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SUMMARY

Externalities arising from actions of one player in the economy and directly affecting
the well-being of another are ubiquitous. In these situations, market equilibria often fail to
be efficient. This dissertation explores roles of networks, clubs and policy commitments
in the internalization of externalities and thus in the generation of efficient outcomes. The
first essay examines how network-based social incentives would affect the provision of
public goods in endogenous networks. The second essay analyzes effects of the formation
of multiple climate clubs and free trade agreements among club members on the stability
and efficiency of international environmental agreements. The third essay studies effects of
policy commitments to the provision of a new global-warming-relieving technology called

solar radiation management relative to effects of policy commitments to carbon mitigation.
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CHAPTER 1
INTRODUCTION

It is a ubiquitous phenomenon that actions of one player in the economy may produce ex-
ternalities directly affecting the well-being of another. In these situations, market equilibria
usually fail to yield efficient outcomes. Various suggestions have been proposed for al-
ternative ways that would lead to efficiency, including taxes, subsidies, quotas, etc. This
dissertation builds upon these traditional solutions and explores the roles of networks, clubs
and policy commitments in the internalization of externalities and thus the generation of
efficiency.

The first essay examines the role of social incentives in public goods games in endoge-
nous networks. Examples of such network-based incentives include feelings of pleasure
associated with helping others, peer recognition, recipient-based material rewards, etc. We
find that large social benefits will always induce more volunteers only when the network
flow of benefits is two-way. In these cases, volunteers could initiate links with free riders.
For both one-way and two-way flows, volunteers are not necessarily those who enjoy the
largest social benefits from each recipient. We also characterize the condition that ensures
efficient provision of public goods in a stochastically stable equilibrium of either flow type:
the social benefits from each recipient are large relative to the linking cost for sufficiently
many individuals.

The second essay analyzes effects of the formation of multiple climate clubs and free
trade agreements among club members on the stability and efficiency of international en-
vironmental agreements. The major takeaways are that the formation of multiple climate
clubs improves equilibrium stability when emissions coefficients are not large, and the
inclusion of free trade in club treaties enlarges the stable and efficient region of the equilib-

rium. Meanwhile, stable club structures could involve more than three countries as partic-



ipants of the clubs. In particular, the grand coalition would be the only stable and efficient
structure when club members free trade with each other and emissions coefficients are
sufficiently large. Moreover, we find that stable equilibrium structures based on coalition-
proofness and group stability would be different if multiple clubs are formed and free trade
is included.

The third essay studies effects of environmental policy commitments in a futuristic
world in which solar radiation management (SRM) can be utilized to reduce climate change
damages. Carbon and sulfur dioxide emissions (correlated pollutants) can be reduced
through tradable permits. We show that if nations simultaneously commit to carbon permit
policies, national SRM levels rise with carbon quotas. Alternatively, if they simultaneously
commit to SRM policies, the global temperature falls with each unit increase in the global
SRM level. A nation always wishes to be a leader in policymaking, but prefers carbon to

SRM policymaking. The globe prefers SRM policy commitments.



CHAPTER 2
VOLUNTARY PROVISION OF PUBLIC GOODS IN ENDOGENOUS
NETWORKS: A PERSPECTIVE FROM SOCIAL INCENTIVES

2.1 Introduction

Individuals commonly get access to local public goods through personal acquisition and
social networking. For instance, consumers learn about product features by making own
searches and talking with market mavens; users of open-source software or contents may
make their own contribution to the projects and benefit from others’ efforts through com-
munication; and farmers usually get familiar with new technologies through own experi-
mentation and discussions with each other. Both personal acquisition and social network-
ing consume time and resources. Empirical and experimental studies have acknowledged
social incentives as important motivations for personal provision of public goods in en-
dogenously formed social networks.! Examples of such network-based incentives include:
feelings of pleasure associated with helping others, peer recognition, recipient-based mate-
rial rewards, etc. [53, 40, 55, 11].

Several questions remain regarding the role of social incentives in the provision of
public goods in endogenous networks. Do such incentives always induce more volunteers?
For those who choose to free ride, is it because they derive less payoffs from the incentives
than volunteers do, ceteris paribus? And what are the welfare effects?

This paper makes a first attempt to address these questions by integrating the social
incentives into [31]’s model (henceforth G&G) of local public goods games in endogenous

networks. Our analysis also yields insights for designing environments to induce efficient

'In our first example, the underlying networks are endogenous as consumers could establish social con-
tacts with market mavens to learn about product features; conversely, market mavens could also form links
with consumers to share their knowledge about the products. The social networks are endogenous in a similar
sense in the other two examples.



decisions on public goods provision and network formation.

More specifically, players choose whether or not to provide a public good and with
whom to form social links. They do so by taking into account social benefits of volun-
teering, which depend on the numbers of recipients of the public goods they provide. In
addition, we consider both one-way and two-way flow of benefits in networks.? In the for-
mer case, only the sponsor of a link could access the public good provided by the other
person involved?, while in the latter case, the transmission of the public good could go in
either direction no matter who incurs the linking cost®.

The main findings are as follows. First, when the flow of benefits is one-way, every strict
Nash equilibrium has a core-periphery multi network structure. Links between volunteers
and free riders all go from the latter to the former. Every player would be better off in an
equilibrium with more volunteers. However, the presence of social incentives would not
always bring more Nash volunteers, no matter how large the benefits are. This is due to
the fact that for one-way flows, a volunteer’s social benefits only depend on the number of
incoming links from others. It is then possible for coordination failure to occur.

Second, when the flow of benefits is two-way, a strict Nash equilibrium has a nested
split network structure, which is either a core-periphery simple network or a multipartite
simple network. A volunteer’s social benefits now depend on the total number of incoming
and outgoing links. Large enough social incentives could always induce more Nash volun-
teers by incentivizing them to initiate links with others, which in turn increases their social
benefits. Having more volunteers would make everyone better off as long as there are not
too many of them or the linking cost is sufficiently low relative to the social benefits from
each recipient.

Third, for either type of network flow, Nash volunteers are not necessarily those who

2[6], [30], [32] and [31], among others, have studied one-way and two-way flow of benefits in networks.

3For example, one GitHub user follows another so as to get notifications about the latter’s latest public
activities such as uploading new codes.

“4For example, consumers could learn about features of new products from the phone calls made by market
mavens.



enjoy the largest social benefits from each recipient. This can be seen from the fact that
the social benefits of volunteering depend on the number of incoming (and outgoing) links,
and link formation is costly. Therefore, it is always possible that some players choose to
free ride just due to too few incoming links.

Fourth, in a stochastically stable equilibrium of either type of flow, social incentives
could always bring more volunteers and make everyone better off. This happens when the
social benefits from each recipient of the public goods are sufficiently large relative to the
linking cost for sufficiently many individuals.

Finally, in large societies, every strict Nash equilibrium of either type of network flow
has a core-periphery structure and a very small proportion of the population provide the
public goods. That is, every equilibrium exhibits the empirically robust law of the few,
subsumed by G&G. The result obtains due to the joint forces of several factors: links are
endogenous and costly; the public goods provided by oneself and by neighbors are sub-
stitutable; different individuals generate the same value of social benefits, ceteris paribus;
and marginal returns to both consumption and social benefits are decreasing.

The organization of the rest of the chapter is as follows. Section 3.2 discusses our
contribution to the literature. Section 3 describes model setup. Section 3.4 characterizes
(strict) Nash equilibria. Section 3.5 analyzes effects of social incentives on the equilibria.

Section 3.6 presents two extensions of the basic model. Section 3.7 concludes.

2.2 Relation to the Literature

The paper contributes to the literature by introducing social incentives into a model of local
public goods game in endogenous networks. Such incentives are widely acknowledged
in models of network-free public goods games and other prosocial activities (see, among
others, [19], [2], [3] and [10]). To the best of our knowledge, current models studying
local public good games in endogenous/fixed networks (see, among others, [14], [31], [1]

and [37]) have not considered such incentives as motivations for public goods provision.



One exception is [39], who makes a similar attempt by considering status rents generated
from attractive network positions in public goods games on one-way flow networks. Our
paper differs from theirs in two aspects: 1) the social incentives in our model depend on
individual decisions on both volunteering and networking; i1) we study both one-way and
two-way flow of benefits and examine the differences and similarities in the way social
incentives work to affect the equilibria in these two types of networks. Other related but
different works, for example, [13], [23], [35] and [46], consider altruism, reciprocity, social
status or warm glow on fixed networks.

This exercise helps to enhance our understanding of the effects of social incentives
on public goods provision. In network-free settings, the consideration of such incentives
always leads to more provision.’ This, however, is not necessarily the case when the public
goods and the incentives are embedded in endogenous networks. If everyone plays best
response in a one-shot game, social incentives will always bring more volunteers only
if the network flow of benefits is two-way. In these cases, sufficiently large incentives
would induce volunteers to actively form links with others, which in turn increase their
social benefits and thus stabilizing their volunteering behavior. Alternatively, if individuals
respond periodically and myopically and the dynamics of the play follows logit quantal
response rules, then the occasional deviations due to say mistakes or experimentation would
allow players to coordinate on the equilibrium with more volunteers for both types of flows.

We note that the active linking behavior of volunteers with two-way flows have not been
reported in previous studies without the consideration of social incentives. In these setups,
equilibrium links between volunteers and free riders all go from the latter to the former
(see, among others, [31] and [37]). It is not uncommon, however, to observe such active
linking behavior in real life. For example, market mavens often initiate conversations with
other consumers to inform them about product features or places to shop [28]. And when

a group of people are planning for a road trip, warm-hearted individuals usually actively

>Our comparison of the network-free and the current setup focuses on the overall effects of social incen-
tives rather than how different types of the incentives interact with each other.



keep others updated about their findings on optimal routes, etc. The incorporation of social
incentives therefore speaks to these additional phenomena.

Moreover, our welfare analysis yields insights for designing environments that could
induce efficient voluntary provision of public goods in endogenous networks. If the net-
work flow of benefits is one-way, then the larger the social incentives from each recipient
for sufficiently many people, the better off everyone will be in a stochastically stable equi-
librium. If the flow of benefits is two-way, keeping the cost of linking low enough relative
to social benefits per recipient would make everyone better off with larger incentives in

every strict Nash equilibrium.

2.3 Model Setup

We study a public good game in an endogenous network, with the consideration of social in-
centives. Let N = {1,2, ...,n} withn > 3 be a set of players. Playeri € N simultaneously
determines her volunteering strategy z; € {0, 1} and linking strategies g;; € {0,1},Vj €
N\{i}. We call player i a volunteer if she chooses to provide the public good (i.e., z; = 1)
and a free rider otherwise. For player j € N\{i}, g;; = 1 when ¢ maintains a link with® j;
gi; = 0 when there is no link from i to j. Let X = {0,1} and G; = {0,1}""! represent
the respective space of volunteering and linking strategies of player i. Let 5; = X x G, be
the entire strategy space of player 7z and S = 57 x Sy X --- x .S, be that of all players. A
strategy profile s = (x,g) € S specifies the actions © = (x1, 9, ..., x,) and the network
of relations g = (g1, 92, - - -, gn), Where g; = (i1, -+, Gii—1, Giit 1 ---» Gin ), Vi € N. We focus
on pure strategies throughout the paper.

By definition, the network of relations g is a directed graph. Let N/"(g) = {j € N :
gji = 1} be the set of players forming a link to ¢ and N/**(g) = {j € N : g;; = 1} be the set
of those receiving a link from ¢. Define the closure of ¢ as an undirected graph, denoted by

g = cl(g), where g;; = max{g;;,9;i}, Vi,j € N. Wecall j € N;(g) ={j € N:g;; =1}

®Throughout the text, we use “maintain a link with”, “form a link with” and “link with” interchangeably.



as a neighbor of player 7. Players 7 and j are linked if g;; = 1 and are minimally linked if
they are linked and g¢;;g;; = 0.

Moreover, we consider both one-way and two-way flow of benefits in networks. In the
former case, a link that player ¢ forms with ;7 only allows ¢ to access the public good pro-
vided by 7; while in the latter case, the link allows both players to access the public good
provided by the other. Meanwhile, a volunteer enjoys social benefits when her provision
of the public good reaches others. Then the one-way (respectively, two-way) transmission
of the public good leads to one-way (respectively, two-way) flow of social benefits.” We
assume that the value of a volunteer’s social benefits is increasing and concave in the num-
ber of recipients of her provision. For example, in a controlled lab experiment, [4] finds
that altruism is a partially congested good: doubling the number of recipients increases but
does not double the warm-glow utility to the giver.

Therefore, when the flow of benefits is one-way, the payoff to player i from strategy

profile s = (z, g) is:

MeU(s) = flo+ D ;) = cai = kIN (9)] + bi(|N" (9) ), 2.1

JEN?(9)
where f(-) represents the benefits of consuming the public good, ¢ > 0 is the cost of
producing the public good, k£ > 0 is the cost of maintaining a link and b;(-) denotes player
i’s social benefits from volunteering. Throughout the text, |.4| represents the cardinality of

a set A. When the flow of benefits is two-way, the payoff is:

(s) = flzi+ Y a) — cx; — kIN"(g)] + bi(|Ni(g)])i. (2.2)

JENi(9)
By abuse of notations, Vy € N, write f'(y) = f(y+1)— f(y) and ["(y) = f'(y+1) —
f'(y). To focus on interesting scenarios, we assume that Vy € N, f'(y) > 0, f"(y) < 0,

f(0) =0, f(0) > ¢ > k > 0and ¢ — k is sufficiently large. Then there exist y >

7See payoff functions below for the exact formulation.
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y > 1 such that y = argmaxyen[f(y) — cy] = max{y € N : f'(y — 1) > ¢} and
y = argmaxyen(f(y) — ky] = max{y € N: f'(y — 1) > k}. Note that y (respectively,
/) represents the optimal units of the public good that a player wants to access when the
marginal access cost is ¢ (respectively, k). Similarly, Vm € N, write b,(m) = b;(m +
1) — bi(m) and b/(m) = bi(m + 1) — bi(m). We assume that Vm € N, b(m) > 0,
bi(m) <0, b;(0) = 0, and bj(m) > b’(m) if and only if b;(0) > /(0). Then there exist
m; > m; > 1 such that m; = arg max,,en[b;(m) — km] = max{m € N : bi(m — 1) > k}
and m; = arg maxen[f(1+m)+b;(m)—km| = max{m € N: f'(m)+b,(m—1) > k}.
Here, m,; (respectively, m;) is the maximum number of outgoing links player ¢ will form
with free riders (respectively, volunteers) when she volunteers. In addition, we assume
that b;(n — 1) > ¢,¥i € N. This allows us to focus on interesting scenarios in which
the consideration of social incentives plays a role when player ¢ decides whether or not to
volunteer.

Let s_; be the strategies of all players other than i. For either type of flow, define a

strategy s; as a best response of player ¢ to s_; if

Hi(Si,S,i) Z Hi(Sg, S,i),VS; € Sz

Let BR;(s_;) denote the set of player i’s best responses to s_;. Then a strategy profile s* =
(s},...,s) is a Nash equilibrium (NE) if s; € BR;(s*,), Vi € N. A Nash equilibrium
is strict if {s;} = BR;(s*,), Vi € N, i.e., every player has a unique best response to
others’ strategies. Moreover, a strategy profile s Pareto dominates another profile s’ # s if
I1;(s) > II;(s"), Vi € N and the inequality is strict for at least one player.

We now define some more concepts and notations to describe the equilibrium profiles.
LetV = {i € N : 2; = 1} be the set of volunteers and F' = {i € N : x; = 1} be the set
of free riders.

In addition, there is a path in g between players ¢ and j if either g;; = 1 or there



exist players ji, jo, ..., jm Who are distinct from each other and from 7 and j, and satisfies
Gijv = Gijo = --- = Gij,, = 1. We say a network g is connected if there exists a path between
every pair of players; and g is minimally connected if it is connected and there is a unique
path between every pair of players. We call an undirected network g as a simple graph if it
is minimally connected, and a multigraph if it allows multiple links between two players. A
core-periphery network consists of two groups of players, hubs Nyyp and spokes Nspg .
For any player i € Nyyp, Ni(g) = N\{j}; for any player j € Nspx, N;j(§) = Nuvp- §
is a core-periphery simple network if it is both simple and has a core-periphery structure;
g 18 a core-periphery multi network if it is both a multigraph and has a core-periphery
structure. Moreover, we define an independent set of g as a subset of players such that no
two players are linked. g is a multipartite simple network if it is a simple graph and the
set of players can be partitioned into multiple independent sets. Note that a core-periphery
simple network is a special case of a multipartite simple network, in which each hub player
forms an independent set. Finally, we say that a network has a nested split structure if for

any pair of players i and j, N;(g) C N;(g) whenever |N;(g)| > |N;(g)|.

2.4 Shape of Equilibrium Profiles

In this section, we characterize (strict) Nash equilibria for each type of network flow. We
begin with some common elements for the two types. First, returns from consuming the
public good, f(-), are increasing and concave. Second, the costs of personal provision,
¢, and of forming each additional link, £, are positive constants with ¢ > k. Third, the
public goods provided by oneself and the neighbors are substitutable. Recall that § =

arg max,en|f(y) — cy] and § = arg max,en[f(y) — ky], then we have the following.
Observation 2.1. For either type of flow, the number of volunteers in every NE is at least
7.

Observation 2.2. For the mere sake of the consumption benefits of the public good, a player

will only link with volunteers and will sponsor at most 3 number of the links.

10



Now we proceed to present the equilibrium profiles for the two types of flows.

2.4.1 One-way Flows

When the flow of benefits is one-way, only the sponsor of a link could access the public
good provided by the other player involved. Therefore, volunteers would not be able to

gain social benefits from actively linking with others. Then we have the following.

Proposition 2.1. When the flow of benefits is one-way, every player in equilibrium only
forms links with volunteers. In a strict NE, §j < Y.\ x; < § and g* is a core-periphery
network in which every hub player is a volunteer receiving links from everyone else and

every spoke player does not exert efforts.

Figure 1 illustrates the strict NE for one-way flow of benefits.

Figure 2.1 — Examples of strict Nash equilibria for one-way flows of benefits with n = 9, § = 2
and y = 3. Blue (respectively, yellow) nodes represent volunteers (respectively, free riders).

Proof. We provide all proofs in Appendix A. [

The intuition of the results follows directly from the fact that for one-way flows, indi-
viduals form outgoing links merely for the sake of consumption benefits of the public good.
If the total number of volunteers is at least § + 1, then every player will randomly pick g

(for a free rider) or ¢y — 1 (for a volunteer) of them to link with, and nobody’s best response

11



is strict. This implies that in a strict NE, there are at most ¥ number of volunteers. Ev-
ery volunteer’s provision is pivotal to everyone else’s consumption benefits and so receives

incoming links from all other n — 1 players. This results in a core-periphery multi network.

2.4.2 Two-way Flows

When the flow of benefits is two-way, a link transmits the public good provided by either
player involved to the other, no matter who pays the linking cost. Therefore, while a free
rider forms links just to access the public good, a volunteer’s incentives for forming out-
going links come from both the consumption benefits of accessing others’ provision of the
public good and the social benefits of communicating her own provision to others. More-
over, a volunteer’s social benefits are increasing and concave in the number of recipients of
the public good she provides; and different recipients generate the same amount of social
benefits, ceteris paribus. Therefore, there is still a fixed upper bound on the number of out-
going links a volunteer would like to form; she will prefer linking with another volunteer
to linking with a free rider since the former also generates consumption benefits; and she

will be indifferent among all volunteers (respectively, free riders) to link with.

Proposition 2.2. When the flow of benefits is two-way, a volunteer in equilibrium may form
links with free riders. A strict NE has a nested split network structure, which belongs to

one of the following two types:

*is a core-periphery simple network in which every

e type l y < ZieNx;‘k <4949
hub player volunteers while individuals in the spoke do not exert efforts, and links

between the hubs and the spokes could go in both directions;

o type II: }°. v x; > ¢ + 1, g* is a multipartite simple network in which all links
between the volunteers and the free riders go from the former to the latter; and there
could be three groups of volunteers, say groups A, B and C': volunteers in groups

A and B are minimally linked with each other and sponsor links with every group
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C volunteer, group A volunteers also form links with every free rider while group C

volunteers do not sponsor any links.

Figure 2 illustrates the strict NE for two-way flow of benefits.

@ group-A volunteers
@ group-B volunteers
[ group-C volunteers

Figure 2.2 — Examples of strict Nash equilibria for two-way flows of benefits withn = 9, § = 2
and (1, ma, ...,mg) = (50,50,5,2,2,1,1,1,1). Notes: i) every strict NE belongs to either type
I or type II; ii) in every type-1I strict NE, players with m; = 50 are group-A volunteers and the
one with m; = 5 is a group-B volunteer; iii) type-I strict NEs with the same number of volunteers
could differ in the directions of links between any pair of players while type-II strict NEs with
the same number of volunteers could differ in the directions of links within group-A volunteers or
between group-A and group-B volunteers; iii) for any volunteer ¢ in a type-I strict NE, the number
of sponsored outgoing links to free riders is no more than min{m; — |N; v|, |F|}, where |N; y| is
the number of volunteers as player i’s neighbors and |F'| is the number of free riders; iv) for any
volunteer ¢ in a type-II strict NE, the number of sponsored outgoing links to free riders is either O
(if m; — |N;v| < |F| — 1) or |F| (otherwise).

We discuss the points to note underlying the results. First, whenever the number of
volunteers in equilibrium is no more than ¢, a player could always gain in consumption
benefits by linking to an unlinked volunteer. This means every volunteer’s provision is
pivotal to others, leading to a core-periphery simple network in which the core players
are volunteers and the periphery do not exert volunteering efforts. Second, recall that a

volunteer prefers linking with another volunteer than linking with a free rider, then i) a

volunteer forms links with all other unlinked volunteers before linking with free riders;
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i1) when the number of volunteers exceeds ¢ in a strict NE, it could not be more than
max;cy m; since otherwise, no volunteer would sponsor links with free riders. Third,
when the number of volunteers exceeds ¢, a volunteer’s provision is no longer pivotal
to every free rider while a free rider is indifferent among the volunteers to form links
with. This means in a strict NE, links between volunteers and free riders all go from
the former to the latter. Fourth, since a volunteer is indifferent among the other volunteers
(respectively, the free riders) to form links with, then in a strict NE with more than ¢ number
of volunteers, volunteers that maintain outgoing links are minimally linked with each other.
The remaining volunteers form an independent set. This results in a multipartite simple

network in which there could be three groups of volunteers as described in the proposition.

