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SUMMARY

Spam is an increasing menace for all forms of online messaging including email,

instant messaging, social media, blogs, and Web forums. Many past and current

approaches to tackling spam rely too heavily on content-based approaches, where fil-

ters use the content of spam messages to distinguish them from legitimate messages.

This approach, however, aims at a moving target: spammers are free to evolve the

content of their messages in a variety of ways in response to filtering rules, leaving

content-based filters to play “catch-up”. Content-based filters also incur more over-

head, because they need to accept, store, and process the content of an email before

making a decision; with 90% of email—over 50 billion messages a day—being spam,

content-based filters are expensive both to maintain and to scale.

In this dissertation, we introduce email spam filtering using network-level features.

Network-level features are based on lightweight measurements that can be made in

the network, often without processing or storing a message. Beyond just the IP ad-

dress of a traffic source, network-level features also include the Autonomous System

(AS) numbers of the source, flow sizes, packet header information, data that can

be collected from structured application-level traffic streams such as DNS or HTTP

information, and aggregates of these features (e.g., the historical behavior of an IP

address). Unlike content-based features Network-level features also affords the op-

portunity to observe the coordinated behavior of spammers. Network-level attributes

of traffic stay relevant for longer periods and are harder for criminals to alter at will

(e.g., a bot cannot act independently of other bots in the botnet).

This dissertation has the following contributions.
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1. We perform a detailed characterization of the network-level behavior of spam

including its origins, volumetric and temporal behavior, and its relation to bot-

nets and hijacked BGP routes. We further perform a longitudinal analysis of

these features over a 6 year period to examine the robustness of network-level

features for email classification. We find that IP-based reputation systems such

as IP blacklists may not be able to keep up with the threat of spam from pre-

viously unseen IP addresses, and from new and stealthy attacks.

2. We present three unsupervised algorithms that detect correlated behavior of

spammers using network-level features. First, we introduce the stealthy spam-

mer behavior of reconnoitering IP Blacklists, and present techniques to detect

such queries using temporal and spatial features. Second, we present Spam-

Tracker, a system that distinguishes spammers from legitimate senders by ap-

plying clustering on the set of domains to which email is sent. Third, we intro-

duce vote-gaming attacks in large Web-based email systems that pollutes user

feedback on spam emails, and present an efficient clustering-based method to

mitigate such attacks.

We have evaluated our algorithms on real-world datasets, and our work has also

resulted in practical tools and applications: Our vote-gaming attack detection system

has been put to use by Yahoo! Mail to detect compromised bot-controlled accounts.

We have also designed a system to detect spam from potentially hijacked BGP prefixes

and integrated it with our real-time dynamic blacklisting system, SpamSpotter.
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CHAPTER 1

INTRODUCTION

Email remains the major method for business and personal online communication

for hundreds of millions of users and organizations. One of the key features that

initially drove its widespread adoption—the ability for any Internet-connected host

to send a message to a person using only their email address—has also become the

Achilles heel for email, and the chief reason for the overwhelming amount of spam

that must be processed by mail servers each day. Because a user might legitimately

receive email from any Internet host, the protocol used to send and receive email—

SMTP [68] (Simple Mail Transfer Protocol)—has no built-in measures for security or

accountability. Indeed, the protocol designers are well aware of the security concerns

of SMTP. To quote the SMTP RFC [68]:

SMTP mail is inherently insecure in that it is feasible for even fairly casual

users to negotiate directly with receiving and relaying SMTP servers and create

messages that will trick a näıve recipient into believing that they came from

somewhere else.

– RFC 5321

Unfortunately, miscreants have been exploiting exactly this insecurity of the SMTP

protocol for their sustenance. As the costs of sending a message went down with ubiq-

uitous Internet adoption and increasing connection speeds, these spammers began to

use automated programs to send large numbers of spam messages that link to scam

Websites, phishing attacks, or sites that trick a user into installing malicious software

on their computers. Over the past decade, spam volumes have grown so high that
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approximately 90% of all email—about 70 billion messages—on the Internet today is

spam [5].

In the past, much spam was sent from dedicated “spam farms” and open mail re-

lays [21, 90]; these services, however, were relatively easy for mail recipients to avoid

using IP address blacklists (or “blocklists”) of spam senders. Over the past few years,

the chief sources of spam have been botnets—distributed networks of compromised

computers under the control of a “botmaster”. Botnets are used for coordinated

attacks such as sending spam or mounting denial of service attacks. Botmasters as-

semble botnets by infecting the computers of unsuspecting users around the world,

and then use the combined bandwidth and processing power of these infected ma-

chines to manufacture and send spam to millions of users. Symantec MessageLabs

estimates that currently, 88.2% of all spam sent can be traced to a botnet [131].

1.1 Spam Filtering: Techniques and Challenges

This section overviews the chief approaches for filtering spam, and problems faced by

each of these approaches due to new and emerging threats.

1.1.1 Types of Spam Filters

Figure 1.1 presents an overview of the chief classes of approaches for spam filtering

available to a typical victim organization. The first line of defense includes lightweight

network-level approaches, of which IP-based blacklisting is the only widely used ap-

proach. These methods are responsible in rejecting a majority of spam (70–90%)

early [122], leaving messages from unknown spam senders to be filtered by the re-

maining two methods. The recipient organization then feeds the spam through a

content-based filter, which uses features of the headers, body, or attachments of the

message as well as URLs and other embedded artifacts to determine whether the

message is potentially spam. Content-based filters are reputed to be highly accurate,

but they also incur high overhead. The few spam messages that are not caught by
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Figure 1.1: Overview of Spam Filtering Approaches

network-level or content-based filters end up in end-users’ Inboxes. At this stage,

organizations rely on end-users to report misclassified spam messages as such by, for

example, clicking a “Report as Spam” button. User feedback is crucial: once a number

of users report such messages, the organization’s automatic classifiers can learn from

the misclassified message to correctly filter similar spam messages in future—network-

level filters can learn network-level features of the spam sender, and content-based

filters can learn the content-based features that evaded it. Effective spam filtering

thus depends on the correct performance of all three components.

In this dissertation, we find that the use of a practically unlimited supply of bots,

emerging stealthy attacks, and constantly evolving spam content are posing massive

threats to all steps of spam filtering. Spammers are sending spam from IP addresses

that have not been observed spamming for many months, which makes them harder

to be listed in blacklists. We also find that spammers are monitoring IP blacklists

and sometimes sending spam using hijacked IP spaces, further complicating the IP

blacklisting process. To pollute end-user reporting of spam messages, spammers use

their own compromised user accounts to report their own spam messages as “not
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spam”.

Each stage of spam filtering faces a number of problems—some of which are organic

to the technique, while others are due to new and stealthy attacks by spammers

and other miscreants. The next section discusses the problems with each filtering

approach.

1.1.2 Problems with Spam Filtering

Content-based Filters. Content-based filters such as SpamAssassin [120] are a

widely-deployed defense against spam. These filters analyze the content of email to

identify attributes that would distinguish large fractions of spam messages from legit-

imate ones. Because the majority of spam is auto-generated and designed to spread

a small set of scams (e.g., penny-stock scams, Rolex watches, pills from Canadian

pharmacies, etc.), content-based filters are able to use statistical learning and clas-

sification to differentiate the majority of spam from legitimate email with few false

positives.

However, content-based filters have several critical shortcomings. First, because

they operate on the content of messages, the mail recipient must accept, process, and

store all incoming messages—of which 90% is spam—before beginning classification.

As spam volumes increase, recipients must continuously upgrade their infrastructure

and software to be able to process email at scale. Second and perhaps more im-

portantly, designing content-based filters is an arms race against spammers with no

clear winner: as soon as a filter is fine-tuned to detect a particular spam campaign,

the spammer will alter his spam template such that his spam evades the filter. For

example, in response to a content-based filter that uses certain keywords to detect

spam (e.g., the phrase “Rolex Watches” and its variations), the spammer can embed

the words in an image that is then sent in the spam message.

These shortcomings make content-based filters unsuitable for use as a first line of
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defense against spam. Indeed, most mail service administrators first apply lightweight

network-level filters such as IP blacklists to summarily reject the vast majority of

spam that strikes an organization’s mail servers. While content-based filters remain

highly accurate, especially with regards to false positive rates, they require constant

maintenance to keep up with the mutations of spam templates. Furthermore, content-

filters are dependent on network-level and end-user filters: because content-filters have

high processing and storage overhead, they rely on network-level filters to limit the

amount of spam they need to deal with; because they must constantly learn and

adapt their classifiers for new campaigns, they rely on end-user filters to quickly and

correctly report new spam templates that evade existing content filters. Thus, attacks

that weaken other filters indirectly affects content-based filtering as well.

Network-level Filtering. Network-level features include easily-observable attributes

of an email or email sender that are robust, lightweight, and applicable in detecting

many attacks mounted by spammers. We define network-level features as observations

and measurements that can be made cheaply and efficiently, usually at the network

layer of the TCP/IP protocol stack, and from anywhere in the network (i.e., not

necessarily at the recipient’s machine). Examples of network-level features include

(1) attributes of a single email such as the sender’s IP address, the sender’s BGP

prefix and route, the Autonomous System (AS) that owns the prefix, the hostname

corresponding to the sender’s IP address, the size of the email (in bytes), etc.; (2)

attributes that are based on aggregates or historical observations, for example, the

set of domains to which a particular sender sends email, the fraction of known spam

senders in the BGP prefix of an email sender, the average and standard deviation of

email size in all messages from a sender, etc.

Network-level features offer a number of advantages over content-based features

for spam filtering.

• Network-level features are robust. Unlike the content of an email that spammers
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can change at will, network-level features are far less malleable. Even if the

botmaster can rotate the bot IP addresses from which he sends spam, he has

little control over aggregate network-level features (BGP prefix, AS number,

etc.) or the coordinated behavior of the spam bots in his botnet.

• Network-level features are lightweight. Many network level features are based

on simple measurements that do not require an SMTP transaction to complete:

attributes such as the IP address block and AS number of the sender can be

detected anywhere in the network (e.g., in the sender’s own access network),

and attributes such as message size can be estimated by measuring the flow size

of the TCP connection.

• Network-level features can detect correlated behavior. Bots are usually centrally

controlled and send spam in a coordinated fashion, and this coordinated behav-

ior sets them apart from legitimate senders; indeed, this dissertation presents

various coordinated attacks mounted by spam bots, and methods to mitigate

such attacks. Content-based filters cannot detect such coordinated behavior be-

cause the content of spam sent by the bots in a botnet may be quite dissimilar

to each other,

State-of-the-art network-level filtering is largely limited to IP-based blacklists. Al-

though blacklist vendors claim 90% reduction in spam [122], our experiments indicate

that the actual fraction of blacklisted spammers is much lower—about 60–70%. The

prevalent use of large botnets is likely responsible for the inability of blacklists to keep

their detection rates up. A large botnet implies that the potential number of unique

IP addresses from which spam is sent is also large. Because many spam senders origi-

nate from IP address ranges that also contain legitimate email senders, IP blacklisting

is also prone to false positives. An additional challenge in IP blacklisting involves the

use of dynamic address assignment using protocols such as DHCP [30] by Internet
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Service Providers; because DHCP can reassign a spam sender’s IP address to a le-

gitimate machine, blacklist vendors are hesitant to blacklist spammers from DHCP

senders.1 Indeed, we have discovered that even at a spam trap—a domain with no

legitimate addresses that receives mail only from spammers—30% or more of spam-

mers are not listed in any of six blacklists, likely because many of these spammers

were never observed for months prior to when they sent out spam.

In this dissertation, we present new attacks that further reduce the effectiveness of

using IP reputation to filter spam. We find that spammers themselves may be stealthily

monitoring IP blacklists to discover which of their bots are listed. We also find evidence

for spam from hijacked BGP prefixes, which implies that certain spammers may be

hijacking a legitimate organization’s IP space and sending spam from IP addresses

within that space.

End-user Filtering. The final weapon in an organization’s spam filtering arsenal

are its end-users [39]. To quickly identify emerging spam campaigns that may have

evaded both network-level and content-based filters, organizations rely on their users

to quickly build consensus on the status of the spam message: if a few users who

received the misclassified spam message in their Inboxes report the message as spam,

the message can be retroactively removed from other users’ Inboxes and placed in

their spam folders. Furthermore, community clicks also aid IP reputation: if enough

users report mails sent from a particular IP address as spam, the sender may also be

placed in an IP blacklist.

End-user filtering has the potential to quickly neutralize spam campaigns and

render “new” spamming IP addresses ineffective. To counter this defense mechanism,

we discovered that spammers are mounting attacks of their own, especially within

large Web-based email services such as Yahoo! Mail and Gmail, to pollute votes

1Except by policy, as in the Spamhaus Policy Blacklist (PBL) [123].
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from legitimate users. Spammer use bot-controlled compromised user accounts to

dishonestly vote “not spam” on their own spam email such that the true classification

of spam email is delayed. This attack reduces the effectiveness of user filtering and

delays the time before which the senders of spam can be placed on blacklists.

1.2 Thesis Statement

In this dissertation, we will show that although network-level features

offer unique advantages over content-based features for spam filtering,

IP-based reputation methods for filtering spammers are becoming less ef-

fective. Our evidence includes spammer techniques of using previously

unseen IP addresses to send spam, as well as stealthy attacks such as IP

blacklist reconnaissance, spam from hijacked prefixes, and dishonest vot-

ing in Webmail systems. We posit that, although IP-based reputation has

become less reliable, network-level features also expose the coordinated be-

havior of malicious senders—a consequence of using centrally-controlled

botnets to send spam. We show that network operators can construct

classifiers to identify such coordinated behavior, and use these behav-

ioral classifiers to mitigate various spam-related attacks in real time. As

future work, we argue that behavioral classifiers can be applied to many

botnet-orchestrated attacks beyond merely spamming, for example, denial

of service, click fraud, scam hosting, etc.

1.3 Contributions

In support of the thesis statement, this dissertation presents the following contribu-

tions.
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• Characterization of the Network-level Behavior of Spammers. We present the

first detailed analysis of spam sending behavior using data collected from a high-

volume spam “trap” or “sinkhole”—a domain that receives only spam—over a

17 month period from August 2004–December 2005. Further, we present a

unique 6.5-year longitudinal analysis of spam from spam sinkholes by analyzing

the evolution of the network-level properties of spam senders from the perspec-

tive of a network operator of a specific domain; we show that network-level

classifiers can be a powerful tool especially in the face of continually changing

spam campaigns and new spammer IP addresses which reduces the effectiveness

of IP-based blacklists.

• New Spammer Attacks. We introduce several new attacks mounted by spam-

mers such as (1) sending spam by hijacking large BGP prefixes using short-

lived announcements; (2) conducting stealthy reconnaissance on a DNS-based

IP blacklist to discover when a spam bot is blacklisted; (3) casting dishonest

“not spam” votes on spam email in Web-based email services to delay the true

classification of spam.

• Defenses Against Spammer Attacks. We present algorithms to detect coordi-

nated spammer behavior and to mitigate spammer attacks. Specifically, (1) to

detect bots that perform reconnaissance on DNS-based blacklists, we present

an algorithm that uses temporal and spatial relationships of bots that query the

blacklist; (2) to detect spam senders using their sending behavior, we present

SpamTracker, a clustering-based algorithm that uses the pattern of recipient

domains targeted by spam bots; (3) to detect bots that attempt to “game”

the true classification of spam in Web-based email services, we present an effi-

cient clustering-based algorithm based on the number of Webmail user identities

shared by each bot.
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• Supporting Tools and Techniques. In support of our algorithms, we present the

following tools: (1) to make the deployment of algorithms such as SpamTracker

and SNARE [51] easier, we designed a generic real-time dynamic spam filtering

service based on the DNS-based query scheme used in IP blacklists that aims to

be both fast and scalable; (2) to detect spam from potentially hijacked routes,

we design a tool, SpamLoJack, that joins BGP announcements with the IP

addresses of spam senders in real-time to discover spam sent using potentially

hijacked or short-lived BGP routes.

1.4 Roadmap

Figure 1.2 presents the overview of the topics addressed by various chapters of this

dissertation.

Chapter 2.. This chapter presents background into spam and efforts in spam filter-

ing, with emphasis on network-level approaches to filtering spam. This chapter sets

the context for the work presented in dissertation within the wider body of spam-

filtering and botnet detection research.

Chapter 3. This chapter presents background on spammers, the prevalence of bots in

spamming, and introduces network-level features of spammers. This chapter presents

a detailed study using 17 months of spam data that analyzes various network-level

features of spam messages, including the top IP address ranges, AS numbers, and

country codes of spammers; the types of operating systems used to send spam; the

average sizes of spam messages, etc.; the chapter also investigates the continuing

relevance of these features over time using a 6-year longitudinal spam dataset. We

find that identifying and filtering spam based on individual IP addresses may be prone

both to false positives and false negatives, and filtering based on larger IP blocks, or

based on the sending behavior of spammers might overcome these shortcomings. This

chapter also presents a detailed analysis of a stealthy spamming method, which we
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Figure 1.2: Overview of the attacks addressed in this dissertation

call BGP “spectrum agility”, in which spammers hijack large BGP prefixes for short

periods to send spam.

Chapter 4. Driven by our finding in Chapter 3 that over 30% of spammers are

not listed in any DNS-based IP blacklist (DNSBL), we investigate a new attack in

this chapter, where spammers attempt to proactively detect when a particular bot

IP becomes listed in a popular DNSBL by making stealthy queries to the DNSBL

for spam bot IP addresses. We then leverage the coordinated behavior of bots in

performing such reconnaissance to develop a method to detect reconnaissance queries

and to opportunistically enumerate bot identities that perform the reconnaissance.

This method has resulted in a commercial patent, and has been has been used to
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detect bots in practice.

Chapter 5. We established in Chapter 3 that blacklisting based on specific IP

addresses may not be able to identify many spammers, especially given the fraction

of previously-unseen spammers that sent spam in a single burst to our spam sinkhole.

We hypothesize that spammers likely send email to multiple domains, and a network-

wide view from multiple vantage points may help identify such spammers based on

behavior rather than their IP address. We confirm this hypothesis and present a

clustering-based algorithm to detect coordinated spammer behavior in this chapter.

Our technique, called SpamTracker, clusters email senders based on the set of recipient

domains to which messages are sent. We hypothesize that, because bots in a given

botnet are likely to send email to the same subset of domains, the sending patterns

of bots will cluster well. We use spectral clustering to construct a pattern of sending

behavior for known spammers, which can later be used to identify new, previously-

unknown spam senders only using their sending pattern. We evaluate our algorithm

using mail logs from a large email service provider that sinks email for over 115

recipient domains; we find that our algorithm is able to discover clusters of spam

bots, and also show that our technique can be applied in a real-time blacklist.

Chapter 6. In Chapter 3, we found that certain large IP address blocks that pre-

dominantly consist of legitimate email senders occasionally contain spam senders, and

hypothesized that these senders were likely to be large email service providers, who

were being abused by a few spammers to relay their spam. In this chapter, we look

at the problem of such compromised accounts in Yahoo! Mail, the largest Web-based

email service provider. Webmail services rely on user feedback to quickly build con-

sensus on the status of an email; thus, most Webmail services allow users to report

a message as “spam” or “not spam”. To influence this decision and to prolong the

true classification of spam messages, spammers use bot-controlled user accounts to
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dishonestly vote “not spam” on spam messages. We present an algorithm that uses

canopy-based clustering to detect Webmail user accounts used solely for dishonest

voting. The clustering algorithm is based on the insight that accounts used for dis-

honest voting are accessed from many different bot IP addresses, while legitimate

user accounts are typically accessed from very few IP addresses. We performed this

study using real data from Yahoo! Mail, the largest Web-based email provider; our

algorithm is being used by Yahoo! in practice.

Chapter 7. This chapter presents tools and techniques in support of our findings.

First, we present SpamSpotter, a high-performance dynamic, real-time blacklisting

system that presents mail recipients with a simple, uniform interface to query network-

level spam filtering algorithms such as SpamTracker (Chapter 5 and SNARE [51].

SpamSpotter offers a framework that presents developers of new network-level al-

gorithms with a simple set of abstractions to develop and deploy their algorithms.

To make these algorithms easily usable by recipients, SpamSpotter uses a modified

version of the widely-used DNS-based blacklist query structure. Next, we present a

SpamLoJack, a tool and a Web-based service that joins live feeds of BGP updates

and spam data to discover spam that is being sent from short-lived or other suspi-

cious BGP announcements; SpamLoJack is also integrated into the query interface of

SpamSpotter. Spam from hijacked routes is stealthy and a regular occurrence [6], and

we expect SpamLoJack can provide early warning against route hijacks deliberately

used for spamming.

Chapter 8. This chapter concludes this dissertation. We will summarize the lessons

learned in this dissertation and present various avenues for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides an overview of techniques both for sending and for mitigating

spam, and discusses related work in these areas, focusing on network-level methods

for spam filtering.

2.1 Spamming Methods

Spammers use various techniques to send large volumes of mail while attempting to

remain untraceable. We describe several of these techniques, beginning with “con-

ventional” methods and progressing to more intricate techniques.

2.1.1 Direct Spamming

In the “early” days of spam, when broadband connections were not as prevalent

as they are today, spammers purchased upstream connectivity from “spam-friendly”

ISPs, set up powerful servers, and churned out large amounts of spam from these

servers. Occasionally, spammers would buy connectivity and send spam from ISPs

that did not condone this activity and were forced to change ISPs. Ordinarily, chang-

ing from one ISP to another would require a spammer to renumber the IP addresses of

their mail relays. To remain untraceable and avoid renumbering headaches, spammers

sometimes obtain a pool of dispensable dialup IP addresses, send outgoing traffic from

a high-bandwidth host after spoofing its own IP address to appear as if it came from

the dialup connection, proxying the reverse traffic through the dialup connection back

to the spamming host [110]. Unfortunately, the downside of direct spamming is that

the spam sending machines are limited in number and represent a single point of fail-

ure for the spammer: once listed in an IP or IP prefix blacklist, spammers would have
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no way of churning out spam. Moreover, direct spamming usually involves traceable

money trails to the owner (i.e., spammer), for example, through the purchase of the

hosting service. As botnets rise to prominence due to their resilience and aggregate

bandwidth, direct spamming has seen a major decline.

2.1.2 Open Relays and Proxies

Open relays are mail servers that allow unauthenticated Internet hosts to connect and

relay email through them. Originally intended for user convenience (e.g., to let users

send mail from a particular relay while they are traveling or otherwise in a different

network), open relays have been exploited by spammers due to the anonymity and

amplification offered by the extra level of indirection. Spammers use tools to scan

for open relays by identifying servers that listen on SMTP port 25, and then by

sending a test email to an account under the spammers’ own control [90], which, if

received, confirms the existence of an open relay. Fortunately, open relay blacklists

such as SORBS [119] and ORDB [88] have forced most legitimate open relays to cease

service. However, as a recent study by Pathak et al. showed, spammers continue to

scan for open relays and exploit any relays that they find by sending high volumes of

spam through them.

