Online Ad Allocation, and Online Submodular Welfare Maximization

Vahab Mirrokni
Google Research, New York

March 20, 2012

Outline

- Problems: SWM and Online Ad Allocation
- Online Generalized Assignment (GAP)
- Page-based Allocation and SWM with online buyers
- Stochastic Settings:
- Online Stochastic Matching: Primal Algorithms
- Online Stochastic Packing: Dual Algorithms
- Experimental Results
- Simultaneous Stochastic and Adversarial Approximations

Submodular Welfare Maximization(SWM): Offline

- m buyers and n items.
- Each buyers i has a monotone submodular valuation f_{i} on items.

- Goal: Partition items to maximize social welfare, i.e, $\sum_{i} f_{i}\left(S_{i}\right)$.
- Known Results:
- There exists a $1-\frac{1}{e}$-approximation for this problem. (Vondrak)
- Achieving factor better than $1-\frac{1}{e}$ needs exponential number of value queries. [M., Schapira, Vondrak]

Submodular Welfare Maximization(SWM): Online

- m buyers and n items.

- Goal: Partition items to maximize social welfare, i.e, $\sum_{i} f_{i}\left(S_{i}\right)$.
- Online:
- SWM with online items: items arrive online one by one
- Greedy is a $1 / 2$-approximation algorithm (NWF)
- Will present improved algorithms for special cases.
- SWM with online buyers with re-assignment: buyers arrive one by one.
- Will present improved approximation algorithms.

Online Ad Allocation

- When a page arrives, assign an eligible ad.
- value of assigning page i to ad $a: v_{i a}$

Online Ad Allocation

- When a page arrives, assign an eligible ad.
- value of assigning page i to ad $a: v_{i a}$
- Display Ads (DA) problem:
- Maximize value of ads served: $\max \sum_{i, a} v_{i a} x_{i a}$
- Capacity of ad a: $\sum_{i \in A(a)} x_{i a} \leq C_{a}$

Online Ad Allocation

- When a page arrives, assign an eligible ad.
- revenue from assigning page i to ad $a: b_{i a}$
- "AdWords" (AW) problem:
- Maximize revenue of ads served: $\max \sum_{i, a} b_{i a} x_{i a}$
- Budget of ad a: $\sum_{i \in A(a)} b_{i a} x_{i a} \leq B_{a}$

General Form of LP

$$
\begin{aligned}
& \begin{array}{rlr|}
\hline \max \sum_{i, a} v_{i a} x_{i a} & \\
\sum_{a} x_{i a} & \leq 1 & (\forall i) \\
\sum_{i} s_{i a} x_{i a} & \leq C_{a} & (\forall a) \\
x_{i a} & \geq 0 & (\forall i, a) \\
\hline
\end{array} \\
& \text { Online Matching: } \mid \text { Disp. Ads (DA): } \mid \text { AdWords (AW): } \\
& v_{i a}=s_{i a}=1 \quad s_{i a}=1 \\
& s_{i a}=v_{i a}
\end{aligned}
$$

General Form of LP

	$\begin{aligned} \max & \sum_{i, a} \\ \sum_{a} x_{i a} & \leq 1 \\ \sum_{i} s_{i a} x_{i a} & \leq C_{a} \\ x_{i a} & \geq 0 \end{aligned}$	$\begin{array}{rr} V_{i a} x_{i a} & \\ & (\forall i) \\ & (\forall a) \\ & (\forall i, a) \end{array}$	
	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW): $s_{i a}=v_{i a}$
Worst-Case	Greedy: $\frac{1}{2}$, $[\mathrm{KVV}]: 1-\frac{1}{e} \text {-aprx }$		[MSVV,BJN]: $1-\frac{1}{e}$-aprx if $B_{a} \gg b_{i a}$.

Outline

- Problems: SWM and Online Ad Allocation
- Online Generalized Assignment (GAP)
- Page-based Allocation and SWM with online buyers
- Stochastic Settings:
- Online Stochastic Matching: Primal Algorithms
- Online Stochastic Packing: Dual Algorithms
- Experimental Results
- Simultaneous Stochastic and Adversarial Approximations

DA: Free Disposal Model

- Advertisers may not complain about extra impressions, but no bonus points for extra impressions, either.
- Value of advertiser $=$ sum of values of top C_{a} items she gets.

Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain $=$ (imp. value -min . impression value).

Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain $=$ (imp. value -min . impression value).

- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.

Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain $=$ (imp. value -min . impression value).

- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.

Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain $=$ (imp. value -min . impression value).

- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.

Greedy Algorithm

Assign impression to an advertiser maximizing Marginal Gain $=$ (imp. value -min . impression value).

- Competitive Ratio: 1/2. [NWF78]
- Follows from submodularity of the value function.

Evenly Split?

A better algorithm?

Assign impression to an advertiser a maximizing (imp. value - β_{a}), where $\beta_{a}=$ average value of top C_{a} impressions assigned to a.

A better algorithm?

Assign impression to an advertiser a maximizing (imp. value - β_{a}), where $\beta_{a}=$ average value of top C_{a} impressions assigned to a.

A better algorithm?

Assign impression to an advertiser a maximizing (imp. value - β_{a}), where $\beta_{a}=$ average value of top C_{a} impressions assigned to a.

- Competitive Ratio: $\frac{1}{2}$ if $C_{a} \gg 1$. [FKMMP09]
- Primal-Dual Approach.

An Optimal Algorithm

Assign impression to an advertiser a: maximizing (imp. value - β_{a}),

- Greedy: $\beta_{a}=\min$. impression assigned to a.
- Better (pd-avg): $\beta_{a}=$ average value of top C_{a} impressions assigned to a.

An Optimal Algorithm

Assign impression to an advertiser a: maximizing (imp. value - β_{a}),

- Greedy: $\beta_{a}=\min$. impression assigned to a.
- Better (pd-avg): $\beta_{a}=$ average value of top C_{a} impressions assigned to a.
- Optimal (pd-exp): order value of edges assigned to a: $v(1) \geq v(2) \ldots \geq v\left(C_{a}\right):$

$$
\beta_{a}=\frac{1}{C_{a}(e-1)} \sum_{j=1}^{C_{a}} v(j)\left(1+\frac{1}{C_{a}}\right)^{j-1}
$$

An Optimal Algorithm

Assign impression to an advertiser a: maximizing (imp. value - β_{a}),

- Greedy: $\beta_{a}=$ min. impression assigned to a.
- Better (pd-avg): $\beta_{a}=$ average value of top C_{a} impressions assigned to a.
- Optimal (pd-exp): order value of edges assigned to a: $v(1) \geq v(2) \ldots \geq v\left(C_{a}\right):$

$$
\beta_{a}=\frac{1}{C_{a}(e-1)} \sum_{j=1}^{C_{a}} v(j)\left(1+\frac{1}{C_{a}}\right)^{j-1}
$$

- Thm: pd-exp achieves optimal competitive Ratio: $1-\frac{1}{e}-\epsilon$ if $C_{a}>O\left(\frac{1}{\epsilon}\right)$. [Feldman, Korula, M., Muthukrishnan, Pal 2009]

Online Generalized Assignment (with free disposal)

- Multiple Knapsack: Item i may have different value ($v_{i a}$) and different size $s_{i a}$ for different ads a.
- DA: $s_{i a}=1$, AW: $v_{i a}=s_{i a}$.

$$
\begin{aligned}
& \max \sum_{i, a} v_{i a} x_{i a} \\
& \min \sum_{a} C_{a} \beta_{a}+\sum_{i} z_{i} \\
& \sum_{a} x_{i a} \leq 1 \\
& \sum_{i} s_{i a} x_{i a} \leq C_{a} \\
& x_{i a} \geq 0 \quad(\forall i, a)
\end{aligned}
$$

Online Generalized Assignment (with free disposal)

- Multiple Knapsack: Item i may have different value ($v_{i a}$) and different size $s_{i a}$ for different ads a.
- DA: $s_{i a}=1$, AW: $v_{i a}=s_{i a}$.

$$
\begin{array}{rlrlr}
\max & \sum_{i, a} v_{i a} x_{i a} & & \min \sum_{a} C_{a} \beta_{a} & +\sum_{i} z_{i} \\
& & \\
\sum_{a} x_{i a} & \leq 1 & (\forall i) & s_{i a} \beta_{a}+z_{i} & \geq v_{i a} \\
\sum_{i} s_{i a} x_{i a} & \leq C_{a} & (\forall a) & \beta_{a}, z_{i} & \geq 0
\end{array} \quad(\forall i, a)
$$

- Offline Optimization: $1-\frac{1}{e}-\delta$-aprx[FGMS07,FV08].
- Thm[FKMMP09]: There exists a $1-\frac{1}{e}-\epsilon$-approximation algorithm if $\frac{C_{a}}{\max s_{i a}} \geq \frac{1}{\epsilon}$.