2.4.3 The Law of the Few

One major finding of G&G is that their equilibrium results exhibit the empirically observed
law of the few: in large societies, a small proportion of the population provide public
goods. We check if after the consideration of social incentives, the equilibrium still has

that property. The answer is yes and follows from Propositions 2.1 and 2.2.

Corollary 2.1. For either one-way or two-way flow of benefits, every strict NE exhibits the

>

law of the few, i.e., ZieN Ty () gsn — 00,
n

We note that in a strict NE, a volunteer’s provision of the public good may or may
not matter for another player’s consumption benefits. The former happens for strict NE of
one-way flows and type-I strict NE of two-way flows, and the total number of volunteers
shall be no more than the maximum number of links a player will sponsor for consumption
benefits only, which is ¢y by our notation. Then the conclusion follows directly. The latter
happens for type-II strict NE of two-way flows. Since a free rider is indifferent among the
volunteers to link with, then in a strict NE, it must be that volunteers form links with free
riders. Moreover, since a volunteer ¢ forms links with other volunteers first and will not link

with free riders when the number of neighbors exceeds m;, then whenever every free rider

14



has access to the public good, the number of volunteers shall not exceed max;cy 1m;, and
this number shall be no less than n — 1. Since max;c m; is a constant, then the condition
could not hold when n — oo. This implies that in large populations, every strict NE of

two-way flows belongs to type I and the law of the few follows.

2.5 Effects of Social Incentives

It is tempting to think that the presence of social incentives will induce more volunteers in
equilibrium. In this section, we first check if this is always the case. Relatedly, we check
who will be the volunteers, or equivalently, if an individual choosing to free ride is due to
enjoying lower social benefits from each recipient than a volunteer does. After these, we
examine if the presence of social incentives will deliver higher efficiency.

To start with, we observe the following for the shapes of NE in the absence of social

incentives.

Lemma 2.1. For either one-way or two-way flow of benefits, in the absence of social in-
centives, in every strict NE, . 7 = 4, and g* has a core-periphery structure in which
every player in the hub volunteers and receives links from everyone else and every player

in the spoke does not exert volunteering efforts.

Without social incentives, for either type of flow, a player makes volunteering decision
merely based on the consideration of consumption benefits of the public good. Recall that
the marginal consumption benefits exceed (fall below) the personal provision cost whenever
the amount accessed is less (more) than ¢ units, and it is cheaper to access a unit of the
public good by linking with others than by exerting one’s own efforts. Therefore, a player
will choose to volunteer (free ride) when less (more) than ¢ number of others do so. This

means there are § number of volunteers in every equilibrium.
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2.5.1 Do Social Incentives Always Induce More Volunteers and Who Are the Volunteers?

Lemma 2.1 implies that if the presence of social incentives brings more volunteers, then
there are at least § + 1 number of them in equilibrium. We check if this holds in every strict
NE. In addition, we check whether volunteers are always those with higher social benefits

from each recipient.

Proposition 2.3. When the flow of benefits is one-way, i) the presence of social incentives
does not necessarily lead to more volunteers in every strict NE; ii) a volunteer not neces-
sarily enjoys higher social benefits from each recipient than a free rider does in a strict

NE.

Proposition 2.4. When the flow of benefits is two-way, i) the presence of social incentives
will lead to more volunteers in every strict NE if and only if at least {+ 1 number of players
enjoy sufficiently high social benefits from each recipient; ii) a volunteer not necessarily

enjoys higher social benefits from each recipient than a free rider does in a strict NE.

The intuition is as follows. Based on the notion of strict NE, a strategy profile is stable
if nobody has an incentive to deviate. For one-way flows, a player’s social benefit from
volunteering is a function of the number of incoming links she receives, which only depends
on others’ linking decisions. Then given others’ strategies, whenever that number is zero,
an increase in her own social benefits from each recipient will not affect her payoff from
volunteering and thus will not change her volunteering decision. Since a free rider in any
strict NE of one-way flows does not have incoming links, then for the strategy profile with ¢
number of volunteers, an increase in marginal social incentives will not cause any free rider
to deviate. Hence, for one-way flows, no matter how high the marginal social incentives
are, it is always possible for a strict NE to have the same number of volunteers as when
the incentives are absent. In addition, players with higher marginal social incentives may
choose to free ride due to zero incoming link.

For two-way flows, a player’s social incentives come from both incoming and outgoing
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links. Then given others’ strategies, when her social benefits from each recipient increase,
she may form more outgoing links, which will in turn raise her social benefits from vol-
unteering. Therefore, when the marginal social incentives are sufficiently high for at least
7 + 1 number of the players, there will be more than § number of volunteers in every strict
NE. On the other hand, since a player’s social benefits still depend on the number of in-
coming links, then the payoff of volunteering will be lower when that number is smaller.
Recall that in type-I strict NE of two-way flows, link directions are not fixed. And in type-II
strict NE, whenever group B and C' volunteers exist simultaneously, a group C' volunteer
always has less incoming links than a free rider does. Therefore, in these cases, a player
may choose to free ride just due to too few incoming links, rather than low social benefits
from each recipient.

The above analysis shows that in general, we could not conclude that in every strict
NE, the presence of social incentives will lead to more volunteers and a volunteer enjoys
higher social benefits from each recipient than a free rider does. This is because there exist
many strict NE that differ in the numbers of volunteers, the identities of volunteers for a
given number of them or the directions of links, which is related to an equilibrium selection
problem.

In the rest of this subsection, we adopt a solution concept called stochastically stable
equilibrium® for equilibrium selection and further analysis of the impacts of social incen-
tives. Individuals are considered to be boundedly rational and make decisions myopically
and periodically, due to say mistakes, mutations or limited information about the game.
More formally, at each discrete point of time, one player is randomly selected to update her
strategy based on the current play of others. The update follows a logit quantal response
rule: a player chooses best reply with high probability and chooses other strategies with
some non-zero small probabilities. We assume that a mutation is less likely if it entails a

larger loss in payoff. A strategy profile is a stochastically stable equilibrium (SSE) if it

8For an introduction of this solution concept, see among others, [29], [36] and [54].
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has a positive probability in the limit distribution when the sizes of stochastic perturbations
become vanishingly small. More details of the dynamic setup are available in Appendix
B. The introduction of perturbed best-response dynamics allows us to study the relative
robustness of different strict NE. Below we make an attempt to characterize the conditions
under which SSE involve more volunteers in the presence of social incentives, who enjoy

higher social benefits from each recipient than free riders.

Remark 2.1. In SSE, the presence of social incentives will lead to more volunteers and the
volunteers are those who enjoy higher social benefits from each recipient of their provision
if there exist a sufficient number of individuals with high enough social benefits, which are

also significantly larger than the rest of the population.

Figure 2.3 — Examples of stochastically stable equilibria for one-way flow of benefits (the left graph)
and two-way flow of benefits (the right graph) with n = 9, § = 2, §y = 3 and (", Mo, ..., Mg) =
(50,50,50,1,1,1,1,1,1). Notes: i) the left graph represents the unique SSE for one-way flow
of benefits in which players with m; = 50 are the volunteers; ii) every SSE for two-way flow
of benefits is a type-I strict NE in which the three players with m; = 50 are the volunteers, and
different SSE vary in terms of link directions between the players.

The rationale for this remark is as follows. First, as mentioned above, the shape of SSE
shows the relative stability of different strategy profiles, which depends on the probability
and thus the cost of a transition between every pair of states. We note that if due to some
exogenous changes, the cost of every transition into a state is lower than that of every
transition out of it, then that state is the unique SSE. Second, as is known in the literature,

only the cheapest route matters for calculating the cost of a transition. For either type
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of flow, there are typically three candidate cheapest routes for a transition that involves
the birth (death) of a volunteer. Route 1 involves that player’s own mistake of starting
(stopping) volunteering; route 2 involves the player’s best response to others’ mistakes in
adding (severing) links to her; route 3 involves the player’s best response to others’ mistakes
in stopping (starting) volunteering. We note that since a player only enjoys social benefits
when she volunteers, then the cost of the birth (death) of that player using route 1 or 2 is
declining (increasing) in her social benefits from each recipient, while that using route 3 is
related to others’ social benefits from each recipient. When her social benefits from each
recipient are high enough, which are also sufficiently larger than others’, the cheapest route
belongs to one of the first two routes and the cost of every transition involving the birth of
that volunteer is lower than that of transition involving the death of the volunteer. Therefore,
when there exist a sufficient number of players with high enough social benefits from each
recipient, which are also much larger than the rest of the population, SSE involves those

players with high social benefits from each recipient as the volunteers.

2.5.2 Do Social Incentives Make Everyone Better Off?

In this subsection, we set out to examine the welfare effects of social incentives. We adopt
the concept of Pareto dominance when comparing the efficiency of two strategy profiles.

We first examine whether the strict NE are Pareto ranked for each type of flow.

Proposition 2.5. When the flow of benefits is one-way, a strict NE with more volunteers

Pareto dominates another with less volunteers.

Proposition 2.6. When the flow of benefits is two-way, i) a type-1 strict NE with more
volunteers Pareto dominates another with less volunteers; ii) a type-II strict NE with more
volunteers and a type-I strict NE with less volunteers do not Pareto dominate each other in

general.

The above results show that for either type of flow, whenever the equilibrium network
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has a core-periphery structure and the number of volunteers is not large, having more volun-
teers in equilibrium is always beneficial to everyone. When the network flow is of two-way,
having many volunteers in a type-1I equilibrium may not make everyone better off than in
a type-I equilibrium with less volunteers. This is because in the case of overabundance,
volunteers would have to form links to every free rider. They may then receive less pay-
offs than in an equilibrium in which they get access to similar amount of public goods and
social benefits, but have much less costly links to form.

These results together with the ones in Section 5.1 lead to the following.

Corollary 2.2. When the flow of benefits is one-way, social incentives not necessarily make

every Nash player better off, due to possible coordination failure.

Corollary 2.3. When the flow of benefits is two-way, social incentives not necessarily make
every Nash player better off, due to possible overabundance of volunteers and costly link-
ing.

We further note that for two-way flows, if the cost of linking is significantly low relative

to the social benefits from each recipient of the public goods, then everyone will be better

off with the consideration of social incentives. Then we have the following.

Corollary 2.4. For either type of network flow, stochastic stability based on logit quantal
response dynamics predicts that every player will be better off with the consideration of so-
cial incentives if the social benefits from each recipient of the public goods are significantly

large relative to the linking cost for sufficiently many individuals.

2.6 Extensions

2.6.1 Heterogeneity in Consumption Benefits and Production Costs of the Public Good

as well as Linking Costs

In the basic model, players are only heterogeneous in their valuations of the social incen-

tives. In reality, heterogeneity could also lie in consumption benefits and production costs
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of the public good as well as linking costs. (For examples, see among others, [9], [5], [34]
and [37].) If we take the additional heterogeneity into account, then the payoff functions

for player 7 with strategy profile s = (z, g) become:

I7°(s) = filws+ Y @) = cwy = KNP (@) + 0N (9)ws, (23)

JENP(g)
(s) = filwi+ D ay) — cimi — Kl N (g)] + bi(|Ni(g) ). (2.4)
JENi(g)
Similar to previous definitions, let y; = arg max,[f;(y) — c;y], ¥ = argmax,[fi(y) —

k;y]. To focus on interesting cases, we still assume that ¢; > k; > 0, V4, and so y; < y;, Vi.

Proposition 2.7. For one-way flow of benefits with generalized heterogeneity, in every strict
NE s* = (2%, ¢"), mingen 95 < Y, @7 < Mingen §; and g* is a core-periphery network
in which every hub player volunteers and receives links from everyone else while every

spoke player does not exert efforts.

Proposition 2.8. For two-way flow of benefits with generalized heterogeneity, a strict NE
s* = (z*, %) has the following shapes. i) When }_._\ x; < miney 4;, g* has a core-
periphery structure in which volunteers lie at the core and links between free riders and
volunteers go in either direction. ii) When .. x; > minepy;, g is a multipartite
graph in which links between volunteers and free riders always go from the former to the
latter, and free riders (and some of the volunteers) form an independent set. iii) When
Miniey ¥ < D ey T < Miliep Ui, g is a multipartite graph in which every volunteer is
minimally linked with all free riders while volunteers may or may not be minimally linked

with each other.

We note that the first two are the counterparts of the shapes identified as type I and type
IT in Proposition 2.2. The third one exists only when the condition min;ey g; < >, enTi <

R

min,cr y; 18 satisfied. Therefore, every strict NE in the basic model is still a strict NE here.

21



2.6.2 Imperfect Substitutability Between One’s Own and Others’ Volunteering Efforts

As mentioned in [14], an individual’s own volunteering effort could be more beneficial to
herself than to others. This may be because some public good is lost when transmitted to
neighbors, say due to imperfect communication or tacit knowledge [37]. We now take such
situations into consideration. Let § € (0, 1] measure the extent to which own efforts and

neighbor’s efforts are substitutes. Then the payoff functions become

IP"(s) = flai+6 Y ;) —cas = KN (9] + bi(IN(9))ei,  (2.5)
)

JEN{™ (g
(s) = floi+0 Y x;) — cuy — kINP(g)] + bi(INi(g) ). (2.6)
JEN;(9)
In this case, the effective cost of obtaining one unit of public good from neighbors is

ks = k/d. To focus on interesting scenarios, we still assume that ¢ > ks. In addition, let

ys = argmax,|f(y) — ksy.

Proposition 2.9. For one-way flow of benefits with the public good’s production function
as f(xi + 03 ;cyout(y) Tj) where 6 € (0,1], in every strict NE s* = (g*,z"), §/6 <
Y ien T < Us/d and g* is a core-periphery network in which every hub player is a volun-

teer receiving links from everyone else and every spoke player does not exert efforts.

Proposition 2.10. For two-way flow of benefits with the public good’s production function
as f(x; + 03 ey, ¥j) where 6 € (0,1, a strict NE s* = (2%, g") has a nested split

network structure, which belongs to one of the following two types:

o type I': j < > . nxi < 95/, g* is a core-periphery network such that every hub
player volunteers while individuals in the spoke do not exert efforts, and links be-
tween the hub and the spoke could go in both directions;

o type II': Y. v xi > 9s/0 + 1, g* is a multipartite network in which links go from
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volunteers to free riders and between volunteers, and free riders (and some of the

volunteers) form independent sets.

Therefore, our general characterization of the strict NE in the basic model is robust to

this extension.

2.7 Conclusion

This paper examines the role of social incentives in public goods games in endogenous
networks. We find that sufficiently large social benefits from each recipient of the public
goods would induce more volunteers and active sharing of the public goods only when the
network flow of benefits is two-way. Moreover, for either type of network flow, stochastic
stability predicts that every player will be better off with the consideration of social in-
centives if such benefits per recipient are sufficiently large relative to the linking cost for
sufficiently many individuals.

There are two potential extensions to make in future work. First, the decision on public
good provision in this model is binary. One could further investigate the case in which
individuals decide how much to produce and examine the effects of social incentives on
both the extensive and intensive margins of public goods provision. The current setup
focuses on the extensive margin. Second, our analysis of the effects of social incentives has
mainly dealt with the quantity side, .e., the size of the set of volunteers. Future work could
study the effects of different types of social incentives on both the quantity and quality of

the public goods produced in endogenous networks.
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CHAPTER 3
MULTIPLE CLIMATE CLUBS

3.1 Introduction

Strong free-riding incentives and the norm of voluntary participation have made it difficult
to forge stable international agreements on climate change. [45] proposes the idea of a
global climate club and shows that small trade penalties on non-participants can induce a
large stable coalition. In this paper, we build upon his idea and consider the formation of
multiple (overlapping) climate clubs. We study effects of the formation of multiple clubs,
as well as the role of free trade agreements (FTAs) among club members therein.

More specifically, we consider a climate club game in an open economy with three
stages. In the first stage, every country announces with which other countries it would like
to form clubs. In the second stage, every country chooses tax rates on domestic carbon
emissions from energy production and tariff rates on energy imports. In the third stage,
production, trade and consumption take place. As mentioned above, we allow a country to
join one or multiple clubs and consider regimes both with and without FTAs as parts of the
club treaties.

The main findings are as follows. First, when club treaties do not involve FTAs, a fully
cooperative structure in which all countries are (in)directedly connected to each other via
overlapping clubs is stable against all possible deviations and efficient. This comes as a
result of several facts when FTAs are absent: countries are symmetric in all structures with
interior solutions; structures that are fully cooperative are equivalent in terms of policy
making; and countries in a more connected/cooperative structure enjoy higher welfare as
the benefits from lower trade barriers dominate the costs associated with higher carbon

taxes. Therefore, every subgroup of countries has the same incentive to deviate to the most
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cooperative structures, which generate the highest global welfare.

Second, when club treaties involve FTAs, a structure with the most clubs could be sta-
ble against all possible deviations and efficient if the structures with interior solutions are
those in which all countries are geometrically symmetric, or those in which countries are
geometrically asymmetric and the density of clubs is not very high. Otherwise, a structure
with less clubs may be stable but not efficient. To understand these results, we first note that
in any parameter range, the structure with the most clubs is efficient. Next, for structures in
which all countries are geometrically symmetric, stability is in line with efficiency because
structures that are fully connected/cooperative are equivalent in terms of policy making
and countries in a more connected/cooperative structure enjoy higher welfare. For struc-
tures in which countries are geometrically asymmetric, those with the same connectedness
are no longer equivalent in terms of policy making and the density of the clubs matters.
More specifically, in asymmetric structures with a not very high density of clubs, a country
joining more clubs would be better off than others joining less in the same structure, as
well as those in a less asymmetric structure. The reverse holds in asymmetric structures
with a high density of clubs. Therefore, when a parameter range involves an asymmetric
structure having interior solutions, which structure would be stable depends on which other
structures also have interior solutions in the same range.

Third, the formation of multiple climate clubs improves stability of the equilibrium
structures for emissions coefficients that are not large. More specifically, we find that
when club treaties do not involve FTAs, the formation of multiple clubs generates more
stable and efficient structures for emissions coefficients that are intermediate. When club
treaties involve FTAs, the formation of multiple clubs allows structures that are stable and
efficient to exist for small emissions coefficients; it also generates more stable though less
efficient structures than the fully connected structure for emissions coefficients that are
intermediate. The result in the absence of FTAs is due to the fact that when the emissions

coefficient is sufficiently large, only partially-cooperative and non-cooperative structures
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have interior solutions. And the partially-cooperative structure, which only exists when
multiple clubs are allowed, is more stable and efficient than the latter. The results in the
presence of FTAs are due to the facts that when the emissions coefficient is small, the
formation of multiple clubs allows structures with geometrically asymmetric countries and
a not very high density of clubs to have interior solutions. When the emissions coefficient
is intermediate and structures with geometrically asymmetric countries and a high density
of clubs have interior solutions, a fully-connected structure which is the stable equilibrium
if only one club is allowed to form, would no longer be stable as some of the countries
would like to withdraw from clubs together and enjoy the higher welfare in the asymmetric
structure.

Fourth, the inclusion of FTAs in club treaties enlarges the stable and efficient region of
the equilibrium. More specifically, free trade among club members allows the grand coali-
tion structure to be stable against all possible deviations and efficient whenever emissions
coefficients are sufficiently large, which does not even have interior solutions in the absence
of FTAs. When multiple clubs are formed, this region is further enlarged, and the stability
of the equilibrium though not the efficiency may also be improved. In particular, structures
with geometrically asymmetric countries, which are less connected/cooperative than the
grand coalition, emerges in equilibrium. These structures are stable against all deviations
and efficient for lower values of emissions coefficients than in the one-club case. For some
intermediate values of emissions coefficients, these structures are more stable though less
efficient than the grand coalition.

Finally, coalition-proofness and group stability may yield different equilibrium struc-
tures when multiple clubs are formed and FTAs are involved. More specifically, the for-
mation of multiple clubs and the inclusion of FTAs would lead to differences in national
welfare for countries that are geometrically asymmetric in a given structure. A group devi-
ation may then fail to be self-enforcing if some of the countries find it profitable to deviate

further.
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3.1.1 Related Literature

This paper is related to the literature on international environmental agreements (IEAs).
Many studies find that due to strong free-riding incentives, it is difficult to form stable
coalitions on climate change with a large number of participants and/or large gains from
cooperation (see, among others, [17], [7], [21] and [47]). This motivates a strand of lit-
erature to explore ways of reducing free riding incentives by linking climate change with
international trade (see, among others, [24], [25], [26], [45], [22] and [38]). In particular,
[45] proposes the idea of a global climate club and shows that small trade sanctions on
non-participants could induce a large stable coalition. Relatedly, [22] and [38] find that
the interaction between two instruments, emission taxes/caps and import tariffs, is essen-
tial for enhancing cooperation: the gains from free trade can provide strong incentives for
countries to join a climate coalition. However, all of these models consider the formation
of a single climate club. Recently, [48] and [52] demonstrate that structures with multiple
overlapping climate clubs/coalitions could also be stable with a large number of partici-
pants, although no international trade is involved. This paper contributes to the literature
by studying a model with multiple climate clubs in an open economy. We show that the
formation of multiple clubs improves stability of the equilibrium, and free trade among
club members enlarges the parameter range with stable and efficient equilibrium. In par-
ticular, equilibria that involve all countries as participants of the clubs, which may be more
than three, could be stable against all possible deviations. When club treaties involve FTAs
and the emissions coefficients are sufficiently large, the grand coalition would be the only
stable and efficient structure.

In addition, as the stability of IEAs requires not only individual rationality but also
coalitional and collective rationality (see, among others, [45]), this paper considers stability
against profitable bilateral, multilateral and self-enforcing deviations. More specifically,
we adopt bilateral and group stability from [27]), which rules out all profitable deviations

by subgroups in a network. Since some of these deviations may not be self-enforcing,
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we also adopt the concept of coalition-proof Nash equilibrium proposed by [12]. To the
best of our knowledge, except [45], [49] and [48], we are among the first ones to apply
these coalitional stability concepts to the study of IEAs. Moreover, we compare the results
generated from the various stability concepts, and find that equilibrium structures based on
coalition-proofness and group stability could be different when multiple clubs are formed
and FTAs are included.

