
Some conditions on periodicity for sum-free setsNeil J. CalkinSchool of MathematicsGeorgia Institute of TechnologyAtlanta, GA 30332calkin@math.gatech.edu Steven R. Finch6, Foster St.Wake�eld, MA 01880s�nch@gnu.ai.mit.eduAbstractCameron has introduced a natural bijection between the set of one way in�nite binary sequences andthe set of sum-free sets (of positive integers), and observed that a sum-free set is ultimately periodic onlyif the corresponding binary sequence is ultimately periodic. He asked if the converse also holds. In thispaper we present necessary and su�cient conditions for a sum-free set to be ultimately periodic, andshow how these conditions can be used to test speci�c sets; these tests produce the �rst evidence of apositive nature that certain sets are, in fact, not ultimately periodic.1 IntroductionThere is a natural bijection between the set of one way in�nite binary sequences and the set of sum-free sets ofpositive integers. In [1] Cameron observed that a sum-free set is ultimately periodic only if the correspondingbinary sequence is ultimately periodic, and asked whether the converse is also true. This question is stillopen; however there do exist relatively simple sets for which it would appear that the answer is no; that is,the sets correspond to ultimately periodic binary sequences, but the sets themselves are apparently aperiodic.A major di�culty is that while it is a relatively simple matter to determine that a set is ultimately periodic(requiring only a �nite number of terms) no method is presently known that will show that a sum-free setis not ultimately periodic, from a consideration of only �nitely many elements of the set.In this paper we introduce two new functions gS(n) and �gS(n) de�ned on the positive integers, and weshow that the behaviour of these functions determines whether a set is ultimately periodic or not. Moreprecisely, we prove that, if its corresponding binary sequence is ultimately periodic, then a sum-free set S isultimately periodic if and only if gS(n) is bounded, and that if it is not bounded then �gS(n) grows at leastas fast as logn.2 De�nitionsA set S of positive integers is said to be sum-free if there do not exist x; y; z 2 S such that x + y = z.Observe that we do not require x; y to be distinct. We shall denote the set of sum-free sets of positive integersby S.A sum-free set is said to be ultimately complete if for all su�ciently large n, either n 2 S or thereexist x; y 2 S such that x+ y = n. A sum-free set is periodic if there exists a positive integer m such thatfor all n � 1, n 2 S if and only if n +m 2 S. A sum-free set is said to be ultimately periodic if thereexist positive integers m;n0 such that for all n > n0, n 2 S if and only if n+m 2 S.If S is ultimately periodic, then there is a unique minimum period; indeed, if m1;m2 are both periodsfor the elements of S greater than n0 then the greatest common divisor of m1;m2 is also a period for S.If S is a periodic subset of IN , the set of positive integers, let �S denote the set�S = fs1; s2; : : : ; skg (mod m)1



where m is the least modulus for which s 2 S if and only if s � si (mod m) for some si 2 �S. If S isultimately periodic, let �S be de�ned similarly, in that for some n0 for all s � n0; s 2 S if and only if s � si(mod m) for some si 2 �S.For example, S = f1; 3; 5; 7;9; : : :g is periodic, �S � f1g (mod 2)S = f1; 5; 7; 9; : : :g = f1; 3; 5; 7; 9; : : :g n f3g is ultimately periodic, �S � f1g (mod 2)S = f1g [ f5; 8; 11; 14;17;20; : : :g is ultimately periodic, �S � f2g (mod 3)3 The Bijection.De�ne the bijection � between the set 2IN of binary sequences and the set S of sum-free sets as follows.Let � be an element of 2IN , say �1�2�3 : : : where �i 2 f0; 1g for every i. We now construct sets Si; Ti; Ui;start with S0 = T0 = U0 = ;.For i = 1; 2; 3; : : : perform the following operations. Let ni be the least element ofIN n (Si�1 [ Ti�1 [Ui�1). Then if �i = 1, put 8<: Si = Si�1 [ fnigTi = Si + SiUi = Ui�1if �i = 0, put 8<: Si = Si�1Ti = Ti�iUi = Ui�1 [ fnig:Let S = Si Si; then, since each Si is sum-free, and since Si � Si+1, S is also sum-free. Let � be themapping from 2IN to S de�ned by these operations, so that, for example� : 11111111 : : : 7! f1; 3; 5; 7; 9;11;13;15; : : :g� : 01010101 : : : 7! f2; 5; 8; 11; : : :g� : 10101010 : : : 7! f1; 4; 7; 10; : : :g� : 1010010101 : : : 7! f1; 4; 8; 11; 14; : : :g:It is natural now to ask whether � is invertible; in essence, since each entry in a binary sequence �corresponds to exactly one element of S [ (IN n (S + S)), this is easily seen to be the case; indeed, let S bea sum-free set, and construct an in�nite binary sequence as follows: de�ne a ternary sequence � by setting�n = 8<: 1 if n 2 S� if n 2 S + S0 otherwiseConvert this sequence to a binary sequence by deleting all *'s. It is an easy exercise to check that this is theinverse of the mapping from 2IN to S de�ned above. We have thus de�ned a bijection � from 2IN to S.We shall now make some observations about this bijection:1. It is very natural: if asked to construct a sum-free set, we would be quite likely to do it in an elementby element fashion, making a choice whether or not to include each element of IN . An element wouldbe considered for inclusion only if it didn't cause a violation of the condition that S be sum-free. If wenow consider the elements of IN in the obvious order (1, then 2, then 3, then 4,: : : ) we obtain exactly thebijection � between lists of choices made (binary sequences) and sum-free sets.2. There is a natural metric on the set of sequences 2IN : two sequences are at distance 2�k if they di�erfor the �rst time at the (k + 1)-st place; there is also a natural metric on the set of sum-free sets: two setsare at a distance 2�k if k + 1 is the least element in S14 S2 = (S1 [ S2) n (S1 \ S2).The bijection � is clearly bicontinuous with respect to the induced topologies, so we have a homeomor-phism between 2IN and S. An open ball of radius 2�k about � in 2IN consists of all sequences whose initialsegment of length k agrees with �. An open ball of radius 2�k in S about S0 consists of all sum-free sets Ssuch that S \ f1; 2; 3; : : :; kg = S0 \ f1; 2; 3; : : : ; kg: 2



3. If S is ultimately periodic then ��1(S) is also ultimately periodic: further, the period of ��1(S) divides(period of S { no. of elements in a period which are ultimately sums of smaller elements of S).We defer the proof of this to Lemma 4.14. S is ultimately complete if and only if the sequence ��1(S) contains only �nitely many zeroes. Indeed,in the construction given for a sum-free set from a binary sequence, an element is not included if and onlyif it is either a sum of smaller elements already in the set, or the corresponding term in the binary sequenceis zero. Thus if S is ultimately complete then we can only have �nitely many elements excluded because ofzeroes in ��1(S).This immediately implies that the set of ultimately complete sum-free sets is countable. By way of acontrast, we haveProposition 3.1 The set of maximal sum-free sets (i.e. those sum-free sets for which for every n 62 S thereexist x; y 2 S such that either x+ y = n or x+ n = y) is uncountable.Proof Consider the setf9; 11; 14; 16; 19;21;24;26;29; : : :g = fnjn = 5k � 1; k = 2; 3; : : :g:This set is clearly sum-free. Further, if we add to this set the element 2, we �nd that the only solutionsto the equation x + y = z are of the form 2 + 5k � 1 = 5k + 1. Consider now an arbitrary partition off2; 3; 4; 5; : : :g into two parts, say N1; N2. Then the set SN1 ;N2 given byf2g [ f5k � 1jk 2 N1g [ f5k + 1jk 2 N2gis sum-free, since by de�nition N1 \N2 = ;. Then none of the integers 5k� 1; k 2 N2 or 5k+ 1; k 2 N1 canbe added to the set SN1 ;N2 , as they are respectively di�erences or sums of pairs of elements in SN1;N2 . Nowextend SN1;N2 to a maximal sum-free set, say TN1 ;N2 : it is immediate from the preceding comments thatthe sets TN1;N2 ; TM1;M2 are distinct if N1 6= M1: