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SUMMARY 

 

Porous anodic aluminum oxide nanostructures provide hexagonally ordered arrays 

of pores with periodic distribution and tunable size and length. The research in this 

dissertation introduces a new process for partially converting the chemistry of the 

aluminum oxide nanostructure to titanium dioxide while retaining shape through a gaseous 

metal halide (TiF4) reactive conversion process. By this process, oriented single and multi-

wall titania nanotube arrays with tailored structures can be formed. This vapor-based 

process allows titania formation within small pores inaccessible to liquid-based approaches 

through an intermediary TiOF2 product. The research explores applications of converted 

titania structures, including dye-sensitized solar cells. The reactive conversion kinetics of 

Al2O3 into TiOF2 was studied to reveal two kinetic regimes likely limited by chemical 

reaction and solid-state diffusion allowing a stronger understanding of how the conversion 

reaction might be optimized in future applications.  Other metal fluoride reactions with 

anodic aluminum oxide (Al2O3) are also studied (including the successful conversion of 

Al2O3 into Nb2O5) showing the versatility of converting anodic aluminum oxide for 

applications requiring certain other oxide materials.  
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 GAS/SOLID REACTIVE CONVERSION 

SYNTHESIS OF HIGH-ASPECT-RATIO, ALIGNED NANOTUBE 

ARRAYS FOR DYE-SENSITIZED SOLAR CELLS 

 

1.1 Summary 

The objective of this chapter is to demonstrate, for the first time, that a synthetic 

chemical conversion process, involving a novel shape-preserving, metathetic gas/solid 

reaction can be used to synthesize TiO2 nanostructures via the controlled conversion of 

aluminum oxide (Al2O3) nanostructures. The Al2O3 template was exposed to gaseous TiF4 

followed by humid O2(g). TiF4 is a reactive halide which sublimes at 285°C and reacts with 

Al2O3 to form TiOF2 and Al-bearing by-products. This reactive behavior has been 

harnessed to produce, in a time and temperature dependent fashion, a TiOF2-bearing layer 

on exposed surfaces of Al2O3. Subsequent oxygenation in humid O2(g) and sintering 

yielded a continuous, conformal, anatase TiO2 product. Dissolution of the remaining 

underlying Al2O3 template and Al-bearing by-products produced high-aspect-ratio, aligned 

titania nanotube arrays. The TiO2 nanotube arrays synthesized using this methodology 

were integrated into dye-sensitized solar cells (using Ru-based N719 dye) with light 

harvesting efficiencies of 4.4 ± 0.3%.                                  

1.2 Introduction 

1.2.1 Introduction to Reactive Conversion Processes 

Three-dimensional chemical conversion of nanostructured templates is an attractive 
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approach for producing complex structures due to the wide range of intricate 3-D structures 

of specific chemistries available via mass production and the scalability of many chemical 

conversion methods.4-7 Primarily, the potential capability to mass produce nanostructured 

devices with tailored chemistry in a gaseous environment is a great advantage due to the 

ability of gases to readily penetrate fine-scale porosity or narrow cavities with high 

diffusivity. The mass diffusivity of gases through small pores is typically at least one order 

of magnitude greater than bulk diffusivity of liquids, and several orders of magnitude 

greater than liquid diffusivity through small pores.8 Previous research has resulted in the 

BASIC process, which stands for Biological Assembly and Shape-preserving Inorganic 

Conversion.9 BASIC introduces the chemical tailoring of silica structures, such as diatom 

frustules, while maintaining the original structure. One successful method for changing the 

chemistry of silica-based diatom frustules was a gas/silica displacement reaction method 

where silica frustules were converted into replicas of MgO (via an oxidation-reduction 

displacement reaction with Mg(g)) or TiO2 (via a metathetic displacement reaction with 

TiF4(g)).3,4  

The following net shape-preserving, metathetic, gas-solid displacement reaction 

was examined to convert SiO2 diatom frustules into TiO2 replicas.3,4  

𝑇𝑖𝐹4(𝑔) + 𝑆𝑖𝑂2(𝑠) → 𝑇𝑖𝑂2(𝑠) + 𝑆𝑖𝐹4(𝑔)    (1) 
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This net reaction allowed for the formation of the anatase polymorph of titania with 

the release of silicon fluoride vapor. Multiple species of diatoms and other siliceous 

precursors were examined including high aspect ratio structures (Corethron criophilum 

diatom frustule) and synthetic scaffold structures.10 The net reaction was realized as a 

sequence of two sub-reactions. Aulacoseira diatom frustules (Figure 1.1(a)) were initially 

exposed to TiF4(g) under a carefully chosen temperature (350°C), reaction time (2 h), and 

SiO2 (diatom) to TiF4 weight ratio in an otherwise inert atmosphere.3 This resulted in a 

solid TiOF2 product (Figure 1.1(b)). At higher reaction temperatures (500°C – 700°C) or 

TiF4-SiO2 molar ratios ≥ 4.9:1, titania was directly generated, but, the starting diatom 

frustule shape was not preserved and relatively coarse plate-shaped crystals were produced.  

Figure 1.1. Secondary electron images of Aulacoseira diatom frustules: (a) before 

treatment; (b) after exposure to TiF4(g) for 2 h at 350 °C; (c) after subsequent exposure 

to pure O2 for 2 h at 350 °C. (d) A transmission electron image of a cross-section of a 

frustule after exposure to TiF4(g) for 2 h at 350 °C and then to pure O2 for 2 h at 350 °C. 

Reproduced from Unocic, et al. with permission from The Royal Society of Chemistry.3 
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In the formation of TiOF2, one or more of the following reactions was likely 

followed, as each has a considerably negative Gibbs free energy change: 

𝑇𝑖𝐹4(𝑔) +
1

2
𝑆𝑖𝑂2(𝑠) → 𝑇𝑖𝑂𝐹2(𝑠) +

1

2
𝑆𝑖𝐹4(𝑔)   (2) 

𝑇𝑖𝐹4(𝑔) + 2
3
𝑆𝑖𝑂2(𝑠) → 𝑇𝑖𝑂𝐹2(𝑠) + 1

3
𝑆𝑖2𝑂𝐹6(𝑔)   (3) 

𝑇𝑖𝐹4(𝑔) + 𝑆𝑖𝑂2(𝑠) → 𝑇𝑖𝑂𝐹2(𝑠) + 𝑆𝑖𝑂𝐹2(𝑔)   (4) 

Subsequently, specimens were given a second heat treatment at 350°C for 2 h in 

pure, flowing oxygen in order to convert the titanium oxyfluoride frustules (Figure 1.1(c)) 

into titanium dioxide by the following reaction:3 

         𝑇𝑖𝑂𝐹2(𝑠) + 1

2
𝑂2 → 𝑇𝑖𝑂2(𝑠) + 𝐹2(𝑔)             (5) 

A longitudinal TEM cross-section of the resulting oxygen-treated nanostructure is 

shown in Figure 1.1(d). The specimen consisted of a porous network of fine oxide crystals 

(< 100 nm in size), and was found to be anatase by electron diffraction. 

Unocic, et al.3 were the first to demonstrate a metathetic halide gas-solid reaction 

that could convert a biologically self-assembled 3-D structure into a new nanocrystalline 

material without loss of the bioclastic shape or fine features. Nonetheless, they noted that 

such shape-preserving metathetic reactions could also be conducted on synthetic structures. 

They also showed that fluorine-doped TiO2 could be obtained when oxygenation was only 

partially completed and was useful in inducing rapid hydrolysis of certain 

organophosphorous esters (often found in pesticides) at mild pH and temperatures and in 

the absence of light.11 
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1.2.2 Applications of TiO2 Nanostructures Formed by Gas/Solid Reaction 

Titanium dioxide (TiO2) possesses many varied technological uses due to its 

optical,12 chemical,13 electrical,14 photochemical,15 and photovoltaic properties.16 Various 

morphologies of TiO2-based materials can be appealing for use in numerous applications 

(e.g., nanotubes for high throughput (photo)catalysts, adsorbants, and dye-sensitized solar 

cells (DSSCs),17-19  nanorods for bulk heterojunction solar cells,20 nanowires or nanotubes 

for batteries,21,22 nanotubes for sensitive and rapid gas detectors,17 nanoparticles for precise 

fluid flow control devices,23 functionalized hierarchical membranes for selective 

(bio)molecular separation,24 and sol-gel matrices for biosensing25). In particular, aligned, 

high-aspect-ratio, nanotubular TiO2-based materials can be appealing structures in these 

applications by providing relatively direct migration pathways for electrons or other 

species. 

 The objectives of the present work are: i) to demonstrate, for the first time, 

that a synthetic chemical conversion process, involving a shape-preserving, metathetic 

gas/solid reaction, can be used to synthesize TiO2 nanostructures via the controlled 

conversion of aluminum oxide (Al2O3) nanostructures and ii) to explore their applicability 

in DSSCs. Possible convertible, nanostructured Al2O3 could include porous anodic 

alumina, nanotubes,26 nanobelts,27 nanobricks,28 and nanocones,29 among others. While 

many nanostructures of TiO2 are already known, this process could produce new sizes and 

shapes of available TiO2 nanostructures for many applications. Benefits of this gas/solid 

reaction over other coating or conversion methods include that the method presented herein 

is potentially capable of mass-scale production of TiO2 nanostructures, uses gases as 

opposed to liquids, and is highly controllable. 
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1.2.3  Dye-Sensitized Solar Cells 

A primary application of the TiO2 nanotube arrays is in dye-sensitized solar cells.30-

33 The typical design (not to scale) of an aligned array DSSC is given in Figure 1.2. This 

2-D schematic shows TiO2 nanotubes/rods in the semiconducting layer. In the cell, light 

passes through a transparent conducting oxide (TCO) and a thin, transparent TiO2 

semiconducting layer before being absorbed by the dye (typically ruthenium based). Once 

absorbed, the electrons within the dye are excited from the highest occupied molecular 

orbital (HOMO or Edye(+/0)) to the lowest unoccupied molecular orbital (LUMO or 

Edye(+/*)) as shown in Figure 1.3. Electrons are then injected into the lower energy Fermi 

level of the TiO2 and finally diffused to the electrode or TCO and through an external 

circuit where the extra energy is utilized before migrating to the counter electrode. At this 

point, it is important to understand the purpose of the electrolyte. Because the dye has given 

up electrons to the TiO2, the electrolyte supplies electrons to replenish the dye molecules 

to their original state. The now oxidized and electron-deficient electrolyte recovers missing 

electrons by migrating toward the counter electrode, or cathode. Electrons migrating 

through the circuit reach the counter electrode and recombine with the oxidized electrolyte.  

 

Thin, mesoporous 
TiO2 

Figure 1.2. Schematic of layers in a dye-sensitized solar cell. 
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Figure 1.3.  A kinetic diagram showing the essential DSSC processes as solid black arrows. 

The photovoltage (VOC) generated depends on the difference between the redox potential, 

E(R+/R), of the electrolyte and the Fermi level, Ef, of TiO2. 

 

While this chapter will focus on using TiO2 in the DSSC, other oxides have been 

tested in the literature. TiO2 has traditionally served as the semiconductor of choice due to 

its stability, robustness, abundance, nontoxicity, and low price.1 Like TiO2 (Eg= 3.23 eV, 

anatase), ZnO (Eg= 3.37 eV, rock salt structure), and Nb2O5 (Eg= 3.493 eV, monoclinic 

structure) are also good candidates for filling the semiconductor role, for multiple reasons. 

All three of these metal oxides have dissimilar valence and conduction bands orbitals (In 

TiO2, the valence band consists of hybridized oxygen 2p/titanium 3d orbitals while the 

conduction band is pure titanium 3d orbitals),1 and can strongly influence the photovoltage, 

the fill-factor, the incident photon-to-current conversion efficiency (ICPE), and the 

efficiency of electron injection and collection.34 

The model for the DSSC in this chapter varies from original designs.16,35-37 A major 

change within the architecture is that of the solid semiconducting (TiO2) layer—the 
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electrolyte is liquid and able to infiltrate the TiO2 structure. The application of 

semiconducting nanostructures in DSSCs has been widely studied since the early 1990’s. 

Incorporating TiO2 thin films as the semiconductor, Brian O’Regan and Michael Gratzel 

invented the Gratzel Cell, the first operational DSSC with >1% efficiency, in 1991.16 

O’Regan and Gratzel initially intended DSSCs as a reasonably affordable alternative to 

tradition p-n junction photovoltaics whose expense prohibited their profitable manufacture 

and sale on a large scale. Although dye-sensitized solar cells had been implemented before, 

previous designs harvested less than 1% of monochromatic light due to their use of smooth 

(low surface area) semiconducting surfaces among other reasons.38,39 Such low absorption 

could not be augmented by increasing the thickness of the dye layer. Instead, O’Regan et 

al. manufactured a low-cost device with a high surface area TiO2 semiconductor film. This 

novel design harvested 46% of incident light with a light-to-electrical conversion above 

7%. They noted that, by increasing the contact area between TiO2 and the dye, the 

probability that an incident photon would be absorbed was significantly improved. 

The semiconductor of choice, generally TiO2, simultaneously takes on two 

responsibilities in a DSSC: i) passing/scattering sunlight through to the dye-sensitizer 

which harvests the light, and ii) conducting the electrons, transferred from the dye by 

photon absorption, to the electrode. To be efficient, the photons must be absorbed by the 

sensitizer for charge separation. Since the invention of the Gratzel cell, many researchers 

have examined methods for nanostructuring TiO2 to maximize surface area while being 

careful not to increase the traps and diffusion path lengths for electrons.31,32,34-37,40-43 

There are multiple known sources of electron loss and energy collection due (at 

least in part) to the semiconductor. Of these loss mechanisms, there is some loss when an 
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electron is injected into the semiconductor from the sensitizer. By matching the Fermi 

energy of the semiconductor closely with the lowest unoccupied molecular orbital (LUMO) 

energy of the sensitizer (the energy from which electrons in the sensitizer are transferred), 

one can minimize injection loss. For this reason, anatase TiO2 (with a larger energy gap 

and a higher conduction band energy that better matches the LUMO level of the dye) is 

typically preferred in the DSSC over rutile TiO2.
1 While other semiconducting metal oxides 

have larger bandgaps which could yield a greater photovoltage, their conduction band 

edges are higher than the LUMO level of common dyes. For example, Nb2O5 has a bandgap 

of ~3.8 eV, but a conduction band that is approximately 0.8 eV higher than that of anatase 

TiO2. The LUMO energy level of N719 dye at an interface with anatase TiO2 is 

approximately 0.3 eV larger than the conduction band edge for anatase. Therefore, a 

photosensitive dye such as N719 would need to be excited well above the LUMO 

(approximately 0.5 eV) for electron injection into the Nb2O5 conduction band).44,45  

Electrons in the semiconductor can also be lost by back transfer into the electrolyte, 

by recombination with holes in the oxidized dye molecules, or by phonon relaxation within 

the semiconductor.46 The crystallography and defect structure can affect the mobility of 

electrons within the semiconductor. If there are traps at the grain boundaries due to surface 

energy states or defects, then electron mobility could be limited.46 Such factors as 

decreasing the number of grain boundaries an electron must pass through to reach the 

electrode can increase the mobility and decrease the probability of electron-electron hole 

recombination.46 Furthermore, due to the significant loss mechanisms, it is imperative to 

ensure that the 3-D structure of the semiconductor allows the dye to absorb the maximum 

possible light by maximizing the contact area between the dye and the TiO2. 
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For these reasons, DSSC devices with TiO2 have been structured to increase 

efficiency by controlling light-scattering, repressing charge recombination, and modifying 

the semiconductor morphology to allow for maximum electron collection.1,31,34,37,40,41,47,48 

While many have focused their research on the variations in electron transport in TiO2 due 

to crystallographic structure or doping, the 3-D nanostructure must also be considered 

before constructing a DSSC.1,31,34,40,42,49-51 With the success of O’Regan and Gratzel in 

1991, numerous groups have worked to generate and characterize different TiO2 

nanostructures, such as nanowires, nanotubes, nanorods, and nanopowders.47,52-57 

O’Regan’s TiO2 layer consisted of nanoparticles deposited as a porous film. By altering 

processing parameters of the mesoporous, anatase TiO2, such as the precipitation pH, 

precursor chemistry, hydrolysis rate, and autoclaving pH, Barbe and Gratzel reached 

efficiencies near 10% by 1996.36 

Several groups have continued to work with nanocrystalline porous TiO2 films and 

have increased the surface area by increasing porosity and decreasing particle size.37,50 

However, it was quickly noted that a significant number of grain boundaries (with fine 

grain sizes) and the random network of nanoparticles (with highly porous films) increases 

the likelihood of electron trapping, diminishing the efficiency. Benkstein, et al. used 

percolation theory as “evidence that the network geometry strongly influences the electron 

transport dynamics in mesoporous nanoparticle TiO2 films”.50 Modeling electron transport 

by random-walk through a simulated mesoporous TiO2, they were able to show that as 

porosity increases, the diffusion path for electrons lengthens and found a corresponding 

decrease in efficiencies. Since then, researchers have been working to incorporate one 

dimensional nanostructures, such as nanotubes, to decrease the diffusion path length, as 
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seen in Figure 1.4. 

Previous researchers have synthesized aligned nanotubes, and fabrication of 

nanotube arrays with further tailored structures to enhance performance is still under 

investigation.58 Anodization of aluminum has long been utilized to create self-ordered 

porous alumina with tunable pore sizes and thicknesses. There are several techniques for 

utilizing porous anodic aluminum oxide (AAO) as templates to create TiO2 nanotubes, 

including surface sol-gel processing, protein-enabled layer-by-layer processing, and 

atomic layer deposition.32,33,59 However, to date, while many researchers offer techniques 

for coating TiO2 on alumina, there is no literature on methods for directly transforming 

Al2O3 into TiO2. 

Direct anodization of titanium to form TiO2 nanotubes is also well reviewed and is 

capable of producing a wide range in tube pore sizes and array thicknesses encompassing 

Figure 1.4. Schematic of electron diffusion through (A) nanoparticles, (B) 1-D 

nanostructures, and (C) 1-D nanostructures of differing diameters as shown by Jose, et 

al.1 Reused with permission from John Wiley and Sons. 
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those included in this chapter.60,61 However, Chapter 2 will introduce a new structure 

requiring the development of the reactive conversion method covered in Chapter 1. For 

this reason, the extent of control available for the reactive conversion of Al2O3 into TiO2 is 

thoroughly studied here.  

The proposed synthesis route using AAO allows for dimensional control (via 

control of both the initial AAO architecture and the reaction conditions), and substrate 

transferability. Aligned TiO2 nanochannel arrays surrounding a soluble alumina template 

10’s of μm in length can be synthesized in as little as 30 min. 

1.3 Experimental Procedures 

The synthesis of aligned TiO2 nanochannel arrays for the present work consists of 

the following steps: (i) synthesis of through-channel AAO templates; (ii) partial halide 

gas/solid displacement reaction of AAO to TiOF2 using TiF4 (see reaction equation 6); (iii) 

oxygenation and firing to form anatase TiO2, and (iv) selective dissolution of remaining 

alumina and residual Al-bearing species in aqueous NaOH. The dissolution of residual Al-

bearing species could result in porous TiO2 nanochannel walls which would affect the 

surface area of the TiO2. 

3𝑇𝑖𝐹4(𝑔) + 𝐴𝑙2𝑂3(𝑠) → 3𝑇𝑖𝑂𝐹2(𝑠) + 2𝐴𝑙𝐹3(𝑠)                                 (6) 

1.3.1 Syntheses of TH-AAO Templates 

Through-hole anodic aluminum oxide (TH-AAO) templates were formed following 

galvanostatic anodization and controlled etching processes.32 Variation in the diameters of 

the anodic pores was controlled by, and dependent on, the anodization solution, 

temperature, current density, and pore widening parameters chosen. Three anodization 
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conditions for AAO templates were explored for creation of TH-AAO and conversion to 

TiO2. Table 1.1 identifies the pore diameters (average of 50 measurements on each of 3 

AAOs of each type given with ± one standard deviation error ranges) synthesized in these 

experiments (see also the representative SE images in Figure 1.12). The anodization setup 

is illustrated in Figure 1.5. 

 

Table 1.1. Anodization conditions and resulting average pore diameters. 

Anodization Solution Current & Temperature Average Pore Diameter 

1.515 M H3PO4 6 mA cm-2, 4°C 284 8 nm 

0.5 M H2SO4 6 mA cm-2, 10°C 55 nm 

0.3 M H2C2O4 10 mA cm-2, 15°C 90 nm 

 

 

Figure 1.5. Schematic of setup for Ti anodization using a Pt counter electrode. 

 

1.3.1.1 Synthesis of TH-AAO with Large Diameter Channels 
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High-purity aluminum sheets (99.999%, 1 mm thick, Goodfellow, Co., Oakdale, 

PA) were converted into AAO templates with aligned, one-end-closed pore channels on 

top of an Al backing, following the anodization procedure reported by Kang, et al.32 In 

short, aluminum substrates were exposed to a series of electrochemical polishing steps 

followed by a two-step galvanostatic anodization in an aqueous solution of phosphoric acid 

(1.515 M, 6 mA/cm2, and 4°C).  