The organization of the chapter is as follows. Section 3.2 presents the basic model setup
for an economy with three nations. Section 3.3 analyzes the equilibrium of the basic model.
Section 3.4 extends the model to an economy with four nations and studies its equilibrium.

Section 3.5 summarizes the findings.

3.2 Basic Model

Consider a climate club game in an open economy with a set N = {1, 2,3} of symmetric
countries. There are two goods: a numeraire good and an energy good.

In each country i € IV, arepresentative consumer chooses the amounts of the numeraire

D eP1, and solves

i

and energy goods to purchase, denoted by {z

U(z;, eP) = 2P D _ (D)2
s (zi,e7) = @i +ae — S (e)
subject to xiD +pieiD =Y; 3.1

where p; is price of the energy good, y; is initial endowment of the numeraire good, and
a, 8 > 0 are parameters. We assume that consumers are price takers, and the price of the
numeraire good is equal to one everywhere.

On the supply side in each country, both goods are produced by a representative firm
with constant-returns-to-scale technologies. For the numeraire good, the market is per-
fectly competitive and the production does not emit pollution. Each country’s market for

the energy good is oligopolistic, served by both domestic and foreign firms. Let e% be
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the amount of the energy good supplied by firm 7 in market 5. Then the market-clearing

condition is
=> e (3.2)
J

Meanwhile, we assume that the production of one unit of energy good generates ¢ units
of pollution in the home country. A firm faces domestic carbon taxes on the emissions, as

well as trade tariffs when exporting to foreign countries. Therefore, firm ¢ solves

m I, _ Y2 s
ax Z — — —C— tzg 67:- (33)
{ef}ti=1,2,3 ( ]) zj:[(l—l-nj ) ]]

where c is the constant marginal cost, ¢; is the carbon tax on per unit of emissions, and 7;;
is the ad valorem tariff rate imposed by country j on products from i.

The government of each country determines the carbon tax and trade tariff rates men-
tioned above, as well as with which other countries to form climate clubs. Countries not in
clubs will set both policies to maximize national welfare. For those in the same club, they
will set the environmental policies to maximize joint welfare. Regarding the trade poli-
cies, we consider two regimes: with and without free trade agreements (FTAs) among club
members, so as to examine the effects of linking trade policies with environmental ones in
an economy that involves both international trade and (multiple) endogenous climate clubs.
In the presence of FTAs, member countries will trade freely with each other, and set trade
tariffs on non-members to maximize club welfare. Here, country ¢’s welfare function is

given by

W, =CS;+1I,+ TR, + CT, — H;
D S DiTji
2< )+ (p _C%JFZ 1_,_7-” )eij_1+T ﬂ__ezzew

(3.4)

where C'S; = 2(eP)? is the consumer surplus, TR; = >l — %)eﬂ] is the tariff
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revenue, CT; = ;03 e;; is the carbon tax and H; = 2(0, > ej;)? is the damage
caused by the emissions (with A as the social cost of carbon). We further assume that an
importing country will impose the same tariff rate on all sourcing countries that do not have
FTAs with it. That is, 7;; = 7, for all 7 such that 7;; > 0.

The timing of the game is as follows. In the first stage, every country simultaneously an-
nounces with which other countries it would like to form climate clubs. Let ¢; denote coun-
try 4’s announcement and €; be its strategy space. Then Q; = {{0,0}, {j,0}, {0, k}, {j, k}},
where {0, )} means no climate club to form; {7, )} means a bilateral club with country j
only; {0, k} means a bilateral club with country & only; and {7, ¥} means bilateral clubs
with countries j and k respectively. In the second stage, given the clubs formed, countries
determine optimal carbon taxes and trade tariffs. In the third stage, production, interna-

tional trade and consumption take place.

3.3 Equilibrium Analysis

We now proceed to study the equilibrium of the basic model by analyzing backwards.

3.3.1 Stage Three

In each country ¢ € N, solving the optimization problem on the demand side gives the

inverse demand function

pi—a— e 35

Solving firm 4’s optimization problem gives the amount of energy goods it will supply

in each market j

S + > e+ t0) (1 + 715)] — (n+ 1) (e + t:0)(1 + 745)
wo (n+1)8

= ¢ (t,7) (3.6)

where t = (ty,ts,t3) and 7 = (71, T2, T3) are vectors of carbon tax and trade tariff rates,

respectively.
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Substituting equation (6) into (2), (4) and (5), we obtain the equilibrium expressions for

demand, prices and welfare

ef =el(t,7) (3.7)
W, = Wi(t, 7) (3.9)

3.3.2 Stage Two

In this stage, given the climate clubs formed, each country government sets the environ-
mental and trade policies. Figure 1 illustrates the possible club structures yielded from the
first stage.
®© © 0O ®<® ®<@f
©) ©) ©) ©)

I II III IV

Figure 3.1 — Possible club structures resulted from the first stage (n = 3).

Since all countries have the same welfare function yielded from the third stage, it is

then easy to see the following.

Observation 3.1. In club structures I and IV respectively, countries are symmetric in policy
decision making since these club structures preserve the symmetry.

Moreover, note that no matter the climate clubs involve FTAs or not, countries in the
same club always cooperate on environmental policies. That is, for each country ¢ in club

C,

t; = tc, = argmax Z W;(t, )

JeC

subject to t¢, < tc,,VC;, Cp s.t. CyNCyp 2 {i} (3.10)
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Here, the constraint applies to the situation in which country ¢ joins club(s) in addition to

(. The next observation follows immediately.

Observation 3.2. When there are overlapping climate clubs, the carbon tax rates in all
member countries of these clubs will be the same.

Regarding trade policies, in the absence of FTAs, for each country 7 in club (7,
7; = arg max W (¢, 1) (3.11)
In the presence of FTAs, for each country ¢ in club C] and for all j # 1,

argmax; » ;o Wi(t,7), if ¢ and j do not belong to a common club

0, otherwise

Based on these decision rules, for the case without FTAs, we have one more useful
observation. In that case, for club structures III and IV, carbon taxes are set to maximize
bilateral welfare everywhere, and trade tariffs are set to maximize national welfare every-
where. This symmetry in policies plus symmetric welfare functions from the last stage lead

to complete symmetry between the two structures.

Observation 3.3. In the absence of FTAs, club structures Il and IV are identical.

Simulation Results

To proceed further, we resort to numerical simulations to calculate the equilibria. We will
present welfare results for « = § = 1, h = 0.01, varying the remaining two parameters
¢ €10.1,0.9] with step size 0.2, and 6 € [0.01, 10] with step size 0.01.!

Table B.1 (respectively, Table B.2) provides rankings of national welfare in the absence

(respectively, presence) of FTAs. We refer the readers to Appendix for all tables.

"We consider smaller step size for @ as preliminary trials indicate that the equilibrium results are more
sensitive to 6 than to c.
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Result 3.1. In the absence of FTAs, the rankings of equilibrium national welfare across
club structures for n = 3 are as listed in Table B.1. In particular, (part of) the following

ranking holds: w! < w!! = w!V Vi.
[Insert Table B.1 here.]

The results show that structures I, III and IV have interior solutions in the absence of
FTAs. Regarding the welfare ranking, we see that the equalities are in accordance with
Observations 3.1 and 3.3. For structures I and III, the internalization of environmental
externalities by clubs raises carbon taxes, and subsequently reduces trade tariffs among the
welfare-maximizing nations. The inequality then implies that cooperative environmental
policies would make every country better off, which is the overall effect of higher carbon

taxes and lower trade tariffs.

Result 3.2. In the presence of FTAs, the rankings of equilibrium national welfare across
club structures for n = 3 are as listed in Table B.2. In particular, (part of) the following

two rankings hold: wi'' < wlV < wH! and wil < wl < wlV < wil.
[Insert Table B.2 here.]

For the first ranking, we know that every country in structure III (IV) sets the same
carbon tax to maximize bilateral welfare. Besides, countries in structure IV are symmetric
and the hub country in III has FTAs with the spokes. While carbon taxes are all set to
maximize bilateral welfare, the unique advantage of enjoying free trade with both spokes
makes the hub in III better off than not only a spoke in III but also a symmetric country
in IV. For the second ranking, we know that countries in structure I (IV) are symmetric.
Although forming a club makes every country in IV bear higher carbon taxes, the overall
effect is dominated by the benefits of being able to free trade with each other. On the other
hand, countries in structure II are asymmetric. The formation of a bilateral club leads to

higher carbon tax rates in the member countries, but at the same time allows them to free
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trade with each other and charge higher tariffs on the non-member country. The overall
effect of the asymmetric structure in II is again dominated by the trade effect, and the
welfare of a member country will be higher than that of not only a symmetrically non-
cooperative country in I but also a symmetrically cooperative country in IV.

From the above analysis, we see that forming a club has two effects on a country’s
policies: 1) a member country will set higher carbon tax (environmental effect); and 2) a
member country will trade freely with others in the same club (trade effect in the presence

of FTAs). The overall effect determines the rankings of equilibrium welfare.

3.3.3 Stage One

In this stage, every country announces the names of the other countries it would like to
form climate clubs with. With the welfare rankings at hand, we derive the equilibrium club

structures based on different notions of stability.

Definition 3.1. A profitable deviation by N’ C N is a deviation that allows players in N’
to simultaneously add absent links within N' and delete any link incident to at least one

vertex in N', and strictly improves the expected payoff of each member of N'.2

Definition 3.2. An announcement strategy profile o = (01, 09, 03) is a Nash equilibrium

(NE) if there is no profitable deviation for any player i € N.

Definition 3.3. An announcement strategy profile 0 = (01,09, 03) is a bilaterally stable

(BS) if there is no profitable deviation for any N' C N with |N'| < 2.3

Definition 3.4. An announcement strategy profile 0 = (01, 02, 03) is a group stable (GS) if

there is no profitable deviation for any N' C N.*

Definition 3.5. An agreement is self-enforcing if and only if there is no N' C N such that

taking the actions of its complement as fixed, can agree to deviate in a way that makes all

2See, for example, [27].
3See, for example, citeerol2018network.
4See, for example, [27].
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of its members better off.’

Definition 3.6. An announcement strategy profile o = (01, 09, 03) is a coalition-proof Nash

equilibrium (CPNE) if there is no self-enforcing deviation for any N' C N.5

Definition 3.7. An announcement strategy profile 0 = (01,09, 03) is efficient if it maxi-
mizes global welfare.

Based on the above definitions, it is easy to see that a structure is NE as long as it is
not profitable for any country to withdraw from club(s) unilaterally. When two (or more)
countries want to form clubs and/or withdraw from clubs together, the structure is not BS
(GS). Moreover, any profitable deviation by one or two players is self-enforcing. Therefore,
any CPNE must be BS.

Table B.3 (respectively, Table B.4) summarizes the equilibrium structures according to
the above stability and efficiency concepts for the trade regime without FTAs (respectively,

with FTAs).

Result 3.3. In the absence of FTAs, the equilibrium structures for n = 3 are as listed in

Table B.3.

Result 3.4. In the presence of FTAs, the equilibrium structures for n = 3 are as listed in

Table B.4.
Proof. We provide all proofs in Appendix. 0

From Result 3.1, we know that in the absence of FTAs, countries in structures I, III (IV)
are symmetric, and structure III (IV) generates higher welfare for each country than I does.
Therefore, when structures I, III and IV all have interior solutions, I is not GS or CPNE

since all countries would deviate together by forming links among each other.

3See, for example, [12].
6See, for example, [12].
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From Result 3.2, in the presence of FTAs, when two structures that preserve the sym-
metry (i.e., structures I and III) have interior solutions, the one with more clubs (i.e., struc-
ture III) generates higher national welfare for each country, which implies that the non-
cooperative one is neither GS nor CPNE. When both symmetric and asymmetric structures
have interior solutions (i.e., Il and IV; IIT and IV; I, II and IV), the asymmetry allows the
country(ies) joining more clubs to enjoy higher welfare than being in a symmetric structure
with either more or less clubs, and the opposite holds for those joining less clubs. Since
n = 3, this implies that an asymmetric structure in which two of the countries enjoy higher
welfare (i.e., structure II) will be immune to bilateral and group deviations, and thus will be
BS, GS and CPNE. The asymmetric structure with one hub and two spokes (i.e., structure
III) will not be stable as the two lower-welfare spokes will deviate together by forming a

club between themselves.

3.4 Extension

The results so far are for an economy with three countries. In this section, we extend the
model to a case with four symmetric countries engaging in the same economic activities
as in section 3.3. As the set of possible structures resulted from Stage 3 becomes larger

(shown in Figure 2), one could expect the results to be more general.
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Figure 3.2 — Possible club structures resulted from the first stage (n = 4).

Result 3.5. In the absence of FTAs, the rankings of equilibrium national welfare across
club structures for n = 4 are as listed in Table B.5. In particular, structures in which
all countries are (in)directly connected with each other generate the same welfare for all

countries.

Result 3.6. In the presence of FTAs, the rankings of equilibrium national welfare across
club structures for n = 4 are as listed in Table B.6. In particular, welfare rankings are

affected by the (a)symmetry of the structures and the densities of the clubs.
[Insert Table B.5 here.]
[Insert Table B.6 here.]

As for n = 3, in the presence of FTAs, the formation of climate clubs will lead to
higher carbon taxes in the member countries (environmental effect) and free trade among

them (trade effect in the presence of FTAs).
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In the absence of FTAs, as before, structures in which all countries are (in)directly
connected with each other (i.e., structures V, VII, VIII, IX, X and XI) are equivalent in
terms of policy decision making. These structures also preserve the symmetry among the
countries since in every country, the carbon tax is chosen to maximize bilateral welfare
and the trade tariff is chosen to maximize individual welfare. Moreover, the carbon tax in
these structures is higher than that in a less cooperative structure (i.e., structures I and IV),
while the tariff rate is lower. The overall effect is dominated by the benefits from lower
trade barriers and so every country in a more cooperative structure is better off than in a
less cooperative one, just as when n = 3.

When FTAs are part of the club treaties and the club structure is symmetric, we find
that national welfare increases as the number of disjoint clubs/countries decreases (such
as structures I, IV and IX), and stays the same for structures in which no two clubs are
disjoint (such as structures IX and XI). Here, the benefits from free trade dominate the
costs associated with higher carbon taxes when countries become (in)directly connected
with each other. This is in line with the findings in Result 3.4 for n = 3.

When FTAs are part of the club treaties and the club structure is asymmetric, we find
that it is no longer the case that the more climate clubs a country joins, the better off it
is. More specifically, when the structure is hub-and-spoke or involves not many clubs that
connect all countries (in)directly (such as structures V, VII and VIII), all countries bear the
same level of carbon taxes. The benefits of free trading still dominate and countries joining
more clubs enjoy higher welfare than others. On the other hand, in a structure with dense
clubs (such as structure X), all countries also bear the same level of carbon taxes. But now
the benefits of free trading with one additional country are outweighed by the losses in
producer surplus and government revenues since every country is already free trading with
most of the others. This makes countries joining less clubs be better off than the others.

With these welfare results, we derive the equilibrium structures according to different

notions.
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Result 3.7. In the absence of FTAs, the equilibrium structures for n = 4 are as listed in

Table B.7.

Result 3.8. In the presence of FTAs, the equilibrium structures for n = 4 are as listed in
Table B.S.

When club treaties do not involve FTAs, from Result 3.5, we know that all structures
with interior solutions (i.e., structures I, IV, V, VII to XI) preserve the symmetry among the
countries in the policy making stage. Therefore, in each structure, all countries have the
same deviation incentive. Meanwhile, all structures in which the countries are (in)directly
connected with each other (i.e., structures V, VII to XI) are equivalent in policy making,
and any of them has at least two more clubs than structure IV, and structure IV has two
more clubs than structure I. This implies that in the absence of FTAs, we could put the
structures into three categories: category A - structures V, VII to XI (the most cooperative),
category B - structure IV (the second most cooperative), and category C - structure I (the
non-cooperative). Result 3.5 tells us that the more cooperative a structure is, the better off
is each country. Considering all of these points, we see that when structures in categories
A and B have interior solutions, the latter will neither be GS nor CPNE since three or more
symmetric countries will want to deviate together to a structure in A; when structures in
categories B and C have interior solutions, again the latter will neither be GS nor CPNE
since countries in I will want to deviate together by forming two clubs. The finding is in
line with that for n = 3.

When club treaties do involve FTAs, from Result 3.6, we see that just as in the case
of n = 3, the geometric asymmetry plays a role in the equilibrium. When two symmet-
ric structures I and XI have interior solutions, every country enjoys higher welfare in the
connected one (structure XI) and so the non-cooperative one (structure I) is not GS/CPNE.
When asymmetric structures have interior solutions, the asymmetry allows the country(ies)
joining more clubs in a not relatively sparse structure (i.e., structure V, VII or VIII) to enjoy

higher welfare than 1) others in the same structure and 2) being in a less asymmetric struc-
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ture with either more or less clubs. In a dense structure X, the opposite holds. Therefore,
for parameter ranges in which asymmetric structures that are not too dense have interior so-
lutions, a structure is BS if no two countries joining less clubs find it profitable to deviate.
For parameter ranges in which symmetric structures and the asymmetric dense structure
have interior solutions, the latter is BS if the two countries joining more clubs do not find
it profitable to deviate to a symmetric structure. The result is more general than that for

n = 3 since there is no asymmetric dense structure with three countries.

3.5 Summary

In this section, we summarize the results from the analysis above.

3.5.1 Equilibrium Stability and Efficiency

We examine the equilibrium structures that are most stable and efficient, as well as the
structures generated from different stability concepts. Tables B.9 and B.10 list the rankings

of global welfare across structures.

[Insert Table B.9 here.]

[Insert Table B.10 here.]

Comparison between stability and efficiency

We see that the formation of climate clubs has two effects on national policies: 1) environ-
mental effect: member countries bear higher carbon taxes than non-members; and 2) trade
effect: member countries enjoy free trade with each other (when FTAs are part of the club
treaties).

The subsequent welfare rankings are results of the overall effects on policies. More
specifically, when club treaties do not involve FTAs, we see that: 1) all structures with

interior solutions preserve the symmetry among the countries; 2) all structures in which
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the countries are (in)directly connected with each other via overlapping clubs generate the
same policies; 3) structures with standalone countries do not have interior solutions; and
4) the more connected a structure is, the better off each country is. Therefore, structures in
the absence of FTAs can be categorized based on the connectedness/cooperativeness of the
countries: non-cooperative (such as structure I for n = 3 and 4, in which no clubs exist),
partially-cooperative (such as structure IV for n = 4, in which all countries are involved
in some clubs, but not all of them are (in)directly connected with each other via the clubs)
and fully-cooperative (such as structures III and IV for n = 3 and structures V, VII to XI
for n = 4, in which all countries are (in)directly connected with each other via overlapping
clubs). It is then easy to see that a fully cooperative structure is not only immune to bilateral

and multilateral deviations, but also maximizes global welfare.

Remark 3.1. When club treaties do not involve FTAs, a fully cooperative structure is stable
against all possible deviations and efficient.

Now let’s turn to clubs with FTAs. From Sections 3.3 and 3.4, we know that the national
welfare and stability results would be dependent on the geometric symmetry and density of
the structures. More specifically, among structures in which all countries are geometrically
symmetric (such as structures I and IV for n = 3, and structures I, IV, IX and XI for n = 4),
one could again categorize based on the connectedness/cooperativeness of the countries’,
and a country is better off in a more connected/cooperative structure. For structures in
which countries are geometrically asymmetric, the density of the clubs plays a role. That
is, in asymmetric structures that do not have a high density of clubs (such as structures II
and III for n = 3, or structures V, VII and VIII for n = 4), a country joining more clubs
would be better off than others joining less in the same structure, as well as those in a
less asymmetric structure. For asymmetric structures with a high density of clubs (such as
structure X for n = 4), a country joining less clubs would be better off than others joining

more in the same structure, as well as those in a less asymmetric structure. On the other

"For example, when n = 4, the three categories are defined as before: non-cooperative (structure I),
partially-cooperative (structure IV) and fully-cooperative (structures IX and XI).
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hand, we find that the efficient structure in any parameter range would always be the one
with the most clubs (see Tables B.9 and B.10). Therefore, whether or not stability would
be in line with efficiency depends on which structures have interior solutions in the same

parameter range.

Remark 3.2. When club treaties involve FTAs,

e if only structures in which all countries are geometrically symmetric have interior
solutions, then the most connected/cooperative structure would be stable against all

possible deviations and efficient;

o ifonly structures with geometrically asymmetric countries and a not very high density
of clubs have interior solutions, then the structure with the most clubs could be stable

against all possible deviations and efficient;

e otherwise, a structure with less clubs may be stable against all possible deviations

but not efficient.

Comparisons between Different Stability Concepts

We now compare the equilibrium results based on different stability concepts. By defini-
tion, we know that GS C CPNE C BS C NE.

When club treaties do not involve FTAs, non-cooperative and partially/fully coopera-
tive structures have interior solutions, in all of which the countries are geometrically sym-
metric. Meanwhile, all cooperative/connected structures are equivalent in terms of policy
making. Therefore, we only need to consider the deviation between the non-cooperative
and cooperative structures. Since the difference in the number of clubs between these two
types of structures is at least two, then B.S = N E. Moreover, since all countries have the
same incentives to deviate from the non-cooperative structure to cooperative ones, then all

profitable deviations are self-enforcing and GS = CPNE C BS = NE.
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When club treaties include FTAs, we know that geometric asymmetry plays a role,
and connected structures are no longer equivalent in terms of policy making and thus do
not produce the same welfare results. If two structures with geometrically asymmetric
countries have interior solutions and the difference in the number of clubs between them is
just one, then BS C N E'is possible whenever a bilateral deviation is profitable. Moreover,
we know that among structures that preserve the symmetry among the countries, the more
clubs a structure has, the higher welfare each country enjoys. Therefore, it is profitable
for groups of countries to deviate from the symmetric structure with less clubs to the one
with more clubs. Now let’s look at the parameter ranges in which an asymmetric structure
and symmetric structures with both more and less clubs than the asymmetric structure have
interior solutions. In these cases, some of the countries in the asymmetric structure enjoy
higher welfare than those in the symmetric structure with more clubs, while others enjoy
lower welfare. The opposite holds for the comparison between the asymmetric structure
and the symmetric structure with less clubs. Thus, a group deviation from a symmetric
structure with less clubs than the asymmetric structure to another symmetric structure with
more clubs will not be self-enforcing since in the symmetric structure with more clubs,
those enjoying lower welfare than in the asymmetric structure would like to further deviate

together to the asymmetric structure. Hence, it is possible that GS C CPNE.