Open proxies are services that merely route application-level traffic, allowing a

sender to anonymously access or use Internet services. When used for sending email,

the open proxy allows a spammer to mask their IP address: the recipient mail server

typically only uses the IP address of the host that made a TCP connection to it, and

the spammer is free to use fake IP addresses in the SMTP headers of emails it sends.

As with open relays, open proxies have found themselves ending up in blacklists such

as Blitzed Open Proxy Monitor [141].
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2.1.3 Spam Using Unorthodox BGP Route Announcements

BGP [114], the Internet’s inter-domain routing protocol, is designed to be robust:

technically, any Autonomous System (AS) can announce connectivity to an IP prefix,

and the routers that receive many route announcements for a prefix are free to choose

the “best path” using attributes such as the number of ASes in the path (AS path

length). Unfortunately, because BGP has no built-in security, prefix hijacks—the

announcement of a route to an IP prefix by an AS that causes traffic to not reach the

true owner of the prefix—are quite common.

The most common reason for prefix hijacks is a misconfiguration: configuring

router policies is a complex process that involves technical and policy decisions, and

operators may make mistakes that cause them to unintentionally hijack another IP

prefix. In a recent example of this nature, an ISP from Pakistan accidentally an-

nounced a highly specific prefix, a /24, that belonged to YouTube [115]. Because

YouTube’s legitimate route announcement was a /22 that encompassed the /24 an-

nounced by the Pakistani ISP, the more specific prefix announced by the Pakistani

ISP became the “best path” to some YouTube services for a large portion of the

Internet, thus disrupting connectivity to YouTube. Deliberately hijacking a prefix,

however, requires a malicious ISP who must convince its upstream provider to ac-

cept a fraudulent route announcement and re-announce it to the rest of the Internet.

This kind of activity is less common, and if discovered, can potentially result in the

provider losing upstream connectivity. Another potential approach for deliberately

hijacking a prefix is to compromise another ISP’s router and then announce stealthy

routes.

Figure 2.1 illustrates the two ways in which prefix hijacks typically occur: either

because a hijacker AS announces a shorter AS path to a prefix, or because it announces

a more specific sub-prefix of the hijacked prefix. Figure 1(a) shows a shorter-AS-path

hijack: in this scenario, AS 100, which owns the prefix 1.2.3.0/24, announces the
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(a) Hijack using a shorter AS Path (b) Hijack using a more specific prefix

Figure 2.1: Example of a malicious AS, AS 200, hijacking AS 100’s prefix.

prefix to its upstream provider, AS 50, and also prepends its own AS number to the

AS path—which, at this point, merely consists of a single number, “100”. AS 50

reannounces the 1.2.3.0/24 prefix to the rest of the Internet after appending its own

AS path (“50”), making the total AS path length from anywhere in the Internet at

least 2 or more. If a malicious entity, AS 200, is somehow able to announce AS 100’s

prefix to the Internet with a smaller AS path length, many ASes which see the smaller

path length will accept AS 200’s announcement as the best path to 1.2.3.0/24. Thus,

AS 200 can send traffic—including spam—from an IP address within 1.2.3.0/24 to

any AS that accepted its announcement. Figure 1(b) shows a case where a hijack

occurs because the hijacker announces a more specific sub-prefix: in this scenario,

both AS 200 and AS 100 have equal-length AS paths to the prefix in question, but

AS 200 announces a /25 instead of a /24. Thus, due to BGP’s longest-prefix-match

algorithm, traffic to IP addresses within 1.2.3.0/25 will be routed to AS 200 and not

to AS 100.

Although deliberate prefix hijacks and attacks using hijacked routes are not com-

mon, we have discovered a stealthy and advanced spamming method distinct from

the two hijack scenarios presented above, which we call BGP spectrum agility
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(Chapter 3.5). This new mechanism to cloak spam involves spammers briefly an-

nouncing hijacked less-specific IP prefixes from which they send spam. Although we

had observed this behavior informally several years ago [31], and subsequent anec-

dotal evidence has suggested that spammers may use this technique [9], our study

thoroughly documents this activity, and further finds that spammers may be using

spectrum agility to complement spamming by other methods. Recent reports about

hijacked prefixes used for spam from the North American Network Operators’ Group

(NANOG) indicate that spam from hijacked may be an increasing problem [6].

2.2 Spam from Botnets

Botnets have been in use as vehicles of cybercrime for quite some time: their activities

range from sending massive amounts of spam, mounting denial of service attacks on

commercial Web services for monetary gain (e.g., for ransom), hosting and spreading

viruses, malware, pornography, and scam pages, click fraud, and identity theft from

the owners of compromised computers. Previous research has traced the history of

botnets [111, 127, 136] and common modes of botnet operation [22].

Previous work has identified bots by examining the communication protocols used

by botnets (e.g., for “rallying”), most notably Internet Relay Chat (IRC) [28, 148].

Some have suggested the use of such protocols to identify and remediate botnets. For

example, researchers have joined IRC-based botnets and enumerated victims using

IRC commands [33]; others have used network traffic to identify IRC zombies [100].

Some researchers have identified bot victims by observing the unwanted traffic they

generate, e.g., the RST storms or backscatter generated by DDoS attacks using forged

source addresses [86]. Recent network-level techniques for identifying bots using their

Command & Control traffic include BotHunter [46], and BotSniffer [47].

Most early methods of controlling and marshalling botnets involved a centralized

“Command & Control” (C&C) server—usually using the IRC or HTTP protocols.
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Centrally controlled botnets generally operate according to the pattern shown in

Figure 2(a) [23]. Studies show that although the C&C channels to manage bots were

predominantly IRC-based [22, 136], newer botnets are almost entirely controlled by

peer-to-peer (P2P) protocols [72,128,129]. This development was in response to early

botnet mitigation strategies, which largely centered on identifying and neutralizing

a centralized C&C. P2P makes a botnet more robust as there is no single point of

failure. Another recent development has been the use of encryption for all botnet

C&C and data traffic using keys distributed within the bot binary itself.

Attempts have been made to detect such botnets using misuse-detection or basic

intrusion detection analysis [15, 49]. Dagon et al. used DNS redirection to monitor

botnets [25]. Botminer [45] is a more recent work that takes a first-principles approach

to detecting bots using a protocol-independent model and passive monitoring of bot-

net activity. Botlab [62] is a recent effort to capture and study spamming botnets in

the wild.

2.2.1 Direct Spamming to the Recipient

Conventional wisdom suggests that the majority of spam on the Internet today is

sent by botnets [19, 23, 146]. The amount of spam attributed to botnets over the

past few years has been estimated at as high as 95% [130]; the most recent figure

from Symantec Labs estimates that 88.2% of spam on the Internet are attributable

to botnets [131]. In Chapter 3, we show that although the overall volume of spam

from bots is reputed to be high, our spam trap receives low volumes of spam from

each bot, which is likely a trick that spammers use to not “trip” volume-based spam

filters at any given recipient domain.

Most botnets include code that allows them to send spam using templates sup-

plied by the botmaster. In Chapter 3, we investigate the spamming behavior of the

W32/Bobax (“Bobax”) worm. Bobax (of which there are many variants) exploits the
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(a) Operation of a centrally controlled botnet,
such as the Bobax botnet army

(b) Operation of a peer-to-peer bot-
net, such as the Peacomm worm

Figure 2.2: Differences in operation between centralized and peer-to-peer botnets

DCOM and LSASS vulnerabilities on Windows systems [83], allows infected hosts to

be used as a mail relay, and attempts to spread itself to other machines affected by

the above vulnerabilities, as well as over email. Agobot and SDBot are two other

bots purported to send spam [56] using the centralized C&C model.

Newer peer-to-peer botnets such as the Storm Worm [128] (also known as Tro-

jan.Peacomm, illustrated in Figure 2(b)) and Waledac [129] have more complex infec-

tion, rallying, and update behavior, making their eradication all that much harder.

In addition to heavy use of encryption and obfuscation techniques to confound re-

searchers, these botnets are rallied using peer-to-peer mechanisms. Each Storm bot,

for example, connects to a small subset of 30–35 other bots in the botnet; thus, there

is no centralized controller that has control of every bot, which eliminates the threat

of the typical approach to botnet takedown of neutralizing the C&C domain name.
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2.2.2 Spamming via Webmail Services

Web-based email accounts provided by Gmail, Yahoo! Mail, and Hotmail have also

brought new spam threats: spammers have begun using compromised Web mail ac-

counts to send spam. Recent estimates suggest that about 5.2% of accounts that

logged in to Hotmail were bots [149]. Spam from compromised Web mail accounts

is difficult, if not impossible, to detect using IP blacklists or other forgery detec-

tion methods (e.g., domain-key based authentication methods such as DKIM [29]).

Web mail providers attempt to detect compromised accounts used to send spam, but

these providers handle hundreds of millions of user accounts (193 million users at

Gmail [37] and 275 million at Yahoo [58]) and deliver nearly a billion messages each

day [139]. Monitoring every account for outgoing spam is difficult, and performing

content-based filtering on every message is computationally expensive. Automated

monitoring systems may not be able to differentiate a spam sender from a legitimate,

high-volume sender.

In Chapter 6, we present a unique attack that is directly used to sustain spamming

through Webmail systems. Webmail providers rely on users to quickly mark spam

messages as “Spam”, so that they can remove copies of the spam messages from other

users’ Inboxes and also blacklist the sender of the spam. Spammers, in an attempt to

pollute these votes, have begun voting “Not Spam” on spam email using a separate set

of Webmail accounts controlled by bots. Chapter 6 analyzes this attack, and presents

an efficient way to discover such dishonest voters.

2.3 Mitigation techniques

Techniques for mitigating spam are as varied as techniques to send spam. In this sec-

tion, we discuss the most common methods with emphasis on network-level methods.
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2.3.1 Content-based Filtering

One of the earliest and most widely used anti-spam techniques is content-based filter-

ing, which typically classifies email based on its content; content-based filtering uses

features of the contents of an email’s headers or body to determine whether it is likely

to be spam. Content-based filters, such as those incorporated by popular spam filters

like SpamAssassin [120], successfully reduce the amount of spam that actually reaches

a user’s Inbox. On the other hand, content-based filtering has drawbacks. Users and

system administrators must continually update their filtering rules and use large cor-

puses of spam for training; in response, spammers devise new ways of altering the

contents of an email to circumvent these filters. The cost of evading content-based

filters for spammers is negligible, since spammers can easily alter content to attempt

to evade these filters. Many commercial spam filtering services also use finely tuned

content-based filters to perform accurate classification of their email; for example,

Yahoo! Mail uses the Sparta system which includes a finely-tuned content-based

classifier that gives high accuracy [144]. Unfortunately, they too are vulnerable to

the problems of content-based filters—the high cost of running a resource-intensive

service, and the need for constant updates or retraining of the classifiers.

Recent large-scale content-based spam filtering techniques have concentrated on

using URLs embedded in spam messages—URLs are the sole way spammers can lure

unsuspecting users to their spam campaigns, thus, they can be clustered to identify

potential spam messages. Li et al. focus on clustering spam senders to predict whether

a known spammer will send spam in the future [78], and Anderson et al. cluster spam

according to URLs to better understand the relationship between the senders spam

messages that advertise phishing and scam sites and the Web servers that host the

scams themselves [8]. Xie et al. developed AutoRE [142] to automatically extract

regular expressions based on URLs in spam emails. Pathak [96] et al. builds upon this

work to develop an entirely unsupervised content-based URL clustering algorithm.
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Botnet Judo [91] is a system that uses captive bot binaries to capture spam at the

source, extract templates of spam emails, and use these to filter spam at recipient

domains. Monarch is a recent real-time URL filtering service that uses Amazon’s

Cloud infrastructure to build a scalable system capable of crawling URLs in email

and Twitter feeds and returning a scalable classification decision [132].

2.3.2 IP Blacklists

In addition to performing content-based checks, many mail filters, including Spa-

mAssassin, also perform lookups to determine whether the sending IP address is in

a “blacklist”. Conventional blacklists constitute lists of IP addresses of likely spam-

mers and are intended to help spam filters make better decisions about whether to

block a piece of email based on the sender [121, 122]. Some blacklists are policy-

based (e.g., they list all IP addresses that belong to a certain class, such as dialup

addresses [119, 123]). Other IP-based blacklists are “reactive”: they attempt to keep

track of whether an IP address is a spammer, bot, phisher, etc. and keep this list up-

to-date as hosts are renumbered, botnets move, and so forth [81,121,122,134]. These

blacklists must be vigilantly maintained so as to not going out of date or contain false

positives.

IP blacklists are also often referred to as DNSBLs (short for DNS-based IP black-

lists), because the method of querying these blacklists is usually through a specially-

crafted DNS query. DNSBLs are a “hack” on the DNS name resolution infrastructure

to allow users to query for blacklisted IP addresses using existing DNS client and

server protocols and utilities. A DNSBL maintainer keeps blacklisted IP addresses

in a zone file; the server responds to a query for a listed IP address (encoded in a

domain name) with another IP address (usually an address such as 127.0.0.2 that

has no meaning in the DNS resolution infrastructure) but returns an NXDOMAIN for

an unlisted address.
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Blacklists of known spammers, open relays and open proxies remain one of today’s

predominant spam filtering techniques. There are more than 30 widely used blacklists

in use today; each of these lists is separately maintained, and insertion into these lists

is based on many different types of observations (e.g., operating an open relay, sending

mail to a spam trap, etc.). The results presented in Chapter 3—in particular, that

IP address space is often “stolen” to send spam and that many bot IP addresses are

short-lived—indicate that this long-standing method for filtering spam could become

much less effective as spammers adopt more sophisticated techniques.

2.3.3 Other Filtering Methods

Sender Policy Framework (SPF) attempts to prevent IP addresses from sending mail

on behalf of a domain for which they are not authorized to send mail [140], and domain

keys associate a responsible identity with each mail [7]. Although both frameworks

make it more difficult for an arbitrary IP address to send mail, they do not allow a

recipient to classify an email sender with an unknown reputation.

Many existing systems perform collaborative filtering and whitelisting, which takes

inputs from many distributed sources to build information about known spam (or

spammers). Some of the most widely deployed collaborative filtering systems char-

acterize known spam based on the contents of a piece of spam that was reported or

submitted by another user or mail server [18, 26, 70, 92, 95, 138]. These systems allow

mail servers to compare the contents of an arriving piece of email to the contents of

an email that has been confirmed as spam; they do not incorporate any information

about network-level behavior.

Other systems collect information from distributed sets of users either to help

filter spam or decrease the probability that legitimate mail is mistakenly filtered.

IronPort [60] and Secure Computing [117] sell spam filtering appliances to domains
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which then pass information about both legitimate mail and spam back to a cen-

tral processing engine that in turn improves the filters. The widespread deployment

of these products and systems make them ideal candidates for the deployment of

algorithms such as SpamTracker (Chapter 5).

2.3.4 Analysis of the Economics of Spam

Researchers primarily from the University of California, San Diego have conducted

a series of detailed experiments analyzing large-scale botnet-orchestrated spamming

operations. Kreibich et al. analyzed the logistics of a spam campaign by infiltrating

a Storm Worm botnet; their results present an overview of how spammers distribute

spamming tasks to bots, how spam templates are created and distributed, how ad-

dresses are harvested, etc. [73,74]. Another line of research investigates the conversion

rate of spam: by injecting spam messages into a botnet’s spam output, the researchers

attempt to put a dollar figure to the conversion rate of spam [65]; their results suggest

that the conversion rate of spam is very low.

2.4 Related Work in Network-level Spam Filtering

In this section, we survey research that is most related to the research presented in

this dissertation, i.e., techniques and algorithms that use network-level features to

filter spam.

2.4.1 Characterization of Network-level Properties

Early studies on network-level spam filtering include research by Jung et al. that

inspects DNS blacklist (DNSBL) traffic and the effectiveness of blacklists [64]; they

observed that 80% of the IP addresses that were sending spam were listed in DNSBLs

two months after the collection of the traffic trace. Cursory studies before ours have

suggested that spammers advertise routes to hijacked IP prefixes for short amounts

of time to send spam [31, 124, 133].
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Several previous and ongoing projects have studied spammers’ attempts to harvest

email addresses for the purposes of spamming. For instance, Project Honeypot sinks

email traffic for unused MX records and hands out “trap” email addresses to inves-

tigate harvesting behavior and to help identify spammers [94]. A previous study has

used the data from Project Honeypot to analyze the methods employed by spammers;

monitor the time it takes from when an email address is harvested to the time when

that address first receives spam; the countries where most harvesting infrastructure is

located; and the persistence (across time) of various harvesters [93]. We present pre-

liminary results from a similar study in a technical report version of Chapter 3 [104].

Moore et al. found that the majority of hosts—and more than 80% of the hosts in

Asia—did not patch the relevant vulnerability until well after actual outbreak [85],

which makes it more reasonable to assume that IP addresses of Bobax drones remain

infected for the duration of our spam trace.

Anderson et al. mines emails in real time and follows URLs embedded in them

to cluster spam campaigns and the servers that these campaigns are hosted on [8];

they find that though many hosts are used to send spam about various scams, the

scams themselves are hosted on very few machines. Konte et al. also analyze the

hosting infrastructure of scam and find similar results: the scam campaigns and the

server they are hosted on tend to few in number and long-lasting. Botlab [62] studies

spamming botnets by capturing bots in a virtual machine and analyzing the spam

that they send. The authors captured six spam bot variants and discovered that these

were responsible for 79% of all incoming spam at the authors’ location.

Table 2.1 summarizes recent research in the characterization of network-level proper-

ties of spammers.
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Table 2.1: Research in Characterization of Network-level Properties of Spammers
Year Author Approach Results

2006 Ramachandran
et al. [103]

Measurement-based
characterization using
a spam sinkhole

Spam senders exhibit high similarity
in terms of the IP prefixes from which
they originate, number of messages
sent, the operating systems used, the
size of messages, etc.
Spam bots often send a large amount
of spam in a “single shot”
Some spammers adopt a stealthy tech-
nique of sending spam by hijacking
large IP prefixes using fake BGP an-
nouncements.

2007 Xie et al. [143] Correlating User login
data and IPs from Hot-
mail to detect dynamic
IP address regions

97% of mail senders from dynamic IP
address regions send only spam
42% of spam arriving at Hotmail is
due to spammers in dynamic IP ranges

2007 Collins et al.
[20]

Reports of the IP ad-
dresses of bots, spam-
mers, and phishing
hosts

IP addresses that are “unclean”
(i.e., have spam/phishing/scan re-
ports against them) tend to cluster
with other unclean IP addresses in IP
space (“spatial uncleanliness”)
IP addresses ranges that have a rela-
tively large number of unclean hosts
continue to contain unclean hosts for
a longer period of time (“temporal un-
cleanliness”)

2008 Pathak et al.
[90]

Connection data col-
lected at an open relay

Spammers actively scan and “test”
open relays before sending spam
through them
Spammers are either high-volume or
low-volume; high-volume spammers
send large amounts of spam on their
own, while low-volume each send low
volumes of spam but act in coordina-
tion with other low-volume spammers

2010 Qian et al.
[98]

Probing experiments
to discover the ex-
tent of Triangular
Spamming

Studies the extent of a well-known at-
tack [110] and finds that 97% of ISPs
that disallow outgoing SMTP mes-
sages may be vulnerable to it.

2.4.2 Network-level Spam Mitigation Techniques

Behavioral modeling of email sending patterns. Hershkop et al. suggested

techniques for analyzing email by looking at behavioral features of users (e.g., sending
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patterns of individual users), as well as n-gram analysis and keyword spotting [54,126].

However, these techniques still rely to some extent on analysis of email contents and

focus on the spread of email viruses; the work also proposes an offline analysis toolkit,

whereas SpamSpotter (Chapter 7) is a scalable system for online, real-time detection.

Filtering using network-level features. Recent years have seen work that builds

on this behavioral modeling by studying the network-level behavior of spammers. Our

previous work studied the network-level behavior of spammers, with an eye towards

developing filters that are based on behavioral features (i.e., how the spam was sent,

as opposed to the contents of individual messages) [105]. Clayton et al. ’s spamHINTS

project has also recently been developing techniques for distinguishing spammers from

legitimate senders [17]; SpamSpotter could also be a deployment platform for these

algorithms and others. Xie et al. [143] discovered that a vast majority of mail servers

running on dynamic IP address were used solely to send spam. Hao et al. developed

SNARE, a Spatio-temporal Automated Reputation System that uses a combination

of network-level features to build a robust classifier [52]. Beverly and Sollins built a

sender-reputation classifier based on transport-level characteristics (e.g., round-trip

times, congestion windows) [10] using a support vector machine.

Clustering for Spam classification. Due to the unique properties by which spam

is generated and sent, spam data is highly suitable for clustering. As mentioned

earlier, previous research has attempted to cluster spam content in various forms:

templates of spam message, URLs, and the sites hosted on these URLs, etc.; there

have been fewer attempts to perform purely network-level clustering. Our work on

SpamTracker [108] clusters both legitimate and spam senders based on the subsets

of domains to which they send email. Other work has also attempted to group

senders based on recipient [40, 61, 77]. Venkataraman [137] suggest using network-

aware clusters (i.e., IP prefixes with high propensity for spam) to detect spam from
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Table 2.2: Research in Classifiers and Blacklists using Network-level Features
Year Author Approach Results

2007 Venkataraman
et al. [137]

Measurements using
spam and legitimate
email received at 700
user mailboxes

IP address blocks are a stable indi-
cator of the nature of message (i.e.,
spam or legitimate email)
Legitimate email mainly comes from
long-lived IP addresses, while spam
originates from long-lived BGP pre-
fixes (called network-aware clusters)

2007 Ramachandran
et al. [108]

Measurements on
sending patterns of
legitimate and spam
emails to over 100
recipient domains

Bots in a botnet target the same sub-
set of recipient domains as other bots
Legitimate senders do not have a dis-
cernible pattern in the subset of do-
mains to which they send email.

2008 Zhang et al.
[147]

Logs from a large-scale
security log-sharing
system, DShield

IP Blacklists can be made highly pre-
dictive and targeted to consumers of
the blacklist by correlating multiple
reports of an IP address using a link-
rank like scheme

2009 Hao et al. [52] Legitimate and spam
data for 1 month from
a security vendor

A classifier built using only network-
level features such as message size,
number of recipients, sender’s AS
number, etc. shows good classification
performance

2009 Zhao et al.
[149]

User login IDs and lo-
gin IPs from Hotmail

User IDs of bots can be clustered using
the IPs that they login from

2010 Qian et al.
[97]

Email collected from a
University

As a continuation of [137], this study
shows that filtering based on IP-prefix
clusters can be augmented using DNS
responses corresponding sender IP ad-
dresses.

legitimate email. Qian et al. extend this notion of clusters to also include clusters of

rDNS servers corresponding to email sender IPs [97].