as there are uncountably many partitions of f2; 3; 4; : : :gwe have proven the proposition.Corollary 3.1 There exist uncountably many aperiodic maximal sum-free sets of positive lower density.Indeed, the lower asymptotic density of TN1;N2 is at least 15 . This answers a question of Stewart (personalcommunication), regarding the existence of aperiodic maximal sum-free sets of positive density.4 Periodicity of Sum-free SetsWe shall now consider one of the most intriguing questions regarding sum-free sets, namely the relationshipbetween the periodicity of a binary string �, and the periodicity of the associated sum-free set �(�): Cameron[1] asked whether it is true that that ��1(S) is ultimately periodic if and only if S is ultimately periodic.In Lemma 4.1 we prove that if a sum-free set S is ultimately periodic, then so is ��1(S). In Lemma4.2 we show, essentially, that if a set S appears to be ultimately periodic for long enough, and if it has anultimately periodic input sequence ��1(S) then S is ultimately periodic.We introduce new functions, g(n) = gS(n) and �gS(n): in Theorem 4.1 we show that if ��1(S) is ultimatelyperiodic, then S is ultimately periodic if and only if g(n) is bounded. In Theorem 4.2 we show that if ��1(S)is ultimately periodic, and g(n) is not bounded, then for n > n0, �gS(n) > c logn.4.1 When is a sum-free set periodic?Cameron(personal communication) has asked whether any of the following statements are true:(i) A binary string � is ultimately periodic if and only if �(�) is ultimately periodic.(ii) � has only �nitely many zeroes if and only if �(�) is ultimately periodic and ultimately complete.Clearly (i) =) (ii), but not necessarily vice versa.Each of these questions is still open; however, since they were �rst suggested, we have found evidence tosuggest that (i) is false, and Cameron [1] has found evidence that (ii) may also be false.3



Before presenting this evidence, we shall prove the following lemmata: Lemma 4.1 shows that in eachof the questions, the \if" part holds, and Lemma 4.2 shows that in order to prove that a sum-free set isultimately periodic, we need only consider a �nite pre�x of the set.Lemma 4.1 (Cameron[1]) If �(�) is ultimately periodic then � is also ultimately periodic.Proof. Suppose that �(�) = S, and that the periodic part of S is �S (mod m). ThenS = T [ fs1 + km; s2 + km; : : : ; si + kmjk � k0gwhere �S = fs1; s2; : : : ; sig (mod m), 0 < sj < mand T = S \ f1; 2; : : : ; k0mgFor every n � 1 construct � (n) as follows:� (n) = 8<: 1 if n 2 S0 if n 62 S and 6 9x; y 2 S; x+ y = n� if n 62 S and 9x; y 2 S; x+ y = n:Then the sequence � = � (1)� (2)� (3) : : : is an in�nite ternary sequence; further, if we erase the *'s in �then we obtain exactly � = ��1(S). (We note that the sequence obtained from � by replacing each * with a0 is exactly the characteristic function of the set S.) Thus, if we prove that � is ultimately periodic, then itwill follow immediately that � is ultimately periodic.Consider an element n > 3k0m. Then� (n) = 8>><>>: 1 if n � s1; s2; : : : ; or si (mod m)� if 9t 2 T; sj 2 fs1; : : : ; sig such that n � t+ sj (mod m)or if 9sj1 ; sj2 2 fs1; : : : ; sig such that n � sj1 + sj2 (mod m)0 otherwise.Observe that the value of � (n) depends solely upon the congruence class of n modm, since T , fs1; : : : ; sigare both �nite sets. Thus � (n) is periodic (mod m) for n > 3k0m, and we deduce that � is also ultimatelyperiodic.This lemma proves exactly the \if" direction.Where will we run into di�culties when we try to reverse this proof? The crucial step involves the erasingof the *'s in � : given a periodic sequence � it is easy to insert *'s in such a way that the resulting ternarysequence is most de�nitely aperiodic (for example, insert a * after every pkth 1, where pk is the kth prime).Of course, it is unlikely that such insertions would leave a sum-free set: statement (i) states essentially thatonly by inserting in a periodic manner is it possible to ensure