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Submodular Welfare Maximization(SWM): Offline

» m buyers and n items.

» Each buyers / has a monotone submodular valuation f; on

items.
A NS
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» Goal: Partition items to maximize social welfare, i.e, >, f;(5;).
> Known Results:
> There exists a 1 — *-approximation for this problem. (Vondrak)
» Achieving factor better than 1 — % needs exponential number

of value queries. [M., Schapira, Vondrak]



Submodular Welfare Maximization(SWM): Online

» m buyers and n items.

o o0 o ° D
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» Goal: Partition items to maximize social welfare, i.e, >, f;(5;).
> Online:
» SWM with online items: items arrive online one by one
> Greedy is a 1/2-approximation algorithm (NWF)
> Will present improved algorithms for special cases.
» SWM with online buyers with re-assignment: buyers arrive one
by one.

> Will present improved approximation algorithms.



Online Ad Allocation

Ad | [Ad ] [Ad ] el

v(i,a) = value
(e.g., click prob.)
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ces pageviews arrive online o

» When a page arrives, assign an eligible ad.
» value of assigning page / to ad a: vj,



Online Ad Allocation

Ad | [Ad ] [Ad ] el

v(i,a) = value
(e.g., click prob.)

http://... http://...

ces pageviews arrive online o

» When a page arrives, assign an eligible ad.
» value of assigning page / to ad a: vj,
» Display Ads (DA) problem:

» Maximize value of ads served: max)_; o ViaXia
» Capacity of ad a: ZIGA(Q) Xia < C,



Online Ad Allocation

Ad | [Ad ] [Ad ] el

b(i,a) = bid

http://... http://...

ces pageviews arrive online o

» When a page arrives, assign an eligible ad.
» revenue from assigning page i to ad a: bj,
» "“"AdWords" (AW) problem:

» Maximize revenue of ads served: max Zi.a biaXis
» Budget of ad a: Z,EA(Q) bisxia < B,



General Form of LP

d X <1 (Vi)
a
Z siaXia < G, (V a)
Xia Z 0 (V i, a)
Online Matching: | Disp. Ads (DA): | AdWords (AW):
Vig=Sjp =1 Sia =1 Sia = Via




General Form of LP

d X <1 (Vi)

a
Z siaXia < G (V a)
Xia = 0 (v I a)

Online Matching: | Disp. Ads (DA): | AdWords (AW):

Via=Sia=1 Sa=1 Sia = Via
. [MSVV,BJN]:
Worst-Case | Creedy: 3, 1 1—Laprx
[KVV]: 1—Z-aprx e

if By > bj,.
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DA: Free Disposal Model

0.07 Adl: Cp =1

0.7

» Advertisers may not complain about extra impressions, but no
bonus points for extra impressions, either.
» Value of advertiser = sum of values of top C, items she gets.



Greedy Algorithm

Assign impression to an advertiser
maximizing Marginal Gain = (imp. value - min. impression value).
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Greedy Algorithm

Assign impression to an advertiser
maximizing Marginal Gain = (imp. value - min. impression value).

» Competitive Ratio: 1/2. [NWF78]

» Follows from submodularity of the value function.
. 1
n copies Ad1l: Ci=n
1+4+e€
n copies 1
Ad2: Cy=n

Evenly Split?



A better algorithm?

Assign impression to an advertiser a
maximizing (imp. value - /3,),
where 5, = average value of top C, impressions assigned to a.
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A better algorithm?

Assign impression to an advertiser a
maximizing (imp. value - /3,),
where 5, = average value of top C, impressions assigned to a.

n copies Ad1l: Ci=n

1+e

i 1
. copies Ad 2: CQ —n

» Competitive Ratio: 1 if C, >> 1. [FKMMP0]
» Primal-Dual Approach.



An Optimal Algorithm

Assign impression to an advertiser a:
maximizing (imp. value - /3,),

» Greedy: B, = min. impression assigned to a.

» Better (pd-avg): B, = average value of top C, impressions
assigned to a.
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An Optimal Algorithm

Assign impression to an advertiser a:
maximizing (imp. value - /3,),

» Greedy: B, = min. impression assigned to a.

» Better (pd-avg): B, = average value of top C, impressions
assigned to a.

» Optimal (pd-exp): order value of edges assigned to a:
v(1) > v(2)...> v(C):

1 =

e 2y

j=1 ?

