. 

But since ZI e 0"( T2 ) we get the required result from [24, Chap. III, Thm. (S.I)]. 0 
Remark 3.6. With the notation of (3.S), note that since m2(z) is analytic in a 

neighborhood of Z" J-L2* must be analytic in this neighborhood of Z" and lJ* can have 
at most a pole at Zl' But since lJ* E H 2(D), in point of fact lJ* must be analytic at Z, 

as well. Moreover the derivatives of these functions will also be analytic in a neighbor­
hood of Z" since the derivative of an analytic function is itself analytic. 

We can now state Cases (ii) and (iii) (z, and Z2 are the roots of BZ2+ Fz +B). 
CASE (ii). IFI < 21BI i.e. Iz,1 = IZ21 = 1, ZI::/= Z2' In this case plug the Zj i = 1,2 into 

(6) to get two linear equations (one of which will be (7), and the other (7) with Z2 

substituted for z,) in the two unknowns lJ*(O), lJ_, and solve for lJ*(O). By (3.S) and 
(3.6) this is valid since the functions m2, J-L2*, lJ* are analytic in neighborhoods of z, 
and 	Z2' 

We can then compute that 

_1_= IA-C+jJ4IBI2_F2. l+m2(z,)m;(Z;)I.
(12) 

IlJ*(O)1 2 2 1 - m2(z,)m2( Z2) 

(When m2(z\) = m2(z2), z, ::/= Z2, it is easy to show that lJ*(O) = 0.) 
CASE (iii). IFI = 21BI, i.e. z, = Z2' Then plug z, into (6), and Z2 into the deriv.ative 

of (6). Once more by (3.S) and (3.6) this makes sense, and we can solve the two 
resulting equations in the two unknowns lJ*(O), lJ_, for lJ*(O). 

Making the computation, we get that 

(13) 

where 

if F>O, 
E = { 1 

-1 	 if F<O, 

for m;(z,) ::/= O. When m;(zl) = 0, it is easy to show that lJ*(O) = O. 
In short from (6), using simple linear algebra, we can find lJ*(O), the value of the 

first inner product. Notice that Cases (i) and (ii) are generic, while Case (iii) is the 
nongeneric case in this situation. 

Next we come to the computation of the second inner product of (2), namely 

«)'T, + <5)-' J-L ~2), J-L,). 

Wewil 
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We will propose two methods for doing this. The first works for any inner function 
mJ(z), and the second for a finite Blaschke product. 

The first method is simply to imitate the procedure that we used previously in 
evaluating (v*, J-L2*)' Indeed, set 

11:= (yTI + 8)-1 J-L i2
). 

Then we want to evaluate (v, J-L I)' But 

(v, J-LI) = (v, z(ml(z) - ml(O») 

= (mlv, i). 

Since ml v.1 H2, we may write ml v = v_Ii + (higher order terms in i) and so (v, J-LI) = 
V-I' Playing the same game as above we end up with the following analogue of equation 
(6): 

(14) 

We again divide the analysis of (14) into the identical Cases (i), (ii) and (iii) 
depending upon the roots of BZ2 + Fz + ii from which we derive analogous formulae 
for V-I (the required value of (v, J-LI» to those we found above for v*(O). 

We should note that a deeper explanation of the analogy between (6) and (14) 
can be given via a beautiful result from [21]. In point of fact using this result it is 
possible to write down (14) immediately from (6) and the analogous formulae to those 
of (10)-(13) for V-I just by inspection. However since these formulae may be derived 
by elementary linear algebra as above, we will leave it to the interested reader to 
consult [21]. 