Proof Idea: Primal-Dual Analysis [BJN]

$$
\left.\left.\begin{array}{rlrl}
\max & \sum_{i, a} v_{i a} x_{i a} & & \\
\sum_{a} x_{i a} & \leq 1 & (\forall i) & \\
\sum_{i} s_{i a} x_{i a} & \leq C_{a} & (\forall a) & \min \sum_{a} C_{a} \beta_{a}+\sum_{i} z_{i} \\
x_{i a} & \geq 0 & (\forall i, a) & s_{i a} \beta_{a}+z_{i}
\end{array}\right] v_{i a} r r e r(\forall i, a)\right)
$$

Proof Idea: Primal-Dual Analysis [BJN]

$$
\begin{align*}
\max & \sum_{i, a} v_{i a} x_{i a} & & \\
\sum_{a} x_{i a} & \leq 1 & (\forall i) & \\
\sum_{i} s_{i a} x_{i a} & \leq C_{a} & (\forall a) & \min \sum_{a} C_{a} \beta_{a}+\sum_{i} z_{i} \\
x_{i a} & \geq 0 & (\forall i, a) & s_{i a} \beta_{a}+z_{i}
\end{align*} \underbrace{v_{i a}} \quad(\forall i, a)
$$

- Proof:

1. Start from feasible primal and dual $\left(x_{i a}=0, \beta_{a}=0\right.$, and $z_{i}=0$, i.e., Primal=Dual=0).
2. After each assignment, update x, β, z variables and keep primal and dual solutions.
3. Show Δ (Dual) $\leq\left(1-\frac{1}{e}\right) \Delta$ (Primal).

SWM with online items?

Special Cases:

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA) $s_{i a}=1$	AdWords (AW): $s_{i a}=v_{i a}$
Worst-Case	Greedy: $\frac{1}{2}$, [KVV]: $1-\frac{1}{e}$-aprx	Free Disposal [FKMMP09]: 1- $\frac{1}{e}$-aprx $C_{a} \gg \max s_{i a}$	$\begin{aligned} & \text { [MSVV,BJN]: } \\ & 1-\frac{1}{e} \text {-aprx } \\ & \text { if } B_{a} \gg b_{i a} \text {. } \end{aligned}$

- Open Problem 1: What about small budgets $\left(B_{a}\right)$ or small capacities $\left(C_{a}\right)$?
- Open Problem 2: How to generalize large budgets (B_{a}) and large capacities $\left(C_{a}\right)$ for online SWM with online items, and get a $1-1$ /e-approximation?

Outline

- Problems: SWM and Online Ad Allocation
- Online Generalized Assignment (GAP)
- Page-based Allocation and SWM with online buyers
- Stochastic Settings:
- Online Stochastic Matching: Primal Algorithms
- Online Stochastic Packing: Dual Algorithms
- Experimental Results
- Simultaneous Stochastic and Adversarial Approximations

Page-based Ad Allocation

- Each page can be assigned multiple ads.
- Feasible configurations of ads:
- Exclusion Constraints: Nike and Adidas ads should not appear on the same page?
- All-or-nothing Constraints: Either all ads on the page are from Ford or none.
- Diversity Constraints: at most one ad from one advertiser.

Page-based Ad Allocation

- Each page can be assigned multiple ads.
- Feasible configurations of ads:
- Exclusion Constraints: Nike and Adidas ads should not appear on the same page?
- All-or-nothing Constraints: Either all ads on the page are from Ford or none.
- Diversity Constraints: at most one ad from one advertiser.
- Dependent-value model based on value sharing: $v_{p}(C, a)=$ value of ad a in configuration C on a page p.
- Assume $v_{p}(C, a)$ is cross-monotonic, i.e.,

$$
\sum_{a^{\prime} \neq a} v_{p}\left((C \backslash a), a^{\prime}\right) \geq \sum_{a^{\prime} \neq a} v_{p}\left(C, a^{\prime}\right)
$$

