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CHAPTER I 

INTRODUCTION 

1.1 The Problem and Its Solution  

Let W apd g be functions of the cartesian coordinates 

x
n 

and the time variable y and let A denote the Laplacian operator 

with respect to the n cartesian coordinates. The partial differential 

equations 

(a) Aw - 	= o 

and 

(b) AW - 	= g 

arise in the investigation of heat flow in a is6twopTio. solid body 

and the investigation of diffusion in a motionless medium [1]. The 

inhomogeneous equation (b) applies when there are sources in the 

medium. 

In the discussion below we consider the special case of (b) 

which corresponds to an idealized physical situation of a one dimensional 

body. That is, we investigate the equation 

(c) W = g(x, y) 

where 

2 	 TAT 
= 	W  (x, y) - 	(x, y) )c2 	ay 

1 



2 

for any real x, and y in the open interval (0, T). This specialization 

is no essential restriction on the generality of the results. The 

arguments that we: give below carry over directly for the equation (b). 

Herr in his paper [2] has shown that under certain growth and 

regularity conditions (namely, a Folder condition with exponent between 

zero and one) on the function g, a solution to equation (c) exists. 

Specifically, it was shown that the function 

(d) u (x,y) = - I T f 	( 	) g 	e 	y-Y) dd5r4  
0 	CO 

(Def.) 

satisfies the equation (c) where 

2 
(e) e (s,t) = 	v717  exp (- tT) , t > 0 

0 
	

t s 0. (Definition) 

Harr has deduced with these conditions on the function g, that 

a general solution. of equation (c) is given by the sum of the particular 

function u and a solution to the homogeneous equation. The problem of 

finding solutions to the homogeneous equation is treated in the literature 

(see e.g. [3]). 

Hadamard has established that if the regularity condition on g is 

relaxed to requiring only continuity, it is not in general true that 

particular function u satisfies the inhomogeneous equation (c) (see [4]). 

A solution need not even exist. 

We show below that if the function 4 defined by equation (d) is 

not a particular solution to the inhomogeneous equation (c) with the 

function g continuous and bounded, then there is no solution at all. 
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Adapting a procedure given by Hartman and Wintner in their paper [5] , 

we prove that if there is a solution to equation (c), it is the sum of 

the particular function u and a solution to the homogeneous heat equation. 

1.2 Method of Attack 

We consider the equation 

(a) lim4.  . 11W (x,y) = g (x,y) 
1-1-0 

where 

w(X+11,y)±qxTh F. ) -tW(x,y;h 	3W(x,y)  

h2 	 (Def.) 

for h>0. The inhomogeneous equations (1.1.c) and (a) above are related. 

In fact, with certain regularity conditions on W 

lim 
 h 	

h W(x y) =a W(x,y). 

We prove that the particular function u defined by equations 

(1.1!e )satisfies equation (a) above if the function g is continuous 

and bounded. If a solution to the inhomogeneous equation (1,1.c) 

exists, then it too satisfies equation (a). Thus the difference 

between this solution and the particular function satisfies the 

homogeneous version of (a). We show that if a function has certain 

regularity properties and satisfies the homogeneous version of (a), 

then it also is a solution to the equation 

aw = 0. 
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This result implies that our particular function has the Aieevesary 

derivatives, so it is a solution to our inhomogeneous equation 

= g. 

The question of existence of solutions to the inhomogeneous 

partial differential equation (1.1.c) can then be reduced to an 

investigation of the properties of the particular function u (see [6]). 

1.3 Conjecture  

There are strong similarties between the properties of solutions 

to AW=0 and 	The preliminaries in treating the corresponding 

inhomogeneous problems (compare [7] with the details below) are 

likewise similar. It seems likely that the procedure can be adapted 

to prove the corresponding theorems about Poisson's equation, 

AW (x1, 	
,x

n
) = g (x

1, 	
,x
n
). 

The author of [7] uses a method which he conjectures will not work 

for n>3 in Poisson's equation. If the procedure given below could be 

adapted, it would readily generalize to higher dimensions. 



CHAPTER II 

THE HEAT EQUATION 

2.1 	We begin our investigation with the following: 

For some fixed T>0, let R be the strip 

{(x,y) 	C s y s T. 

Definition:  The function w is said to be a solution to the 

equation 

aW(x,y) 
, 

"-t,\T 
 ' 	2 --- (7 -' 	ay ( Y) - -- .x. , Y) = g(x,Y) 

'' 

or the equation 

aW(x,) = 0 

2 	TT w  
if w is continous on R 	-- and -- exist in the interior of R. • 

" ax' 
and if w satisfies the appropriate equation in the interior of R. 