Remark 3.3. The equilibrium results based on C PN E and G S will be different when FTAs
are included as part of the club treaties and geometric asymmetry makes the countries have

different deviation incentives.

3.5.2 Effects of the Formation of Multiple Clubs

As our model departs from the literature by considering multiple overlapping climate clubs,
we want to know what effects such a consideration brings. We note that if at most one club
is allowed to form, then only structure I or XI would be feasible.

We see that when club treaties involve FTAs, the formation of multiple clubs allows
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structures with geometrically asymmetric countries and not a very high density of clubs
to have interior solutions, be stable and efficient for emission coefficients that are low.
It also allows some asymmetric structures to be more stable though less efficient than
the fully connected structure for emission coefficients that are intermediate. When club
treaties do not involve FTAs and emission coefficients are intermediate, the formation
of multiple clubs allows partially-cooperative structures to have interior solutions when
fully-cooperative structures fail, which are also more stable and efficient than the non-

cooperative structure. Overall, we have the following.

Remark 3.4. The formation of multiple climate clubs improves stability of the equilibrium

structures for emissions coefficients that are not large.

3.5.3 Effects of FTAs

The results so far show that the presence of FTAs plays an important role in equilibrium
outcomes. Here, we summarize the changes when the club treaties move from no-FTA to
FTA-included.

We see that no matter multiple clubs are allowed or not, the inclusion of FTAs en-
ables the fully connected structure in which every pair of countries forms a club with each
other to have interior solutions, be stable against all possible deviations and efficient when-
ever emissions coefficients are sufficiently large. Note that this structure is equivalent to
a grand coalition structure in which a multilateral club involves all countries. Its emer-
gence enlarges the stable and efficient region of the equilibrium. When multiple clubs are
allowed to form, the presence of FTAs would enable structures with geometrically asym-
metric countries, which are less connected/cooperative than the grand coalition, to emerge
in equilibrium. In particular, these structures are stable against all deviations and efficient
for even lower values of emissions coefficients than in the one-club case. For some inter-
mediate values of emissions coefficients, these structures are more stable though may be

less efficient than the grand coalition, which is the equilibrium structure without FTAs.
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Remark 3.5. Regardless of the consideration of multiple clubs, the presence of FTAs in
club treaties allows the grand coalition to be stable against all possible deviations and effi-
cient for all emissions coefficients sufficiently large, which enlarges the stable and efficient
region of the equilibrium. When multiple clubs are considered, the emergence of structures
with geometrically asymmetric countries in the equilibrium further enlarges this region to
include lower values of emissions coefficients and improves the stability of the equilibrium

though not the efficiency for some intermediate values of emissions coefficients.
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CHAPTER 4
STRATEGIC EFFECTS OF FUTURE ENVIRONMENTAL POLICY
COMMITMENTS: CLIMATE CHANGE, SOLAR RADIATION MANAGEMENT
AND CORRELATED AIR POLLUTANTS

4.1 Introduction

If in the near future multiple instruments are available (e.g., carbon pricing and solar ra-
diation management) and governments are able to commit to a particular type of policy
instrument, which instrument will they prefer? Are there clear game theoretic predictions
of play? This paper is an attempt to answer these questions.

There is not much reason for optimism with respect to the prospects of implemen-
tation of an effective, cooperative, international agreement to curb the evils produced by
climate change. The Kyoto protocol has not produced enthusiastic results and a post-Kyoto
agreement does not promise to be much different. The high national costs associated with
mitigation of greenhouse gas emissions appear to be the main culprit.

Revealed preference informs us that some nations prefer the status quo of no significant
mitigation of greenhouse gas emissions to a commitment to reduce greenhouse emissions
by a significant percentage amount relative to 1990 levels. However, this fact does not rule
out the possibility that governments, which have rejected Kyoto as well as those that may
reject a post-Kyoto agreement, are currently contemplating adopting cheaper alternatives to
mitigation of greenhouse gas emissions in order to reduce their potential damages caused by
climate change. In fact, there appears to be credence in the scientific community that some
nations are seriously considering producing climate change engineering products — such
as solar radiation management (SRM) generated by injections of sulfate aerosols into the

stratosphere — that may effectively control the global temperature (see, e.g., the discussion
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of the scientific findings in [42]). One must also account for some of the potential negative
effects associated with climate change engineering. SRM, for example, is expected to
produce droughts, ozone depletion and to change the color of our blue skies.

This paper studies some of the effects associated with uncoordinated policy commit-
ments with respect to provision of SRM) relative to policy commitments for mitigation of
greenhouse gas (e.g., carbon dioxide) emissions. We envision environmental policy mak-
ing in a future global economy in which SRM is a proven and mature technology, which
can be deployed at will and unilaterally by any nation. Among other things, we analyze
whether there will be an incentive for a nation to be a policy leader in mitigation of carbon
dioxide emissions or SRM provision, where the nations are perfectly informed about the
benefits and costs of providing SRM. Solar radiation management is expected to produce
droughts, ozone depletion and to change the color of our blue skies.

The fact that SRM may soon prove to be a cheaper and effective alternative to miti-
gation of carbon dioxide emissions implies that unilateral action in SRM will not only be
credible (see, e.g., [8]), but also that nations may then wish to commit to SRM policies
and subject their carbon mitigation policies to SRM policy commitments. Recent and note-
worthy contributions to the literature have considered some of the potential reactions we
may observe with future implementation of geoengineering technologies (e.g., [33], [41],
[42], [43], [44], [50]). Moreno-Cruz (2011) examines non-cooperative games in which two
nations are either symmetric or asymmetric with respect to drought damages. In the sym-
metric game, he finds that the prospect of SRM will create greater incentives for free riding
on carbon mitigation. When nations are asymmetric, he finds that SRM provision can
induce inefficiently high levels of mitigation. Millard-Ball studies the impact of geoengi-
neering deployment on the formation of a mitigation agreement. He shows that a credible
unilateral threat of utilizing geoengineering may strengthen global abatement and lead to a
self-enforcing climate treaty with full participation. Urpelainen shows that geoengineering

may induce significant reductions in emissions in the present if it produces severe nega-
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tive externalities, since the latter may lead to a very harmful geoengineering race in the
future. If the externalities are not overly severe, unrestricted utilization of geoengineering
can be globally beneficial. Our paper contributes to this literature in at least three significant
ways. First and foremost, we examine the effects associated with strategic environmental
policy commitments, whereby SRM policy may precede carbon policy. This may indeed
occur in the future when SRM technology is mature. SRM policy may be (politically or
even socially) cheaper and easier to implement than carbon policy. Our motivation here is
therefore to consider a likely future event and then make a prediction concerning the equi-
librium policies. As in the papers cited above, we assume that SRM provision generates
global damages - in our setting SRM produces drought damages and the drought damage
function is increasing at an increasing rate.

Second, our model accounts for the fact that emissions of carbon dioxide are correlated
with emissions of sulfur dioxide due to important common sources, such as energy produc-
tion. Our model builds on [16]." As in [16], sulfur dioxide emissions cause acid rain dam-
age in the emitting nation. We show that the instruments a nation utilizes to control carbon
and sulfur dioxide emissions are strategic complements. Hence, whenever SRM provision
leads to an increase in carbon emissions, it also leads to an increase in sulfur emissions,
with a resulting increase in acid rain damage. Finally, unlike the cited papers, we examine
environmental policy making within a general equilibrium framework. This will enable us
to see how consumers and industry emitters respond to strategic policy choices made by

the governments.

'Our framework can also be seen as an extension of the impure public good model advanced by [20] to a
context in which there are two impure public goods, namely, SRM provision and mitigation of carbon dioxide
emissions. SRM provision yields global pure public good benefits, but entails national-specific drought
damages. Reduction of carbon emissions also yields global pure public good benefits, but entails national-
specific costs in terms of reduction of the consumer surplus associated with energy consumption. Our analysis
makes a contribution to the public goods literature in that we consider both simultaneous and sequential
strategic interactions between these two types of impure public goods.
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4.2 Modeling Strategies and Brief Discussion of Main Results

We consider a global economy consisting of two nations, which are identical in all respects,
except for the drought and acid rain damage functions. This is a modeling strategy. We wish
to highlight the effects that differences in both drought and acid rain damages may promote
in the formulation of non-cooperative carbon and SRM environmental policies and on the
incentives for policy commitments.

Each nation has three policy instruments at its disposal; namely, SRM provision and
carbon and sulfur pollution permits. Our choice of pollution permits as the means to price
emissions is motivated by the Kyoto Protocol, the European Union Emissions Trading
System and the 1990 US Clean Air Act Amendments, which created a national program in
tradable sulfur dioxide emission permits.

Although we consider the making of uncoordinated environmental policies in a future
time when policy makers have SRM at their disposal, our analysis involves a single period.
The various timings of the games examined in this paper are strictly motivated by individual
costs and benefits of policy commitments. We wish to predict which timing is likely to
emerge in equilibrium. The timings are not motivated by the historical evolution of the
utilization of environmental policy instruments. An alternative and interesting avenue for
research is to explicitly consider an intertemporal model in which the sequence of policy
instruments mimics the historical evolution of environmental policy, with sulfur pollution
permits preceding carbon pollution permits and the latter preceding SRM. In such a case,
the sequencing is exogenous and one considers the impacts associated with the sequential
introduction of environmental policy instruments.

We start our analysis by considering two benchmarks in which environmental policy
making with respect to SRM provision and carbon-permit quotas are chosen simultane-
ously: (1) uncoordinated policy making; and (i1) fully coordinated policy making. Follow-

ing [16], in all games examined in this paper, we assume that environmental policy with
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respect to sulfur quotas are chosen after the other two types of environmental policy in-
struments. One can explain this on the basis that our analysis concerns likely future events
when climate change policies receive priority in environmental policy making. This is a
global setting in which there is global consensus that climate change dangers need to be ad-
dressed and in which nations are endowed with various instruments to control the negative
effects caused by climate change. The main purpose of this paper is to examine strategic
effects for the mostly likely environmental policy scenarios in such a futuristic world.

In the next two games, we examine sequential choices of SRM and carbon quotas,
but the nations make simultaneous choices of SRM provision or carbon pollution quotas.
These games consist of three stages. In game III, the nations make choices with respect to
carbon quotas in the first stage, make choices with respect to SRM provision in the second
stage and make choices with respect to sulfur quotas in the last stage. In game IV, the first
stage consists of simultaneous SRM choices and the second stage of simultaneous choices
of carbon quotas.

The last two games consider the effects of policy leadership in carbon or SRM policy.
These are four stage games. In game V, a nation chooses its carbon quota in the first stage,
the other nation chooses its carbon quota in the second stage, and the two nations simulta-
neously choose SRM provision in the third stage and simultaneously choose sulfur quotas
in the last stage. In game VI, a nation chooses its SRM provision in the first stage, the other
nation chooses its SRM provision in the second stage, and the two nations simultaneously
choose carbon quotas in the third stage and sulfur quotas in the last stage.

We have several important findings. We show that if both nations simultaneously com-
mit to carbon permit policies, national SRM levels rise with the carbon quotas. The global
temperature rises following each unit increase in the global carbon quota. If, on the other
hand, both nations simultaneously commit to SRM policies, national carbon quotas rise
with national SRM levels. The global temperature falls following each unit increase in the

global SRM level. We also find that a nation always has an incentive to be a policy leader in
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either carbon or SRM policy. For various values of parameters of utility and technological
functions, we can also show that a nation prefers being a leader in carbon policy to being
a leader in SRM policy, but the globe prefers leadership in SRM policy to leadership in
carbon policy. In addition, the globe prefers simultaneous policy commitments in SRM
policy to simultaneous policy commitments in carbon policy. As for SRM provision, we
show that it is overprovided whenever carbon policy is determined prior to SRM policy and
it is underprovided otherwise. Global carbon emissions are always larger than the globally
efficient amount, but the second lowest level of global carbon emissions is observed in
the setting in which there is leadership in SRM policy. Carbon emissions follow the same
pattern as sulfur emissions.

The remainder of the chapter is organized as follows. Section 4.3 describes the general
equilibrium framework, Section 4.4 provides the analysis for the various policy games,
Section 4.5 considers whether or not the settings involve first-mover advantage, Section

4.6 offers key results of comparisons across equilibria, and Section 4.7 concludes.

4.3 General Equilibrium Framework

Consider a global economy that, for simplicity, consists of two nations, indexed by j,j =
1,2. We normalize the population of each nation, letting it be equal to 1. We assume that
both nations suffer from droughts caused by solar radiation management (SRM), global
warming caused by emissions of carbon dioxide and acid rain caused by emissions of sul-
fur dioxide. Carbon dioxide and sulfur dioxide emissions are by-products of energy pro-
duction in each nation. Solar radiation management, through injections of sulfur aerosols,
is provided by each national government.

Let H?(C, M) denote the harm function associated with global warming in each nation,
where C' = Z?:l C;and M = 2321 M; are global levels of carbon dioxide and SRM,
respectively. For concreteness, we shall assume that HZ (C, M) = hT(C — M)?, where

T > 0. Let H ]A(@j, S;) be the harm function of acid rain deposition in nation j, where
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S; is the level of sulfur dioxide in nation j and 1 > 6; > 0,5 = 1, 2 denote its sensitivity
to acid rain damage. We assume that H:'(6;,S;) = h"6;S?, where 1 > h* > 0. The
drought damage caused by SRM in nation j is represented by /1 ]D (0;, M), where 1 > §; >
do > 0,7 = 1,2 denotes its sensitivity to drought damage. We assume that H ]D (0;, M) =
§;hP M?, where 1 > hP > 0.2 Nation j’s total level of environmental damages is
H; = H;(C,M,S;) = H'(C,M) + H{0;,5;) + H}(6;, M). (4.1)
The representative consumer in nation j consumes x; units of composite good (nu-
meraire), e; units of energy and is harmed by H; units of environmental damages. Let
u;(x;, e;, H;) denote consumer j’s utility function. Assume that u; is quasi-linear (lin-
ear in x;), and increasing and strictly concave in e;. More precisely, we assume that
u;(zj, e, Hj) = z; + f(e;) — Hj where f(e;) = e;(b—aej) andb > 1 > a > 0.2

The representative consumer?s income is denoted w;, where
_ M
W; = Iy —l—pchcj + T — K (Mj) (42)

The consumer is initially endowed with Z; units of the numeraire good, is the sole share-
holder of profits earned by her nation?s energy industry, 7;, is the recipient of the revenues
generated with sale of pollution permits, pc,Qc, + ps;@s; (pc, and ps, are prices of car-
bon and sulfur permits and ()¢, and @5, are the carbon and sulfur quotas in nation j) and

pays a tax equal to her nation’s cost of provision of SRM, K (). We shall assume

2Quadratic pollution damage functions are widely used in the environmental economics literature that
considers game-theoretic applications. Provided the damage functions are strictly convex, the nations’ poli-
cies will be strategic. The results with different strictly convex specifications of the damage functions will be
qualitatively identical to the ones we obtain in this paper.

3The quasi-linear utility function characterization is frequently used in general-equilibrium models be-
cause of its desirable aggregation properties (demand side). In addition, quasi-linearity together with the
assumption that the utility function from energy consumption is quadratic yields a linear demand function
for energy. This type of demand function is commonly used in the regulation literature. The assumption
that the utility function is separable in energy consumption and pollution damages is also standard in the
environmental economics literature.
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that KM (M;) = kM sz, where 1 > k™ > 0. For future use, it is important to note that
C=Qc +lc, =Qcand S; = Qs;,j = 1,2,

Throughout, we assume that markets are competitive, with consumers and energy firms
taking prices as given. Consumers also take their incomes and the levels of pollution dam-
ages as given. Consumer j chooses non-negative {z;, e, } to maximize u;(x;, e;, H;) sub-
jectto z; + pe,e; = w;, where p._ is nation j’s energy price. This is equivalent to choosing

e; > 0 to maximize f (ej) — Pe; €5- Assuming interior solutions, the first-order condition is:

f'(e;) — pe; = 0. (4.3)

Condition (3) informs us that the optimal level of energy to be consumed is the one at
which the marginal utility from energy equates the price of energy. Since the second-order
condition is f”(e;) = —2a < 0, the solution to the consumer’s maximization problem is
unique. Equation (3) yields e;(p.;) = (b — pe,)/(2a), consumer j’s energy demand. Her
demand for the numeraire good is z;(pe,,w;) = w; — pe,e;(pe;) and v;(pe,, w;, H;) =
7 (pe,;,w;) + f(e;(pe;)) — Hj is her indirect utility function.

In nation j, the energy industry’s profit function is

ﬂ-j(Ej7RCj’RSj)
= pe,E; — pc,(E; — Re,) — ps,(E; — Rs,) — K”(E;) — K(Re,) — K°(Rs,)

= pEjEj _pC'jAJC(Eja RC]-) _ijAf(Eja RSj) - KE(E]) - KC(RC]‘) - KS(RSj)

where £, R¢; and R, are levels of energy production, carbon dioxide reduction and sulfur
reduction, respectively. We denote by AY(E;, R¢,) = E; — Re, and AY(E;, Rg,) =
E; — Rgs, the the quantities of carbon and sulfur permits demanded by nation j’s energy
industry, respectively. To simplify notation, we shall assume that the size of the energy
industry in each nation is equal to 1 and thus refer to it as an energy ?firm?. We also assume

that the costs of energy production, carbon dioxide reduction and sulfur dioxide reduction

53



are K*(B;) = k" B}, K(Re,) = k“R¢, and K®(Rs,) = k°R% , where 1 > k" > 0,

1 >k >0and1 > k° > 0. Each firm chooses non-negative {E;, R¢,, Rs,} to

maximize 7;, taking all prices as given. The first-order conditions for interior solutions are

dKF

pe]- _pCj _ij - dE.- = 07 (443)
J
dK°

po; — dRe. =0, (4.4b)
dK*®

- = 0. 4.4
Ds; iR, 0 (4.4¢c)

Condition (4a) informs us that the optimal amount of energy to be produced in a nation
should equate the marginal revenue to the sum of marginal production and regulatory costs
of energy production. Equation (4b) states that the optimal level of carbon abatement
should equate the marginal revenue from carbon abatement (i.e., the marginal cost sav-
ing in expenditure on carbon permits) to the marginal cost of carbon abatement. Equation
(4c) is similar; it equates marginal revenue from sulfur abatement to the marginal cost of
sulfur abatement.

Solving the system of equations (4a) to (4c), we obtain nation j’s energy supply func-
tion, E;(pe,, pc;. Ps;) = (Pe, —Pc; —Ps,;)/2k", and the carbon and sulfur abatement supply
functions, R¢, (pc,) = pe,/2kC and Ry, (ps,) = ps,/2k®, respectively. Thus, we have (for

J=12)

4The cost functions are assumed to be quadratic for tractability purposes and in order to generate linear
supply functions. Provided the cost functions are increasing and strictly convex and the marginal willingness
to pay for the energy good is sufficiently high, an interior and unique equilibrium is guaranteed. The results
under other strictly convex specifications of the costs functions will be qualitatively identical to the ones we
obtain in the text.
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0E;  0E;  0E;, 1

=2t =-""= 0 4.5
Op, _ Ope,  Ops, 2kE (50
dRc, 1
L= — >0 4.5b
o~ me >0 (4.5)
dRg, 1
L= >0 4.
T 0 (4.5¢)

As expected, conditions (5a) inform us that each energy firm?s supply function is in-
creasing the price of energy and decreasing in the prices of carbon and sulfur permits.
Conditions (5b) reveal that each firm supplies more carbon abatement as the price of the
carbon permit in its nation increases. Conditions (5c) are similar to conditions (5b): they
state that each firm produces more sulfur abatement as the price of its nation’s sulfur per-
mit increases. Combining the definitions of the quantities of carbon and sulfur permits
demanded with conditions (5a) - (5c) yields

OAY _ NS B OAY _ NS 1
Ope,  Ope,  Ops,  Opc;  2kF

>0, (4.6a)

aAJG = ! ! <0 (4.6b)
apcj N 2kE 2kC ’ .
ON? 1 1

LR — <0. (4.6¢)

apsj 2kE 2kS

Conditions (6a) inform us that the quantities of carbon and sulfur permits demanded rise
with the price of energy. This is natural since the firms will expand energy production as the
price of energy increases. Conditions (6a) also reveal the quantities of carbon and sulfur
permits demanded are complements, since the quantity of carbon permits demanded by
firm j falls as the price of nation j’s sulfur permit rises and the quantity of sulfur permits
demanded by firm 5 falls as the price of nation j’s carbon permit rises. Conditions (6b)
and (6¢) state that the demands for carbon and sulfur permits fall as their respective prices

increase.
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Market-clearing conditions for the national energy market, and carbon and sulfur permit

markets, respectively, are as follows:

ej<p6j) = Ej(p6j7p0j7p5j)7 (473)
AS (pe, peyps;) = Q. (4.7b)
A% (pe,,pc,,ps,) = Qs,- (4.7¢)

Conditions (7a) inform us that in each nation the demand for energy must be equal to
the supply of energy. Conditions (7b) state that in each nation, the demand for carbon
permits must be equal to the supply of carbon permits. Conditions (7c) are similar to
conditions (7b): in each nation, the demand for sulfur permits equals the supply of sulfur
permits. Solving the system of equations (7a) - (7c), we obtain the price functions in terms

of pollution quotas:

b(kS + k¥ + k%) — 2b(k“Qc, + k°Qs,)

(Qc,, Qs)) = 4,
pe]<QC]7QS])) a+k3E+k:C+k5 ; ( 83.)
bkC — 2kC[(a + k¥ + k%)Qc, — k°Qs]
(Qc;, Qs)) = d . 4.8b
P, (Qc;, Qs;)) R RO S : (4.8b)
bkS + 2k5[kCQc. — (a + kC + kEP)Qs,
ps;(Qc;, Qs,;)) = | ; — ) ]]. (4.8¢)

a+kE 4 k€ 4+ kS
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Then the following comparative static results are immediate:

Ope;, 20kC

0Qc,  a+kP+kC+kS
Opc,  2kS(a+ K" +£°)

<0, (4.92)

0Qc,  a+kP+kC+kS <0, (4.90)
Ips; 2kC kS
90c, atkE ko ks (4.9¢)
Ope; 20k°
S 4.9d
0Qs, a+sz+kC+k3<0’ (4.99)
dpc. 2kC kS
b, _ >0, (4.9¢)

0Qs, a+kF +kC+E5

Ops. 2kS EE 4+ kC
ps, _ 2k (atk”+A7) o (4.96)
0Qs,  a+kE T kC 1K

We summarize our findings about the equilibrium price functions in the following proposi-

tion.

ope
J
500, <0

Ops. Ope.. opc,; Ops;
%S0, 29 < 0, 2 > 0 and ZJ <0,

cps Ope;;
PrOpOSlthH 4.1. @ <0 5 @ A @ 5 aQSj 30 ;

j=12.
We are now ready to write consumer 7’s indirect utility as function of pollution quotas

and SRM provision levels:

v;(Qc;, Qe Qs My, M_j)
=2 + [3(ej(pe; () = KZ(Ej(pe; (1)), 0o, (), 05, () = K< (Re, (po, ()

— K°(Rs,(ps, (1)) — KM (M;) — H{(0;,Qs,) — H' (Qc, M) — HP(6;, M) (4.10)

where pej(') = Pe; (QCJ-?QSJ')’ p0j<') = pCj(QCjaQSj)a ij(’) = Ds; (QCj?QSj) and M =
M;+M_;,5=12.Welet—j =1if j =2and —j =2if j = 1.
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4.4 Effects of Environmental Policy Commitments

We now examine the effects of timing in environmental policy making. We consider six
sequential policy games as described below. In all games, we assume that the national
governments select their sulfur quotas at the last stage. The equilibrium concept utilized is
subgame perfection. Table 4.1 summarizes the timings of the six games considered in the
analysis.