The second method for finding V-I works when ml(z) is a finite Blaschke product. 
In this case, H 2 e m I H 2 is finite dimensional and it is easy to compute a basis for this 
space (see e.g. [21], [17]). Therefore the computation of the second inner product of 
(2) amounts to finite matrix operations once a suitable basis is chosen. For example, if 

with aj ~ aj for i ~ j, then the elements 
2(l-l akI )1/2 k-I ( z - a j ) 

Vk:= _ n --_­
I - akz j = I 1 - aiz 

H 2for k = 1, ... , n form a unitary basis for H 2 e m l relative to which all the relevant 
linear operators may be given a finite matrix form. For Blaschke products (in the unit 
disc) which have roots with mUltiplicities, it is again easy and standard to write down 
a similar unitary basis (see [20], [10], [17]). 

We thus have an explicit procedure for computing the inner products (3.2). We 
now give an explicit algorithm for the computation of the optimal sensitivity. 

3.7. Computation of optimal sensitivity. We will use the notation of (3.4). Note 
moreover that the computation of v*(O) and V-I as functions of p divide into the 
identical Cases (i), (ii) and (iii) depending on the roots BZ2 + Fz + ii. 

To make the dependence of p explicit, let us set 

VI (p) := v*(O), V2(P):= V-I' 

Then (3.2) reads 

(IS) 
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Let us now recall some of our assumptions: 
(a) W(z)=(az+{3)/(yz+o)EHm(D), W - I(z) has no poles in D, the open unit 

disc. (This follows since we assumed W(s) E H m(H) with stable inverse.) We should 
note that our methods immediately go through without the hypothesis that W-I(z) 
has no poles in D, but we retain it since it will be easier to explain our algorithm this 
way. 

(b) W(z) is normalized so that IIW(z)ll m=1. (Again this can be done without 
loss of generality, by replacing if necessary W(z) by W(z)/11 W(z)ll m' We make this 
normalization since it will be a bit easier to state our algorithm this way. Of course, 
one can easily write down a similar algorithm without such a normalization.) 

(c) pE(O,I] is such that p~IIW(T)II, and p>O:=max{IIW(TI)II, IIW(T2)lIl. 
Note that for the algorithm to work we must know O. 

Here then is our a1gorithmic procedure for the computation of II W( T) II and hence 
the optimal sensitivity. We consider two cases. 

(A) 	1f31al = 1. Then the algorithm is as follows: 
(i) 	We first consider Case (iii) of (3.4), i.e. IFI2 = 41B12. Regarding this as an 

equation in P E (0, 1], it is easy to see that the unique solution will be p =1. 
(Just consider the locus 

{z: p 2 -IW(z)1 2 =0} 

and notice that there exists Zo E aD such that W(zo) = 0. See Fig. 2.) 
We now check if p = 1 gives equality for (IS) using the Case (iii) formulae 

of (3.4) «13) and the analogous formula for 1I2(P»' If we do get equality, 
then by Theorems 2.1 and 3.2, II W( T) II = 1, and the algorithm terminates. If 
not, i.e. if we get strict inequality, we go to step (ii). 

(ii) 	If p < 1, then it is easy to check we are in Case (ii) of (3.4) . (See Fig. 2.) 
Using the formulae we derived for Case (ii) «(12) and the analogous formula 
for "2(P», we check if there exists p E (0, 1) with p> 0 which gives equality 
in (15). If there exists such a solution, say PI, then by Theorems 2.1 and 3.2 
it is unique and II W( T) II = PI, i.e. the algorithm terminates. If not, i.e. if we 
get strict inequality for all P E (0, 1) with p> 0, we go to step (iii) . 

FIG. 2. Representation oj the case 1/3/ al = 1. Both solid circles are centered at 0, the larger being aD, the 
unit circle. 1!'e dashed circle represents the locus W(aD) . Since II W(z)lI oo = 1, W- 1(z) has no poles in D, and 
1/3/al = 1, W(aD) passes through the origin 0 and is tangent to aD. Note that the circle oJ radius p' intersects 
W(aD) in two points, i.e. Jor any 0 < p' < 1 we are in Case (ii). When p' = 1, we are in Case (iii) . 
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(iii) 	 If s-teps (ii) and (iii) fail to find the norm, then from our hypotheses and 
Theorems 2.1 and 3.2, we have 

II W( T)II = () = max {II W( T,)II, II W( T2 )11l 
and once more we are done. 

