Online Ad Allocation, and Online Submodular Welfare Maximization

Vahab Mirrokni Google Research, New York

March 20, 2012

Outline

- Problems: SWM and Online Ad Allocation
- Online Generalized Assignment (GAP)
- Page-based Allocation and SWM with online buyers
- Stochastic Settings:
 - ► Online Stochastic Matching: Primal Algorithms
 - ► Online Stochastic Packing: Dual Algorithms
 - Experimental Results
 - Simultaneous Stochastic and Adversarial Approximations

Submodular Welfare Maximization(SWM): Offline

- m buyers and n items.
- ► Each buyers *i* has a monotone submodular valuation *f_i* on items.

- ▶ Goal: Partition items to maximize social welfare, i.e, $\sum_i f_i(S_i)$.
- Known Results:
 - ► There exists a $1 \frac{1}{e}$ -approximation for this problem. (Vondrak)
 - Achieving factor better than $1 \frac{1}{e}$ needs exponential number of value queries. [M., Schapira, Vondrak]

Submodular Welfare Maximization(SWM): Online

m buyers and n items.

- ▶ Goal: Partition items to maximize social welfare, i.e, $\sum_i f_i(S_i)$.
- Online:
 - ▶ SWM with online items: items arrive online one by one
 - ► Greedy is a 1/2-approximation algorithm (NWF)
 - Will present improved algorithms for special cases.
 - SWM with online buyers with re-assignment: buyers arrive one by one.
 - Will present improved approximation algorithms.

Online Ad Allocation

- ▶ When a page arrives, assign an eligible ad.
 - ▶ value of assigning page *i* to ad *a*: *v_{ia}*

Online Ad Allocation

- ▶ When a page arrives, assign an eligible ad.
 - value of assigning page i to ad a: via
- Display Ads (DA) problem:
 - ► Maximize value of ads served: $\max \sum_{i,a} v_{ia} x_{ia}$
 - ▶ Capacity of ad a: $\sum_{i \in A(a)} x_{ia} \leq C_a$

Online Ad Allocation

- When a page arrives, assign an eligible ad.
 - ► revenue from assigning page *i* to ad *a*: *b_{ia}*
- "AdWords" (AW) problem:
 - ► Maximize revenue of ads served: $\max \sum_{i,a} b_{ia} x_{ia}$
 - ▶ Budget of ad a: $\sum_{i \in A(a)} b_{ia} x_{ia} \leq B_a$

General Form of LP

$$\max \sum_{i,a} v_{ia} x_{ia}$$

$$\sum_{a} x_{ia} \leq 1 \qquad (\forall i)$$

$$\sum_{i} s_{ia} x_{ia} \leq C_{a} \qquad (\forall a)$$

$$x_{ia} \geq 0 \qquad (\forall i, a)$$

Online Matching: Disp. Ads (DA): AdWords (AW):
$$v_{ia} = s_{ia} = 1$$
 $s_{ia} = 1$ $s_{ia} = v_{ia}$

General Form of LP

$$\max \sum_{i,a} v_{ia} x_{ia}$$

$$\sum_{a} x_{ia} \leq 1 \qquad (\forall i)$$

$$\sum_{i} s_{ia} x_{ia} \leq C_{a} \qquad (\forall a)$$

$$x_{ia} \geq 0 \qquad (\forall i, a)$$

		Disp. Ads (DA):	AdWords (AW):
	$v_{ia}=s_{ia}=1$	$s_{ia}=1$	$s_{ia} = v_{ia}$
Worst-Cas	Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$ -aprx		[MSVV,BJN]: $1 - \frac{1}{e}$ -aprx if $B_a \gg b_{ia}$.

Outline

- Problems: SWM and Online Ad Allocation
- Online Generalized Assignment (GAP)
- Page-based Allocation and SWM with online buyers
- Stochastic Settings:
 - ► Online Stochastic Matching: Primal Algorithms
 - ► Online Stochastic Packing: Dual Algorithms
 - Experimental Results
 - Simultaneous Stochastic and Adversarial Approximations

DA: Free Disposal Model

- Advertisers may not complain about extra impressions, but no bonus points for extra impressions, either.
- ▶ Value of advertiser = sum of values of top C_a items she gets.