Other clustering approaches for spam filtering includes BotGraph [149], which

attempts to cluster bots that log in to Hotmail using the number of IPs shared by

them: accounts controlled by bots are likely to log in from more IPs than a legitimate

user account. We use inspiration from this work to use clustering to analyze voting

fraud in a large Webmail service provider [102].

Table 2.2 highlights recent and closely-related research that uses network-level
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features to develop spam mitigation techniques.

2.5 Where This Dissertation Fits in

• Our work on understanding the network-level behavior of spammers was the

first exhaustive study in the area [103]. Subsequent research has both analyzed

and proved various results presented in this paper. For example, our observation

that certain areas of IP space send disproportionately more spam (and contain

disproportionate numbers of bots) has been confirmed in later studies [20, 137,

143]; these studies confirm our finding that a sender’s IP address ranges can be

used as a predictor for the likelihood of its “spamminess”.

• Our work was the first to highlight the shortcomings of blacklists [103, 107,

108], and we have extended this study using a longitudinal investigation of the

blacklisting status of spammers and a study of dishonest voting patterns in

Webmail systems [102].

• We have introduced three novel attacks that were previously unknown or not

analyzed in detail [102,103,107]. Each of these attacks shed insight into unique

facets of the behavior of spammers, and adds to a growing body of work in

understanding the intricacies of the spamming process.

• The theme of this dissertation—that IP-based reputation is becoming ineffec-

tive, but that spammers can be classified using their coordinated network-

level behavior (and not their IP address)—is also well-supported: similar re-

search includes studies on dynamic IP regions [143], network-aware clusters of

spam [97,137], uncleanliness of IP prefixes [20], and BotGraph [149]. Of course,

network-level filters alone cannot provide classification of sufficient quality; they

must be combined with various content-based filters such as SpamAssassin, or

one of the template- or URL-based filters mentioned above [91, 132, 142]. We,
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however, restrict our work to investigating spam filtering only using network-

level features.

• We have built SpamSpotter to address the lack of practical deployment for

new network-level classification methods. Although DNS-based IP blacklists

are widely used, most new spam-filtering techniques never see public deploy-

ment. SpamSpotter implements three network-level spam filtering algorithms:

SpamTracker, SNARE [52] and Trinity [13] into a familiar DNSBL-like query

interface that can be easily integrated into existing spam-filtering pipelines. We

have also implemented SpamLoJack, a tool that identifies spam from potentially

hijacked BGP routes, using a DNSBL like interface.
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CHAPTER 3

CHARACTERIZING THE NETWORK-LEVEL

BEHAVIOR OF SPAMMERS

3.1 Introduction

This chapter studies the network-level behavior of spammers, including: IP address

ranges that send the most spam, common spamming modes (e.g., bots, direct spam-

ming, BGP route hijacking, etc.), how persistent across time each spamming host is,

and characteristics of spamming botnets. We present the results from two kinds of

studies of the network-level characteristics of spammers:

1. A focused study using a 17-month trace of over 10 million spam messages col-

lected at an Internet “spam sinkhole” between August 2004 and December 2005.

This study establishes the network-level characteristics of spammers and spam

bots, the IP ranges from which they originate, their listing status in major

blacklists, and their correlation with behavior exhibited by known spam bots.

2. A longitudinal study that studies the “staying power” of network-level attributes

using data collected from spam sinkholes between 2006–2011. This study inves-

tigates the variations over time of several network-level characteristics of spam,

including the prefixes from which spam is sent, the size of spam messages, the

amount of previously unseen “fresh” bots, the number of messages sent by bots,

and their listing status in blacklists.

Our results show that most spam is being sent from a few regions of IP address

space, and that spammers appear to be using transient “bots” that send only a few

pieces of email over very short periods of time. We also find that a large fraction
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of spammers are “fresh”, i.e., not seen before in the months preceding their spam

activity. We find that an increasing fraction of fresh spammers are not listed in any

IP blacklists, indicating that spammer tactics may be successful at evading existing

network-level defenses. We also found a small, yet non-negligible, amount of spam is

received from IP addresses that correspond to short-lived BGP routes, typically for

hijacked prefixes.

These trends suggest that filtering email messages based on network-level prop-

erties beyond just the IP address (which are less variable than email content), and

improving the security of the Internet routing infrastructure, may prove to be ex-

tremely effective for combating spam. Our longitudinal analysis shows that though

variable over the course of 6 years, many characteristics—for example, the prefixes

originating the most spam, the average size of emails, the average number of emails

sent by a spam bot, etc—are stable and can be used in filtering spam.

Beyond merely exposing spammers’ behavior, characterizing the network-level be-

havior of spam could be a major asset for designing spam filters that are based on

spammers’ network-level behavior (presuming that the network-level characteristics

of spam are sufficiently different than those of legitimate mail, a question we explore

further in Section 3.3). Whereas spammers have the flexibility to alter the content

of emails—both per-recipient and over time as users update spam filters—they have

far less flexibility when it comes to altering the network-level properties of the spam

they send. It is far easier for a spammer to alter the content of email messages to

evade spam filters than it is for that spammer to change the ISP, IP address space,

or botnet from which spam is sent.

We draw the following conclusions from our study:

• The vast majority of received spam arrives from a few concentrated portions

of IP address space (Section 3.3). Spam filtering techniques currently make

no assumptions about the distribution of spam across IP address space. In a
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related area, many worm propagation models assume a uniform distribution of

vulnerable hosts across IP address space (e.g., [125]). In contrast, we find that

the vast majority of spamming hosts—and, perhaps not coincidentally, most

Bobax-infected hosts—lie within a small number of IP address space regions.

This finding has been further investigated in related work [137, 143]

• Most received spam is sent from Windows hosts, each of which sends a relatively

small volume of spam to our domain (Section 3.4). Most bots send a relatively

small volume of spam to our sinkhole (i.e., less than 100 pieces of spam over

17 months), and about three-quarters of them are only active for a single time

period of less than two minutes (65% of them send all spam in a “single shot”).

Although we have not been able to join bot IPs with more recent data spam

data, other researchers [97] and our own later research discussed in Chapter 5

have confirmed that many spammers are indeed “single-shot”, with a large

fraction of spam each day being sent by previously-unseen IP addresses.

• A small set of spammers continually use short-lived route announcements to

remain untraceable (Section 3.5). A small portion of spam is sent by sophis-

ticated spammers, who briefly advertise IP prefixes, establish a connection to

the victim’s mail relay, and withdraw the route to that IP address space after

spam is sent. Anecdotal evidence has suggested that spammers might be ex-

ploiting the routing infrastructure to remain untraceable [6,9,133]; this chapter

quantifies and documents this activity for the first time. To our surprise, we

discovered a new class of attack, where spammers attempt to evade detection

by hijacking large IP address blocks (e.g., /8s) and sending spam from widely

dispersed “dark” (i.e., unused or unallocated) IP addresses within this space.

• Many network-level features of spam, such as the IP ranges from which spam-

mers send spam, the average size of messages, etc. remain surprisingly stable

over a period of even 6 years, indicating that these features are suitable for
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designing robust spam filters.

Beyond these findings, this chapter’s joint analysis of several datasets provides

a unique window into the network-level characteristics of spam. To our knowledge,

our study is the first that examined the interplay between spam, botnets, and the

Internet routing infrastructure. We acknowledge that our spam corpus represents

only a single vantage point and does not represent conclusive figures about Internet-

wide characteristics of spam. On the other hand, the spam we have collected reflects

the complete set of spam emails received by a single Internet domain. This dataset

exposes spamming as a typical network operator for some Internet domain might also

witness it. This unique view can help us better understand whether the features of

spam that any single network operator observes could be useful in developing more

effective filtering techniques.

With these goals in mind and an understanding of the context of our data, we

offer the following additional observations on the implications of our results for the

design of more effective techniques for spam mitigation, which we revisit in more

detail in Section 3.6. First, the distribution of spam and botnet activity across IP

space suggests that, for some IP address ranges and networks, spam filters might

monitor network-wide spam arrival patterns and attribute higher levels of suspicion

to spam originating from networks with higher spam activity. Second, spammer

techniques such as using previously-unseen IPs and sending a number of spam emails

in a “single-shot” may be adversely affecting IP-based reputations systems such as

DNS-based blacklists. Finally, the ability to trace the identities of spammers hinges

on securing the routing infrastructure. Given the highly variable nature of the content

of spam messages, incorporating general network-level properties of spam into filters

may ultimately provide significant gains over more traditional methods (e.g., content-

based filtering), both through increased robustness and the ability to stop spam closer

to its source.
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The rest of this chapter is organized as follows. In Section 3.2, we describe our

data collection techniques and the datasets we used in our analysis. In Section 3.3, we

present focused and longitudinal studies of the distribution of spammers, spamming

botnets, and legitimate mail senders across IP address space. Section 3.4 presents

our findings regarding the relationship between the spam received at our sinkholes

and known spamming bots. Section 3.5 examines the extent to which spammers

use IP addresses that are generally unreachable (e.g., using short-lived BGP route

announcements) to send spam untraceably. Based on our findings, Section 3.6 offers

positive recommendations for designing more effective mitigation techniques. We

conclude in Section 3.7.

3.2 Data Collection

This section describes the datasets that we use in our analysis. Our primary dataset

consists of the actual spam email messages collected at a large spam “trap” or “sink-

hole”, over a 6.5-year period between August 2004 and December 2011. We perform

a focused study on a 17-month aggregate of this dataset from August 2004–December

2005. We use the remainder of the dataset to perform longitudinal studies of certain

network-level features. We call this sinkhole “Spamtrap #1”.

Unfortunately, due to problems with the collection server, Spamtrap #1 has had

intermittent outages between 2006–2009, some of which lasted many months; thus,

there were several gaps in spam collection. Thus, we augment the spam feed for

our longitudinal study using spam data from a second spam trap that receives a

similar amount of spam per day (“Spamtrap #2”). Both spamtraps sink email for

predominantly US-based domain names, receive approximately similar amounts of

email, and have a similar collection setups: the spamtraps are physically located in

US universities, and both run a “catch-all” setup that accepts any email coming to

the mail server.
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Figure 3.1: The amount of spam received per day at our sinkhole from August 2004
through December 2005.

To study the specific characteristics of certain subsets of spammers, we augment

this dataset with three other data sources. First, to identify the regions of IP space

from which spam arrives and to confirm that these regions are distinct from regions

where legitimate mail arrives, we use legitimate email data from a large email security

services vendor. Second, we intercept the “command and control” traffic from a Bobax

botnet at a sinkhole to identify IP addresses that were infected with the Bobax worm

(and, hence, are likely members of botnets that are used for the sole purpose of

sending spam). Third, we collect BGP routing data at the upstream border router of

the same network where we are receiving spam and monitor the routing activity for

the IP prefixes corresponding to the IP addresses from which spam was sent.

3.2.1 Spam Email Traces

To obtain a sample of spam, we registered a domain with no legitimate email addresses

and established a DNS Mail Exchange (MX) record for it. Hence, all mail received by

this server is spam. The “sinkhole” has been capturing spam since August 5, 2004.
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(b) The number of unique IPs seen each month at
the two spam traps.

Figure 3.2: The spam received and the number of IPs seen per month at the two
spam traps between August 2004–December 2010.

In addition to simply collecting spam traces, the sinkhole runs Mail Avenger [80],

a customizable Simple Mail Transfer Protocol (SMTP) server that allows us to take

specific actions upon receiving email from a mail relay (e.g., running traceroute to the

mail relay sending the mail, performing DNSBL lookups for the relay’s IP address,

performing a passive TCP fingerprint of the relay). We have configured Mail Avenger

to (1) accept all mail, regardless of the username for which the mail was destined and

(2) gather network-level properties about the mail relay from which spam is received.

In particular, the mail server collects the following information about the mail relay

when the spam is received:

• the IP address of the relay that established the SMTP connection to the sinkhole

• a traceroute to that IP address, to help us estimate the network location of the

mail relay

• a passive “p0f” TCP fingerprint, based on properties of the TCP stack, to allow

us to determine the operating system of the mail relay

• the result of DNS blacklist (DNSBL) lookups for that mail relay at eight different

DNSBLs.
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Note that, unlike many features of the SMTP header, these features are not easily

forged.

Figure 3.1 shows the amount of spam that this sinkhole received per day through

January 6, 2006 (the 17-month period of time over which we conduct our focused

analysis). Although the total amount of spam received on any given day is rather

erratic, the data indicates two unsettling trends. First, the amount of spam that the

sinkhole is receiving generally appears to be increasing. Second, and perhaps more

troubling, the number of distinct IP addresses from which we see spam on any given

day also appears to be on the rise.

Figure 2(a) shows the data we use in our longitudinal study: the amounts of spam

received by the two spamtraps each month over the 6.5-year period, which shows the

gaps in collection. Correspondingly, Figure 2(b) shows the number of unique IPs seen

each month. The hardware hosting Spamtrap 1 suffered occasional crashes, causing

it to not collect spam for months at a time. Whenever collection setup was resumed,

we notice that spam “ramps up”, indicating that spammers continuously monitor

whether mail servers for domains are active even after long periods of inactivity, and

correspondingly ramp up mails to domains that accept email.

To make longitudinal analysis easier, we choose 1-month periods of spam roughly

one year apart for each year from 2004–2010. Table 3.1 describes the months of data

we choose to perform this longitudinal analysis, and the number of unique messages

and spammer IP addresses for each month. We expect that, by using data of one

month at a time instead of aggregating data from a longer period, we can avoid

problems with reallocation of IP addresses, IP address blocks, effects of transient

spam campaigns, etc.
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Table 3.1: Statistics for the dataset used in our longitudinal study
Month Spam messages Distinct IPs Spam Feed
11/2004 221,131 57,807 Spamtrap 1
11/2005 281,119 113,839 Spamtrap 1
10/2006 1,052,139 421,526 Spamtrap 1
11/2007 1,054,980 385,152 Spamtrap 2
08/2008 363,161 133,206 Spamtrap 1
11/2009 3,271,885 355,610 Spamtrap 1
11/2010 4,963,155 1,175,786 Spamtrap 1

3.2.2 Legitimate Email Traces

One of the motivations for our study was to determine whether the network-level

characteristics of spam differ markedly from those of legitimate email. To perform

this comparison, we obtained a corpus of the features of various mail received by a

large email security appliance vendor that has appliances deployed at hundreds of

enterprises. This corpus contains, among other fields, the IP address of each email

sender, and an accurate classification of whether the email was classified as spam

or not by the vendor’s (content-based and network-level) spam-filtering algorithms.

Because the logs are post-spam-filtering, we can assume that the incidence of false

positives or false negatives is low (e.g., the vendor advertises a false positive rate of

lower than 0.01%). We possess this trace only for a period of one day in 2005, but

due to the large volume of email handled by the vendor, this trace includes over 4.8

million distinct IP addresses (of which over 94% are spammers).

3.2.3 Botnet Command and Control Data

To identify a set of hosts that are sending email from botnets, we used a trace of

hosts infected by the W32/Bobax (“Bobax”) worm from April 28-29, 2005. This trace

was captured by hijacking the authoritative DNS server for the domain running the

command and control of the botnet and redirecting it to a machine at a large campus

network. This method was only possible because (1) the Bobax drones contacted a
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centralized controller using a domain name, and (2) the researchers who obtained the

trace were able to obtain the trust of the network operators hosting the authoritative

DNS for that domain name. This technique directs control of the botnet to the

honeypot, which effectively disables it for spamming for this period. On the upside,

because all Bobax drones now attempt to contact our command-and-control sinkhole

rather than the intended command-and-control host, we can collect a packet trace to

determine the members of the botnet.

To obtain a sample of spamming behavior from known botnets, we correlate Bobax

botnet membership from the 1.5-day trace of Bobax drones with the IP addresses

from which we receive spam in the sinkhole trace. This technique, of course, is not

perfect: over the course of our spam trace, hosts may be patched; the hosts’ IP

addresses may also have changed if they use DHCP. Although we cannot precisely

determine the extent to which the transience of bots affects our analysis, previous

work suggests that, even for highly publicized worms, the rate at which vulnerable

hosts are patched is slow enough to expect that many of these infected hosts remain

unpatched [85]; more recent research on the “uncleanliness” of prefixes [20] confirms

this fact. However, we believe that the resulting inaccuracies are small: We observe

a significantly higher percentage of Windows hosts in the subset of spam messages

sent by IP addresses in our Bobax trace than in the complete spam dataset, which

indirectly suggests that the hosts with IP addresses from the Bobax trace were indeed

part of a spamming botnet when they spammed our sinkhole.

3.2.4 BGP Routing Measurements

We wish to identify cases of spamming where a route for a spammer is reachable

for only a short period of time, coinciding with time spam was sent. To measure

network-layer reachability from the network where spam was received, we co-located

a “BGP monitor” in the same network as our spam sinkhole, similar to that in our
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Figure 3.3: At each collection host, we collect BGP messages from the network’s
border router. The figure shows the configuration for a large campus network, which
obtains upstream connectivity from Genuity (AS 1) Cogent (AS 174), Comcast (AS
7015), and Internet2 via Abilene.

previous work [32]. Figure 3.3 shows the placement of the BGP collection host in

relation to the border router of its own network (the MIT campus network) and its

upstream connection to the rest of the Internet. The monitor receives BGP updates

from the border router, and our analysis includes a BGP update stream that overlaps

with our spam trace. Since the monitor has an internal BGP session to the network’s

border router, it will see only those BGP updates that cause a change in the border

router’s choice of best route to a prefix. Despite not observing all BGP updates, the

monitor receives enough information to allow us to study the properties of short-lived

BGP route announcements: the monitor will have no route to the prefix at all if the

prefix is unreachable.

Because our spam sinkhole was moved since mid-2009 to Georgia Tech, we require

BGP routing measurements also from Georgia Tech to perform joint studies of spam

and BGP routes. Due to recent incidents of hijacked prefixes being used for spamming,

we have developed a joint collection setup in the Georgia Tech campus network to

detect spam from hijacked routes with our tool; we present this setup and our tool,

SpamLoJack, in Chapter 7.
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3.3 Network-level Characteristics of Spammers

In this section, we study some first-order network-level characteristics of spam sources.

We survey the portions of IP address space from which our sinkhole received spam

and the ASes that sent spam to the sinkhole. To determine whether these network

level characteristics could be suitable for filtering spam, we compare the network-level

characteristics of spam and legitimate email received by a security appliance vendor.

We find that the distribution of spam across IP address space is quite different

from the arrival of legitimate email, especially when observed at the granularity of

larger blocks of IP addresses (e.g., /24s). Still, the distribution of spam senders

across IP address space is far from uniform, and spam arrival by IP address range

is much more pronounced, persistent, and concentrated than similar characteristics

by IP address. Additionally, we find that a large fraction of spam was received from

just a handful of ASes: nearly 12% of all received spam originated from mail relays

in just two ASes (from Korea and China, respectively), and the top 20 ASes were

responsible for sending nearly 37% of all spam. This distribution (as well as the main

perpetrators) is also persistent over time. This heavily skewed distribution suggests

that spam filtering efforts might better focus on identifying high-volume, persistent

groups of spammers (e.g., by IP block or AS number), rather than on blacklisting

individual IP addresses, many of which are transient.

3.3.1 Distribution Across Networks

To determine the address space from which spam was arriving (“prevalence”) and

whether the distribution across IP addresses changes over time (“persistence”), we

tabulated the spam in our trace by IP address space. We find that spam arrivals

across IP space are far from uniform.

Finding 3.3.1 (Distribution across IP address space) The majority of spam is

sent from a relatively small fraction of IP address space.
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Figure 3.4: Fraction of spam email messages and comparison with legitimate email
received (as a function of IP address space); also, fraction of client IP addresses that
sent spam, binned by /24.

Figure 3.4 shows the number of spam email messages received over the course of

the entire trace, as a function of IP address space. A few IP address ranges have

significantly more spam than legitimate mail (e.g., 80.*–90.*), and vice versa (e.g.,

60.*–70.*). Although Figure 3.4 may indicate that legitimate email and spam email

arrives from largely the same prefixes, the plot does not show variations in sending

behavior smaller IP blocks adjacent to each other (e.g., /24s).

To investigate the nature of /24s better, we plot the IP addresses of legitimate

and spam email address senders using a Hilbert curve representation of IP address

space. A Hilbert curve is a space-filling curve with the property that when used to

represent numbers, adjacent numbers always occupy adjacent positions on the curve.

To draw a Hilbert curve that represents each /24 block as a single pixel, we used a
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Figure 3.5: Hilbert space representation of the prefixes that send only spam (cyan),
only legitimate email (green), or both (white). Each pixel corresponds to one /24.

12th order Hilbert curve—i.e., a square with 212 pixels in each dimension, where each

pixel represents an IP address.

Figure 3.5 shows the Hilbert curve [55] representation of the entire IP address

space. /24s that sent only spam email are denoted in cyan, and /24s that send only

legitimate email are in green. /24s which include IPs which sent both spam and

legitimate email are in white. This graph confirms our hypothesis that email senders
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Figure 3.6: Zoomed-in view of a single /8 from Figure 3.5, 86.0.0.0/8.

from large, adjacent IP blocks tend to be either predominantly spam or predominantly

legitimate, as indicated by multi-pixel square blocks of green and cyan, and the

relative absence of white pixels.

Figure 3.6 shows a close-up only of a specific block, 86.0.0.0/8—one of the “spam-

mier” /8s in our corpus, which offers a detailed look at the sending behavior of

adjacent /24s. We see many blocks larger than a /24 that have entirely spam or

legitimate senders. An interesting observation is that nearly all of the false positive
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/24s (white pixels) appear within blocks of green (i.e., legitimate senders only). We

hypothesize that most of these false positives correspond to true legitimate mail ser-

vice providers; although most email sent from these providers is legitimate, spammers

often compromise accounts and attempt to send using these legitimate servers that

thwarts blacklisting approaches [149]. This emerging threat of compromised accounts

at legitimate mail service providers (e.g., Webmail providers such as Yahoo! Mail

and Gmail) is further complicated by the existence of vote gaming—an attack that

stymies the provider’s efforts to quickly identify spam messages and senders using

feedback from its legitimate users. We present this attack and a mitigation technique

in Chapter 6.

Longitudinal Study. We wish to see whether the regions that send the most spam

have changed over time; a knowledge of the regions that have a propensity for spam

can help mail recipients have some prior idea whether a particular previously-unseen

IP address is likely to be a spammer or not.

Finding 3.3.2 (Distribution Across IP space (Longitudinal Study)) Over time,

historically spam-heavy IP address ranges continue to grow, and new spammer IP ad-

dress ranges tend to be close to past spammer ranges.