The aluminum backing and the alumina barrier layer formed during the anodization 

process must be removed to transform the porous alumina films into alumina membranes 

with open channels running entirely through the membrane thickness. As shown in Figure 

1.6, to allow for selective removal of the underlying Al backing, the anodized Al2O3 surface 

was first coated with a thin nitrocellulose-based film (Double Duty nail polish, Sally 

Hansen, Morris Plains, NJ) using a brush and then allowed to dry for at least 2 h. The Al 

backing was gently ground mechanically to remove any minor buildup of Al2O3 on the 

back surface and along the sides. The Al backing was then selectively dissolved in an 

aqueous solution of 0.25 M copper (II) chloride dihydrate (Sigma-Aldrich, St. Louis, MO, 

USA) in 6.0 M HCl at room temperature for 20 min.62 The removal of Al exposed the 

Al2O3 barrier layer located at the closed end of the pore channels. This exposed Al2O3 

barrier layer was dissolved by immersion in 3 M NaOH for 18 min at room temperature, 

so as to open and widen the pore channels. The nitrocellulose-based mask that had coated 

and protected the Al2O3 membrane was removed by dissolution in 99.5% acetone at room 

temperature for 30 min. The resulting TH-PA-AAO (Through-Hole, Phosphoric Acid-

derived, Anodic Aluminum Oxide) template was heated in air to 500 ºC for 1 h at a 10 ºC 

min-1 ramp to pyrolyze organics.  
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Figure 1.6. Schematic illustrating steps taken to form a TH-AAO after anodization. 

 

1.3.1.2 Synthesis of TH-AAO with Smaller Diameter Channels 

To create TH-AAO templates with smaller channel diameters, other anodization 

solutions can be used. Aqueous sulfuric acid anodization solutions have been show by Li, et 

al. to produce highly uniform channels with tunable lengths and with 60 nm interchannel 

spacing.63 Using high purity (99.999%) aluminum, the substrates were cleaned and 

electropolished before anodization in 0.5 M aqueous sulfuric acid at 10°C and 6 mA/cm2. 

Subsequently, the remaining aluminum was removed using the procedure outlined above and 

the channel bottoms were opened by chemical etching in gently stirred 5 wt% aqueous 

phosphoric acid at 30°C for 30 min. Aqueous oxalic acid solutions can also be used to generate 

anodic alumina templates with 20-100 nm channel diameters.64 In such syntheses, high purity 

aluminum foil was cleaned and electropolished before anodization in 0.3 M aqueous oxalic 

acid solution at 10 mA/cm2 and 15°C. After etching away the remaining aluminum backing, 

the channel bottoms were opened by chemical etching in gently stirred 5 wt% aqueous 

phosphoric acid solution at 25°C for 90 min. 

1.3.2 Reactive Conversion of Al2O3 into TiO2 

TH-PA-AAO and TH-SA-AAO templates were converted into TiO2 by the 
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following procedure. The TH-AAO was loosely wrapped with nickel foil (25.4 μm thick, 

McMaster-Carr, Atlanta, GA) as shown in Figure 1.7. It was then placed inside a titanium 

ampoule (outer diameter 2.5 cm, wall thickness 2 mm, length 20 cm; McMaster-Carr, 

Cleveland, OH, USA), containing a molar ratio of TiF4 (Advance Research Chemicals, 

Catoosa, OK) to AAO between 5.7:1 and 7.3:1, which was subsequently sealed via welding 

within an inert argon atmosphere with an oxygen partial pressure <1 ppm. A schematic 

illustration of the reaction ampoule after loading is shown in Figure 1.8. The ampoule was 

heated in a horizontal tube furnace (surrounded by flowing argon (99.999%, Airgas, 

Radnor Township, PA) to the desired temperature (180°C – 335°C) at a rate of 5°C min-1 

and held at that temperature for the desired length of time (0.5 h – 8 h) to allow for 

vaporization of the TiF4 and reaction of TiF4(g) with Al2O3. After cooling, the ampoule 

was removed from the furnace, cut open, and the specimens were extracted, 

Figure 1.7.  Images of nickel foil wrapped TH-AAO sample. Top left: TH-AAO sits on 

top of Nickel foil. Top right: top of nickel foil is gently folded over sample. Bottom left: 

TH-AAO has been moved to edge of nickel foil to show significant spacing for bulk 

TiF4(g) to reach TH-AAO. Bottom right: cross section of nickel foil sandwiching is 

shown. TH-AAO cannot be seen. 



17 

 

resulting in a TiOF2-bearing product layer on all surfaces of the TH-AAO. The ampoule 

was sufficiently gas-tight that residual TiF4 was seen inside the ampoule upon sample 

extraction. The specimens were then oxygenated via reactions 7 and/or 8: a second heat 

treatment at 400°C for 4 h in pure, flowing oxygen that, before entering the furnace, was 

passed through a heated water bath (50°C) at a rate of 1 slpm. The measured humidity 

(using Model HMP234, Vaisala, Woburn, MA) at the gas outflow of the furnace was found 

to be at least 94% relative humidity. Finally, the specimens were fired in air to 650°C for 

3 h to form the anatase TiO2 polymorph. 

𝑇𝑖𝑂𝐹2(𝑠) + 𝐻2𝑂(𝑔) → 𝑇𝑖𝑂2(𝑠) + 2𝐻𝐹(𝑔)                           (7) 

2𝑇𝑖𝑂𝐹2(𝑠) + 𝑂2(𝑔) → 2𝑇𝑖𝑂2(𝑠) + 2𝐹2(𝑔)                          (8) 

Afterwards, the specimens were mounted on glass slides using a thin nitrocellulose-

based film (Double Duty nail polish, Sally Hansen) and etched in 3M NaOH for 1.5 h to 

selectively dissolve all remaining Al-bearing species, including any unreacted AAO and 

any Al-bearing byproducts. After rinsing, the glass-mounted specimens were then heated 

Figure 1.8. Schematic illustration of the sealed Ti ampoule in which the reaction of Al2O3 

structures with TiF4 was conducted. 
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in air to 500°C for 0.5 h to pyrolyze the nitrocellulose-based film resulting in free-standing, 

aligned TiO2 nanotube membranes on glass. For transfer onto a working electrode, a 0.25” 

diameter circle of Scotch® tape was pressed onto an oversized section of the TiO2 nanotube 

membranes and lifted off of the glass. 

1.3.3 Photovoltaic Device Fabrication 

DSSCs were prepared via a multi-step process beginning with preparation of the 

working electrode.65 Fluorine-doped tin oxide (FTO) coated glass (2.54 cm x 1.27 cm x 2 

mm thick, 13 Ω/□, Hartford Glass Company, Hartford City, IN) was cut into 0.5” x 1” x 2 

mm pieces and cleaned via ultra-sonication for 20 min in a solution of 2.5 mg mL-1 

detergent (Alconox Powder Detergent, VWR, West Chester, PA) dissolved in an aqueous 

solution of 50 vol% ethanol.  After rinsing with deionized water and ethanol and drying for 

approximately 5 seconds under flowing nitrogen gas at room temperature, the FTO-coated 

side of the glass was partially masked with Kapton tape. The FTO glass was then 

submerged in an aqueous solution of 40 mM TiCl4 (99% purity, Alfa Aesar, Ward Hill, 

MA) at 70 ºC for 0.5 h. After removing the Kapton mask (which allowed only the exposed 

FTO glass to interact with the TiCl4 solution) and washing with water and ethanol, the 

treated FTO glass surface was partially masked by attaching a piece of Scotch® MagicTM 

tape (0.0625 mm thick) through which a 0.3125” diameter hole was punched.  A TiO2-

bearing paste, composed of TiO2 nanoparticles (20 nm average diameter, Ti-Nanoxide, 

T20/SP, Solaronix SA, Aubonne, Switzerland), was mixed in a 1:1 weight ratio with 

ethanol.  After placing 10 μL of this mixture in and over the 0.3125” diameter hole in the 

tape, a doctor blade was wiped across the tape to remove excess TiO2 paste located above 

the hole.  The TiO2 nanotube array adhered to Scotch® MagicTM tape (0.0625 mm thick) 
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was then placed on this layer of TiO2 paste and the assembly was fired at 500 ºC for 1 h to 

pyrolyze the tape and to sinter-bond the array to the titania-coated FTO-bearing glass.   

Afterwards, the electrode was exposed to a 0.2 M TiCl4 (99 % purity, Alfa Aesar, 

Ward Hill, MA) solution at 70 ºC for 1 h, and then heated again to 500 ºC for 0.5 h. The 

TiCl4 treatment improves film morphology by sealing the FTO from exposure to electrolyte 

while enhancing the surface area of TiO2.
66 After an oxygen plasma treatment of the 

assembly for 10 min at 10.1 W (PDC-002, Harrick Plasma, Ithaca, NY), the working 

electrode was submerged in light-harvesting solution (0.3 mM t-butanol in a 1:1 volume 

ratio with acetonitrile) of N719 dye (cis-di(thiocyanato)-N-N’-bis(2,2’-bipyridyl-4-

carboxylic acid-4’-tetrabutylammonium carboxylate) ruthenium (II), (Solaronix, Aubonne, 

Switzerland) for 24 h at room temperature.   

A counter electrode was prepared by sandblasting a 1 mm diameter hole in an FTO-

bearing glass slide, and then depositing an ethanolic solution of 2 mg mL-1 H2PtCl6 (99% 

purity, Alfa Aesar, Ward Hill, MA) on the FTO followed by firing at 450 ºC for 15 min. A 

25 μm thick disk-shaped thermoplastic spacer (Meltronix 1170-25, Surlyn, Solaronix, 

Aubonne, Switzerland) was used to separate the working electrode (the titania nanotube-

bearing FTO) from the counter electrode (the Pt-coated FTO).  A 0.3125” diameter hole 

was cut into the spacer so that the titania nanotube array on the working electrode could be 

positioned within the hole.  The redox electrolyte solution, which was composed of 0.6 M 

1-butyl-3-methyl imidazolium iodide (99% purity, Sigma-Aldrich, St. Louis, MO, USA), 

0.1 M guanidinium thiocynanate (≥97% purity, Sigma-Aldrich, St. Louis, MO, USA), 0.03 

M I2 (≥99.8% purity, Sigma-Aldrich, St. Louis, MO, USA) and 0.5 M tert-butylpyridine 

(96% purity, Sigma-Aldrich, St. Louis, MO, USA) dissolved in a mixture of 85 vol% 
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acetonitrile (99.8% purity, Sigma-Aldrich, St. Louis, MO, USA)  and 15 vol% valeronitrile 

(99.5% purity, Sigma-Aldrich, St. Louis, MO, USA), was infiltrated under vacuum (using 

a roughing pump for approximately 30 seconds or until all visible air bubbles in the solution 

were removed) through the hole in the FTO-bearing glass of the counter electrode into the 

space between the counter and working electrodes and into the titania nanotube array.  The 

hole in the counter electrode was then sealed using a 60 μm thick thermoplast film 

(Meltronix 1162-60, Solaronix SA, Aubonne, Switzerland) and a cover glass slide. A 

completed device is shown in Figure 1.9. A schematic of the device cross-section is shown 

in Figure 1.10 and a flowchart describing the entire process is shown in Figure 1.11. 

 

Figure 1.9. A completed titania nanotube-based DSSC with FTO glass that measured 1.3 

cm by 2.5 cm. 
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Figure 1.10. Schematic of the cross-section of a dye-sensitized solar cell containing 

interconnected TiO2 nanotubes. 
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1.3.4 Characterization of the Nanotube Arrays and Cells 

 The micro/nanoscale morphologies of the TH-AAO templates and TiO2 

nanotube arrays were evaluated with scanning electron microscopy (1530 FEG SEM, 

LEO/Zeiss Electron Microscopy, Thornwood, NY or 1550 FEG SEM, LEO/Zeiss Electron 

Microscopy, Thornwood, NY) and transmission electron microscopy (JEOL 4000 EX, 

Japan Electron Optics Laboratory, Tachikawa, Tokyo or Technai F30 TEM, FEI, 

Hillsboro, OR, USA).  Transmission electron microscopy was conducted by Dr. Ye Cai 

(Georgia Institute of Technology, Atlanta, GA, USA).  Dimensional analyses were 

conducted using 10 measurements on 5 different imaged areas for 50 total measurements. 

The error range quoted for such measurements was the absolute range of values measured.  

The crystal structures of the nanotube arrays were evaluated at room temperature 

via X-ray diffraction (XRD) analyses (Alpha-1, PANalytical Corp., Almelo, the 

Netherlands) on samples placed with the same side down as during conversion and via 

selected area electron diffraction analyses (JEOL 4000 EX) of cross-sections from the 

inside of the channels.  XRD analyses were conducted using monochromatic CuKα1 (1.541 

Å) radiation emanating from a 1.8 kW ceramic diffraction X-ray tube with a copper anode 

(45 kV, 40 mA) through a symmetrical Johannson monochromator.  The incident beam 

optics were outfitted with 0.04 rad Soller slits, a 1º fixed anti-scatter slit, a ½º 

programmable divergence slit, and a 10 mm mask.  The diffracted beam optics were 

outfitted with a 5.5 mm anti-scatter slit and 0.04 rad soller slits placed before the 

X’Celerator detector.  Each pattern was produced with a summation of 12 identical 40 min 

scans conducted with Bragg-Brentano geometry and a step size of 0.01667º 2θ ranging 

from 20º to 70º 2θ. Current-voltage (J-V) measurements were conducted under airmass 1.5 
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global (AM 1.5G) conditions (Oriel 300 Watt solar simulator, 100 mW cm-2) using an 

aperture with a measured area of 7.05 mm2.  

1.4 Results and Discussion 

1.4.1 Anodic Al2O3 Templates 

Two-step galvanostatic anodization processes were used to create anodic aluminum oxide 

TH-AAO with channel diameters dependent on the anodization conditions. The aluminum 

backing was then removed in a 6 M HCl, 0.25 M CuCl2 solution. Subsequent immersion 

in 3 M NaOH or 5 wt% H3PO4 solution was used to remove the alumina barrier layer 

formed during anodization. Secondary electron images revealing the aligned pore channels 

in TH-AAO membranes are shown in Figure 1.12. The pore channels created in phosphoric 

acid (TH-PA-AAO membranes), as shown in Figure 1.12 (a) and (b), possessed an average 

diameter of 284 8 nm and average height of 13.2 0.2 μm after 2.5 h of anodization. In 

oxalic acid (TH-OA-AAO membranes), an average pore diameter of 90 nm and 

average height of 11.7 μm were obtained after 2.5 of anodization, as shown in Figure 

1.12 (c) and (d). Anodization in sulfuric acid (TH-SA-AAO membranes) for 2 hours, 

yielded 55 nm pore diameters and a 44 μm average height, as shown in Figure 1.12 

(e) and (f). However, these dimensions can be further tuned by varying the anodization and 

etching conditions. As generated, TH-AAO specimens scanned from the surface of the 

membranes were found to be amorphous by X-ray diffraction analyses as illustrated in 

Figure 1.13. 
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Figure 1.12. Secondary electron images of through-hole anodic aluminum oxide formed 

under different anodization solutions. TH-PA-AAO top (a) and cross-section (b). TH-OA-

AAO top (c) and cross-section (d). TH-SA-AAO top (e) and cross-section (f). All scale 

bars are 200 nm.  
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1.4.2 Reactive Conversion of TH-PA-AAO 

A two-step metathetic gas/solid reactive conversion process was used to partially 

and controllably convert through-hole phosphoric-acid-derived anodic aluminum oxide 

(TH-PA-AAO) membranes into aligned nanotube arrays comprised of interconnected 

nanocrystalline TiO2. The TH-PA-AAO was exposed to TiF4 vapor in an otherwise inert 

(Ar) atmosphere and allowed to react for a set length of time, likely following one or more 

of the following reaction equations: 

3𝑇𝑖𝐹4(𝑔) + 𝐴𝑙2𝑂3(𝑠) → 3𝑇𝑖𝑂𝐹2(𝑠) + 2𝐴𝑙𝐹3(𝑠)  (9) 

𝑇𝑖𝐹4(𝑔) + 𝐴𝑙2𝑂3(𝑠) → 𝑇𝑖𝑂𝐹2(𝑠) + 2𝐴𝑙𝑂𝐹(𝑠)  (10) 

Figure 1.13. X-ray diffraction spectra of as-prepared (a) TH-PA-AAO, (b) TH-SA-AAO, 

and (c) TH-OA-AAO showing amorphous structures.  
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2𝑇𝑖𝐹4(𝑔) + 𝐴𝑙2𝑂3(𝑠) → 2𝑇𝑖𝑂𝐹2(𝑠) + 𝐴𝑙2𝑂𝐹4(𝑠)  (11) 

In the above reactions, TiF4 exists as a solid at room temperature and sublimes at 

285°C and amorphous F-bearing Al products are water soluble.67 Due to the possible glassy 

nature of aluminum fluorides and aluminum oxyfluorides (particularly in the presence of 

phosphorous), the chance of AlF3 and Al2O3 reacting to form 3 AlOF as a secondary 

byproduct, and the imprecise measurability of weight changes of products and reactants, 

the exact reaction equation is unknown.68,69 Attempts were made to fully convert Al2O3 

nanopowder (Specific Surface Area (BET): >275 m2/g, Strem Chemicals, Inc., 

Newburyport, MA) to track the weight change between reactant and products by reacting 

at 335 ºC for 24 h with powder bed depths less than 1 mm. The results of these experiments 

were unable to eliminate any potential byproducts because not all of the Al2O3 reacted (due 

to difficulty converting a measurably large mass in sufficiently thin layers to ensure gas 

penetration through all layers). Although there is no thermodynamic data available in the 

literature for solid TiOF2, the formation of titanium oxyfluoride at ≥180°C from Al2O3 was 

apparently thermodynamically favorable, as indicated by TEM, SEM, and XRD analyses 

of the reacted samples, as will be shown later. 

Early attempts to conduct a conversion at 350°C, in the manner described by 

Unocic, et al.3, resulted in excessive grain growth of the TiOF2 product on the top and 

bottom exposed surfaces, clogging the TH-PA-AAO channels before the reaction was able 

to create an interconnected product running along the complete length of the pore channels.  

The growth of the TiOF2 product layer was then controlled by lowering the reaction 

temperature to 335°C. By reacting at this temperature, while varying the time allowed for 
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reaction from 0.5 h to 8 h, the thickness of the product layer was controlled. Overall, the 

shapes of the nanochannels were preserved in the reacted samples. However, the smooth 

amorphous TH-PA-AAO surfaces transformed into rougher surfaces comprised of 

granular, interconnecting crystals. Figure 1.14, Figure 1.15, and Figure 1.16 illustrate the 

top (a), bottom (b), cross-section (c), and high magnification of the cross-section (d) of the 

TH-PA-AAO template for reaction times up to 8 h. 
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Figure 1.15. Secondary electron images of TH-PA-AAO after reaction with TiF4(g) for 2 

h at 335 °C viewed top-down (a), bottom-up (b), and via cross-section at low 

magnification(c) and at high magnification (d). Scale bars for (a), (b), and (d) are 200 nm. 

The scale bar for (c) is 2 microns. 
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By SEM, reaction was apparent within the first 0.5 h of reaction time. The reacted 

layer appears to coarsen and shrink the open diameter of the channels when reaction is 

allowed to occur for 8 h. The completion of reaction equations 9 and 10, forms, would 

result in volume expansions of 450% and 135% (powder diffraction files (PDF) 59-0871, 

47-1659, 78-7622 and density of porous alumina as measured by Nielsch, et al.,70 of 3.2 

g/cm2), respectively. Such significant volume increases apparently led to the decrease in 

average channel diameter from 284 nm ± 8 nm to 166 nm ± 45 nm after 8 h of reaction 

with TiF4. The density of Al2OF4 was unknown, preventing calculation of an approximate 

volume change due to conversion to this material as shown in reaction equation 11. 

However, full conversion has not been realized on porous anodic alumina due to kinetic 

rate deceleration and closing of pores creating much longer diffusion pathways. Energy 

dispersive X-ray (EDX) spectroscopy provided information about the elemental makeup 

of each sample. As illustrated in Figure 1.17, before reaction TH-PA-AAO was comprised 

of aluminum, oxygen, and the dopant phosphorous, whereas after reaction for 0.5 – 8 h at 

335°C, titanium and fluorine were also present.   
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Upon examination by X-ray diffraction (XRD) analyses, the only crystalline material 

detected from top-down scans after reaction at 335°C from 0.5 – 8 h was TiOF2 (see Figure 

1.18) with a mean crystallite size of 9 ± 1 nm  and 16 ± 1 nm by Scherrer analysis after 2 h 

and 8 h of reaction respectively. XRD data on the 0.5 h sample provided insufficient 

information (after >12 h of XRD scanning) for evaluation of the mean crystallite size of 

the sample. Transmission Electron (TE) microscopy reveals average product layer wall 

thicknesses of up to 45 ± 11 nm after 2 h and 57 ± 9 nm after 8 h at 335°C of reaction (see 

Figure 1.19). 

Figure 1.17.  EDX spectra of TH-PA-AAO before reaction (a), after 30 minutes of reaction 

(b) and after 8 h of reaction at 335 °C (c) with TiF4(g) reveals elemental composition of 

reaction specimens. 

C 
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Figure 1.18. X-ray diffraction spectrum of TH-PA-AAO after reaction with TiF4(g) at 

335 °C for 0.5 h, 2 h, and 8 h showing on TiOF2. 
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Top-down and cross-sectional secondary electron (SE) images after TH-PA-AAO 

creation, after reaction with TiF4 for 8 h at 335°C, after oxygenation of TiOF2 at 400°C for 

4 h and annealing of TiO2 at 650°C for 3 h, and after etching of remaining Al-bearing 

species are shown in Figure 1.20 and Figure 1.21. Formation of a continuous TiO2 layer 

can be observed after an initial reaction with TiF4(g) for 2 h, while a shorter 0.5 h reaction 

time does not lead to continuity in the reaction layer (Figure 1.20). 