Assign impression to an advertiser maximizing Marginal Gain = (imp. value - min. impression value).

- ► Competitive Ratio: 1/2. [NWF78]
 - ▶ Follows from submodularity of the value function.

- Competitive Ratio: 1/2. [NWF78]
 - ▶ Follows from submodularity of the value function.

- ► Competitive Ratio: 1/2. [NWF78]
 - ▶ Follows from submodularity of the value function.

- ► Competitive Ratio: 1/2. [NWF78]
 - ▶ Follows from submodularity of the value function.

A better algorithm?

Assign impression to an advertiser a maximizing (imp. value - β_a), where β_a = average value of top C_a impressions assigned to a.

A better algorithm?

Assign impression to an advertiser a maximizing (imp. value - β_a), where β_a = average value of top C_a impressions assigned to a.

A better algorithm?

Assign impression to an advertiser a maximizing (imp. value - β_a), where β_a = average value of top C_a impressions assigned to a.

- ► Competitive Ratio: $\frac{1}{2}$ if $C_a >> 1$. [FKMMP09]
 - Primal-Dual Approach.

An Optimal Algorithm

Assign impression to an advertiser a: maximizing (imp. value - β_a),

- ▶ Greedy: $\beta_a = \min$. impression assigned to a.
- ▶ Better (pd-avg): β_a = average value of top C_a impressions assigned to a.

An Optimal Algorithm

Assign impression to an advertiser a: maximizing (imp. value - β_a),

- ▶ Greedy: $\beta_a = \min$. impression assigned to a.
- ▶ Better (pd-avg): β_a = average value of top C_a impressions assigned to a.
- ▶ Optimal (pd-exp): order value of edges assigned to a: $v(1) \ge v(2) ... \ge v(C_a)$:

$$\beta_a = \frac{1}{C_a(e-1)} \sum_{i=1}^{C_a} v(j) (1 + \frac{1}{C_a})^{j-1}.$$

An Optimal Algorithm

Assign impression to an advertiser a: maximizing (imp. value - β_a),

- ▶ Greedy: $\beta_a = \min$. impression assigned to a.
- ▶ Better (pd-avg): β_a = average value of top C_a impressions assigned to a.
- ▶ Optimal (pd-exp): order value of edges assigned to a: $v(1) \ge v(2) ... \ge v(C_a)$:

$$\beta_a = \frac{1}{C_a(e-1)} \sum_{j=1}^{C_a} v(j) (1 + \frac{1}{C_a})^{j-1}.$$

▶ Thm: pd-exp achieves optimal competitive Ratio: $1 - \frac{1}{e} - \epsilon$ if $C_a > O(\frac{1}{\epsilon})$. [Feldman, Korula, M., Muthukrishnan, Pal 2009]

Online Generalized Assignment (with free disposal)

- ▶ Multiple Knapsack: Item i may have different value (v_{ia}) and different size s_{ia} for different ads a.
- ▶ DA: $s_{ia} = 1$, AW: $v_{ia} = s_{ia}$.

$$\max \sum_{i,a} v_{ia} x_{ia} \qquad \min \sum_{a} C_{a} \beta_{a} + \sum_{i} z_{i}$$

$$\sum_{a} x_{ia} \leq 1 \qquad (\forall i) \qquad s_{ia} \beta_{a} + z_{i} \geq v_{ia} \quad (\forall i, a)$$

$$\sum_{i} s_{ia} x_{ia} \leq C_{a} \qquad (\forall a)$$

$$x_{ia} \geq 0 \qquad (\forall i, a)$$

Online Generalized Assignment (with free disposal)

- ▶ Multiple Knapsack: Item *i* may have different value (*v_{ia}*) and different size *s_{ia}* for different ads *a*.
- ▶ DA: $s_{ia} = 1$, AW: $v_{ia} = s_{ia}$.