Figure 3.7 shows the Hilbert space representations of spammer IP addresses for the

7 months in our longitudinal dataset. We can see that there are increasing numbers

of spam bots each year, but these are concentrated in certain regions of IP space.

For example, the bottom left octant the map roughly corresponds to the European

RIPE NCC allocation (highlighted in the first figure). Some European ISPs are

traditionally known to be spam-friendly, and we see that the number of such spam

bots has increased in these IP address ranges over the years. We also see that the

Asia Pacific allocation (APNIC) has grown from nearly no spammers in 2004 to a

large number of spammers in 2010. Most of this IP address range (110/8–126/8) was



Figure 3.7: Hilbert curve representations of IP space sending the most spam (indi-
cated in colored pixels) for different points of time over 6 years.

(a) 2004-11 (b) 2005-11 (c) 2006-10

(d) 2007-11 (e) 2008-08 (f) 2009-11

(g) 2010-11

allocated between 2007–2009, and the increase in spam from these IP addresses also

supports at the large amount of spam arriving from Asia (India, China etc.).
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These results indicate that although the number of spammers are increasing glob-

ally, we can make a few observations about the future growth of spam senders in IP

space. (1) they tend to concentrate in regions of IP space that correspond to ISPs

(and geographical locations) that historically have large amounts of spam; and (2)

new spammer IPs tend to be close in IP space to past spammer IPs. These obser-

vations can be help in the better design of spam filters: because ISPs do not change

or sell their IP allocations often, and becuase spam-friendly ISPs are unlikely to take

an anti-spam stance all of a sudden, we can assume that if an IP block is known

to contain spammers, it is quite likely that it will contain spammers in future—an

observation also confirmed by Collins et al. [20]. Similarly, because new spammer IPs

(and blocks of IPs) tend to be close in IP space to previous spammer IPs, a spam

filter could automatically “grow” a previously-known spammer IP address block if it

sees spam from adjacent blocks.

3.3.2 Distribution Across ASes and Countries

In many cases, IP address ranges are not adequate for distinguishing spam from

legitimate email. To determine whether other network-level properties, such as the

AS from which the email was sent, could serve as better classifiers, we examined the

distribution of spam across ASes and compared this feature to the distribution of

legitimate email across ASes.

Finding 3.3.3 (Distribution across ASes) More than 10% of spam received at

our sinkhole originated from mail relays in two ASes, and 36% of all received spam

originated from only 20 ASes. With a few exceptions, the ASes containing hosts re-

sponsible for sending large quantities of spam differ from those sending large quantities

of legitimate email.

The concentration of spammers in a small collection of offending ASes—and the fact

that this collection of ASes differs from the ASes responsible for sending legitimate
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Table 3.2: Amount of spam received by our spam trap between August 2004–
December 2005 from mail relays in the top 20 spammy ASes. 11 of the top 20
networks from which we received spam are primarily based in the United States.
AS Number # Spam AS Name Primary Country

766 580559 Korean Internet Exchange Korea
4134 560765 China Telecom China
1239 437660 Sprint United States
4837 236434 China Network Communications China
9318 225830 Hanaro Telecom Japan
32311 198185 JKS Media, LLC United States
5617 181270 Polish Telecom Poland
6478 152671 AT&T WorldNet Services United States
19262 142237 Verizon Global Networks United States
8075 107056 Microsoft United States
7132 99585 SBC Internet Services United States
6517 94600 Yipes Communications, Inc. United States
31797 89698 GalaxyVisions United States
12322 87340 PROXAD AS for Proxad ISP France
3356 87042 Level 3 Communications, LLC United States
22909 86150 Comcast Cable Corporation United States
8151 81721 UniNet S.A. de C.V. Mexico
3320 79987 Deutsche Telekom AG Germany
7018 74320 AT&T WorldNet Services United States
4814 74266 China Telecom China

Table 3.3: Top 10 ASes (by email volume) in our legitimate email trace.
AS Number # Email AS Name Primary Country

15169 49500 Google Inc. United States
5731 38238 AT&T WorldNet Services United States
26101 30406 Yahoo United States
3561 22730 Savvis United States
4355 17381 Earthlink, Inc United States
8560 16666 Schlund Partner AG Germany
8075 14699 Microsoft Corp United States
14779 13115 Inktomi Corporation United States
6541 12493 GTE.net LLC United States
14780 11597 Inktomi Corporation United States
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email (with the exception of ASes 5731 and 8075)—suggests that spam filters should

attribute more suspicion to email coming from ASes where spam commonly originates.

This observation begs the question about why Figure 3.4 does not show similar differ-

ences. Indeed, the spamming behavior of specific IP address ranges deserves further

study, since Figure 3.4 really only exposes macro-level behavior of IP address ranges

(i.e., differences for small IP address ranges may not be visible in the figure). We are

studying the behavior of fine-grained address ranges in ongoing work.

Recent reports have claimed that most spam originates in the United States [63].

On the other hand, Figure 3.4 suggests that many spamming hosts reside in IP address

space that is allocated to the Asia-Pacific region (e.g., 61.0.0.0/8). To perform a rough

estimate of the amount of spam originating from each country, we associated the ASes

from which we received spam to the countries where those ASes were based.1 Table 3.2

also shows the distribution of hosts that sent spam to the sinkhole by country, for the

top 20 ASes from which we received spam.

Finding 3.3.4 (Distribution by country) Although the top two ASes from which

we received spam were from Asia, 11 of the top 20 ASes from which we received spam

were from the United States and comprised over 40% of all spam from the top 20

ASes.

We mapped the most prolific IP address (i.e., the top 11.6% of IP addresses, respon-

sible for 65% of all spam received at the sinkhole) to their respective countries. Our

analysis indicates that nearly three times as much spam in our trace originates from

ISPs based in the United States than from either of the next two most prolific coun-

tries (Korea and China, respectively). This conclusion does differ from other reports,

which also indicate that most spam comes from the U.S., but to a much lesser degree.

1Although some ASes span multiple countries, typically even large transit providers have different
AS numbers for backbone networks in different countries. In any case, we use the primary country
where the AS is based.
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The distribution of spam by country, when compared to the statistics for legitimate

email (Table 3.3), also suggests that, in some cases, assigning a higher level of suspi-

cion according to an email’s country of origin may be an effective filtering technique

for some networks.

3.3.3 Sending Patterns of Spammers

Finding 3.3.5 (Transience of Spammers) Individual spammer IP addresses are

transient: a large majority send emails to our sinkholes only once.

Individual IP addresses are far more transient than IP address ranges. Figure 3.8

shows that even though a few IP addresses sent more than 10,000 emails to our

spam trap, about 85% of client IP addresses sent less than 10 emails to the sinkhole

in the entire 17 month period, indicating that targeting an individual IP address

might not help mitigate spam without sharing information across domains. This

finding has an important implication for spam filter design: Though the individual

IP addresses from which spam is received changes from day-to-day, the fact that

spam continually comes from the same IP address space suggests that incorporating

these more persistent features may be more effective, particularly in portions of the

IP address space that send either mostly spam or mostly legitimate email.

Longitudinal Study. In this Section, we investigate how the sending patterns of

spammers change over the 6.5 year longitudinal trace. Specifically, we investigate two

artifacts: (1) what fraction of spammers are “fresh”, i.e., ones that send email to our

sinkhole for the first time in a long period (e.g., one month); and (2) what fraction

of spammers maintain the behavior of sending spam to our sinkhole just once within

the 1-month observation period. Both techniques would hinder the ability to reliably

blacklist a spammer’s IP address.

Finding 3.3.6 (Fraction of “Fresh” Spammers (Longitudinal Study)) Well over
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Figure 3.8: The number of distinct times that each client IP sent mail to our sinkhole
(regardless of the number emails sent in each batch).

90% of spammers we see at our spam trap in a month were not observed for the pre-

vious one month, and approximately 90% were not seen for the previous two months.

Table 3.4 shows the fraction of spamming IP addresses we did not observe at our

sinkhole in the preceding month before the spam was received, and the amount of

spam due to such fresh IPs each month. 90% or more of the IPs that sent spam to our

sinkhole are “fresh” by this measure; even if we “look back” for two months instead

of one month, this fraction does not decrease. For example, 96.5% of IPs seen during

October 2006 at our spam trap were not seen for at least 1 month before, and 92.9%

were not seen for at least 2 months. The overwhelming number of such fresh addresses

indicates that a single domain—or even a small group of domains—are unlikely to

be able to filter spam effectively using just IP-based blacklisting. We also note that

the fraction of fresh IPs remains consistent over time, indicating that blacklists will

continue to have a hard time keeping up with such fresh IP addresses.
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Table 3.4: The fraction of spamming IPs that have not been seen in the previous
month (“fresh” IPs), and the fraction of spam from such IPs.

Month % IPs that are “fresh” % Spam from fresh IPs
11/2004 88.9% 28.1%
11/2005 92.3% 44.0%
10/2006 96.5% 49.6%
11/2007 92.2% 38.1%
08/2008 94.2% 43.7%
11/2009 94.0% 31.3%
11/2010 91.5% 32.3%

An interesting observation from Table 3.4 is the relatively small amount of spam

from such fresh IP addresses. As we show in Chapter 5, these fresh IP addresses

each send small amounts of spam to many domains, implying that only a view from

multiple vantage points can reveal the true magnitude of the volume of spam sent by

these IPs. The majority of spam to our spam trap is being sent by a small fraction

(less than 10%) of spammers. We expect, however, that such high-volume spammers

will be easily filtered at large mail service providers, implying that the remaining

“fresh” IPs are the ones that contribute to the majority of the hard-to-filter spam.

Finding 3.3.7 (Fraction of “single-shot” Spammers (Longitudinal Study))

More than 90% of spammers we see at our spam trap in a month sent multiple spam

messages over a single 10-second window; such single-shot spammers amounted to

80.1% of all spam received in 2010.

Spam from single-shot senders. Next, we investigated whether the single-shot

nature of senders that we observed in Figure 3.14 persists over time. We calculate the

number of IPs in each month that sent email in a single short burst to our spam trap,

which is defined as a 10-second interval to account for delays at the sender and our

spam trap setup. Table 3.5 shows this finding. There is a clear trend of increasing

amounts of IPs that hit mail recipients in a single shot, and also an increasing trend
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Table 3.5: The fraction of IPs in our trace that sent email in a single shot, and the
amount of spam attributable to single-shot IPs. We define “single-shot” as an IP
sending email only within a 10-second interval.

Month % single-shot IPs % spam from single-shot IPs
11/2004 70.4% 25.0%
11/2005 78.4% 43.6%
10/2006 86.5% 67.0%
11/2007 80.1% 46.0%
08/2008 89.5% 74.2%
11/2009 90.6% 80.0%
11/2010 94.7% 80.1%

of the amount of spam attributable to such IPs. We believe that this trend further

supports anecdotal evidence about a bot behavior: spammers, in an attempt to avoid

blacklisting, use their bots to hit one domain at a time and do not return to the same

domain for months. Moreover, to maximize the amount of spam delivered, nearly all

these single-shot bots send multiple messages at a time, which amounts to 80.1% of

received spam by the end of 2010.

3.3.4 The Effectiveness of Blacklists

Given the transience of each IP address sending spam to our sinkhole (i.e., the results

shown in Figure 3.8), we suspected that filtering based on IP address, a method

commonly employed by DNSBLs, would be affected by these techniques. To test this

hypothesis, we used the results from real-time DNSBL lookups performed by Mail

Avenger to 8 different blacklists at the time the mail was received .

Figure 3.9 indicates that IP-based blacklisting is still working reasonably well if

many blacklists are consulted simultaneously: Although 20% of spam came from IP

addresses that were not listed in any blacklist, (as shown by the middle line “All

spam”, where about 80% spam was listed in at least one blacklist), more than 50%

of such spam was listed in two or more blacklists, and 80% was listed in two or more

blacklists. Unfortunately, the 20% which were not listed in any blacklist are likely to

55



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

F
ra

ct
io

n
 o

f 
al

l 
sp

am
 r

ec
ei

v
ed

Minimum number of DNSBLS listing this spammer

Spam from bobax drones
All spam

Spam from transient BGP announcements

Figure 3.9: The fraction of spam emails that were listed in a certain number of
blacklists or more, at the time each mail was received.

cause the most uncaught spam; this was our motivation in designing SpamTracker, a

behavioral blacklisting system described in Chapter 5.

More troubling, however, is that the spam that we received from spammers using

“BGP spectrum agility” techniques (Section 3.5) are not blacklisted nearly as much:

half of these IP addresses do not appear in any blacklist, and only about 30% of these

IP addresses appear in more than one blacklist.

Finding 3.3.8 (Effectiveness of blacklists) Nearly 80% of all spam was received

from mail relays that appear in at least one of eight blacklists. A relatively higher

fraction of Bobax drones were blacklisted, but relatively fewer IP addresses sending

spam from short-lived BGP routes were blacklisted—only half of these mail relays

appeared in any blacklist.
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Although this finding appears to suggest that DNSBLs are effective at identifying

most types of spam based on IP address, the reality is actually not as bright as it

appears. First, this result is based on an aggressive approach that sends queries

to eight blacklists; Figure 3.10 shows the cumulative fraction of spam listed in each

blacklist, from most aggressive DNSBL to least aggressive and shows that even the

most aggressive blacklist, Spamcop, only lists about half of all spam received. Second,

many of the more aggressive blacklists are known to have a significant number of

false positives. Finally, even aggressive mechanisms, such as querying eight different

blacklists, are fairly ineffective at identifying IP addresses using more sophisticated

cloaking techniques (e.g., the BGP spectrum agility technique, which we discuss in
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more detail in Section 3.5).

Longitudinal Study. We expect that spammers use techniques such as fresh IPs

and single-shot spamming to escape blacklisting. Because our spam collection in-

frastructure automatically queries the recipient IP address in one of six blacklists.2,

we can quantify exactly how well spammers were escaping blacklisting with fresh IP

addresses versus previously seen IPs.

We studied the difference in listing behavior between “fresh”, previously unseen

IPs (as defined earlier) and IPs that have been seen in the past. Figure 3.11 plots the

percentage of IPs that were not listed in one of six DNS blacklists on arrival. The three

plots correspond to sender IPs in the “fresh” set, the remaining “seen” sender IPs, and

finally, fresh IPs which were only listed by Spamhaus’s policy blacklist (PBL) [123].

Finding 3.3.9 (Listing status of “Fresh” IPs (Longitudinal Study)) A signif-

icant fraction of spamming IPs—nearly 40% of all fresh IPs in 2007—are not listed in

any of 6 blacklists at the time the mail was received. This fraction goes up to 50% if we

also discount fresh IPs only listed by policy (and not by actual confirmation of spam),

indicating that spammer techniques are successfully avoiding listing in blacklists, and

that coordinated detection methods are necessary.

The IPs listed in the PBL are put on the blacklist not due to evidence of malicious

behavior, but because they were identified by their ISP as belonging to a dynamic IP

address space that should typically not be making direct SMTP connections to remote

mail recipients. Because of the chance of false positives due to legitimate residential

senders being blacklisted, many mail server administrators do not reject email using

the PBL alone. Hence, we include a third plot that captures the listing status of

fresh IP addresses that were listed only in the PBL. Note that we only have PBL

2Two out of the eight blacklists we queried in 2004 have shut down since, and we exclude these
blacklists in our longitudinal study.
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lookup information from 2008 onwards. We see that fresh IPs have a significantly

lower listing rate than “seen” IPs, and this listing rate is even worse when PBL is not

consulted: In November 2010, about 32% of fresh IPs were not listed in any blacklist

at all, and when adding fresh IPs listed only in the PBL, the fraction jumps to over

51%.

3.3.5 Message Size Distribution of Spam

In this section, we study the average message size distribution of spam across our

longitudinal trace. As illustrated in Figure 3.12, we find that most months have an

average of 1000 bytes or less, with a significantly higher month correlating with the

peak of PDF spam. Although we do not have a longitudinal legitimate email trace to

compare message size growth, we believe that legitimate email will exhibit a higher

average and a higher standard deviation; indeed, the SNARE algorithm [51] uses
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message size as one of the discriminating features in designing its spam classifier.

Finding 3.3.10 (Message Size Distribution of Spam (Longitudinal Study))

Average message sizes of spam remain small and approximately constant over time,

indicating that bots continue to churn out large volumes of small spam messages to

efficiently use the traditionally slow uplinks in home Internet connections.

3.4 Spam from Botnets

In this section, we amass circumstantial evidence that suggests that a majority of

spam originates from bots. Although, given our limited datasets, we cannot determine

a precise fraction of the total amount of spam that is coming from bots, we use our

trace of “Bobax” command and control data to study the patterns of spam that

are being sent from hosts that are known to be bots. First, we study the activity

profile of drones from the “Bobax” botnet and find that the IP address space where

we observe worm activity bears close similarity to the IP address space where we
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observed spamming activity (Finding 3.3.5). Second, we observe that about 70%

of all remote hosts spamming our sinkhole—and 95% of hosts for which we could

attribute some operating system—appear to be running Windows; additionally, these

hosts each send relatively low volumes of spam to the sinkhole, regardless of their

persistence.

3.4.1 Bobax Topology

We studied the prevalence of spamming hosts versus the prevalence of known Bobax

drones to better understand how the distribution of IP addresses of Bobax-infected

hosts compared to the IP distribution of spammers in general. Figure 3.13 shows the

results of this analysis; the distribution of all Bobax-infected hosts is quite similar to

that of the distribution of all spammers (Figure 3.4).
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Finding 3.4.1 (Bobax vs. spammer distribution) Spamming hosts and Bobax

drones have similar distributions across IP address space, which indirectly suggests

that much of the spam received at the sinkhole may be due to botnets such as Bobax.

This similarity provides evidence of correlation, not causality, but the fact that the

distribution of IP addresses from which spam is received more closely resembles botnet

activity than the spread of IP addresses of legitimate email suggests that a significant

amount of spam activity may be due to botnet activity.

Although the range 60.* – 67.* has a significant fraction of spamming IP addresses

(Figure 3.4), we see relatively less spam from Bobax drones from this space, which led

us to suspect that spammers may be using techniques other than botnets for sending

spam from many of the hosts in this range. Indeed, in Section 3.5, we present findings

that suggest that one or more sophisticated groups of spammers appear to be sending

spam from a large number of machines (or, perhaps, a smaller number of machines

with changing IP addresses), numbered from portions of unused IP space within this

range that are unroutable except for when they are sending spam.

3.4.2 Operating Systems of Spamming Hosts

In this section, we investigate the prevalence of each operating system among the

spam we received, as well as the total amount of spam we received from hosts of each

type. For this purpose, we used the passive OS fingerprinting tool, p0f, which is

incorporated into Mail Avenger; thus, we can attribute an operating system to each

remote host that sends us spam. Using this technique, we were able to identify the

operating system for about 75% of all hosts from which we received spam. Table 3.6

shows the results of this study. Roughly 70% of the hosts from which we receive

spam, and 95% of these hosts to which we could attribute an operating system, run

Windows; this fraction is consistent with the fact that roughly 95% of all hosts on

the Internet run Windows [87].
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More striking is that, while only about 4% of the hosts from which we receive spam

are from hosts are running operating systems other than Windows, this small set of

hosts appears to be responsible for at least 8% of the spam we receive. The fraction,

while not overwhelmingly large, is notable because of the conventional wisdom that

most spam today originates from compromised Windows machines that are serving

as botnet drones. As recent research has shown, spammers continue to seek out

open relays and proxies to relay large volumes of spam [90]; we expect that these

non-Windows machines are likely such relays or “high-volume” spammers hosted on

spammer-friendly hosting providers.

Finding 3.4.2 (Prevalence of spam relays by OS type) About 4% of the hosts

sending spam to the sinkhole are not Windows hosts but our sinkhole receives about

8% of all spam from these hosts.

A significant fraction of the spamming infrastructure is apparently still Unix-based,

likely indicating open relay servers or high-volume spam servers hosted in rogue host-

ing providerrs.3

3.4.3 Spamming Bot Activity Profile

The results in Section 3.4.2 indicate that an overwhelming fraction of spam is sent

from Windows hosts. Because a very large fraction of spam comes from Windows

hosts, our hypothesis is that many of these machines are infected hosts that are bots.

In this section, we investigate the characteristics of spamming hosts that are known

to be Bobax drones. Specifically, we seek to answer the following three questions:

1. Intersection: How many of the known Bobax drones send spam to our sink-

hole?

3Alternatively, this spam might be sent from Windows machines whose stacks have been modified
to emulate those of other operating systems. Although we doubt that this is likely, since most spam
filters today do not employ p0f checks, we acknowledge that it may become more common in the
future, especially as spammers incorporate these techniques.
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Table 3.6: The operating system of each unique sender of received spam, as deter-
mined by passive OS fingerprinting.

Operating System Clients Total Spam

Windows 854404 (70%) 5863112 (58%)
- Windows 2000 or XP 604252 (49%) 4060290 (40.2%)
- Windows 98 13727 (1.1%) 54856 (0.54%)
- Windows 95 559 (<0.1%) 2797 (<0.1%)
- Windows (other/unconfirmed) 235866 (19%) 1745169 (17.2%)

Linux 28132 (2.3%) 557377 (5.5%)
FreeBSD 6584 (0.5%) 152456 (1.5%)
MacOS 2944 (0.2%) 46151 (0.4%)
Solaris 1275 (< 0.1%) 18084 (0.2%)
OpenBSD 797 (< 0.1%) 21496 (0.2%)
Cisco IOS 736 (< 0.1%) 5949 (<0.1%)
NetBSD 44 (< 0.1%) 327 (<0.1%)
HP-UX 31 (< 0.1%) 120 (<0.1%)
Tru64 26 (< 0.1%) 143 (<0.1%)
AIX 23 (< 0.1%) 366 (<0.1%)
OpenVMS 18 (< 0.1%) 62 (<0.1%)
IRIX 7 (< 0.1%) 62 (<0.1%)

Other/Unidentified 128580 (10.4%) 1212722 (12%)
No Fingerprint 204802 (16.7%) 2225410 (22%)

Total 1228403 10103837
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2. Persistence: For how long does any particular Bobax drone send spam?4

3. Volume: How much of the spam from Bobax drones originates from hosts that

are only active for a short period of time?

The rest of this section explores these three questions. Although our trace sees spam

from only a small fraction of all Bobax-infected drones, this sample nevertheless can

offer insight into the behavior of spamming bots.

Intersection and prevalence. To satisfy our curiosity (and to compare with other

claims about the amount of spam coming from botnets [19]), we wanted to deter-

mine the total fraction of received spam that originated from botnets versus other

mechanisms. The circumstantial evidence in Sections 3.4.1 and 3.4.2 suggests that

the fraction of spam that originates from botnets is quite high. Unfortunately, there

are no techniques for isolating botnets from mail logs alone; we can only determine

whether a particular piece of spam originated from a botnet based on whether the IP

address of the relay sending the spam appears in our trace of machines known to be

infected with Bobax.

