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Abstract

Cameron has introduced a natural bijection between the set of one way infinite binary sequences and
the set of sum-free sets (of positive integers), and observed that a sum-free set is ultimately periodic only
if the corresponding binary sequence is ultimately periodic. He asked if the converse also holds. In this
paper we present necessary and sufficient conditions for a sum-free set to be ultimately periodic, and
show how these conditions can be used to test specific sets; these tests produce the first evidence of a
positive nature that certain sets are, in fact, not ultimately periodic.

1 Introduction

There is a natural bijection between the set of one way infinite binary sequences and the set of sum-free sets of
positive integers. In [1] Cameron observed that a sum-free set is ultimately periodic only if the corresponding
binary sequence is ultimately periodic, and asked whether the converse is also true. This question is still
open; however there do exist relatively simple sets for which it would appear that the answer is no; that is,
the sets correspond to ultimately periodic binary sequences, but the sets themselves are apparently aperiodic.
A major difficulty is that while it is a relatively simple matter to determine that a set s ultimately periodic
(requiring only a finite number of terms) no method is presently known that will show that a sum-free set
is not ultimately periodic, from a consideration of only finitely many elements of the set.

In this paper we introduce two new functions gs(n) and gs(n) defined on the positive integers, and we
show that the behaviour of these functions determines whether a set is ultimately periodic or not. More
precisely, we prove that, if its corresponding binary sequence is ultimately periodic, then a sum-free set S is
ultimately periodic if and only if gg(n) is bounded, and that if it is not bounded then gs(n) grows at least
as fast as logn.

2 Definitions

A set S of positive integers is said to be sum-free if there do not exist z,y,z € S such that z + y = 2.
Observe that we do not require z, y to be distinct. We shall denote the set of sum-free sets of positive integers
by S.

A sum-free set is said to be ultimately complete if for all sufficiently large n, either n € S or there
exist z,y € S such that z + y = n. A sum-free set is periodic if there exists a positive integer m such that
foralln > 1,n € Sif and only if n +m € 5. A sum-free set is said to be ultimately periodic if there
exist positive integers m, ng such that for all n > ng, n € S if and only if n 4+ m € S.

If S is ultimately periodic, then there is a unique minimum period; indeed, if m, my are both periods
for the elements of S greater than ng then the greatest common divisor of m;, m; is also a period for S.

If S is a periodic subset of IN, the set of positive integers, let S denote the set

S ={s1,82,...,8:} (mod m)



where m is the least modulus for which s € S if and only if s = s;

(mod m) for some s; € S. If S is

ultimately periodic, let 5 be defined similarly, in that for some ng for all s > ng, s € S if and only if s = s;

(mod m) for some s; € S.
For example,

S =11,3,5,7,9,...} is periodic, S = {1}
$=11,579,..}=1{1,3,5,7,9,...} \ {3} is ultimately periodic, S = {1}
S ={1}u{5,8,11,14,17,20,...} is ultimately periodic, S = {2}

3 The Bijection.

(mod 2)
(mod 2)
(mod 3)

Define the bijection 8 between the set 22V of binary sequences and the set S of sum-free sets as follows.
Let o be an element of 2%, say 010503 ... where o; € {0, 1} for every i. We now construct sets S;, T3, U;;

start with So = Tp = U = 0.

For 2 =1,2,3,... perform the following operations. Let n; be the least element of

N \ (Si—l uUT;_1 U Ui—l)- Then

S =8i—1U{n;}
ifo’z':]., put T =545

U; =U;x

S; =81
if 7; = 0, put T, =T

U5 =U;_1U{n}.

Let S = |J; Si; then, since each S; is sum-free, and since S; C S;11, S is also sum-free. Let § be the
mapping from 2% to S defined by these operations, so that, for example

9: 11111111... ~— {1,3,5,7,9,11,13,15,..}
6: 01010101... +— {2,5,8,11,..}

6: 10101010... +— {1,4,7,10,..}

6: 1010010101... ~— {1,4,8,11,14,..}.