This completes the analysis of case (A). 
(B) 	113/ a 1~ 1. Then the algorithmic procedure for finding II W( T)" is as follows: 

(i) 	As in (A), we first consider Case (iii) of (3.4), that is IFI2 = 41B12. Regarding 
this as an equation in p E (0, 1] and with the above hypotheses (a), (b), (c) 
one can easily show that we get precisely two solutions, namely p = 1, and 
a unique °< Po < l. (Again to see this,just consider the locus {p2 -I W(z)1 2= o} 
and examine the cases 113/0'1 < 1,113/0'1> 1. See Figs. 3 and 4 below.) 

FIG. 3. Representation of the case 1,8/0'1 < 1. All three solid circles are centered at 0, the largest being 
aD, the unit circle. The dashed circle represents the locus W(aD) . Since II W(z)lloo = 1, and W-1(z) has no 
poles in D, W(aD) is tangent to aD. Po is the distance of 0 to the closest point on W(aD) . Note that the circle 
of radius P' intersects W(aD) in two points, i.e. for Po < p' < 1 we are in Case (ii). For 0 < p" < Po we are in 

Case (i). For p' = 1, or p' = Po, we are in Case (iii). 

le larger being aD, the 
has no poles in D, and 
: of radius p' intersects FIG. 4. Representation of the case 1,8/0'1> 1. Same explanation as for Fig. 3, except here the origin 0 lies 
I Case (iii). to the exterior of W(aD) (whiCh is represented by the dashed circle). 
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We now check if P = 1 gives equality for (15) using the Case (iii) formulae 
of (3.4) and if it does, then as before II W( T) II = 1. If we get strictly inequality, 
we consider Po. If Po> (), and if it gives equality when substituted in (I5) 
(using the Case (iii) formulae), then by Theorems 2.1 and 3.2, II W( T) II =Po. 
If not, we go to step (ii). 

(ii) If from step (i) we have failed to find the required norm, we consider now 
P such that p> () and Po < P < 1. Then it is easy to check that we will be in 
Case (ii) of (3.4) (see Figs. 3 and 4). If we can find such a p, say P2, which 
gives equality in (15) (using the Case Oi) formulae of (3.4»), then by Theorems 
2.1 and 3.2 P2 will be unique and II W(T)II = P2, and so the algorithm 
terminates. If all such P with p> () and Po < P < 1 give strict inequality, we 
go to step (iii). 

(iii) We consider P such that p> () and 0 < P < Po. (Of course we need Po> (J in 
this step. If not, just go to step (iv).) Then one can easily check that we will 
be in Case ( i) of (3.4) (see Figs . 3 and 4). If we can find such a p, say p), 

which gives equality in (15) (using the Case (~ formulae of (3.4)), then by 
Theorems 2.1 and 3.2 P3 will be unique and II W( T ) II = P3, i.e., we are done. 
If all such P with p> () and 0 < P < Po give strict inequality, we go to step (iv). 

(iv) If in all three steps above we have failed to find the norm, then by Theorems 
2.1 and 3.2 and the above hypotheses 

II W(T)II = () = max {II W(TI)II, II W(T2 )1I} 

and once again the algorithm terminates. 
In short, (3.7) gives an easily computable algorithm for finding II W(T)II once we 

know (). Thus we have a technique for computing the R oo-optimal sensitivity for 
distributed systems like e­ hsPo(s), Po(s) rational stable, since we know the optimal 
sensitivities for e­ hs and Po(s) already. We now will discuss what occurs for more 
general weights. 