 

 

 

 

 

Figure 1.19. Transmission electron (TE) images near the middle of TH-PA-AAO  

membranes after reaction with TiF4(g) at 335 °C for (a) 2 h and (b) 8 h. Scale bars are 100 

nm. 
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Figure 1.20. SE images of a) as-prepared AAO as viewed from the bottom side; b, c) AAO 

reacted with TiF4(g) at 335 °C for 0.5 h viewed top-down and in cross-section, respectively; 

d, e) AAO reacted with TiF4  at 335 °C for 8 h, oxygenated at 400 °C for 4 h, and fired at 

650 °C for 3 h, viewed top-down and in cross-section, respectively; f) after etching a 

specimen reacted with TiF4 at 335 ºC for 0.5 h, oxygenated at 400 °C for 4 h, and fired at 

650 °C for 3 h viewed in cross-section; g)- i) after etching a specimen reacted with TiF4 at 

335 °C for 0.5 h, oxygenated at 400 °C for 4 h, and fired at 650 °C for 3 h viewed top-

down showing some local pore retention (g) but overall collapse (h, i). The scale bars a) – 

g) correspond to 200 nm. The scale bar for h) corresponds to 10 μm and for i) corresponds 

to 2 μm. 

i   h   
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Reaction equations 7 and 8 each result in a 37% solid volume decrease upon 

conversion of TiOF2 into TiO2 (PDF 59-0871, 21-1272). Figure 1.20 illustrates the 

preservation of the TiOF2 structure after oxygenation and firing to form TiO2. After 

etching, the structure is still partially preserved (as seen in Figure 1.20 (g) and Figure 1.21) 

for all conversion times, however with only 30 minutes of reaction, etched samples often 

appeared collapsed (Figure 1.20(h)). X-ray diffraction and EDX confirm the presence of 

anatase TiO2 and removal of F-bearing species, as shown in Figure 1.22. Figure 1.23 

illustrates the presence of TiO2 nanocrystals by high resolution transmission electron 

Figure 1.21. SE Images after reaction with TiF4 at 335 ° C for 8 h, oxygenation at 400 ° C 

for 4 h, firing at 650 ° C for 3 h, and etching of PA-TH-AAO. Image (a) shows a top-down 

area, (b) shows a fractured set of tubes illustrating separation of the tubes away from the 

top or bottom of the channels and along the length of the channels, and (c) shows a cross 

section of a bundle. Scale bars are 200 nm for (a) and (b) and 1 μm in (c). 
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(HRTE) microscopy and selected area electron diffraction (SAED). The nanotubes appear 

to be mostly dense with little porosity after etching likely due to the crystallization of γ-

Al2O3 and subsequent difficultly etching this crystalline Al2O3 occurring within potential 

pore channels. 

 

Figure 1.22. EDX (a) and XRD (b) after reaction with TiF4  at 335°C for 8 h, oxygenation 

at 400°C for 4 h, firing at 650°C for 3 h, and etching of PA-TH-AAO for 1.5 h. The 

complete removal of fluorine is confirmed. By XRD, the primary crystalline structure 

observed is anatase TiO2. Minimal amounts of γ-Al2O3 account for some remaining 

presence of aluminum, as no broad amorphous humps in the XRD spectrum were observed. 

 

Figure 1.23. a) HRTE images of anatase nanocrystals in the reacted zone of the membrane 

after reaction with TiF4  at 335°C for 8 h, oxygenation at 400°C for 4 h, firing at 650°C for 

3 h. b) Corresponding SAED analysis revealing the presence of only the anatase polymorph 

within the reacted zone. Scale bar in a) corresponds to 2 nm. 

1.4.3 Reactive Conversion of TH-OA-AAO 
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Attempts to convert through-hole oxalic acid anodic aluminum oxide into TiOF2 

and ultimately TiO2 were successful after first firing the starting template in air at 1000°C 

for 2 h. This step allowed for the decomposition of aluminum oxalate (introduced during 

oxalic acid anodization) into Al2O3.
71 Conversions attempted at temperatures ranging from 

180°C to 350°C without pre-firing the template resulted in no measureable formation of 

TiOF2 within an 8 h time span (Figure 1.24). Pre-fired templates partially converted to 

TiO2, as illustrated in Figure 1.25 and Figure 1.26, were then examined for solubility in 3 

M NaOH. However, it was noted that such templates pre-fired at 1000°C contained 

crystalline Al2O3
72, which has poor solubility properties under most conditions (it is not 

acted upon by single acids and most known etchants work primarily as surface cleaning 

solutions. One known corundum etchant requires at molten flux at 1473°C).73 

Figure 1.24. TH-OA-AAO after reaction with TiF4 at 335 °C for 8 h shows no crystalline 

peaks via XRD. 
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Such an inability to etch Al2O3 was thus expected to limit the ability to form free-

standing TiO2 nanotubes arrays derived from TH-OA-AAO templates. Nonetheless, pre-

fired TH-OA-AAOs were exposed to TiF4(g) at 335°C for 0.5 h (molar ratio of TiF4 to 

Figure 1.25. TH-OA-AAO after prefiring at 1000 °C for 2 h in air, reaction with TiF4(g) 

at 335 °C for 0.5 h, oxygenation at 400 °C for 4 h, and firing in air at 650 °C for 3 h shows 

the channel structure maintained. Scale bar corresponds to 1 μm. 

 

Figure 1.26. XRD of OA-TH-AAO after prefiring at 1000 °C for 2 h in air, reaction 

with TiF4(g) at 335 °C for 0.5 h, oxygenation at 400 °C for 4 h, and firing in air at 

650 °C for 3 h shows some crystalline Al2O3 among anatase peaks.  

 



41 

 

Al2O3 between 5.7:1 and 7.3:1) and converted to TiO2 by oxygenation at 400°C for 4 h and 

firing in air at 650°C for 3 h as is shown by XRD in Figure 1.26. Thus, it is expected that 

the hypothesis that aluminum oxalate interfered with the intended reaction with TiF4(g) 

was likely accurate although the reasoning behind oxalate interference is not fully 

understood. Other differences between the reaction with TH-PA-AAO and TH-OA-AAO 

include the larger pore channels and presence of phosphorous doping in TH-PA-AAO. 

Figure 1.26 illustrates the X-ray diffraction pattern of partially converted TH-OA-AAO 

showing anatase TiO2 in addition to the presence of crystalline Al2O3 remaining from the 

pre-fire. Due to the inability to subsequently etch the remaining crystalline Al2O3 in 3 M 

NaOH (and thus, the poor applicability of such a structure to known applications), further 

optimization of the reaction with TH-OA-AAO was not explored.  

1.4.4 Reactive Conversion of TH-SA-AAO 

Similar to the reactive conversion of TH-PA-AAO, a two-step metathetic gas/solid 

reactive conversion process was used to controllably, partially convert through-hole 

sulfuric-acid-derived anodic aluminum oxide (TH-SA-AAO) membranes into aligned and 

nanotube arrays comprised of nanocrystalline TiO2. The TH-SA-AAO was exposed to TiF4 

vapor in an otherwise inert (Ar) atmosphere and allowed to react for a set length of time. 

The formation of titanium oxyfluoride at ≥180°C from Al2O3 was apparently 

thermodynamically favorable, as indicated by TEM, SEM, and ED analyses of the reacted 

samples. Illustrated in Figure 1.27, after reactive conversion for 6 h at 180°C, pore channels 

appeared to remain open and TiOF2 had formed. In Figure 1.27, Figure 1.28, Figure 1.29, 

after reactive conversion for 6 h at 180°C, oxygenation at 400°C for 4 h, and firing at 650°C 

for 3 h, anatase TiO2 was formed and all fluorine was removed. 
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Figure 1.27. Top down SE image (left) and XRD spectrum (right) after reactive conversion 

at 180 ° for 6 h showing pores remaining open and formation of TiOF2. Scale bar 

corresponds to 50 nm. 

Figure 1.28. Top down (a), cross-sectional (b) TE images, ED pattern (c), and XRD pattern 

(d) reveal anatase amidst the amorphous anodic alumina after reactive conversion at 180 

°C for 6 h, oxygenation at 400 °C for 4 h, and firing at 650 °C for 3 h. ED pattern taken 

from cross-sectional TE image. Scale bars are 20 nm for (a) and 100 nm for (b). 
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In the semiconducting layer desired for electrode applications, the anatase must be 

interconnected throughout each channel, in order to form free standing nanotube arrays or 

direct pathways for electrons to travel through TiO2 from one end of a nanotube to the 

other. While anatase had formed throughout the channels of the anodic alumina, crystallites 

appeared disperse, with little connectivity along the smooth channels of the anodic 

alumina, as can be seen in Figure 1.31. Subsequent mounting on a glass slide and etching 

in 3 M NaOH resulted in tube bundling and collapse as shown in Figure 1.30. In this figure, 

all images are taken top-down, and pore channels appear to be closed. Evidence of TiO2 

having taken the shape of the porous anodic alumina is seen in the lower images of this 

figure, where a section of TiO2 appears on its side showing lengthwise a section of what 

could be nanochannels. 

 

Figure 1.29. EDX spectrum at center of channels shows that TiO2 is present in 

throughout the thickness of the converted, oxygenated, and fired SA-AAO sample.  
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Increasing the reaction temperature with TiF4 to 300°C and reacting for a 30 min 

appeared capable of retaining open pores, as shown in Figure 1.32. Upon oxygenation at 

400°C for 4 h, firing at 650°C for 3 h, these samples were etched in 3 M NaOH for 1.5 h, 

and while remaining bundles were more present, the tops were overreacted and sealed 

Figure 1.30. Top-down SE images of SA-AAO after reactive conversion at 180 °C for 6 h, 

oxygenation at 400 °C for 4 h, firing at 650 °C for 3 h, mounting on a glass slide, and 

etching in 3 M NaOH. Scale bars are 10 microns (a), 1 micron (b), (c), and 200 nm (d).  

Figure 1.31. Cross-sectional SE image (right) after conversion, oxygenation, and firing 

shows particles present in the pore channels. XRD (right) shows anatase TiO2 in addition 

to some crystalline Al2O3. Scale bar corresponds to 100 nm. 
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closed after etching (also shown in Figure 1.32). Going beyond this temperature and time, 

however, consistently resulted in excessive reaction of the surface of the starting templates 

which closed the pore channels.  

 

1.4.5 Dye Sensitized Solar Cell Testing 

Experiments were conducted to measure the DSSC behavior of the TH-PA-AAO 

specimens reacted at with TiF4(g) 335°C for 8 h, oxygenated at 400°C for 4 h, fired at 

650°C for 3 h. Three working electrodes were fabricated following a procedure described 

Figure 1.32. Top-down SE image of SA-AAO after reactive conversion with TiF4(g) at 300 

°C for 30 min (a) reveals most channels not fully sealed at the surface. Top-down SE 

images (b-d) after  being oxygenated at 400 °C for 4 h, fired at 650 °C for 3 h and etched 

in 3 M NaOH for 1.5 h, the same sample reveal more apparent nanotube channels, however 

the interconnectivity near the bundle surface, as best illustrated in (d), shows minimal 

porosity. Scale bars correspond to 100 nm in (a) and (d), 200 nm in (b), and 1 μm in (c). 

a) b) 

c) d) 
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previously (see Figure 1.33). The current-voltage behavior of the best performing device 

resulted in 4.7 % efficiency. The three devices exhibited an average open-circuit voltage 

of 726 ± 82 mV, an average fill factor of 0.758 ± 0.10, and an average efficiency of 4.4 ± 

0.3 %. The current-voltage behavior of the DSSCs in available in Table 1.2. 

Table 1.2. Average current voltage behavior across three devices. 

 

 

 

 

 

1.5 Conclusions 

A gas/solid reaction of Al2O3 was used to generate anatase TiO2 nanochanneled 

electrodes via a TiOF2 intermediate product. Such reaction showed control over nanotube 

Device 

Parameter 

Average Value 

(3 Devices) 

VOC 726 ± 82 mV 

JSC 8.0 ± 1.1 mA cm-2 

Fill Factor 0.758 ± 0.10 

Efficiency 4.37 ± 0.33 % 

Figure 1.33. Current-voltage behavior during illumination of all devices (left) and of the 

best-performing device (4.7% efficiency) in the dark and under AM 1.5G illumination 

(right). 
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wall thickness when a phosphoric-acid derived anodic alumina template was used. 

Working electrodes containing anatase nanotube arrays were constructed into DSSC 

devices exhibiting an average efficiency of 4.4%. Attempts to react anodic alumina with 

smaller pore channel diameters (i.e. sulfuric-acid derived and oxalic-acid derived anodic 

alumina templates) were proven capable of forming TiO2 throughout channels that are 

impenetrable to liquid-based depositions under known conditions (i.e. in house tests of 

infiltrating these smaller pores with protamine-bearing and titania precursor-bearing Ti(IV) 

bis-ammonium-lacto-dihydroxide using the method reported in Berrigan, et al.33 were 

unsuccessful). However, free-standing, small-diameter nanotube arrays with open channel 

tops were unable to be formed because the surrounding Al2O3 was insoluble (i.e. reactions 

that started with TH-OA-AAO templates) or possibly because the anatase crystallite size 

was relatively large compared to the channel diameters and the high aspect ratio of the 

expected nanotube arrays resulted in collapse of the tubes after etching (i.e. reactions that 

started with TH-SA-AAO templates). 

Nonetheless, the next chapter extends the work with this reactive conversion 

method by combining the TH-PA-AAO reaction with a wet-chemical deposition method 

to form multi-wall TiO2 nanotube arrays for solar cells with enhanced efficiencies. Such 

multi-wall TiO2 nanotube arrays have not been realized via other methodologies making 

the usefulness of the reactive conversion method more clear. Not via direct anodization of 

Ti to for TiO2 nanotube arrays nor by purely wet chemical techniques have multi-wall TiO2 

nanotube arrays been created.  
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 A HYBRID SOL-GEL/GAS-SOLID 

DISPLACEMENT METHOD FOR ALIGNED MULTI-WALLED 

TITANIA NANOTUBE ARRAYS 

 

2.1 Introduction 

High-aspect-ratio, single-wall TiO2 nanotube arrays, as demonstrated in the 

previous chapter, be used as electrodes, such as for dye-sensitized solar cells (DSSCs). 

Their 1-D open channels minimize electron diffusion pathways, and their high surface 

areas allow for high levels of dye (or other molecule) adsorption. However, a common 

problem with single-wall nanotube arrays is their likelihood to agglomerate upon drying, 

due to capillary stresses.32,33,74-76 Such bundling can degrade the alignment and structural 

uniformity of the arrays and result in increased electron diffusion pathways (and thus the 

likelihood of electrons recombining and being lost) through the nanotube arrays.76 

In this chapter, we present a method for producing agglomeration-resistant, well-

aligned, high-aspect-ratio titania nanochannel arrays from anodic aluminum oxide (AAO). 

The resulting structures, produced by a combination of conformal coating and gas/solid 

reaction techniques, consist of rigid multi-wall titania nanotube (MWTNT) arrays. The 

dye-loading capacities and power conversion efficiencies of DSSCs containing MWTNT-

based electrodes are compared to single-wall titania nanotube (SWTNT) array electrodes 

created by conformal coating alone. Much of the material in this chapter has been published 

in Berrigan, et al.2 

2.2 Experimental Methods 
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The conversion of  AAO templates into MWTNT arrays (Figure 2.1a) for electrode 

applications was conducted by the following series of steps: deposition of a conformal TiO2 

coating onto the surface of the AAO template nanochannels via a wet chemical process 

(i.e., sol gel coating) (Figure 2.1b); partial etching of the AAO and the removal of the Al 

substrate to open the channels of the AAO template (to yield flow-through AAO 

membranes as opposed to one end closed membranes) (Figure 2.1c); partial reactive 

conversion of the remaining AAO into titanium oxyfluoride (TiOF2) (Figure 2.1d); 

oxygenation of TiOF2 into TiO2 (Figure 2.1e); and selective dissolution of aluminum-

bearing phases to yield freestanding, aligned, MWTNT arrays (Figure 2.1f).   

Porous amorphous anodic alumina (AAO) templates were generated as described 

in the previous chapter’s section 1.3.1. In short, high-purity aluminum sheets were 

anodized twice in a phosphoric acid-bearing solution with an anodization time (the time 

allotted for pore channel formation) of 2.5 h at 4°C using a current density of 6 mA cm-

2.32,33 The templates were vacuum infiltrated with a titanium(IV) isopropoxide (97+% 

purity, Alfa Aesar, Ward Hill, MA, USA) solution (3:1 wt. ratio, in anhydrous isopropanol) 

and allowed to hydrolyze overnight in air (40% relative humidity).32 Excess TiO2 formed 

on the AAO external surfaces during this process was removed using adhesive tape gently 

and evenly pressed onto the substrate with a piece of glass before being peeled away. The 

adhesive tape residue was removed by 30 min incubation in dichloromethane (99.9% 

purity, VWR, Radnor, PA, USA) under vigorous stirring on a magnetic stir plate. The 

infiltration process was then repeated a second time. 
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Figure 2.1. Schematic illustration of the hybrid coating and reaction process used to convert 

AAO templates into freestanding, aligned MWTNT arrays. Berrigan, et al.2 Reproduced 

by permission of The Royal Society of Chemistry. 
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The TiO2-infiltrated alumina was coated with a thin nitrocellulose-based film 

(Double Duty nail polish, Sally Hansen, Morris Plains, NJ) using a brush and allowed to 

dry at room temperature for at least 2 h. This film masked the alumina and allowed for 

selective removal of the underlying Al backing by wet chemical etching in an aqueous 

solution of 0.25 M copper (II) chloride dihydrate (98% purity, Alfa Aesar, Ward Hill, MA, 

USA) in 6.0 M HCl (VWR, Radnor, PA, USA) at room temperature for ~20 min. The 

removal of Al also exposed the Al2O3 barrier layer that capped one end of the pore 

channels. This exposed Al2O3 barrier layer was dissolved by immersion in 3 M NaOH for 

30 min at room temperature.33 This process both opened the AAO pores and widened the 

nanochannels. The nitrocellulose-based mask that had coated and protected the Al2O3 

membrane was removed by dissolution in acetone. The pore-widened, TiO2 infiltrated 

AAO template was then heated to 500ºC for 1 h at a 5 ºC min-1 ramp rate to crystallize the 

TiO2 coating and pyrolyze residual organics. It was at this stage where single-wall titania 

nanotube (SWTNT) electrodes (that would be used as control samples in DSSC testing and 

other characterizations) were transferred to FTO glass and integrated into DSSC electrodes 

following procedures described elsewhere. 

Coated AAO templates for multi-wall titania nanotube (MWTNT) conversion were 

then wrapped in nickel foil (25.4 µm thick, McMaster-Carr, Cleveland, OH, USA) to 

minimize any significant warping of the structure due to structural changes, loaded into 

titanium tubes (2.5 cm diameter, 20 cm length; McMaster-Carr, Cleveland, OH, USA) 

containing a molar TiF4/Al2O3 ratio of approximately 5.7:1, and sealed in a glovebox (via 

welding) under a high-purity argon atmosphere. The ampoules were heated to 335 ºC at a 

ramp rate of 5 ºC min-1 and held at this temperature for 8 h to react Al2O3 and TiO2 with 
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TiF4(g). After cooling, the as-reacted templates were exposed to pure, flowing oxygen 

(that, before entering the furnace, was passed through a heated water bath (50°C) at a rate 

of 1 slpm resulting in 94% humidity of the furnace outflow) at 250 ºC for 8 h to convert 

TiOF2 into TiO2, and then heated to 500 ºC for 1.5 h in air to further crystallize the reaction 

product.  

Residual aluminum-bearing phases were then selectively removed by immersion in 

an aqueous 3 M NaOH solution for 1.5 h at room temperature to yield freestanding 

MWTNT arrays. SWTNT arrays were prepared in a similar fashion, but without the TiF4 

gas/solid reaction process of the MWTNT arrays.  

To evaluate the use of such MWTNTs for the adsorption of functional dyes, and 

for use as electrodes in DSSCs, the MWTNTs were sinter-bonded at 500°C for 1 h in air 

to titania nanoparticle films (1.8 ± 0.2 mm thick) deposited onto fluorine-doped tin oxide 

(FTO) bearing glass slides (2.54 x 1.27 cm x 2 mm thick, 13 Ω/□, Hartford Glass 

Company).33 A light-harvesting N719 dye (cis-di(thiocyanato)-N-N’-bis(2,2’-bipyridyl-4- 

carboxylic acid-4’-tetrabutyl-ammonium carboxylate) ruthenium (II)) (Solaronix, 

Aubonne, Switzerland) was introduced by immersion of the MWTNT-bearing FTO glass 

slides in a 0.3 mM solution of the dye in t-butanol/acetonitrile (1:1 volume) for 24 h. A Pt-

coated counter electrode was prepared by depositing an ethanolic solution of 2 mg mL-1 

H2PtCl6 onto a FTO-bearing glass slide containing a 1 mm diameter hole, followed by 

firing at 450°C for 15 min. A 25 mm thick thermoplast spacer (Meltronix 1170-25, Surlyn, 

Solaronix, Aubonne, Switzerland) containing a 0.79 cm diameter hole was used to separate 

the MWTNT-based working electrode from the Pt counter electrode. A redox electrolyte 

solution, consisting of 0.6 M 1-methyl-3-propyl imidazolium iodide, 0.1 M guanidinium 



53 

 

thiocyanate, 0.03 M iodine and 0.5 M tert-butylpyridine dissolved in a mixture of 85 vol% 

acetonitrile and 15 vol% valeronitrile, was then vacuum infiltrated into the space between 

the counter and working electrodes with a roughing pump for approximately 30 seconds or 

until all visible air bubbles in the electrolyte had popped. The assembly was sealed using a 

60 μm thick thermoplast film (Meltronix 1162-60, Solaronix SA, Aubonne, Switzerland) 

and a cover glass slide. DSSCs with working electrodes containing SWTNT arrays were 

assembled in a similar fashion. 

Dye loading measurements were conducted on five MWTNT and five SWTNT 

electrodes. After incubating in N719 dye for 24 h, then rinsing twice in dry acetonitrile by 

dunking for approximately 2 minutes, the dye was desorbed from the surfaces of the 

electrode by incubating in 2 mL of 0.1 M NaOH in water/ethanol, 1:1 vol. ratio for 5 min. 