Even this information is not sufficient to answer questions about the amount of

spam coming from botnets, since machines other than Bobax-infected hosts may be

enlisted in spamming botnets. Indeed, good answers to this question depend on

both additional vantage points (i.e., sinkhole domains) and better botnet detection

heuristics and algorithms. Not only will more vantage points and better detection

algorithms aid analysis, but they may also prove useful for massively collaborative

spam filtering—identification of botnet membership, for example, could prove a very

effective feature for identifying spammers.

4Previous work has noted that the “DHCP effect” can create errors in estimation for both per-
sistence and prevalence (e.g., a single host could dynamically be assigned different IP addresses over
time) [85]. Although the DHCP effect can introduce problems for estimating the total population of
a group of spammers, it is not as problematic for the questions we study in this chapter. Since one
of our objectives is to study the effectiveness of IP-based filtering (rather than, say, count the total
number of hosts), we are interested more in measuring the persistence of IP addresses, not hosts.

65



At our spam sinkhole, we receive spam from only 4,693 of the 117,268 Bobax-

infected hosts in our command-and-control trace. This small (though certainly non-

negligible) view into the Bobax botnet emphasizes the need for observing spamming

behavior at multiple domains to observe more significant spamming patterns of a

botnet. Nevertheless, this set of hosts that appear both in our spam logs and in the

Bobax trace can provide useful insight into the spamming behavior and network-level

properties of individual bots; it also appears to be a reasonable cross-section of all

spamming bots (Figure 3.13 indicates that the IP distribution of bots from which

our sinkhole receives spam is quite similar to the distribution of all spamming hosts

across IP address space as shown in Figure 3.4).

Persistence. Figure 3.14 shows the persistence of each Bobax-infected IP address

that sent spam to the sinkhole. The figure indicates that the majority of botnets make

only a single appearance in our trace; these “single shot” bots account for roughly

25% of all spam that is known to be coming from Bobax drones.

Finding 3.4.3 (Single-shot bots) More than 65% of IP addresses of hosts known

to be infected with Bobax send spam only once, and nearly 75% of these addresses

send spam to our sinkholed domain for less than two minutes, although many of them

send several emails during their brief appearance.

Of the spam received from Bobax-infected hosts, about 25% originated from hosts

that only sent mail from IP addresses that only appeared once. The persistence

of Bobax-infected hosts appears to be mildly bimodal: although roughly 75% of

Bobax drones persist for less than two minutes, the remainder persist for a day or

longer, about 50 persist for about six months, and 10 persist for entire length of the

trace. Although these short-lived bots do not yet send the majority of spam coming

from botnets, this “single shot” technique may become more prominent over time as

network-level filtering techniques improve and spammers employ more sophisticated
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Figure 3.14: Bobax drone persistence.

evasion techniques.

Because most bot IP addresses are short-lived, we hypothesized that IP-based

blacklists (e.g., DNSBL filtering) would be somewhat ineffective for blocking spam. To

our surprise, Figure 3.9 shows that the botnet hosts from which we received spam were

actuallymore likely to be listed than the typical spamming mail relay (although, as we

describe in Section 3.3.4, the technique appears to be somewhat ineffective in general).

Intuitively, this result is justifiable, because other domains likely received spam from

drones with the same IP addresses. This result also demonstrates the benefits of

collaborative spam filtering, which facilitates the identification of spammers that send

only a single piece of spam but send spam to multiple domains.

Volume and Rate. Figure 3.15 shows the amount of spam sent for each Bobax

drone, plotted against the persistence of each drone. This graph shows that most

Bobax drones do not send a large amount of spam, regardless of how long the drone

was active. Indeed, nearly all of the Bobax drones observed in our trace send fewer
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Figure 3.15: Number of spam email messages received vs. bobax drone persistence.

than 100 pieces of spam over the entire period of the trace. This finding suggests that

spammers have the ability to send spam from a large number of hosts, each of which

is typically used for a short period of time and nearly always used to send only a

relatively small amount of spam. Thus, not only are IP-based filtering schemes likely

to be ineffective, but volume-based detection schemes for spamming botnets may also

be ineffective.

Finding 3.4.4 (Spam arrives from bots at very low rates) Regardless of per-

sistence, 99% of bots sent fewer than 100 pieces of spam to our domain over the entire

trace.

Most persistent bots sent fewer than 100 pieces of spam to our sinkhole, indicating

that typical rates of spam from Bobax drones, for spam received by a single domain,

are less than a single piece of spam per bot per day.
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3.5 Spam from Short-lived BGP Announcements

Many spam filtering techniques leverage the ability to positively identify a spammer

by its IP address. For example, DNS blacklists catalog the IP addresses of likely

spammers so that spam filters may later send queries to determine whether an email

was sent by a likely spammer. Of course, this technique implicitly assumes a connec-

tion between an IP address and the physical infrastructure that a spammer uses to

distribute email. In this section, we study the extent to which spammers use such

transient identities by examining spam received by the sinkhole domain that coincides

with short-lived BGP route announcements.

Informal anecdotes have claimed that some spammers briefly advertise portions

of IP address space, send spam from mail relays with IP addresses in that space, and

subsequently withdraw the routes for that space after the relays have sent spam [9,

124, 133]. This practice makes it difficult for end users and system administrators to

track spam sources because the network from which a piece of spam was sent is likely

to be unreachable at the time a user lodges a complaint. Although it is technically

possible to log BGP routing announcements and mine them to perform post-mortem

analysis, the relative difficulty of doing so (especially since most network operators

do not monitor interdomain routes in real time) essentially makes these spammers

untraceable.

Little is known about (1) whether the technique is used much in practice (and

how widespread it is), (2) what IP space spammers tend to use to mount these types

of attacks and (3) the announcement patterns of these attacks. This study seeks to

answer two sets of questions about the use of short-lived BGP routing announcements

for sending spam:

• Prevalence across ASes and persistence across time. How many ASes use short-

lived BGP routing announcements to send spam? Which ASes are the most
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guilty, in terms of number of pieces of spam sent, and in terms of persistence

across time?

• Length of short-lived BGP announcements. How long do short-lived BGP an-

nouncements last (i.e., long enough for an operator to catch)?

As we will see, sending spam from IP address space corresponding to short-lived

route announcements is not, by any means, the dominant technique that spam is

sent today (when this technique is actively being used, it accounts for no more than

10% of all spam we receive, and it generally accounts for much less). Nevertheless,

because our domain only observes spamming behavior from a single vantage point,

this technique may be more common than we are observing. Additionally, because

this technique is not well defended against today, and because it is complementary

to other spamming techniques (e.g., it could conceivably be used to cloak botnets),

we believe that this behavior is worth attention, particularly since some of the tech-

niques we observe (i.e., hijacking large prefixes) represents a significant departure

from conventional wisdom on prefix hijacking.

3.5.1 BGP Spectrum Agility

Figure 3.16 shows an example of 61.0.0.0/8 being announced by AS 4678 for a brief

period of time on September 30, 2005, during which spam was also sent from IP

addresses contained within this prefix.

To investigate further the extent to which this technique is used in practice, we

performed a joint analysis of BGP routing data (described in Section 3.2.4) and the

spam received at our sinkhole, which is co-located with the BGP monitor. Given

the sophistication required to send spam under the protection of short-lived routing

announcements (especially compared with the relative simplicity of purchasing access

to a botnet), we doubted that it was particularly prevalent. To our surprise, a small

number of parties appear to be using this technique to send spam quite regularly. In
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Figure 3.16: Observation of a short-lived BGP route announcement for 61.0.0.0/8,
spam arriving from mail relays in that prefix, and the subsequent withdrawal of that
prefix.

fact, looking in further detail at the several (prefix, AS) combinations, we observed

the following remarkable patterns:

• AS 21562, an Internet service provider (ISP) in Indianapolis, Indiana (according

to ra.net and arin.net), originated routing announcements for 66.0.0.0/8.

• AS 8717, an ISP in Sofia, Bulgaria, originated announcements for 82.0.0.0/8.

• In a third, less persistent case, AS 4678, an ISP in Japan, Canon Network

Communications (according to apnic.net), originated routing announcements

for 61.0.0.0/8.

We were surprised that three of the most persistent prefixes involved in short-lived
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Figure 3.17: Observation of a short-lived BGP route announcement for 82.0.0.0/8,
spam arriving from mail relays in that prefix, and the subsequent withdrawal of that
prefix.

BGP routing announcements were so large. Although some short-lived routing an-

nouncements may be misconfigurations [79], the fact that these routing announce-

ments continually appear, that they are for large address blocks, and that they typi-

cally coincide with spam arrivals (as shown in Figure 3.16) raised our suspicion about

the veracity of these announcements. Indeed, not only are these route announce-

ments short-lived and hijacked, but they are also for large address blocks. Although

the use of large address blocks might initially seem surprising, the distribution of the

IP addresses of hosts sending spam using this technique suggests the following theory.

Finding 3.5.1 (Spectrum Agility) A small, but persistent, group of spammers ap-

pear to send spam by (1) advertising (in fact, hijacking) large blocks of IP address

space (i.e., /8s), (2) sending spam from IP addresses that are scattered throughout

that space, and (3) withdrawing the route for the IP address space shortly after the

spam is sent.

72



We have called this technique “spectrum agility” because it allows a spammer the

flexibility to use a wide variety of IP addresses within a very large block from which

to send spam. The large IP address block allows the mail relays to “hop” between

a large number of IP addresses, thereby evading IP-based filtering techniques like

DNSBLs. Judging from Figure 3.9 and our analysis in Section 3.3.4, the technique

seems to be rather effective. As an added benefit, route announcements for shorter

IP prefixes (i.e., larger blocks of IP addresses) are less likely to be blocked by ISPs’

route filters than route announcements or hijacks for longer prefixes.

Upon further inspection, we also discovered the following interesting features:

(1) the IP addresses of the mail relays sending this spam are widely distributed across

the IP address space; (2) the IP addresses from which we see spam in this address

space typically appear only once; (3) on February 6, 2006, attempts to contact the

mail relays that we observed using this technique revealed that that roughly 60-

80% of these hosts were not reachable by traceroute; (4) many of the IP addresses

of these mail relays were located in allocated, albeit unannounced and unused IP

address space; and (5) many of the AS paths for these announcements contained

reserved (i.e., to-date unallocated AS numbers), suggesting a possible attempt to

further hamper traceability by forging elements of the AS path. We are at a loss to

explain certain aspects of this behavior, such as why some of the machines appear to

have IP addresses from allocated space, when it would be simpler to “step around”

the allocated prefix blocks, but, needless to say, the spammers using this technique

appear to be very sophisticated.

Whether spammers are increasingly using this technique is inconclusive. Still,

many of the ASes that send the most spam with this technique also appear to be

relative newcomers. Variants of this type of technique may be used in the future

to make it more difficult to track and blacklist spamming hosts, particularly since

the technique allows a spammer to relatively undetectably commandeer a very large
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Figure 3.18: CDF of the length of each short-lived BGP episode, from September
2005–December 2005.

number of IP addresses.

3.5.2 Prevalence of BGP Spectrum Agility

Because of the volume of data and the relatively high cost of performing longest-prefix

match queries, we performed a more extensive analysis on a subset of our trace, from

September 2005 till December 2005, to detect the fraction of spam coming from short-

lived announcements and to determine a reasonable threshold for studying short-lived

announcements across the entire trace. Figure 3.18 shows that, for all of the IP ad-

dresses for which we received spam over the course of these four months, almost 99%

of the corresponding BGP routing announcements were announced continuously for

at least a day. In other words, most of the received spam corresponded to routing

advertisements that were not short-lived. On the other hand, this technique appears

to be used intermittently, and during time periods when this activity was more preva-

lent, as much as 10% of all received spam coincides with routing announcements that

lasted less than a day.
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Finding 3.5.2 (Prevalence: Spam from Short-Lived Routes) Only about 1%

of spam was received from route that persisted for less than a single day, although

during intervals when this technique was used more commonly, as much as 10% of all

spam coincided with routes that lasted less than a day.

Unfortunately for traditional filtering techniques, the spammers who are the most

persistent across time are, for the most part, not the spammers who send the most

spam using this technique. Indeed, only two ASes—AS 4788 (Telekom Malaysia) and

AS 4678 (Canon Network Communications, in Japan)—appear among both the top-

10 most persistent and most voluminous spammers using short-lived BGP routing

announcements.

3.5.3 How Much Spam from Spectrum Agility?

A comparatively small fraction of spam originates from IP addresses that correspond

to short-lived BGP route announcements (i.e., routing announcements that persist

for less than a day) that coincide with spam arrival. The total amount of spam

received as a result of this technique seems to pale in comparison to other techniques:

no more than 10% of all spam—and more likely as little as 1%—appears to be sent

using this technique. Although this technique is not apparent for most of the spam

we receive (after all, a botnet makes traceability difficult enough), the few groups

of spammers that employ this technique typically use it quite regularly. We also

observed that many of the ASes using this technique for the longest period of time

do not, in fact, rely on this technique for sending most of their spam. Even the most

prolific spamming AS in this group, Malaysia Telekom, appears to send only about

15% of their spam in this fashion.

Finding 3.5.3 (Persistence vs. Volume) The ASes from where spammers most

continually use short-lived route announcements to send spam are not the same ASes

from which the most spam originates via this technique.
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Many ASes that advertise short-lived BGP routing announcements and send large

volumes of spam from these routes do not appear to be hijacking IP prefixes. In the

case where spam volume is high, these short-lived routing announcements may simply

coincide with spam being sent via another means (e.g., from a botnet). The ASes that

persistently advertise short prefixes, however, appear to be doing so intentionally.

3.6 Lessons for Better Spam Mitigation

Existing spam mitigation techniques have focused on either throttling senders (e.g.,

recent attention has focused on cost-based schemes [42, 50]) or having receivers filter

spam according to the content of a message. The results of this chapter, however,

highlight several important lessons that strongly indicate that devoting more attention

to the network-level properties of spammers that may be a useful addition to today’s

spam mitigation techniques. Using network-level information to help mitigate spam

not only provides a veritable font of new features for spam filters, but network-level

properties have two important properties that could potentially lead to more robust

filtering.

1. Network-level properties are less malleable than those based on an email’s con-

tents.

2. Network-level properties may be observable in the middle of the network, or

closer to the source of the spam, which may allow spam to be quarantined or

disposed of before it ever reaches a destination mail server.

From our findings, we derive the following lessons regarding the network-level behavior

of spammers that could help in designing better mitigation techniques.

Lesson 1 Spam filtering requires a better notion of host identity.

We observed a significant amount of spam from “fresh” bots, “single-shot” bots, and

spammers using spectrum agility. Short-lived bots, short-lived BGP route hijacks,
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and dynamic addressing effects foil the common practice of using a host’s IP address

as its identity, e.g., in IP blacklisting. This finding suggests that observations from a

single vantage point cannot be used to identify who is a spammer and who is not.

Lesson 2 Detection techniques based on aggregate behavior are more likely to expose

nefarious behavior than techniques based on observations of a single IP address.

Although comprehensive IP-based blacklisting is somewhat effective, blacklisting tech-

niques may also benefit by exploiting other network-level properties such as IP address

ranges or prefixes, many of which (e.g., 80.*–90.*) send mostly spam. This indicates

that IP prefix-based or ownership-based blacklisting—already followed to some extent

by Spamhaus, through its “Registry of Known Spammers” (ROKSO) list—would be

effective.

Lesson 3 Securing the Internet routing infrastructure is a necessary step for bolster-

ing identity and traceability of email senders.

Although BGP spectrum agility is by no means responsible for most received spam,

several characteristics make the technique extremely troubling. Most notably, the

technique can be combined with other spamming techniques (possibly even spamming

with botnets) to give spammers more agility in evading IP-based blacklists. Indeed,

our analysis of DNSBLs indicates that spammers may already be doing this. A routing

infrastructure that instead provided protection against route hijacking (specifically,

unauthorized announcement of IP address blocks) would make BGP spectrum agility

attacks more difficult to mount.

Lesson 4 Many network-level features are robust even across a period of 6 years,

indicating that these features can be incorporated relatively easily into spam filters

and can be quite effective at detecting spam that is missed by other techniques.
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We found that features such as the network prefix and AS that originated an email,

its size distribution, sending behavior, listing status in DNSBLs, etc. can potentially

be used as features to classifiers.

Given the benefits that network-wide analysis could provide for stemming spam,

we imagine that the ability to witness the network-level behavior of spammers across

multiple distinct domains could also expose patterns that are not evident from a single

domain. One organization might be able amass such a dataset either by sinkholing

a large number of domains; for example, Project Honeypot [94] solicits donations of

MX records for registered domains that do not receive email (though its corpus is

still significantly smaller than ours). As we have discovered thus far from our initial

experiences establishing new sinkholes, attracting spam to a new domain takes some

effort (we found some amusement in the difficulty of attracting spam when we actually

wanted to receive it). In addition to using sinkholes, network operators might share

network-level statistics of received email from real network domains to pre-emptively

detect and filter spamming hosts.

3.7 Summary

This chapter has studied the network-level behavior of spammers using a joint analysis

of a unique combination of datasets—a 17-month-long trace of all spam sent to a single

domain with real-time traceroutes, passive TCP fingerprints, and DNSBL lookup

results; BGP routing announcements for the network where the sinkholes are located;

command and control traces from the Bobax spamming botnet; and mail logs from a

large commercial email provider.

This analysis allowed us to study some new and interesting questions that should

guide the design of better spam filters in the future, based on the lessons in Section 3.6.

We studied network-level behavior of spammers and compared these characteristics to

those of legitimate email, noting some differences that could help identify spammers
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by IP address space or AS. We also used “ground truth” Bobax drones to better

understand the characteristics of spamming botnets, and we found that most of these

drones do not appear to revisit the same domain twice. While this property does not

appear to hamper the use of blacklists for identifying bots (emphasizing the benefits

of collaborative spam filtering), we found that blacklists were remarkably ineffective

at detecting spamming relays that sent spam from IP addresses scattered throughout

a briefly announced (and typically hijacked) IP address block—a new technique we

call “BGP spectrum agility”. This technique is lethal because it makes traceability

and blacklisting significantly more difficult. Spam filters that incorporate network-

level behavior could not only mitigate this class of attack and many others, but they

could also prove to be more resistant to evasion than content-based filters.

We complete this analysis by looking at a longitudinal trace of 6 years of spam

data from the same sinkhole to investigate how well certain network-level features are

useful in terms of robustness and longevity. We find that many unique network-level

features, such as the IP blocks from which spammers operate, the mean size of spam

messages, the ASes and countries most responsible for spam, ther sending behavior

(e.g., whether they have been seen before, and the number of emails sent in a “single

shot”, etc. all provide good indicators of the nature
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CHAPTER 4

IDENTIFYING BOTNETS THAT PERFORM IP

BLACKLIST RECONNAISSANCE

4.1 Introduction

Botnets are the engines behind much malicious activity on the Internet, ranging from

spam to denial of service to click fraud [33], since they allow attackers to distribute

tasks over thousands of hosts distributed across the Internet. A botnet is network of

compromised hosts (“bots”) connected to the Internet under the control of a single en-

tity (“botmaster”, “controller”, or command and control) [22]. The large cumulative

bandwidth and relatively untraceable nature of spam from bots makes botnets an at-

tractive choice for large-scale spamming. Previous work provides further background

on botnets [22, 25].

Identifying members of botnets could help stem these attacks, but passively detect-

ing botnet membership (i.e., without disrupting the operation of the botnet) would

be more desirable. The last chapter also demonstrated that botmasters use their bots

cleverly: they ensure that bots “cycle” between their targets, and techniques such as

hitting a target (e.g., a recipient mail server) from previously unseen IP addresses, or

by sending multiple spam messages at one time, are effective.

Seeing that a significant fraction of bots that send email to our spam trap were

not listed in any DNS-based blacklist, we wondered whether botmasters used these

unlisted bots intentionally to send spam—i.e., whether the botmaster actually queried

the same DNS blacklists we used to figure out which bots in a botnet were listed and

which ones were not. If this activity did indeed occur, we hypothesize that we might

be able to identify members of the botnet not using attack data, but by passively
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monitoring queries to the blacklist.

We performed counter-intelligence based on the insight that botmasters them-

selves perform DNSBL lookups to determine whether their spamming bots are black-

listed. Using heuristics to identify which DNSBL lookups are perpetrated by a bot-

master performing such reconnaissance, we were able to compile a list of likely bots.

This chapter studies the prevalence of DNSBL reconnaissance observed at a mirror of a

well-known blacklist for a 45-day period, identifies the means by which botmasters are

performing reconnaissance, and suggests the possibility of using counter-intelligence

to discover likely bots. We find that bots are performing reconnaissance on behalf

of other bots. Based on this finding, we suggest counter-intelligence techniques that

may be useful for early bot detection.

If network operators and system administrators could reliably determine whether

a host is a member of a botnet, they could take appropriate steps towards mitigating

the attacks they perpetrate. Although previous work has described an active detec-

tion technique using DNS hijacking technique and social engineering [25], there are

few efficient methods to passively detect and identify bots (i.e., without disrupting

the operation of the botnet). Indeed, detecting botnets proves to be very challeng-

ing: a victim of a botnet attack can typically only observe the attack from a single

network, from which point the attack traffic may closely resemble the traffic of le-

gitimate users. Regrettably, the state-of-the-art in botnet identification is based on

user complaints, localized honeypots and intrusion detection systems, or through the

complex correlation of data collected through darknets [71].

Using passive analysis of lookup traffic to a DNS-based blackhole list (DNSBL),

we find evidence of a new, stealthy phenomenon: we find that spammers themselves

are looking up the listing status of bots in DNSBLs. Many Internet Service Providers

(ISPs) and enterprise networks use DNSBLs to track IP addresses that originate

spam, so that future emails sent from these IP addresses can be rejected. For the same
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reason, botmasters are known to sell “clean” bots (i.e., not listed in any DNSBL) at a

premium. This chapter addresses the possibility of performing opportunistic counter-

intelligence to help us discover identities of bots, based on the insight that botmasters

themselves must perform “reconnaissance” lookups to determine their bots’ blacklist

status. We propose a set of techniques to identify botnets using passive analysis of

DNS-based blackhole list (DNSBL) lookup traffic.

The contributions of this chapter include:

1. Study of DNSBL reconnaissance techniques. We study the prevalence

of DNSBL reconnaissance by analyzing logs from a mirror of a well-known

blackhole list for a 45-day period from November 17, 2005 to December 31,

2005. Section 4.4 discusses the prevalence of the different types of reconnais-

sance techniques that we observed. Much to our surprise, we find that bots are

performing reconnaissance on behalf of other (possibly newly infected) bots.