2.2 Now we state the most interesting result of this essay: 

Theorem:  If g is continuous and bounded on R, then the existence 

of a solution to the equation 

N(x ,y) = g (x,y) 

implies that the function 

	

u(x,y) = - jj e(x-,y-Y) 	cidY 	(Def.) 

5 
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is a solution. Futhermore, any solution is the sum of this particular 

solution_ u and a solution to the homogeneous ea:cation 

--kr(x,y) = O. 

Note that conversely if the function u defined above does not 

yield a solutioninhomogeneous heat equation under the given 

conditions, then no such solution can exist. 

With this theorem and note it becomes 730ssible to investigate 

the existenbe of solttiOns to the inhomogeneous heat equation by 

exwaming the functions u and g (see [8]). 

We undertake to prove this theorem with the following sequence 

of lemmas. 

2.3 Lemma. If the function 7T is defined in some neighborhood of the 

-or 
 point (x 

o 
 , yo), 	 x / ' 

), if — ]c., y0 ) exists for (x, y
o
) in this neighborhood, 

2!'w , 	, 	, 
and if ---.-“ , y ) and — 	, yo ) exist then , 	_ 

o 	0 	'ay 	o' o 

w(x +'1,Y ) -1-w(x -h,Y )±w(x ,Y -h
2

) -3w(x ,Y ) 
Lim 	W(x ,y ) = lim 	 0 	o o 	o o  

o o 
h
P 

11-40 -1-  

=-w(x o ,y 
o ). 

Proof. From the definition of partial differentiation it 

follows that 

	

w(xoo ,Y -h
2
) -w(x o ) 	aw

(a) lim 	 ,Y ). o o h-,o+ 	h2 

By the Generalized Mean Value Theorem there is a number 
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e, 0 < e < 1, such that 

(b) w(x o 
 ' 

+h,y 
o  )

1 +w(x -h,y 
o 
 )-2w(x 

o 
 ,y 

o
) 

h
2 

1  = rciw  rx 
k  0 

/ 

J0 1-  YO )] 2C1h 

. Since the existence of 	, y) in a neighborhood of x guarantees
C  

the continuity of 

(c) A
h 
 w(x 

o 
 ,y 

 o 
 ) = w(x +h,y ) +w(x -h,y )-2w(x

o''
v 
o

) 	(Def.) 

as a function of h for sufficiently small h. 

If we add and substract ?x (xo' y o
) to the numerator of the right 

hand side of equation (b) and allow h to approach zero through positive 

values, we see that the right hand side of (b) approaches 

2 w 
o'o ).  

This result combined with equation (a) and the definition of
h
14(x

o'
y
o

) 

andTAT(x 
o 
 ,y 

o
) yield the proof of the lemma. 

2.4 	In order to facilitate the statement and proof of the next two 

lemmas we adopt the following convention: 

Let yo  be a number dtriCtly -  between zero and T and suppose the 

number 8 is selected so that 

0 < 8 < y
o 

and y
o 

+ 8 < T. 

Let 
	

(a) 	N = f(x,y) I lx-x
o 

< 8 and ly-yo I < 81 



and let N denote the usual closure of N. 

(b) Let A = f(x,y)I y-y0  = -8 and lx-x0 1 s 8 

lx-x01 = 8 and iy-yo i s 81. 

Note that N is a square neighborhood and that A is the bottom 

and two sides of this neighborhood. 

— 	 * 	. 
Let N

* 	
-- i = N A (that is, N is the open neighborhood N with the 

nopen" top adjoined). 

Definition. With N as defined in (a) we say that w is a solution on 

N
* 

to the equation 

lim 	W(x y) = g(x,y) 
• 

or the equation 

lim d x . W(x.y) = 

11-30 

if w is defined and continuous on N and if w satisfies the appropriate 

equation on N* . 

2.5 	We adapt a proof of the well known maximal principle fcr solutions 

to the homogeneous heat equation to establish the following maximal 

principle (See [9]). 

Lemma. Suppose that w is a solution on N of the equation 

(a) lim h
W(xy) = O. 

h-P0
+ 

8 

or 
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Then w has its maximum on the set A. 

Corollary. If w and v are two solutions on N to the equation 

(a) which agree on the set A, then they are identical on R. 

Note. This corollary states that solutions on N to the equation 

(a) are uniquely determined (if they exist) by their values on the 

bottom and two sides of 7-  (that is, initial and boundary values). 