$$\max \sum_{i,a} v_{ia} x_{ia} \qquad \min \sum_{a} C_{a} \beta_{a} + \sum_{i} z_{i}$$

$$\sum_{a} x_{ia} \leq 1 \qquad (\forall i) \qquad s_{ia} \beta_{a} + z_{i} \geq v_{ia} \quad (\forall i, a)$$

$$\sum_{i} s_{ia} x_{ia} \leq C_{a} \qquad (\forall a)$$

$$x_{ia} \geq 0 \qquad (\forall i, a)$$

- ▶ Offline Optimization: $1 \frac{1}{\epsilon} \delta$ -aprx[FGMS07,FV08].
- ▶ Thm[FKMMP09]: There exists a $1 \frac{1}{e} \epsilon$ -approximation algorithm if $\frac{C_a}{\max s_{ia}} \ge \frac{1}{\epsilon}$.

Proof Idea: Primal-Dual Analysis [BJN]

$$\max \sum_{i,a} v_{ia} x_{ia}$$

$$\sum_{a} x_{ia} \leq 1 \qquad (\forall i)$$

$$\sum_{i} s_{ia} x_{ia} \leq C_{a} \qquad (\forall a)$$

$$x_{ia} \geq 0 \qquad (\forall i, a)$$

$$min \sum_{a} C_{a} \beta_{a} + \sum_{i} z_{i}$$

$$s_{ia} \beta_{a} + z_{i} \geq v_{ia} \quad (\forall i, a)$$

$$\beta_{a}, z_{i} \geq 0 \quad (\forall i, a)$$

Proof Idea: Primal-Dual Analysis [BJN]

$$\max \sum_{i,a} v_{ia} x_{ia}$$

$$\sum_{a} x_{ia} \leq 1 \qquad (\forall i)$$

$$\sum_{i} s_{ia} x_{ia} \leq C_{a} \qquad (\forall a) \qquad \min \sum_{a} C_{a} \beta_{a} + \sum_{i} z_{i}$$

$$s_{ia} \beta_{a} + z_{i} \geq v_{ia} \quad (\forall i, a)$$

$$x_{ia} \geq 0 \qquad (\forall i, a) \qquad \beta_{a}, z_{i} \geq 0 \quad (\forall i, a)$$

Proof:

- 1. Start from feasible primal and dual ($x_{ia} = 0$, $\beta_a = 0$, and $z_i = 0$, i.e., Primal=Dual=0).
- 2. After each assignment, update x, β, z variables and keep primal and dual solutions.
- 3. Show $\Delta(\text{Dual}) \leq (1 \frac{1}{e})\Delta(\text{Primal})$.

SWM with online items?

Special Cases:

•	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia}=s_{ia}=1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
Worst-Case	Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$ -aprx	Free Disposal [FKMMP09]: $1 - \frac{1}{e}$ -aprx $C_a \gg \max s_{ia}$	[MSVV,BJN]: $1 - \frac{1}{e}$ -aprx if $B_a \gg b_{ia}$.

- ▶ Open Problem 1: What about small budgets (B_a) or small capacities (C_a) ?
- ▶ Open Problem 2: How to generalize large budgets (B_a) and large capacities (C_a) for online SWM with online items, and get a 1 1/e-approximation?

Outline

- Problems: SWM and Online Ad Allocation
- Online Generalized Assignment (GAP)
- Page-based Allocation and SWM with online buyers
- Stochastic Settings:
 - ► Online Stochastic Matching: Primal Algorithms
 - ► Online Stochastic Packing: Dual Algorithms
 - Experimental Results
 - Simultaneous Stochastic and Adversarial Approximations

Page-based Ad Allocation

- Each page can be assigned multiple ads.
- Feasible configurations of ads:
 - Exclusion Constraints: Nike and Adidas ads should not appear on the same page?
 - ► All-or-nothing Constraints: Either all ads on the page are from Ford or none.
 - Diversity Constraints: at most one ad from one advertiser.