that S is sum-free.In order to prove the \only if" direction, it would be necessary to show that certain sets are ultimatelyperiodic; in certain circumstances this is possible. The following Lemma shows that if a set S is ultimatelyperiodic, then we need only consider a �nite pre�x of S, along with the binary sequence ��1(S) in order toprove that S is ultimately periodic.Lemma 4.2 Suppose that � = ��1(S) is ultimately periodic, andS \ f1; 2; : : : ; 4ng = T [ S1 [ S2 [ S3where T = S \ f1; 2; : : :; ngS1 = S \ fn+ 1; n+ 2; : : : ; 2ngS2 = S \ f2n+ 1; 2n+ 2; : : : ; 3ngS3 = S \ f3n+ 1; 3n+ 2; : : : ; 4ng:4



Suppose further that S2 = fs + njs 2 S1gS3 = fs + 2njs 2 S1gand that � (mins2S1 s); � (mins2S2 s); � (mins2S3 s)each correspond to the same point in a period in ��1(S). Then S is ultimately periodic, and the period of Sdivides n.Proof. We shall show by induction that 4n+ k 2 S if and only if k � s (mod n) for some s 2 S3.First, 4n+ 1 2 S if and only if 3n+ 1 2 S; indeed, 3n+ 1 2 S if and only if6 9t 2 T; s 2 S2 such that t+ s = 3n+ 1and 6 9s1 2 S1; s2 2 S1 such that s1 + s2 = 3n+ 1and the corresponding bit of ��1(S) is a 1:Similarly, 4n+ 1 2 S if and only if6 9t 2 T; s 2 S3 such that t+ s = 4n+ 1and 6 9s1 2 S1; s2 2 S2 such that s1 + s2 = 4n+ 1and the corresponding bit of ��1(S) is a 1:It is clear that these three conditions are equivalent, since Si is constant (mod n).Exactly the same argument may now be used to prove that if 4n+ i 2 S if and only if i � s (mod n)for some s 2 S3 for each i < k, then 4n+ k 2 S if and only if k � s (mod n) for some s 2 S3.In order to test Cameron's conjectures, we generated the sum-free sets corresponding to periodic binaryinputs, with period at most 7. For all inputs with periods of length at most 4, the corresponding sum-freeset was ultimately periodic, with a small (usually fewer than 10 terms) non-periodic part, and a small period(always less than 25). Of the 30 inputs with periods of length 5 (all strings of length �ve except for 00000and 11111, which have period 1), all but 3 inputs were quickly periodic; the ones which were not are 01001,01010, 10010. Other potential counterexamples to Cameron's conjecture will be exhibited in section 4.2. The�rst of these, the set �( _0100 _1) = f2; 6; 9; 14; 19; 26; 29; 36; 39; 47; 54;64;69;79;84;91; : : :g certainly appears tobe aperiodic; for example, considering the sequence of di�erences between consecutive elements of the set upto 107, this exhibits long strings which are repeated, separated by short \glitches" which seem to show nosign of settling down to be periodic. This, of course, is all evidence of a rather imsy type: it is essentially ofthe form \we looked, but we couldn't �nd anything"; we shall now present a theorem which gives evidencewhich is more concrete in nature that certain sum-free sets are aperiodic. It may also be used to show thata sum-free set is ultimately periodic without actually having to �nd the period. Using the functions gS(n),�gS(n), we will provide evidence of a positive nature that �( _0100 _1) is aperiodic.De�ne functions gS(n), �gS(n) as follows:gS(n) = � 0 if 6 9x; y 2 S such that x+ y = nminx such that x+ y = n; x; y 2 S if there exist x; y 2 S such that x+ y = nand �gS(n) = maxk�n gS(k)Theorem 4.1 S is ultimately periodic if and only if � is ultimately periodic and �gS(n) is ultimately constant,i. e. gS(n) is bounded. 5