Proof of Lemma. The set N is compact and w is continuous so the 

function assumes its maximum, say m, at some point (a4y) in N. Suppose 
* , 

that (x,y) lies in N (i.e. N without the bottom and two sides). The 

set A (i.e. the bottom and two sides) is compact so w assumes its 

maximum, say M, on A. We have that m Z M. Suppose that m > M. We 

show that this last supposition leads to a contradiction. This contra-

diction will establish the lemma. 

m  Let v(x,y) = w(x,y) + 	(x - ) 	For (x,y) eA we have 
65 

f 	 1 	2 
< M -g (m - M) = 7 M 7 m < m. But v(7,7)= m so the maximum of 

, * *, 
v on does not occur on A. Let kx ,y ) be the point in N at which v 

has its maximum. For h > 0 and sufficiently small 

♦ X* 	 X 21/  (3:4117.4)  < 0 and  v(x*.Y41.— h2/ v(x*. 374%  0  
h 

This, ah  17(rifpil) .4:,0 for sufficiently small h p  h > 0. Since 

listah 	
erists and since 

h♦0♦  
liar -a f 	(x —7) 2} 
17+0+ 

h 652 
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, * *, 
exists by the lemma of Section. 2.3, lim ahv(x ,y ) exists and is no 

h-00 

larger than zero. But by the lemma of Section 2.3 and our assumption 
, 	

' 	

, 
that lim h w(x y

* 
 ) = 0, we have the relation 

h- 0  

. 	* 	m-M 
lim a

h
v(x ,y ) = 	> 0. 

38 2 
h--0 

This last inequality contradicts the previous statement. Hence, our 

supposition that (Tr) lies in N*  is false. The maximum of w occurs, 

therefore, on A and the lemma is proved. 

Proof of Corollary. Let K(x,y) = w(x,y)-v(x,y). Then K and 

(-K) satisfy lim aW(x,y) = 0. By the preceding lemma. h < C and 

114-0 

(-K) < C on N (recall that Ii vanishes on ;),. Hence, K = 0 on N 

and the corollary is proved. 

2.6 	We state without proof the following well known result. 

Lemma. Let f and h be defined and continuous on [0,T]. Let g be 

defined and continuous on [0,1]. Suppose that 

f(0) = g(o) and g(1) = h(0) 

Then, there is an unique solution v(x,y) to the equation aw(x,y) = 0 

on [0,1] x [0 1 T] such that the following equations are satisfied: 

(a) v(0,y) = f (y), 

(b) v(x,0) = g (x), 

(c) v(1 1 y) = h (y). 
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Remark.  This theorem asserts the existence of a solution to the homogeneous 

heat equation on the rectangle [0,1] x [0,T] which has prescribed values on 

the bottom and two sides. Clearly, the result follows for any rectangle 

in the plane with sides parallel to the coordinate axes. 

For a proof of this lemma the reader is referred to the literature 

(see e.g. [10] for an outline of the proof and [11] for some details simi-

lar to those needed to fill in this outline). 

2.7 	We use this result to show the connection between the solutions of 

our inhomogeneous limit difference equation and the inhomogeneous heat 

equation. This connection is stated in the following: 

Lemma. If w is a solution on N *  to the equation lim a
h
W(x,y) - 0, 

aw then 

Proof, 

2
w 	aw 

c)w(xy y) = 0 on N. 

Ix — x0 1 < 6 and for e>3.1  6<(3,-70)< 05} 

-27 , 	and 	exist and 
dx 

Let N(e) = 	(x,y) 

Clearly, N(e) 	N, Let 

w(x,y) for (x,y) e 
w*(x,y) = 

w(x,y04-15) for (x,y) e (N(e) -N). 

The function w
* 

is continuous on N (e) (see the definition of Section 

2.4). By the previous lemma, there is a function w defined and continuous 

* 
on N, which agrees with w on the bottom and two sides of the rectangle 

N (e), such the aW(x) y) = 0 at each interior point of N (e). 

From the definition of w
*

1  W agrees with w on the bottom and 

two sides of N. Since FAT = 0 in the interior of N ( e), the lemma of 

Section 2.3 guarantees that lim aW(x,y) = 0 on N * . From section 2.5 
+ " 

h-b0 
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we know that W is uniquely determined on N by its values on A so 

W w. Hence, bw = 0 as claimed. 

2.8 	The previous lemmas have all dealt with generalities. Now 

we direct our efforts toward specific results involving the particular 

function u defined in Section 2.2. We will show (using arguments due 

to Hartman and Wintner, see [12]) that u satisfies the equation 

ling. kW(x,y) = g(x,y) 
' 

h-4C 

in the interior of R subject to certain conditions on g. 

In this direction we establish the following: 

Lemma. Let 	 L (h) = JI l abs(.0,ydi d,dy  
R 

(Def.) 

for h > 0, anyzeal x o  and 9 < yo  < T, where S(x,y) = e(x-,y-y). (Def.) 

Then L(h) = 0(1) as h 	0T . 