Page-based Ad Allocation

- Each page can be assigned multiple ads.
- Feasible configurations of ads:
 - Exclusion Constraints: Nike and Adidas ads should not appear on the same page?
 - All-or-nothing Constraints: Either all ads on the page are from Ford or none.
 - Diversity Constraints: at most one ad from one advertiser.
- ▶ Dependent-value model based on value sharing: $v_p(C, a) = \text{value of ad } a \text{ in configuration } C \text{ on a page } p.$
- Assume $v_p(C, a)$ is cross-monotonic, i.e.,

$$\sum_{a'\neq a} v_p((C\backslash a),a') \geq \sum_{a'\neq a} v_p(C,a').$$

Page-based Ad Allocation: LP and Algorithm

$$\begin{array}{lll} \text{maximize} & \sum_{p,C \in \mathcal{C}_p,a} v_p(C,a) \cdot x_{p,C,a} & \text{(Primal)} \\ & \forall p,a: & \sum_{C \in \mathcal{C}_p} x_{p,C,a} \leq 1 & [z_{p,a}] \\ & \forall a: & \sum_{p,C \in \mathcal{C}_p} |C_a| \cdot x_{p,C,a} \leq n_a & [\beta_a] \\ & \forall p,C \in \mathcal{C}_p,a: & x_{p,C,a} \geq 0 \end{array}$$

minimize
$$\sum_{p,a} z_{p,a} + \sum_{a} n_a \cdot \beta_a$$
 (Dual)
 $\forall p, C \in \mathcal{C}_p, a: z_{p,a} + |\mathcal{C}_a| \cdot \beta_a \ge v_p(C, a)$ $[x_{p,C,a}]$
 $\forall p, a: z_{p,a} \ge 0, \beta_a \ge 0$

Page-based Ad Allocation: LP and Algorithm

$$\begin{array}{ll} \text{maximize} & \sum_{p,C \in \mathcal{C}_p,a} v_p(C,a) \cdot x_{p,C,a} & \text{(Primal)} \\ \forall p,a: & \sum_{C \in \mathcal{C}_p} x_{p,C,a} \leq 1 & [z_{p,a}] \\ & \forall a: & \sum_{p,C \in \mathcal{C}_p} |C_a| \cdot x_{p,C,a} \leq n_a & [\beta_a] \\ \forall p,C \in \mathcal{C}_p,a: & x_{p,C,a} \geq 0 \end{array}$$

- 1. Initially, $\beta_a = 0$ for each advertiser a.
- 2. For every arriving page, do the following:
 - 2.1 Choose feasible allocation C to maximize the discounted value $\sum_{a \in C} v_p(C, a) |C_a| \cdot \beta_a.$
 - 2.2 Allocate according to C.
 - 2.3 Recalculate β_a as defined as the exp-avg scoring.

Page-based Ad Allocation: Algorithm and Result

- 1. Initially, $\beta_a = 0$ for each advertiser a.
- 2. For every arriving page, do the following:
 - 2.1 Choose feasible allocation C to maximize the discounted value $\sum_{a \in C} v_p(C, a) |C_a| \cdot \beta_a.$
 - 2.2 Allocate according to C.
 - 2.3 Recalculate β_a as defined as the exp-avg scoring.

[Exp-Avg Scoring] Let $w_1 \geq w_2 \geq \cdots \geq w_n$ be the top n weights assigned to an advertiser a with capacity n, and let $d \in \{1, \ldots, n\}$, $\beta_a = \frac{1}{\hat{n}_a \cdot (e_{n/d} - 1)} \cdot \sum_{i=1}^n \alpha^{i-1} \cdot w_i$, where $\alpha_a = (1 + \frac{d}{n_a})^{\frac{1}{d}}$.

Theorem (Korula, M., Yan)

For the page-based ad allocation problem with cross-monotonic value-sharing, this algorithm gives a $(1-\frac{1}{e}-\epsilon)$ -approximation for large capacities. For small capacities, the approximation ratio is $\frac{1}{2}$.

SWM with Online buyers

- ▶ Goal: Partition items to maximize social welfare, i.e, $\sum_i f_i(S_i)$.
- SWM with online buyers with re-assignment: buyers arrive one by one, and we can re-assign items from older buyers to new buyers (but not vice versa).

SWM with Online buyers

- ▶ Goal: Partition items to maximize social welfare, i.e, $\sum_i f_i(S_i)$.
- ► SWM with online buyers with re-assignment: buyers arrive one by one, and we can re-assign items from older buyers to new buyers (but not vice versa).