Page-based Ad Allocation: LP and Algorithm

$$
\begin{array}{rcl}
\text { maximize } & \sum_{p, C \in \mathcal{C}_{p}, a} v_{p}(C, a) \cdot x_{p, C, a} & \text { (Primal) } \\
\forall p, a: & \sum_{C \in \mathcal{C}_{p}} x_{p, C, a} \leq 1 & {\left[z_{p, a}\right]} \\
\forall a: & \sum_{p, C \in \mathcal{C}_{p}}\left|C_{a}\right| \cdot x_{p, C, a} \leq n_{a} & {\left[\beta_{a}\right]} \\
\forall p, C \in \mathcal{C}_{p}, a: & x_{p, C, a} \geq 0 & \\
& & \\
\forall p, C \in \mathcal{C}_{p}, a: & z_{p, a}+\left|C_{a}\right| \cdot \beta_{a} \geq v_{p}(C, a) & {\left[x_{p, C, a}\right]} \\
\forall p, a: & z_{p, a} \geq 0, \beta_{a} \geq 0 &
\end{array}
$$

Page-based Ad Allocation: LP and Algorithm

$$
\begin{array}{rcl}
\operatorname{maximize} & \sum_{p, C \in \mathcal{C}_{p}, a} v_{p}(C, a) \cdot x_{p, C, a} & \text { (Primal) } \\
\forall p, a: & \sum_{C \in \mathcal{C}_{p}} x_{p, C, a} \leq 1 & {\left[z_{p, a}\right]} \\
\forall a: & \sum_{p, C \in \mathcal{C}_{p}}\left|C_{a}\right| \cdot x_{p, C, a} \leq n_{a} & {\left[\beta_{a}\right]} \\
\forall p, C \in \mathcal{C}_{p}, a: & x_{p, C, a} \geq 0 & \\
& & \\
\forall p, C \in \mathcal{C}_{p}, a: & z_{p, a}+\left|C_{a}\right| \cdot \beta_{a} \geq v_{p}(C, a) & {\left[x_{p, C, a}\right]} \\
\forall p, a: & z_{p, a} \geq 0, \beta_{a} \geq 0 &
\end{array}
$$

1. Initially, $\beta_{a}=0$ for each advertiser a.
2. For every arriving page, do the following:
2.1 Choose feasible allocation C to maximize the discounted value $\sum_{a \in C} V_{p}(C, a)-\left|C_{a}\right| \cdot \beta_{a}$.
2.2 Allocate according to C.
2.3 Recalculate β_{a} as defined as the exp-avg scoring.

Page-based Ad Allocation: Algorithm and Result

1. Initially, $\beta_{a}=0$ for each advertiser a.
2. For every arriving page, do the following:
2.1 Choose feasible allocation C to maximize the discounted value $\sum_{a \in C} V_{p}(C, a)-\left|C_{a}\right| \cdot \beta_{a}$.
2.2 Allocate according to C.
2.3 Recalculate β_{a} as defined as the exp-avg scoring.
[Exp-Avg Scoring] Let $w_{1} \geq w_{2} \geq \cdots \geq w_{n}$ be the top n weights assigned to an advertiser a with capacity n, and let $d \in\{1, \ldots, n\}$, $\beta_{a}=\frac{1}{n_{a} \cdot\left(e_{n / d}-1\right)} \cdot \sum_{i=1}^{n} \alpha^{i-1} \cdot w_{i}$, where $\alpha_{a}=\left(1+\frac{d}{n_{a}}\right)^{\frac{1}{d}}$.
Theorem (Korula, M., Yan)
For the page-based ad allocation problem with cross-monotonic value-sharing, this algorithm gives a $\left(1-\frac{1}{e}-\epsilon\right)$-approximation for large capacities. For small capacities, the approximation ratio is $\frac{1}{2}$.

SWM with Online buyers

- Goal: Partition items to maximize social welfare, i.e, $\sum_{i} f_{i}\left(S_{i}\right)$.
- SWM with online buyers with re-assignment: buyers arrive one by one, and we can re-assign items from older buyers to new buyers (but not vice versa).

SWM with Online buyers

- Goal: Partition items to maximize social welfare, i.e, $\sum_{i} f_{i}\left(S_{i}\right)$.
- SWM with online buyers with re-assignment: buyers arrive one by one, and we can re-assign items from older buyers to new buyers (but not vice versa).