Ba:

» Thm: pd-exp achieves optimal competitive Ratio: 1 — % —eif
G > O(%) [Feldman, Korula, M., Muthukrishnan, Pal 2009]



Online Generalized Assignment (with free disposal)

» Multiple Knapsack: Item i may have different value (v;;) and
different size s;, for different ads a.

» DA: Sia = 1, AW: Via = Sja-

maxIZ; ViaXia min Ea: C.Ba + Zzi
1
ina < 1 (V1) SiaB3a + zj
a
63)21'
Z siaxia < G (v a)
i

Xiz > 0 (V i,a)

>
>



Online Generalized Assignment (with free disposal)

» Multiple Knapsack: Item i may have different value (v;;) and
different size s;, for different ads a.

» DA: Sia = 1, AW: Via = Sja-

maxz ViaXia min Z CBa + Z Zj
a i

i,a

Z Xig <1 (V i) SiaBatzi > Vi (Vi7 a)
a .
Bayzi > 0 (\V/I, a)
Z siaxia < G (v a)
Xiz > 0 (V i, a)

» Offline Optimization: 1 — % — d-aprx[FGMS07,FV08].

» Thm[FKMMPO9]: There exists a 1 — 1 — e-approximation
G > 1

maxs;; — €

algorithm if




Proof Idea: Primal-Dual Analysis [BJN]

ZX,'E, < 1 (V1)
2 Caba + j
Zs,-ax,-a < G (V a) m'”; o ZZ



Proof Idea: Primal-Dual Analysis [BJN]

D xia <1 (Vi)
a minZCaﬂa —1—22,-
Zsiaxia < G (V a) a i
i Siaa+zi >
Xia =2 0 (V I a) Bayzi > 0 (Vi,a)

» Proof:

1. Start from feasible primal and dual (x;; =0, 8, =0, and
z; =0, i.e., Primal=Dual=0).
2. After each assignment, update x, 3, z variables and keep

primal and dual solutions.
3. Show A(Dual) < (1 — L)A(Primal).



SWM with online items?

Special Cases:

Online Matching: | Disp. Ads (DA): | AdWords (AW):
Via=Si,=1 Sia = 1 Sia = Vi
1 Free Disposal [MSVV,BJNJ:
Worst-Case Greedy. 2" [FKMMPQ9]: 1—1-aprx
(KVVE1=2-aprx | 1 1500 if B, > by,
C; > max s,

» Open Problem 1: What about small budgets (B,) or small
capacities (C,)?

» Open Problem 2: How to generalize large budgets (B,) and
large capacities (C,) for online SWM with online items, and

get a 1 — 1/e-approximation?
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Page-based Ad Allocation

» Each page can be assigned multiple ads.
» Feasible configurations of ads:
» Exclusion Constraints: Nike and Adidas ads should not appear
on the same page?

> All-or-nothing Constraints: Either all ads on the page are from
Ford or none.

» Diversity Constraints: at most one ad from one advertiser.



Page-based Ad Allocation

v

Each page can be assigned multiple ads.

v

Feasible configurations of ads:

» Exclusion Constraints: Nike and Adidas ads should not appear
on the same page?

> All-or-nothing Constraints: Either all ads on the page are from
Ford or none.

» Diversity Constraints: at most one ad from one advertiser.

v

Dependent-value model based on value sharing:
v,(C, a) = value of ad a in configuration C on a page p.

v

Assume v,(C, a) is cross-monotonic, i.e.,

S vp((C\a)d) = 3 v(C. ).

a'#a a'#a



Page-based Ad Allocation: LP and Algorithm

maximize >, cce o Vp(Cia) Xpca (Primal)

Vp,a: ZCGCP Xp,C,a <1 [Zp,a]
Va: Zp,CECP |Cal - Xp,c,a < Na [Ba)
Vp,C € Cp,a: Xp,C,a >0

minimize >, Zpa+>.,n,- B2 (Dual)
Vp, Ce Cp, a. Zpa + |Ca| : /Ba > Vp(Ca a) [XP7C73]
Vp,a: Zp,aZO,ﬁaZO



Page-based Ad Allocation: LP and Algorithm

maximize >, cce o Vp(Cia) Xpca (Primal)

Vp,a: ZCECP Xp,C,a <1 [Zp,a]
Va: Zp,CECP |Cal - Xp,c,a < Na [Ba)
Vp,C € Cp,a: Xp,C,a >0

minimize >, Zpa+>.,n,- B2 (Dual)
Vp, Ce Cp, a. Zpa + |Ca’ : /Ba > Vp(Ca a) [XP7C73]
Vp,a: Zp,aZQﬁaZO

1. Initially, 3, = 0 for each advertiser a.
2. For every arriving page, do the following:
2.1 Choose feasible allocation C to maximize the discounted value
ZaCC VP(C- 3) o ‘Ca‘ : ’7)3-
2.2 Allocate according to C.
2.3 Recalculate 3, as defined as the exp-avg scoring.