The absorbance at 513 nm of the desorbed dye in the resulting solution was measured by 

UV-Vis spectroscopy and compared to six solutions of known N719 concentration (5 µM, 

10 µM, 15 µM, 20 µM, 30 µM, and 115 µM/159 µM). The instrument was calibrated using 

new solutions for each experiment. An example of typical UV-Vis spectra and the 

corresponding calibration curves using peak absorbance at 513 nm are shown in Figures 

2.2 and 2.3.  

 The fitted calibration curve was used to determine the concentration of N719 dye 

in the 0.1 M NaOH solutions using the peak absorbance of each electrode at 513 nm 

(Figures 2.2 and 2.3). Given that 2 mL of solution was used to desorb the N719 dye, the 

number of moles of N719 desorbed from the MWTNT electrodes can be calculated. The 

dye loading was then normalized to the area occupied on the FTO-bearing glass substrate 

by the SWTNT or MWTNT electrode. Optical image analyses (Image-J) were used to 
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accurately measure such electrode area. More specifically, the optical micrographs taken 

of each electrode were passed through an image analysis macro that filtered the image 

based on whiteness using four grayscale thresholds. The area determined at each threshold 

was averaged to give the electrode area. This method compensated for the detrimental 

effect of void space in the electrode. 

 
 

Figure 2.2. UV-Vis absorbance spectra of the N719 dye at various known concentrations 

(upper left). The absorbance at 513 nm was used to generate a calibration curve (upper 

right). UV-Vis absorbance spectra from 5 SWTNT electrodes (lower left), and the 

corresponding N719 dye concentration measured using the calibration curve (lower right). 

Berrigan, et al.2 Reproduced by permission of The Royal Society of Chemistry. 
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Figure 2.3. UV-Vis absorbance spectra of N719 at various known concentrations (upper 

left). The absorbance at 513 nm was used to generate a calibration curve (upper right). UV-

Vis absorbance spectra from 5 MWTNT electrodes (lower left), and the corresponding 

N719 dye concentration measured using the calibration curve (lower right). Berrigan, et 

al.2 Reproduced by permission of The Royal Society of Chemistry. 

 

The micro/ nanoscale morphologies of the AAO templates and nanotube arrays 

were evaluated with scanning electron microscopy (1530 FEG SEM, LEO/Zeiss Electron 

Microscopy, Thornwood, NY) and transmission electron microscopy (JEOL 4000 EX 

TEM, Japan Electron Optics Laboratory, Tachikawa, Tokyo). The crystal structures of the 

nanotube arrays were evaluated at room temperature via X-ray diffraction (XRD) analyses 

conducted with Cu Kα radiation (Alpha-1, PANalytical Corp., Almelo, The Netherlands) 
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and selected area electron diffraction (SAED) analyses in the TEM. Current–voltage (I–V) 

measurements were conducted under AM 1.5 G conditions (Oriel 300 Watt solar simulator, 

100 mW cm-2) using an aperture with a measured area of 7.05 mm2.  

2.3 Results and Discussion 

Secondary electron (SE) images of plan and cross-sectional views of specimens at 

various stages of conversion into MWTNT arrays are shown in Figures 2.4 and 2.5, 

respectively. The starting AAO templates possessed well-aligned vertical channels with an 

average diameter of 207 ± 29 nm and an average height of 13.2 ± 0.4 μm (the ranges refer 

to ± one standard deviation of measured values). 
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Figure 2.4. SE images of plan views of specimens obtained at various stages of conversion 

into MWTNT arrays: (a) a starting AAO template viewed top-down; (b) a coated template 

after two vacuum infiltrations with the Ti(IV) isopropoxide solution viewed top-down; (c) 

a coated template after dissolution of the Al backing and Al2O3 barrier layer viewed bottom-

up; (d) a coated template after conversion of exposed Al2O3 into TiO2 via reaction with 

TiF4(g) viewed top-down; and (e) a freestanding MWTNT array generated after selective 

dissolution of non-titania phases from the coated/reacted template viewed top-down. All 

scale bars correspond to 200 nm. Berrigan, et al.2 Reproduced by permission of The Royal 

Society of Chemistry. 
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After double vacuum infiltration and hydrolysis of the alkoxide precursor, a 

continuous and conformal titania coating was observed to have formed on the AAO 

nanochannel walls (Figures 2.4b and 2.5b). Subsequent exposure to an aqueous 3 M NaOH 

solution (used to remove the alumina backing layer) then introduced space between the 

Figure 2.5. SE images of specimen cross-sections obtained at various stages of conversion 

into MWTNT arrays: (a) a starting AAO template; (b) a coated template after two vacuum 

infiltrations with the Ti(IV) isopropoxide solution; and (c) a freestanding MWTNT array 

after reactive conversion of the coated AAO template and selective dissolution of non-

titania phases. All scale bars correspond to 200 nm. Berrigan et al.2 Reproduced by 

permission of The Royal Society of Chemistry. 
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AAO and the titania coating (Figures 2.4c) so as to expose alumina surfaces for subsequent 

gas/solid reaction. After thermal treatment at 500°C for 1 h in air to allow for organic 

pyrolysis and crystallization of the sol–gel coating, XRD analysis (Figure 2.6a) revealed 

distinct peaks for only anatase TiO2. Scherrer analysis of these diffraction peaks yielded an 

average crystallite size of 11 ± 3 nm. The specimens were then allowed to react with 

TiF4(g) at 335°C for 8 h within a sealed Ti ampoule. XRD analysis (Figure 2.6b) of such a 

reacted specimen yielded distinct diffraction peaks for titanium oxyfluoride, TiOF2, as the 

predominant phase.77 Such TiOF2 formation was consistent with a TiF4(g) / Al2O3(s) 

reaction of the following type: 

3TiF4(g)  + Al2O3(s)  →  3TiOF2(s)  +  2AlF3(s) 
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Figure 2.6 XRD analyses obtained from: (a) a TiO2-coated AAO template after organic 

pyrolysis and crystallization for 1 h at 500°C in ambient air, then (b) reaction with TiF4(g) 

at 335°C for 8 h, and (c) further reaction with humid, flowing oxygen (94% humidity, 1 

slpm flowrate) at 250°C for 8 h, followed by thermal treatment at 500°C for 1.5 h in air. 

Berrigan, et al.2 Reproduced by permission of The Royal Society of Chemistry.  

 

The absence of diffraction peaks for the AlF3(s) product of this displacement 

reaction was not surprising, given the glass-forming ability of this fluoride and prior reports 

of amorphous AlF3(s) formation via low-temperature (≤ 350°C) fluorination of Al-bearing 

precursors.78,79 The absence of predominant diffraction peaks for anatase TiO2 in Figure 

2.6b was consistent with the following reaction: 

TiF4(g)  +  TiO2(s)  →  2TiOF2(s) 

Such reactive conversion of TiO2 into TiOF2 has been previously reported, albeit 

at ≥ 550°C.80 After removal from the ampoules, the reacted specimens were exposed to 
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flowing, humid oxygen at 250°C to remove fluorine and convert titanium oxyfluoride into 

titania as per the following previously discussed reactions:3,10 

TiOF2(s)  +  H2O(g)  →  TiO2(s)  +  2HF(g) 

TiOF2(s)  +  1/2O2(g)  →  TiO2(s)  +  F2(g) 

After further heating at 500°C for 1.5 h in ambient air, XRD analysis (Figure 2.6c) 

revealed diffraction peaks for only anatase, with an average crystal size (from Scherrer 

analysis) of 14 ± 5 nm. High resolution transmission electron (HRTE) images of cross-

sections of inner and outer titania nanotubes are shown in Figures 2.7a and b, respectively. 

Nanocrystals of 11 ± 3 nm dia. were observed within both inner and outer tube cross-

sections, with lattice fringe spacings consistent with anatase (e.g., the 0.352 nm and 0.233 

nm spacings of (101) and (112) planes, respectively). SAED analyses obtained within inner 

and outer tubes (Figures 2.7c and d) were also consistent with the presence and absence of 

anatase TiO2 and TiOF2, respectively. Selective dissolution of the remaining amorphous 

Al-bearing phases (Al2O3, AlF3) in an aqueous 3 M NaOH solution then yielded 

freestanding MWTNT arrays (Figures 2.4e and 2.5c). 
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Figure 2.7. (a), and (b) HRTE images of the anatase nanocrystals in the inner (coating 

derived) and outer (reaction-derived) nanotubes, respectively, of a fully-converted 

freestanding MWTNT array. (c), and (d) Corresponding SAED analyses revealing the 

presence of only the anatase polymorph of TiO2 with the inner and outer nanotubes, 

respectively. All scale bars correspond to 2 nm. Berrigan et al.2 Reproduced by permission 

of The Royal Society of Chemistry. 

 

 

SE and optical images of cross-sectional and plan views, respectively, of SWTNT 

and MWTNT arrays bound to FTO-coated glass slides are shown in Figure 2.8. 

Appreciable agglomeration of nanotubes into bundles of roughly 10–30 μm diameter, 

separated by gaps (microcracks) of up to about 20 μm, was observed within the SWTNT 

arrays. The MWTNT arrays, however, were much more resistant to such microscale 

bundling of nanotubes (i.e., gaps of only a few micrometers or less were observed within 

these arrays), and exhibited a higher degree of vertical nanotube alignment relative to the 
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SWTNT arrays. The enhanced apparent rigidity of the MWTNT arrays avoided the need 

to use supercritical fluid drying methods to reduce capillary stresses.76,81 Measurements of 

the diameters, lengths, and wall thicknesses of the SWTNT and MWTNT arrays, shown in 

Table 2.1, were used to calculate values of the “roughness factor” (i.e., the area of the 

vertical sidewall surfaces of the nanotubes in the array, relative to the horizontal area of 

the FTO electrode on which the array was placed). The calculated roughness factors for the 

MWTNT and SWTNT arrays were 282 and 75, respectively. To test whether such 

increased sidewall area of the MWTNT arrays would result in enhanced dye loading, 

N719-bearing arrays were immersed in a solvent solution to extract this dye for subsequent 

analyses by calibrated optical absorption measurements. The average N719 dye loading of 

five MWTNT arrays was found to be 195 ± 31 nanomoles per cm2, which was 2.2 times 

greater than the average value for five SWTNT arrays (87 ± 28 nanomoles per cm2). (Note: 

while some of the dye was loaded onto the titania nanoparticle film used to sinter-bond a 

given nanotube array to the FTO electrode, similar nanoparticle films were used for both 

the MWTNT and SWTNT arrays). Hence, in addition to conferring enhanced resistance to 

nanotube bundling, the multi-wall, nested-tube nature of the coated/reacted arrays allowed 

for enhanced nanotube sidewall area and significantly higher dye loading. 
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Figure 2.8. (a), and (c) SE images of cross-sectional views and (b), and (d) optical images 

of plan views of a SWTNT array (in (a) and (b)) and a MWTNT array (in (c) and (d)) 

bound to FTO-bearing substrates. Scale bars for SE and optical images correspond to 1 mm 

and 25 mm, respectively. Berrigan, et al.2 Reproduced by permission of The Royal Society 

of Chemistry. 
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Table 2.1 Nanotube dimensions for the SWTNT and MWTNT arrays. Berrigan, et al.2 

Reproduced by permission of The Royal Society of Chemistry. 

Specimen 

type 

Nanotube 

height (μm) 

Inner nanotube wall 

thickness (nm); outer 

dia. (nm) 

Outer nanotube wall 

thickness (nm); 

outer dia. (nm) 

SWTNT 13.2 ± 0.4 30 ± 10; 77 ± 20 — 

MWTNT 13.2 ± 0.4 34 ± 7; 154 ± 40 80 ± 13; 426 ± 75 

Average values indicated, with the error range corresponding to ± one standard 

deviation. 

 

Quasi-one-dimensional structures, such as aligned TiO2 nanotube arrays, have been 

reported to enhance both electron collection efficiency and light scattering when used as 

electrodes in DSSCs.76,82 To demonstrate the utility of aligned MWTNT arrays as working 

electrodes, five DSSCs were prepared with MWTNT electrodes and five others were 

prepared with SWTNT electrodes. The performance data for these DSSCs are presented in 

Table 2.2 and current–voltage behaviors of SWTNT- and MWTNT-bearing DSSCs are 

shown in Figures 2.9-2.11. The best-performing MWTNT-bearing solar cell exhibited a 

power conversion efficiency of 6.5%, with the worst-performing MWTNT cell possessing 

an efficiency higher than the best-performing SWTNT cell (4.7% vs. 4.0%). The average 

values of short circuit current density and power conversion efficiency of the MWTNT-

bearing DSSCs were 1.9 and 1.8 times higher, respectively, than for the SWTNT-bearing 

DSSCs. These values were not far from the 2.2 fold improvement in dye loading of the 

MWTNT arrays relative to the SWTNT arrays, which, in turn, was consistent with the non-

agglomerated, nested nanotube (enhanced roughness factor) structure of the MWTNT 

arrays. It is worth noting that the average Voc value of these MWTNT array-bearing DSSCs 

decreased by 18 mV relative to SWTNT-based devices. Such a modest reduction in 

the Voc value was not surprising, given the larger surface area available for electron–hole 
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recombination in the MWTNT-based devices.83 

 

Table 2.2. Dye-sensitized solar cell performance and dye-loading characteristics for 

SWTNT-bearing and MWTNT-bearing devices. Berrigan, et al.2 Reproduced by 

permission of The Royal Society of Chemistry. 

Parameter SWTNT devices MWTNT devices 

Jsc (mA cm−2) 5.6 ± 2.0 10.4 ± 1.2 

Voc (mV) 728 ± 29 710 ± 30 

FF 0.714 ± 0.04 0.714 ± 0.02 

η (%) 3.0 ± 1.0 5.50 ± 0.8 

Dye adsorption (nmol cm−2) 87 ± 28 195 ± 31 

Average values of five devices indicated, with the error range corresponding to ± one standard 

deviation. 
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Figure 2.9. Current-voltage behavior of five dye-sensitized solar cells using SWTNT arrays 

as electrodes under both dark and illumination conditions. Berrigan, et al.2 Reproduced by 

permission of The Royal Society of Chemistry. 

 

 

Figure 2.10 Current-voltage behavior of five dye-sensitized solar cells using MWTNT 

arrays as electrodes under both dark and illumination conditions. Berrigan, et al.2 

Reproduced by permission of The Royal Society of Chemistry. 
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Figure 2.11. Current–voltage behavior of the best performing SWTNT- and MWTNT-

bearing DSSCs in the dark and under AM 1.5G illumination. Berrigan, et al.2 Reproduced 

by permission of The Royal Society of Chemistry. 

 

 

The present process may be controllably altered to synthesize robust freestanding 

arrays of multiwall nanotubes with tailored dimensions and chemistries. The outer 

diameter, height, and wall thickness of the inner nanotubes can be tailored by adjusting the 

nanochannel diameter and height of the starting AAO templates (via modification of 

anodization conditions) and the number of sol–gel infiltration cycles. The inner diameter 

of the outer nanotubes can be tailored by controlling the etching process used to open up 

space between the coating-derived inner nanotubes and the AAO template, whereas the 

outer nanotube wall thickness can be tailored by controlling the extent of the 

TiF4(g)/Al2O3 reaction. The inner and outer nanotubes may also possess different 

functional chemistries via appropriate selections of the sol–gel precursor and the halide 

used in the gas/alumina reaction. While the synthesis of well-aligned MWTNT arrays for 
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DSSCs has been demonstrated in the present chapter, this hybrid (coating and reaction) 

process may be used to synthesize uniform, well-aligned, multiwalled nanotube structures 

tailored for use as electrodes, (photo)catalysts, sensors, or filters/absorbers in a host of 

other applications. 

2.4 Conclusions 

A combined sol–gel infiltration and gas/solid displacement reaction method has 

been used for the first time to convert porous anodic Al2O3 (AAO) into robust, multi-wall 

nanotube arrays comprised of nanocrystalline anatase TiO2. The nanochannel walls of the 

AAO template were first coated with a conformal layer of titania via two successive sol–

gel vacuum infiltration treatments. Subsequent wet chemical etching was used to remove 

the aluminum backing and the alumina barrier layer at the base of the template, to generate 

flow-through membranes as well as to open up a gap between the AAO template and the 

titania coating. The exposed Al2O3 and TiO2 were allowed to undergo reaction with TiF4(g) 

at 335°C to generate TiOF2(s). Reaction of this oxyfluoride compound with humid, flowing 

oxygen at 250°C and then air at 500°C resulted in fluorine removal and conversion into 

nanocrystalline anatase titania. The resulting multi-wall nanotube array consisted of inner 

TiO2 nanotubes, derived from the sol–gel coating process, nested within outer TiO2 

nanotubes derived from the TiF4(g)/Al2O3(s) reaction process. The enhanced rigidity 

provided by the reaction-derived outer nanotubes inhibited nanotube agglomeration and 

microcracking upon drying of the multi-wall titania nanotube (MWTNT) arrays. 

As expected from estimated values of the roughness factor, these open, uniformly 

aligned, multi-wall structures were able to absorb 2.2 times more of a light-harvesting 

N719 dye than single wall titania nanotube (SWTNT) arrays (prepared using a similar sol–
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gel infiltration process but without the halide gas reaction process). Upon incorporation as 

electrodes within dye-sensitized solar cells (DSSCs), the MWTNT arrays exhibited 

average short circuit current density and power conversion efficiency values that were 1.9 

and 1.8 times higher, respectively, than for DSSCs containing SWTNT array electrodes. 

Although the utility of this hybrid (coating and reaction) process has been 

demonstrated via the synthesis of robust MWTNT arrays for DSSCs, this process may be 

used to generate well-aligned oxide nanotube arrays with dimensions and functional 

chemistries tailored for a variety of other chemical, photochemical, electrochemical, 

adsorption, and optical applications.  
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 FUNDAMENTAL KINETIC STUDIES OF THE 

GAS-SOLID METATHETIC CONVERSION REACTION OF Al2O3 

INTO TiOF2 

 

3.1 Introduction 

The conversion of complex, 3-D shaped Al2O3 reactant templates (e.g., porous 

anodic alumina) is challenging to model for quantitative kinetic analyses. To simplify such 

analyses, substrates with simple, uniform, regular shapes, such as flat plates or monosized 

spheres, are preferred. Were inexpensive monosized Al2O3 microspheres or nanospheres 

available, these could be preferable owing to a relatively high total surface area resulting 

in potentially enhanced reaction kinetics and the possibility of full conversion of the Al2O3. 

Due to a lack of such commercially-available, monosized, and inexpensive Al2O3 spheres, 

a flat plate Al2O3 substrate can be substituted for kinetic experiments. For this study, 

selected orientations of single crystalline Al2O3 (sapphire) wafers were chosen as the 

reactant material because of the availability of such wafers at modest cost and the relative 

simplicity of analytical solutions for various rate-limiting steps for this simple specimen 

geometry. 

Literature on the TiF4/Al2O3 gas-solid reaction is lacking. To the best of our 

knowledge, there has been no prior study of the shape-preserving conversion reaction of 

Al2O3 with TiF4 to yield TiOF2, nor prior work on the kinetic mechanism of such a reaction. 

This chapter will focus on the kinetic mechanism(s) responsible for the following possible 

metathetic conversion reactions: 
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3𝑇𝑖𝐹4(𝑔) + 𝐴𝑙2𝑂3(𝑠) → 3𝑇𝑖𝑂𝐹2(𝑠) + 2𝐴𝑙𝐹3(𝑠) (1) 

𝑇𝑖𝐹4(𝑔) + 𝐴𝑙2𝑂3(𝑠) → 𝑇𝑖𝑂𝐹2(𝑠) + 2𝐴𝑙𝑂𝐹(𝑠) (2) 

2𝑇𝑖𝐹4(𝑔) + 𝐴𝑙2𝑂3(𝑠) → 2𝑇𝑖𝑂𝐹2(𝑠) + 𝐴𝑙2𝑂𝐹4(𝑠) (3) 

3.2 Experimental Procedures 

3.2.1 HTXRD Experiments 

Shape-preserving inorganic conversions allow for the micro- and nano-fabrication 

of three-dimensional (3-D) structures with tailored chemistries, such as through the 

chemical conversion of 3-D silica-based microshells (frustules) of diatoms (microscopic 

algae) and porous anodic alumina (AAO).84,85 A previously-demonstrated method has been 

used to transform silica-based templates into titania replicas via reaction with TiF4(g) to 

yield an oxyfluoride intermediate, TiOF2. High temperature X-ray diffraction (HTXRD) 

has been employed to evaluate the phase evolution and reaction kinetics of this 

conversion.3 HTXRD analysis is an attractive in-situ method for dynamic evaluation of 

phase evolution and reaction kinetics for solid/solid and fluid/solid reactions.86-90 

This technique has been often used to analyze gas/solid reactions where reactant 

gas species are available at high vapor pressure at room temperature (e.g., O2, N2, H2, and 

CO2).
91-93 Some reactions of scientific and technological interest involve reactant species 

that form gases with significant vapor pressures only at elevated temperatures (i.e. such 

reactant species are stable as solids or liquids at room temperature). In reactions involving 

TiF4, such as those mentioned in Chapter 1 with Al2O3 or SiO2, the TiF4 reactant exists as 

a solid at room temperature, and sublimes at 285°C.67 HTXRD analyses with gaseous TiF4 

are complicated by the need to generate and contain the hot, reactive gas near the other 
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reactant species (e.g., Al2O3 or SiO2) in an otherwise inert atmosphere for a sufficient 

amount of time to enable evaluation of the reaction progress. Variation in temperature with 

location must be also avoided, as this could cause deposition of solid TiF4 in cooler areas. 

For these reasons, refined experimental designs are necessary to allow for HTXRD 

analyses of these and other similar reactions. 