Theorem (Korula, M., Yan)

The SWM with online buyers admits a $(1-\frac{1}{e}-\epsilon)$ - and $(\frac{1}{2})$ -approximations for large and small multiplicity of items, respectively. The algorithm uses a demand oracle access to the submodular function.

 Proof Technique: reduce SWM with online buyers to the page-based allocation with cross-monotonic value-sharing.

SWM with Online buyers

Theorem (Korula, M., Yan)

The SWM with online buyers admits a $(1-\frac{1}{e}-\epsilon)$ - and $(\frac{1}{2})$ -approximations for large and small multiplicity of items, respectively. The algorithm uses a demand oracle access to the submodular function.

- ▶ Proof Technique: reduce SWM with online buyers to the page-based allocation with cross-monotonic value-sharing.
- ▶ Item *a* corresponds to advertiser *a* with capacity one.
- ▶ Pages corresponds to buyers, and

$$v_p(S, a) = f_p(\{1, \ldots, a\} \cap S) - f_p(\{1, \ldots, a-1\} \cap S).$$

SWM with Online buyers: Summary

PA-Dep: Page-based Ad Allocation with value-sharing. PA-Indep-Matroid: Page-based Ad Allocation with separable valuations and matroid constraints.

Outline

- Problems: SWM and Online Ad Allocation
- Online Generalized Assignment (GAP)
- Page-based Allocation and SWM with online buyers
- Stochastic Settings:
 - ► Online Stochastic Matching: Primal Algorithms
 - ▶ Online Stochastic Packing: Dual Algorithms
 - Experimental Results
 - Simultaneous Stochastic and Adversarial Approximations

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia}=s_{ia}=1$	$s_{ia} = 1$	$s_{ia} = v_{ia}$
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$ -aprx	Free Disposal [FKMMP09]: $1 - \frac{1}{e}$ -aprx	[MSVV,BJN]: $1 - \frac{1}{e}$ -aprx if $B_a \gg b_{ia}$.
Stochastic (random arrival order)	[FMMM09,MOS11 0.703-aprx	[HMZ11] 0.66- aprx i.i.d with known distribution [FHKMS10,AWY]: $1-\epsilon$ -aprx, if OPT \gg max v_{ia} and $C_a \gg$ max s_{ia}	$egin{aligned} & [extsf{DH09}]: \ 1-\epsilon extsf{-aprx}, \ & extsf{if} \ & extsf{OPT} \gg extsf{max}v_{ia} \end{aligned}$

Primal Algorithm: "Two-suggested-matchings"

"ALG is
$$\alpha$$
-approximation?" if w.h.p., $\frac{\text{ALG}(\textit{H})}{\text{OPT}(\textit{H})} \geq \alpha$

Simple Primal Algorithm:

- ► Find one matching in expected graph *G* offline, and try to apply it online.
- ► Tight $1 \frac{1}{e}$ -approximation.

Primal Algorithm: "Two-suggested-matchings"

"ALG is
$$\alpha$$
-approximation?" if w.h.p., $\frac{\text{ALG}(\textit{H})}{\text{OPT}(\textit{H})} \geq \alpha$

Simple Primal Algorithm:

- ► Find one matching in expected graph *G* offline, and try to apply it online.
- ▶ Tight $1 \frac{1}{e}$ -approximation.

Better Algorithm: Two-Suggested-Matchings

- ► Offline: Find two disjoint matchings, blue(B) and red(R), on the expected graph G.
- Online: try the blue matching first, then if that doesn't work, try the red one.

Primal Algorithm: "Two-suggested-matchings"

"ALG is
$$\alpha$$
-approximation?" if w.h.p., $\frac{\text{ALG}(\textit{H})}{\text{OPT}(\textit{H})} \geq \alpha$

Simple Primal Algorithm:

- ► Find one matching in expected graph *G* offline, and try to apply it online.
- ▶ Tight $1 \frac{1}{e}$ -approximation.

