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Submodular Welfare Maximization(SWM): Offline

I m buyers and n items.

I Each buyers i has a monotone submodular valuation fi on
items.

Buyers

f3(S3) f4(S4) f5(S5) f6(S6)f1(S1) f2(S2)

S1 S5 S6S4S3S2

I Goal: Partition items to maximize social welfare, i.e,
∑

i fi (Si ).
I Known Results:

I There exists a 1− 1
e -approximation for this problem. (Vondrak)

I Achieving factor better than 1− 1
e needs exponential number

of value queries. [M., Schapira, Vondrak]



Submodular Welfare Maximization(SWM): Online

I m buyers and n items.

Buyers

f3(S3) f4(S4) f5(S5) f6(S6)f1(S1) f2(S2)

S1 S5 S6S4S3S2

I Goal: Partition items to maximize social welfare, i.e,
∑

i fi (Si ).
I Online:

I SWM with online items: items arrive online one by one
I Greedy is a 1/2-approximation algorithm (NWF)
I Will present improved algorithms for special cases.

I SWM with online buyers with re-assignment: buyers arrive one
by one.

I Will present improved approximation algorithms.



Online Ad Allocation

I When a page arrives, assign an eligible ad.
I value of assigning page i to ad a: via

I Display Ads (DA) problem:
I Maximize value of ads served: max

∑
i,a viaxia

I Capacity of ad a:
∑

i∈A(a) xia ≤ Ca
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Online Ad Allocation

I When a page arrives, assign an eligible ad.
I revenue from assigning page i to ad a: bia

I “AdWords” (AW) problem:
I Maximize revenue of ads served: max

∑
i,a biaxia

I Budget of ad a:
∑

i∈A(a) biaxia ≤ Ba



General Form of LP

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

Online Matching:
via = sia = 1

Disp. Ads (DA):
sia = 1

AdWords (AW):
sia = via

Worst-Case Greedy: 1
2 ,

[KVV]: 1− 1
e -aprx

[MSVV,BJN]:
1− 1

e -aprx
if Ba � bia.
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DA: Free Disposal Model

0.07
Ad 1: C1 = 1

0.7

I Advertisers may not complain about extra impressions, but no
bonus points for extra impressions, either.

I Value of advertiser = sum of values of top Ca items she gets.



Greedy Algorithm

Assign impression to an advertiser
maximizing Marginal Gain = (imp. value - min. impression value).

I Competitive Ratio: 1/2. [NWF78]
I Follows from submodularity of the value function.

1

1 + ε

Ad 1: C1 = n

Ad 2: C2 = n
1

n copiesn copies

n copies

Evenly Split?
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A better algorithm?

Assign impression to an advertiser a
maximizing (imp. value - βa),

where βa = average value of top Ca impressions assigned to a.

1

1 + ε

Ad 1: C1 = n

Ad 2: C2 = n
1

n copiesn copies

n copies

I Competitive Ratio: 1
2 if Ca >> 1. [FKMMP09]

I Primal-Dual Approach.
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An Optimal Algorithm

Assign impression to an advertiser a:
maximizing (imp. value - βa),

I Greedy: βa = min. impression assigned to a.

I Better (pd-avg): βa = average value of top Ca impressions
assigned to a.

I Optimal (pd-exp): order value of edges assigned to a:
v(1) ≥ v(2) . . . ≥ v(Ca):

βa =
1

Ca(e − 1)

Ca∑
j=1

v(j)(1 +
1

Ca
)j−1.

I Thm: pd-exp achieves optimal competitive Ratio: 1− 1
e − ε if

Ca > O(1ε ). [Feldman, Korula, M., Muthukrishnan, Pal 2009]
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Online Generalized Assignment (with free disposal)

I Multiple Knapsack: Item i may have different value (via) and
different size sia for different ads a.

I DA: sia = 1, AW: via = sia.

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑
a

Caβa +
∑
i

zi

siaβa + zi ≥ via (∀i , a)

βa, zi ≥ 0 (∀i , a)

I Offline Optimization: 1− 1
e − δ-aprx[FGMS07,FV08].

I Thm[FKMMP09]: There exists a 1− 1
e − ε-approximation

algorithm if Ca
max sia

≥ 1
ε .
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Proof Idea: Primal-Dual Analysis [BJN]

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

siaxia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑
a

Caβa +
∑
i

zi

siaβa + zi ≥ via (∀i , a)

βa, zi ≥ 0 (∀i , a)

I Proof:

1. Start from feasible primal and dual (xia = 0, βa = 0, and
zi = 0, i.e., Primal=Dual=0).

2. After each assignment, update x , β, z variables and keep
primal and dual solutions.

3. Show ∆(Dual) ≤ (1− 1
e )∆(Primal).
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SWM with online items?

Special Cases:
Online Matching:
via = sia = 1

Disp. Ads (DA):
sia = 1

AdWords (AW):
sia = via

Worst-Case Greedy: 1
2 ,

[KVV]: 1− 1
e -aprx

Free Disposal
[FKMMP09]:
1− 1

e -aprx
Ca � max sia

[MSVV,BJN]:
1− 1

e -aprx
if Ba � bia.