It is natural now to ask whether 8 is invertible; in essence, since each entry in a binary sequence o
corresponds to exactly one element of S U (IV \ (S + 5)), this is easily seen to be the case; indeed, let S be
a sum-free set, and construct an infinite binary sequence as follows: define a ternary sequence 7 by setting

1 ifnesS
Ty = * fneS+S
0 otherwise

Convert this sequence to a binary sequence by deleting all *’s. It is an easy exercise to check that this is the
inverse of the mapping from 2%V to S defined above. We have thus defined a bijection 8 from 2% to S.

We shall now make some observations about this bijection:

1. It is very naturel: if asked to construct a sum-free set, we would be quite likely to do it in an element
by element fashion, making a choice whether or not to include each element of IN. An element would
be considered for inclusion only if it didn’t cause a violation of the condition that S be sum-free. If we
now consider the elements of IV in the obvious order (1, then 2, then 3, then 4,...) we obtain exactly the
bijection 8§ between lists of choices made (binary sequences) and sum-free sets.

2. There is a natural metric on the set of sequences 2%V: two sequences are at distance 2-% if they differ
for the first time at the (k + 1)-st place; there is also a natural metric on the set of sum-free sets: two sets
are at a distance 2% if k + 1 is the least element in S; A Sz = (S U S3) \ (51N Sy).

The bijection 8 is clearly bicontinuous with respect to the induced topologies, so we have a homeomor-
phism between 2% and S. An open ball of radius 27* about ¢ in 2% consists of all sequences whose initial
segment of length k agrees with o. An open ball of radius 27% in S about Sy consists of all sum-free sets S
such that SN {1,2,3,...,k} =5S,n{1,2,3,...,k}.



3. If S is ultimately periodic then 8~ 1(S) is also ultimately periodic: further, the period of §=*(S) divides
(period of S — no. of elements in a period which are ultimately sums of smaller elements of S).

We defer the proof of this to Lemma 4.1

4. S is ultimately complete if and only if the sequence 0=1(S) contains only finitely many zeroes. Indeed,
in the construction given for a sum-free set from a binary sequence, an element is not included if and only
if it 1s either a sum of smaller elements already in the set, or the corresponding term in the binary sequence
is zero. Thus if S is ultimately complete then we can only have finitely many elements excluded because of
zeroes in 671(5).

This immediately implies that the set of ultimately complete sum-free sets is countable. By way of a
contrast, we have

Proposition 3.1 The set of mazimal sum-free sets (i.e. those sum-free sets for which for everyn ¢ S there
exist z,y € S such that either z +y =n or z + n = y) is uncountable.

Proof Consider the set
{9, 11, 14, 16,19,21,24,26,29,...} = {n|n =5k + 1,k = 2,3, ...}

This set is clearly sum-free. Further, if we add to this set the element 2, we find that the only solutions
to the equation # + y = z are of the form 2 + 5k — 1 = 5k 4+ 1. Consider now an arbitrary partition of
{2,3,4,5,...} into two parts, say N1, No. Then the set Sy, n, given by

{2} U {5k — 1|k € N1} U {5k + 1|k € N}

is sum-free, since by definition Ny N Ny = @. Then none of the integers 5k — 1,k € N5 or 5k + 1,k € Ny can
be added to the set Sy, n,, as they are respectively differences or sums of pairs of elements in Sy, n,. Now
extend Sy, n, to a maximal sum-free set, say T, n,: it is immediate from the preceding comments that
the sets Tw, n,, Tar,, i, are distinct if Ny # M;i: as there are uncountably many partitions of {2,3,4,...}
we have proven the proposition. |

Corollary 3.1 There ezist uncountably many aperiodic mazimal sum-free sets of positive lower density.

Indeed, the lower asymptotic density of T, n, is at least % This answers a question of Stewart (personal
communication), regarding the existence of aperiodic maximal sum-free sets of positive density.

4 Periodicity of Sum-free Sets

We shall now consider one of the most intriguing questions regarding sum-free sets, namely the relationship
between the periodicity of a binary string o, and the periodicity of the associated sum-free set (c): Cameron
[1] asked whether it is true that that §=1(S) is ultimately periodic if and only if S is ultimately periodic.

In Lemma 4.1 we prove that if a sum-free set S is ultimately periodic, then so is 671(S). In Lemma
4.2 we show, essentially, that if a set S appears to be ultimately periodic for long enough, and if it has an
ultimately periodic input sequence 8~ 1(S) then $ is ultimately periodic.