Better Algorithm: Two-Suggested-Matchings

- ▶ Offline: Find two disjoint matchings, blue(B) and red(R), on the expected graph G.
- Online: try the blue matching first, then if that doesn't work, try the red one.
- ► Thm: Tight $\frac{1-2/e^2}{4/3-2/3e} \ge 0.67$

(Feldman, M., M., Muthukrishnan, 2009).

Analysis: Two-suggested-matching Algorithm

 Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.

Analysis: Two-suggested-matching Algorithm

- ► Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
- ▶ Bounding ALG: Classify $a \in A$ based on its neighbors in the blue and red matchings: A_{BR} , A_{BB} , A_{B} , A_{R}

$$ALG \geq \left(1 - rac{1}{e^2}
ight) |A_{BB}| + \left(1 - rac{2}{e^2}
ight) |A_{BR}| + \left(1 - rac{3}{2e}
ight) (|A_B| + |A_R|)$$

Analysis: Two-suggested-matching Algorithm

- ► Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
- ▶ Bounding ALG: Classify $a \in A$ based on its neighbors in the blue and red matchings: A_{BR} , A_{BB} , A_{B} , A_{R}

$$ALG \ge \left(1 - \frac{1}{e^2}\right)|A_{BB}| + \left(1 - \frac{2}{e^2}\right)|A_{BR}| + \left(1 - \frac{3}{2e}\right)(|A_B| + |A_R|)$$

▶ Bounding OPT: Find min-cut in augmented expected graph *G*, and use it min-cut in *G* as a "guide" for cut in each scenario.

Primal Algorithms: Two Offline Solutions

- Online stochastic matching: 0.67-approximation[FMMM09]
- Improved to 0.702-approximation[MOS11]
- ► Improve to 0.703-approximation using 3 matchings[HMZ11]
- Online stochastic weighted matching: 0.66-approximation [HMZ11].

Online Stochastic Weighted Matching

"ALG is
$$\alpha$$
-approximation?" if $\frac{\mathrm{E[ALG}(H)]}{\mathrm{E[OPT}(H)]} \geq \alpha$

Power of Two Choices:

- Offline:
 - 1. Find an optimal fractional solution x_e to a discounted matching LP, where $x_e \le 1 \frac{1}{e}$.
 - 2. Sample a matching M from x.
 - 3. Let $M_0 = M_1 \setminus M$, where M_1 is the maximum weighted matching.
- ➤ Online: try the edges in M first, and if it does not work, try M₀.
- Thm: Approximation factor is better than 0.66. (Haeupler, M., ZadiMoghaddam, 2011).

Online Stochastic Weighted Matching

"ALG is
$$\alpha$$
-approximation?" if $\frac{\mathrm{E[ALG}(H)]}{\mathrm{E[OPT}(H)]} \geq \alpha$

Power of Two Choices:

- Offline:
 - 1. Find an optimal fractional solution x_e to a discounted matching LP, where $x_e \le 1 \frac{1}{e}$.
 - 2. Sample a matching M from x.
 - 3. Let $M_0 = M_1 \setminus M$, where M_1 is the maximum weighted matching.
- ➤ Online: try the edges in M first, and if it does not work, try M₀.
- Thm: Approximation factor is better than 0.66. (Haeupler, M., ZadiMoghaddam, 2011).
- ▶ Open Problem 3: Generalize this algorithm to online stochastic SWM and get better than 1-1/e with extra assumptions.

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia}=s_{ia}=1$	$s_{ia}=1$	$s_{ia} = v_{ia}$
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$ -aprx	?	[MSVV,BJN]: $1 - \frac{1}{e}$ -aprx if $B_a \gg b_{ia}$.
Stochastic (i.i.d.)	[FMMM09,MOS11] 0.703-aprx i.i.d with known distribution	[HMZ11] 0.66- aprx i.i.d with known distribution [FHKMS10,AWY]: $1-\epsilon$ -aprx, if OPT \gg max v_{ia} and $C_a \gg$ max s_{ia}	$[DH09]$: $1-\epsilon$ -aprx, if $OPT \gg \max v_{ia}$

random order = i.i.d. model with unknown distribution

$$\max \sum_{i,a} v_{ia} x_{ia} \qquad \min \sum_{a} C_{a} \beta_{a} + \sum_{i} z_{i}$$

$$\sum_{a} x_{ia} \leq 1 \qquad (\forall i) \qquad z_{i} \geq v_{ia} - \beta_{a} \quad (\forall i, a)$$

$$\sum_{i} x_{ia} \leq C_{a} \qquad (\forall a) \qquad \beta_{a}, z_{i} \geq 0 \qquad (\forall i, a)$$

$$x_{ia} \geq 0 \qquad (\forall i, a)$$

Algorithm:

- ▶ Observe the first ϵ fraction sample of impressions.
- Learn a dual variable for each ad β_a , by solving the dual program on the sample.
- ▶ Assign each impression *i* to ad a that maximizes $v_{ia} \beta_a$.

$$\max \sum_{i,a} v_{ia} x_{ia} \qquad \min \sum_{a} C_{a} \beta_{a} + \sum_{i} z_{i}$$

$$\sum_{a} x_{ia} \leq 1 \qquad (\forall i) \qquad z_{i} \geq v_{ia} - \beta_{a} \quad (\forall i, a)$$

$$\sum_{i} x_{ia} \leq C_{a} \qquad (\forall a) \qquad \beta_{a}, z_{i} \geq 0 \qquad (\forall i, a)$$

$$x_{ia} \geq 0 \qquad (\forall i, a)$$

Algorithm:

- ▶ Observe the first ϵ fraction sample of impressions.
- Learn a dual variable for each ad β_a , by solving the dual program on the sample.
- ▶ Assign each impression *i* to ad a that maximizes $v_{ia} \beta_a$.

Feldman, Henzinger, Korula, M., Stein 2010 Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1-O(\epsilon))$ -aprx, as long as each item has low value $(v_{ia} \leq \frac{\epsilon \text{OPT}}{m \log n})$, and large capacity $(C_a \leq \frac{m \log n}{\epsilon^3})$

Feldman, Henzinger, Korula, M., Stein 2010 Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1-O(\epsilon))$ -aprx, as long as each item has low value $(v_{ia} \leq \frac{\epsilon \mathrm{OPT}}{m \log n})$, and large capacity $(C_a \leq \frac{m \log n}{\epsilon^3})$

Fact: If optimum β_a^* are known, this alg. finds OPT

▶ Proof: Comp. slackness. Given β_a^* , compute x^* as follows: $x_{ia}^* = 1$ if $a = \operatorname{argmax}(v_{ia} - \beta_a^*)$.

Feldman, Henzinger, Korula, M., Stein 2010 Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1-O(\epsilon))$ -aprx, as long as each item has low value $(v_{ia} \leq \frac{\epsilon \text{OPT}}{m \log n})$, and large capacity $(C_a \leq \frac{m \log n}{3})$

Fact: If optimum β_a^* are known, this alg. finds OPT

▶ Proof: Comp. slackness. Given β_a^* , compute x^* as follows: $x_{ia}^* = 1$ if $a = \operatorname{argmax}(v_{ia} - \beta_a^*)$.

Lemma: In the random order model, W.h.p., the sample β_a' are close to β_a^* .

Extending DH09.

Ad Allocation: Problems and Models

	Online Matching:	Disp. Ads (DA):	AdWords (AW):
	$v_{ia}=s_{ia}=1$	$s_{ia}=1$	$s_{ia} = v_{ia}$
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1 - \frac{1}{e}$ -aprx	Free Disposal [FKMMP09]: $1 - \frac{1}{e}$ -aprx	[MSVV,BJN]: $1 - \frac{1}{e}$ -aprx if $B_a \gg b_{ia}$.
Stochastic (random arrival order)	[FMMM09,MOS11 0.703-aprx	[HMZ11] 0.66- aprx i.i.d with known distribution [FHKMS10,AWY]: $1-\epsilon$ -aprx, if OPT \gg max v_{ia} and $C_a \gg$ max s_{ia}	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