I Open Problem 1: What about small budgets (Ba) or small
capacities (Ca)?

I Open Problem 2: How to generalize large budgets (Ba) and
large capacities (Ca) for online SWM with online items, and
get a 1− 1/e-approximation?
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Page-based Ad Allocation

I Each page can be assigned multiple ads.
I Feasible configurations of ads:

I Exclusion Constraints: Nike and Adidas ads should not appear
on the same page?

I All-or-nothing Constraints: Either all ads on the page are from
Ford or none.

I Diversity Constraints: at most one ad from one advertiser.

I Dependent-value model based on value sharing:
vp(C , a) = value of ad a in configuration C on a page p.

I Assume vp(C , a) is cross-monotonic, i.e.,∑
a′ 6=a

vp((C\a), a′) ≥
∑
a′ 6=a

vp(C , a′).
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Page-based Ad Allocation: LP and Algorithm

maximize
∑

p,C∈Cp ,a vp(C , a) · xp,C ,a (Primal)

∀p, a :
∑

C∈Cp xp,C ,a ≤ 1 [zp,a]

∀a :
∑

p,C∈Cp |Ca| · xp,C ,a ≤ na [βa]

∀p,C ∈ Cp, a : xp,C ,a ≥ 0

minimize
∑

p,a zp,a +
∑

a na · βa (Dual)

∀p,C ∈ Cp, a : zp,a + |Ca| · βa ≥ vp(C , a) [xp,C ,a]

∀p, a : zp,a ≥ 0, βa ≥ 0

1. Initially, βa = 0 for each advertiser a.
2. For every arriving page, do the following:

2.1 Choose feasible allocation C to maximize the discounted value∑
a∈C vp(C , a)− |Ca| · βa.

2.2 Allocate according to C .
2.3 Recalculate βa as defined as the exp-avg scoring.
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Page-based Ad Allocation: Algorithm and Result

1. Initially, βa = 0 for each advertiser a.

2. For every arriving page, do the following:

2.1 Choose feasible allocation C to maximize the discounted value∑
a∈C vp(C , a)− |Ca| · βa.

2.2 Allocate according to C .
2.3 Recalculate βa as defined as the exp-avg scoring.

[Exp-Avg Scoring] Let w1 ≥ w2 ≥ · · · ≥ wn be the top n weights
assigned to an advertiser a with capacity n, and let d ∈ {1, . . . , n},
βa = 1

n̂a·(en/d−1)
·
∑n

i=1 α
i−1 · wi , where αa = (1 + d

na
)
1
d .

Theorem (Korula, M., Yan)

For the page-based ad allocation problem with cross-monotonic
value-sharing, this algorithm gives a (1− 1

e − ε)-approximation for
large capacities. For small capacities, the approximation ratio is 1

2 .



SWM with Online buyers

Buyers

f3(S3) f4(S4) f5(S5) f6(S6)f1(S1) f2(S2)

S1 S5 S6S4S3S2

I Goal: Partition items to maximize social welfare, i.e,
∑

i fi (Si ).
I SWM with online buyers with re-assignment: buyers arrive

one by one, and we can re-assign items from older buyers to
new buyers (but not vice versa).

Theorem (Korula, M., Yan)

The SWM with online buyers admits a (1− 1
e − ε)- and

(12)-approximations for large and small multiplicity of items,
respectively. The algorithm uses a demand oracle access to the
submodular function.

I Proof Technique: reduce SWM with online buyers to the
page-based allocation with cross-monotonic value-sharing.
Page corresponds to buyers and
vp(S , j) = f ({1, . . . , j} ∩ S)− f ({1, . . . , j − 1} ∩ S).
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SWM with Online buyers

Buyers

f3(S3) f4(S4) f5(S5) f6(S6)f1(S1) f2(S2)

S1 S5 S6S4S3S2

Theorem (Korula, M., Yan)

The SWM with online buyers admits a (1− 1
e − ε)- and

(12)-approximations for large and small multiplicity of items,
respectively. The algorithm uses a demand oracle access to the
submodular function.

I Proof Technique: reduce SWM with online buyers to the
page-based allocation with cross-monotonic value-sharing.

I Item a corresponds to advertiser a with capacity one.
I Pages corresponds to buyers, and

vp(S , a) = fp({1, . . . , a} ∩ S)− fp({1, . . . , a− 1} ∩ S).