Theorem (Korula, M., Yan)

The SWM with online buyers admits a $\left(1-\frac{1}{e}-\epsilon\right)$ - and ($\frac{1}{2}$)-approximations for large and small multiplicity of items, respectively. The algorithm uses a demand oracle access to the submodular function.

- Proof Technique: reduce SWM with online buyers to the page-based allocation with cross-monotonic value-sharing.

SWM with Online buyers

Theorem (Korula, M., Yan)
The SWM with online buyers admits a $\left(1-\frac{1}{e}-\epsilon\right)$ - and $\left(\frac{1}{2}\right)$-approximations for large and small multiplicity of items, respectively. The algorithm uses a demand oracle access to the submodular function.

- Proof Technique: reduce SWM with online buyers to the page-based allocation with cross-monotonic value-sharing.
- Item a corresponds to advertiser a with capacity one.
- Pages corresponds to buyers, and

$$
v_{p}(S, a)=f_{p}(\{1, \ldots, a\} \cap S)-f_{p}(\{1, \ldots, a-1\} \cap S) .
$$

SWM with Online buyers: Summary

PA-Dep: Page-based Ad Allocation with value-sharing. PA-Indep-Matroid: Page-based Ad Allocation with separable vlauations and matroid constraints.

Outline

- Problems: SWM and Online Ad Allocation
- Online Generalized Assignment (GAP)
- Page-based Allocation and SWM with online buyers
- Stochastic Settings:
- Online Stochastic Matching: Primal Algorithms
- Online Stochastic Packing: Dual Algorithms
- Experimental Results
- Simultaneous Stochastic and Adversarial Approximations

Ad Allocation: Problems and Models

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW) $s_{i a}=v_{i a}$
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1-\frac{1}{e}$-aprx	Free Disposal [FKMMP09]: 1- $\frac{1}{-}$-aprx	$\begin{aligned} & {[M S V V, B J N]:} \\ & 1-\frac{1}{e}-a p r x \\ & \text { if } B_{a} \gg b_{i a} \text {. } \end{aligned}$
Stochastic (random arrival order)	$\begin{aligned} & \text { [FMMM09,MOS11] } \\ & 0.703-\mathrm{aprx} \end{aligned}$	[HMZ11] 0.66- aprx i.i.d with known distribution [FHKMS10,AWY]: $1-\epsilon$-aprx, if OPT $\gg \max v_{i a}$ and $C_{a} \gg \max s_{i a}$	$\begin{aligned} & \text { [DH09]: } \\ & 1-\epsilon \text {-aprx, } \\ & \text { if } \\ & \text { OPT } \gg \max v_{i a} \end{aligned}$

Primal Algorithm: "Two-suggested-matchings"

"ALG is α-approximation?" if w.h.p., $\frac{\operatorname{ALG}(H)}{\mathrm{OPT}(H)} \geq \alpha$
Simple Primal Algorithm:

- Find one matching in expected graph G offline, and try to apply it online.
- Tight $1-\frac{1}{e}$-approximation.

Primal Algorithm: "Two-suggested-matchings"

"ALG is α-approximation?" if w.h.p., $\frac{\operatorname{ALG}(H)}{\operatorname{OPT}(H)} \geq \alpha$
Simple Primal Algorithm:

- Find one matching in expected graph G offline, and try to apply it online.
- Tight $1-\frac{1}{e}$-approximation.

Better Algorithm: Two-Suggested-Matchings

- Offline: Find two disjoint matchings, blue(B) and red(R), on the expected graph G.
- Online: try the blue matching first, then if that doesn't work, try the red one.

Primal Algorithm: "Two-suggested-matchings"

"ALG is α-approximation?" if w.h.p., $\frac{\operatorname{ALG}(H)}{\operatorname{OPT}(H)} \geq \alpha$
Simple Primal Algorithm:

- Find one matching in expected graph G offline, and try to apply it online.
- Tight $1-\frac{1}{e}$-approximation.

Better Algorithm: Two-Suggested-Matchings

- Offline: Find two disjoint matchings, blue(B) and red (R), on the expected graph G.
- Online: try the blue matching first, then if that doesn't work, try the red one.
- Thm: Tight $\frac{1-2 / e^{2}}{4 / 3-2 / 3 e} \geq 0.67$
(Feldman, M., M., Muthukrishnan, 2009).

Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.

Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
- Bounding ALG: Classify $a \in A$ based on its neighbors in the blue and red matchings: $A_{B R}, A_{B B}, A_{B}, A_{R}$

$$
A L G \geq\left(1-\frac{1}{e^{2}}\right)\left|A_{B B}\right|+\left(1-\frac{2}{e^{2}}\right)\left|A_{B R}\right|+\left(1-\frac{3}{2 e}\right)\left(\left|A_{B}\right|+\left|A_{R}\right|\right)
$$

Analysis: Two-suggested-matching Algorithm

- Proof Ideas: Balls-into-Bins concentration inequalities, structural properties of min-cuts, etc.
- Bounding ALG: Classify $a \in A$ based on its neighbors in the blue and red matchings: $A_{B R}, A_{B B}, A_{B}, A_{R}$

$$
A L G \geq\left(1-\frac{1}{e^{2}}\right)\left|A_{B B}\right|+\left(1-\frac{2}{e^{2}}\right)\left|A_{B R}\right|+\left(1-\frac{3}{2 e}\right)\left(\left|A_{B}\right|+\left|A_{R}\right|\right)
$$

- Bounding opt: Find min-cut in augmented expected graph G, and use it min-cut in G as a "guide" for cut in each scenario.

Primal Algorithms: Two Offline Solutions

- Online stochastic matching: 0.67-approximation[FMMM09]
- Improved to 0.702-approximation[MOS11]
- Improve to 0.703 -approximation using 3 matchings[HMZ11]
- Online stochastic weighted matching: 0.66-approximation [HMZ11].

Online Stochastic Weighted Matching

"ALG is α-approximation?" if $\frac{\mathrm{E}[\operatorname{ALG}(H)]}{\operatorname{E}[\mathrm{OPT}(H)]} \geq \alpha$
Power of Two Choices:

- Offline:

1. Find an optimal fractional solution x_{e} to a discounted matching LP, where $x_{e} \leq 1-\frac{1}{e}$.
2. Sample a matching M from x.
3. Let $M_{0}=M_{1} \backslash M$, where M_{1} is the maximum weighted matching.

- Online: try the edges in M first, and if it does not work, try M_{0}.
- Thm: Approximation factor is better than 0.66. (Haeupler, M., ZadiMoghaddam, 2011).

Online Stochastic Weighted Matching

"ALG is α-approximation?" if $\frac{\operatorname{EALG}(H)]}{\operatorname{E}[\operatorname{OPT}(H)]} \geq \alpha$
Power of Two Choices:

- Offline:

1. Find an optimal fractional solution x_{e} to a discounted matching LP, where $x_{e} \leq 1-\frac{1}{e}$.
2. Sample a matching M from x.
3. Let $M_{0}=M_{1} \backslash M$, where M_{1} is the maximum weighted matching.

- Online: try the edges in M first, and if it does not work, try M_{0}.
- Thm: Approximation factor is better than 0.66. (Haeupler, M., ZadiMoghaddam, 2011).
- Open Problem 3: Generalize this algorithm to online stochastic SWM and get better than $1-1 / e$ with extra assumptions.

Ad Allocation: Problems and Models

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW): $s_{i a}=v_{i a}$
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1-\frac{1}{e}$-aprx	?	[MSVV,BJN]: $1-\frac{1}{e}$-aprx if $B_{a} \gg b_{i a}$.
Stochastic (i.i.d.)	[FMMM09,MOS11 0.703-aprx i.i.d with known distribution	$\begin{aligned} & \text { [HMZ11] } 0.66- \\ & \text { aprx } \\ & \text { i.i.d with known } \\ & \text { distribution } \\ & {[F H K M S 10, \text { AWY]: }} \\ & 1-\epsilon \text {-aprx, } \\ & \text { if OPT } \gg \max v_{i a} \\ & \text { and } C_{a} \gg \max s_{i a} \end{aligned}$	$\begin{aligned} & \text { [DH09]: } \\ & 1-\epsilon \text {-aprx, } \\ & \text { if } \\ & \text { OPT } \gg \max v_{i a} \end{aligned}$

random order $=$ i.i.d. model with unknown distribution

Stochastic DA: Dual Algorithm

$$
\begin{array}{rlrl}
\max \sum_{i, a} v_{i a} x_{i a} & & \min \sum_{a} C_{a} \beta_{a} & +\sum_{i} z_{i} \\
\sum_{a} x_{i a} \leq 1 & (\forall i) & z_{i} & \geq v_{i a}-\beta_{a} \\
\sum_{i} x_{i a} & \leq C_{a} & (\forall i, a) \\
x_{i a} & \geq 0 & (\forall a) & \beta_{a}, z_{i}
\end{array} \geq 0 \quad(\forall i, a)
$$

Algorithm:

- Observe the first ϵ fraction sample of impressions.
- Learn a dual variable for each ad β_{a}, by solving the dual program on the sample.
- Assign each impression i to ad a that maximizes $v_{i a}-\beta_{a}$.