Proof. Suppose that S is ultimately periodic. LetS = T [ S1 [ S2 [ S3 [ : : :where T = S \ f1; 2; : : :; ng, S1 = S \fn+ 1; n+ 2; : : : ; 2ng, and Si+1 = Si + n = fs+ njs 2 Sig for every i.If gS(n) � 1, then 9x; y 2 S such that x+ y = n. Thus, eitherx 2 T; y 2 Si for some i;or x 2 Si; y 2 Sj for some i; j:If the former holds, then gS(n) � maxt2T t.If the latter holds, then some x 2 S1; y 2 Sj�i+1 also satisfy x + y = n. Thus, if gS(n) � 1 thengS(n) � maxs2S1s, and we have shown that if S is ultimately periodic then gS(n) is bounded.To prove the converse, suppose that gS(n) � k 8n. LetT = S \ f1; 2; : : :; kg:Then, for every n, n is expressible as a sum x + y = n; x; y 2 S if and only if n is expressible as a sumt + y0 = n; t 2 T; y0 2 S. Let the input sequence ��1(S) have ultimate period p, and suppose n0 issu�ciently large that n0 corresponds to the periodic part of ��1(S).De�ne Sn = S \ fn; n+ 1; : : : ; n+ k � 1gThen, for n > n0, Sn+1 is determined by the triple (T; Sn; in) where in is our current position in a period.Now let Tn = fs � n+ 1js 2 SngThere are at most 2k possibilities for the set Tn for each n, and there are p possibilities for the integer in;thus, since there are in�nitely many values of n, there must exist n; j such that(Tn; in) = (Tn+j ; in+j)Then, since Tn+1 is determined by (T; Tn; in), it is clear that then (Tn+1; in+1) = (Tn+j+1; in+j+1), andsimilarly that for all m � n; (Tm; im) = (Tm+j ; im+j ) Thus, from n onwards, S is periodic, with perioddividing j.Thus, if we have a set for which gS(n) is not bounded then we know that this set cannot be periodic.As a simple, but useful, extension of this theorem, we haveTheorem 4.2 If, for su�ciently large n, �gS(n) < log2 � n6p� where p is the length of a period in the inputstring ��1(S), then S is periodic.(Here \su�ciently large" means(i) n > 2s where s is the smallest element of S (to ensure that �gS(n) > 0) and(ii) n is large enough that we are in the periodic part of the string ��1(S).)Proof. Observe that since there are at most 2kp choices for the pair (Tn; in) we will be able to �ndn; n+ j such that n � n0, n+ j � 2kpThus, as in the proof of Theorem 4.1 we see thatS \ f1; 2; : : : ; g = T [ S1 [ S2 [ S3where S2 = S1 + j = fs + jjs 2 S1g, and S3 = S1 + 2j. and where the least element of S1 is at most n=3.Then this is su�cient to ensure that S is ultimately periodic; indeed, it is enough to ensure that S is periodicfrom S1 onwards.Computing the values of �gS(n) for the set �( _0100 _1), for all n � 200000, we �nd that �g appears to bevery far from bounded: in fact it seems to increase in a roughly linear fashion; the following are the values6



of �gS(n) for which �gS(n) > �gS(n � 1) (since the function is weakly increasing, these values determine thefunction).n �gS(n)4 212 618 933 1452 2672 3694 47133 54182 91192 96227 106242 121274 137322 161348 174362 181637 237647 247690 345
n �gS(n)885 4301288 4451457 5771820 5971850 6272028 8052058 8352103 8802356 11332371 11482401 11782446 12233650 15224394 17954632 20684945 23815128 25646053 2676

n �gS(n)6411 30346674 32976709 33326754 337710360 401411144 479812692 634614779 710416129 767519678 983922914 1145724624 1231227324 1339430140 1412740677 1517943908 1628143948 2197446355 22222
n �gS(n)47437 2330449313 2413350678 2518050996 2549865250 2870968410 3097475499 3761382800 3842288756 44378111332 54455112419 55542121318 57969126698 63349137806 65796142928 71464171101 81091188656 82178199466 99733This behaviour continues for much larger n: indeed,g(1211692) = 605846(this is the largest value of n < 107 for which g(n) = n2 ) andg(9662060) = 4621889(this is the largest value of n < 107 for which �g increases).If it could be shown for such a set S that such behaviour continues, that is that there exist an in�nitenumber of n such that gS(n)=n is close to 12 , then it would follow immediately from Theorem 4.1 that S isaperiodic; it does not, however, appear that it is a simple matter to prove this.4.2 Computational EvidenceIf �( _0100 _1) could be proven to be aperiodic, then there would be no need to list further potential coun-terexamples to Cameron's conjecture. Since a proof of this cannot presently be found, there is some valueto testing periodicity over large classes of sum-free sets, in the hope that a recognizable pattern to thecounterexamples might eventually emerge.Table A exhibits all potentially aperiodic (up to 107) incomplete sum-free sets of the form �(�) withperiodic binary inputs � of periods 5, 6 or 7. This includes the three potential counterexamples mentionedearlier.