SWM with Online buyers: Summary
PA-Dep: Page-based Ad Allocation with value-sharing.
PA-Indep-Matroid: Page-based Ad Allocation with separable
vlauations and matroid constraints.

PA-Indep-Matroid

SWM with
Online Items

1-1/e-o(1) by PD-Exp

PA-Dep

1/2 by Greedy

SWM with
Online Bidders

Online Matching
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Ad Allocation: Problems and Models

Online Matching:
via = sia = 1

Disp. Ads (DA):
sia = 1

AdWords (AW):
sia = via

Worst Case Greedy: 1
2 ,

[KVV]: 1− 1
e -aprx

Free Disposal
[FKMMP09]:
1− 1

e -aprx

[MSVV,BJN]:
1− 1

e -aprx
if Ba � bia.

Stochastic
(random
arrival
order)

[FMMM09,MOS11]
0.703-aprx

[HMZ11] 0.66-
aprx
i.i.d with known
distribution

[FHKMS10,AWY]:
1−ε-aprx,
if opt� max via
and Ca � max sia

[DH09]:
1−ε-aprx,
if
opt� max via



Primal Algorithm: “Two-suggested-matchings”

“ALG is α-approximation?” if w.h.p.,ALG(H)
OPT(H) ≥ α

Simple Primal Algorithm:

I Find one matching in expected graph G offline, and try to
apply it online.

I Tight 1− 1
e -approximation.

Better Algorithm: Two-Suggested-Matchings

I Offline: Find two disjoint matchings, blue(B) and red(R), on
the expected graph G .

I Online: try the blue matching first, then if that doesn’t work,
try the red one.

I Thm: Tight 1−2/e2
4/3−2/3e ≥ 0.67

(Feldman, M., M., Muthukrishnan, 2009).
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Analysis: Two-suggested-matching Algorithm

I Proof Ideas: Balls-into-Bins concentration inequalities,
structural properties of min-cuts, etc.

I Bounding ALG: Classify a ∈ A based on its neighbors in the
blue and red matchings: ABR ,ABB ,AB ,AR

ALG ≥
(

1− 1

e2

)
|ABB |+

(
1− 2

e2

)
|ABR |+

(
1− 3

2e

)
(|AB |+ |AR |)

I Bounding opt: Find min-cut in augmented expected graph G ,
and use it min-cut in G as a “guide” for cut in each scenario.
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Primal Algorithms: Two Offline Solutions

I Online stochastic matching: 0.67-approximation[FMMM09]

I Improved to 0.702-approximation[MOS11]

I Improve to 0.703-approximation using 3 matchings[HMZ11]

I Online stochastic weighted matching: 0.66-approximation
[HMZ11].



Online Stochastic Weighted Matching

“ALG is α-approximation?” if E[ALG(H)]
E[OPT(H)] ≥ α

Power of Two Choices:
I Offline:

1. Find an optimal fractional solution xe to a discounted
matching LP, where xe ≤ 1− 1

e .
2. Sample a matching M from x .
3. Let M0 = M1\M, where M1 is the maximum weighted

matching.

I Online: try the edges in M first, and if it does not work, try
M0.

I Thm: Approximation factor is better than 0.66. (Haeupler,
M., ZadiMoghaddam, 2011).

I Open Problem 3: Generalize this algorithm to online
stochastic SWM and get better than 1− 1/e with extra
assumptions.
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I Open Problem 3: Generalize this algorithm to online
stochastic SWM and get better than 1− 1/e with extra
assumptions.



Ad Allocation: Problems and Models

Online Matching:
via = sia = 1

Disp. Ads (DA):
sia = 1

AdWords (AW):
sia = via

Worst Case Greedy: 1
2 ,

[KVV]: 1− 1
e -aprx

?

[MSVV,BJN]:
1− 1

e -aprx
if Ba � bia.

Stochastic
(i.i.d.)

[FMMM09,MOS11]
0.703-aprx
i.i.d with known
distribution

[HMZ11] 0.66-
aprx
i.i.d with known
distribution

[FHKMS10,AWY]:
1−ε-aprx,
if opt� max via
and Ca � max sia

[DH09]:
1−ε-aprx,
if
opt� max via

random order = i.i.d. model with unknown distribution



Stochastic DA: Dual Algorithm

max
∑
i ,a

viaxia∑
a

xia ≤ 1 (∀ i)∑
i

xia ≤ Ca (∀ a)

xia ≥ 0 (∀ i , a)

min
∑
a

Caβa +
∑
i

zi

zi ≥ via − βa (∀i , a)

βa, zi ≥ 0 (∀i , a)

Algorithm:
I Observe the first ε fraction sample of impressions.
I Learn a dual variable for each ad βa, by solving the dual

program on the sample.
I Assign each impression i to ad a that maximizes via − βa.

Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a (1−O(ε))-aprx,
as long as each item has low value (via ≤ εopt

m log n ), and large

capacity (Ca ≤ m log n
ε3

)

Fact: If optimum β∗a are known, this alg. finds opt
I Proof: Comp. slackness. Given β∗a , compute x∗ as follows:

x∗ia = 1 if a = argmax(via − β∗a).
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Stochastic DA: Dual Algorithm
Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a (1−O(ε))-aprx,
as long as each item has low value (via ≤ εopt

m log n ), and large

capacity (Ca ≤ m log n
ε3

)

Fact: If optimum β∗a are known, this alg. finds opt
I Proof: Comp. slackness. Given β∗a , compute x∗ as follows:

x∗ia = 1 if a = argmax(via − β∗a).

Lemma: In the random order model, W.h.p., the sample β′a are
close to β∗a .

I Extending DH09.



Ad Allocation: Problems and Models

Online Matching:
via = sia = 1

Disp. Ads (DA):
sia = 1

AdWords (AW):
sia = via

Worst Case Greedy: 1
2 ,

[KVV]: 1− 1
e -aprx

Free Disposal
[FKMMP09]:
1− 1

e -aprx

[MSVV,BJN]:
1− 1

e -aprx
if Ba � bia.

Stochastic
(random
arrival
order)

[FMMM09,MOS11]
0.703-aprx

[HMZ11] 0.66-
aprx
i.i.d with known
distribution

[FHKMS10,AWY]:
1−ε-aprx,
if opt� max via
and Ca � max sia

[DH09]:
1−ε-aprx,
if
opt� max via



Outline

I Problems: SWM and Online Ad Allocation

I Online Generalized Assignment through Primal-Dual Analysis

I Page-based Allocation and SWM with online bidders
I Stochastic Settings:

I Online Stochastic Matching: Primal Algorithms
I Online Stochastic Packing: Dual Algorithms
I Experimental Results
I Simultaneous Stochastic and Adversarial Approximations



Experiments: setup

I Real ad impression data from several large publishers

I 200k - 1.5M impressions in simulation period

I 100 - 2600 advertisers

I Edge weights = predicted click probability

I Efficiency: free disposal model
I Algorithms:

I greedy: maximum marginal value
I pd-avg, pd-exp: pure online primal-dual from [FKMMP09].
I dualbase: training-based primal-dual [FHKMS10]
I hybrid: convex combo of training based, pure online.
I lp-weight: optimum efficiency



Experimental Evaluation: Summary

Algorithm Avg Efficiency%
opt 100

greedy 69
pd-avg 77
pd-exp 82

dualbase 87
hybrid 89

I pd-exp & pd-avg outperform greedy by 9% and 14% (with
more improvements in tight competition.)

I dualbase outperforms pure online algorithms by 6% to 12%.

I Hybrid has a mild improvement of 2% (up to 10%).

I pd-avg performs much better than the theoretical analysis.



In Production

I Algorithms inspired by these techniques are in use at Google
display ad serving system, delivering billions of ads per day.

I Smooth Delivery of Display Ads (Bhalgat, Feldman, M.)

I Display Ad Allocation with Ad Exchange (Belsairo, Feldman,
M., Muthukrishnan)
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Simultaneous worst-case & stochastic optimization

I Dealing with Traffic Spikes: Primal and Dual techniques fail in
the adversarial models.

I Assuming Ca � max sia, are there algorithms that achieve
good approximation factors for both adversarial and stochastic
models simultaneously?

I Yes for unweighted edges!(M.,OveisGharan, ZadiMoghaddam)

I Balance algorithm achieves 1− ε-approximation for random
order and 1− 1

e -approximation for the adversarial model.

I No for weighted edges! (M.,OveisGharan,ZadiMoghaddam)
I Impossible: 1− 1

e -approximation for adversarial and better
than 0.97-approximation for random order.

I PD-EXP achieves achieves 0.76-approximation for random
order and 1− 1

e -approximation for the adversarial model.
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Online SWM: Interesting Problems

I Adversarial:

I Open Problem 1: Get better than 1/2-approximation for online
budgeted allocation with small budgets (Ba) or small
capacities (Ca)?

I Open Problem 2: How to generalize large budgets (Ba) and
large capacities (Ca) assumptions for online SWM with online
items, and get a 1− 1/e-approximation?

I Primal Techniques:
I Open Problem 3: Generalize the two-offline-matching

algorithm to online stochastic SWM and get better than
1− 1/e with extra assumptions for the iid model.

I Vondrak: MSV’08 implies that getting better than 1− 1/e is
impossible without extra assumptions.

I Dual Techniques:
I Open Problem 4: Generalize the dual-based algorithm to

online stochastic SWM and get better than 1− ε with extra
assumptions for random order model.