Although some bots perform a large number of reconnaissance queries, it ap-

pears that much of the reconnaissance activity is spread across many bots each

of which issue few queries, thus making detection more difficult.

2. Passive heuristics for counter-intelligence. We develop heuristics to dis-

tinguish DNSBL reconnaissance queries for a botnet from legitimate DNSBL

traffic (either offline or in real-time), to identify likely bots. These heuristics

are based on an enumeration of possible lookup techniques that botmasters are

likely to use to perform reconnaissance, which we detail in Section 4.2. Unlike

previous detection schemes, our techniques are covert and do not disrupt the

botnet’s activity.

3. Identification of new bots. We analyze DNSBL queries that are likely be-

ing performed by botmasters to identify “clean” bots. Such reconnaissance

usually precedes the use of bots in an attack, suggesting the possibility that
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Figure 4.1: DNSBL-based Spam Mitigation Architecture.

this DNSBL counter-intelligence can be used to bolster responses. Section 4.3

demonstrates the possibility of such early warning. To validate our detection

scheme, we correlate the IP addresses of these likely bots with data collected

at a botnet sinkhole (sinkholing technique explained in previous work [25]) over

the same time period (this dataset has been used as “ground truth” for botnet

membership in previous studies [25, 106]).

4. 4. DNSBL-based countermeasures. Our heuristics could be used to detect

reconnaissance in real-time. This ability potentially allows for active counter-

measures, such as returning misleading responses to reconnaissance lookups, as

shown in Figure 4.1. We revisit this topic in Section 4.5.

4.2 Model of Reconnaiassance Techniques

This section describes our model for DNSBL reconnaissance techniques (i.e., the

techniques that botmasters may be using to determine whether bots have been black-

listed). Our goal in developing these models and heuristics is to distinguish DNSBL
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queries issued by botmasters from those performed by legitimate mail servers.1

4.2.1 Properties of Reconnaissance Queries

Our detection heuristics are based on the construction of a DNSBL query graph, where

an edge in the graph from node A to node B indicates that node A has issued a query

to a DNSBL to determine whether node B is listed. After constructing this graph, we

develop detection heuristics based on the expected spatial and temporal characteristics

of legitimate lookups versus reconnaissance-based lookups. These characteristics hold

primarily in cases when members of the botnet are not performing queries on behalf

of each other, a case that makes detecting reconnaissance more difficult, as we explain

in Section 4.2.2. As we describe below, our detection heuristics exploit both spatial

and temporal properties of the DNSBL query graph.

Property 1 (Spatial relationships) A legitimate mail server will perform queries

and be the object of queries. In contrast, hosts performing reconnaissance-based

lookups will only perform queries; they will not be queried by other hosts.2

In other words, legitimate mail servers are likely to be queried by other mail servers

that are receiving mail from that server. On the other hand, a host that is not itself

being looked up by any other mail servers is, in all likelihood, not a mail server. We

can use this observation to identify hosts that are likely performing reconnaissance:

lookups from hosts that have a high out-degree in the DNSBL query graph (i.e., hosts

that are performing many lookups) but have a low in-degree are likely unrelated to

1DNSBL queries issued by mail servers are often performed by directly querying the DNSBL,
rather than relying on a local resolver. For example, SpamAssassin [120] implements its own recursive
DNS resolver. Hosts performing reconnaissance are also unlikely to query DNSBLs using local
resolvers. Thus, in both cases, the querying IP address observed at the DNSBL correctly reflects
the end-host performing the query.

2This heuristic assumes that networks generally use the same host for both inbound and outbound
mail servers. Although this configuration is common, some large networks separate the hosts re-
sponsible for inbound and outbound mail servers. In this case, queries from the inbound mail server
might be misinterpreted as a reconnaissance attempt.
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the delivery of legitimate mail. To quantify this effect, we define the lookup ratio, λ,

of some node n as follows:

λn =
dn,out

dn,in

where dout is the number of distinct IP addresses that node n queries, and din is

the number of distinct IP addresses that issue a query for node n.3 This metric is

most effective when hosts performing reconnaissance are disjoint from hosts that are

actually used to spam, which appears to the case today.However, as reconnaissance

techniques become increasingly more sophisticated (as we describe in Section 4.2.2),

this metric may become less useful. Still, we find that this metric proves to be quite

useful in detecting many instances of DNSBL-based reconnaissance.

The temporal arrival pattern of queries at the DNSBL by hosts performing recon-

naissance may differ from temporal characteristics of queries performed by legitimate

hosts. We expect this to be the case because, whereas legitimate DNSBL lookups

are driven by the arrival of actual email, reconnaissance queries will not reflect any

realistic arrival patterns of actual email.

Property 2 (Temporal relationships) A legitimate mail server’s DNSBL lookups

reflect actual arrival patterns of real email messages: legitimate lookups are typically

driven automatically when emails arrive at the mail server and will thus arrive at a

rate that mirrors the arrival rates of emails. Reconnaissance-based lookups, on the

other hand, will not mirror the arrival patterns of legitimate email.

We may be able to exploit the fact that email traffic tends to be diurnal [41] to tease

apart DNSBL lookups that are driven by actual mail arrival from those that are

driven by reconnaissance. Discovering reconnaissance activity using this method is a

topic for future work.

3When dn,in is zero (which is commonly the case), we can simply consider λn to be a very large
number.
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4.2.2 Reconnaissance Techniques

In this section, we describe three classes of DNSBL reconnaissance techniques that

may be performed by botmasters: single-host, or third-party, reconnaissance; self-

reconnaissance; and reconnaissance using other bots. For each case, we describe the

basic mechanism, the heuristics that we can use to detect reconnaissance in each of

these cases, and how each technique may complicate detection.

Third-party Reconnaissance. In third-party reconnaissance, the botmaster per-

forms DNSBL lookups from a single host for a list of spamming bots; this host may

be the command-and-control of the botnet, or it might be another dedicated ma-

chine. In any case, we hypothesize that the machine performing the lookups in these

cases is not likely to be a mail server. Single-host reconnaissance, if performed by

a machine other than a mail server, is easily detected, because the node performing

reconnaissance will have a high value of λn.

Once detected, single-host reconnaissance may provide useful information to aid

us in revealing botnet membership. First, once we have identified a single host per-

forming such lookups, the operator of the DNSBL can monitor the lookups issued by

that host over time to track the identity of hosts that are likely bots. If the identity of

this querying host is relatively static (i.e., if its IP address does not change over time,

or if it changes slowly enough so that its movements can be tracked in real-time), the

DNSBL operator could take active countermeasures, such as intentionally returning

incorrect information about bots’ status in the blacklist, a possibility we discuss in

more detail in Section 4.5.

Self-Reconnaissance. Single-host reconnaissance is simple, but it is susceptible to

detection. To remain more stealthy, and to distribute the workload of performing

DNSBL reconnaissance, botmasters may begin to distribute these lookups across the

botnet itself. A simple (albeit sub-optimal) way to distribute these queries is to have a
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bot perform reconnaissance on its own behalf (“self-reconnaissance”); in other words,

each bot could issue a DNSBL query to itself (i.e., to determine whether it was listed)

before sending spam to the victim.

In this case, identifying a reconnaissance-based DNSBL query is fairly straightfor-

ward, because, except in cases of misconfiguration, a legitimate mail server is unlikely

to issue a DNSBL lookup for itself. Even though this technique has the advantage

of distributing the load of reconnaissance across the botnet, we did not observe this

technique being used in practice, likely because a self-query is a dead giveaway.

Distributed Reconnaissance. A more stealthy way to distribute the operation

across the botnet is to have each bot perform reconnaissance on behalf of other bots

either in the same botnet or in other botnets. For instance, note that Property 1 is

unlikely to hold: in this case, the nodes performing reconnaissance will also be queried

by other mail servers to which they send spam. As a result, these nodes are likely

to have a high dn,in, unlike nodes performing single-host reconnaissance. Ultimately,

detecting this type of reconnaissance activity may require mining temporal properties

(e.g., Property 2).

Although using the botnet itself for DNSBL reconnaissance is more discreet than

performing this reconnaissance from a single host, a network operator who positively

identifies a small number of bots (e.g., starting with a small hit-list of known bots,

probably by using a honeynet with known infected machines). As discussed in Sec-

tion 4.4, if this seed list of bots performs queries for other hosts, it is likely that these

machines are also bots.

We suspected that this mode of reconnaissance would be uncommon, possibly

because of the complexity involved in implementing and operating such a system

(e.g., keeping track of nodes in the looked-up botnet, disseminating this information

to the querying nodes etc.). Much to our surprise, we did witness this behavior; we

present these results in Section 4.4.

87



4.3 Data and Analysis

This section describes our data collection and analysis. We first describe our DNSBL

dataset and its limitations. Then, we describe how this dataset is used to construct

the DNSBL query graph described in Section 4.2.

4.3.1 Data Collection and Processing

Our study primarily involves two datasets collected from the same time period (Novem-

ber 17, 2005 to December 31, 2005): (1) the DNSBL query logs to a mirror of a large

DNSBL, and (2) the logs of bot connections to a sinkhole for a Bobax botnet [12].

Unlike most botnets, the Bobax bot is designed solely for spamming [2], increasing

the likelihood that a query for known Bobax host is the consequence of the querying

mail server having received spam from that host.

Ground Truth. Because DNS blacklists list an IP address only on confirmed ev-

idence of it belonging to a spammer, we use positive responses to DNSBL lookups

as evidence for an IP address belonging to a confirmed spammer. To verify whether

the scheme we propose is indeed able to discover additional bots not already listed

in blacklists, we compared the IP addresses in the DNSBL query graph against the

IP addresses of spammers in a large spam corpus collected at a spam honeypot (the

setup of this honeypot is described in our earlier work [106]). This spam trap has

been functioning since August 2004 and has no legitimate email addresses whatso-

ever; thus, we can use the IPs of any sender that sends email to our spam trap as

ground truth.

4.3.2 Analysis and Detection

In this section, we describe how the DNSBL query graph is constructed. Definitions

for the terminology used in our algorithm follow: (1) B, the set of IP addresses that

attempted to connect to the Bobax sinkhole during the observation period (November
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17, 2005–December 31, 2005); (2) querier, the IP address of the host that performs

a given DNSBL query; (3) queried, the IP address of the host that is looked up in

a DNSBL query; and (4) G, the DNSBL query graph constructed as a result of the

algorithm.

The graph construction algorithm takes as input a set of DNSBL query logs (we

use tcpdump for packet captures) and the set B and outputs a directed graph G.

The algorithm, summarized in Figure 4.2, consists of two main steps: parsing and

pruning. As the algorithm suggests, we prune DNSBL queries to only include edges

which have at least one end (either querier or queried) present in the set B. Pruning

is performed for efficiency reasons: the full DNSBL query logs mostly contain queries

from legitimate mail servers. Using B to prune the complete query graph allows us to

concentrate on a subgraph which has a higher percentage of reconnaissance lookups

than the unpruned graph. We recognize that our analysis will overlook reconnaissance

activity where both the querier or queried nodes are not members of B. To address

this shortcoming, we perform a query graph extrapolation after the algorithm is run.

In this step, we make a second pass over the DNSBL query logs and add edges if

at least one of the endpoints of the edge (i.e., either querier or queried) is already

present in the graph. Query graph extrapolation is repeated until no new edges are

added to G.

We then compute λn for each node in the graph (Property 1), which allows us

to identify nodes involved in reconnaissance techniques described in Section 4.2. Al-

though the results in Section 4.4 suggest that some bots have large values of λn,

techniques that use a large number bots to look each other up may be undetectable

with this metric. We are developing techniques based on Property 2 to further im-

prove our detection.
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ConstructGraph()
create empty directed graph G

/* Parsing */
for each DNSBL query:

Identify querier and queried

/* Pruning */
if querier ∈ B or queried ∈ B then

add querier and queried to G if they
are not already members of G

if there exists an edge E(querier, queried) ∈ G then

increment the weight of E(querier, queried)
else

add E(querier, queried) to G with weight 1

Figure 4.2: Algorithm to construct a DNSBL query graph

4.4 Preliminary Results

This section presents preliminary results using Property 1 to identify DNSBL re-

connaissance activity on the observed DNSBL query graph. We emphasize that the

reconnaissance being performed by bots is distinctly under the radar as far as total

DNSBL traffic is concerned: the pruned traffic amounts to less than 1% of the total

DNSBL traffic. In this section, we present two surprising results: First, botnets are

being used to perform DNSBL reconnaissance on behalf of bots in other botnets,

which has implications for botnet detection. Second, the distribution of these queries

across bots suggests that some DNSBL reconnaissance activities may be detectable

in real-time, which has implications for early detection and mitigation.

Attempts to validate our hypotheses from Section 4.2 resulted in some interesting

discoveries, including the discovery of new bots. We initially expected that most

DNSBL lookups would be third-party lookups, as described in Section 4.2.2, and

that we would be able to validate the queried nodes as being known bots. Instead,

we discovered the opposite: the nodes with the highest values of λn in the pruned

graph were known bots, while the queried nodes in the graph were new, previously
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Table 4.1: AS numbers of hosts which have the highest out-degrees. The last column
shows the number of hosts queried by this node that are known spammers (verified
using logs from our spam sinkhole).

Node # ASN of Node Out-degree known
spam-
mers

1 Everyone’s Internet (AS 13749) 36,875 12
2 IQuest (AS 7332) 32,159 7
3 UUNet (AS 701) 31,682 5
4 UPC Broadband (AS 6830) 26,502 8
5 E-xpedient (AS 17054) 19,530 4

unknown bots. Further, using data from our spam sinkhole [106], we found that some

of these nodes were Windows machines and confirmed spam originators. This finding

suggests that, in general, it may be possible to start with a set of known bots and

use the DNSBL graph to “bootstrap” the discovery of new bots.

Table 4.1 shows five of the top queriers (i.e., high out-degree nodes), all of which

are known bots from our Bobax trace. Even more interesting is the fact that a few IP

addresses queried by these nodes actually sent spam to our spam honeypot. Moreover,

nearly all of IP addresses that sent spam to our honeypot were not present in our list

of known bots. Due to the fact that our honeypot only captures a small portion of the

Internet’s spam, the fraction of total reconnaissance queries that we can confirm as

spamming bots is small. Still, we believe it strongly suggests evidence of a known bot

performing DNSBL reconnaissance on a distinct (and possibly newly compromised)

botnet.

Figure 4.3 shows the distribution of out-degrees for all querying nodes present

in the pruned DNSBL query graph. The long tail also confirms that bots already

have the capability to distribute these queries, which is cause for concern. Our view

of DNSBL queries is narrow (most querying nodes are geographically close to the

DNSBL mirror), so we expect that more vantage points of DNSBL lookups would

reveal other prominent “players”. The fact that the prominent players in our analysis
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Figure 4.3: CDF of the distribution of out-degrees for querying IP addresses.

were also bots suggests that these nodes may also be obvious candidates for the

mitigation techniques described in Section 4.5.

4.5 Countermeasures

In Section 4.4, we found that the known bots in our Bobax trace were not the targets

of lookups, but instead were issuing lookups for other, possibly newly compromised

bots. This finding suggests a possible technique that could be used for the discovery

of new bots, even without an initial list of suspects: an initial set of suspect IP

addresses could be constructed by establishing a spam trap, which according to both

previous work [106] and the observations in this chapter, appear to be largely bots.

Alternatively, a suspect node could be detected simply by identifying nodes in the

DNSBL query graph with a high value of λn. Beginning with this initial suspect list,

an operator may be able to conclude that, not only are the nodes that this node is

querying likely bots, but also the node itself is likely a bot. If there are other high-

degree nodes also querying the same bots, a detection algorithm might be able to
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“walk” the DNSBL graph (e.g., from parent to parent) to discover multiple distinct

botnets.

We believe that using such techniques to aggressively monitor botnet-based DNSBL

reconnaissance may prove to be useful for mitigating spam: as noted in our previous

work [106], most bots send a very low volume of spam to any single domain; thus,

reporting a bot to blacklists after the spam is received may not be effective.

With the ability to distinguish reconnaissance queries from legitimate queries, a

DNSBL operator might be able to mitigate spam more effectively. We speculate one

possibility as follows: an operator could tune the behavior of the blackhole list server

to mislead a botmaster, using a class of techniques we call reconnaissance poisoning.

On one hand, the DNSBL could trick the botmaster into thinking that a particular

bot was “clean” (i.e., unlisted) when in fact it was listed, which would induce the

botmaster to unwittingly send spam from blacklisted machines. On the other hand,

the DNSBL could also reply to a reconnaissance query with an indication that a host

was listed, even though it was not listed, thereby discouraging a botmaster from using

a machine that would likely be capable of successfully sending spam.

Of course, active countermeasures such as reconnaissance poisoning do run the

risk of false positives: if we mistakenly attribute a legitimate DNSBL query to a

reconnaissance-based query, we could mislead a legitimate mail server into either mis-

takenly accepting spam that would have otherwise been rejected or, more regrettably,

rejecting legitimate email. Such techniques could also be defeated if the botmaster

queries multiple blacklist providers that maintain independent lists. Investigating

the extent to which our detection metrics are subject to false positives, as well as the

extent to which these false positives interfere with a legitimate mail server’s filtering

techniques, is part of our ongoing work.
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4.6 Summary

This chapter has developed techniques and heuristics for detecting DNSBL reconnais-

sance activity, whereby botmasters perform lookups against the DNSBL to determine

whether their spamming bots have been blacklisted. We first developed heuristics for

counter-intelligence based on several possible ways we figured reconnaissance was

being performed. We then studied the prevalence of each of these reconnaissance

techniques. Much to our surprise, we found that bots were in fact performing re-

connaissance on IP addresses for bots in other botnets. Based on this finding, we

have outlined possibilities for new botnet detection techniques using a traversal of

the DNSBL query graph, and we have suggested techniques that DNSBL operators

might use to more effectively stem the spam originating from botnets. We are inves-

tigating the effectiveness of these detection and mitigation techniques as part of our

ongoing work.
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CHAPTER 5

FILTERING SPAM USING BEHAVIORAL

BLACKLISTING

5.1 Introduction

Spam-blocking efforts have taken two main approaches: (1) content-based filtering

and (2) IP-based blacklisting. Both of these techniques are losing their potency as

spammers become more agile. To evade content-based filters, spammers have adopted

techniques such as image spam and emails explicitly designed to mislead filters that

“learn” certain keyword patterns. In Chapter 3, we demonstrated that a spammers

are also successful at avoiding IP blacklists: a significant fraction of the IP addresses

that send spam to our spam sinkhole are not listed in any IP blacklist.

This “low and slow” spam sending pattern and the ease with which spammers

can quickly change the IP addresses from which they send spam has rendered today’s

methods of blacklisting spamming IP addresses less effective than they once were [21].

For example, our study in Section 5.2 shows that, of the spam received at our spam

traps, as much as 35% was sent from IP addresses that were not listed by either

Spamhaus [122] or SpamCop [121], two reputable blacklists. Further, 20% of these IP

addresses remained unlisted even after one month. Most of the IP addresses that were

eventually blacklisted evaded the blacklist for about two weeks, and some evaded the

blacklists for almost two months.

Two characteristics make it difficult for conventional blacklists to keep pace with

spammers’ dynamism. First, existing blacklists are based on non-persistent identifiers.

An IP address does not suffice as a persistent identifier for a host: many hosts obtain

IP addresses from dynamic address pools, which can cause aliasing both of hosts
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(i.e., a single host may assume different IP addresses over time) and of IP addresses

(i.e., a single IP address may represent different hosts over time). Spammers also

intentionally use IP addresses that have not been seen by a domain to send spam,

and, as demonstrated in Chapter 4, may perform blacklist lookups to find which bots

are unlisted. Second, information about email-sending behavior is compartmentalized

by domain and not analyzed across domains. With large botnets at their disposal,

spammers now disperse their “jobs” so that each IP address sends spam at a low rate

to any single domain. By doing so, spammers can remain below the radar, since no

single domain may deem any single spamming IP address as suspicious.

As a result, IP blacklists must be continually updated to keep pace with campaigns

mounted by armies of “fresh” IP addresses. Unfortunately, a spam campaign may

complete by the time the IP addresses are blacklisted, at which time a new campaign

with new IP addresses is imminent. Blacklisting all new IP addresses is not an

option, either: it creates a nuisance for administrators when legitimate mail relays

are renumbered. Thus, blacklist administrators choose to not list every IP address

that sends spam, allowing spam to get through.

We hypothesized that many of the IP addresses we observed at our spamtrap are

“fresh” due to observations from a single vantage point; looking at emails received

from many vantage points might allow us to see the same senders hitting multiple

vantage points. This chapter presents SpamTracker, a spam filtering system that

uses a new technique called behavioral blacklisting to classify email senders based on

their sending behavior to multiple vantage points, rather than using their identity(i.e.,

IP address). Behavioral blacklisting complements existing blacklists by categorizing

spammers based on how they send email, rather than the IP address (or address

range) from which they are sending it. The intuition behind behavioral blacklisting is

that, while IP addresses are ephemeral as identifiers, spam campaigns, spam lists, and

spamming techniques are more persistent. If we can identify email-sending patterns
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that are characteristic of spamming behavior, then we can continue to classify IP

addresses as spammers even as spammers change their IP addresses.

We design a behavioral blacklisting algorithm that uses the set of target domains

that a particular IP address sends mail to as the primary indicator of its behavior

and incorporate this algorithm into a system called SpamTracker. We use the set

of domains that an IP address targets within a fixed time window as the feature

for clustering IP addresses that behave similarly. Our clustering algorithm takes as

input an n × d × t tensor, where n is the number of IP addresses that sent email to

any of d domains within one of t time windows. The algorithm outputs clusters of

IP addresses that exhibit similar sending patterns. Our evaluation of these clusters

shows that spamming IP addresses form large clusters that are highly similar to each

other but distinct from the behavior of IP addresses in other clusters. IP addresses

of legitimate senders, on the other hand, do not form large clusters. SpamTracker

can classify a “fresh” IP address as a spammer or a legitimate sender based on how

closely its sending behavior (i.e., the set of domains that it targets) maps to a cluster

that has been marked as known spamming behavior. Using logs from an organization

that manages email for over 115 domains, we find that SpamTracker detects many

spammers before they are listed in any blacklist, suggesting that SpamTracker can

complement today’s IP-based blacklists by catching some spammers earlier than they

would otherwise be caught.

SpamTracker requires little auxiliary information about whether an email sender

is a spammer or a legitimate sender: it takes as input the email-sending patterns

of all senders, builds clusters based on the sending behaviors of (a possibly small

set of) known spammers, and classifies each sender based on whether its behavior is

similar to a cluster that resembles known spamming behavior. Unlike conventional

approaches which track individual IP addresses, SpamTracker tracks behavioral pat-

terns to quickly identify whether a new IP address exhibits similar patterns to other
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previously seen IP addresses. Its ability to track behavior of groups, rather than indi-

vidual IP addresses, allows it to adapt more quickly to ephemeral IP addresses that

may not exhibit strong patterns from the perspective of any single domain.