Proof. If 2h2 < y
o
, we may write L(h) = I 	12 

where I
1 
 = Pro f 	

S(x 
o" 

 ,v )1(1 dY 
o 

y
o
-2h2 - co 

and 

Introducing the notation 

A
2
S(x 

o 
 ,y 

 o 	o 
) = S(x +h.v )+S(x -hy

o
)-2S(x 

o-
,y 

0
) 

and noting that "S(x,y) = 0 for (y-y') > 0 (e(s,t) ;1,tisfies the heat 
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h re rp 

j0 j 
	(xcl-K,y -Y) dr] dp del 	dY, 21  = 

yo-2h2 

13 

equation for t > 0), we see that 

) lahS(x0,y0 )1 = I hS(x0,y0 ) -S(xo,y)1 

A'S(x ,y0 ) 	2s  

h2 
	 - 

ax 
 7 (x

° 
 ,Y0 )1 

+ aS — 
o'
,y o) 	

S(xo,y0 ) -S(x0 ,y.o—h2 ) 

ay   1 
h
2 	I.  

A 2S ( x 	) 	2 
h 

o)Yo 	S 	 1 	r 	3 s 2 	

ax 
(b) (x0  ,y o 	

h 

) = 	
j8 	(c

0 .41,Yo
) Odpde 2 	 2 

0 - 0  

( 	 2 ,y )-S(x ,y 	) 	.fp a2s  
( x 0 0 	. 0 0' 	1 	1 (c) Lg 	

Sx 

	

ay 
. x ,y ) 	 y 71) 	p o o h

2 	
o ay2 o' o- h2  

Letting 

2 

I = r y°-2h r- 	r" SP ate 
22 	 2 	 2 (x o y

o
- 	d 11) 11 dp 	dy, J 	I J 

b 	 -cc h 	o 	o ay 	
' 

we see that 

L(h) s 	 + 1_ 
1 121 122 

follows from equations (a), (b), and (c) above. 

We give the remainder of the proof in three parts. Parts one, 

two, and three will consist of showing that the integrals I I, 121, and 

But 

and 



1
22 

respectively are bounded as h 0. 

Part 1.  We adopt the convention that if the upper or lower 

limit on an integral is missing it is understood to be m or -co 

respectively. Thus, we write 

(d) 	111
1 s 

111 	y 
2 ,

°
-2h 2 

 jS(xo+h,y.0 ) 	dy + 

0 

yo  y o 

-12 uy o -2h
2 SS(x

0  yo 
 )(n 	

h 
dy + 2 Yo-2h 

h  

 

,y )1:1 	dy 
o o 

1 	'o 2 N  
2 ly -2h

2
j
S(xo,yo-h ) d dy. 

o 

, 	 2 
Since S(x 

o 
 ,y 

o
-h

2 
 ) = 0 for y

o 	
s 0 (recall the definition of S), 

y -h2 Yo , 	 o r 2 2P r 	 Sk y -h2 ) d dY 
-73 J 	2h 	0 o  

	

2Js (x, y -h ) (3. dY '-- 7 i y 	h 	0 J " ' ' o I-1 	Yo- 	 h 	
o-2 

-h2 y 

2 j e(x - -y -h2-Y) 	dY 
h
2 ,

yo
-2h 	o 

y.  -h
2 

1 	 r exp 
2 ' 	 ds dt = 1 = 7 Sy -2h 

h 	o 

x
o 

- 
where the change of variables s = was made. 

    

 

2L70 -h2 -Y 

 

The other three integrals are similarly seen to be bounded as 11-40 . 
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Hence ' I1 = 0(1) as h-10 and part one is finished. 

Part 2.  Clearly from the definition of the integral I21' we 

have 

-2h2 h ,‘0 	-0 	p 3  

(e) 121  = ° 	if 
1
7  1 	,L1 - 5 	-4 (x0-1-g,y0-Y)OldpdoldtdY. 

0 	0 'Z:KJ  

With the change of variables s = 	- and t = yn  - y we 

have 

o Y -2h
2 	

3 	 Y e  1&, , 	 AL 
(f)$ ° 
	
$ I-7 1:'. 0  ± T1 - 	yo-Y)iddY = S,, 	=c---)-- ( t)Idsdt. 2 5 1 	6 ' 

o 	x-' 	 s' 3  

A simple calculation yields 

s 2 (s,t)  .., .1 [: 	exp (- 7.7) 
as 	 VIr

4 

 

which with the triangle ineJuality im -olies that the right hand side 

of (f) is dominated by 

	

o 	 s2 
er-o( 	) ds dt 

	

/TT 2h 	0 	T7'--  
P 

	

1  y2 	
2 

• 	ds dt 

	

12h 	747 exp  (- r+t) 	dt. 