We establish two benchmarks under which policy making on carbon quotas and SRM
levels occur simultaneously in the first stage of two-stage games: (1) uncoordinated policy
making; and (2) coordinated policy making. Sulfur quotas are chosen simultaneously in
the second stage of the game. These benchmarks will enable us to capture both the effects
caused by the timing of policy making and the effects caused by non-cooperative behavior
(i.e., departures from socially efficient behavior). The next two sequential games involve
simultaneous choices of either (3) pollution quotas; or (4) SRM levels; in the first stage,
with simultaneous choices of either SRM (in game (3)) or pollution quotas (in game (4)) in
the second stage. Thus, unlike the games in which pollution quotas and SRM are chosen
simultaneously, games (3) and (4) involve three stages, since sulfur quotas are simultane-
ously chosen in the third stage of the game. The last two sequential games involve four
stages. In game (5), nation 1 chooses its carbon quota in the first stage, nation 2 chooses
its carbon quota in the second stage, SRM levels are chosen simultaneously in the third
stage and sulfur quotas are chosen simultaneously in the fourth stage. In game (6), nation 1
chooses its SRM level in the first stage, nation 2 chooses its SRM level in the second stage,
carbon quotas are chosen simultaneously in the third stage and sulfur quotas are chosen
simultaneously in the fourth stage.

Consider the last stage of any game, namely, the stage in which the nations choose sul-
fur quotas simultaneously after having observed the other policy choices, {Q¢;,, Qc_,;, M;, M_;}.

The optimization problem faced by nation j’s government is to choose non-negative ()s; to
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maximize the national indirect utility function (9), taking ()5_, as given. Assuming interior

solutions, we obtain the following first-order conditions:

A
Ds. — 08, =0,j=1,2 (4.11)
T 0Qs,

Conditions (11) inform us that in each nation the amount of sulfur quota should be set at
the level that equates the national permit price to the national marginal damage caused by

acid rain. Since H ]A = hAQngj, we have
Qs, = ps,/2h"0;,5 =1,2. (4.12)

Substituting equations (12) into (8a)-(8c) yields

Os — k5 (b+2k°Qc;,) (4.13a)
%7 2[kS(a + kP + kC) + h40;(a + kP + kC + k5)]’ '

blks(k® + k) + h40;(k" + kC + k)] — 2ak® (K° + h"6;)Qc,

= : 4.13b

Pe; kS(a+ kP + kC) 4+ hA6;(a + kP + k€ 4+ k9) ( )

KO{b(KS + hA0;) — 2[kS(a + kP) + hA0;(a + kP + k%))Qc, } “4.130)

be; = kS(a+ kP + kC) + hA0;(a + kP + kC + k5) ’ e
EShA0.(b+ 2kCQc.

ps, = i(b+ 27 Qc,) (4.13d)

kES(a+ kP + k€) 4+ hA0;(a + kP + kC + k)

Hence, we can now obtain comparative static results when sulfur quotas are chosen

optimally by the national governments:

Ope, 2akC (kS + hA6;

Pe, _ ak”(k” + h";) <0, (4.14a)
IQc; kS(a+ k¥ + k€) + h40(a + kF + kC + k%)

On . 2) C1.S E 2) A1.Cp . E S

pe; E“k>(a+ k%) + 2Rk 0;(a + K + k°) <0, (4.14b)
Q¢ ES(a+ kP + kC) + h40;(a + kP + k¢ + k%)

Ops, 2kCkShA0;

R L E——) (4.14c)
0Qc,  kS(a+ kP +kC) + hA0;(a + kP + kC + k5)

90« C1.S

s, _ Wk > 0. (4.14d)

0Qc, kS(a+ kP +EC) + hA0;(a + kP + k€ + k5)
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Unlike in Proposition 4.1, the sulfur quotas are now adjusted optimally when the carbon
quotas are increased. Condition (14d) informs us that a nation’s sulfur and carbon quotas
are strategic complements. As a nation’s carbon quota increases, its sulfur quota is also
increased, implying that the inelastic curve representing the supply of sulfur permits shifts
to the right when the carbon quota is increased. Since, as we have discussed after Propo-
sition 4.1, the demand for sulfur permits shifts out when the carbon quota is increased, the
final effect of increasing the carbon quota on the sulfur permit price is potentially ambigu-
ous. However, as condition (14c) demonstrates, the net effect on the sulfur permit price
is positive. The optimal adjustment in the sulfur quota reduces but does not eliminate the
hike in the sulfur permit price relative to a situation where sulfur quota is not adjusted at all
(i.e., when the sulfur quota policy is exogenous). The net effects of an increase in the car-
bon quota on the energy and carbon permit prices captured by conditions (14a) and (14b),
respectively, are the expected ones. We summarize results (14a) - (14d) in the following
proposition.

Ope;; Ipc; Ips; Qs; .
5Qc, <0, o, <0, 5ac, > 0, 5ac, >05=1,2

Proposition 4.2.

4.4.1 Game I: Simultaneous Choices of Carbon Quotas and SRM Levels

In the first stage, the government of nation j chooses non-negative {Q¢;, M/} to maximize
(10) subject to Qs, = Qs,(Qc;;0;), taking {Qc_,, M_;} as given. Assuming interior

solutions, the set of first-order conditions are (for j = 1, 2):

OHT
pc; = 300 (4.152)
dHT dKM dHP
T = dM + d]\} = 0. (4.15b)

J

Conditions (15a) reveal that the carbon quota in nation j should be set at the level that
equates the national carbon permit price to the national marginal damage of global warm-

ing. Conditions (15b) are similar in spirit, since the level of SRM that should be provided
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at nation j is the one under which the national marginal benefit from SRM provision is
equal to the national marginal cost. The latter is the sum of the marginal cost of provision
and the marginal damage caused by droughts in nation j.

Since HT = hT'(C — M)?, HJD = 0;hP M? and KM = /{:MMjQ, equations (15b) yield:

o POl + B2 — 6))

_ 4.16
77 TRM(21D 1 2RT + M) (4.16)

where —j = 21if j = 1 and vice versa. Equations (16) make it clear that the assumption that
the equilibrium is interior requires us to consider situations where the national sensitivity
indexes associated with the damage functions from droughts are not too different from
each other. Henceforth, we shall assume that &, + (k* /hP) > &, > 0. Furthermore,
given our assumptions, the sufficient second order condition for this game is satisfied. The

equilibrium is unique.’

4.4.2 Game II: Simultaneous Coordinated Choices

Suppose now that there is full coordination between the two nations regarding the choices
of carbon quotas and SRM levels in the first stage of the game. Assume that a utilitarian
bi-national environmental agency chooses non-negative {Q¢,, Qc,, M, My} to maximize
global indirect utility V' (-) = wv1(-) + va(-) (Where v;(+) and vs(+) correspond to function
(10) by setting 5 = 1, 2, respectively) subject to (13a). Assuming interior solutions, the

first-order conditions are as follows (7 = 1, 2):

OHT
=2 4.1
je (3620)’ (4.17a)
OHT — dKM C~dHP
~257) = i +jzzl e (4.17b)

>The sufficient second order conditions are satisfied in all games examined in this paper. Hence, the
equilibrium for each game is unique. These results are available from the authors upon request.
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Condition (17a) tells us that the amount of carbon quotas in nation j is chosen to equate
the national carbon permit price to the social marginal damage of global warming - that
is, the sum of the national marginal damages from global warming. Condition (17b) state
that nation j should provide SRM at a level that equalizes the global marginal benefit
from SRM provision (i.e., the sum of national marginal benefits from a reduction in the
global temperature) to the global marginal cost of SRM provision (i.e., the sum of national
marginal production cost and the sum of national marginal damages from droughts caused

by SRM provision).

4.4.3 Game III: Simultaneous Commitments on Carbon Permit Policies

Having observed {Qc,,Qc_,}, government j chooses non-negative M; to maximize its
indirect utility function (9), subject to (12a), taking M_; as given in the second stage.
Assuming interior solutions, the first-order conditions yield equations (15). These best-
response functions reveal that SRM provision in nation j expands with the global quantity
of carbon dioxide. Adding the best-response functions, one gets the global SRM level as
function of the global carbon dioxide quantity. The global SRM quantity rises with the
global carbon dioxide quantity, but at a rate that is less than one.®

In the first stage, the first-order conditions are (—j = 2 if j = 1 and vice versa):

OHT N OHT N deD)aM_j
0Qc OM  dM’ 9Qc

pCj -

(4.18)

Conditions (18) inform us that the optimal carbon quota level for each nation is the one
D
J

. : . dH
that equates the slope of the nation’s iso-utility curve, (pc, — ggZ) / (%f]{; + —57) to the

®As stated in the introduction, SRM provision and reduction of carbon emissions are impure public goods
in our model. They are imperfect strategic substitutes as equations (15) reveal. Our paper contributes to the
public economics literature by considering the strategic interactions between these two impure public goods.
It is also important to notice that the imperfect substitutability between the two impure public goods is not
implied by our modeling assumptions with respect to the functional forms of damage and cost functions.
It follows from the facts that are national-specific benefits associated with expansions in carbon emissions
(consumer surplus produced by energy consumption) and national-specific costs associated with expansions
in SRM provision (damages from droughts).
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0

slope of the best response function of the other nation, %

4.4.4 Game IV: Simultaneous Commitments on SRM Policies

Having observed {M;, M_;}, government j selects non-negative ()¢, to maximize its in-
direct utility function (10) subject to (13a), taking ¢, as given, in the second stage. The

first-order conditions are equations (15a). Differentiating each equation (15a) with respect

to M yields
T apc_j
8ch —2h (an_j )
I = “Bpc, Ope, oBT dpc, pcy >0 4.19)
50c, 900, — 21" (ager + 20c)

where the sign of the each of the two equations in (19) follows from the facts that both
the denominator and the numerator of the ratio in the right side of each equation (19) are
positive - see Proposition 4.2. Note that each nation’s carbon quota rises with the global
SRM level at a rate that is less than one. In addition, it also follows that the global carbon
emission level rises at a rate that is less than one when the global SRM level expands. Thus,
an expansion in global SRM leads to a net decrease in the global temperature!

In the first stage, the first-order conditions are (j = 1,2, —j # j):

_oHT KM | dH} L OHT 0Qc.,
oM — dM; ' dM  0Qc OM

(4.20)

Equations (20) tell us that the optimal SRM level for each nation is the one at which the
dk™ | 9HT | dHP
o, o toan
oHT 9Qc_;

9Qc oM

slope of the nation’s indifference curve, —(

) is equal to the slope of the

best response function of nation —7,

We can summarize the temperature outcomes of the sequential games as follows.

Proposition 4.3. If both nations simultaneously commit to carbon permit policies, national
SRM levels rise with the carbon quotas. The global temperature rises following each unit
increase in the global carbon quota. If both nations simultaneously commit to SRM poli-

cies, national carbon quotas rise with national SRM levels. The global temperature falls
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following each unit increase in the global SRM level.

4.4.5 Game V: National Leadership in Carbon Permit Policy

In this game, nation 1 is the leader in carbon policy. Nation 2 observes the carbon quota
chosen by nation 1 and chooses its carbon quota in the second stage. In the third stage, both
nations choose SRM levels simultaneously. In the fourth stage, both nations choose sulfur
quotas simultaneously. Thus, this game adds one stage to the timing of game III. Relative
to the policy setting captured by game III, it enables us to discover the effects associated
with a nation being a leader in carbon policy.

Having observed ()¢, , nation 2 chooses non-negative ()¢, to maximize its payoff func-
tion subject to (13a) and (16). The first- and second-order conditions for the problem solved
by government 2 are the same as in the first stage of game III. Hence, we can get Q¢, (Qc,)

from condition (19):

Ipc, 0%vy

IQc,
8@02 )/(GQ%«2

IQc,

= ( )— 1. 4.21)

It is straightforward to show that 0 < ( ggccz )/( 885;;22) < 1. Thus, equation (21) yields
—1 < 0Q¢,/0Q¢, < 0. Each unit increase in nation 1’s carbon quota leads to a reduction
in nation 2’s carbon quota at a rate smaller than one. The net effect of each unit increase in
nation 1’s carbon quota is an increase in global carbon emissions and a subsequent increase
in the global temperature.

Consider now the first stage. The first-order condition for an interior solution is:

OHT  OHT  dHP 900,
50- o T " a0,

pey — | ) =0. (4.22)

Condition (22) informs us that the optimal quota level for nation 1 is determined by the

OHT dHP

condition that equates p¢, / [ggz + (%37 + %37 )] — 1. the slope of nation 1’s indifference
d . , .
curve, to ag%’ the slope of nation 2’s best response function.
1
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4.4.6 Game VI: National Leadership in SRM Policy

In this game, nation 1 is the leader in SRM policy. Nation 2 observes the SRM level
provided by nation 1 and then chooses its SRM level in the second stage. In the third
stage, carbon pollution quotas are chosen simultaneously. Finally, sulfur quotas are chosen
simultaneously in the fourth stage.

In the second stage, nation 2 chooses M, > 0 to maximize its indirect utility, subject to
(14a) and ch (M). The first- and second-order conditions are the same as in the first stage

of game IV. Then we can obtain M, (M;) from condition (21). Hence,

0Qc,
oMy hP(8y + 6y) + 2h" (1 — 32) (1 — =5t) <0 (4.23)
oM, 2kM + hP (81 + 0p) + 2RT(1 — Z92)(1 — %>

Condition (23) reveals that SRM levels are strategic substitutes and that the rate of substi-
tution is less than one in absolute value.
In the first stage, nation 1 determines )/; to to maximize its indirect utility subject to

the reactions in the subsequent stages. The first-order condition is

OHT dHP  9HT 0Qc, oMy, dKM
(577 + + )L+ o)+ =
oM " dM T 9Qc oM oMy’ " dM,

0. (4.24)

Condition (24) shows that the optimal SRM level for nation 1 is determined by the tangency

D
condition which states that the slope of nation 1’s indifference curve, i (BH a + dﬂ} +

©dMy [\ oM
8 . . , .
% ;2]\32 ) — 1, is equal to the slope of nation 2’s best response function, g%f.

4.5 First-mover Advantage

We now demonstrate that a nation always benefits from being a policy leader, either in
carbon policy or in SRM policy. Consider carbon policy first. By being a leader in carbon
policy, nation 1 selects its optimal quantity in game V on firm 2’s reaction curve. Thus, the

choice nation 1 makes in game III (in which carbon policies are chosen simultaneously)
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is available to this nation when it makes its choice in game V. Since nation 1 selects a
different carbon quantity quota in the equilibrium of game V and the equilibrium for this
game is unique, nation 1 strictly prefers the carbon quota of game V to the carbon quota
of game III. This is a revealed preference argument. Revealed preference and the fact that
the equilibrium for game VI is unique also implies that nation 1 strictly prefers the choice
it makes in game VI to the choice it makes in game IV. Thus, nation 1 strictly prefers to
move first in each type of policy to moving simultaneously with nation 2.

We now demonstrate that nation 1 prefers to be the leader than to be the follower. As

in Section 4.2.3, it is straightforward to show that

9Qc, /0Qc, < 0, (4.25)

Result (25) informs us that carbon quotas are strategic substitutes. Result (26) informs us

that SRM levels are strategic substitutes. Hence, we have the following facts:

(
HT =n"(C - M)?
= (¢, and Q¢, are technologically perfect substitutes ()

KC = Qc, + Qc,
(
HP = 5,hP M2

’ = M, and M, are technologically perfect substitutes (i)

M =M, + M,

\

Conditions (21) and (25) = Q¢, and ¢, are strategic substitutes. (7i7)

Conditions (23) and (26) = M; and M, are strategic substitutes. (iv)

Proposition 4.4. Given (i) and (iii), a nation always prefers to be the leader rather than
the follower in carbon quota policy. Given (ii) and (iv), a nation always prefers to be the

leader rather than the follower in SRM policy.
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Proof. 1t is a direct application of Varian’s proof for the preference of quantity leadership

in duopoly games. See [51], p. 297. [

Together with the revealed preference results, which state that moving first is strictly

preferable to moving simultaneously in each type of policy, we can affirm:

Proposition 4.5. A nation always prefers to move first in either type of policy, carbon quota

or SRM.

4.6 Comparisons across Equilibria

Proposition 4.5 is important because it enables us to predict that, under our modeling as-
sumptions, a nation will always attempt to be the leader in climate change policies. We
are, however, unable to predict whether the leader has a policy preference. We now assign
specific values to parameters of the utility, cost and harm functions in order to compare

payoffs across equilibria and then to expand our predictions of play.

4.6.1 Symmetric Economy

We first assume that the economy is symmetric. In this case, drought and acid rain damage
functions are identical. In the baseline case, let a = 1/2,b = 1,k¢ = k% = kM = kF =
Rt =hT =hP =1/2,6, =6, =1,0, =0y =1 and T; = 0, j = 1,2. Solving consumer
j’s and producer j’s maximization problems, the general equilibrium results in nation j are:
ej =E; = (1+Qc¢, +Qs,)/4 Re, = (1 = 3Q¢, +Qs;)/4 Rs; = (1 +Qc, — 3Qs,)/4,
Pe; = (3= Qc; — Qs,)/4 pe; = (1 = 3Qc, + Qs;)/4and ps; = (1 + Qc; — 3Qs,)/4,

J = 1, 2. Plugging these functions into equation (10), we obtain the indirect utility function
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of nation j:

vi(Qo;, Qo5 Qs;y My, M_j)
:[1 + Q(ch + QS;‘) + QQCJQSj]/8 - [4Mj2 + 4M2 + 4(QC - M)2 + 3Q%j + 7@%],]/8.
(4.27)

It is useful to compute the first order condition of nation j’s maximization problem with

respect to ng , which holds in each game:

0v;/0Qs, = 0= Qs, = (1+Qc,)/T.5 = 1,2. (4.28)

Solving the governments’ maximization problems in the different games using the payoff
functions (27) and conditions (28), we compute the Nash equilibrium outcomes.

The main results of the comparisons across equilibria in this baseline case are presented

in Table 4.2.
Table 4.2 — Main results of baseline comparisons across equilibria.
Rankings 1 2 3 4 5 6
V II v VI I III \Y
U1 II \" VI v I 11
Vg II v I VI 111 \%
H{ \% II1 I v VI 11
H. 2A 111 I v VI \Y II
HP v I I II v VI
HT \Y VI v 11 I II

Proposition 4.6. The rankings of payoffs and environmental damages in descending order
(i.e., column I displays the highest values and column 6 displays the lowest values) are as

follows.”

Proof. It is available from the authors upon request. [

7In this table, we assume that nation 1 is the Stackelberg leader in games V and VI.
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The results summarized in Proposition 4.6 are remarkable. Given the first-move ad-
vantage, the most likely non-cooperative scenarios are games V and VI, since these appear
as the first and second most preferable options from the point of view of the leader, if we
discard the cooperative game II as an option. If, in addition, we allow the leader to choose
between leadership in carbon policy and leadership in SRM policy, the leader chooses car-
bon policy. Now, consider the ranking for global welfare. Not surprisingly, the highest
level of global welfare is obtained at the equilibrium in which carbon and SRM policies
are fully coordinated - game II. However, the other ranking positions provide us with very
interesting messages for the inefficient allocations: (i) global welfare is higher when SRM
policy is determined before carbon policy; (ii) for each type of policy commitment, global
welfare is higher when there is no leadership; (iii) SRM policy commitments are superior
to no policy commitment and the latter is superior to carbon policy commitments; (iv) SRM
policy commitment without national leadership is second best; and (v) policy leadership in
carbon policy is the worst scenario for the globe!

The first message follows from two comparisons: (a) between the global welfare lev-
els implied by the equilibria for games IV and III; and (b) between global welfare levels
implied by the equilibria for games VI and V. Games III and IV are three-stage games char-
acterized by simultaneous choices in each stage. Since the equilibrium for game IV yields
a higher level of global welfare than the equilibrium for game III, the globe should prefer a
setting in which national authorities simultaneously choose SRM policies in the first stage
to a setting in which national authorities simultaneously choose carbon policies in the first
stage. Games V and VI are four-stage games characterized by individual choices in the first
two stages and simultaneous choices in the last two stages. Since the equilibrium for game
VI yields a higher level of global welfare than the equilibrium for game V, the globe should
prefer a setting in which there is leadership in SRM policy to a setting in which there is
policy leadership in carbon policy.

The second message follows from two comparisons: (a) between the global welfare
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levels implied by the equilibria for games III and V; and (b) between the global welfare
levels implied by the equilibria for games IV and VI. The third message follows from the
second message and two comparisons: (a) between the global welfare levels implied by
the equilibria for games IV and I; and (b) between the global welfare levels implied by
the equilibria for games I and III. The comparisons reveal that the global welfare level
produced by the equilibrium game IV is higher than the global welfare level produced by
the equilibrium for game I and the latter is higher than the global welfare level produced
by the equilibrium for game III. The fourth message is straightforward, since the level of
global welfare implied by the equilibrium for game IV is the highest among those produced
by the inefficient equilibria. The last message is obvious.