3.8. General weights and one-step extensions. The above analysis was made for 
linear weights. Still keeping our assumptions on P(s) (i.e. P(s) is stable, proper, with 
no zeros on the jw-axis), we would like to explicitly show how our methods carryover 
for a general real rational weight W(s), W(s) E R oo with stable inverse, II W(s )ll oo ~ 1. 
Using the above conformal equivalence </>: H --+ D we set as before 

W(Z ):= W (<p - I ( Z ) ) 

and we write W(z) = p(z)/ q(z) a ratio of relatively prime polynomials in z. 
Then given as above that 

T= [; ~J 
it is easy to compute that 

" [ W(TI ) 

WeT) = q- I(T
2 
)r(X)q-I(TI ) 

where reX) has the form 

(16) r(X)= L ajkT~f..L2*®Tfkf..LI
O;;>j,k ;;> n- I 

for some constants ajb and where n = max {degree p(z), degree q(z)}. 
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Indeed (16) may be derived as follows: Set for kEN 

T~XT{. 
O:2i,j:2k-\ 
i+j=k-\ 

Given a polynomial 

s 

b(z) = L bkz k
, 

k=O 

set 

b(X) = L bkX(k). 
k=1 

Notice in b(X) we have dropped the constant term. Then by direct computation, one 
gets that 

r(X) = q( T2)p(X) - p( T2)q(X). 

Equation (16) now follows from the facts that X = IL2*@ILt. and that 

T~XT~ = T~IL2* @ Ti
k 
ILl. 

In short, r(X) is a finite rank operator, and is composed of tensor products of the 
T~IL2* and Ti k

ILl all of which may be explicitly computed. Hence as in the linear 
weight case, the computation of II W( T) II may be reduced to an analogous (but of 
course messier) algebraic problem using the procedures discussed in Theorem 3.2 
and (3.4). 

In the most important (from a practical point of view) special case, in which 
m\(z) is a finite Blaschke product, we can even get simple closed form formulae as 
we did above. We will do this now. 

Indeed first note that when m\ (z) is a finite Blaschke product, we can in point of 
fact always reduce ourselves to the case in which ml(z) = (z - a)/(I - iiz) for some 
a ED. To see this let us suppose that 

Suppose moreover that we give a procedure for solving the optimal sensitivity 
problem for ((z - a l)/ (I - iiIz ))m2(z) in terms of (decoupled) data determined by m2(z) 
and (z - a\) / (I - ii I z) as we did in Theorem 3.2. Then we can take m2 ( z) := 
((z-al)/(I -ii lz))m2(z) as our new "m2(z)", and (z-a2)/(I -ii2z) as our new 
"ml(z)," and solve the resulting problem for ((z - a2)/(l- a2z))miz) in terms of m2(z) 
and (z - a2)/(I - ii2Z), and so on. In other words, when m\(z) is a finite Blaschke 
product in order to solve the optimal sensitivity problem, it is enough to describe the 
solution to the problem when we add the zeros of m l (z) one at a time. This is, of 
course, the basic idea behind the classical recursive procedure of Nevanlinna-Pick 
interpolation [14], and the one-step extension procedure of Adamjan, Arov and Krein 
[1], [2]. 

Consequently, we will give an explicit solution now of the kind we gave for a 
linear weight, for a general real rational weight, W(z) = p(z)/ q(z), II W(z )1100 ~ 1, such 
that W-I has no poles in the unit disc, and an inner function m(z) = m l(z)m2(z) where 
m\(z) = (z - a)/(l- iiz), a E D. Then with this notation, ILl = (l-laI 2)/(l- iiz), and 
TIiJ-1 = aIL \ . 
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From (16), we can write that 

r(X) = L ajkT~J-L2*@iikJ-L1
O;;>j.k;;>n-I 

n-I 

= L bjT~J-L2*@ J-LI 
j=O 

(where n = max {degree p(z), degree q(z)}), for some (explicitly computable) constants 
bj . 