In the present work, improvements have been made to the design and use of a 

sealed, heated, X-ray transparent chamber. This chamber is capable of containing a 

moderate pressure reactive gas generated from a solid source within the chamber (as 

opposed to a liquid source for loading purposes). Such a setup allows for the dynamic 

HTXRD analysis of a gas/solid displacement reaction. As discussed below, this design is 

an improvement of similar chambers made from aluminum for the study of the TiF4-SiO2 

system and predecessors made from monolithic graphite for the evaluation of a 

magnesiothermic reaction.94,95 This new chamber design has been successfully 

implemented to investigate the reaction between TiF4(g) and Al2O3(s). 

3.2.1.1 HTXRD Chamber Design 

Chambers previously designed by S. Shian and K. Sandhage optimized the 

materials used for the evaluation of the TiF4(g)/SiO2(s) reaction; that is, window materials 

were selected that were relatively transparent to X-rays, inert with the gas reactant (TiF4), 

able to maintain a gas tight seal and to exhibit adequate mechanical strength under the 

vapor pressure generated at the operating temperature (up to 350°C), and relatively easy to 

machine or form.94 Owing to its thermal stability at modest reaction temperatures and 

relative inertness to TiF4, aluminum was chosen as the chamber material. Additionally, 

aluminum has a relatively high thermal conductivity (2.37 W/cm K at 27°C and 2.31W/cm 
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K at 327°C)96 and is relatively easy to machine. The high thermal conductivity helps ensure 

a uniform temperature distribution inside of the chamber and good heat transfer to the 

thermocouple located just outside of the chamber.  

Also, aluminum is relatively X-ray transparent when in the form of a thin layer. It 

was possible to line the windows of the chamber with 13 μm thick aluminum foil. However, 

to resist the buildup in vapor pressure within the chamber, a stronger X-ray transparent 

material needed to be layered with the aluminum foil. Kapton has been widely used as an 

X-ray transparent (window) material where mechanical stability at modest temperature is 

required.97,98 However, Kapton reacts with TiF4(g) at the reaction temperature and becomes 

impenetrable to X-rays and optically opaque. By forming each window with an outer layer 

of Kapton (130 μm thick) and inner layer of aluminum foil (13 μm thick), Cu Kα X-rays 

can penetrate both windows of the chamber and theoretically retain more than 57% of the 

incident beam intensity.99  

Figure 3.1 and Figure 3.2 show a schematic of the cross-sectional side view and 

optical images of the re-designed reaction chamber consisting of a main aluminum body, 

a layer of windows (Kapton and aluminum foil), aluminum window frames, reactant 

TiF4(s), and reactant Al2O3 wafer. A thin strip of nickel (approximately 1 mm wide) was 

wrapped (tightly pressed) around the Al2O3 wafer (8.5 mm) parallel to the direction of the 

beam, and maintained this tightly wrapped position throughout reaction. Improvements to 

previous designs include changes to the shape of the main chamber body to allow for 

enhanced sealing and uniform exposure of the Al2O3 to the TiF4(g). The main body had 

outer dimensions of 27 mm diameter x 10 mm deep and inner dimensions of 18 mm 

diameter x 10 mm deep. The chamber body was machined from aluminum 6061 alloy 
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tubing with starting dimensions of 31.75 mm outer diameter and 25.40 mm inner diameter 

(McMaster-Carr, Atlanta, GA). The exterior was ground on four perpendicular sides to sit 

flat (so that it could not easily roll over and to minimize the total height and width of the 

chamber). The round shape of the interior chamber wall and rounded corners of the exterior 

wall were left intact to allow a uniform chamber seal, which yielded a significant 

improvement over previous designs where squared-off chamber seals were a common 

cause of gas leaks. The side surfaces of the main body that came in contact with the window 

were machined 1 mm deep around the middle 4.5 mm on each side (leaving a 1 mm wide 

wall on each inner and outer diameter in contact with smooth window frame) to maximize 

the pressure seal before being polished flat using a 1 μm diamond suspension (Metlab Corp, 

Niagara Falls, NY). Six holes were drilled through the middle of the wall thickness 

allowing the window frames to be bolted together using 18-8 stainless steel screws and hex 

nuts (McMaster-Carr, Atlanta, GA) on either side of the body, allowing a gas-tight, secure 

compartment. The aluminum window frames were machined, from the same aluminum 

6061 alloy as the body, to be 1.5 mm thick with six holes drilled through each to align with 

the body.  

The reactant TiF4(s) (99% purity, Advanced Research Chemicals, Catoosa, OK; 

XRD showing phase purity of TiF4 powder is provided in Figure 3.3) was measured out 

onto the bottom surface of the main chamber interior and the Al2O3 substrate (~140 mg, 

polished single crystal with C- {001} or R- {012 plane orientation, Ra ≤ 0.3 nm arithmetic 

average roughness (data provided by vendor), University Wafer, Boston, MA) and nickel 

standard (76 μm thick shim, 99% purity, McMaster-Carr, Atlanta, GA)) were placed 

approximately 2 mm above the TiF4 and rested flat on the rounded chamber walls (Figure 
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3.2).  

Two unique orientations of Al2O3 wafers were employed to test changes in reaction 

kinetics on different Al2O3 crystal planes. The two orientations chosen (C-plane and R-

plane) are widely available and are unique in their respective surface chemistries. While 

there have been no reports of gas/solid reaction kinetics of these orientations with TiF4 or 

other metal halides, other types of reactions on these sapphire surfaces have yielded 

significant differences in the behavior of these orientations. Some studies have attributed 

such variations seen to differences in the sapphire surface chemistry.100,101  C-plane Al2O3 

has been reported to possess doubly coordinated hydroxyl groups on the surface.100,101 R-

plane Al2O3 has a significant amount of singly coordinated hydroxyl groups on the surface 

and thus may be more pH sensitive and may be more reactive.100,101 Other groups have 

examined variations in film growth on C-plane and R-plane Al2O3 (during adsorption or 

catalytic growth) and have found the primary effect to be the product crystal orientation as 

opposed to kinetic variations.102-104 While these results in the literature are not for the same 

kinds of reactions, they do indicate that differences may be seen in these two sapphire 

orientations in terms of reaction behavior. Additionally, the d-spacings between diffracted 

planes in these two orientations are different from those d-spacings associated with TiOF2 

and other potential byproducts, making these orientations optimal for unambiguous XRD 

analysis. Thus, if there is a difference in reaction due to crystal orientation, the two 

orientations chosen may clearly illustrate this variation.  

The Al2O3 substrate plate (10 mm x 8.5 mm) was cut to provide ample open space 

by the windows to allow the gas reactant to flow throughout the chamber and was also 

designed to be wide enough to allow sufficient surface area for X-ray absorption at low 
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incident angles (ω) and thus sufficient signal-to-noise ratio in diffracted intensity to the 

detector. The nickel was used as an inert standard material throughout the reaction to allow 

for calibration of X-ray intensity variations. 130 μm thick Kapton film (McMaster-Carr, 

Atlanta, GA) was cut into 22 mm diameter disks, and 13 μm thick aluminum (McMaster-

Carr, Atlanta, GA) was cut into 28 mm x 28 mm squares, to fully cover the window opening 

(note that the aluminum, but not the Kapton, was easily penetrated by the screws attaching 

the windows to the body). 
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Figure 3.2.  Optical images of partially assembled reaction chambers viewed from various 

directions. The lower left image illustrates the machined groove which allowed for a high 

pressure seal between the chamber and the window. The lower right image shows an Al2O3 

wafer with Ni standard sitting in position above a powder reactant (TiF4(s) for all reactions, 

but for illustration purposes here, a similarly sized amount of an inert white power (Al2O3) 

was used). 

Machined indent 

increases pressure to 

improve seal of 

chamber 
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Figure 3.3. XRD analysis of TiF4 powder used for reaction studies (99% purity, Advanced 

Research Chemicals, Inc., Catoosa, OK). The data matches the XRD pattern reported in 

the literature (PDF# 04-007-2647, ICDD). 

 

3.2.1.2 HTXRD Experimental Setup  

In a typical experiment, 75 mg of solid TiF4 powder was loaded into the chamber. 

The Al2O3 substrate with Ni standard attached was oriented horizontally within the main 

chamber, above the TiF4 (Figure 3.2). The TiF4/Al2O3 molar ratio of 1:2.27 is smaller than 

what was used in previous chapters and would not allow for complete conversion of the 
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wafer. This change in ratio was necessary to work within the confined dimensions of the 

reaction chamber. However, significant excess TiF4(s) (on the order of 90%) was still seen 

after reaction at the most extreme conditions in the reaction chamber, signifying that, even 

at the molar ratio used, enough TiF4 was available to maintain a constant TiF4 vapor 

pressure inside the reaction chamber during the course of the reaction.  

Afterwards, the window frames were secured to the main body. Both the reactant 

loading and chamber sealing were performed inside an argon-filled glove box (Model 

Omni-Lab, Vacuum Atmosphere, Hawthorne, CA) maintained at an oxygen partial 

pressure below 0.1 ppm. The sealed reaction chamber was placed on top of the furnace 

pedestal and inserted into the high-temperature X-ray diffraction (HTXRD) system, which 

was purged with helium gas and heated with an Anton-Paar HTK 1200 high-temperature 

furnace (Graz, Austria). The HTXRD system chamber was heated at a rate of 20°C/min to 

the desired reaction temperature and held for up to 24 h. The temperature inside the reaction 

chamber at the surface of the Al2O3 substrate was calibrated using a differential thermal 

expansion method as described by Drews105 and implemented previously on a similar 

system by Shian.10 

Remaining unreacted TiF4(s) was observed after all reaction conditions examined, 

which ensured that the chamber was well sealed and remained sealed throughout the 

reaction. The standard Ni (111) diffraction peak was checked for any increase in intensity 

at a constant temperature, which could happen due to changes in gaseous density. Because 

no gaseous byproducts are expected in this reaction, as long as there was excess TiF4(s), 

the density of gas inside the reaction chamber should remain constant and, thus, the 

intensity of the standard peak should not vary. Were a gaseous by-product formed in a 
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sealed container, one might expect a decrease in Ni standard peak intensity due to increased 

X-ray absorption in the gas. Should a leak occur in a system with no gaseous product, one 

might expect to see an increase in Ni standard peak intensity due to a decrease in TiF4(g) 

pressure (as it leaked from the system). In this system, no changes were detected in the Ni 

(111) peak indicating no gaseous by-products and no leaks. 

Diffraction profiles were measured with an MPD Panalytical Diffractometer 

(Almelo, The Netherlands) configured with Bragg-Brentano geometry, a Cu Kα X-ray 

radiation source (1.5405980 Å), and helium atmosphere (for low atmospheric absorption 

of X-rays). The peak profile data acquisition was conducted using a solid-state position-

sensitive ultrafast detector. A programmable divergence slit, a mask 10 mm wide, and a 

Soller slit preventing axial divergences greater than 0.02 radians were placed in the incident 

beam path. An anti-scattering slit of 5.0 mm and 0.02 radian Soller slit were used in the 

diffracted beam path. Figure 3.4 illustrates the path of the beam in the X-ray measurement 

circle from the X-ray generation tube, through the reaction chamber, and into the X-ray 

detector. 
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3.2.2 Furnace Experiments 

To study the microstructural evolution of the sapphire wafers most efficiently, 

conversion reactions were conducted inside an additional laboratory box furnace (which 

allowed for quick heat-up and cool-down rates) in addition to conversion reactions 

conducted inside the HTXRD. The furnace temperature, and heating and cooling rates, 

were calibrated via an external thermocouple (which was previously calibrated with an 

Ametek CTC1200A Compact Temperature Calibrator, Allerod, Denmark) placed next to 

the reaction chamber inside the furnace and were controlled to match the HTXRD 

parameters used. The box furnace was purged with flowing argon gas. Such rigorous 

control allowed for direct correlation of samples reacted at a given temperature for a given 

time in either setup. To verify proper calibration of the two systems, {001} sapphire wafers 

(inside Al reaction chambers with TiF4/Al2O3 molar ratio of 1:2.27) were heated at 

Programmable 

Divergence 

Slit 

Tube 
Detector 

Soller Slit 

Measurement Circle 

Reaction Chamber 

Figure 3.4. Schematic illustration showing X-ray diffraction beam path from the X-ray 

generator tube through the reaction chamber and to the detector. 
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20°C/min to 310°C, reacted at this temperature for 0.5 h, and cooled at 20°C / min, before 

being removed from the reaction chambers and characterized by XRD in Bragg-Brentano 

geometry. Using a pseudo-Voigt fitting with a fixed cubic spline background curve, as 

shown in Figure 3.5, the area under the primary TiOF2 peak was compared to the area under 

the Al2O3 peak to check that the ratio remained constant and thus that the amount of TiOF2 

formed in each system was constant. The area under the TiOF2 primary peak was equal to 

2.51-2.57% and 2.43-2.49% of the area of the (006) sapphire peak for the HTXRD furnace 

and the box furnace, respectively. By Scherrer analysis, the TiOF2 crystallite size was 

found to be 42 ± 4 nm and 43 ± 3 nm after reaction in the box furnace and HTXRD system, 

respectively. Such similarities in the relative quantities of TiOF2 and crystallite size 

confirmed the proper calibration of the box furnace to the HTXRD furnace. 
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3.2.3 Modeling Procedure 

The extent of reaction was characterized with the aid of Origin Pro software 

(version 9.0, OriginLab Corporation, Northhampton, MA) by measuring the area under the 

primary TiOF2 diffraction peak (the cubic TiOF2 (001) peak). The peak height, FWHM, 

shape, and skew values were refined during profile fitting using the Pseudo-Voigt model.106 

The peak area of TiOF2 was normalized to the peak area of the inert Ni standard for a given 

reaction temperature and time. During the HTXRD experiment, the reaction was continued 

until the normalized (001) peak area of TiOF2 (located near 2θ = 23.5°) reached a steady 

plateau for the highest temperature (385°C) data set (where the most product had formed). 

The fraction of reaction product TiOF2 for all temperatures and times examined was 

normalized to the highest temperature (385°C) sample; that is, at a given time, the fraction 

of the reaction product TiOF2 was defined as the ratio of the instantaneous peak area to the 

maximum peak area observed (at 385°C) for all TiOF2 products. Simultaneously, the 

primary peak for the single crystalline Al2O3 wafer was measured to determine whether a 

comparable loss of area and plateauing effect was seen. However, upon examination of the 

Al2O3 peak, no noticeable loss in area was measured (i.e. any loss was within one standard 

deviation for a given peak area measurement). Additionally, the primary peak of Ni, used 

as a standard inert material, was tracked to account for any variation in peak areas due to 

environmental variability, such as changes in gas pressure causing an increase in X-ray 

absorption and no variations were found.  

3.2.4 Microstructural Characterization 

The microstructures formed after reactive conversion of single crystalline Al2O3 

were characterized via SEM (1530 FEG SEM, LEO/Zeiss Electron Microscopy, 
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Thornwood, NY or 1550 FEG SEM, LEO/Zeiss Electron Microscopy, Thornwood, NY) 

and TEM (Jeol 4000X, Japan Electron Optics Laboratory, Tachikawa, Tokyo or Technai 

F30 TEM, FEI, Hillsboro, OR). Chemical analyses were performed using EDX mapping. 

Atomic Layer Deposition of ZrO2 (used for microstructural characterization of potential 

pores) was performed using a Cambridge Fiji Plasma ALD system (Cambridge NanoTech, 

Waltham, MA). Time-of-flight secondary ion mass spectrometry (IONToF TOF-SIMS 5-

300, ION-TOF GmbH, Münster, Germany) was used to analyze the molecular and 

elemental species present in reaction products. 

3.3 Results and Discussion 

3.3.1 HTXRD Results and Analysis 

Samples contained in HTXRD reaction chambers were heated to temperatures 

ranging between 270°C and 385°C and evaluated by X-ray diffraction analyses during 

reaction for up to 8 hours before cooling. After cooling, but before removal from the 

HTXRD chamber, X-ray diffraction analyses of the reacted samples was performed at 

room temperature. Figures 3.6 and Figure 3.7 show XRD scans of the different Al2O3 wafer 

orientations before and after reaction for 8 h at 385°C, respectively. Wafer orientations 

were chosen such that the diffracting d-spacing values of Al2O3 would not overlap 

diffraction peaks from other solids (e.g. for TiOF2, Ni, and Al) that would be measured 

during HTXRD analyses. Due to the oriented, single crystalline nature of the corundum 

wafers, only one family of diffracting corundum crystalline planes were detected for each 

wafer.  
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Figure 3.6. XRD analyses of Al2O3 wafers before reaction. 

(012) (024) 

(006) 

{001} C-plane Al2O3 wafer 

{012} (R-plane) Al2O3 wafer 
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Figure 3.7. XRD analyses of Al2O3 wafers after reaction with TiF4 (g) at 385°C for 8 h. 

 

Figure 3.8 and 3.9 show representative HTXRD analyses of the primary (012) 

TiOF2 peak, obtained during the reaction of a single crystalline Al2O3 with TiF4 gas at 

310ºC for C-plane and R-plane Al2O3, respectively. A diffraction peak for the (012) plane 

of TiOF2 was apparent in the first scan and increased in intensity with increasing reaction 

time for each Al2O3 orientation. During such analyses, the first several scans were 

conducted over a limited 2θ range (22° ≤ 2θ ≤ 25°) so that a shorter scan time (25 s) could 

be completed while maintaining a high signal-to-noise ratio.  The initial scan time and 
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range were selected in order to capture rapid reaction dynamics near the beginning of the 

reaction which were not traceable when longer initial scan times and ranges were used. 

After approximately 10 minutes, longer scans (approximately 4 minutes in duration when 

combined) were conducted in discrete intervals from 22-27° and 40-47°. These intervals 

permitted each peak of interest (those associated with TiOF2 (012), Ni (111), and Al2O3 

(012) or (006)) to be scanned while minimizing the time required between consecutive 

scans of each peak.   

 

Figure 3.8. Isothermal HTXRD scans of (006) C-plane Al2O3 wafer planes reacted with 

TiF4(g) at 310°C. In this plot, the time interval between selected scans (i.e. from the start 

of one scan to the start of the next scan) was 20 ± 1 seconds. In a typical run, the scans 

were performed over short two-theta intervals for each peak of interest to minimize the 

time required between two consecutive scans of each peak. 

 

TiOF2 
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Figure 3.9. Isothermal HTXRD scans of (012) R-plane Al2O3 wafer planes reacted with 

TiF4(g) at 310°C. In this plot, the time interval between selected scans (i.e. from the start 

of one scan to the start of the next scan) was 20 ± 1 seconds. In a typical run, the scans 

were performed over short two-theta intervals for each peak of interest to minimize the 

time required between two consecutive scans of each peak. 

 

For each temperature studied, (270°C, 285°C, 310°C, 320°C, 335°C, 345°C, 360°C, and 

385°C) the data corresponding to the 100% peak of TiOF2 (012) was normalized to the 

area under the corresponding Ni reference peak fit with a Pseudo-Voigt model. A TiOF2 

peak area evolution plot for C-plane oriented wafers reacted between 270°C and 335°C is 

shown in Figure 3.10 and for R-plane oriented wafers reacted at 285°C, 310°C and 335°C 

is shown in Figure 3.11. 
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Figure 3.10. Average reaction progress of C-plane (006) Al2O3 wafers with TiF4(g) at 

different temperatures ranging from 270°C to 335°C. 
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Figure 3.11. Reaction progress of R-plane (006) Al2O3 wafers with TiF4(g) at different 

temperatures ranging including 285°C, 310°C, and 335°C. 
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Figure 3.12. TEM images of cross-sections of substrates reacted at 270°C and 385°C for 8 

h. Both C-plane and R-plane were examined. Scale bars are 100 nm for 270°C reacted 

samples and are 200 nm for 385°C reacted samples. The average thickness for the 270°C 

reacted samples were 195 nm and 202 nm for C- and R-plane specimens, respectively, and 

for the 385°C reacted samples were 320 and 325 nm for C- and R-plane specimens, 

respectively. 

 

Each data point shown in Figures 3.10 and Figure 3.11 was the result of an individual scan. 

As time went by, the rate of reaction gradually decreased and became relatively constant. 

For example, at 270°C, the initial high rate of reaction continued until the reaction time 

reached about 2000 seconds, after which the slope then gradually decreased. Most of the 

reaction occurred during this initial kinetic regime, especially for the higher reaction 

temperatures.  
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As can be noted from the X-ray diffraction results (Figure 3.7), the aluminum 

byproduct of the reaction of TiF4(g) with Al2O3 (i.e., AlF3, AlOF, and/or Al2OF4 as per 

reactions (1)-(3)) was apparently amorphous. Crystallization of AlF3 occurred in oxygen-

gettered argon after 2 h at 600°C, as shown in Figure 3.13. Other analytical techniques 

were examined for their ability to differentiate between amorphous aluminum fluoride and 

amorphous aluminum oxyfluoride(s) (AlOF or Al2OF4) to more conclusively ensure AlF3 

was the initial by-product. For example, Time-of-Flight Secondary Ion Mass Spectroscopy 

(ToF-SIMS) was capable of identifying elemental and molecular species present in the 

product layer. A depth analysis of a C-plane sample reacted at 310ºC for 10 h revealed a 

distinct absence of AlO- species while there was a significant presence of  TiO-, TiF-, and 

AlF2- species in the product layer (see Figure 3.14). This combination of results suggested 

that the primary byproduct of the reaction was amorphous AlF3, as opposed to AlOF or 

Al2OF4.  
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Figure 3.13. XRD of C-plane oriented wafer reacted at 310°C for 8 h and then fired in 

gettered argon at 600°C for 2 h. Crystalline AlF3 ((110) peak measured is 100% AlF3 peak) 

was detected along with the original TiOF2 crystalline product generated at 310°C. 