We introduce new functions, g(n) = gs(n) and gs(n): in Theorem 4.1 we show that if §=1(S) is ultimately
periodic, then S is ultimately periodic if and only if g(n) is bounded. In Theorem 4.2 we show that if 6=1(S)
is ultimately periodic, and g(n) is not bounded, then for n > ng, gg(n) > clogn.

4.1 When is a sum-free set periodic?

Cameron(personal communication) has asked whether any of the following statements are true:
(i) A binary string o is ultimately periodic if and only if §(¢) is ultimately periodic.
(ii) o has only finitely many zeroes if and only if 8(o) is ultimately periodic and ultimately complete.
Clearly (1) = (ii), but not necessarily vice versa.

Each of these questions is still open; however, since they were first suggested, we have found evidence to
suggest that (i) is false, and Cameron [1] has found evidence that (ii) may also be false.



Before presenting this evidence, we shall prove the following lemmata: Lemma 4.1 shows that in each
of the questions, the “if” part holds, and Lemma 4.2 shows that in order to prove that a sum-free set is
ultimately periodic, we need only consider a finite prefix of the set.

Lemma 4.1 (Cameron[1]) If6(c) is ultimately periodic then o is also ultimately periodic.

Proof. Suppose that §(c) = S, and that the periodic part of S is § (mod m). Then
S=TU{s1 +km,sy+km,...,s; + km|k > ko}

where B
S ={s1,52,...,8} (modm),0<s; <m

and
T:Sﬂ{1,2,...,k0m}

For every n > 1 construct 7(n) as follows:

1 if nes
T(n)=<¢ 0 if n¢g$ and Az,yeS,zt+y=n
* if n¢gS anddz,yeS,z+y=n.

Then the sequence 7 = 7(1)7(2)7(3)... is an infinite ternary sequence; further, if we erase the *’s in 7
then we obtain exactly o = §=1(S). (We note that the sequence obtained from 7 by replacing each * with a
0 is exactly the characteristic function of the set S.) Thus, if we prove that 7 is ultimately periodic, then it
will follow immediately that o is ultimately periodic.

Consider an element n > 3kgm. Then

1 if n=s1,82,..., ors; (modm)
« if FeT,s; € {s1,...,8;} such that n=t+s; (mod m)
T(n) = . _
or if 3s;,,;, € {s1,..., 5} such that n =s;, +5;, (mod m)
0 otherwise.
Observe that the value of 7(n) depends solely upon the congruence class of n mod m, since T, {s1, ..., s;}

are both finite sets. Thus 7(n) is periodic (mod m) for n > 3kom, and we deduce that o is also ultimately
periodic. |

This lemma proves exactly the “if” direction.

Where will we run into difficulties when we try to reverse this proof? The crucial step involves the erasing
of the *’s in 7: given a periodic sequence o it is easy to insert *’s in such a way that the resulting ternary
sequence is most definitely aperiodic (for example, insert a * after every pith 1, where py is the kth prime).
Of course, it is unlikely that such insertions would leave a sum-free set: statement (i) states essentially that
only by inserting in a periodic manner is it possible to ensure that S is sum-free.

In order to prove the “only if” direction, it would be necessary to show that certain sets are ultimately
periodic; in certain circumstances this is possible. The following Lemma shows that if a set S is ultimately
periodic, then we need only consider a finite prefix of S, along with the binary sequence §~1(S) in order to
prove that S is ultimately periodic.

Lemma 4.2 Suppose that o = 671(S) is ultimately periodic, and

Sn{L,2,...,4n} =T US;1 USy; U S5

where
T = S5n{L,2,...,n}
S = Sn{n+1,n+2,...,2n}
So = Sn{2n+1,2n+2,...,3n}
S3 = Sn{3n+1,3n+2,...,4n}.



Suppose further that

Sy = {s+mn|se S}
Ss {s+2n|s€ S1}

and that

e i A g
each correspond to the same point in a period in 6~1(S). Then S is ultimately periodic, and the period of S
divides n.

Proof. We shall show by induction that 4n+ &k € S if and only if k= s (mod n) for some s € Ss.
First, 4n+ 1 € S if and only if 3n+ 1 € S; indeed, 3n + 1 € S if and only if

AteT, s€ Sy suchthatt+s=3n+1

and As; € 51, s € 51 such that s1+s2 =3n+1
and the corresponding bit of 871(S) is a 1.
Similarly, 4n + 1 € S if and only if

AteT, s€ Sz suchthatt+s=4n+1

and As; € 51, sy € S; such that s1 +s2 =4n+1
and the corresponding bit of §71(S) is a 1.