Page-based Ad Allocation: Algorithm and Result

1. Initially, 5, = O for each advertiser a.
2. For every arriving page, do the following:

2.1 Choose feasible allocation C to maximize the discounted value

Y oacc Vp(Ca) — |G| - Ba.
2.2 Allocate according to C.
2.3 Recalculate 3, as defined as the exp-avg scoring.

[Exp-Avg Scoring] Let wy > ws > -+ > w, be the top n weights
assigned to an advertiser a with capacity n, and let d € {1..... n},

o 1 n i—1 . — dy)g |
Ba = hrtens ) i1 @t wi, where ap = (14 )4

Theorem (Korula, M., Yan)
For the page-based ad allocation problem with cross-monotonic

value-sharing, this algorithm gives a (1 — % — €)-approximation for
large capacities. For small capacities, the approximation ratio is %



SWM with Online buyers

AS) RS (s RS s felSe)

» Goal: Partition items to maximize social welfare, i.e, >, ;(5;).

» SWM with online buyers with re-assignment: buyers arrive
one by one, and we can re-assign items from older buyers to
new buyers (but not vice versa).



SWM with Online buyers
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» Goal: Partition items to maximize social welfare, i.e, >, ;(5;).

» SWM with online buyers with re-assignment: buyers arrive
one by one, and we can re-assign items from older buyers to
new buyers (but not vice versa).

Theorem (Korula, M., Yan)

The SWM with online buyers admits a (1 — <= — €)- and

(%) -approximations for large and small multlp//c1ty of items,
respectively. The algorithm uses a demand oracle access to the
submodular function.

» Proof Technique: reduce SWM with online buyers to the
page-based allocation with cross-monotonic value-sharing.



SWM with Online buyers
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Theorem (Korula, M., Yan)

The SWM with online buyers admits a (1 — 1 — ¢)- and
(%)—approximations for large and small multiplicity of items,
respectively. The algorithm uses a demand oracle access to the
submodular function.

» Proof Technique: reduce SWM with online buyers to the

page-based allocation with cross-monotonic value-sharing.
> Item a corresponds to advertiser a with capacity one.
» Pages corresponds to buyers, and

vo(S,a) = f({1,...,atNS) — f,({1,...,a— 1} N S).



SWM with Online buyers: Summary
PA-Dep: Page-based Ad Allocation with value-sharing.
PA-Indep-Matroid: Page-based Ad Allocation with separable
vlauations and matroid constraints.

1-1/e-0(1) by PD-Exp

PA-Indep-Matroid 1/2 by Greedy

e
Online Items

SWM with ~J_/

Online Bidders

Online Matching
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Ad Allocation: Problems and Models

Online Matching: | Disp. Ads (DA): | AdWords (AW):
Via = Sia =1 Sa=1 Sia = Via
Worst Case | Greedy: 3 Free Disposal El\ﬁsl\/V’BJN]:
[KVV]: 1—%—aprx [FKMMPO09]: e P
1—%—aprx if B; > b;,.
[AMZI1]  0.66-
aprx
Stochastic ii.d with known | DHQQ]:
(random | [FMMM09,MOS11]distribution 1—e-aprx,
arrival 0.703-aprx [FHKMS10,AWY]:| if
order) 1—e-aprx, OPT > max Vj,

if OPT > max v,
and G, > maxsj,




Primal Algorithm: “Two-suggested-matchings”

“ALG is a-approximation?” if w.h.p., O]ﬁggm >«
Simple Primal Algorithm:
» Find one matching in expected graph G offline, and try to
apply it online.
» Tight 1 — %—approximation.
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try the red one.



Primal Algorithm: “Two-suggested-matchings”

“ALG is a-approximation?” if w.h.p., Ollﬁgll:ll% >«
Simple Primal Algorithm:
» Find one matching in expected graph G offline, and try to
apply it online.
» Tight 1 — %—approximation.
Better Algorithm: Two-Suggested-Matchings

» Offline: Find two disjoint matchings, blue(B) and red(R), on
the expected graph G.

» Online: try the blue matching first, then if that doesn't work,
try the red one.

> Thm: Tight ;73455 > 0.67

(Feldman, M., M., Muthukrishnan, 2009).