Set 

n-I 

J-L* = L bjT~J-L2*'
)=0 

Then 

Therefore we have 

W(T)=[ W(T1
) 0 ] 

q(T2)-I(J-L*@J-LI)q(T1)-1 W(T2)' 

We can now play precisely the same game that we did in the linear weight case. 
Once more without loss of generality we can assume that 

8:= max {II W( T1)11, II W( T2 ) II} < 1. 

Let p E (0, 1] and suppose p> 8. Then we set for j = 1,2 

(j)._ -j -I 
J-L* .- D W(T2 )*/p(q( T2) )J-L*, 

(j)._ -j ---I 
J-L 1 .- D W(a)/ p(q(a)) J-LI 

(since TI is multiplication by a). 
Then the analogue of Theorem 3.2 in this case is the next theorem. 
THEOREM 3.9. II W( T) II ~ p if and only if 

(17) 

Moreover II W( T) II = p ifand only if equality holds in (17). ( We are assuming p > 8.) 
Proof As in Theorem 3.2, II W( T) 1\ ~ p if and only if 

1 
-q( T2 )-1 r(X)q( T1)-1 = D(I/p)W(T )*LpD(I/p)W(T ) 

P 
2 1

for some contraction Lp. But it is easy to compute that 

Lp =!(J-L~I)@J-L~I)). 
p 

Therefore II Lp II;;; 1 if and only if we have the inequality (17). The second part of 
the theorem follows immediately from Theorem 2.1. 0 

Remarks 3.10. (i) Clearly in this case the second inner product of (17) is trivial 
to compute. As for the first inner product, it is clear that one can use the same algebraic 
technique that we discussed in (3.4). Here from the roots of a polynomial of degree 
2n one gets 2n linear equations in 2n unknowns from which one can solve for the 
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required value of the inner product, where n:= max {p(z), q(z)}. Depending upon the 
multiplicities of the roots and where they lie in relation to D, one can derive a procedure 
analogous to that of (3.7). We did this by hand for a simple quadratic weight (W(s) = 

1/ (as + 1)2) and admittedly the computation becomes very messy. However, our pro­
cedure can certainly be programmed on computer for the kind of rational weights we 
have considered above. 

(ii) Now we finally come to the case in which P(s) E L 00 is not stable (but has no 
zeros on the jw-axis). This poses no problem (at least theoretically). Indeed using the 
arguments of [13], [27] one may reduce the sensitivity minimization problem to the 
problem of computing 

inf II V - Bqlloo 
q E H ot) 

where B(s) = inner part of P(s), V E H co
• 

Now from (3.1), with these hypotheses, the minimization problem will have a 
solution. If we then assume that the outer part of P(s) is rational (of course we always 
consider rational weights that are in H CO

), V will be rational, and we can apply our 
techniques to the solution of the minimization problem. More explicitly, if P(s) = 

PI(s )P2(s) and we could compute the minimal sensitivities of PI (s), P2(s), then we 
could use our preceding procedure in order to solve the problem for P(s). This occurs 
for example when P(s) = e-IISPo(s), Po(s) real rational and proper, PoE Lco with no 
zeros on the jw-axis. 

4. An explicit example. Given the general procedures of § 3, an illustrative non­
trivial example is certainly called for. We will take 

1 
W(s)=--, a>O 

as+ 1 

hS( S - b)
P ()s = e- s + b ' h, b>O. 

The minimum sensitivity in this case will allow us to understand the relationship among 
the quantities a, b, h. 

So, let us plug these parameters into our machine and compute. First we choose 
¢:H ~ D to be 

s-b 
z = 4>(s):=-.

s+ b 

Then 

A I 1 - z 
W (z ) = W (4) - (z» = (ab _ 1) z + (ab + I)' 

We now use the notation of (3.4). Note that ml(z) = z, m2(z) = ehb«z+I )/(Z-I», 

2 1
A = (ab+ 1) -2' 

p 

2 1
C = (ab - 1) - 2' 


P 
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Then in this case, the two roots of the quadratic equation BZ2 + Fz + jj are 

-«ab)2+ 1- (1/ p2» +2abjJO/ p2) -1 
ZI= «ab)2-1)+(1/p2) 

and Z2 = 21 • It is clear for our plant P(s) that for a, b, h > °and finite, that the optimal 
sensitivity will always be strictly less than 1. Hence we can immediately remove Case 
(iii) of (3.4) from our considerations. (Note 1J3/ al = 1 here. See (3.7) (A) above.) 