Outline

- Problems: SWM and Online Ad Allocation
- Online Generalized Assignment through Primal-Dual Analysis
- Page-based Allocation and SWM with online bidders
- Stochastic Settings:
 - ► Online Stochastic Matching: Primal Algorithms
 - Online Stochastic Packing: Dual Algorithms
 - Experimental Results
 - Simultaneous Stochastic and Adversarial Approximations

Experiments: setup

- Real ad impression data from several large publishers
- 200k 1.5M impressions in simulation period
- ▶ 100 2600 advertisers
- Edge weights = predicted click probability
- Efficiency: free disposal model
- Algorithms:
 - greedy: maximum marginal value
 - pd-avg, pd-exp: pure online primal-dual from [FKMMP09].
 - dualbase: training-based primal-dual [FHKMS10]
 - hybrid: convex combo of training based, pure online.
 - Ip-weight: optimum efficiency

Experimental Evaluation: Summary

Algorithm	Avg Efficiency%	
opt	100	
greedy	69	
pd-avg	77	
pd-exp	82	
dualbase	87	
hybrid	89	

- pd-exp & pd-avg outperform greedy by 9% and 14% (with more improvements in *tight* competition.)
- ▶ dualbase outperforms pure online algorithms by 6% to 12%.
- ▶ Hybrid has a mild improvement of 2% (up to 10%).
- pd-avg performs much better than the theoretical analysis.

In Production

Algorithms inspired by these techniques are in use at Google display ad serving system, delivering billions of ads per day.

In Production

- Algorithms inspired by these techniques are in use at Google display ad serving system, delivering billions of ads per day.
- ► Smooth Delivery of Display Ads (Bhalgat, Feldman, M.)
- Display Ad Allocation with Ad Exchange (Belsairo, Feldman, M., Muthukrishnan)

▶ Dealing with Traffic Spikes: Primal and Dual techniques fail in the adversarial models.

- ▶ Dealing with Traffic Spikes: Primal and Dual techniques fail in the adversarial models.
- Assuming C_a ≫ max s_{ia}, are there algorithms that achieve good approximation factors for both adversarial and stochastic models simultaneously?

- ▶ Dealing with Traffic Spikes: Primal and Dual techniques fail in the adversarial models.
- Assuming C_a ≫ max s_{ia}, are there algorithms that achieve good approximation factors for both adversarial and stochastic models simultaneously?
- ► Yes for unweighted edges!(M.,OveisGharan, ZadiMoghaddam)
 - ▶ Balance algorithm achieves 1ϵ -approximation for random order and $1 \frac{1}{\epsilon}$ -approximation for the adversarial model.

- ▶ Dealing with Traffic Spikes: Primal and Dual techniques fail in the adversarial models.
- Assuming C_a ≫ max s_{ia}, are there algorithms that achieve good approximation factors for both adversarial and stochastic models simultaneously?
- ► Yes for unweighted edges!(M.,OveisGharan, ZadiMoghaddam)
 - ▶ Balance algorithm achieves 1ϵ -approximation for random order and $1 \frac{1}{\epsilon}$ -approximation for the adversarial model.
- ▶ No for weighted edges! (M.,OveisGharan,ZadiMoghaddam)
 - ▶ Impossible: $1 \frac{1}{e}$ -approximation for adversarial and better than 0.97-approximation for random order.
 - ▶ PD-EXP achieves achieves 0.76-approximation for random order and $1 \frac{1}{a}$ -approximation for the adversarial model.

Online SWM: Interesting Problems

Adversarial:

- ▶ Open Problem 1: Get better than 1/2-approximation for online budgeted allocation with small budgets (B_a) or small capacities (C_a)?
- ▶ Open Problem 2: How to generalize large budgets (B_a) and large capacities (C_a) assumptions for online SWM with online items, and get a 1 1/e-approximation?

Primal Techniques:

- ▶ Open Problem 3: Generalize the two-offline-matching algorithm to online stochastic SWM and get better than 1-1/e with extra assumptions for the iid model.
- ▶ Vondrak: MSV'08 implies that getting better than 1 1/e is impossible without extra assumptions.

Dual Techniques:

▶ Open Problem 4: Generalize the dual-based algorithm to online stochastic SWM and get better than $1-\epsilon$ with extra assumptions for random order model.