Analysis: Two-suggested-matching Algorithm

» Proof Ideas: Balls-into-Bins concentration inequalities,
structural properties of min-cuts, etc.
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Analysis: Two-suggested-matching Algorithm

» Proof Ideas: Balls-into-Bins concentration inequalities,
structural properties of min-cuts, etc.

» Bounding ALG: Classify a € A based on its neighbors in the
blue and red matchings: Aggr, Ags, A, AR

1 2 3
A6 > (1 5 )iAsel + (1- 5 ) 1Aawl+ (1= 2 ) (sl + b

» Bounding OoPT: Find min-cut in augmented expected graph G,
and use it min-cut in G as a “guide” for cut in each scenario.



Primal Algorithms: Two Offline Solutions

v

Online stochastic matching: 0.67-approximation[FMMMOQ9]
Improved to 0.702-approximation[MOS11]
Improve to 0.703-approximation using 3 matchings[HMZ11]

v

v

v

Online stochastic weighted matching: 0.66-approximation
[HMZ11].



Online Stochastic Weighted Matching

“ALG is a-approximation?” if % >«

Power of Two Choices:
> Offline:
1. Find an optimal fractional solution x. to a discounted
matching LP, where x, <1 — %
2. Sample a matching M from x.
3. Let My = My\M, where M; is the maximum weighted
matching.

» Online: try the edges in M first, and if it does not work, try
Mo.

» Thm: Approximation factor is better than 0.66. (Haeupler,
M., ZadiMoghaddam, 2011).



Online Stochastic Weighted Matching

“ALG is a-approximation?” if % >«

Power of Two Choices:
» Offline:
1. Find an optimal fractional solution x. to a discounted
matching LP, where x, <1 — %
2. Sample a matching M from x.
3. Let My = My\M, where M; is the maximum weighted
matching.
» Online: try the edges in M first, and if it does not work, try
My.
» Thm: Approximation factor is better than 0.66. (Haeupler,
M., ZadiMoghaddam, 2011).

» Open Problem 3: Generalize this algorithm to online
stochastic SWM and get better than 1 — 1/e with extra
assumptions.



Ad Allocation: Problems and Models

Online Matching: | Disp. Ads (DA): | AdWords (AW):
Via = Sia =1 Sa=1 Sia = Via
MSVV,BJN]:
Worst Case Greedy: %'1 ? Z[L—i—aprx ]
[KVV]: 1— Z-aprx f B> b
[HMZI1]  0.66-
aprx
[FMMMO09,M0S11] i-i-d with known | [DHgg]:
Stochastic | 0.703-aprx distribution 1—e-aprx,
(i.i.d.) iid with known | [FHKMS10,AWY]: if
distribution 1—e-aprx, OPT > max Vj,

random order = i.i.d. model with unknown distribution

if OPT > max v,
and C, > maxsj,




Stochastic DA: Dual Algorithm

mava;ax,-a minZCaBa —1—22,-

i,a

d X <1 (Vi) Z

> Via—fa (Vi a)
i:x;a - v 3 Bazi > 0 (Vi, a)
| Xia > 0 (Y i,a)
Algorithm:

» Observe the first € fraction sample of impressions.

» Learn a dual variable for each ad 3,, by solving the dual
program on the sample.

» Assign each impression i to ad a that maximizes v;, — [3,.



Stochastic DA: Dual Algorithm

mava;ax,-a minZCaBa —1—22,-

i,a

d X <1 (Vi) Z

> Via—fa (Vi a)
i:x;a - v 3 Bazi > 0 (Vi, a)
| Xia > 0 (Y i,a)
Algorithm:

» Observe the first € fraction sample of impressions.

» Learn a dual variable for each ad 3,, by solving the dual
program on the sample.

» Assign each impression i to ad a that maximizes v;, — [3,.



Stochastic DA: Dual Algorithm
Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a (1—O(¢))-aprx,
as long as each item has low value (v;; < <L), and large

— mlogn
mlogn
€3 )

capacity (G, <
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Thm[FHKMS10,AWY]: W.h.p, this algorithm is a (1—O(¢))-aprx,

: . €OPT
as long as each item has low value (vj; < mlogn), and large
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capacity (G, <

Fact: If optimum B% are known, this alg. finds OPT
» Proof: Comp. slackness. Given 3%, compute x* as follows:

x5 = 1if a=argmax(vis — ;).