Stochastic DA: Dual Algorithm

$$
\begin{array}{rlrl}
\max \sum_{i, a} v_{i a} x_{i a} & & \min \sum_{a} C_{a} \beta_{a} & +\sum_{i} z_{i} \\
\sum_{a} x_{i a} \leq 1 & (\forall i) & z_{i} & \geq v_{i a}-\beta_{a} \\
\sum_{i} x_{i a} & \leq C_{a} & (\forall i, a) \\
x_{i a} & \geq 0 & (\forall a) & \beta_{a}, z_{i}
\end{array} \geq 0 \quad(\forall i, a)
$$

Algorithm:

- Observe the first ϵ fraction sample of impressions.
- Learn a dual variable for each ad β_{a}, by solving the dual program on the sample.
- Assign each impression i to ad a that maximizes $v_{i a}-\beta_{a}$.

Stochastic DA: Dual Algorithm

Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1-O(\epsilon))$-aprx, as long as each item has low value ($v_{i a} \leq \frac{\epsilon \mathrm{OPT}}{m \log n}$), and large capacity $\left(C_{a} \leq \frac{m \log n}{\epsilon^{3}}\right)$

Stochastic DA: Dual Algorithm

Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1-O(\epsilon))$-aprx, as long as each item has low value ($v_{i a} \leq \frac{\epsilon \mathrm{OPT}}{m \log n}$), and large capacity ($C_{a} \leq \frac{m \log n}{\epsilon^{3}}$)

Fact: If optimum β_{a}^{*} are known, this alg. finds OPT

- Proof: Comp. slackness. Given β_{a}^{*}, compute x^{*} as follows:

$$
x_{i a}^{*}=1 \text { if } a=\operatorname{argmax}\left(v_{i a}-\beta_{a}^{*}\right) .
$$

Stochastic DA: Dual Algorithm

Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a $(1-O(\epsilon))$-aprx, as long as each item has low value ($v_{i a} \leq \frac{\epsilon \mathrm{OPT}}{m \log n}$), and large capacity $\left(C_{a} \leq \frac{m \log n}{\epsilon^{3}}\right)$

Fact: If optimum β_{a}^{*} are known, this alg. finds OPT

- Proof: Comp. slackness. Given β_{a}^{*}, compute x^{*} as follows:

$$
x_{i a}^{*}=1 \text { if } a=\operatorname{argmax}\left(v_{i a}-\beta_{a}^{*}\right) .
$$

Lemma: In the random order model, W.h.p., the sample β_{a}^{\prime} are close to β_{a}^{*}.

- Extending DH09.

Ad Allocation: Problems and Models

	Online Matching: $v_{i a}=s_{i a}=1$	Disp. Ads (DA): $s_{i a}=1$	AdWords (AW) $s_{i a}=v_{i a}$
Worst Case	Greedy: $\frac{1}{2}$, [KVV]: $1-\frac{1}{e}$-aprx	Free Disposal [FKMMP09]: 1- $\frac{1}{-}$-aprx	$\begin{aligned} & {[M S V V, B J N]:} \\ & 1-\frac{1}{e}-a p r x \\ & \text { if } B_{a} \gg b_{i a} \text {. } \end{aligned}$
Stochastic (random arrival order)	$\begin{aligned} & \text { [FMMM09,MOS11] } \\ & 0.703-\mathrm{aprx} \end{aligned}$	[HMZ11] 0.66- aprx i.i.d with known distribution [FHKMS10,AWY]: $1-\epsilon$-aprx, if OPT $\gg \max v_{i a}$ and $C_{a} \gg \max s_{i a}$	$\begin{aligned} & \text { [DH09]: } \\ & 1-\epsilon \text {-aprx, } \\ & \text { if } \\ & \text { OPT } \gg \max v_{i a} \end{aligned}$