But if r = 217' 

yo r 3  
exp (g  ) 2h2  J 477-- 	( 

  

Yo 
S ) 	

1 
4 	

s dt = 2 77 
2h 

 

3r exp(-r2 ) drdt 

 



r
Yn  

1 	 1 F 	. 
2 J2h" 	

dt = Lh,\TT qroi 

Similary there is a constant K such that 

o 	 s2 3 1 1 

	

j2h
2SO 8 t exp (- 	) 

ds dt = K [;,- _ 
47  IA/2 	0i .  

Consequently, the left hand side of (f) satisfies the relation 

yo-2h
2 

r a3e 	 r 

o 	ar.) 
! 	(x ± - 	-Y)iddY s 	L 	

7 
iv.7.  

Using the triangle inequality on (e), we have the relation 

2 y
o
-2h 

ph 0 P 
1
21 

s 	
,2 	1111 	3 (xo---o -Y)dIldpdeld§dY , o o 	ox 

2 
y -2h 

1 h 2 10 3 

So°  5 -7- 1 ISS 4  ( xo  -11 - 	yo-y) dTdpdeidtdy 
h 	o o o ax 

where in the last integral we have replaced 7 by -11 and p by -p. 

Taking the absolute values inside the integrals with respect to 11,p 

and 8 and then integrating first with respect to and y, we have 

from relation (i) that 

e  rP 1LLE2 1 	1 
121 	

, pu  .„ , 	1 h  J 	_ 	u 

	

21 h2 o J o Jo ,/71' 	[VT 	iY0  

Thus 

'a3 
 E
1 1 - 

T-7 - or 

16 
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1
21 

= 0 (1) as h-I0. 

Part 3. Taking the absolute values inside of the integrals on 

I
22 and integrating; first with respect to andy we have that 

1 

	

4
2 	

-2h
2 r  2 

I 	1 ' 	r  
22 	h

2 ,,0 j 	JI 	(xo Yo 	- 	- 	 dp. 
ay 

Making the change of variables s = xo  - 	t = Y 	- Y, 

0 
yo 

 

-2h` 	0 	 y-11 	2  

( j ) SO 	fl y 

	

(x - 	y - 	- y)1 cicay =,1 2 ji— (s,t) 	dt. 
o 	 2h -72 

la e 

Now 

2 2 	4 / 	2 

	

e  (s 	=  	 s 	 exp  

	

2 ' 	217 1-4,/t7 477 1647 

so the left side of equation (j) is dominated by 

(k) 

Y -7 
2 

2h 
L
2 J  

t 
r (.4 -F. 6 r2 	2r2) e 

\2 
— 2,777 

2 
-r' dr dt 

where the transformation r = —4= was made. 
2,/t 

Letting c" denote the inner integral of the right side of equation (k), 

we see that the left side of equation (j) is dominated by 

cif F 	1  
7 L 2 	yol  - 11-1 .  r2h - 

Thus 
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2 rP c,, 	 1 	 _ 	 

	

l 	

dlldp 

	

22 h2 	j0 2/7  2h241 Yo-  

2 h
1n( 	 

Y_-p 	Yp  )- el 

2h
2
irr jo 

[ 
2h
°  ) -1n( 	dp 2 

h 	y -h
2 2 

5 	 -1n( ° )1 d 
C"  r  

2  • 	\2h
2/

- 
P 

2h
2irr 

0 	
h 

= 22-1 	 )- 0 (1) as h-01, 
yn 

Yr:pi 
where we have used the fact that 

2h
2
-p 

r 
of p for p in LO,h

2 
 ]. That is, 

is an increasing function 

ln(Y0P 	) 5 ln( y (1)„ 	) for p in [0,h2 ]. 
2h

2
-p 	h

e 

h 
2 

From parts one, two, and three we have that L(h) = 0 (1) as 

h-.0 as claimed. 

2.9 	The previous lemma will now be applied to show that the particular 

function u satisfies our limit difference eauation. If g has the constant 

value go  on R then 

u(x,y) = - jj g(,Y) e(x-,y-Y) 

 

-r
2 

e 	drdt = -g
o
y = -go 

2y -211
2 
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where we have made the change of variables r = x-g,t = y-y. Thus for 

this function g, it is easy to see that 

lim
h 
 u(x

' 
 y) = g

o 
= g(x,y)• 

h-40 

In a small neighborhood of the point (x 
o 
 ,y 

o
), the continuous 

function g is essentially constant. If g
o 
= g(x 

o 
 ,y 

o
), then g(x,y) is 

approximately equal to go  in this neighborhood. It turns out that the 

values of g outside of this neighborhood appear in the expression for 

h
u(x

o'
y
o
) as quantities of small order, so again we will have 

limn(x 
o'
,y 

 o 
) = g o = g(x a'

,y 
 o 

). 
- 

h-O 

Using the special case of the constant function, we prove the 

following: 

Lemma. Let g be continuous and bounded on R. Let u be defined 

as in Section 2.2. Then 

lim 6 u(x
' 
 y) 	g(x,y) 
 

h-40 

for (x,y) in the interior of R. 