Stochastic DA: Dual Algorithm
Feldman, Henzinger, Korula, M., Stein 2010
Thm[FHKMS10,AWY]: W.h.p, this algorithm is a (1—O(¢))-aprx,

: . €OPT
as long as each item has low value (vj; < mlogn), and large

mleoaxgn)

capacity (G, <

Fact: If optimum B% are known, this alg. finds OPT
» Proof: Comp. slackness. Given 3%, compute x* as follows:

x5 = 1if a=argmax(vis — ;).

Lemma: In the random order model, W.h.p., the sample /3, are
close to 3;.
» Extending DHO09.



Ad Allocation: Problems and Models

Online Matching: | Disp. Ads (DA): | AdWords (AW):
Via = Sia =1 Sa=1 Sia = Via
Worst Case | Greedy: 3 Free Disposal El\ﬁsl\/V’BJN]:
[KVV]: 1—%—aprx [FKMMPO09]: e P
1—%—aprx if B; > b;,.
[AMZI1]  0.66-
aprx
Stochastic ii.d with known | DHQQ]:
(random | [FMMM09,MOS11]distribution 1—e-aprx,
arrival 0.703-aprx [FHKMS10,AWY]:| if
order) 1—e-aprx, OPT > max Vj,

if OPT > max v,
and G, > maxsj,
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Experiments: setup

» Real ad impression data from several large publishers
» 200k - 1.5M impressions in simulation period

» 100 - 2600 advertisers

» Edge weights = predicted click probability

» Efficiency: free disposal model
> Algorithms:

> greedy: maximum marginal value
pd-avg, pd-exp: pure online primal-dual from [FKMMPQ9].
dualbase: training-based primal-dual [FHKMS10]
hybrid: convex combo of training based, pure online.
Ip-weight: optimum efficiency

vV vy vy



Experimental Evaluation: Summary

Algorithm | Avg Efficiency%
opt 100
greedy 69
pd-avg 7
pd-exp 82
dualbase 87
hybrid 89

v

pd-exp & pd-avg outperform greedy by 9% and 14% (with
more improvements in tight competition.)

v

dualbase outperforms pure online algorithms by 6% to 12%.
Hybrid has a mild improvement of 2% (up to 10%).

v

v

pd-avg performs much better than the theoretical analysis.



In Production

» Algorithms inspired by these techniques are in use at Google
display ad serving system, delivering billions of ads per day.



In Production

» Algorithms inspired by these techniques are in use at Google
display ad serving system, delivering billions of ads per day.

» Smooth Delivery of Display Ads (Bhalgat, Feldman, M.)

» Display Ad Allocation with Ad Exchange (Belsairo, Feldman,
M., Muthukrishnan)
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» Dealing with Traffic Spikes: Primal and Dual techniques fail in
the adversarial models.
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» Assuming C, > maxsj,, are there algorithms that achieve
good approximation factors for both adversarial and stochastic
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» Balance algorithm achieves 1 — e-approximation for random
order and 1 — %—approximation for the adversarial model.



Simultaneous worst-case & stochastic optimization

» Dealing with Traffic Spikes: Primal and Dual techniques fail in
the adversarial models.

» Assuming C, > maxsj,, are there algorithms that achieve
good approximation factors for both adversarial and stochastic
models simultaneously?

> Yes for unweighted edges!(M.,OveisGharan, ZadiMoghaddam)

» Balance algorithm achieves 1 — e-approximation for random
order and 1 — %—approximation for the adversarial model.
» No for weighted edges! (M.,OveisGharan,ZadiMoghaddam)
> Impossible: 1 — %—approximation for adversarial and better
than 0.97-approximation for random order.
» PD-EXP achieves achieves 0.76-approximation for random
order and 1 — %—approximation for the adversarial model.



Online SWM: Interesting Problems

» Adversarial:

» Open Problem 1: Get better than 1/2-approximation for online
budgeted allocation with small budgets (B,) or small
capacities (C;)?

» Open Problem 2: How to generalize large budgets (B,) and
large capacities (C,) assumptions for online SWM with online
items, and get a 1 — 1/e-approximation?

» Primal Techniques:

» Open Problem 3: Generalize the two-offline-matching
algorithm to online stochastic SWM and get better than
1 — 1/e with extra assumptions for the iid model.

» Vondrak: MSV’'08 implies that getting better than 1 — 1/e is
impossible without extra assumptions.

» Dual Techniques:

» Open Problem 4: Generalize the dual-based algorithm to
online stochastic SWM and get better than 1 — ¢ with extra
assumptions for random order model.