 

 

 Knowing the effective penetration depth of X-rays was critical to ensuring the 

accuracy of the conclusions drawn from X-ray diffraction data. This penetration depth can 

be calculated from the linear absorption coefficient of X-rays (a function of the mass 

absorption coefficient of each relevant substance) and the 2θ diffraction angle via the Beer-

Lambert Law.107 The mass absorption coefficient of a substance, μ/ρ, can be calculated 

(110) 

Figure 3.14. ToF-SIMS cross-sectional depth profiles reveal (a) TiF- , (b) TiO-, and (c) 

AlF2- species present in the product layer while (d) AlO- existed primarily below the 

product layer in a C-plane wafer reacted for 10 h at 310°C. 

Reacted Zone 

Unreacted 

Al2O3 layer 

(a) (b) (c) (d) 
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from the weight fraction, w, of its elements, and the mass absorption coefficients of each 

element in the substance.108 For Cu Kα radiation (8.04 keV), the mass absorption 

coefficients of elements O, F, Al, and Ti are 11.49, 15.83, 49.75, and 200.1 cm2/g, 

respectively.109 The mass absorption coefficients of TiOF2 and AlF3 were calculated to be 

98.8 cm2/g and 19.6  cm2/g. Using these values, the effective penetration depths of 95% of 

Cu Kα X-rays at 2θ = 22° were calculated to be 9.3 μm and 50.7 μm through TiOF2 and 

AlF3, respectively. These values, which become larger at higher 2θ angles, indicated that 

at all times, the product layer diffraction intensities represented at least the top 9.3 μm of 

product. Thus, the diffracted data represents the entire product layer throughout all reaction 

temperatures and times, as the maximum depth of the product layer measured was always 

less than 0.5 μm. 

3.3.2 Microstructure Evolution 

Microstructural evolution was studied via TEM analyses on polished (012) R-plane 

and (006) C-plane Al2O3 wafers after reaction for various times at 310°C. The starting 

wafers were fully dense, single crystalline substrates (see XRD of polished surfaces in 

Figure 3.6). The TEM analyses (Figure 3.15) illustrated that the product layer was non-

continuous in the initial stage of reaction. Within the first 10 minutes of reaction, particles 

≥50 nm in size had formed on the surface of the wafers. The amount of product increased 

with reaction time until a continuous layer had formed across the surface of the wafer. After 

30 minutes, significant growth of a continuous product layer was apparent across the entire 

sapphire surfaces, yet this product layer appeared to be somewhat porous. After 8 hours, 

the product layer appeared to be less porous. A plot of the reaction progress vs. time with 

markers indicating the 10 minute, 30 minute, and 8 hour time points for a C-plane wafer 
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reacted at 310°C is provided in Figure 3.16 for reference. The average thicknesses (over 

sets of 70 measurements each) of the product layer for each orientation after 30 minutes 

and after 8 h is available in Table 3.1. The SAED analyses confirmed the formation of 

crystalline TiOF2 (Figure 3.17).  

 

C - plane R - plane 

Figure 3.15. (a) STEM and (b-f) TEM images of cross-sections of reacted substrates 

exposed to TiF4(g) for 10 minutes, 30 minutes, or 8 hours at 310ºC. Both C-plane and R-

plane specimens were examined. All scale bars are 100 nm. 

a b 

c 
d 

e f 
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Figure 3.16. Reaction progress vs. time at 310°C for C-plane specimen with markers 

indicating the 10 min, 30 min, and 8 h time points. 

 

Table 3.1. Average thickness of reacted zones after 30 minute and 8 hour reactions at 310°C 

for C-plane and R-plane oriented specimens. 

Wafer 

Orientation 

30 Minute Reaction 8 Hour Reaction 

Thickness 

(nm) 

Standard 

Deviation (nm) 

Thickness 

(nm) 

Standard 

Deviation (nm) 

C-plane 197 16 249 5 

R-plane 215 39 251 8 
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To understand the likely diffusion pathways for sustained reaction (i.e., whether 

pores remained for gas phase diffusion) after 6 hours of reaction at 310ºC (near the end of 

the reactions studied), additional microstructural characterization was performed after 

deposition of a 30 nm ZrO2 layer via Atomic Layer Deposition (ALD). Because ALD 

techniques are capable of high-aspect-ratio deposition, it was expected that zirconium 

would be observed inside the product layer via EDX if significant interconnected porosity 

was present in the product layer during ZrO2-precursor diffusion. As illustrated in Figure 

3.18 (STEM cross-section prepared by traditional ion-milling techniques), Zr was only 

seen on the surface of the product layer, signifying the absence of substantial 

interconnected porosity in the product layer after 6 h of reaction at 310°C. 

Figure 3.17. SAED analyses of reacted substrate product layers exposed to TiF4(g) for 

30 minutes or 8 hours at 310 ºC confirmed TiOF2 formation. Both C-plane and R-plane 

specimens were examined and found to contain TiOF2. 
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Reaction layer 

ZrO
2
 

layer

Figure 3.18. Scanning transmission electron micrograph with representative EDX patterns 

from different locations illustrating the absence of Zr within the product layer, and the 

appearance of Zr on the surface of the product layer. The sample was a C-plane sapphire 

oriented wafer reacted with TiF4(g) for 6 h at 310°C before deposition of ZrO2 via ALD. 

50 nm 
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3.3.3 Kinetic Models 

Kinetic analyses and modeling can be used to understand the metathetic conversion 

reaction mechanism, including the rate-limiting step(s) of the TiF4-Al2O3 reaction process, 

and to quantitatively assess of the effects of various reaction conditions. Since the 

mechanism and dynamics of the reaction system are interconnected, it may be possible to 

optimize the reaction conditions (e.g., for an enhanced rate of reaction) based on 

comprehension of the rate-limiting step. 

Several possible kinetic models have been discussed in the literature describing 

non-catalytic, solid-gas reaction mechanisms. Among these are the sharp interface 

(shrinking core) model (SCM), the particle-pellet model, the single pore model, the 

distributed pore size model, and the random pore model.8,110-113 Previous works111,114,115 

have shown the importance of using microstructural observations to evaluate the validity 

of a particular model. The evolution of the solid reactant and product microstructures 

during reaction as visualized by SEM and TEM analyses can also help discern the possible 

reaction mechanism(s). Due to its versatility, applicability to several reacting gas-solid 

systems, and simplicity, the SCM has been used by many authors.8,114,116-118  

In the SCM, a distinct interface must exist between a solid reactant and solid 

product, which is consistent with the TEM images shown in Figure 3.15 of the TiF4/Al2O3 

reaction studied here. At this interface, a thinning solid reactant exposed to a gas becomes 

covered by a thickening product layer. Accordingly, the overall rate at which the product 

layer develops can be limited by one or more of the following processes: gas phase mass 

transfer, diffusion through solid layers, or chemical reaction at an interface.  
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3.3.3.1 Modeling of HTXRD Kinetic Data 

 Based on the microstructural evolution previously discussed, the kinetic 

mechanism controlling the reaction seems to change with time. The kinetic rate was fast 

during early TiOF2 product layer formation on the surface of the substrate but slowed when 

a different apparent kinetic mechanism became rate-limiting. This mechanistic shift was 

made apparent by the inability to fit the HTXRD data (for 310°C reacted samples) over the 

entire reaction time with a single shrinking core model equation as illustrated in Figure 

3.19(a) for a C-plane wafer. The reaction progress has been scaled to indicate the change 

in mass per unit area for the sample based on the resulting thickness of the product and 

density of TiOF2. To accomplish this, the reaction progress was scaled to the approximate 

reacted layer thickness associated with the given time and temperature (e.g. If full reaction 

is considered to be a reacted layer that is 320 nm thick, then a reaction progress of 0.78 is 

equivalent to a reacted layer that is approximately 250 nm thick.). Given the densities of 

TiOF2 and AlF3 (crystalline) are 3.12 g/cm3 and 2.88 g/cm3 respectively (powder 

diffraction files (PDF) 59-0871, 47-1659), the approximate thickness of TiOF2 in the 

reacted layer is 63% of the total thickness based on 2 mol of AlF3 forming for every 3 mol 

of TiOF2. Converting the approximate thickness of TiOF2 into centimeters and multiplying 

by the density of TiOF2 yields reaction progress in terms of mass per unit area (g/cm2) 

where the area term is the surface area of reaction upon which the thickness, or mass, 

grows.  

The correlation coefficients in both single mechanistic cases are poor (R2 = 0.669 

and 0.699 for a linear fit and a parabolic (square root function) fit, respectively). A plot of 

these fits (Error! Reference source not found.(b), the yellow dashed curve and green 
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dashed curve represent the linear and parabolic best fit functions, respectively) and the 

original data (black dots) on a log-log scale reveals that they do not adequately match the 

data. 
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As discussed in the following sections, dividing the data into two distinct kinetic 

regimes (as shown in Figure 3.19(c) and (d) and Figure 3.20) results in significantly higher 

correlation coefficients on linear axes (C-plane wafer: R2 =  0.981 and 0.985 for two linear 

regimes and a linear followed by a parabolic regime, respectively; R-plane wafer: R2 = 

0.977 and 0.988 for two linear regimes and a linear followed by a  parabolic regime, 

respectively) and better correlation with the best fit functions when plotted on logarithmic 

scale axes. 
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Figure 3.20. Reaction progress vs. time at 310°C on R-plane wafer plotted and shown with 

two dual regime fits (top image): the two linear regime best fit (blue) and a linear followed 

by parabolic function best fit (red). The best fit functions and the combined correlation 

coefficient for each pair of fits is provided. The logarithms of each of these best fits is also 

plotted with the logarithm of the original data (bottom image).  
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Deciding on a point in time during reaction when the kinetic mechanism shifted 

from an initial regime to a unique second regime was not obvious or arbitrary as there is 

likely a transitional time between the two kinetic regimes. Because the product layer was 

non-continuous in the first 10 minutes of reaction, it was unlikely that the kinetic 

mechanism would change during this time. Therefore, the second regime is unlikely to start 

before 10 minutes of reaction. Because no continuous layer was noticed in the first 10 

minutes of reaction but may have formed at any point before 30 minutes of reaction were 

completed (as determined by the microstructural evolution in Figure 3.15), Kinetic Regime 

I was expected to end between these two times.  

As a first-order attempt to establish the likely kinetic mechanisms, the transitional 

period between kinetic mechanisms was ignored. For each potential pair of kinetic 

mechanisms, a brute force search was performed for a single transition point in time that 

maximized the overall R2 of the combined model. These optimized regimes were compared 

to the expected regime limits. As will be discussed, the initial regime had to be linear as 

the product layer was non-continuous in at least the first 10 minutes of reaction (see Figure 

3.15), and the second regime may have been linear (Figure 3.19(c)) or follow a parabolic 

function (Figure 3.19(d)).  

3.3.3.2 Kinetic Regime I 

Data in the initial kinetic regime, Kinetic Regime I, was fit with two possible kinetic 

models representing the three different rate controlling mechanisms according to the 

shrinking core model for a flat plate geometry. While the lower bound for data in this 

regime was the first data point collected, the upper bound was selected based on the 

microstructural evolution plot in Figure 3.15, independent of the starting point for Kinetic 
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Regime II (the data in Figure 3.19 contains bounds determined by optimization of fitting 

of two regimes). Because no continuous layer was noticed in the first 10 minutes of reaction 

but may have formed at any point before 30 minutes of reaction were completed, Kinetic 

Regime I was evaluated using all scans up to the 10 minute mark (note: after 500 seconds, 

scan time was increased resulting in no scans between 500-600 seconds).  

The three possible mechanisms that could control the first kinetic regime, per the 

SCM, are: chemical reaction control and gaseous phase mass transfer (with linear growth 

over time), and solid state diffusion (with parabolic (square root) growth over time). Figure 

3.21 shows fits of the extent of reaction data at 310°C on both C-plane and R-plane 

samples. While both the linear and parabolic models fit the C-plane wafer reasonably well 

(R2 = 0.990 and R2 = 0.983), the linear model was a much better fit for the R-plane wafer 

(R2 = 0.977 vs. R2 = 0.950 for the parabolic model), suggesting that the first kinetic regime 

was controlled by either chemical reaction or gas diffusion control.  
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Figure 3.21. Fits of the extent of reaction data in Kinetic Regime I at 310°C comparing R-

plane and C-plane orientations to two possible models for different rate controlling 

mechanisms. 

 

Solid state diffusion control was also deprecated by the microstructural evidence 

shown in Figure 3.15. As previously shown by the microstructural evolution, there was no 

indication of a dense, continuous product layer on the surface of the substrate during the 
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first 10 minutes, thus a relatively slow solid state diffusion path would have been bypassed 

by a much faster gas phase diffusion path. 

If bulk gas phase diffusion was rate limiting, depletion of the gaseous reactant at 

the specimen surface during the reaction would have been relatively fast, resulting in a 

gradient of the reacting gas species concentration around the reacting substrate. In order to 

test the potential for gas phase diffusion control to kinetic rate, the gas phase diffusion 

distance during HTXRD analyses was varied from approximately 2 mm to 14 mm (thus 

creating a variation in the gas concentration gradient and thus a variation in the gas flux). 

Figure 3.22 illustrates that no apparent variation in kinetics was seen as a function of bulk 

gaseous diffusion distance.  

 

 

Figure 3.22. Reaction progress vs. gaseous diffusion distance for C-plane specimens at 

different temperatures. 
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Additionally, following the method described by Welty119 and implemented for 

TiF4(g) in Ar(g) by Shian,10 the diffusion coefficient for TiF4(g) in Ar(g) was calculated to 

be 3.3 × 10-5 m2/s at 310°C (See Appendix A for calculation). In the case of a regular shape 

such as a plate, the mass transfer coefficient, kg, is related to the gas diffusion coefficient, 

Dg, by the expression120: 

                                                          𝑆ℎ =
𝑘𝑔𝐿

𝐷𝑔
  

Where Sh is the Sherwood number and is equal to 2 for a system with no forced 

convention119, and L is the characteristic length. For this system, if the characteristic length 

is defined as 2 mm, the resulting mass transfer coefficient would be equivalent to: 

𝑘𝑔 =
𝑆ℎ 𝐷𝑔

𝐿
=

2 × 3.3 × 10−5

0.002
= 0.033

m

s
 

If this were the rate limiting step, we could expect to fully react a 1 mm thick sample in 

under 40 ms or create a 250 nm product zone in 7600 ns: 

0.033
m

s
× 0.040 s =  0.0013 m = 1.3 mm 

0.033
m

s
× 7600 × 10−9 s =  2.5 × 10−7m = 250 nm 

Considering that a product layer of 250 nm took approximately 30 minutes to form, one 

can conclude that the gas phase diffusion between the Al2O3 reactant wafer and the TiF4 

gas source was not the rate limiting step for the conditions used in this experiment.  

As both solid state diffusion and bulk gas diffusion were ruled out, chemical reaction 

control was ruled to be most likely mechanism controlling the initial reaction kinetics seen 
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in Kinetic Regime I. However, chemical reaction may be controlled by several different 

factors including adsorption of the reactants to the interface, surface diffusion of the 

reactants, the surface reaction, or desorption of the products. The exact method of chemical 

reaction control in the first kinetic regime has not been established here. Had significant 

variations in reaction with the varying Al2O3 crystalline planes been observed, a more 

noteworthy correlation between the chemical reaction control and kinetics might be 

possible. As visible in the microstructural evolution graphics, the differences between 

product thicknesses between different orientations was negligible. This suggests that 

reaction at the product/gas interface could be controlling the rate. As can be seen in Figure 

3.10, an increase in reaction temperature resulted in a decrease in the time required to 

complete reaction in Kinetic Regime I. This temperature trend was consistent across 

different orientations of reactant Al2O3
 wafers.  

3.3.3.3 Kinetic Regime II 

 Using SCM, the boundaries of Kinetic Regime II were found via brute force 

optimization of a two function fit to the data. Due to the results of the previous section, a 

linear function for Kinetic Regime I was assumed, while Kinetic Regime II was modeled 

using both a linear and parabolic fit. The best fit pairs of functions (linear + linear or linear 

+ parabolic) for C-plane samples reacted at 310°C can be seen in Figure 3.19(c) and (d), 

and the results (correlation coefficients) of the brute force optimization for all points 

between 10 minutes and 30 minutes of reaction are shown in Table 3.2. If both regimes 

were linear, the overall best fit for the second regime (assuming no transitional period) 

occurred when Kinetic Regime II began between 10 and 30 minutes into reaction, with the 

correlation to this combined mechanistic fit resulting in R2 = 0.981 at approximately 25 
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minutes. If the second regime was assumed to be a parabolic function, the optimized best 

fit for the pair of fit functions found the second regime to begin at approximately 25 

minutes, also, and resulted in a thermogravimetric rate constant on the order of 4 × 10-14 

g2/cm4s as derived from the data. The resulting correlation coefficient of this pair of 

functions was slightly higher. R2 = 0.985, suggesting that a process with parabolic growth 

was slightly more likely to be the rate limiting mechanism.  

 

Table 3.2 Correlation coefficients resulting from a brute force optimization of a two 

function fit to the C-plane data at 310°C at times between 10 and 30 minutes. 

Starting time for first scan 

time contributed to Kinetic 

Regime II 

Correlation Coefficient  

(R2) assuming Kinetic 

Regimes I and II are linear 

and parabolic, respectively 

Correlation Coefficient  

(R2) assuming Kinetic 

Regimes I and II are both 

linear 

756 s 0.950 0.925 

1012 s 0.967 0.944 

1268 s 0.977 0.946 

1524 s 0.985 0.981 

1780 s 0.980 0.978 

 

 During Kinetic Regime II, the reaction rate was significantly slowed compared to 

the first regime. Because a difference in reaction progress as a function of bulk gas-phase 

diffusion distance was not found, as shown in Figure 3.22, and the expected reaction 

coefficient for gas-phase diffusion significantly exceeded the rate of reaction in the first 

regime, bulk gas phase diffusion could not be rate-limiting in the second regime.  

The slower reaction rate did not rule out a slow chemical reaction (limited by at 
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least one of the adsorption, surface diffusion, surface reaction, or desorption steps) as the 

rate limiting mechanism. This could have been a reaction at the interface between the Al2O3 

and the product layer (which could have a different rate than the chemical reaction control 

at the gas/Al2O3 interface seen in Kinetic Regime I) or at the product layer interface with 

the gas. Little difference was found in Kinetic Regime II for the C-plane and R-plane 

wafers, as illustrated by their similar linear fits in Figure 3.19 and Figure 3.20, suggesting 

chemical reaction control at the Al2O3/product interface was unlikely to be rate-limiting. 

 Although the exact porosity or density of the product layer was unknown, either 

solid state diffusion, or slowed gaseous diffusion through small but interconnected pores, 

in the product layer could control the second regime kinetics, as the growing product could 

slow mass transport to the reaction site. Based on microstructural observation during 

Kinetic Regime II (see Figure 3.15), there was a continuous solid product layer on the 

surface of the substrate. This layer may have acted as a diffusion barrier, slowing reactant 

transport. This mass transport barrier may have acted as a rate controlling mechanism (via 

slow solid-state diffusion or slowed gaseous diffusion through interconnected pores).  

While calculations of molecular diffusion through the lattice can be complicated by grain 

boundaries and dislocations, porous diffusion can be equally complex to calculate. 

However, as illustrated in Figure 3.18, significant porous pathways for diffusion were not 

apparent in the product layer after 6 h at 310°C. This strongly suggests that should diffusion 

be controlling Kinetic Regime II, the diffusion was likely through the solid-state.  

 The expected parabolic rate constant kp can be approximated using the Wagner 

theory for simultaneous scale formation and gas diffusion through an oxide scale (credited 

to Wagner121 by Jost122). This method was originally employed to determine the rate at 
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which a binary alloy was penetrated by dissolved oxygen as it internally reacted with the 

more reactive alloy component to form a precipitate, but is generally applicable to other 

simultaneous scale formation and diffusion processes. The figure below illustrates the 

expected parabolic behavior through the growing oxide scale. 

 

 To use this model, we must first make a few assumptions including:  

1) The product scale is of uniform thickness, ε, at any given time and completely 

adherent to the underlying Al2O3 surface 

2) Growth of oxide is controlled by inward diffusion of TiF4(g) through the oxide 

lattice so that new oxide only forms at the oxide/Al2O3 interface. 

3) The underlying phase (Al2O3) is planar, semi-infinite, and impenetrable to the 

diffusing gas. 

Figure 3.23. Schematic illustrating the concentration gradient of TiF4(g) through a growing 

product layer. 
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Fick’s Second law predicts how diffusion causes the concentration of a species to change 

with position and time, that is: 

𝜕𝑐𝑇𝑖𝐹4

𝜕𝑡
= 𝐷𝑇𝑖𝐹4

𝐼𝐼 𝜕2𝑐𝑇𝑖𝐹4

𝜕𝑥2  𝑓𝑜𝑟 0 < 𝑥 < 𝜀   (1) 

Where cTiF4 is the concentration of diffusing gas TiF4, t is time, DII
TiF4 is the diffusion 

coefficient of TiF4 in the oxide layer (II), and ε is the position of the oxide/ Al2O3 interface. 

DII
TiF4 is assumed to be independent of the concentration in the above equation. 

To solve Fick’s Second law, initial and boundary conditions were chosen as 

follows: 

cTiF4 = 0 at x > 0, t = 0  (2a) 

cTiF4 = cs at x = 0, t > 0  (2b) 

cTiF4 = cII 
I at x = ε- , t > 0  (2c) 

cTiF4 = 0 at x = ε+ , t > 0  (2d) 

where x = 0 refers to the position of the oxide/gas interface (relative to the surface of the 

oxide) and x = ε- and x = ε+ refer to positions just within the oxide scale and just within 

Al2O3 at the oxide/Al2O3 interface, respectively. 

We consider an infinitesimal inward displacement, dε, of the oxide/Al2O3 interface in 

time dt due to the formation of new oxide, where: 

1) Prior to this displacement, the TiF4 concentration at the position ε+ is zero. 