Proof. Let (x 
o 
 ,y 

o
) be any interior point of R and let g

o 
= 

g(x ,y ). We show that 
o o 

lim 	
yo )  = go' 

h-40 

By the remarks preceding the statment of this lemma, it is 



sufficient to siww that 

lim
h
v(x

o'
y
o
) = 0 

h-40 

where 

(a) v(x,y) = -11 [g(,y)-g o ]e(x-„y-y) ddy. 

Let e > 0, then there is a 6 > 0 so that ig(x,y)-g o l < e when 

lx-xo l < 6, ly-yo 
< 6 and (x,y) e R. Since (x 

o 
 ,y 

o
) is in the 

interior of R, we may suppose that 8 is chosen so small that this 

last requirement is redundant. Let N denote this square neighborhood 

of the point (xo ,y0 ). 

Define the function g l so that it vanishes on N and is equal to 

g(x,y) -go  for every point (x,y) outside of N. Define g2  so that it 

agrees with g(x,y) -g o  on N and vanishes outside of N. 

Note that 1g2(x,y)I < e on R and that g1(x,y) -Fg2(x,y) 

x,k)go . Let 

(b) vi (x,y) = 	j gi (,Y) e (x-g,y-Y) 	= 1,2, 

then v
1 
 (x

' 
 y) 	v,-(x,y) = v(x,y). Clearly 

20 

lahv2(xo' yo )1 s e f j1 h
S(x

o'
y
o
)1 clay, 

where S(x,y) = e(x-,y-Y). From the previous lemma we see that 



lim sup 1 ahv2 (xo,y0 ) I s e C 

h-10 

for some constant C > 0. 

If we could show that 

lim sup 1 hvi(x0,y0 ) 1 s K e 

for some fixed K and a certain choice of g 1 , we could conclude that 

lim sup 1
h
v(x

o
,y

o
) I 5 (K+C) e. 

But this upper limit is independent of e, hence, 

lim kv(xo ,y0 ) 

h-$0 

would exist and be zero. We now prove the first statement of this 

paragraph. The argument is presented in five parts. 

Part 1.  Using the change of variables s = x o-,t = yo-Y and 

the fact that e(s,t) = 0 for t 5 0, we have 

Y
o' h2 1.1v

1
(xy

o
) = -$ha g

1 
(x

o
-sy

o
-t) e(s+h,t) + 

e(s-h,t) + e(s,t-h 2 ) -3e(s,t)1 ds dt - 

r h2 

Jo 
g
1 
 (x 

o 
 -s y o-t) (e(s+h,t) + e(s-h,t) -3e(s,t)1 ds dt. 

21 



h2 

I
1 

= -
0 	

g
1
(x

o
-s,y

o
-t dsdt, 

h
2 

phe(s,t) 

h2 

0 
	e(r,t) ph  gi(xo-r,yo-t) drdt. 

1 

Let 

22 

Yo 
1
2 

= - 1 2 S gi(xo-s,y0-t) 3,he(s,t) dsdt, 

and 

13  = 	r 
3 
	12 	J gi( xo-s'Yo

-t) e(s,t) dsdt 

where 

ph 
e(s , t) = e(s+h,t) + e(s-h,t) -2e(s,t). 

From the equation for h
2 
 bh vl(xo,yo)  we have hv1(xo,yo ) = 

I
1 

+ 1
2 

+ 13 . We now deal with 

Part 2. 	?Aldose h. so that 0<2h< and 2h2 6.. Since- g: s Mounded on 

R, gl  is also bounded on R. Let M' be a bound on Igi(x,y)1. Using 

the change of variables r = s± h, we find that 

Let 

Il  = r e(r,t) p
h 

g
l
(x

o
-r,y

o
-t) dr, then 

IT1  I s 4 De 	e(r,t) dr s 4 M 



2 3 

Hence
' 

T1 converges (uniformly in t for 0 s t s h
2 
< 6/2). Therefore , 

we may write 

1 = f 	-11[g,  (x  o  -r,y o-t)] e(r,t)dr + H(S,t) -S 

where H(S,t) 	0 as S 60  uniformly in t. Note that 

Ah gl(xo-r ' Yo-t) 	Ah [gl(xo-r' Yo-t)-[g(xo-r ' Yo-t)-g
o ]}  

+ A, [ex o  -r,y o
-t)-g

o
]. 