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TABLE A: INCOMPLETE SUM-FREE SETS �(�)APERIODICITY CHECKED UP TO 107period(�)=5 period(�)=6 period(�)=7�( _0100 _1) �( _01000 _1) �( _001000 _1)�( _0101 _0) �( _01100 _1) �( _001001 _0)�( _1001 _0) �( _01110 _0) �( _010000 _1)�( _10001 _0) �( _010001 _0)�( _10100 _1) �( _010010 _0)�( _10101 _1) �( _010010 _1)�( _010101 _0)�( _010101 _1)�( _010110 _1)�( _011000 _1)�( _100001 _0)�( _100010 _0)�( _100011 _0)�( _101010 _0)We mention that periodicity in sum-free sets need not arrive quickly. The periodic sum-free set S =�( _011001 _1) has period 10710, after a transient phase of approximately 89,000 terms. Moreover,the largest integer n in S for which n+10710 is not in S is n=489115and the largest integer n not in S for which n+10710 is in S is n=489108.Table B lists all potentially aperiodic sum-free sets of the form �(uv _xy _z) or �(abcde _x _y). These are thesimplest such cases, i.e., the binary inputs simultaneously have minimal preperiod and minimal period.TABLE B: INCOMPLETE SUM-FREE SETS �(uv _xy _z) OR �(abcde _x _y)APERIODICITY CHECKED UP TO 107�(uv _xy _z) �(abcde _x _y)�(00 _00 _1) �(00001 _1_0)�(11000 _0_1)�(00110 _0_1)Cameron [1] found the �rst potentially aperiodic complete sum-free set, which we will indicate belowusing di�erent notation from above. The existence of such a set suggests that Dickson's problem [2, 4] mayhave a negative solution. Queneau [6] and Finch [3] have studied a variation of this problem involving whatare known as 0-additive sequences; an update on this direction of research appears in [5].By the \base" of an ultimately complete sum-free set S = fs1 < s2 < : : : < sn < : : :g, we mean theminimal set of S-elements, B = fs1; s2; : : : ; sngsuch that recursive application of the greedy algorithm, starting with B, gives the sum-free set S.By the phrase "all sum-free bases up to p", we mean the collection of all sets B which are bases ofultimately complete sum-free sets S and whose largest element is at most p. For example, the collection ofall sum-free bases up to 7 is:f1g; f2g; f3g;f4g;f5g; f6g; f7g;f1;4g;f1;5g;f1;6g;f1;7g; f2; 5g; f2; 6g; f2; 7g;f3; 5g; f3; 7g; f4; 6g; f4; 7g; f5; 7g; f1; 3; 7g; f1; 4; 7g; f4; 5;7g:8



We examined each of the 76,080 sum-free bases up to 27 and determined whether each of the correspondingcomplete sum-free sets were periodic (checked up to 107). All aperiodic cases are listed in Table C.We also took interest in sum-free bases with three or fewer elements and examined these bases up to 35.These are also included in Table C.Table C is divided into two parts: the "aperiodic" part [for which g-values appear to be unbounded andno pattern is seen] and the "tentatively periodic" part [for which g-values are bounded above by 3:2 � 106].For the latter we also indicate the largest observed g-value and our best estimate of the period, if possible.TABLE C: COMPLETE SUM-FREE SETS LISTED BY BASEAPERIODICITY CHECKED UP TO 107tentatively periodic cases aperiodic casesbase basef3, 4, 13, 18, 24 g 1 f10, 13, 15, 16, 17, 24 gmax g-val = 2937317 f12, 15, 17, 18, 19, 25 gest period = 3274006 f11, 16, 17, 26 gf1, 3, 8, 20, 26 gf8, 14, 15, 17, 26 g f9, 21, 24, 27 gmax g-val = 2898098 f2, 15, 16, 23, 27 gest period = ? f5, 6, 14, 23, 27 gf3, 12, 17, 19, 21, 27 gf14, 15, 16, 18, 21, 26 g f10, 15, 16, 18, 22, 27 gmax g-val = 1349528 f14, 16, 17, 18, 21, 27 gest period = ? f6, 14, 17, 18, 22, 25, 27 gf9, 16, 29 gf14, 15, 18, 20, 22, 24, 26 g f8, 18, 30 gmax g-val = 1424518 f8, 27, 32 gest period = 1291498 f9, 26, 32 gf10, 18, 34 gf4, 17, 18, 19, 24, 27 g f9, 28, 35 gmax g-val = 3132839 f11, 26, 35 gest period = 1022104 f12, 21, 35 gf15, 16, 18, 22, 24, 27 g 2max g-val = 2330099est period = 2673770f4, 21, 32 g 3max g-val = 770538est period = ?We reiterate that periodicity need not arrive quickly. For example, the periodic complete sum-free set Sbased on f10; 14; 15; 17;22g has period = 2,875,722 after a transient phase of approximately 584,000 terms.Moreover,the largest integer n in S for which n+ 2875722 is not in S is n = 4; 562; 648and the largest integer n not in S for which n+ 2875722 is in S is n = 4; 453; 256.1This is Cameron's example2Evidently the same (minus one term) as f15, 16, 18, 21, 22, 24, 27 g, which is not listed (to avoid duplicity).3This is quite unexpected - the maximum g-value is quite small but no clear signs of periodicity are apparent.9
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