Therefore since IZII = IZ21 = 1, we are in Case (ii) of the procedure (3.4) and (3.7). 
Then solving the corresponding linear equations (or using the formulae of (3.4» we get 

sin CJ(I/:')-I) 
1)*(0) = (hJ(1/ p2) -1) (hJ(1/ p2) -1)'

2ab sin a +2abJ(1/ p2) -1 cos a 

The second inner product is trivial to compute and turns out to be 
2 

A • P 
1/- 1 '= (p2(ab + 1)2 - 1)' 

Next it is trivi a l to compute that .1 == - 2ab, and therefore from (2) we see 
2 

(0) A <_P_
1/* 1/-1=4a 2 b2 ' 

Hence we get that 

(18) 

Using our above notation set 

8:= max {II W(TI)II, II W(T2 ) II} 
where T) is the compressed shift corresponding to ml(z) == z, and T2 is the compressed 
shift corresponding to m2 (z) = ehb«z+I)/(Z-I». It is easy to compute that II W(TI)/I = 

1/ (ab + 1), and II W( T2 ) II = Ph the largest root of (I) (of § 1), PI E (0, 1). 
Then if we algebraically manipulate (18) and invoke Theorems 2.1 and 3.2, (3.7) 

(A) we see that we are required to find Popt, the unique root contained in (8,1) of the 
following equation (it is easy to check Popt exists for a, b, hE (0, (0»: 

2ab) (hJ(1/ p2) -1) ~_(19) ( 1 2( b )2 tan + 2 - 1 - 0.
P a +1 -1 a P 

By our above theory, 1/ W(T)II = Popt. Equation (19) has a number of interesting 
properties a few of which we discuss here. For example, as b ~ 00, (19) approaches 
(1) of § 1; this just relates the a and the h. Hence in this sense (I9) generalizes (1). 
As b ~ 0, it is simple to check Popt ~ 1. In short, (I9) gives the exact relationship among 
the fundamental parameters a, b, h in optimal sensitivity theory. 

5. Conclusions. Once again we have seen the utility of the complex and functional· 
analytical methods of [21], [24] in dealing with systems with delays. In this paper we 
have solved (or at least given an implementable procedure to solve) the weighted 
H oo 

- minimization problem for an interesting class of delay systems. From our tech· 
niques, we have derived a precise picture of the interaction of a delay, nonminimum 

phase zer 
certain se 
to be true 

Final 
Arov and 
(genera1li:i 
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example 1 
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+Fz + jj are 

~, that the optimal 
ltely remove Case 
') (A) above.) 
re (3.4) and (3.7). 
ae of (3.4)) we get 

(2) we see 

the compressed 
that" W(T,)/! = 
1). 

.1 and 3.2, (3.7) 
j in (0, 1) of the 

!r of interesting 
19) approaches 
generalizes (1). 
tionship among 

and functional­
n this paper we 
) the weighted 
From our tech­
" nonminimum 

HOO-OPTIMAL SENSITIVITY PROBLEM 

phase zero, and given weight in an ROO -optimal sensitivity problem. Our work in a 
certain sense gives mathematically rigorous justification to results that one would hope 
to be true from just purely engineering considerations. 

Finally, we have generalized some of the one-step extension results of Adamjan, 
Arov and Krein [1], [2], and perhaps given a new perspective to certain kinds of 
(generalized) interpolation problems. It should be interesting to try to push through 
the techniques we have given here for broader class·es of distributed systems, for 
example those considered in [3], or even in [7]. 
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