It is clear that these three conditions are equivalent, since S; is constant  (mod n).

Exactly the same argument may now be used to prove that if 4n+4¢ € Sifand onlyif i = s (mod n)
for some s € S5 for each ¢ < k, then 4n+ k € S if and only if k = s (mod n) for some s € Ss. |

In order to test Cameron’s conjectures, we generated the sum-free sets corresponding to periodic binary
inputs, with period at most 7. For all inputs with periods of length at most 4, the corresponding sum-free
set was ultimately periodic, with a small (usually fewer than 10 terms) non-periodic part, and a small period
(always less than 25). Of the 30 inputs with periods of length 5 (all strings of length five except for 00000
and 11111, which have period 1), all but 3 inputs were quickly periodic; the ones which were not are 01001,
01010, 10010. Other potential counterexamples to Cameron’s conjecture will be exhibited in section 4.2. The
first of these, the set 9(01001) =4{2,6,9,14,19, 26, 29, 36, 39, 47, 54, 64, 69, 79, 84,91, ...} certainly appears to
be aperiodic; for example, considering the sequence of differences between consecutive elements of the set up
to 107, this exhibits long strings which are repeated, separated by short “glitches” which seem to show no
sign of settling down to be periodic. This, of course, is all evidence of a rather flimsy type: it is essentially of
the form “we looked, but we couldn’t find anything”; we shall now present a theorem which gives evidence
which is more concrete in nature that certain sum-free sets are aperiodic. It may also be used to show that
a sum-free set is ultimately periodic without actually having to find the period. Using the functions gs(n),
gs(n), we will provide evidence of a positive nature that 0(01001) is aperiodic.

Define functions gs(n), gs(n) as follows:

(n) = 0 if Az,y€ Ssuchthatz+y=mn
9s " | minz suchthatz+y=mn, z,y € S if there exist z,y € Ssuchthat z +y=n

and
gs(n) = Igl;ggs(k)

Theorem 4.1 S is ultimately periodic if and only if o is ulttmately periodic and gs(n) is wltimately constant,
i. e. gs(n) is bounded.



Proof. Suppose that S is ultimately periodic. Let
S=TUSUSUSzU...

where T = SN {1,2,...,n}, S1=SNn{n+1,n+2,...,2n}, and S;11 = S; + n = {s+ n|s € S;} for every i.
If gs(n) > 1, then Jz,y € S such that £ + y = n. Thus, either

z €T,y € S; for some 1,

orz € S;,y € S; for some 3, j.

If the former holds, then gs(n) < maxser ¢.
If the latter holds, then some z € S1, ¥ € Sj_;+1 also satisfy # + y = n. Thus, if gs(n) > 1 then
gs(n) < mazscg, s, and we have shown that if S is ultimately periodic then gg(n) is bounded.

To prove the converse, suppose that gg(n) < k Vn. Let

T=5n{L,2,...,k}.

Then, for every n, n is expressible as a sum ¢z +y = n, z,y € S if and only if n is expressible as a sum
t+y =n,t €T, v € S. Let the input sequence §~1(S) have ultimate period p, and suppose ng is
sufficiently large that ng corresponds to the periodic part of §-1(5).
Define
S,.=85n{n,n+1,...,n+k—1}

Then, for n > ng, Sp4+1 is determined by the triple (7, S,, %) where i, is our current position in a period.
Now let
T.={s—n+1ls€ S}

There are at most 2% possibilities for the set T}, for each n, and there are p possibilities for the integer i,;
thus, since there are infinitely many values of n, there must exist n, 7 such that

(Tm 7’”) = (Tn+jiin+j)

Then, since T,11 is determined by (7,75, %), it is clear that then (Tnt1,%n41) = (Tntjt1,tntj+1), and

similarly that for all m > n, (Tm,%m) = (Tm+j,4m+;) Thus, from n onwards, S is periodic, with period

dividing j. |
Thus, if we have a set for which gs(n) is not bounded then we know that this set cannot be periodic.
As a simple, but useful, extension of this theorem, we have

Theorem 4.2 If, for sufficiently large n, gs(n) < log, (g—p) where p is the length of a period in the input

string 6~ 1(S), then S is periodic.