Because SpamTracker classifies email based on sending behavior rather than on

more malleable properties of email (e.g., content, or even IP address), we believe that

spammers will have considerably more difficulty in evading SpamTracker’s classifica-

tion methods. Nevertheless, SpamTracker must be agile enough to adapt to spam-

mers’ changing behaviors: spamming patterns (i.e., which domains are targeted,

and how they are targeted) will change over time, and adversaries that are aware

of the SpamTracker algorithm may adjust their sending patterns to avoid falling

into a particular cluster. We believe, however, that automated, large-scale behavior

such as spamming will always give rise to clustering, and the challenge is to design

SpamTracker to adapt the clusters it uses for classification, even as the spammers

themselves attempt to evade them.

The chapter is organized as follows. Section 5.2 motivates behavioral blacklist-

ing. Section 5.3 presents a brief background on clustering techniques and describes

EigenCluster [16], the clustering algorithm that we use in SpamTracker. Section 5.4

describes the design and implementation of SpamTracker, and Section 5.5 presents

our validation results and compares the performance of SpamTracker to state-of-the-

art IP-based blacklists and spam trap deployments. In Section 5.6, we discuss various

extensions of SpamTracker and deployment-related concerns. Section 5.7 concludes.

5.2 Motivation

This section provides background on current email spamming practices and the per-

formance of blacklists. In Section 5.2.1, we present the volumes and rates at which

IP addresses in our traces send spam to each domain; we find that spammers ex-

hibit sending patterns that make it difficult to reliably detect and track spamming IP
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addresses. In Section 5.2.2, we provide background on current IP-based blacklisting

techniques (e.g., DNS-based blacklists) and present a study of their effectiveness.

5.2.1 The Behavior of Spamming IP Addresses

We present statistics on the network-level behavior of spammers, focusing on the

techniques that make building the reputation of any particular IP address difficult.

We study two aspects in particular: (1) Persistence: Howmuch spam does a particular

IP address send in a day, and how does the set of IP addresses change over time?

(2) Distribution: What is the distribution of spam across target domains for any

particular IP address, and how does this distribution change over time?

Persistence: “New” IP addresses every day. To determine the extent to which

spamming IP addresses remain stable, we study the IP addresses that send spam to

over 115 distinct domains, which collectively received 33 million pieces of spam during

March 2007.1

Figure 5.1 shows the number of “new” IP addresses that these domains observed

per day over the course of a month. The top line shows the fraction of IP addresses

that were seen in the trace for a particular day that were never seen before in the

trace (other lines show fraction of spam from IP addresses that appeared on the

immediately preceding day, or within the month). Indeed, spam is coming from

different IP addresses every day, and about 10% of IP addresses seen on any particular

day were never seen before at any of the target domains. Note that although 10% is

a much smaller figure than the nearly 50% of spamming IP addresses that were never

seen before at our spamtrap—likely due to observing from a single vantage point—it

indicates that spammers also have a significant pool of globally “fresh” IP addresses.

Thus, even given perfect mechanisms for maintaining reputation about email senders

1Section 5.5.1 describes this dataset (as well as the others that we used in our evaluation) in
more detail.
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Figure 5.1: Fraction of spamming IP addresses that were not observed at any of 115
domains for the past 1 day, past month, and past 2 months.

and relatively widespread observation, a significant number of IP addresses that have

never been seen before are sending spam on any given day.

Lack of persistence in spamming IP addresses makes maintaining reputation about

spammers based solely on IP addresses difficult, since the blacklisted IP addresses

keep changing. Given no previous information about the activity of an IP address, a

conventional blacklist will not be able to reliably block spam from that address.

Distribution: Some IP addresses target many domains. Existing blacklisting

techniques collect reputation information about spam or spam senders based on the

activity observed at a single domain (e.g., if a spammer sends a significant amount

of spam to a single IP address, if it hits a spam trap, etc.) [121,122]. Although some

existing systems collect information from a large number of distributed domains, few,

if any, build reputation based on observed patterns across domains. Thus, an IP

address that distributes spam evenly across target domains may evade a blacklist
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Figure 5.2: Fraction of spam sent (y′ axis), and number of domains targeted (y axis),
by spamming IP addresses for a typical day’s worth of traffic at the email provider’s
servers. The IP addresses are reverse sorted by number of spam messages produced.

entirely: maintenance of these lists typically requires explicit reports from a network

about a “loud” IP address, so an IP address that is “low and slow” to any particular

domain may be able to escape detection and blacklisting.

Previous work has shown that many bots that send spam are comparatively low-

volume if observed at any one domain [106], but each of these IP addresses must

send low volumes of spam to many domains for them to be “useful” to the spammer.

Our analysis confirms this conjecture: Figure 5.2 shows that about half of all spam

(y′ axis) comes from the top 15% spamming IP addresses (x-axis); this subset of

IP addresses targets two or more domains (y-axis). Similarly, the top spamming IP

addresses responsible for up to 35% of spam target three or more domains. Thus,

observing email sending patterns across domains could help expose sending patterns

that are responsible for sending a significant amount of spam.

101



5.2.2 The Performance of IP-Based Blacklists

After presenting a brief overview of IP-based blacklists and their most common oper-

ating mode (DNS-based blacklists, or “DNSBLs”), we briefly survey the performance

of currently used DNS-based blacklists in terms of two metrics:

• Completeness. The fraction of spamming IP addresses (and fraction of spam

from spammers) that is listed in a blacklist at the time the spam was received.

• Responsiveness. For the IP addresses eventually listed by a blacklist, the time

for a blacklist to eventually list spamming IP addresses after they first send

spam to any target domain.

Our results demonstrate that DNSBLs can be both incomplete and unresponsive in

response to dynamism in IP addresses. We present additional data that suggests that

the email sending characteristics of spammers—in particular, their transience and

the low volume of spam that they send to any single domain—make it difficult for

blacklists to track the IP addresses of some spammers.

Background: DNS-Based Blacklists (DNSBLs). DNSBLs offer a lightweight

mechanism for querying a list of IP addresses, but the list membership must be main-

tained at least semi-manually. Maintenance entails not only deciding when a partic-

ular IP address should be added to a blacklist, but also when it should be removed.

Blacklist maintainers typically add an IP address to a blacklist based on reports from

network operators (which requires the spammer to raise the attention of an opera-

tor) or by sending spam to a particular spam trap or traps (which may not see the

spam in the first place, particularly if spammers know to avoid them). Because rep-

utation information about IP addresses can become “stale” (e.g., due to IP address

dynamism, renumbering, etc.), the blacklist maintainer must determine how long an

IP address should remain listed; this duration ranges from 30 minutes to more than
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Table 5.1: Fraction of spam at two spam traps from IP addresses that were unlisted
in either Spamhaus or SpamCop, both at the time the message was received, and the
fraction of spam from IP addresses that remained unlisted after 1 month.

Spam from unlisted IP addresses
Data Source Spam IP addresses At Receipt After 1 Month

Trap 1 384,521 129,243 134,120 (35%) 79,532 (20%)
Trap 2 172,143 64,386 17,132 (10%) 14,534 (8.5%)

a year, depending on the nature of the problem and resolution.

Completeness. We study the completeness of “reactive” blacklists (i.e., those that

only list IP addresses based on observed spamming activity or user reports as opposed

to policy (e.g., SORBS [119]) lists all dynamic IP addresses irrespective of whether

they were observed spamming or not). We consider the two most popular reactive

blacklists, Spamhaus [122] (specifically the XBL and SBL zones) and SpamCop [121].

To assess the completeness of existing DNSBLs, we first examine whether blacklists

identify the spammers that we observe in one month of spam from two spam traps.

We then observe mail received at a server that hosts email for hundreds of independent

domains to determine how much of the mail that this provider accepted could have

been blocked earlier if the provider had more complete blacklists at its disposal.

Experiment 1: Are emails to spam traps blacklisted? We first studied whether

spammers were listed when they sent spam to two large spam traps during March

2007. The two traps serve independent domains and they have no real email addresses,

so we can consider all mail that these domains receive to be spam.2 Both run the

MailAvenger [80] SMTP server, which we have instrumented to measure whether a

sender’s IP address is blacklisted at any of 8 blacklists at the time the email was

received.

2One of the domains serves eight legitimate users. We exclude this legitimate mail from our
analysis and do not expect the presence of these addresses to have an effect on the spam received
at the domain.
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Trap 1 received 384,521 pieces of spam, of which 134,120 (35%) were received

from IP addresses that were not listed in either Spamhaus or SpamCop when the

spam was received. Trap 2 received 172,143 pieces of spam, of which 10% came

from IP addresses that were not blacklisted. The significant fraction of spam com-

ing from unlisted IP addresses suggests that complementary blacklisting techniques

could significantly reduce spam. Additionally, blacklists may remain incomplete even

one month after each of these IP addresses sent spam: Unlisted IP addresses that

accounted for 20% of spam at Trap 1, and 8.5% of spam at Trap 2, remained un-

listed in Spamhaus blacklist one month after they were seen in our spam traps (see

Table 5.1), suggesting that there is still a significant fraction of spam from senders

that successfully evade conventional blacklisting techniques.

Experiment 2: Are accepted senders blacklisted later? The second set of

logs are from an organization that hosts email service for over 700 domains, about

85 of which were active during March 2007 (our observation period). This provider’s

mail servers reject or accept email based on a combination of techniques, including

multiple blacklist lookups (Spamhaus [122], SORBS [119], etc.) and a large collection

of customized heuristics. This provider blocks up to twice as much spam as any single

blacklist.

Using our daily snapshot of the Spamhaus blacklist as a basis for comparison,

we study the effectiveness of this email provider’s blocking heuristics by determin-

ing the fraction of mail that the provider accepts. Our results show that even this

provider’s advanced filtering does not ensnare a significant collection of spammers: Of

the 5,084,771 senders that passed the spam filters, only 110,542 (2%) became listed

in the Spamhaus blacklist during the following month. This fraction is significantly

lower than the 15% quoted by this provider as the fraction of accepted email that

is later reported as spam, which suggests that current blacklists remain incomplete,
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even after long periods of time.

Responsiveness. Many DNSBLs do not list an IP address before they receive mul-

tiple end-user reports about a spam sender; some even perform manual verification.

Meticulous verification can reduce the likelihood of blacklisting “good” senders, but

doing so also limits responsiveness. In this section, we quantify the responsiveness

of the Spamhaus DNSBL by determining, for the IP addresses that were eventually

listed in April 2007, how long those IP addresses were active before they eventually

were blacklisted.

As before, we use snapshots of the Spamhaus blacklist, but we also use hourly

“diffs” of the blacklist to determine when a new IP address was added. We examine

email logs from March 1–31, 2007 and blacklist data from April 1–30, 2007. For each

IP address that was not listed when it first sent spam to one of our spam traps but

was eventually listed at some later point in April 2007, we compute the delay between

the first occurrence of the IP at our trace to the first time that the IP address became

listed in Spamhaus.3

Even when blacklists do list spamming IP addresses, the process of updating the

blacklist may be slow. Figure 5.3 shows the time-to-listing for all IP addresses that

were unlisted during the receipt of the email but eventually appeared at the blacklist in

April 2007. In the case of the spam traps, 10–15% of spam senders that were unlisted

at receipt of spam remained so 30 days after spam was received. The fraction is a

strong indicator of the sluggishness of blacklists, because sending email to a spam

trap automatically labels the sender as a spammer. In the case of the provider that

serves millions of real customers (“Organization”), almost 20% of senders that were

3Because we only have the Spamhaus database for April, we cannot determine the exact listing
time for IP addresses that were in the database on April 1, 2007; rather, we only know that they
were listed between the time the spam was observed in March and April 1, 2007 (“less than 30
days” in Figure 5.3). If the IP address was not listed by April 1, 2007, we assume that whenever
the IP becomes listed in April is the first time Spamhaus listed it. This assumption is reasonable as
Spamhaus lists persistent spammers for a minimum of 30 days [4].
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Figure 5.3: Time-to-listing for the Spamhaus blacklist for IP addresses that were
unlisted at the time spam was received, but were eventually blacklisted. Note: y-axis
starts at 0.8.

unlisted when email was received remain unlisted for over 30 days before eventually

appearing in the blacklist.

This analysis indicates that reactive blacklists are sometimes slow to respond,

even for confirmed spammers; this slow responsiveness, coupled with the ability to

continually send spam from “fresh” IP addresses (Section 5.2.1) represents a signif-

icant “window of opportunity” for spammers to send spam from non-blacklisted IP

addresses. Motivated by this slow responsiveness, the next section proposes a com-

plementary approach to blacklisting that is based on email sending patterns, rather

than the reputation of an IP address alone.

5.2.3 The Case for Behavioral Blacklisting

Although individual IP addresses’ sending behavior may change across time, we posit

that (1) the sending patterns exhibited by spammers are sufficiently different from
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those of legitimate senders; and (2) those patterns become more evident when email

senders can be observed across many receiving domains. Based on these two hypothe-

ses, the rest of the chapter proposes a system called SpamTracker, which proactively

blacklists email senders based on the set of domains they target. SpamTracker relies

on a technique that we call behavioral blacklisting, which attempts to classify based

on their network behavior, rather than their identity or the contents of the emails

they send. While individual IP addresses may be ephemeral, they may exhibit “fa-

miliar” spamming patterns (i.e., similar to those of already well-known spamming IP

addresses) that become evident when sending patterns are observed across multiple

domains.

5.3 Clustering Algorithm

SpamTracker uses a spectral clustering algorithm proposed and analyzed by Kannan

et al. [66] and made efficient in practice by Cheng et al. [16]. Section 5.3.1 presents

an overview of the spectral clustering approach, and Section 5.3.2 describes how we

apply spectral clustering within SpamTracker.

5.3.1 Spectral Clustering

Spectral clustering refers to partitioning algorithms that rely on the principal com-

ponents of the input. There are generally two basic variants which can be viewed

as (a) one-shot or (b) recursive. Given an object-feature matrix A with the goal

of clustering the objects (rows) of A, a one-shot algorithm would find the top few

singular vectors of A (say k) and either project to their span or create a cluster for

each one by assigning each row to that vector in which it has the largest component.

A recursive algorithm, on the other hand, uses one singular vector to partition the

rows and recurses on the two parts. We focus on this type of algorithm.

The method in Cheng et al. [16] (“EigenCluster”) has two phases: a top-down

divide phase and a bottom-up merge phase. In the divide phase, the algorithm
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normalizes a given nonnegative input matrix so that all rows have the same sum,

then computes the second largest right singular vector. It sorts the rows according to

their components in this vector and partitions this sequence at the point where the

corresponding cut has minimum conductance (among the n − 1 possible cuts of the

sequence). The conductance of a partition is the total weight of entries across the

partition divided by the smaller of the total weights incident to each side [66, 118].

After finding the partition, it recurses on each side until only singletons remain. This

completes the divide phase, whose end result is a tree (the root represents all the rows,

the leaves are individual rows). The merge phase finds a tree-respecting partition,

i.e., one where every cluster corresponds to the entire subtree attached at some node

of the tree. For many objective functions, it does this by dynamic programming,

in a bottom-up fashion. The specific function we use for the merge phase is called

correlation clustering [16].

5.3.2 SpamTracker: Clustering Email Senders

SpamTracker classifies an email sender purely based on its sending behavior, ignor-

ing content and variable handles for classification such as dynamically-allocated IP

addresses. The intuition behind SpamTracker is that sending patterns of spamming

hosts are similar to other senders and remain relatively stable, even as the IP ad-

dresses (or actual systems) that are sending the emails change. Consider the case of a

spamming bot: Whatever the particular spamming behavior of a spamming bot, it is

likely to be similar to other bots in its own botnet. Because botmasters in large bot-

nets have only coarse-grained control over their bots [89], spamming patterns of bots

will typically be similar across targeted domains even if each bot sends low volumes

of spam to each domain. Thus, clustering spammers based on their sending patterns

provides a way for their early detection, irrespective of their particular identities (e.g.,

the IP address) or blacklisting status. It follows from the above that, spam sent from
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Figure 5.4: An IP× IP matrix of related spam senders; IP addresses that send mail
to similar sets of domains are grouped into distinct clusters; the intensity of a pixel
at (i,j) indicates i’s similarity to j.

even a newly-enlisted bot (i.e., from an IP address that has not been observed to

send spam) will likely be caught by SpamTracker because its behavior will cluster it

with other known bots in the botnet.

The SpamTracker algorithm proceeds in two stages: (1) clustering and (2) classifi-

cation. In the unsupervised clustering stage, SpamTracker accepts as input a n×d×t

tensor M , where n is the number of IP addresses that sent email to any of d domains

within any of t particular time windows. Thus, M(i, j, k) denotes the number of times

IP address i sent email to domain j in time slot k. SpamTracker first collapses the

time axis to obtain an n× d matrix M ′:

M ′(i, j) =

t
∑

k=1

M(i, j, k).

It clusters the matrix M ′ using the spectral clustering algorithm described in Sec-

tion 5.3.1. The output of the clustering stage is the set of clusters of IP addresses

C = C1, C2, . . . , Ck, where ∪k
i=1

Ci = IP addresses in M and Ci ∩ Cj = φ for i 6= j.

Logically, the set C consists of groups of IP addresses in M that have similar behavior

in their target domains. Each cluster is associated with a traffic pattern, obtained
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by averaging the rows corresponding to IP addresses that fall in the cluster. For a

cluster c, we call this vector cavg.

cavg =

∑|c|
i=1

M ′
c(i)

|c|

where M ′
c(i) is the submatrix comprising the rows of cluster c. In the classification

stage, SpamTracker accepts a 1× d vector r that corresponds to the recent behavior

of an IP. It then calculates a score S(r) for this queried IP address using the following

equation.

sim(r, c) =
r · cavg
|cavg|

(1)

Intuitively, sim(r, c) measures the similarity of the row vector r to cluster c by per-

forming an inner product of r with the normalized average of rows in cluster c. A

cluster that has a similar set of target domains as r would have a large inner product.

We calculate the spam score S(r) as the maximum similarity of r with any of the

clusters.

S(r) = max
c

sim(r, c). (2)

S can be used to filter or greylist (i.e., temporarily reject with the assumption that

a legitimate mail sender will eventually retry) spam by a mail service provider at or

before the SMTP dialogue stage. We set a threshold such that if the row for an IP

that is looked up has score higher than the threshold, it is flagged as spam. The

threshold can be different for each cluster.

Querying an IP address is inexpensive: only Equations 1 and 2 need to be com-

puted per lookup. The next section explains the design of SpamTracker in detail and
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the optimizations we use to improve the lookup speed and the overall robustness of

the system.

5.4 Design

This section describes how SpamTracker can be integrated into an existing email in-

frastructure. We present a brief overview of the system and then describe in detail its

two basic operations: (1) computing the clusters that form the basis of the classifier;

and (2) classifying a new IP address when it arrives.

5.4.1 Overview

The spectral clustering algorithm in Section 5.3.2 serves as the back-end of Spam-

Tracker. The behavioral classifier that accepts lookups from mail servers and assigns

scores to the queried senders forms the front-end. Figure 5.5 shows the high-level

design of SpamTracker and the interaction between the back-end (which performs

clustering and classification operations) and the interface to mail servers (which re-

ceives email sending patterns as input to the clustering algorithm and answers queries

about the status of any particular IP address); to an ordinary mail server, the interface

to SpamTracker looks like any other DNS-based blacklist, which has the advantage

that existing mail servers need only to be reconfigured to incorporate SpamTracker

into spam filtering decisions. We discuss how SpamTracker can be incorporated into

existing infrastructure in Section 5.6.2.

SpamTracker’s clustering algorithms rely on the assumption that the set of do-

mains that each spammer targets is often more stable than the IP addresses of ma-

chines that the spammer uses to send the mail. Rather than maintaining reputations

of senders according to their IP addresses, SpamTracker uses the vector representing

how a sender sends traffic across domains, r, as a “behavioral fingerprint” and de-

termines whether this fingerprint resembles a known spamming cluster. Section 5.4.2

describes how SpamTracker builds clusters of known spammers, and Section 5.4.3
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explains how SpamTracker determines whether an email sender’s sending patterns

resemble one of these clusters.

5.4.2 Clustering

SpamTracker uses the spectral clustering algorithm from Section 5.3.1 to construct

the initial set of clusters. SpamTracker’s clustering takes as input email sending

patterns about confirmed spammers (i.e., the volume of email that each confirmed

spamming IP address sends across some set of domains) over some time window to

construct the matrix M(i, j, k). This input requires two components: (1) an initial

“seed list” of bad IP addresses; and (2) email sending patterns for those IP addresses.

This section describes in turn how SpamTracker might be able to acquire this type

of data.

Data about spamming IP addresses is easy to obtain, and SpamTracker could use

any such initial list of IP addresses to “bootstrap” its initial clusters. For example,

an Internet Service Provider (ISP) that uses conventional SpamAssassin [120] filters

to filter spam could use that list of IP addresses as its initial spammer IP addresses

to be used for the basis for clustering.

The sending patterns of each of the spamming IP addresses is more difficult to

obtain because it requires visibility into the emails that many domains have received.

Our evaluation of SpamTracker (Section 5.5) uses an email hosting provider’s decisions

about early mail rejects from hundreds of domains to compute these clusters, but, in

practice, other systems like SpamTracker could also likely gain access to such data.

To build the rows in M for each spamming IP address, participating domains

could submit IP addresses that they have confirmed to be spammers as they do with

blacklists, but based on our findings of the “low and slow” sending patterns of spam-

mers (Section 5.2), SpamTracker will be most effective if it maintains sending patterns

across domains for as many IP addresses as possible and subsequently clusters based
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on some subset of those that are labelled as spam by at least one domain. Fortu-

nately, SpamTracker could obtain these sending patterns from receiving mail servers’

queries to the classifier4, at least from some subset of trusted domains.5 Specifically,

a lookup for IP address a from domain d is a reasonable indicator that a has sent

email to d, so SpamTracker can build vectors for all such addresses a and later build

the matrix M from just those addresses that are confirmed to be spammers.

5.4.3 Classification

SpamTracker maintains a vector representing the sending pattern, r, for each IP ad-

dress a compiled from reports from the mail servers of participating domains. Spam-

Tracker collects these sending patterns as mail servers from trusted participating

domains perform lookups to SpamTracker on address a, using the same method for

collecting these patterns for all IP addresses during the clustering phase (described

in Section 5.4.2).