For the inefficient allocations, one can understand the ranking for global welfare if in
the comparisons we are able to rationalize the combined effects of policy leadership and
“easy riding” on the provision of SRM and on the setting of carbon quotas.® Not only the
leader (nation 1) receives in the equilibrium for game V the highest payoff obtained by this
nation in the set of inefficient games, the payoff received by nation 2 in the equilibrium for
game V is the lowest obtained by this nation in the set of inefficient games. The equilibrium
for game V features the highest global warming and drought damages, implying that the
setting in which nation 1 is a policy leader in carbon policy yields the highest levels of
carbon emission and SRM provision. To show this, note that Proposition 4.6 informs us
that HPY > P > HP' > gP" > P = HPY' Since HP = M?/2, we have

MY > M > MT > M > MV > MV!. Proposition 4.6 also reveals that HZ® >

TIV TIII

H™ > ™ > H™' > H™ > H™ . Since H” = (Q¢ — M)?/2, we can combine the
results to obtain QY = max{QL, QL , QL1 QL , Q¥, Q¥ }.
The equilibrium for game V yields the highest levels of acid rain damage and sulfur

dioxide emission in nation 1 - recall that H{* = Q%l /2. As clearly revealed by equation

8The term “easy riding” was first introduced in the literature by Cornes and Sandler (1984). This paper
provides the first comprehensive analysis on easy rather than free riding in games that examine voluntary
contributions to a public good.
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(28), the carbon quota in nation 1 is an increasing function of the sulfur quota. Hence,
the equilibrium for game V also features the highest level of carbon dioxide emission in
nation 1. This setting, therefore, is characterized by overprovision of SRM (i.e., the amount
of SRM provided is higher than the globally efficient amount obtained in the equilibrium
for game II), the highest degree of easy riding on mitigation of carbon emissions and the
highest levels of sulfur and carbon emissions in nation 1.

If we remove the policy leadership status of nation 1 in carbon policy, but still consider
a setting in which carbon policy is determined before SRM policy, we are able to capture
the effects promoted by leadership in carbon policy by comparing the national outcomes
obtained in the equilibria for games III and V. The payoffs for nations 1 and 2 in the equi-
librium for game III are the lowest and second lowest payoffs earned by these nations,
respectively. Since the global warming and drought damages associated with the equilib-
rium of game III are smaller than their counterparts in the equilibrium for game V, removing
policy leadership in carbon policy produces global benefits - both the degree of overpro-
vision in SRM and the degree of easy riding in carbon mitigation are reduced. However,
there are also national impacts associated with the removal of leadership in carbon policy
- acid rain damages are reduced in nation 1 but increased in nation 2, implying that sulfur
and carbon emissions in nation 1 are reduced, but sulfur and carbon emissions in nation 2
are increased.

Policy leadership in SRM, on the other hand, is more desirable from a global perspec-
tive. Not only the payoff that nation 1 receives in game VI is third best, the payoff earned by
nation 2 in the equilibrium for game VI is the highest among the inefficient payoffs earned
by this nation. The level of drought damage associated with the equilibrium for game VI is
the lowest among all scenarios, implying that SRM is underprovided in the equilibrium for
game VI. The level of acid rain damage faced by nation 1 in the equilibrium for game VI is
the second lowest among all scenarios. This implies that the degrees of sulfur and carbon

emission mitigation in nation 1 are second best. By comparing the equilibria for games
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V and VI we can capture the effects of switching the type of policy leadership. Since the
equilibrium for game V features overprovision of SRM and the highest degree of easy rid-
ing in carbon and sulfur mitigation in nation 1 and the equilibrium for game VI features
suboptimal provision of SRM and second best degrees of mitigation of carbon and sulfur
emissions, we see that the policy leader always chooses its policy instruments to minimize
its contributions to improving the negative effects promoted by climate change.

The findings illustrated in Proposition 4.6 yield an interesting policy prescription other
than forcing the nations to behave cooperatively. The policy prescription concerns the im-
plementation of a global agreement on SRM policy in full anticipation that the nations will
behave non-cooperatively. Provided this agreement leads the nations to make simultaneous
commitments with respect to SRM policy, the resulting outcome will be second best for
the globe. Even if the agreement is unable to prevent one nation from becoming a leader
in SRM policy, the outcome will be superior to the most likely outcome in absence of the

agreement ? game IV is third best for the globe.

4.6.2 Robustness: Asymmetric Drought and Acid Rain Damages

The numerical analysis in subsection 4.5.1 considers symmetric drought and acid rain dam-
age functions. It also assumes identical values for most parameters. In this section, we
check whether the rankings of payoffs are robust to differences in drought damages, acid
rain damages and changes in the values of some parameters. Table 4.3 below shows the
results of some mathematical simulations.

The most important results of our analysis in the symmetric case concerned our pre-
dictions with respect to the “choice of a scenario” that a policy leader will make and the
contrasting (non-cooperative) choice that the globe will make if it can exercise this option.
The leader prefers the scenario that arises under game V. The non-cooperative choice of the
globe is scenario IV. If the globe is unable to prevent a nation from becoming a leader in

policymaking, then it prefers scenario VI.
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Table 4.3 reveals that these conclusions remain true even in the presence of asymmetric
drought and acid rain damages. The table reports results for four situations in which the
drought damage in nation 1 is larger than the drought damage in nation 2: (i) when the
relative damage is ten times larger in nation 1; (ii) when the relative damage is four times
larger in nation 1; (iii) when the relative damage is two times larger in nation 1; and (iv)
when the relative damage is 1.33 times larger in nation 1 than in nation 2. In each situation,
we consider the effects of incremental changes in theta 1 and theta 2. To understand this,
first row for the global payoff V. We use the baseline values for the parameters other than
delta 1, delta 2, theta 1 and theta 2. We then start by considering how the ranking displayed
in Table 4.2 changes (if there is any change at all) when we fix theta 1 equal to 0.1 and let
theta 2 to be equal to 0.2. We compute the results and move to the next iteration, where
theta 1 is still kept equal to 0.1 and theta 2 is increased to 0.3, and so on until theta 2 is
equal to 1. After this, we set theta 1 equal to 0.2 and let theta 2 to be equal to 0.1. The next
iteration keeps the value of theta 1 constant and increases the value of theta 2 to 0.2, and so
on until theta 2 equals 1. The computations end when both theta 1 and theta 2 equal 1. The
results in the first row demonstrate that the baseline ranking for the global payoff remains
unchanged in the four situations for all possible combinations of theta 1 and theta 2 values.

The second row of the table shows that the baseline ranking for the global payoff re-
mains unchanged under the first three asymmetric-drought-damage situations even when
one of the taste parameters, a, is evaluated in the range [0.05, 0.7] and the other parame-
ters are kept constant at their baseline values. The baseline ranking for the global payoff
changes in the last asymmetric-drought-damage situation. For 0.05 incremental changes in
a, the ranking changes because the relative positions of scenarios I and VI alternate (i.e.,
for some a values in the interval [0.05, 0.7], V' is larger in scenario I than in scenario VI,
but for some other a values the opposite is true. Alternating pairwise rankings are also
observed for different values of b (another taste parameter) in the interval [1, 10] in the first

two asymmetric-drought-damage situations. For k° (a technological parameter) in [0.05,
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1], the baseline ranking for the global payoff remains unchanged. We could have offered
similar conclusions for the other types of parameters regarding the broad range of param-
eter values under which the baseline ranking for the global payoff remains unchanged,
but decided to keep the table small and display the results for “representative” taste and
technological parameters.

When we consider the potential changes in the baseline rankings for the payoffs earned
by the leader and the follower, we notice that there are not as many circumstances under
which the baseline ranking for each type of player remains unchanged as in the baseline
ranking for the global payoff. However, the message that the leader prefers scenario V
among all non-cooperative scenarios remains unchanged. In addition, restricting our at-
tention to the most likely non-cooperative scenarios V and VI, the follower still prefers

scenario VIto V.

4.7 Conclusion

This paper represents an initial exercise on the effects promoted by policy commitments
on competing instruments designed to reduce the negative effects associated with global
warming. We consider a global economy consisting of two nations and in which produc-
tion of energy generates both sulfur and carbon emissions and the nations can use carbon
quotas and SRM provision to reduce the negative effects associated with global warming.
Although solar radiation management is a global pure public good with respect to climate
change, its provision has two types of monetary costs (namely, technological and drought
damage), which formally make it an impure public good. We show that a nation always
views carbon and sulfur quotas as strategic complements. We also show that a nation al-
ways prefers to be a policy leader, irrespective if the leadership is in carbon policy or SRM
policy. For various values of parameters of utility and technology, we can demonstrate that,
among the inefficient scenarios, a nation prefers to be a policy leader in carbon policy, but

the globe prefers a setting in which SRM policy is simultaneously determined by the com-
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peting nations before these nations simultaneously determine carbon policy. If the globe
is faced with situations in which a nation displays policy leadership and it can choose
between policy leadership in carbon and SRM policies, it will choose policy leadership
in SRM. From the globe’s perspective, if a fully coordinated agreement is unavailable, it
prefers the settings in which SRM policy is determined before carbon policy.

The low cost alternative produced by SRM provision relative to mitigation of carbon
emissions leads us to believe that nations will engage in the provision of SRM in the near
future. Due to questions of national security and sovereignty, nations may not be forth-
coming in disclosing key information about their activities related to development of SRM.
In future work, we plan to incorporate uncertainty and asymmetric information in national
provision of SRM into the model and study the predictions of play of imperfectly informed
governments. Another interesting avenue for future work is to utilize the recent develop-
ments in aggregative games to examine extensions of our model to a general setting with a

large number of nations.’

9See, e.g., [18] and [15].
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APPENDIX A
APPENDIX FOR CHAPTER 2

A.1 Proofs

A.1.1 Proof of Proposition 2.1

Proof. We first observe that for any player j # i such thatz; = 0, g;; = 0 since & > 0. This
means 3,y 2 = |N™|. Then TI? (2 = 1) = £(1+ [N™]) — e~ K[Ng*| £ by( |NF)),
9% (z; = 0) = f(INf“]) — k| N£“|. Recall that § = arg max,[f(y) — ky].

If >, > g, then 113" (z; = 0) = f(y) — ky, where [N/ = g; 119V (2; = 1) =
f@)—e—=k(@y—1)+b:(IN;"]) = [£ () — kg + [b:(| N;"[) — (c— k)], where [N7*/| = j— 1.
Therefore, ATI?Y = 19 (x; = 1) — I (x; = 0) = b;(|N/"|) — (c — k) > 0 if and only if
N2 [b7 (e = R)]-

If5° 05 < g—1 then TI¥(z; = 0) = f(3_,.;75) — k>, x5, where [NP¥| =
Zj;éi xy; 79 (x; = 1) = f(1+ Zj;éi Tj) —c— ij7£i zj + bi(|N/"|), where |[N/"| =
> i %j. Therefore, AP = TI¢¥(z; = 1) — II¥(x; = 0) = f(1+ 3, ,7) —
FQC @) F0i(IN[" ) —c = f'(32; 2 @) —c+bi(IN}"]). Recall that § = arg max,[f(y) —
cyl =max{y € N: fl(y —1) > c} <g—1. When ), x; <g— 1, Allf* > 0 always;

when § <> x; < ¢ — 1, AII$” > 0 if and only if [N/"| > [b; '[c — f’(Zj# z;)]].

J#

Hence, in an equilibrium s* = (2%, g*), eitheri) y < >, _y ; < 7, and every volunteer
receives an incoming link from everyone else; or ii) > .. 7 > ¢ + 1, and every player
gets access to ¢ units of public good by forming links to the volunteers. Further note that

if >, n 7 > ¥, then players’ best responses are not strict. This implies that in every strict

NE, § < Yooy 2t < . 0

79



A.1.2  Proof of Proposition 2.2

Proof. We begin with deriving a player’s best-response function. Given others’ strategies,
if player i chooses to free ride, her payoff will be IT;* (z; = 0) = f (>, .y, 7;) —k|N™| <
f(ZjeNg" x;+ ZjeNfut x;) — k| Nf“|, where the equality holds if N?** N N/™ = (). Mean-
while, since k& > 0, then a free rider will only link to volunteers, and s0 3 ;¢ your = | N2ut].
Then I (z; = 0) = f(zjeNi z;) — k ZjeN;’“t T, = f(zjeNi zj) — k ZjeNi xj +
k ZjeNg" x;. Recall that § = arg max,[f(y) — ky]. Therefore, if Z#i x; > g, I (z; =
0) = f(g)—ky+k ZjeN;'" x;, where [N/ = Q_ZjeNgn 2 if Y2,y < =1L 1Y (2 =
0) = f(zj# xj) — kZ#i x;+ ijeN;’" x;, where | N2¥| = Z#i T;— ZjeN;’“ ;.

If player i chooses to volunteer, then her payoff will be II}* (z; = 1) = f(1+ >y, 7)) —
= KNP+ bi([Ni]) = (143 jenim @5+ D jenou ) — = kNP 0 (|NF" [+ [ N7,
Let NZ”{/ (Niif};) denote the set of links from volunteers (free riders) to player i and let N7{/
(Ni‘j%) denote the set of links from player 7 to volunteers (free riders). Then [T/ (z; = 1) =
FA A+ INZ [+ INSV]) — ¢ = RN+ INZED + bi(INJV L+ INTR ]+ NPV A+ NP
Note that for volunteer ¢, an outgoing link to another volunteer will bring at least as many
benefits as to a free rider, and so volunteer ¢+ will form links with free riders only after
she has formed links with all other volunteers. This leads us to first determine |N/}#

and then |N/¥|. Recall that § = argmax,[f(y) — cy], § = argmax,[f(y) — ky] and

m; = arg max,,[b;(m) — km].

() If > ;2 Tj < g — 1, then volunteer ¢ forms links to every other unlinked volunteer,
ieey INV = 305 w5 — NIV |- Then [N + INPY| = N7 |+ [N | + NPV =
|NZ7}«“| + |Niyv| = ‘Nz”}?‘ + Zj;ﬁi Ly

i) If [N/ + N2 | < min{rn,, n — 1}, then |[N?¥| = min{m;, n — 1} — |[N/*| —
INZV| = min{mg,n — 1} — [N/B[ = 30, x; and [N;| = min{rm;,n — 1}.
Then T} (v; = 1) = f(1+ 3, 7;) — ¢ — k(min{m;,n — 1} — [N/"|) +

b;(min{m;,n — 1}). This gives AIl’* = TI!*(z; = 1) — ™ (x; = 0) =
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2)

[f' (i wg) — o + [bi(min{my, n — 1}) — kmin{rm;,n — 1}] + k(IN]| +
Zj;ﬁi ;) < [f/(Zj;éz’ ;) — ] + bi(min{m;,n — 1}) — k. If Zj;&i r; <y—1,
then AII” > 0 always.

ii) Otherwise, [INJ#| = 0. Then Il (z; = 1) = f(1+>_,;2j) —c—k(D>_, ;75—
|N1”\L/|) + bi(|N{™] + Zj;éi Tj— |NZMIL/|) = f(1+ Zj;éi Tj) —c— k(Z#i Tj—
IN1) 4 bi [N | 437, ;). This gives AT = 115 (v; = 1) — 11" (2; =
0) = [f'(Xjw5) — d + bl NTp [+ 30, 475) = [f' (5 %5) — o] + bi(ma).
Again, if Z#i x; < g — 1, then AII® > 0 always.

If > j+%j = U, then form outgoing links until the sum of the marginal social and

consumption benefits an additional link brings becomes less than the marginal cost

k.

The above derivations show that in every NE, > .. xF > 4.

)

2)

€N i

When y < .y < ¢, every volunteer’s provision is pivotal to others, and so
every volunteer is minimally linked with everyone else, and a volunteer may sponsor
a link to a free rider when her marginal social benefit is high (i.e., m; is large). This
leads to a core-periphery structure in which the hub players are volunteers. Note that

the best response of every player is strict. This gives type-I strict NE.

When ) .\ z; > 7+1, a volunteer’s provision may or may not be pivotal to another
player. Depending on the extent of her marginal social benefit, a volunteer may or
may not be minimally linked with everyone else and a free rider will sponsor at
most ¥ number of links. In a strict NE, since a free rider is indifferent among which
volunteers to link with, then a link between a volunteer and a free rider must go from
the former to the latter. Meanwhile, recall that a volunteer prefers forming a link
with another volunteer to linking with a free rider and m; = arg max,, [b;(m) — km].
Then to ensure that there exist volunteers who still want to sponsor links with free

riders after being minimally linked with all volunteers, it must be that ) .\ z; <
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max;cn m;. In addition, since a volunteer is indifferent among which free riders to

link with, then for any volunteer 7 with |[N/%| > 1, we have [N y| = -1,

i#i
INJ#| =mn— 3, x;and [N;] = n — 1. When players are heterogeneous in their
social benefits from each recipient, this could lead to three groups of volunteers, say
groups A, B and C'. Every group A volunteer links with every free rider and m 4 >
ma > n—1; every group B volunteer is minimally linked with all group A volunteers
and forms links with all group C' volunteers, and mg < n — 2, mpg > Zie NI — 1
every group C' volunteer receives links from volunteers in groups A and B, but does
not form any outgoing links, and m¢ < me < Y, v @f — 2. This implies that
max;ey m; = n — 1. We further note that the existence of group A volunteers is
essential for satisfying free riders’ need for the public good and ), , #; > 7. The

existence of the other two groups depends on the distribution of the social benefits

from each recipient. This gives type-II strict NE.

A.1.3  Proof of Corollary 2.1

Proof. We note that the conclusion is immediate for strict NE of one-way flow of benefits

and type-I strict NE of two-way flow of benefits, since § < > ..y j < 7 where  is a fixed

constant.

For type-II strict NE of two-way flow of benefits, recall from the proof of Proposition 2

that the existence of such equilibria requires that there are group-A volunteers with m; >

n—1,Vi € A for every free rider to have access to the public good. Since m; is some fixed

constant for any player 4, then the condition is unlikely to hold when n — oo. This implies

that when n — oo, every limit strict NE belongs to type I and so the law of the few holds.

]
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A.1.4 Proof of Lemma 2.1

Proof. In the absence of social incentives, b;(-) = 0,m; = 0, Vi. For either type of flow,
every player forms outgoing links just for access to the public good provided by others.
Then based on the proofs of Proposition 1 and 2, for any player i, when > 2% <Y —1,
AT = AT = f’(zj#xj) — ¢; when Zj#xj > g, ATIYY = ATIY =k — ¢ < 0.

Since j = max{y € N: f'(y — 1) > c}, then ) _._\ =; = 7 in every NE. O

A.1.5 Proof of Proposition 2.3

Proof. We first prove the results regarding the number of equilibrium volunteers. When
y = 1, the result follows directly from Proposition 1. When ¢ > ¢ + 1, to study whether
the presence of social incentives could lead to more volunteers in every strict NE, consider
the strategy profile in which there exist ¥ number of volunteers. We want to know if an
incumbent free rider has an incentive to deviate and starts volunteering. Note that the
current payoff of free rider i is 119" (z; = 0) = f(y) — ky. Given others’ strategies, if she
deviates unilaterally and starts volunteering, then her payoff becomes 1% (z® = 1) =

i
f(§+ 1) — ¢ — kj. So the potential gain from deviation ATI?*(z; = 0,z{® = 1) =
f'(§) — ¢ < 0. This shows that no matter how large the social incentives are, a strict NE
with ¢ number of volunteers always exists.

Second, we observe from above that an incumbent free rider’s potential gain from devi-
ation does not depend on her social benefits from each recipient since she does not receive
any incoming link. Therefore, a player may choose to free ride just because of zero incom-

ing link, rather than low social benefits from each recipient. Then any player could be a

volunteer in a strict NE. L]

A.1.6  Proof of Proposition 2.4

Proof.
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Part 1. We first prove the results regarding the number of equilibrium volunteers. As in the
proof of Proposition 3, we again consider the strategy profile in which there exist ¢ number
of volunteers and study the deviation incentive of an incumbent free rider. For free rider 1,
her current payoff is I (z; = 0) = f(y) — k(g — |N/"|). Given others’ strategies, if she
deviates unilaterally and starts volunteering, then she will still be minimally linked with all
other volunteers as § > ¢ + 1, and she may form links with other free riders. Then her
payoff becomes IT* (28" = 1) = f(14§) —c—k(§—|N/"|+|NZ¥|)+b;(§+|N4). Here,
IN?E| = min{m;,n — 1} — g if § < min{m,;,n — 1}; [N¥| = 0 otherwise. Therefore,
the potential gain from deviation is

.

f'(@) — e+ bi(9) if § > min{m;, n — 1},

AL (2 = 0,2 = 1) = 4 £/(5) — ¢+ by(mg) — k(i — §) if § <y <n— 1,

') —c+bn—1)—k(n—1—9g)ify <n-—1<m,.

\

One can see that given other parameter values, Al (z; = 0,2 = 1) > 0 could hold
in every subcase if the marginal social incentive b;(-) is sufficiently large. Therefore, if the
marginal social incentives are sufficiently large for at least ¢y + 1 number of players, then it
is certain that there exist at least i + 1 number of volunteers in every strict NE. This proves
the “if”” part of the statement.

Conversely, to ensure that there exist at least § + 1 number of volunteers in every strict
NE, there must exist player ¢ whose marginal social incentives are sufficiently large so
that AIT™(z; = 0,29 = 1) > 0 always. In addition, there must be at least § + 1
number of them so that even when all § number of the incumbent volunteers are those with

sufficiently high social incentives, there will always be another player with sufficiently high

social incentives to join the volunteer set. This proves the “only if” part of the statement.

Part 2. We now prove the results for comparing the social benefits from each recipient of

a volunteer and those of a free rider. As in Proposition 3, whenever a volunteer has more
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incoming links than a free rider does, then we could not conclude on which one enjoys
higher social benefits from each recipient. This happens when we examine a volunteer-free
rider pair in a type-I strict NE or when the volunteer belongs to group C' in a type-II strict
NE with both group B and C' volunteers present. We show below that in the rest of the
cases, every volunteer enjoys higher social benefits from each recipient than a free rider
does, which all happens when the strict NE is of type II and the number of incoming links
a free rider has is more than that of a volunteer.