Outline

- Problems: SWM and Online Ad Allocation
- Online Generalized Assignment through Primal-Dual Analysis
- Page-based Allocation and SWM with online bidders
- Stochastic Settings:
- Online Stochastic Matching: Primal Algorithms
- Online Stochastic Packing: Dual Algorithms
- Experimental Results
- Simultaneous Stochastic and Adversarial Approximations

Experiments: setup

- Real ad impression data from several large publishers
- 200k - 1.5 M impressions in simulation period
- 100-2600 advertisers
- Edge weights $=$ predicted click probability
- Efficiency: free disposal model
- Algorithms:
- greedy: maximum marginal value
- pd-avg, pd-exp: pure online primal-dual from [FKMMP09].
- dualbase: training-based primal-dual [FHKMS10]
- hybrid: convex combo of training based, pure online.
- Ip-weight: optimum efficiency

Experimental Evaluation: Summary

Algorithm	Avg Efficiency\%
opt	100
greedy	69
pd-avg	77
pd-exp	82
dualbase	87
hybrid	89

- pd-exp \& pd-avg outperform greedy by 9% and 14% (with more improvements in tight competition.)
- dualbase outperforms pure online algorithms by 6% to 12%.
- Hybrid has a mild improvement of 2% (up to 10%).
- pd-avg performs much better than the theoretical analysis.

In Production

- Algorithms inspired by these techniques are in use at Google display ad serving system, delivering billions of ads per day.

In Production

- Algorithms inspired by these techniques are in use at Google display ad serving system, delivering billions of ads per day.
- Smooth Delivery of Display Ads (Bhalgat, Feldman, M.)
- Display Ad Allocation with Ad Exchange (Belsairo, Feldman, M., Muthukrishnan)

Simultaneous worst-case \& stochastic optimization

- Dealing with Traffic Spikes: Primal and Dual techniques fail in the adversarial models.

Simultaneous worst-case \& stochastic optimization

- Dealing with Traffic Spikes: Primal and Dual techniques fail in the adversarial models.
- Assuming $C_{a} \gg \max s_{i a}$, are there algorithms that achieve good approximation factors for both adversarial and stochastic models simultaneously?

Simultaneous worst-case \& stochastic optimization

- Dealing with Traffic Spikes: Primal and Dual techniques fail in the adversarial models.
- Assuming $C_{a} \gg \max s_{i a}$, are there algorithms that achieve good approximation factors for both adversarial and stochastic models simultaneously?
- Yes for unweighted edges!(M.,OveisGharan, ZadiMoghaddam)
- Balance algorithm achieves $1-\epsilon$-approximation for random order and $1-\frac{1}{e}$-approximation for the adversarial model.

Simultaneous worst-case \& stochastic optimization

- Dealing with Traffic Spikes: Primal and Dual techniques fail in the adversarial models.
- Assuming $C_{a} \gg \max s_{i a}$, are there algorithms that achieve good approximation factors for both adversarial and stochastic models simultaneously?
- Yes for unweighted edges!(M.,OveisGharan, ZadiMoghaddam)
- Balance algorithm achieves $1-\epsilon$-approximation for random order and $1-\frac{1}{e}$-approximation for the adversarial model.
- No for weighted edges! (M.,OveisGharan,ZadiMoghaddam)
- Impossible: $1-\frac{1}{e}$-approximation for adversarial and better than 0.97 -approximation for random order.
- PD-EXP achieves achieves 0.76 -approximation for random order and $1-\frac{1}{e}$-approximation for the adversarial model.

Online SWM: Interesting Problems

- Adversarial:
- Open Problem 1: Get better than 1/2-approximation for online budgeted allocation with small budgets (B_{a}) or small capacities $\left(C_{a}\right)$?
- Open Problem 2: How to generalize large budgets (B_{a}) and large capacities (C_{a}) assumptions for online SWM with online items, and get a $1-1$ /e-approximation?
- Primal Techniques:
- Open Problem 3: Generalize the two-offline-matching algorithm to online stochastic SWM and get better than $1-1 / e$ with extra assumptions for the iid model.
- Vondrak: MSV'08 implies that getting better than $1-1 / e$ is impossible without extra assumptions.
- Dual Techniques:
- Open Problem 4: Generalize the dual-based algorithm to online stochastic SWM and get better than $1-\epsilon$ with extra assumptions for random order model.