Take S so large that 111(s,t)1< e/2. For this fixed S, 

g(x
o
-r,y

o
-t) is uniformly continuous for r in [-S,S]. Consequently, 

for h sufficiently small lA h [g(xo-r,yo-t)-go ]l < e. 

But 

Ah  g1  (x o- 
-r e r-t) -[g(x 

o 
 -s,y 

o
-t)-g

o
] 	< 4 e 

from the definition of the approximating function g l . 

Hence 

1 
s j

-S 
 5ee(r,t) dr + e/2 

5 5e j e(r,t) dr + e/2 s11 
2 	

e. 

Therefore 



Part 3. Let 

8 

I21 = I F
1 
 (x o 
	' 
-s,y -t) 

h2 	' 	o 

and let 

yo 
I22 = '8 J 

g
1
(x
o'

y
o
-t) 

e(x,t) dsdt 

h
e(x

'
t) dsdt, 

(for h sufficiently small). 

24 

then I
2 

= -I
21 

- 1
22* 

In this part we consider only I
21* 

Since 

g1 (x,y) = 0 for ix-x 0 1 < 8 and iy-yo l < 8 and since g l  is bounded 

by M1 , we see that 

6 

	

21
I s M' 	I 	1 

h 
e(s t)Idsdt. 

h
2 I

sIzB 
 

From the proof of the lemma of section 2J3 (see parts three and four) 

we find that 

h
r 
	p 	3 

Cc) 1121 1 	-77  1h  .21 1 s.1 8 So‘ 0 0 	s 3 

	

I 	(s+71 , t)I 

3 e 	 MT 6 	h2f,p 
Ia 3 

	

( s-11,t ) I d`rid pdedsdt 	SI 	10 	I — 	t-'11)1dIld pdsdt. 
h
e h2 isi8 	0 	t

2 

But 

(,0
. 

as3 	.111,t ) 
31s±011  

I s ko L  41; 



2 5 

4A-421-3— e„F (sr1)2  
J 	4t I ds 

8117 

-8 	(s±M) 	(s±1)
3 	(s±t

I ds [Is - 	I {3 	 exp f )+t 

	

4/7 	agr 

8±T 
j" 	[I 2N5 - .1- 

	
1 (3r + r3 ) exp(-r2 ) dr 

811] J 2t
2
/7 

where we have substituted r for, , 2)7 • 

Replacing r by -r in the last integral and evaluating we obtain 

	

ji s l o l !31 (s±110 t)I ds s 	 exp 
(84)21 

4117t3 	
t j 

[2 (5±r°2  + 5] + exp (8T71) 21r2  (8T71)2  + 5] 
2+t _L 

Since 0 5 s h < 8/2(see the interval of integration for T ), 

8 	> 0. Therefore 

A 
3 

3a 
lim 	1=—= 	

'
t)1 ds = 0 

t-0 	Isl>8 as 

uniformly in 11 (8 fixed). Hence, there is a number N > 0 so that 

5 	113  Isi>8 ! (s+T6t)1 ds s N, for all 11 and t where h 2  s t s 8 and 
— Bs3  

0 < < h < 8/2. 
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Performing the integration with respect to s we have 

	

(d) If- 	Shj el p  I 22  (s-11,t)IdIldpdedsdt 
h2  h Islo 	 s3  

h r ,fp 

*1i)

2NdTdpdedt 0   

M'N 3 2 + N  
= --7 h (6-h ) -4 0 as h 0. 

3h 

We show that the second part of the right side of (c) tends to 

zero as 11.-,0 . Again we will be repeating work done in the proof of 

the lemma of Section 2.9. We will need the following easily shown 

result: 

For each nonnegative integer n, x
n 

erfc (x) k sounded on 

2 	-r"9  

	

[0,co] where erfc (x) = 	e: dr. 
ir 

For t > 

, 	
(s,t-71)1  2 
	 2 

(e) 	I 2i 
ds  1 	1  	 (- 	 6r2+2r-t )e -r  dr 

IsI8 	 /717 ( t , 11 ) 2 	27=7 2  

where we have substituted r for 	. For t 5 11 and s * 0 the function 

vanishers identically and so does 

2e  

t 2' 

s 

In either case integrating the right side of equation (e) 



2 
1=4 (s,t-11)1ds s 	1 	[3erfc 

1sI6 at 	 (t-11)
2 

27 

8 	 6
2 

8
2 	

+ 	3 	exp(- 4( t _ 11))]. 2 	" T exP \,- 4 (t —T1)/ 	8\A-r(t-11)3 

Thus 

,2 
1 	(s,t-I1) 1 ds 

1s16 

is bounded for 11 and t such that 0 s s h and h 2  s t s 8. Let P be 

a bound. Interchanging the order of integration we obtain 

p - a2p  
0 1 - 	(s,t-Ti)  1 dIldpdsdt s 

h2  
0 

mi IS 	

p 
, 	, 

2 J 210 JO 
P dT 	

M'P 
ppdt = 	h (6-h

2 
 ) 	0 

h h 	 2h 

as 11-.0 . Combining this last result with relations (c) and (d) we 

have that I
21

-.0 as 11-01 . 