2) If the oxide/Al2O3 interface is considered to infinitesimally thin, then after the 
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interface moves inward a distance of dε, the TiF4 concentration at this position 

changes to cII 
I
  

This increase in concentration of TiF4 has to be accommodated by the flux of TiF4 toward 

the oxide/Al2O3 interface. That is: 

𝑐𝐼𝐼
𝐼 𝑑𝜀

𝑑𝑡
= −𝐷𝑇𝑖𝐹4

𝐼𝐼 𝜕𝑐𝑇𝑖𝐹4

𝜕𝑥
|

𝜀−

  (3) 

A solution to Fick’s second law within the oxide scale that satisfies the boundary 

condition in (2b) is: 

𝑐𝑇𝑖𝐹4 =  𝑐𝑠 − 𝐵𝐼𝐼 {𝑒𝑟𝑓 [
𝑥

2√𝐷𝑇𝑖𝐹4
𝐼𝐼 𝑡

]}  (4a) 

or     
𝜕𝑐𝑇𝑖𝐹4

𝜕𝑥
|

𝜀−

=  
−𝐵𝐼𝐼𝑒𝑥𝑝[

−𝑥2

4𝐷𝑇𝑖𝐹4
𝐼𝐼 𝑡

]

√𝜋𝐷𝑇𝑖𝐹4
𝐼𝐼 𝑡

|

𝜀−

  (4b) 

Application of boundary condition (2c) to equation (4a) yields: 

𝑐𝐼𝐼
𝐼 =  𝑐𝑠 − 𝐵𝐼𝐼 {𝑒𝑟𝑓 [

𝜀

2√𝐷𝑇𝑖𝐹4
𝐼𝐼 𝑡

]}  (4c) 

Substituting (4b) into (3) yields: 

𝑐𝐼𝐼
𝐼 𝑑𝜀

𝑑𝑡
= −𝐷𝑇𝑖𝐹4

𝐼𝐼
−𝐵𝐼𝐼𝑒𝑥𝑝[

−𝑥2

4𝐷𝑇𝑖𝐹4
𝐼𝐼 𝑡

]

√𝜋𝐷𝑇𝑖𝐹4
𝐼𝐼 𝑡

|

𝜀−

  (5a) 

or more simply: 
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𝑐𝐼𝐼
𝐼 𝑑𝜀

𝑑𝑡
= 𝐵𝐼𝐼 √

𝐷𝑇𝑖𝐹4
𝐼𝐼

𝜋𝑡
𝑒𝑥𝑝 [−

𝜀2

4𝐷𝑇𝑖𝐹4
𝐼𝐼 𝑡

]   (5b) 

Since the formation of new oxide scale is determined by the flux of TiF4(g) 

molecules through the thickening scale, then the scale is expected to grow at a parabolic 

rate: 

𝜀 = √2𝑘𝑝𝑡  (6a) 

Here we introduce a constant, γ, such that: 

𝜀 = 2𝛾√𝐷𝑇𝑖𝐹4
𝐼𝐼 𝑡  (6b) 

or: 

𝑑𝜀

𝑑𝑡
= 𝛾√𝐷𝑇𝑖𝐹4

𝐼𝐼

𝑡
  (6c) 

where: 

𝛾 = √
𝑘𝑝

2𝐷𝑇𝑖𝐹4
𝐼𝐼   (6d) 

Substituting equations (6b) and (6c) into equation (5b) yields: 

𝑐𝐼𝐼
𝐼 =

𝐵𝐼𝐼

𝛾√𝜋
 𝑒𝑥𝑝[−𝛾2]  (7a) 

Combining (4c) and (6b) and solving for BII we get: 

𝐵𝐼𝐼 =
𝑐𝑠−𝑐𝐼𝐼

𝐼

𝑒𝑟𝑓(𝛾)
  (7b) 

Substituting (7b) into (7a) yields: 
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𝑐𝐼𝐼
𝐼 =

(𝑐𝑠−𝑐𝐼𝐼
𝐼 )𝑒𝑥𝑝(−𝛾2)

𝛾√𝜋[𝑒𝑟𝑓(𝛾)]
   (8) 

If 𝑐𝐼𝐼
𝐼 , 𝑐𝑠, and 𝐷𝑇𝑖𝐹4

𝐼𝐼  are known, we can iteratively solve (8) for the constant γ and 

the rate constant kp. 𝐷𝑇𝑖𝐹4
𝐼𝐼 , as a first approximation is taken as equal to the bulk diffusion 

coefficient of TiF4(g) in Ar. Others have previously calculated this to be 2.6 x 10-5 m2/s at 

230°C.10 𝑐𝑠  can be approximated for any given temperature assuming TiF4(g) behaves 

ideally, and the pressure of TiF4(g) is equal to its vapor pressure. At 310°C, 𝑐𝑠 =49.0 

mol/m3 (found using 𝑐𝑠 = P/RT where PTiF4
 (310°C) = 238 kPa).67 cθ is calculated from 

the reaction equation: 

3𝑇𝑖𝐹4(𝑔) + 𝐴𝑙2𝑂3(𝑠) → 3𝑇𝑖𝑂𝐹2(𝑠) + 2𝐴𝑙𝐹3(𝑠) 

Knowing the molar ratios of reactants and products, and the molar masses and densities of 

the products, we calculated that for every 3 moles of TiF4 reacted, approximately 152 cm3 

of product is formed (powder diffraction files 47-1659 and 07-5087). That is, there are 

19737 mol TiF4 consumed per cubic meter of product produced.  Theoretical calculation 

of 𝑐𝐼𝐼
𝐼  (a concentration in mol/vol) is slightly more complex but is calculated as follows: 

Assuming TiF4(g) is ideal, we can say: 

𝑃 = 𝑐𝐼𝐼
𝐼 RT  (9) 

For the chemical reaction above,  

∆𝐺𝑟𝑥𝑛
° = −𝑅𝑇 ln 𝐾 where 𝐾 =

1

𝑃𝑇𝑖𝐹4(𝑔)
3   (10) 

Plugging (9) into (10) we get: 
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∆𝐺𝑟𝑥𝑛
° = −𝑅𝑇 ln [

1

(𝑐𝐼𝐼
𝐼 RT)

3]   (11) 

Rearranging to solve for 𝑐𝐼𝐼
𝐼 : 

𝑐𝐼𝐼
𝐼 =

1

𝑅𝑇
exp [

∆𝐺°

𝑅𝑇
]

1/3

    (12) 

From Hess’s Law: 

∆𝐺𝑟𝑥𝑛
° = 3∆𝑓𝐺𝑇𝑖𝑂𝐹2

° + 2∆𝑓𝐺𝐴𝑙𝐹3
° − 3∆𝑓𝐺𝑇𝑖𝐹4(𝑔)

° − ∆𝑓𝐺𝐴𝑙2𝑂3
°   (13) 

Combining (12) and (13) and solving for 𝑐𝐼𝐼
𝐼 , we get: 

𝑐𝐼𝐼
𝐼 =

1

𝑅𝑇
[𝑒𝑥𝑝 (−

3∆𝑓𝐺𝑇𝑖𝑂𝐹2
° +2∆𝑓𝐺𝐴𝑙𝐹3

° −3∆𝑓𝐺𝑇𝑖𝐹4(𝑔)
° −∆𝑓𝐺𝐴𝑙2𝑂3

°

𝑅𝑇
)]

−1 3⁄

(14) 

Interpolating data from the NIST-JANAF Thermochemical Tables123 for Gibbs 

Free Energy of the formation of reactants and products, we obtained the following 

information: 

∆𝑓𝐺𝑇𝑖𝐹4(𝑔)
° @ 310°𝐶 = −1480.54 ∗ 103𝐽/𝑚𝑜𝑙 

∆𝑓𝐺𝐴𝑙2𝑂3
°  (𝑎𝑙𝑝ℎ𝑎 𝑝ℎ𝑎𝑠𝑒)@ 310°𝐶 = −1492.61 ∗ 103𝐽/𝑚𝑜𝑙 

∆𝑓𝐺𝐴𝑙𝐹3
° (𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒)@ 310°𝐶 = −1356.34 ∗ 103𝐽/𝑚𝑜𝑙 

No information is available in the literature on experimental values for Gibbs Free 

Energy of Formation of TiOF2(s). Reports have shown TiOF2 decomposes directly into 

TiO2 and TiF4
 in a dry atmosphere with the decomposition beginning near 150-200°C and 

completing by 500°C.124 A report on related materials including ZrOF2 and HfOF2 
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suggested that approximations of thermodynamic data may be estimated from linear 

interpolation of enthalpy plotted versus the number of ligands.125 Drawing from this, a 

rough first approximation of the free energy of formation of TiOF2 might be linearly 

interpolated between that of TiO2 and TiF4 at a given temperature. Via interpolation of 

values in the NIST JANAF data tables123, the Gibbs Free Energy of Formation of TiO2 

(anatase) at 310°C is -830.8 kJ/mol. A linear interpolation between this data point and the 

Gibbs Free Energy of Formation for TiF4 (listed above as -1480.54 kJ/mol) yields an 

approximate value for the Gibbs Free Energy of Formation of TiOF2 of -1156 kJ/mol.  

Another estimation of the Gibbs Free Energy of Formation of TiOF2 can be made through 

linear extrapolation of the Gibbs Free Energy of Formation of other known Group 4 metal 

oxyfluorides including ZrOF2 and HfOF2. From enthalpy and entropy data on ZrOF2 and 

HfOF2,
125 their respective Gibbs Free Energy of Formation at 310°C were found to be -

2614 kJ/mol and -2590 kJ/mol. Extrapolating across the three different periods (the periods 

for Ti, Zr, and Hf are 4, 5, and 6 respectively), results in an approximate value for ∆𝑓𝐺𝑇𝑖𝑂𝐹2
°   

of -2638 kJ/mol. These values fit within the known upper bound of ∆𝑓𝐺𝑇𝑖𝑂𝐹2
°   for this 

system: given the ∆𝑓𝐺° above, we can calculate a maximum value of ∆𝑓𝐺𝑇𝑖𝑂𝐹2
°  because we 

know that 𝑐𝐼𝐼
𝐼  must not be greater than cs. If 𝑐𝐼𝐼

𝐼 = 𝑐𝑠 , then ∆𝑓𝐺𝑇𝑖𝑂𝐹2
°  would be at its 

maximum value of approximately -1097 kJ/mol. Were this the case, kp would reach its 

minimum limit of zero. If ∆𝑓𝐺𝑇𝑖𝑂𝐹2
°  is approximately -1156 kJ/mol or -2638 kJ/mol, then 

kp would approach a value of 6.5 × 10-8
 m

2/s or 4.4 × 10-9
 m

2/s, respectively, its maximum 

possible values.  

The parabolic rate constant, kp, can be correlated with the thermogravimetric rate 

constant, kg, via the equation: 
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𝑘𝑔 = 2𝑘𝑝 (
𝑀𝑊2

|𝑍2|𝑉𝑒𝑞
)

2

, 

where MW2 is the atomic or molecular weight of the diffusing species, |𝑍2| is the number 

of electrons involved in the reaction (here, we’ve assumed 6 electrons involved in the 

reaction of 1 equivalent of Al2O3), and Veq is the equivalent volume of product formed from 

1 equivalent of Al2O3. As a first approximation, we assumed TiOF2 and AlF3 products are 

fully crystalline, and thus 1.56 × 10-4 m3 of product forms per mole of Al2O3 reacted. 

Hence, for TiF4 (molecular weight = 123.861 g/mol) diffusion through the product layer, 

the upper limits on the parabolic rate maximum of 6.5 × 10-8
 m

2/s or 4.4 × 10-9
 m

2/s would 

be equivalent to a maximum thermogravimetric rate constant of 2.3 × 10-5 g2/(cm4 s) or 1.5 

× 10-6 g2/(cm4 s), respectively: 

 𝑘𝑔 =  2(6.5 × 10−8 𝑚2/𝑠) (
123.681 𝑔/𝑚𝑜𝑙

6×1.56×10−4𝑚3/𝑚𝑜𝑙
)

2

× (0.01 𝑚/𝑐𝑚)4 = 2.3 × 10−5𝑔2/(𝑐𝑚4𝑠) 

or, 

 𝑘𝑔 =  2(4.4 × 10−9 𝑚2/𝑠) (
123.681 𝑔/𝑚𝑜𝑙

6×1.56×10−4𝑚3/𝑚𝑜𝑙
)

2

× (0.01 𝑚/𝑐𝑚)4 = 1.5 × 10−6𝑔2/(𝑐𝑚4𝑠) 

We would expect this derived thermogravimetric rate constant value to be higher than the 

experimental value found using the shrinking core model (4 × 10-14 g2/cm4s) as it is a 

maximum rate constant value, which is what we saw.  

 

3.4 Conclusions 

HTXRD, SEM, TEM, and ToF-SIMS analyses were used to examine the rate of 

conversion of Al2O3 wafers into TiOF2 via reaction with TiF4(g) at 270-335°C. ToF-SIMS 
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analyses suggested that a second product of reaction was likely AlF3. HTXRD and TEM 

microstructural analyses suggested that the reaction kinetics could be modeled using two 

kinetic regimes, much like the previously studied reaction kinetics of TiF4(g) with SiO2.
10 

Results from microstructural calculations, x-ray diffraction measurements, variations in the 

path length for gaseous diffusion, and calculation of a mass transfer coefficient were 

consistent with the initial regime following a chemical reaction control model at the 

product/gas interface. The second kinetic regime (based on microstructural evolution, 

shrinking core model fitting, an experiment to determine the porosity of the product layer, 

and usage of the Wagner model) was consistent with diffusion through a solid-state product 

layer.  
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 SHAPE PRESERVING CONVERSION OF 

POROUS ANODIC ALUMINA INTO ALTERNATIVE METAL 

OXIDES 

 

4.1 Introduction 

In this chapter, we describe the ability of reactive conversion processes involving 

metal fluoride reactants to transform porous anodic aluminum oxide (AAO) into 

nanostructures comprised of other functional oxides. The objective is to leverage the use 

of easily-produced Al2O3 nanostructures to devices and applications where metal oxides 

other than Al2O3 are optimal materials. This study is limited to semiconducting metal 

oxides generated by reaction with corresponding, readily-available metal fluorides that are 

stable as solids at room temperature (but can be heated to yield metal fluoride vapor) for 

ease of reaction setup and control. 

4.2 Thermodynamic Considerations 

Multiple considerations must be taken into account before undergoing experimental 

trials to convert one material into another while maintaining the same aligned pore 

structure. A primary concern is the thermodynamic favorability of potential reactions. First 

of all, a significant vapor pressure of the metal fluoride of interest must be able to form at 

a reasonable temperature (i.e., within the range of temperatures at which the vapor can 

favorably react with the template without appreciable shape distortions (e.g., due to 

sintering, grain growth, creep, etc.)). Some materials have too high a boiling or sublimation 

temperature and may not form a significant vapor pressure in the desired temperature range 
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(determined by reaction thermodynamics and microstructural evolution). In the present 

work, a vapor-based reaction is desired to maximize the likelihood of reaction with 

relatively difficult to reach surfaces (i.e., deep nanopores and high-aspect-ratio 

nanochannels) before excessive reaction and pore channel plugging (due to an increase in 

solid volume upon reaction) occurs on other, easier-to-reach surfaces. Additionally, the 

vapor must be contained within an otherwise inert chamber. 

4.2.1 Thermodynamically-favored metal fluoride reactions with Al2O3 

The following reactions are all thermodynamically favored between 0°C and 600°C (see  

Table 4.1 for thermodynamic favorability and Table 4.2 for halide species melting, boiling, 

and sublimation temperatures) and are discussed below.67 

6 𝑁𝑏𝐹5(𝑔) + 5 𝐴𝑙2𝑂3 → 10 𝐴𝑙𝐹3 + 3 𝑁𝑏2𝑂5 

2 𝑆𝑏𝐹3(𝑔) + 𝐴𝑙2𝑂3 → 2 𝐴𝑙𝐹3 + 𝑆𝑏2𝑂3 

3 𝑆𝑛𝐹2(𝑔) + 𝐴𝑙2𝑂3 → 2 𝐴𝑙𝐹3 + 3 𝑆𝑛𝑂 

3 𝑍𝑟𝐹4(𝑔) + 2 𝐴𝑙2𝑂3 → 4 𝐴𝑙𝐹3 + 3 𝑍𝑟𝑂2 

2 𝐵𝑖𝐹3(𝑔) + 𝐴𝑙2𝑂3 → 2 𝐴𝑙𝐹3 + 𝐵𝑖2𝑂3 

(1) 

(2) 

(3) 

(4) 

(5) 
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Table 4.1. Gibbs Free Energy of Reaction (ΔG°RXN, given in kilojoules) for Formation of 

the Metal Oxides via Reactions Above at Select Temperatures67,123,126,127 

 Temperature (°C) 

  0 200 400 600 

Reaction (1) Nb2O5 -1790 -1554 -1330 -1116 

Reaction (2) Sb2O3 -285 -208 -136 -66 

Reaction (3) SnO -492 -377 -267 -162 

Reaction (4) ZrO2 -804 -676 -553 -435 

Reaction (5) Bi2O3 -394 -315 -240 -168 

 

Table 4.2. Melting, Boiling, and Sublimation Temperatures of Halide Species 

 Melting Point (°C) Boiling Point (°C) Sublimation Point (°C) 

AlF3 - - 
1276 123 

NbF5 78 126 233 126 

- 

SbF3 292 127 345 127 

- 

SnF2 213 127 850 127 
- 

ZrF4 - - 

912 67 

BiF3 725 67 900 67 

- 

 

The exact products of each of the reactions above are only assumed, such products 

could contain a number of oxyfluorides in addition to, or instead of, the above products. 

Converting directly and completely from one solid oxide to other solid oxides and fluorides 

is a good starting point for predicting the likelihood of desirable reactions.  

Nb2O5 nanostructures are of technological interest in catalysis,128,129 
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photocatalysis,130 lithium batteries,131,132 and electrochromic devices.133 Nb2O5 nanotube 

arrays can be formed by anodization of niobium in NH4F-glycerol solutions with tube 

lengths of up to 4 μm (the reaction is self-limiting).134 Such short tube lengths limits the 

utility of anodized Nb2O5. Also of interest in photocatalytic applications is NbO2F, which 

is a potential intermediate product of the reaction with NbF5.
135 Reactive conversion of 

Al2O3 to form either or both Nb2O5 and NbO2F is not only a favorable reaction (as will be 

shown later), but also one with potential to impact applications optimized with such 

structures. NbF5, the starting fluoride, is a liquid between 78°C and 233°C.126 One unique 

constraint in this system is the need to keep liquid NbF5 out of direct contact with Al2O3, 

as the liquid is also expected to be reactive and could result in poor uniformity of reaction 

between the alumina channel ends and centers (i.e., the liquid may react more extensively 

with external surfaces than with internal surfaces). Also, the likelihood of unreacted NbF5 

liquid solidifying upon cooling inside or near the surfaces of the channels could limit the 

ability to maintain open porous channels.  

Sb2O3 can be used in catalysis or photodetection.136-138 It is also known as a flame 

retardant and could be used in catalytic devices where flammability is a problem.138,139 It 

could also be used for humidity sensing.138 Via anodization, Sb2O3 can be formed as a thin 

porous oxide.140 While Sb2O3 is a relatively low melting oxide (570°C), the fluoride of 

interest for forming Sb2O3, SbF3, melts at 292°C and boils at 345°C.127 Thus, because the 

thermodynamics suggest a favorable conversion of Al2O3 into Sb2O3 at temperatures 

between 200°C (where the vapor pressure over SbF3 is 541 mPa) and 550°C (below the 

melting temperature of Sb2O3), the conversion of Al2O3 into solid Sb2O3 could be possible. 

A third possible new AAO reactive conversion product, SnO2, is a wide band gap 
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n-type semiconductor used in applications including sensors, electrocatalysts, and lithium-

ion battery anodes.141-143 Upon anodization, tin forms a porous oxide layer.144 SnF2 has a 

higher vapor pressure at relatively low temperatures than SnF4.
127 Reaction with SnF2 is 

expected to form SnO instead of SnO2 (a more desirable oxide of tin). If SnO is formed, it 

could be oxidized to yield SnO2. SnF2 melts at 213°C and boils at 850°C.127 The vapor 

pressure of SnF2 reaches 250 mPa at 700°C127, suggesting temperatures well over the 

melting point may be necessary to form a critical partial pressure of the fluoride to induce 

reaction with Al2O3.  

ZrO2 nanochannel arrays have many potential applications including anti-

corrosion, catalysis, catalysis supports, optoelectronics, and solid-oxide fuel cells.145,146 

Aligned porous zirconia nanochannels have been formed via anodization with channel 

lengths limited to 4.3 μm (reaction is self-limited).147 Via the reactive conversion method, 

longer ZrO2 nanochannel arrays may be possible, starting with AAO and ZrF4. This metal 

fluoride sublimes at a relatively high temperature (i.e., the sublimation temperature of ZrF4 

is 912°C67) but forms a vapor pressure over the solid of 0.350 mPa and 944 mPa at 600°C 

and 900°C, respectively.67 

A final metal oxide of interest, Bi2O3, could be applicable in photocatalysis, solid-

oxide fuels cells, or ionic conduction.148-150 Thin, porous Bi oxides and BiPO4 nanorod 

arrays have been formed by anodization of Bi.151,152,153 To date, no known Bi2O3 

nanochannel arrays have been reported. BiF3 is a relatively high melting metal fluoride 

(i.e., the melting point is 725°C67) but will form a vapor pressure over the solid of 9.56 

mPa at 625°C.67 This temperature is also below the crystallization temperature of anodic 

alumina (approximately 900°C).154  
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While AAO conversion reactions to other metal oxides may also be possible, for 

the sake of space and time, the material in this chapter has been limited to the reactions 

discussed above. 