(Here “sufficiently large” means
(i) n > 2s where s is the smallest element of S (to ensure that gs(n) > 0) and
(ii) n is large enough that we are in the periodic part of the string 671(S5).)
Proof. Observe that since there are at most 2*p choices for the pair (T},,i,) we will be able to find
n,n + j such that n > ng, n+j < 2%p
Thus, as in the proof of Theorem 4.1 we see that

Sn{L,2,...,}=TUS;USUS;

where S3 = 51+ j = {s+ j|s € S1}, and S5 = 51 + 2j. and where the least element of S; is at most n/3.
Then this is sufficient to ensure that S is ultimately periodic; indeed, it is enough to ensure that S is periodic
from S; onwards. [ |

Computing the values of gs(n) for the set 8(01001), for all n < 200000, we find that g appears to be
very far from bounded: in fact it seems to increase in a roughly linear fashion; the following are the values



of gs(n) for which gs(n) > gs(n — 1) (since the function is weakly increasing, these values determine the
function).

n  gs(n) n  gs(n) n  gs(n) n  gs(n)

4 2 885 430 6411 3034 47437 23304
12 6 1288 445 6674 3297 49313 24133
18 9 1457 577 6709 3332 50678 25180
33 14 1820 597 6754 3377 50996 25498
52 26 1850 627 10360 4014 65250 28709
72 36 2028 805 11144 4798 68410 30974
94 47 2058 835 12692 6346 75499 37613
133 54 2103 880 14779 7104 82800 38422
182 91 2356 1133 16129 7675 88756 44378
192 96 2371 1148 19678 9839 111332 54455
227 106 2401 1178 22914 11457 112419 55542
242 121 2446 1223 24624 12312 121318 57969
274 137 3650 1522 27324 13394 126698 63349
322 161 4394 1795 30140 14127 137806 65796
348 174 4632 2068 40677 15179 142928 71464
362 181 4945 2381 43908 16281 171101 81091
637 237 5128 2564 43948 21974 188656 82178
647 247 6053 2676 46355 22222 199466 99733
690 345

This behaviour continues for much larger n: indeed,
9(1211692) = 605846
(this is the largest value of n < 107 for which g(n) = %) and

9(9662060) = 4621889

(this is the largest value of n < 107 for which g increases).

If it could be shown for such a set S that such behaviour continues, that is that there exist an infinite
number of n such that gs(n)/n is close to %, then it would follow immediately from Theorem 4.1 that S is
aperiodic; it does not, however, appear that it is a simple matter to prove this.

4.2 Computational Evidence

If 9(01001) could be proven to be aperiodic, then there would be no need to list further potential coun-
terexamples to Cameron’s conjecture. Since a proof of this cannot presently be found, there is some value
to testing periodicity over large classes of sum-free sets, in the hope that a recognizable pattern to the
counterexamples might eventually emerge.

Table A exhibits all potentially aperiodic (up to 107) incomplete sum-free sets of the form 6(c) with
periodic binary inputs o of periods 5, 6 or 7. This includes the three potential counterexamples mentioned
earlier.



TABLE A: INCOMPLETE SUM-FREE SETS 6(c)
APERIODICITY CHECKED UP TO 107

period(c)=5 period(c)=6 period( V=7

6(01001) 6(010001) 6(0010001)

6(01010)  6(011001) 6(0010010)

6(10010)  6(011100) 6(0100001)

6(100010) 6(0100010)

6(101001) 6(0100100)

g(io1011) 6(0100101)

6(0101010)

6(0101011)

6(0101101)

6(0110001)

6(1000010)

6(1000100)

6(1000110)

6(1010100)

We mention that periodicity in sum-free sets need not arrive quickly. The periodic sum-free set S =
6(0110011) has period 10710, after a transient phase of approximately 89,000 terms. Moreover,

the largest integer n in S for which n+10710 is not in S 1s n=489115
and
the largest integer n not in S for which n+10710 ¢s in S is n—=489108.

Table B lists all potentially aperiodic sum-free sets of the form 8(uvéyz) or 8(abedezy). These are the
simplest such cases, i.e., the binary inputs simultaneously have minimal preperiod and minimal period.