Consider a type-II strict NE of two-way flows with |V/| number of volunteers. Let player
A be a representative volunteer of group A, player B be a representative volunteer of group
B, player C' be a representative volunteer of group C, and player D be a representative free
rider. Let |V4| be the size of group A, |Vp| be the size of group B and |V| be the size

group C'. By the definition of strict NE, the following holds.

Vaf(IV]) —e—k(n — 1= [NJ]) + ba(n — 1)

f(@) = k(g — INJ|)if INJ| < 7,
>
FONZD) I INF| > g+ 1;
Ve :f(|[V]) —c—k([V]| = 1= [Ng|) + bs([V] — 1)

f(@) — k(g — INg|) if INg'| < 7,
>
FANEDIf INF| > 9+ 1;
Ve i f(IVal + VBl + 1) — ¢+ bo(|Val + [VB]) > f(|[Val + |VB]);

Fp:f(Val) > = max [f([Val+1+[NPY]) —c—k(INpY| + [NpE])

INgH L INg

+bp(IVal + INpy | + INDED]-

We first compare bz (m) with 0/, (m), for given m € N. Since the inequality for Fp

above holds for any |[NZ%,| and [N, we set [INZY,| = [V| — [Va| — 1 and [NP%| = 0.
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Then we have the following for Fip: f(|Va|)—=k|Va| > f(|V])—c—k(|V|—=1)+bp(|V]-1).
The inequalities for Vg give: if |[N&'| < ¢, then f(|V|) —c— k(|V| = 1) + bp(|V]| - 1) >
F@)=kg:if INg'| = g+ 1 then f([V]) —c=k(|V]=1)+bs(IV]=1) > f(INg]) - k| NE|.

Also recall that [V4] > 7,

Ny | < |Va| and f(y) — ky is increasing in y when y < ¢ and
decreasing in y when y > ¢ + 1. Therefore, if [N%'| < ¢, then f(|V|) —c— k(|V| = 1) +
b([VI—1) > F@)—ki > F(Va)—kIVal > £V —c—k(V|—1)+bp(|V|~1), and s0
Vg(m) > bp(m),Vm € N. If [N®| > g+ 1, then f(|V|) —c—k(|V|=1)+bp(|V]|-1) >
FANED) = KINE| = F(VaD) = MVal > F(V]) = ¢ = k(IV] = 1) + bp(V] — 1), and so
blg(m) > by (m), Vm € N.

Now recall that in a type-II strict NE, based on the proof of Proposition 2, m4 > mp

and so by (m) > Vz(m) > b (m), Vm € N.

Finally, we compare by, (m) with b/, (m), for given m € N. We note that if mp < |Vy4|,
then [Np,| = |[Np's| = 0. Then the inequality for Fp gives: ¢ — bp(|Val) > f'(|Val).
Meanwhile, the inequality for Vi gives: f'(|Va| + |Vs|) > ¢ — be(|Va| + |VB]|). Since
f'(IVal) = f/(|Va| + |VB]|), then bp(|Va|) < be(|Val + |VE|). If [V| = 0, then we have

b (m) > bh(m), Vm € N.

A.1.7 Proof of Remark 2.1

We provide the proof of the following claim that is used in the arguments of the remark.

The rest of the arguments are easy to see.

Claim A.1. If the cost of every transition into a state is lower than that of every transition

out of it, then that state is the unique SSE.

Proof. Suppose that the cost of every transition into state s is lower than that of every
transition out of it. Let s’ be another state. We note that the two states have the same
number of trees rooted at them. Meanwhile, in a tree T, rooted at state s’, s reaches s’

either directly or indirectly.
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First, consider the case in which s reaches s’ directly. There exists an edge from s to s
and a path from every state s” # s, s’ to s'. Now consider the trees rooted at state s. There
must be one tree T, with an edge from s’ to s and all other paths from s” to s” are the same
as those in the tree T,/. Since the cost of the transition from s’ to s is lower than that of the
transition from s to s, then the exponential cost of the tree T,' is lower than that of the tree
Ty.

Second, consider the case in which s reaches s’ indirectly. There exists an edge from
sto s” # s,s and a path from s” to s’. Again, consider the trees rooted at state s. There
must be one tree T, with an edge from s’ to s and all other paths from s” to s" are the same
as those in the tree T/. Since the cost of the transition from s’ to s is lower than that of the
transition from s to s”, then the exponential cost of the tree T is lower than that of the tree
Ty.

Therefore, for any tree rooted at a state s’ # s, there always exists a tree rooted at s

with a lower exponential cost. This implies that state s is the unique SSE. [l

A.1.8 Proof of Proposition 2.5

Proof. When the flow of benefits is one-way, Proposition 1 says that every strict NE has a
core-periphery structure. Let [V E(;) be a strict NE of one-way flows and jj < |V(1)| < §—1.
It is easy to see that there always exists another strict NE, N E5), such that V() ; V(2) and
g+ 1 < |Vigy] < 9. We will show below that I1; 1) < II; (5), Vi € N. Before proving this
result, we note that f(|Vi1)|) — k|V()y| < f(|[Vi2)|) — k|V(2)| since § < |Viy)| < |Vigy| < 0.

o Vic Vi, ILy(xi=1)= f((Viyl) —c = k([Viyl = 1) + bi(n — 1) < f(Vig)|) —
c—k([Vigl = 1) + bi(n — 1) = Tl ) (w; = 1);

o Vi € Vio\Viuy, I ) (2 = 0) = f([Viyl) — K[Vl < F(IViyl) — ¢ = k(IVi| = 1) +

! Appendix B provides details about the exponential cost of a tree.
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o Vi€ Fly oy (@ = 0) = f(IVio) — klVio| < F(Vig)) — Vi = o) (s = 0).

Therefore, I1; (1) < II; (2), Vi € N. This implies that [NV E(,) Pareto dominates N E ).
[

A.1.9 Proof of Proposition 2.6

Proof.

Part 1. Let N E}j be a type-I strict NE and § < |V}y)| < 9 — 1. We will first show that there
always exists another type-I strict NE, N Ejy, such that V[ ;Cé Vg, with all links in N Ejy
preserving the same directions as in N E;; and all additional links in N Ejy) going from free
riders to volunteers. Then we will show that such N £y Pareto dominates N £j;.

Note that for any player i ¢ V};, in the presence of |V| € [[V}3j], y] number of volunteers
and | N}, ‘| number of incoming links from existing volunteers, i’s payoff when volunteering
is Ij(z; = 1) = f([V]+ 1) = ¢ = k(|]V| = [N/%|) + bi(n — 1) and her payoff when free
riding is IT;(z; = 0) = f(|V]) — k(|V| = |N/%|). Then II;(z; = 1) > TI;(x; = 0) and ¢
will choose to volunteer always. Moreover, since the linking structures are preserved for all
volunteers in N Ejyj, and each of them could access more units of public goods now, then
they will also continue volunteering. This shows that N E always exists.

Next, we show that N Ejy) as defined above Pareto dominates N Ey.

o Vi € ‘/[1 l_Iz J1] (.Z'l = 1) = f(“/[l D — C — k’(“/m' —-1- ’NZRL/’) + bl(n — 1) <
F(Vial) = e = k(Vigl = 1= [N ]) + bi(n = 1) = I gy (w; = 1)

o Vi € Vig\Viup, i py(2; = 0) = f(IVig) =k(IViyl = IN 1) < f(IVigl) —c=k(|Vig] —
L — [N |) + bi(n — 1) = T0; gy (2 = 1);

o Vi € Fp, Iipy(zi = 0) = f(IViyl) — k(IViyl = INV) < f(IVia) = k(IVizg| —

INJ|) = T gy (2 = 0).

Therefore, Vi € N, 11; j5) > 1I; 1), which implies that N Ey Pareto dominates N Ey.
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Part 2. Now we compare the efficiency between a type-I strict NE and a type-II strict
NE. We first illustrate with an example that players who volunteer in both type-I and type-
IT strict NE could be better off in the former equilibrium with less volunteers. Consider
n=09 fly) = Vi c= 55 k=55 blm) =bymandb = b = b; = %5
by = ... = by = \/% Then §y = 2,9 = 3, M3 = mg = mg = 50, My = ... = mg = 1.
One can check that there exist type-I strict NE with two or three volunteers, and a unique
type-II strict NE in which players with b; = 50 are group-A volunteers and those with
b; = 1 are group-C' volunteers. Now we compare the payoffs of player « who volunteer in
both a type-I strict NE (denoted by N Ej5)) and the type-II strict NE (denoted by N Efg)).
We consider NV Ej5; in which the three players with b; = 50 are volunteers and the chosen
player 7 receives incoming links from everyone else. In N Ejg, player i forms outgoing
links to all six free riders and receives links from the other two volunteers (this yields the
highest payoff for player  in a type-II strict NE). Then II; 5) — II; gy = [f(3) — ¢+ bs(n —
D] = [f(8) — ¢ — 6k + bi(n — 1)] = 2(v/3 — v/2) > 0. Hence, player i is strictly better
off in the type-I strict NE. We note that such a player : who volunteers in both types of
strict NE always exists. This is because any group-A volunteer in a type-II NE enjoys high
social benefits from each recipient of the public goods and will sponsor connections with
any unlinked players no matter how many others volunteer. Therefore, the example implies
that type-I strict NE do not Pareto dominate type-II strict NE in general.

Now we check the reverse direction of Pareto dominance. It is easy to see that for
players who choose to free ride in both NE, they will always be better off with accessing
more public goods. Therefore, if a type-I strict NE Pareto dominates a type-II strict NE,
then it must be that all free riders in the former are volunteers in the latter, which could not
hold in general. Therefore, type-I strict NE also do not Pareto dominate type-II strict NE

in general. [
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A.1.10  Proof of Proposition 2.7

Proof. When the flow of benefits is one-way, we know that every player forms outgoing
links so as to access the public good provided by others. Based on the proof of Proposition
1, the maximum number of links player ¢ will sponsor is y;. Therefore, when everyone has a
strict best response, it must be that ) . en i < mingey ;. In addition, we know that for any
player i, if > i+ Tj < i — 1, then her best response is always to volunteer. Therefore, in
equilibrium, ),y 7 > miney y;. Together we have min;ey 9 < > .oy @7 < minjey 4

in every strict NE. O

A.1.11  Proof of Proposition 2.8

Proof. When the flow of benefits is two-way, while a free rider forms outgoing links only
for access to the public good provided by others, a volunteer links with others for both
consumption benefits of the public good and social benefits of volunteering. Based on the
proof of Proposition 2, we know that for any player i, if > i T < g; — 1, then her best
response is to volunteer always. This means in every NE, ) ._\ 27 > min;cy 3.

Now we note that for free rider i, if > i > 1;, then F; will form links with at most
y; number of randomly picked volunteers. Therefore, in a strict NE, when Zie NI <
min,e g y;, every volunteer will be minimally linked with all free riders; when Zie NI >
min,e r ¥;, then there exists free rider 7 such that not every volunteer’s provision is pivotal
to her consumption benefits of the public good and she will form at most y; number of links
to the volunteers.

Regarding volunteer ¢, from the proof of Proposition 2, we know that in a strict NE, if
IN#| > 1, then |[N;| = n — 1 (since a volunteer prefers linking with another volunteer
to linking with a free rider, and a volunteer is indifferent among linking with all other
volunteers, or all free riders, respectively); if [N/{/| > 1, then |N;y| = [V/| — 1 (since a
volunteer is indifferent among linking with all other volunteers). This means that in a strict

NE, some volunteers are minimally linked with all other n — 1 players, some are minimally
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linked with all other volunteers but do not form links with free riders, and the rest only
receive links from others.

Putting these together, we obtain the following for the shape of strict NE. i) When
Y ien T < mingen ¥, every volunteer’s provision is pivotal to everyone else and so g*
has a core-periphery structure in which volunteers lie at the core and links between free
riders and volunteers can go in both directions. ii) When » .\ z7 > minicr 3, g* is a
multipartite graph in which links between volunteers and free riders always go from the
former to the latter, and free riders (and some of the volunteers) form an independent set.
1i1) When min;cy y; < Zie ~N Z; < min;ep y;, there might exist some volunteers such that
not every other volunteer’s provision is pivotal to their consumption benefits of the public
good and their valuations on the social benefits are not high. Then those players form an
independent set in which they only receive links from all others outside the set. Therefore,
g* is a multipartite graph in which every volunteer is minimally linked with all free riders

while volunteers may or may not be minimally linked with each other.

A.1.12  Proofs of Propositions 2.9 and 2.10

Proof. In the proofs of Proposition 1 and 2, for player i’s decision making, attach ¢ to all

the terms associated with z;, V5 # . Then the conclusions follow easily. [

A.2 Dynamic Setup for Section 2.5.1

Time is discrete and indexed by ¢ = 1,2,.... The strategy profile s € S represents the
state of the play at time ¢. The dynamic process is as follows. At each time period ¢, the
system randomly selects a player 7 to revise her strategy based on the current play of others,
which generates a Markov chain on \S. To avoid the system being locked into strict NE, we

introduce noises? and assume that player i updates her strategy following the logit quantal

For example, players may make mistakes or experiment with new strategies occasionally.
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response rule in myatt082 and myattO81. Let ¢ > 0 be a noise parameter. Then

Pt =Mt =) ATIM(s)
P{sit!t = sPB|st = s} € ’

log

B

where sP% represents player i’s best response to s_;, sf-wh is the h'" possible mutated strat-

egy (in the presence of noises, there are many possible mutations since a player makes

t+1 __
i =

one volunteering and n — 1 linking decisions simultaneously) and AHf”h (s) = ILi(s

sPB|st = 5) — II;(si! = sM"|s* = s) is the corresponding loss in payoff. Then

7Anth(s)
t+1 _ Myt o € ‘
]P){Si - Si |S - S} - My, .
AIL, (s)

L3 e

The logit responses approximate best replies when ¢ — 0. The Markov chain is now
irreducible and aperiodic, and has a unique stationary distribution x4 showing how often
each state is played in the long run. Let p = lim._,o p€ be the limit distribution. A state is
stochastically stable if its limit probability in u is bounded above zero.

The long-run play depends on the rate at which transition probabilities vanish as € — 0.
As in myattO81, we define such a rate as the exponential cost £ of a probability. More
formally, let p(e) be a continuous function on R™ U {oco}. Then either £ = oo if p(e) =
0, Ve > 0, or the limit & = — lim,_, € log p(e) exists. This means that p(¢) behaves as e ~¢/¢
does when € — 0. In our setup, since the dynamics follows the logit quantal responses, one
s) =

E(P{sTt = sMn|st = s}) = AIIY*(s). Moreover, the exponential cost of the product of

My,
7

can verify that the exponential cost of a mutation equals its loss in payoff, i.e., £(s

mutation probabilities equals the sum of individual exponential costs, i.e., £(p;1(€)p2(€)) =

E(pr(e)) + Epa(e)).
We apply the method of rooted trees to find the stochastically stable states. Think of
each state s as a node of a directed graph on S. Let |S| be the number of states (or nodes)

in the set S. Then a rooted tree at s is a spanning tree T, on S such that Vs’ # s, there is a
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unique directed path from s to s. Note that for the system to transit from state s to s, there
are many possible routes of costly mutations. In a tree 7, define the exponential cost of a
directed edge (s, s), £y, as the lowest cost of these routes. Then the exponential cost of the
tree T equals the sum of the exponential costs of its edges, i.e., £, = > (s7,5) Es 5. myattO81
shows that the states with minimum-exponential-cost rooted trees are stochastically stable.
Meanwhile, as € — 0, to characterize the limiting stationary distribution, we only need to

look at smaller trees where each node corresponds to a different strict pure NE.
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APPENDIX B
APPENDIX FOR CHAPTER 3

B.1 Proofs

B.1.1 Proof of Result 3.3

Proof. From Result 1, we know that in the absence of FTAs, every player would be bet-
ter off in structure III (IV) compared to I. However, structure I is stable unless all three
countries deviate and add links between each other. Therefore, whenever I, III and IV have

interior solutions, all of them are NE and BS, but only III and IV are GS and CPNE. U]

B.1.2 Proof of Result 3.4

Proof. Let’s first look at the situation in which structures I and IV have interior solutions.
From Result 2, we know that every country would be better off in IV. However, structure
I is stable unless all three countries deviate and add links between each other. Therefore,
both I and IV are NE and BS while only IV is GS and CPNE.

Now let’s consider the situation in which structures II and IV have interior solutions.
According to Result 2, we know that club members in II would prefer II to IV while the
reverse holds for the non-member country. Therefore, the club members in II would never
want to add links to the non-member country and there would not be profitable deviation
from II. On the other hand, two of the three countries in IV are likely to deviate together
by deleting links to the other country. Hence, both II and IV are NE, but only II is BS, GS
and CPNE.

We continue to look at the situation in which structures III and IV have interior solu-
tions. From Result 2, we know that the hub country in III prefers III to IV, while the reverse

holds for the spoke countries. This implies that no subset of countries would profit from

94



deleting links and deviating from 1V, and so IV is stable by all criteria. As for the deviation
from III, we know that both spoke countries would be better off by adding a link between
them although deviating alone would not be profitable. Therefore, both III and IV are NE,
but only IV is BS, GS and CPNE.

Finally, we examine the situation in which structures I, IT and IV have interior solutions.
Recall that in Result 2, club members in II would prefer II to I and IV. Therefore, two of
the three countries in I would deviate together by forming a link with each other; and two
of the three countries in IV would deviate together by deleting links to the other country.

Hence, although I, IT and IV are all NE, only II is BS, GS and CPNE. L]

B.1.3 Proof of Result 3.8

Proof. When structures V, VII and VIII have interior solutions, from Result 6, we know that

VII

Y = v VI ¥ < wd T and wy ! < w1, Therefore, in structures

wy = wy < wy = wiH w)
V and VII, countries 2 and 3 would have an incentive to form a club between each other.
This implies that structures V and VII are not BS. Meanwhile, we observe that when c is

VIII VII < U}glll

not very low (in our simulation, this means ¢ > 0.3), wy /"1 < w} Vi

< wy ™, and
so countries 3 and 4 in structure VIII would deviate together by withdrawing from the clubs
with country 1 and form a club between themselves instead, which implies that structure
VIII is not BS as well.

When structures IV, IX, X and XI have interior solutions, from Result 6, we know that
wy < wlV < wl® = w¥! < wy. Therefore, country 3 in structure XI would have an
incentive to withdraw from the club with country 4; country 1 in structure X would want to
withdraw from the club with country 2; and countries 1 and 3, 1 and 4, 2 and 3, 2 and 4 in
structure IV would deviate together by forming two clubs. This implies that structures IV,
IX are NE, BS and CPNE; and structure IX is GS.

When structures IV, X and XI have interior solutions, from the welfare ranking wf( <

wlV < wi! < w, we see that country 3 in XI would deviate by withdrawing from the
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club with country 4; countries 1 and 2 in structure X would deviate together by withdrawing
from the clubs between countries 1 and 2, 1 and 3, and 2 and 4; and countries in IV would
deviate together by forming clubs between 1 and 3, 1 and 4, 2 and 3, and 2 and 4. Therefore,
IV is NE, BS and CPNE; X is NE; and XI is not NE.

When structures I, II, X and XI have interior solutions, from Result 6, we know that

X 1 11

11

X1 X
< wi

< wi'’ < wsg . Therefore, country 3 in structure XI would
deviate by withdrawing from the club with 4; countries 1 and 2 in structure X would deviate
together by withdrawing from the clubs with 3 and 4; countries 1, 2 and 3 in structure II
would deviate together by forming clubs between 1 and 3, 1 and 4, 2 and 3, 2 and 4, 3 and
4; and countries 1 and 2 in structure I would deviate together by forming a club with each
other. This means that structures I, II and X are NE, structure II is BS and CPNE, and none
of them is GS.

When structures I, X and XI have interior solutions, from Result 6, we know that wf( <
w] < wi! < w. Then country 3 in structure XI would deviate by withdrawing from the
club with 4, countries 1 and 2 in structure X would deviate together by withdrawing from
all the clubs they are involved in; and countries in structure I would deviate by forming
clubs among each other. This implies that structures I and X are NE, structure I is BS and
CPNE, and none of them is GS.

When structures V and VII have interior solutions, from Result 6, we know that w;/ <

VII VII

wy ! < wy" < wy. Then countries 2 and 3 in structure V would deviate together by

withdrawing from the club between 1 and 2, and forming a club between themselves. This
implies that structures V and VII are NE, and structure VII is BS, CPNE and GS.
When structures V, VII, VIII and XI have interior solutions, from Result 6, we know

VIII VII

that wy < wy < w3 y i

< wy VII VIIIT

< w! < wy'! < w < wy. Then in structures
V and VII, countries 2 and 3 would have an incentive to form a club between each other;
countries 3 and 4 in structure VIII would deviate together by withdrawing from the clubs

with country 1 and form a club between themselves instead. Therefore, structures V, VII,
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VIII and XI are NE; and XI is BS, GS and CPNE.
When structures V, VII, VIII, IX and XI have interior solutions, from Result 6, we know

that w) < wy' < Wyl < Wy

< w® = wi < w/H < wl! < w). Based on
the above analysis, structures V, VII, VIII, IX and XI are NE; IX and XI are BS, GS and
CPNE.

When structures V, VII, IX and XI have interior solutions, from Result 6, we know that

VII IX

1% VII

= wi’ < w}'" < wy. Then country 4 in structure V would want
to deviate by withdrawing from the club with country 1 and forming another club with
country 2; and countries 3 and 4 in VII would deviate together by forming a club between
them. Therefore, structure V, VII, IX and XI are NE; structures IX and XI are BS are GS
and CPNE.