Part 4.  We consider in this part the integral I
22' 

By a simple 

change of variables 

YO 
I
22 	8 0 

= 	(g1 (x
o' 

 y 
o
-t) 	g

1
(x
o'

y-t)] a.he(x,t) dsdt. 

Since t z S > 0 and 0 and 0 < h < 8/2, Taylor's Theorem implies 

that there is a number ce+  in (0,1) such that 
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Be 	1 B 
2 

	

2e 	2 e(s+h,t) e(s,t) + — (s,t) h + — — (s+aht)h . Bs 	2 as  

Similarly, there are numbers a in (0,1) and e in (OM such that 

ae 	1 
—7 
2e e(s-h,t) 	e(s,t) - — (s,t) h + 	(8-0,9h,t)h

2 
Bs 	 as 

and 

e(s,t-h2) m e(s o t) 	(s,t-Oh2 ) h2 . 

Therefore 

Bile(s 0 t) im [a --2- 	 2-17 

	

. 	 % 	be / + 	(s -auk,t)] - — (s,t -eh).  
at at 	as` 

ate / Now 8stsyo and —5 ka l t) is a decreasing function of s for s 
as 

sufficently large. In fact we find by elementary means that for 
A2e

' s ›,/7o 
the function x— (s t) is decreasing in s for all t in [8 0 yo ]. 

a® 	
e6 

 
A2e  , 

	

For a in [0 0%/F- ] and t in rel,y0 	2 J, 	ks t) is continuous and hence 
2 as 	' e 	, 

bounded. Thus, 
as2 

ke+o4h,t) is dominated by an integrable function; 

in fact one dominant function is given by the least upper bound of 

2 	 2 
2  e  (s,t) on [0„16y0 lx[8,yo and =- otherwise. Similarly, 

2 
as

2 

2 

as 
(s-ath '  t) is dominated by an integrable function. 2 	-  

Clearly 

a 	. 1 — (s,t-Oh2  ) at 

2 	 1 	 s2 
xp(- .470) Lairt77705 lkiet_82/0-

9 
 

2 	 2 



29 

for 8 s t s y
o 
and 0 < e < 1 ( recall h

2 
< 6/2). From this inequality 

we see that (s
' 
 t-eh2 ) is dominated by an integrable function. Hence 

' lle(s,t) is dominated by an integrable function for s in [0,0D] and t in 

[8,y0 ]. Since 

lim 	,t = 0 for t 	5, 122 
0 as h-.0 by the 

h-.0" 

Dominated Convergence Theorem. 

-Part 5.  We show now that 1 3-10as h-e. Recall that 

g
1
(x

o
-s,y

o
-t) = 0 for is' < 8 and Iti < S. 

Since h
2 

< 5/2, 

1 
h2 

13 = 'S'0 	g,()t o  -s,y o-t) e(s,t) dsdt i s ko   

S O 

h
2 

\ 
113 i s 17, j 	e(s,t) dsdt = 2-1\41  So 	8 	exp

/
-r

2
) drdt 

I S I Zs 
 

h
2 

=  20 erfc (--) dt 

where we have made the change of variable r = 

is an increasing function of t. Hence 

h2 

	

M' 	A 
11  erfc (Etr- 3 s — 

h
2 2n) S0 dt = ART erfc 

But erfc aTT) 
( 

as h-10 . 



Combining parts one through five we have 

lim sup 1 Nvi
(t

o,y0 ) s 6 e 

h-C 

so by the argument preceding Part 1  

limv(x
o' 

 y 
o
) = 0 

as was to be shown. The lemma is therefore Droved. 

2.13 We are now in a position to prove the main theorem in this 

essay, namely, the theorem stated in Section 2.2. 

Proof of Theorem. Let y
o 
> 0 and y

o 
< T. Let N, N*, and N be 

defined as before (8 is assumed so small that N is a subset of the 

interior of R). The function w-u is continuous on N. By the lemma 

just proved and the lemma of Section 2.3 

ah  [w(i,Y) -u(x,Y)] = 0  

on N
*
. By the lemma of Section 2.7 

1 w (x,y) -u(x,y)] = 0. 

Since w is a solution to '614(x,y) = g(x,y) it follows that u has the 

necessary derivatives and is also a solution. 
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