TABLE B: INCOMPLETE SUM-FREE SETS 8(uvzyz) OR 6(abcdezy)
APERIODICITY CHECKED UP TO 107

O(uviyz) H(abcdemy)

6(00001) 6(0000110)

6(1100001)

6(0011001)

Cameron [1] found the first potentially aperiodic complete sum-free set, which we will indicate below
using different notation from above. The existence of such a set suggests that Dickson’s problem [2, 4] may
have a negative solution. Queneau [6] and Finch [3] have studied a variation of this problem involving what
are known as 0-additive sequences; an update on this direction of research appears in [5].

By the “base” of an ultimately complete sum-free set S = {s; < s3 < ... < s, < ...}, we mean the
minimal set of S-elements,

B:{31:32:"':3n}

such that recursive application of the greedy algorithm, starting with B, gives the sum-free set S.

By the phrase ”all sum-free bases up to p”, we mean the collection of all sets B which are bases of
ultimately complete sum-free sets S and whose largest element is at most p. For example, the collection of
all sum-free bases up to 7 is:

{13 {2}, {3}, {4}, {5}, {6}, {7}, {1, 4}, {1, 5}, {1,6},{1, 7}, {2, 5}, {2,6}, {2, 7},
{3’ 5}’ {3’ 7}’ {4’ 6}’ {4’ 7}’ {5’ 7}’ {1’ 3’ 7}’ {1’ 4’ 7}’ {4’ 5’ 7}'



We examined each of the 76,080 sum-free bases up to 27 and determined whether each of the corresponding
complete sum-free sets were periodic (checked up to 107). All aperiodic cases are listed in Table C.

We also took interest in sum-free bases with three or fewer elements and examined these bases up to 35.
These are also included in Table C.

Table C is divided into two parts: the "aperiodic” part [for which g-values appear to be unbounded and
no pattern is seen] and the "tentatively periodic” part [for which g-values are bounded above by 3.2 * 10°].
For the latter we also indicate the largest observed g-value and our best estimate of the period, if possible.

TABLE C: COMPLETE SUM-FREE SETS LISTED BY BASE
APERIODICITY CHECKED UP TO 107
tentatively periodic cases aperiodic cases
base base
{3,4,13,18,24 } 1 {10, 13, 15, 16, 17, 24 }
max g-val = 2937317 {12, 15, 17, 18, 19, 25 }
est period = 3274006 {11, 16, 17, 26 }
{1, 3, 8, 20, 26 }
{8, 14, 15, 17, 26 } {9, 21, 24, 27 }
max g-val = 2898098 {2, 15, 186, 23, 27 }
est period = 7 {5, 6, 14, 23, 27 }
{3, 12,17, 19, 21, 27 }
{14, 15, 16, 18, 21, 26 } {10, 15, 16, 18, 22, 27 }
max g-val = 1349528 {14, 16, 17, 18, 21, 27 }
est period = 7 {6, 14, 17, 18, 22, 25, 27 }
{9, 16, 29 }
{14, 15, 18, 20, 22, 24, 26 } {8, 18, 30 }
max g-val = 1424518 {8, 27,32}
est period = 1291498 {9, 26, 32 }
{10, 18, 34 }
{4, 17, 18, 19, 24, 27 } {9, 28, 35 }
max g-val = 3132839 {11, 26, 35 }
est period = 1022104 {12, 21,35}
{15, 16, 18, 22, 24, 27 } 2
max g-val = 2330099
est period = 2673770
{4,21,32}3
max g-val = 770538
est period = 7

We reiterate that periodicity need not arrive quickly. For example, the periodic complete sum-free set S
based on {10, 14, 15,17, 22} has period = 2,875,722 after a transient phase of approximately 584,000 terms.
Moreover,

the largest integer n in S for which n + 2875722 is not in S is n = 4, 562, 648
and

the largest integer n not in S for which n + 2875722 isin S is n = 4,453, 256.

1 This is Cameron’s example
2Evidently the same (minus one term) as {15, 16, 18, 21, 22, 24, 27 }, which is not listed (to avoid duplicity).
3This is quite unexpected - the maximum g-value is quite small but no clear signs of periodicity are apparent.
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