When structures V, VII and XI have interior solutions, from Result 6, we know that
wy < wy! < w! < wlt < wy. Then country 4 in structure V would want to deviate
by withdrawing from the club with country 1 and forming another club with country 2;
countries in VII would deviate together by forming clubs between 1 and 4, 2 and 3, and

3 and 4. Therefore, structures V, VII and XI are NE; structures VII and XI are BS; and

structure XI is GS and CPNE. L]

B.2 Tables
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Table B.1 — Rankings of national welfare in the absence of FTAs (n = 3).

c 0 Welfare Ranking

0.1 0.01 to 2.52 no interior solutions
2.53t02.76 wi! = il = wlV
2.77 to 4.08 wh < wl! = Wi = wlV
4.09to5.11 w!
5.12to 10 no interior solutions

0.3 0.01 to 2.72 no interior solutions
2.73t03.43 wh! = il = !V
3.44 t0 4.08 w] < wll = i =V
4.09 to 5.17 w!
5.18 to 10 no interior solutions

0.5 0.01 to 2.8 no interior solutions
2.81t0 3.73 wil = il = wlV
3.74 t0 4.08 wh < wl! = Wi = wlV
4.09 to 5.21 wi
5.22to 10 no interior solutions

0.7 0.01 to 2.84 no interior solutions
2.85t03.91 wh! = il = !V
3.92 t0 4.08 wl < wi! = wi! = wlV
4.09 to 5.24 w!
5.25t0 10 no interior solutions

0.9 0.01 to 2.87 no interior solutions
2.88 t0 4.03 wi! = wl! = wlV
4.04 to 4.08 w! < wl! = Wil = wlV
4.09 to 5.26 wi
5.27 to 10 no interior solutions
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Table B.2 — Rankings of national welfare in the presence of FTAs (n = 3).

c 0 Welfare Ranking

0.1 0.01 to 1.33 no interior solutions
1.34 to 1.82 wi! < wit!
1.83 t0 1.92 no interior solutions
1.93 to 2.43 wlV
2.44 t02.76 wil < wlV < wi!
2.77 to 3.1 wil < wl < wlV < wi?
3.11to05.11 w] < wlV
5.12to 10 wiV

0.3 0.01 to 1.77 no interior solutions
1.78 t0 1.92 will < !t
1.93 to 2.07 wi! < wlV < wh!
2.08 to 3.23 wlV
3.24 t03.43 wil < wlV < wl!
3.44 t0 3.45 wil < wl <wlV <wl!
3.46 to 5.17 wl < wlV
5.18 to 10 wiV

0.5 0.01to 1.91 no interior solutions
1.92 wil <
1.93t0 2.17 wil < wlV < It
2.18to 3.73 wlV
3.74 t0 5.21 wl < wlV
5.22to0 10 wlV

0.7 0.01 to 1.92 no interior solutions
1.93 to 1.98 wlV
1.99 t0 2.22 wil < wlV < wl!
2.23t03.91 wiV
3.92 t0 5.24 wl < wlV
5.25t0 10 wlV

09 0.01 to 1.92 no interior solutions
1.93 t0 2.02 wiV
2.03 to 2.26 wi! < wlV < wh!
2.27 t0 4.03 wlV
4.04 t0 5.26 wl < wlV
5.27to0 10 wlV
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Table B.3 — Equilibria in the absence of FTAs (n = 3).

c 0 NE BS GS CPNE
0.1 0.01t0 2.52 n/a n/a n/a n/a
2.53t02.76 I, IV II1, IV 1L, 1V IIL, IV
2.77t04.08 1 1III, IV LI, IV III, IV III, IV
4.09to5.11 1 | I |
5.12to 10 n/a n/a n/a n/a
0.3 0.01t02.72 n/a n/a n/a n/a
2.73t03.43 I, IV III, IV III, IV III, IV
3.44t04.08 I, 1II, IV I II0, IV IIL, IV 101, IV
409t05.17 1 | 1 I
5.18 to 10 n/a n/a n/a n/a
0.5 0.01t02.8 n/a n/a n/a n/a
281t03.73 1L, IV III1, IV 1L, IV II1, IV
3.74t04.08 L III, IV LI, IV III, IV III, IV
4.09t05.21 1 | | |
5.22to 10 n/a n/a n/a n/a
0.7 0.01t02.84 n/a n/a n/a n/a
2.85t03.91 IIL IV IIL, IV 1L, IV IIL, IV
392t04.08 I III, IV I II0, IV IIL, IV II1, IV
409t0524 1 | 1 I
5.25to 10 n/a n/a n/a n/a
0.9 0.01 to 2.87 n/a n/a n/a n/a
2.88t04.03 I IV III1, IV I, IV II1, IV
4.04t04.08 I II, IV LI, IV III, IV III, IV
4.09t0526 1 | 1 |
5.27 to 10 n/a n/a n/a n/a
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Table B.4 — Equilibria in the presence of FTAs (n = 3).

c 0 NE BS GS CPNE
0.1 0.01to1.33 n/a n/a n/a n/a
1.34t01.82 1II 111 111 11
1.83t01.92 n/a n/a n/a n/a
1.93t02.43 1V v v v
244 t02.76 ILIV II 1I I
2.77to 3.1 LILIV II 1I 1I
3.11to5.11 LIV LIV v v
5.12to 10 v v v v
0.3 0.01to1.77 n/a n/a n/a n/a
1.78t0 1.92 1II III 111 111
1.93t02.07 IILIV v v v
2.08t03.23 IV v v v
3.24t03.43 ILIV II 1I 1I
344t03.45 LILIV 11 I I
346t05.17 LIV LIV v 1\
5.18 to 10 1A% 1A% v v
0.5 0.01t0o1.91 n/a n/a n/a n/a
1.92 111 111 111 11
1.93t02.17 IILIV v v v
2.18t03.73 1V 1A% v v
3.74t05.21 LIV LIV v v
5.22to 10 v v v v
0.7 001t01.92 n/a n/a n/a n/a
1.93t01.98 1II 111 111 11
1.99t02.22 IILIV v v v
2230391 1V 1A% v v
392t05.24 LIV LIV v v
5.25t0 10 v v v v
09 001t01.92 n/a n/a n/a n/a
1.93t02.02 III 111 111 111
2.03t02.26 IILIV 1A% v v
227t04.03 IV v v v
404t0526 LIV LIV v 1\%
5.27to0 10 v v v v
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Table B.5 — Rankings of national welfare in the absence of FTAs (n = 4).

c 0 Welfare Ranking
0.1 0.01 to 1.72 no interior solutions
1.73 t0 2.01 wy = wf = wyH
wiX — X — X
2.02 to 2.35 wlV < wy = w/H
WV = X = X
wy!
2.36t03.16 wl < wlV < wf
wV 1! w1 w!X
w¥ = wX!
3.17 to 4.09 wl < wlV
4.1t04.51 w!
4.52to 10 no interior solutions
0.3 0.01 to 1.87 no interior solutions
1.88 to 2.37 wy = wf = wyH
WX — X — X
2.38t02.91 wlV < wy = wy!
WV = X = X
wy!
2.92t03.16 wl < wlV = w
mes WV = qpIX
w = !
3.17to 4.1 wl < wlV
4.11 to 4.55 w!
4.56 to 10 no interior solutions
0.5 0.01t01.93 no interior solutions
1.94 to 2.54 wy = wi wy
wlX = wff = w!
2.55t03.16 wlV < wy = wl
WV wiX = w
wi!
3.17to 4.16 wl < wlV
4.17 to 4.57 w!
4.58 to 10 no interior solutions
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Table B.5 (continued).

0 Welfare Ranking

0.01 to 1.96 no interior solutions

1.97 to 2.64 wy = w/ = /M =
WX — X — T

2.65t03.15 wlV < wl = wf =
WV = IX = X = X1

3.16t0 3.3 wlV

3.31t04.16 w! < wlV

4.17 to 4.59 w!

4.6t0 10 no interior solutions

0.01 to 1.99 no interior solutions

210271 i B
WX — X — X

27210 3.16 wlV < wl = w =
WV = IX = X = X1

3.17t0 3.3 wlV

331t04.16 wh < wlV

4.17 to 4.59 w!

4.6t0 10 no interior solutions
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Table B.6 — Rankings of national welfare in the presence of FTAs (n = 4).

0 Welfare Ranking

0.01to 0.15 wy < wy'l < will <
WY T < VI < VT <
wy

0.16 to 0.53 wy T < wy T < ¥ <
WV < V1T

0.54t0 0.7 wy T < YT < gy T

0.71to 1.24 no interior solutions

1.25t0 1.33 wi!

1.34 to 1.41 wiX = wX!

1.42 w < wiX = wf < wf

1.43 to 2.04 w < wl¥ < w* =
wXT < wX

2.05 to 2.09 wi¥ < wlV < w < wk

2.1t02.35 w < wi! <wg

2.36 to 2.38 wi < wl < w < wg

2.39t02.44 w¥ < wl < wll < wll <
wXT < wX

2.45t02.77 w < wl < wf < wg

2.78 to 4.51 wy < wit!

4.52t0 10 wik!

0.01 to 0.65 no interior solutions

0.66 to 0.77 wy < wy

0.78 t0 0.8 wy < wy < w/ < wy

0.81to 1.05 wy < wy™ < Wyl <
WY T < VI < VI <
wy

1.06 to 1.16 wy T < ¥ < it <
WV < VT

1.17 WY < VT < V1T

1.18 to 1.25 no interior solutions

1.26 to 1.35 wit!

1.36to 1.65 wi® = wX!

1.66 to 1.73 wi < wiX =wi! < w

1.74 to 2.04 wi < wlV < w¥ =
wXT < wX

2.05t02.16 wif < wlV <w <wg

2.17t0 2.77 wi < wi! <wg

2.78 to 2.91 wiX!

2.92t04.55 w] < wiXt

4.56to0 10 wik!
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Table B.6 (continued).

0 Welfare Ranking
0.3 0.01 to 0.65 no interior solutions

0.66 to 0.77 wy < wy

0.78 t0 0.8 wy < wy! <wH <wf

0.81 to 1.05 wy < wytl < Wy <
WY T < VI < VI <
!

1.06 to 1.16 wy ™ < wi < wy' <
wV 1 < V11T

117 w1 < w11 < 111

1.18 to 1.25 no interior solutions

1.26 to 1.35 wiX!

1.36to 1.65 wi® = wf!

1.66 to 1.73 wi < wiX =wi! <wf

1.74 to 2.04 wf < wlV < wlX =wf! <
wy

2.05t02.16 w¥ < wlV < w < w

2.17 t0 2.77 wit < wi < wg

2.78 t0 2.91 wik!

292 t0 4.55 wl < w!

4.56 to 10 wik!

0.5 0.01 to 0.96 no interior solutions

0.97 to 1.02 wy < wy

1.03 to 1.06 wy < wy < wyll <
WV < VT < Y

1.07 to 1.24 wy < wyt < Wy <
Wy < VI < VI <
wy

1.25to 1.27 wy < wy < wy <
Wy < X < VI <
WV 1 < Y

1.28 t0 1.3 wy < wyl < wf <
WV <

1.31 to 1.36 wy ! < wih < wy!!

1.37 wy < wi* = wi < wi!

1.38to 1.75 wi® = wif!

1.76 to 1.84 w < whX = wi < wf

1.85 t0 2.04 w < wlV <wlX =wf! <
wy

2.05t02.19 wf < wlV < wf < w

2.2t02.77 wi < wi < wg

2.78 to 3.16 wiX!

3.17to 4.57 wl < wi!

4.58 to 10 wik!
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Table B.6 (continued).

c 0 Welfare Ranking
0.9 0.01to 1.18 no interior solutions

1.19 WY < YT < V11T

1.2t01.28 wy < wy < wyH <
WV <V

1.29 to 1.37 wy < wy < Wy <
Wy < X < V1 <
WV < )V

1.38 to 1.39 wy < wy™ < wil <
Wy < lX = X1 <
WV < VT < )V

1.4t0 1.48 wy™ < wy < wy <
Wyt < wIX = X <
WV < V1T < oV

1.49 to 1.51 wy < wy < wlX =wt <
WV < Y

1.52to 1.58 wy ! < wlX = wX < wi™

1.59to 1.84 wi® = wi!

1.85t0 1.94 w¥ < wiX =w <wyf

1.95 t0 2.04 w < wlV < wlX <wf! <
wy

2.05 t0 2.23 w¥ <wlV <wf <wf

224 t02.77 w < wil < wy

2.78 to 3.4 wiX!

3.41t04.6 wh < wt

4.61to 10 wik!
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Table B.8 — Equilibria in the presence of FTAs (n = 4).

c 0 NE BS GS CPNE
0.1 0.01t0 0.15 V,VIL VIII VI VIII VI
0.16 t0 0.53 VILVIII VIII VIII VIII
0.541t0 0.7 VIII VIII VIII VI
0.71t0 1.24 n/a n/a n/a n/a
1.25t0 1.33 XI XI XI XI
1.34to 1.41 IX,XI IX, X1 IX, X1 IX, X1
1.42 IX X IX X
1.43 t0 2.04 IV,IX IVIX IX 1V, IX
2.05t0 2.09 IvV,X v none v
2.1to02.35 X X X X
2.36t02.38 LX 1 none 1
2.39t02.44 LILX I none 11
2.45t02.77 LX 1 none 1
2.78 to 4.51 ILXI 1,XI XI XI
4.52to 10 XI XI XI XI
0.3 0.01 t0 0.65 n/a n/a n/a n/a
0.66 t0 0.77 A" A% \" A%
0.78 t0 0.8 V,VII VIl VII VIl
0.81to 1.05 V,VIIL, VIII none none none
1.06to 1.16 VIL VIII none none none
1.17 VIII VIII VIII VIII
1.18 to 1.25 n/a n/a n/a n/a
1.26 to 1.35 XI XI XI XI
1.36 to 1.65 IX, X1 IX, X1 IX, X1 IX, X1
1.66 to 1.73 cIX X IX IX
1.74 t0 2.04 IVIX IVIX IX IVIX
2.05t02.16 IV,.X v none v
2.17t02.77 X X X X
2.78 t0 2.91 XI XI X1 XI
2.92 t0 4.55 ILXI 1,XI XI XI
4.56to 10 XI XI XI XI
0.5 0.01 t0 0.96 n/a n/a n/a n/a
0.97 to 1.02 A% A% A" A%
1.03 to 1.06 V,VIII VIII VIII VIII
1.07 to 1.24 V, VI, VIII none none none
1.25to 1.27 V,VILVIILXI XI XI XI
1.28 to 1.3 V,VIL,XI VILXI XI XI
1.31to 1.36 VIILXI VILXI X1 XI
1.37 VILIX, XI IX, X1 IX, X1 IX,XI
1.38 to 1.75 IX, X1 IX, X1 IX, X1 IX,XI
1.76 to 1.84 IX X IX IX
1.85t0 2.04 IVIX IVIX IX IVIX
2.05t02.19 IV,.X v none v
2.2t02.77 X X X X
2.78 t0 3.16 X1 XI X1 XI
3.17 to 4.57 LXI X1 XI XI
4.58 to 10 XI XI XI XI
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Table B.8 (continued).

c 0 NE BS GS CPNE

0.7 0.01to1.12 n/a n/a n/a n/a
1.13to 1.12 A% A% A% \'%
1.13t0 1.2 V,VIII VIII VIII VIII
1.21to 1.25 V,VILVIII none none none
1.26 to 1.37 V,VILVIILXI XI XI XI
1.38t0 1.43 V,VIL VIILIX, XTI IX,XI IX, X1 IX, XTI
1.44t0 1.5 VILIX, XI IX,XI IX,XI IX, X1
1.51t0 1.8 IX, X1 IX, X1 IX,XI IX,XI
1.81to 1.9 IX IX IX IX
1.91 t0 2.04 IVIX IVIX IX IVIX
2.05t02.21 IV,.X v none v
2.22t02.77 X X X X
2.78 t0 3.3 X1 XI XI XI
3.31t04.59 LXI LXI XI XI
4.6to0 10 X1 XI XI XI

0.9 0.01to1.18 n/a n/a n/a n/a
1.19 VIII VIII VIII VIII
1.2to0 1.28 V,VIII VIII VIII VIII
1.29 to 1.37 V,VILVIILXI XI XI XI
1.38 to 1.39 V,VILVIILIX, XIIX,XI IX,XI IX,XI
1.4t01.48 V,VILIX,XI IX, X1 IX, X1 IX,XI
1.49to 1.51 V,VILIX,XI IX, XI IX, X1 IX,XI
1.52to 1.58 VILIX, XI IX,XI IX,XI IX, X1
1.59to0 1.84 IX,XI IX,XI IX,XI IX,XI
1.85t0 1.94 IX IX IX IX
1.95t0 2.04 IVIX IVIX IX IVIX
2.05t02.23 Iv,X v none v
2.24t02.77 X X X X
2.78t0 3.4 XI XI XI XI
341t04.6 LXI LXI XI XI
4.61to 10 X1 XI XI XI
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Table B.10 — Rankings of global welfare across trade regimes (n = 4).

¢ 0 Global Welfare Ranking
0.1 0.01 t0 0.15 guwV < gwV < gV

0.16 to 0.53 gu < guVi!

0.54 t0 0.7 quw'!

0.71to 1.24 no interior solutions

1.25to 1.33 quwX!

1.34to 1.41 quw'X = guwX!

1.42 quX < guwlX = guwX!

1.43t01.72 qu¥ < gwV < g™ = guX7

1.73 t0 2.01 ¥ < gulV < guX =
ngI — gw\/fnoFTA

2.02t0 2.04 quX < guwlVomeFTA o
g’V < gw* = gu¥X =
gw\/fnoFTA

2.05t0 2.09 quX < guwlVomeFTA o
gwIV < ngI — ng—noFTA

2.1t02.35 qulVnmoFTA X o
ngI _ ng—noFTA

2.36t0 2.38 gu! < qulV—1oFTA < X <
ngI _ ngfnoFTA

2.39t02.44 qu! < gulV—noFTA « gyll <
ng < ngI — g,wanoFTA

2.451t02.77 qu! < qu!V-1oFTA X <
ngI — ng—noFTA

2.78 10 3.16 gw! < guwlV-meFTA -
ngI _ gw\/—noFTA

3.17 to 4.09 guw! < gu!V=rFTA < gy

4.1t04.51 quw! < guwX7

4.52t0 10 quwX!
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Table B.10 (continued).

¢ 4 Global Welfare Ranking
0.3 0.01 to 0.65 no interior solutions

0.66 to 0.77 quw”

0.78 t0 0.8 quw¥ < guwV !

0.81 to 1.05 qu" < gV < gwVi!

1.06 to 1.16 quVT < gV

1.17 ngIH

1.18 to 1.25 no interior solutions

1.26 to 1.35 quwX!

1.36 to 1.65 quw'X = guwX!

1.66 to 1.73 quw¥ < gw'™X = guX!

1.74 to 1.87 gu¥ < gV < guw'X = guwX!

1.88 t0 2.04 ¥ < gulV < guwX =
g,wXI _ ngfnoFTA

2.05t02.16 g < gulV < gu¥l =
ng—noFTA

2.17 to 2.37 ng < ngI — ngfnoFTA

2.381t02.77 qulV-noFTA X <
ngI — gw\/fnoFTA

2.78 t0 2.91 gwIanoFTA < ngI _
guV ~oFTA

2.92103.16 guwl < gqulVomeFTA
quXT = guV—noFTA

3.17t0 4.1 gw! < gu!V-roFTA < gpX1

4.11 to 4.55 gquw! < guwX!

4.56 to 10 quX!
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Table B.10 (continued).

¢ 0 Global Welfare Ranking
0.5 0.01 to0 0.96 no interior solutions

0.97 t0 0.77 quw"

0.78 to 1.02 quw”

1.03 to 1.06 g < guV!

1.07to 1.24 quV < gV < g1

1.25to0 1.27 gV < guVil < gV
guXT

1.28t0 1.3 quV < gV < guXI

1.31to 1.36 ngH < ng[

1.37 ngH < gwIX _ ng]

1.38 to 1.75 quw'X = guwX!

1.76 to 1.84 quwX < gw'™X = guX!

1.85t0 1.93 quX < guw!X = guwX!

1.94 t0 2.04 g < gulV < qu!X
ngI — ng—noFTA
ng—noFTA

2.2t02.54 ng < ngI — ngfnoFTA

2.55t02.77 gwIV*"wFTA < ng
gquXT = gV —noFTA

2.78 to 3.16 qulV=moFTA g, X1
ng—noFTA

3.17t0 4.16 guw! < gu!V-roFTA < gypX1

4.17 to 4.57 gwI < ngI

4.58 to 10 qu™X!
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Table B.10 (continued).

c 0 Global Welfare Ranking
0.7 0.01to 1.1 no interior solutions

1.11to 1.12 quw”

1.13t0 1.2 gwV < gwVH!

1.21to 1.25 guw" < gw¥ < guwVI!

1.26 to 1.37 gw’ < gV < gwVI <
g7

1.38t0 1.43 gw¥ < g < guw™ =
guX!

14410 1.5 gwV < gu!X = guX!

1.51to 1.8 guw!X = guX!

1.81to 1.9 guw™ < gw'™ = guX!

1.91to0 1.96 gw® < gw!V < gw!X = guw*!

1.97 to 2.04 gw® < gw!V < guw!X* =
ngI — ng—noFTA

2.05t02.21 gw® < gw!V < guw¥ =
ngfnoFTA

2.22 t0 2.64 guw < guwXl = gV —noFTA

2.65t02.77 gqwV—noFTA X <
ngI _ g,wvfnoFTA

2.78 t0 3.15 gulVmmolTA o gypXT =
ngfnoFTA

3.16t03.3 quV=roFTA < gy X1

3.31to4.17 gw! < gu!V—reFTA < X1

4.18 to 4.59 guw! < guwX!

4.6t0 10 gw™!
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Table B.10 (continued).

0 Global Welfare Ranking

0.01to 1.18 no interior solutions

1.19 g1

1.2to 1.24 qu¥ < gV

1.25t0 1.28 quV < gV < gV

1.29 to 1.37 gu¥ < guV < gwVI <
guXT

1.38 to 1.39 g’ < gu'! < gVl <
quw'X = guX!

1.4t0 1.51 gV < gV < gu'X =
guXT

1.52 to 1.58 g’ < gu'* = guwX!

1.59 to 1.84 quX = guX!

1.85t0 1.94 guw¥ < gw'™* = guXT

1.95 to 1.99 quX < gw!V < g = guX!

2102.04 gwX < gu!V < guw'X =
ngI _ g,wvfnoFTA

2.05t02.23 gu¥ < guV < guw¥! =
ngfnoFTA

22410271 quwX < guwX! = gV —noFTA

2.72t0 2.77 qulV-moFTA X <
ngI _ ngfnoFTA

278 t0 3.16 qulV-noFTA g, XI —
gw\/fnoFTA

3.17t0 3.4 qu!V—roFTA < gopX1

3.41t04.17 guw! < gu!V-roFTA < gyX1

4.18 t0 4.6 guw! < guwXT

4.61to0 10 quX!
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