4.2.2 Containment material and fluoride phase considerations 

While the reactions of metal fluorides with Al2O3 described in the previous section 

are thermodynamically possible, other considerations should be taken into account before 

experiments can be performed. Primarily, the reaction container must be inert and sealable 

inside an inert atmosphere (e.g., an argon glovebox). Commonly-used materials for 

creation of inert reaction containers include crimped and welded titanium or steel tubes. 

However, for each reaction, the chamber material chosen must be checked for inertness 

with the materials involved in the reaction. Ideally, one can choose titanium, steel, or nickel 

chambers for each reaction due to their being readily available and easy to weld. The 

following table lists chamber materials that are compatible with different metal fluorides. 
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Other factors to consider are the phases of each fluoride reactant that can form under 

the reaction conditions. For those fluorides that sublime or will be maintained as a solid 

with some vapor pressure during reaction, simple physical separation of the fluoride and 

Al2O3 template within the reaction chamber can be made with or without boats containing 

these reactant materials. For fluorides that melt, more significant containment of the 

starting fluoride may be conducted to prevent direct Al2O3 contact with the melt. Liquid 

contact may affect the rates of reaction in different areas of the Al2O3 material readily 

accessible or inaccessible to the fluoride, and may result in solidification of unreacted 

fluoride around the product oxide upon cooling the reaction chamber. This separation can 

be accomplished by crimping the reaction chamber in the middle with each reactant on a 

different end, and maintaining the chamber in a ‘^’ (inverted v) shape to prevent reaction 

with liquids and to promote gas-solid interactions. 

Of the fluoride reactants discussed above, several melt and then boil, unlike TiF4 

(studied in the previous chapters) which sublimes. Reactions below the melting or 

sublimation point of the fluoride were attempted with BiF3 (T<725°C) and ZrF4 

(T<912°C), whereas chambers containing NbF5 were heated above the NbF5 boiling point 

(forcing the need for liquid containment). SbF3 reactions were attempted at temperatures 

just above and below the boiling point of this fluoride (345°C). Reactions with SnF2 were 

performed well above the melting point (213°C) but well below the boiling point (850°C) 

of this fluoride. 

4.3 Experimental Methods 

Through-hole anodic aluminum oxide (AAO) was prepared using phosphoric acid 

as described in Chapter 1.  Particular experimental techniques and conditions used for each 
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reaction are described in the following sections. 

4.3.1 Reaction with NbF5 

AAO membranes were placed in nickel shim boats (76 μm thick shim, McMaster-

Carr, Atlanta, GA) and introduced into an inert argon atmosphere with an oxygen partial 

pressure <1 ppm. A nickel ampoule (diameter 15.9 mm, length 20 cm; McMaster-Carr, 

Cleveland, OH, USA) that contained an excess of NbF5 (98% purity, Sigma-Aldrich, St. 

Louis, MO) (at approximately a 4:1 molar ratio of NbF5 to AAO) near the already welded 

end was slightly bent near the center to separate the NbF5 from the end where the AAO 

membrane would be loaded (to prevent interaction between the AAO and liquid NbF5 upon 

heating and cooling of the reaction chamber). The AAO was introduced into the other end 

of the ampoule which was subsequently crimped and sealed via welding within the inert 

argon atmosphere. This setup was analogous to the set up described in Figure 1.8 with a 

crimp in the center of the ampoule. 

The ampoule was heated in a horizontal tube furnace to the desired temperature 

(500°C) at a rate of 5°C/min and held at this temperature for the desired length of time (2 

h) to selectively react Al2O3 with NbF5. After cooling (<5°C/min), the ampoule was 

removed from the furnace, cut open, and the specimens were extracted for characterization 

and oxygenation. The specimens were then oxygenated for 4 h to form orthorhombic 

Nb2O5 via a second heat treatment at 600°C in pure, flowing oxygen that, before entering 

the furnace, was passed through a heated water bath (50°C) at a rate of 1 slpm. The 

measured humidity (using Model HMP234, Vaisala, Woburn, MA) at the gas outflow of 

the furnace was found to be at least 94% relative humidity.  
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Afterwards, the specimens were mounted on glass slides using a thin nitrocellulose-

based film (Double Duty nail polish, Sally Hansen) and etched in 3M NaOH for 1.5 h to 

selectively dissolve all remaining Al-bearing species, including any unreacted AAO and 

any Al-bearing byproducts. After rinsing, the glass-mounted specimens were then heated 

in air to 500°C for 0.5 h to pyrolyze the nitrocellulose-based film, resulting in free-standing, 

aligned Nb2O5 nanotube membranes on glass. 

4.3.2 Reaction with SnF2 

For reaction with SnF2, AAO templates were placed in grafoil (thickness 0.76 mm, 

GrafTech International, Lakewood, OH) boats and introduced into an inert argon 

atmosphere with an oxygen partial pressure <1 ppm. Nickel ampoules (diameter 15.9 mm, 

length 20 cm; McMaster-Carr, Cleveland, OH, USA), lined with three layers of grafoil, 

that contained an excess of SnF2 (99% purity, Sigma-Aldrich, St. Louis, MO) 

(approximately 5:1 molar ratio of SnF2 to AAO) at one end was slightly bent to separate 

the SnF2 from the end where the AAO would be loaded (to prevent interaction between the 

AAO and liquid SnF2 upon heating and cooling of the reaction chamber). The AAO was 

introduced into the other end of the grafoil-lined nickel ampoule. Grafoil on either end of 

the ampoule was crimped with the nickel ampoule, which was subsequently sealed via 

welding within the inert argon atmosphere.  

The ampoule was heated in a horizontal tube furnace to the desired temperature 

(400°C or 600°C) at a rate of 5°C/min and held at this temperature for the desired length 

of time (2 h or 6 h) to selectively react Al2O3 with SnF2. After cooling at <5°C/min, the 

ampoule was removed from the furnace, cut open, and the specimens were extracted for 

characterization. 
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4.3.3 Reaction with BiF3 

AAO templates were placed in grafoil boats and introduced into an inert argon 

atmosphere with an oxygen partial pressure <1 ppm. The AAO was introduced into the 

open end of the grafoil-lined nickel ampoule that contained an excess of BiF3 (>99.99% 

purity, Sigma-Aldrich, St. Louis, MO) (approximately 5:1 molar ratio of BiF3 to AAO). 

Grafoil was crimped with the nickel ampoule which was subsequently sealed via welding 

within the inert argon atmosphere.  

The ampoule was heated in a horizontal tube furnace to the desired temperature 

(625°C) at a rate of 5°C/min and held there for the desired length of time (2 h – 8 h) to 

selectively react Al2O3 with BiF3. After cooling at <5°C/min, the ampoule was removed 

from the furnace, cut open, and the specimens were extracted for characterization. 

4.3.4 Reaction with SbF3 

AAO templates were placed in grafoil boats and introduced into an inert argon 

atmosphere with an oxygen partial pressure <1 ppm. A nickel ampoule, lined with three 

layers of grafoil, that contained an excess of SbF3 (99.8% purity, Sigma-Aldrich, St. Louis, 

MO) (approximately 5:1 molar ratio of SbF3 to AAO), was slightly bent to separate the 

SbF3 from the end where the AAO would be loaded (to prevent interaction between the 

AAO membrane and liquid SbF3 upon heating and cooling of the reaction chamber. The 

AAO membrane was introduced into the other end of the grafoil-lined nickel ampoule. 

Grafoil on either end of the ampoule was crimped with the nickel ampoule which was 

subsequently sealed via welding within the inert argon atmosphere.  

The ampoule was heated in a horizontal tube furnace to the desired temperature 
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(275°C or 375°C) at a rate of 5°C/min and held at this temperature for the desired length 

of time (2 h or 8 h) to selectively react Al2O3 with SbF3. After cooling at <5°C/min, the 

ampoule was removed from the furnace, cut open, and the specimens were extracted for 

characterization. 

4.3.5 Reactions with ZrF4 

For reaction with ZrF4, AAO templates were placed in nickel boats and introduced 

into an inert argon atmosphere with an oxygen partial pressure <1 ppm. The AAO 

membranes were introduced into the open end of a grafoil-lined titanium ampoule that 

contained an excess of ZrF4 (99.9% purity, Sigma-Aldrich, St. Louis, MO) (approximately 

4:1 molar ratio of ZrF4 to AAO) which was subsequently sealed via welding within the 

inert argon atmosphere.  

The ampoule was heated in a horizontal tube furnace to the desired temperature 

(600°C or 800°C) at a rate of 5°C/min and held at this temperature for the desired length 

of time (2 h) to selectively react Al2O3 with ZrF4. After cooling at <5°C/min, the ampoule 

was removed from the furnace, cut open, and the specimens were extracted for 

characterization. 

4.4 Results and Discussion 

4.4.1 Reactive Conversion with NbF5 

TH-PA-AAO templates were partially converted into Nb2O5 via a two step-

metathetic gas/solid reactive conversion process. The TH-PA-AAO was exposed to NbF5 

vapor in an otherwise inert (Ar) atmosphere and allowed to react for a set length of time, 

likely following the chemical reaction: 
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3𝑁𝑏𝐹5(𝑔) + 2𝐴𝑙2𝑂3(𝑠) → 3𝑁𝑏𝑂2𝐹(𝑠) + 4𝐴𝑙𝐹3(𝑠)  (6) 

NbF5 exists as a solid at room temperature and melts at 78°C.126 The following analyses 

confirm the formation of the expected products. 

 The formation of the NbO2F/AlF3 product layer was observed to occur with 

retention of the nanochanneled template structure after conversion at 500°C for 2 h. The 

previously smooth TH-PA-AAO surfaces were transformed into more granular, rough 

surfaces of interconnected crystals upon conversion. Figure 4.1 shows SE images of the 

top (a) and cross-section (b) of the TH-PA-AAO after reaction with NbF5 vapor at 500°C 

for 2 h. 

Reaction was apparent by SEM at 500°C. Similar to the reaction of TH-AAO with 

TiF4(g) seen in Chapter 1, the reacted layer appears to coarsen and shrink the open diameter 

of the channels. Completion of the reaction would result in a volume expansion of 

approximately 230% (powder diffraction files 47-1659 and 07-5087 and density of porous 

anodic alumina as measured by Nielsch, et al.,70 of 3.2 g/cm2). Energy dispersive X-ray 

(EDX) spectroscopy revealed significant amounts of Nb, Al, O, and F in the product (see 

Figure 4.1. SE images of TH-PA-AAO template, after reaction with NbF5(g) for 2 h at 

500°C, viewed top-down (a) and via cross-section (b). Scale bars are 1 μm. 

a) b) 
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Figure 4.2). Also present were phosphorous (due to anodization of aluminum in phosphoric 

acid) and carbon (from the sample-mounting tape). Upon examination by X-ray diffraction 

(XRD) analysis, both expected products, NbO2F and AlF3 were detected, as shown in 

Figure 4.3. 
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Figure 4.2. EDX spectrum of TH-PA-AAO after 2 h of reaction with NbF5(g) at 500°C 

reveals elemental composition of reaction specimens. 



139 

 

  

To form Nb2O5 from the intermediary NbO2F/AlF3 products, samples were 

immersed in deionized water at room temperature for 24 h, oxygenated in humid, flowing 

oxygen at 600°C for 4 h, and etched in 3 M NaOH for 1.5 h to selectively dissolve 

remaining Al-bearing species. Figure 4.4 shows the resulting structure by top-down (a) and 

cross-sectional (b) SEM and confirms the presence of orthorhombic Nb2O5 by XRD (c). 

Figure 4.3. XRD showing formation of NbO2F and AlF3 after reaction of 

AAO with NbF5 at 500°C for 2 h. 
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4.4.2 Reactive Conversion with SnF2 

Reaction of AAO membranes with SnF2 was attempted at 600°C for 2 h. Under this 

condition, reaction was apparent as shown in Figure 4.5. However, a crystalline tin oxide 

or tin oxyfluoride product did not form. The XRD analyses shown in Figure 4.6 revealed 

the formation of AlF3 instead. Energy dispersive X-ray spectroscopy detected 

approximately 0.5-1% tin near the surface of the anodic alumina, suggesting the tin-

a 

b 
c 

Figure 4.4. (a), (b): SE images after reaction with NbF5 at 500°C for 2 h, 24 h water soak, 

oxygenation at 600°C for 4 h, and etching in 3 M NaOH for 1.5 h as view top-down and 

in cross-section, respectively. (c) X-ray diffraction analysis showing orthorhombic Nb2O5 

after this reaction, soak, oxygenation, and etch procedure. Scale bars correspond to (a) 200 

nm and (b) 1 μm. 
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containing product may be amorphous. Thus, due to the likelihood of excessive AlF3 

growth covering the surface of the AAO and preventing further handling of an inner core 

of tin-bearing product (i.e., liquid-based dissolution of AlF3 would prevent maintenance of 

a tin-bearing replica on a substrate), it became apparent that the formation of free standing 

tin oxide nanotube arrays formed by reactive conversion of AAO was unlikely without 

significant modifications to the experimental design. Further modifications were not 

explored. 

Figure 4.5. SE image after reaction of an AAO membrane with SnF2(g) at 600°C for 2 h. 

Scale bar corresponds to 2 μm. 
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4.4.3 Reactive Conversion with BiF3 

Reaction of an AAO template with BiF3 was attempted at 625°C for 2 h. Reaction 

was visually apparent on the surface of the template (Figure 4.7). SE images revealed large 

crystals on the surface of the AAO similar to those seen on templates reacted with SnF2 

(see Figure 4.5). XRD analysis proved that AlF3 had formed and that even though Bi was 

present in the resulting structure, it had been reduced to pure Bi (Figure 4.8). The most 

likely cause of the reduction of BiF3 to Bi was reaction with the outer Ni ampoule, a 

thermodynamically favorable reaction (see Equation 7 below). Although several layers of 

graphite (i.e. grafoil) were introduced to separate the BiF3 from the Ni, the inability to 

perfectly seal the BiF3 in grafoil is likely the cause of the reduction to Bi metal. The 

production of AlF3 may then be due to the reaction of nickel fluoride (i.e., NiF2, vapor 

pressure = 3x10-9 atm at 625°C, see Equation 8 below) with the AAO, but the relatively 

Figure 4.6. XRD analysis showing crystalline AlF3 following reaction with SnF2 at 600°C 

for 2 h. 
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small peaks that could be attributed to NiO but overlap other known products in the XRD 

analysis and the relatively low NiF2 vapor pressure at 625°C suggest unidentified reactions 

may be occurring in this system. 

2𝐵𝑖𝐹3(𝑔) + 3𝑁𝑖 → 2𝐵𝑖 + 3𝑁𝑖𝐹2  ΔG°RXN = -225 kJ  (7) 

3𝑁𝑖𝐹2(𝑔) + 𝐴𝑙2𝑂3 → 2𝐴𝑙𝐹3 + 3𝑁𝑖𝑂 ΔG°RXN = -519 kJ  (8) 

 

Figure 4.7. SE image of AAO membrane after reaction with BiF3 at 625°C for 2 h. Scale 

bar corresponds to 1 μm. 
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4.4.4 Reactive Conversion with SbF3 

AAO was reacted with SbF3 at 375°C for 8 h. Undesirable reaction was apparent 

by SEM analysis. A representative SE image after reaction is shown below (Figure 4.9). 

The channel edges appeared more rough than the starting AAO template (as illustrated 

previously in Chapter 1), and wire-like growths appear on the surface of the template. EDX 

revealed a significant accumulation of antimony was present both on the surface of the 

template and within the pore channels (via EDX analysis on the surface and on a cross-

section, Figure 4.10). X-ray diffraction showed that the product included amorphous or 

nano-crystalline material after reaction. Figure 4.11 illustrates that the X-ray diffraction 

pattern includes the primary diffraction peak for AlF3, the assumed by-product. This 

preliminary result suggested that the antimony-bearing product was amorphous at this 

temperature.  

Figure 4.8. XRD pattern of AAO after reaction with BiF3 at 625°C for 2 h. 
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Figure 4.9. SE image illustrating the structure resulting from the reaction of AAO with 

SbF3 at 375°C for 8 h. Scale bar corresponds to 200 nm. 
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Figure 4.10. EDX reveals the presence of a significant amount of antimony and fluorine 

on the surface (left) and throughout the thickness (analysis taken near the center of a 

cross-section shown at right) of the AAO reaction product with SbF3.  Semi-quantitative 

analyses suggest a ratio between 1:2 and 1:4 Sb antimony to aluminum in the analyzed 

volumes after reaction at 375 °C for 8 h. 
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4.4.5 Reactive Conversion with ZrF4 

After reaction with ZrF4(g) at 800°C for 2 h, Al2O3 was converted into one or more 

zirconium oxyfluorides including ZrF3.12O0.44, and possibly also ZrF2.67O0.67, and 

ZrF2.46O0.87, and crystalline AlF3 as indicated by the XRD spectrum in Figure 4.12. At this 

temperature, overgrowth and uneven growth of the product layer was seen by SEM (Figure 

4.13). Scaling the reaction back to 600°C for 2 h resulted in AlF3 crystallites apparent on 

the surface of the template but no formation of the oxyfluorides seen at 800°C (Figure 

4.14). Further refinement of the reaction temperature and time may result in more uniform 

growth of the products and it is possible that the oxyfluorides will all convert to ZrO2 upon 

applying appropriate oxygenation conditions. 

Figure 4.11. X-ray diffraction spectrum of product from the reaction between AAO and 

SbF3 at 375°C for 8 h. 
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Figure 4.12. X-ray diffraction spectrum of product of reaction between ZrF4 and AAO at 

800°C for 2 h. 
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Figure 4.13. SE images taken after reaction of AAO membrane with ZrF4(g) at 800°C for 

2 h. (a) High magnification of the top shows pore channels roughened by reaction. (b) Low 

magnification of the top shows uneven growth on the surface. (c) Cross-sectional view 

shows significant reaction inside the pore channels. Scale bars correspond to (a) 200 nm 

and (b, c) 2 μm. 

a b 

c 
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4.5 Conclusions 

This chapter has gone beyond the study of the interaction of TiF4(g) with Al2O3 to 

uncover other potential metal oxide structures that can be formed via gas/solid reactive 

conversion of Al2O3. We have explored the thermodynamics and experimental conditions 

for the formation of Nb2O5, SnO2, Sb2O3, Bi2O3, and ZrO2 from porous anodic Al2O3. 

While  shape-preserving chemical conversion was not realized with all of the reactions 

Figure 4.14. SE image and XRD spectrum of AAO membrane after reaction with ZrF4 at 

600°C for 2 h. Scale bar corresponds to 2 μm. 
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examined, we have shown that freestanding Nb2O5 nanochannel arrays can be formed from 

AAO membranes with similar success as was seen in previous chapters with the formation 

of TiO2 replicas. Such Nb2O5 arrays could be useful in a variety of catalytic and other 

devices.  
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APPENDIX A: Calculation of the Diffusion Coefficient of TiF4(g) in 

Argon 

The diffusion coefficient for TiF4(g) in argon, assuming both are nonpolar, 

nonreacting molecules and using the Lennard Jones potential to evaluate the influence of 

the molecular forces can be calculated using119: 

𝐷𝐴𝐵 =
0.001858𝑇

3
2 [

1
𝑀𝐴

+
1

𝑀𝐵
]

1
2

𝑃𝜎𝐴𝐵
2 𝛺𝐷

 

where DAB is the diffusion coefficient of A through B, in cm2/s; T is the absolute 

temperature, in K; MA and MB are the molecular weights of A and B, respectively; P is the 

absolute pressure, in atmospheres; σAB is the ‘‘collision diameter,’’ a Lennard–Jones 

parameter, in Å; and ΩD is the ‘‘collision integral’’ for molecular diffusion, a dimensionless 

function of 𝜅𝑇/𝜖𝐴𝐵; 𝜅 is the Boltzmann constant, which is 1.38 × 10-16 ergs/K; and 𝜖𝐴𝐵 is 

the energy of molecular interaction for the binary system A and B, a Lennard-Jones 

parameter, in ergs. 

 For argon, the values of σ and 𝜖𝐴 /κ, are 3.418 Å and 124 K, respectively, as 

calculated from viscosity data.119 There is no published data for the Lennard-Jones 

parameters of TiF4(g), however, the parameters may be estimated from similar molecules 

(i.e., same coordination number and comparable atomic radii), such as SiH4 and SiCl4. 

Since for SiH4, σ and 𝜖𝐴/κ, are 4.08 Å and 207.6 K, respectively, and for SiCl4, σ and 𝜖𝐴/κ, 

are 5.08 Å and 358 K, respectively, the σ and 𝜖𝐴/κ values of TiF4, by taking the average of 

that of SiH4 and SiCl4, are estimated to be ~4.5 Å and ~280 K, respectively.119 Thus, 
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𝜎𝐴𝐵 =
𝜎𝐴 + 𝜎𝐵

2
=

3.418 + 4.5

2
= 3.9 Å 

𝜖𝐴𝐵

𝜅
= √(

𝜖𝐴
𝜅⁄ )(

𝜖𝐵
𝜅⁄ ) = √124 × 280 = 186 K 

When T = 310°C =583 K and P = 1atm: 

𝜀𝐴𝐵

𝜅𝑇
=

186

583
= 0.319 ⟹

𝜅𝑇

𝜀𝐴𝐵
= 3.1 

Using the function table listing 𝛺𝐷 as a function of this parameter from Welty119: 

Ω𝐷 = 𝑓 (
𝜅𝑇

𝜀𝐴𝐵
) = 𝑓(3.1) = 0.94 

Since MTiF4 = 124 and MAr = 40, then: 

𝐷𝐴𝐵 =
0.001858(583)

3
2 [

1
40 +

1
124]

1
2

1 × 3.92 × 0.94
= 0.33

cm2

s
= 3.3 × 10−5

m2

s
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