Given an r for some IP address a, SpamTracker returns a score S(r) (computed

using Equation 2, Section 5.3.2) whose magnitude determines how closely this fin-

gerprint resembles a confirmed spamming pattern (i.e., cluster). SpamTracker can

simply return S(r) to the querying mail server, which can then incorporate this score

into its existing mail filtering rules. An important benefit of the classification process

is that S(r) can be computed using only an IP address’s r vector and the cavg rows

for the spam clusters, both of which can be replicated and distributed (providing ro-

bustness against attack, as well as load balance). Clustering requires ‘r’ vectors from

as many IP addresses as possible; even though it requires aggregating sending infor-

mation from many sending domains (and, hence, from potentially many SpamTracker

4Note that the query mechanism needs a way of finding the email domain name of the organization
performing the query. DNS reverse lookups, or extra information in the query packets, could provide
such a mechanism.

5Because previous work has observed that bots occasionally perform reconnaissance queries
against blacklists [101], we cannot assume that all queries to the blacklist reflect the receipt of
email by a mail server.
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Figure 5.5: The high-level design of SpamTracker. The clustering component of
SpamTracker accepts information about email senders as an IP × domain × time

tensor and computes clusters of related senders (and corresponding average vectors).
The classification component accepts queries for IP addresses and returns a score,
S(r), for the IP’s behavior.

replicas), this aggregation and clustering can be performed on a slower timescale than

classification.

5.4.4 Tracking Changes in Sending Patterns

SpamTracker must recompute new clusters as sending patterns change. Our imple-

mentation of SpamTracker reclusters at fixed intervals, but in practice SpamTracker
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might only recluster when sending patterns no longer map to any existing clusters. Re-

clustering cost (time, memory, CPU) increases with larger input matrices, so cluster-

ing on very large time windows may be impractical. We use an efficient re-clustering

method that preserves historical information but keeps clustering cost approximately

constant. At the beginning of each clustering phase, we add all average rows from the

previous clustering stage scaled by the size of the cluster each row represents, which

produces the effect of clustering on the input of both stages without the added cost.

5.5 Evaluation

This section describes the evaluation of SpamTracker. In a real deployment, Spam-

Tracker could compute clusters based on sending patterns across many domains for

some time interval. To emulate this scenario, we construct the SpamTracker classifier

by constructing M(i, j, k) from the email logs of a large organization that manages

mail servers for hundreds of domains. We use the matrix for time window at [t, t+∆t)

to build the classifier, and the data in the window [t + ∆t, t + 2 ∆t) to validate our

classification. Section 5.5.1 summarizes the data sets used in our evaluation. Sec-

tion 5.5.2 describes the properties of the resulting clusters and the validation results,

and Section 5.5.3 describes our evaluation of SpamTracker’s ability to improve upon

existing blacklisting and blocking techniques by classifying spammers ahead of black-

lists.

5.5.1 Data

Table 5.2 summarizes the traces, their duration, and the data fields each trace pro-

vides. Our primary data is a set of email logs from a provider (“Organization”) that

hosts and manages mail servers for over 115 domains. The trace also contains an

indication of whether it rejected the SMTP connection or not. We also use the full

database of Spamhaus [122] for one month, including all additions that happened

within the month (“Blacklist”), to help us evaluate the performance of SpamTracker
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Table 5.2: Data sets used in evaluation.
Trace Date Range Fields

Organization Mar. 1 – 31, 2007 Received time, remote IP, targeted do-
main, whether rejected

Blacklist Apr. 1 – 30, 2007 IP address (or range), time of listing

relative to existing blacklists. We choose the Blacklist traces for the time period

immediately after the email traces end so that we can discover the first time an IP

address, unlisted at the time email from it observed in the Organization trace, was

added to Blacklist trace.

Ground Truth. As in the previous chapter, we rely on blacklist listing status as an

indicator of whether an IP address indeed belongs to a confirmed spammer. Blacklists

are known for their low false positive rates, thus, if an IP address is listed, it is highly

likely that it belongs to a spammer.

We possess daily logs of listed IP addresses in a large blacklist following our email

logs, which allows us to observe new IPs being listed. IP addresses either stay listed

for a period of many months in blacklists, or are de-listed for a similar period. Thus, if

we see an IP address that is newly listed in the month immediately following our email

logs, it is likely that that IP address was not listed as a spammer in the preceding

month. We use this fact as evidence that our algorithm can detect many spammmers

in advance of their being listed in blacklists.

5.5.2 Clustering and Classification

To study the properties of the clusters that SpamTracker computes, we build the

SpamTracker classifier using data for a window ∆t at time t, and use it to assign a

spam score S(r) senders in the window [t +∆t, t + 2 ∆t). We set ∆t to be 6 hours;

clustering using different time intervals (which we intend to explore in future work)

may also help SpamTracker perform better.

Figure 6(a) shows the distribution of these scores for all IP addresses in a 6-hour
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window, separated into two plots based on whether the Organization decided to reject

the mail early or accept it for delivery. A high score implies that the sending pattern

for the classified IP is similar to a known spamming pattern. The low-score region

(where S(r) < 1) comprises IP addresses whose patterns are unknown to the classifier.

Senders that map into this range should not necessarily be considered legitimate;

rather they simply do not have a recognized, blacklisted sending pattern. High scores

reflect IP addresses whose sending patterns are very similar to the average rows of

the classifier. As expected, the distribution of mails rejected by the organization tend

towards larger values of S(r). We suspect that because legitimate email senders likely

will not mimic each other’s sending patterns, the IP addresses in this region—both

in the “accepted” and “rejected” plots—are likely to contain spammers. Indeed, in

Section 5.5.3, we show that SpamTracker correctly classified IP addresses in that were

accepted by the Organization but were eventually blacklisted.

Ideally, users of SpamTracker should be able to set a single threshold for S(r)

that clearly separates the majority of legitimate email from the majority of spam,

but setting a single threshold for the experiment shown in Figure 6(a) could result

in misclassifying a large fraction of received mail. For example, though setting a

threshold of 10 would blacklist only about 5% of the Organization’s accepted mail, it

would only correctly classify 10% of all of the rejected mail. In fact, a lower threshold

may be more appropriate: as we describe in Section 5.5.3 below, a significant fraction

of accepted mail is still spam, and, in many cases, SpamTracker captures this spam

before the Organization or Spamhaus does. However, without ground truth data, it is

difficult to determine a precise false positive rate, because “accepted” mail may simply

be misclassified spam.

We believe that the quality of data (rather than the classification algorithm itself)

is affecting our ability to separate the accepted and rejected mail with a single spam

score. First, the data set is not cleanly labelled: the decisions of the Organization
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concerning whether to accept or reject a mail are not in fact a ground truth indicator

as to whether mail is legitimate: The Organization estimates that as much as 15%

of accepted mail is spam, and, as we show in Section 5.5.3, the emails that were

accepted by the Organization for which SpamTracker assigns high scores may in fact

be undetected spammers. Second, SpamTracker performs best when the represen-

tative sending behavior for a cluster is distributed across multiple domains, rather

than concentrated in a single domain. Figure 6(a) shows that many emails have a

spam score of 1, which implies that the classified IP address’s pattern is similar to

a cluster whose average row is dominant in one column. According to Equations 1

and 2, this pattern will return a similarity of about |r|. Because, in our dataset, a

majority of senders in most small time windows send email to only a single domain,

|r| is 1 for 50% of accepted email and 30% of rejected email. Our dataset often has

email senders that send mail to only a single domain in a time window.

Figure 5.6.5 shows the distribution of S(r) for IP addresses that have maximum

similarity with a single cluster whose cavg is not dominated by a single column. The

“accepted” and “rejected” distributions separate more cleanly because legitimate IP

addresses that have maximum similarity with this cluster will likely not have sent mail

to all domains comprising the average row of this cluster (although the spammers in

this cluster will likely hit all or most domains). A better distribution of monitors

might result in a more even observation of sending patterns, which should result in a

distribution of S(r) that more closely resembles that shown in Figure 5.6.5.

5.5.3 Detecting “New” Spammers

To estimate the fraction of spammers that SpamTracker’s clustering techniques can

detect in advance of conventional blacklisting techniques, we study a subset of the

email with the highest spam scores and determine whether any emails from this

subset were eventually reported as spam (e.g., by users, or some other auxiliary
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(b) For IP addresses with maximum similarity to some cluster with a
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Figure 5.6: Score distribution for SpamTracker’s classification for (a) All IP addresses
in a “round” of classification, and (b) IP addresses that have maximum similarity
with a cluster whos cavg is not dominated by a single column. Evaluation for a 6-hour
period using a classifier trained using the previous 6-hour window.

technique). Operators at the Organization acknowledge that about 15% of email

that is initially accepted falls into this category. To estimate how well SpamTracker

would perform at catching this 15% of misclassified mail, we examine the 620 emails

were initially missed by the Organization’s filters but eventually blacklisted in the
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following month. Of these, 65 emails (about 10%) had a spam score of S(r) > 5

(from Figure 6(a)), suggesting that SpamTracker could complement existing filtering

mechanisms by capturing additional spam that existing filters miss.

5.6 Discussion

Although the general method of behavioral blacklisting shows promise for fast classifi-

cation of spammers, there is much room for improvement, particularly with respect to

the classification algorithms (which could, for example, incorporate other features as

input). This section proposes specific areas where the classification algorithms could

be improved, surveys how filtering techniques based on behavioral blacklisting could

ultimately be deployed in an operational network, and presents our ongoing efforts to

do so. We also discuss how behavioral blacklisting scores might be integrated into ex-

isting spam filtering systems and some of the issues that may arise in implementation

and deployment.

5.6.1 Improving Classification

IP addresses that are most similar to a single spamming cluster can be classified more

accurately. In order to achieve this separation for all new IP addresses, we propose

two improvements to SpamTracker that may result in better clusters.

Using more features for clustering. Although SpamTracker uses target domains

to construct the initial object-feature matrix (Section 5.3.2), other behavioral features

may be able to better classify spammers. Temporal patterns such as the time interval

between successive emails received from an IP (or alternatively, the sending frequency

of the IP) is one such feature. Botmasters often manage all their bots using unified

interfaces that may also be used to disseminate spam templates and mailing lists to

bots [89], so these bots may exhibit similar temporal behavior (perhaps spamming
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frequencies) in addition to their similarity in target domains.

Improved similarity computation. In Equation 1, all columns of IP’s “finger-

print” vector, r, are weighted equally. Some domains may be better at distinguishing

one cluster of spammers from another. For example, spammers targeting victims in

different countries may send email to country specific domains as well as to ubiqui-

tous domains (e.g., gmail.com). In this case, the country-specific domains may be

more helpful in distinguishing the two sets of spammers. Our ongoing work includes

experimenting with an algorithm that weights each column (domain) differently.

5.6.2 Incorporating with Existing Systems

We discuss how SpamTracker can be incorporated to complement the existing de-

ployments of mail servers and spam filters. We describe two possibilities below: inte-

gration with existing filters and on the wire deployment. In either case, the back-end

of SpamTracker can remain the same: it only needs to run a DNS server (or another

popular query interface such as XML-RPC) that accepts requests for IP addresses,

retrieves the classification score S(r) from the SpamTracker classification engine, and

returns the score to the client. In this sense, SpamTracker is a stand-alone system

that can even be used internally within an organization.

Option 1: Integration with existing infrastructure. SpamTracker could be

incorporated into existing filtering systems on mail servers by providing an additional

“confidence score” for these filters that help them determine whether a particular

piece of email is spam in terms of sender behavior. Because SpamTracker provides

a simple interface (i.e., it takes as input an IP address and returns a score), it can

be incorporated into any existing spam filtering engine (e.g., SpamAssassin [120],

MailAvenger [80]) in the same way that any other blacklist information would be

added as a filtering criterion. Using this system would be easy: the addition of one

line to the configuration of most mail filtering software should allow users to benefit
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from SpamTracker’s filtering strategy.

The disadvantage, however, is that it does not stop email traffic close to the source:

the mail server that receives the spam drops the mail only after the traffic has already

traversed the network and consumed resources on the receiving mail server.

Option 2: “On the wire” deployment. Unlike most existing spam filtering

or classification systems, SpamTracker has the unique advantage that it can classify

email senders solely based on the source IP address and destination domain of the mail

being sent (i.e., it does not require examining or analyzing an email’s contents). Thus,

another possibility for deploying SpamTracker involves deploying a network element

that can examine traffic “on the wire” and identify connections to mail servers from

IP addresses that fall into clusters with high spam scores. Such a system could be

deployed anywhere in the network, not just at the receiving mail server.

The disadvantage to this strategy is that deployment involves several additional

steps: in particular, such a filtering element would need a channel to receive up-to-

date information about both the email sending clusters (i.e., their average vectors,

and their “spamminess”) and the vector for any particular sending IP address (i.e., to

which domains it has sent). Maintaining up-to-date information about clusters and

sending IP addresses in such a distributed, dynamic setting may prove challenging in

practice.

5.6.3 Deployment Challenges

SpamTracker must be able to handle a large volume of email and senders, be resistant

to attack, and must remain highly available. To achieve these goals, we believe

that SpamTracker could ultimately be distributed: many servers (possibly the same

ones who manage mail for various domains) report sender behavior to a centralized

location that performs the clustering. SpamTracker must aggregate data from many

domains, compute the corresponding clusters of email senders, and return scores from
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many sources; in doing so, it faces scalability and reliability challenges that could be

addressed with the following enhancements.

Better scalability with data compression. SpamTracker’s clustering algorithm

is centralized, which raises scalability concerns, both for bandwidth (to exchange in-

formation between domains) and in terms of processing power (clustering complexity

increases with input size). One way to reduce load is by distributing the cluster-

ing process. For example, compressing cluster information into average rows before

sending this information to a centralized server may reduce bandwidth consumption:

SpamTracker requires the full IP ×domain matrix from each source to perform clus-

tering, but requires only the average row vectors for each cluster (i.e., the output of

the algorithm) for classification.

Better reliability with replication and anycast. To improve availability, Spam-

Tracker servers could be replicated and placed in different locations or on independent

networks. Multiple servers might be anycasted or managed by different organizations

(much like the DNS root nameserver infrastructure today), all of which perform the

same computation and disseminate average rows to second-level servers, which in turn

respond to user lookups.

5.6.4 Evasion

SpamTracker must be resistant to attacks that mislead the clustering engine in ways

that can cause spam to be misclassified as legitimate email, and vice versa. To improve

classification robustness, SpamTracker could form clusters based on email sending

patterns from a smaller number of trusted email recipients (e.g., a few hundred trusted

domains), each of which communicates with the SpamTracker system over a secure

channel. Although SpamTracker’s clustering benefits from more inputs about email

senders, it can serve as a classifier for a much larger set of domains that it does not

necessarily trust to provide data for forming the clusters.
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If spamming bots in a botnet select target domains from the same distribution,

SpamTracker’s clustering algorithm will include these spammers in the same cluster.

Still, SpamTracker is limited by the time window used for clustering (e.g., 6 hours, as

in Section 5.5), and a spammer might exploit this weakness to evade SpamTracker.

We are improving SpamTracker to automatically adjust the window in response to

the fraction of received email in the last window that was classified as spam. The

intuition is that the fraction of spam does not change much over short timeframes,

and a decrease in the fraction of flagged email indicates that the window is too small

to cluster similar IP addresses together. Spamming bots might also try to emulate

the distribution of target domains (or other behavioral features) of normal senders,

but by doing so, they may be inherently less effective (e.g., they may have to reduce

their sending rate or the expansiveness of their target list).

5.6.5 Sensor Placement

A set of domains that observes more even sending behavior across domains may be

able to better distinguish spammers from legitimate senders. Recall from Section 5.2.1

that 90% of the spam we observe is received by only 84 of the 115 domains from

which we observe email, and that only about 15% of the senders in our traces target

more than one of the domains from which we can observe sending patterns at the

email hosting provider. Based on our experiments using only clusters where the

average vectors are less “skewed” towards a single domain (Figure ), we expect that

a more even distribution of sensors email would further improve the SpamTracker

classifier. Many commercial spam filtering companies (e.g., IronPort [59], Secure

Computing [116]) may already have this data. Another option for sensors would be

ubiquitous Web mail domains such as hotmail.com, gmail.com, etc.
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5.7 Conclusion

This chapter presented SpamTracker, a system that classifies email senders using

a technique we call behavioral blacklisting. Rather than classifying email senders

according to their IP addresses, behavioral blacklisting classifies senders based on

their sending patterns. Behavioral blacklisting is based on the premise that many

spammers exhibit similar, stable sending patterns that can act as “fingerprints” for

spamming behavior.

SpamTracker clusters email senders based on the set of domains that they target.

SpamTracker uses these sending patterns of confirmed spammers to build “blacklist

clusters”, each of which has an average vector that represents a spamming fingerprint

for that cluster. SpamTracker tracks sending patterns of other senders and computes

the similarity of their sending patterns to that of a known spam cluster as the basis

for a “spam score”. Our evaluation using email logs from an email provider that

hosts over 115 independent domains shows that SpamTracker can complement exist-

ing blacklists: it can distinguish spam from legitimate mail and also detects many

spammers before they are listed in any blacklist. SpamTracker’s design makes it easy

to replicate and distribute, and deploying it requires only small modifications to the

configurations of existing mail servers. Our ongoing work involves gathering data

from a wider set of domains, improving the behavioral classification algorithms (e.g.,

by using other features of email senders), and deploying the system to allow us to

evaluate it in practice.
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CHAPTER 6

VOTE GAMING ATTACKS ON WEBMAIL SYSTEMS

6.1 Introduction

In previous chapters, we have dealt with spam sent by bots directly from the com-

promised host to recipient mail servers. While difficult to filter due to constantly

evolving content templates and fresh IP addresses, spam detection methods such as

DKIM [29] (which cryptographically signs the “From: ” address of an email) and

SPF [44] (which is used by ISPs and mail service providers to indicate the IPs which

may legitimately send email) have had an impact on reducing the amount of spam

and forged emails sent by bots directly to their recipients. The massive popularity of

web-based email accounts provided by Gmail, Yahoo! Mail, and Hotmail, however,

have also brought new threats: spammers have begun using bots to compromise Web

mail accounts to send spam.

Recent estimates suggest that about 5.2% of accounts that logged in to Hotmail

were bots [149]. Spammers use these compromised accounts chiefly to send spam

or conduct targeted social engineering attacks. Spam from compromised Web mail

accounts is difficult, if not impossible, to detect using IP blacklists or other spam

and forgery detection methods (e.g., domain-key based authentication methods such

as DKIM). Web mail providers attempt to detect compromised accounts used to

send spam, but these providers handle hundreds of millions of user accounts (193

million users at Gmail [37] and 275 million at Yahoo [58]) and deliver nearly a billion

messages each day [139]. Monitoring every account for outgoing spam is difficult, and

performing content-based filtering on every message is computationally expensive.

Automated monitoring systems may not be able to differentiate a spam sender from
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a legitimate, high-volume sender.

In this chapter, we present an alternate way that spammers use compromised

accounts: for casting dishonest “Not Spam” votes on spam email. This problem

arises due to efforts of Web mail providers in trying to stem incoming spam. Due to

the massive amounts of email that reach their domaisn, Web mail providers chiefly

rely on users to “vote” on whether an email delivered to the inbox is spam or not,

and conversely, whether an email delivered to the spam folder has been mistakenly

flagged as spam. These “Spam” and “Not Spam” votes help the provider assign a

reputation the sender’s IP address, so that future messages from senders who have

a reputation for spamming can be automatically tagged as spam. To enable voting,

Web mail providers add “Report as Spam” and “Not Spam” buttons to the Web mail

interface. These votes allow mail providers to quickly gauge consensus on the status

of an unknown sender or message: if a large number of recipients report it as spam,

the sender (or message) can be filtered. These votes from users, sometimes referred

to as “community clicks” or “community filtering”, are in most cases the best defense

against spam for large Web mail providers [39].

We discovered that spammers use compromised Web mail accounts not only to

send spam, but also to cast votes that raise the reputation of spam senders. We call

this type of attack a vote gaming attack. In this attack, every spam email that a

bot sends is also addressed to a few Web mail accounts controlled by bots. These

recipient bots monitor whether the spam message is ever classified as “Spam”; if

so, the bots will dishonestly cast a “Not Spam” vote for that message. Because

Web mail providers must avoid blacklisting legitimate messages and senders, they

place a heavier weight on “Not Spam” votes. These fraudulent votes stymie Web

mail operators’ attempts to filter incoming spam, and prolongs the period that a

spammer’s IP address can continue sending spam. A study of four months’ worth of

voting data from one among the top three Web mail providers suggests that these
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attacks may be quite widespread: during this period, about 51 million “Not Spam”

votes were cast by users who did not mark a single vote as spam.

Ideally, it would be possible to identify compromised accounts and discount the

votes from those accounts. Unfortunately, we find that spammers use a different set

of compromised accounts to cast fraudulent votes than they use to send spam, so

techniques for detecting compromised accounts that are based on per-user or per-IP

features cannot solve this problem. Instead, we rely on the insight that the mapping

between compromised accounts and the IP addresses that use those accounts differs

from the same mapping for legitimate accounts. Accounts that cast fraudulent votes

tend to have two properties: (1) the same bot IP address accesses multiple accounts,

and (2) multiple bot IP addresses access each compromised account.

In this chapter, using four months of email data from a large Web mail provider

that serves tens of millions of users, we study (1) the extent of vote gaming attacks; and

(2) techniques to detect vote gaming attacks. To the best of our knowledge, this is the

first study that characterizes vote gaming attacks at a leading Web mail provider.

To detect this new class of attacks, we develop a high-dimensional, parallelizable

clustering algorithm that identifies about 1.1 million compromised accounts that cast

fraudulent votes (most of which were previously undetected), with few false positives.

We compare our technique to a graph-based clustering algorithm, BotGraph [149],

that has been used to detect compromised accounts. We show that our technique,

which is now deployed in production at a large Web mail provider, detects 10 times

as many vote gaming user accounts (approximately 1.13 million accounts), with a

10× reduction in the false positive rate (approximately 0.17%). We also describe how

to implement variants of our technique on a grid processing infrastructure such as

Hadoop [48]—a key requirement when dealing with data at the scale of a production

Web mail service.

Although we focus on vote gaming attacks that were mounted on a large Web
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mail provider, vote gaming has occurred in other Web-based services as well, such as

online polls [1] and story ranking on social news sites [3]. Because user votes are used

as the primary means of distinguishing good content from bad across a wide range of

Web-based content providers, messaging services (e.g., Twitter), video-sharing sites

(e.g., YouTube), etc., vote gaming is a threat for these applications as well. Thus,

the insights and algorithms from our work may also apply to these domains.

The rest of this chapter is organized as follows. Section 6.2 provides details on

vote gaming attacks. Section 6.3 presents a model of the vote gaming attack, which

we use to design our detection mechanisms (Section 6.4). Section 6.5 evaluates the

techniques, and Section 6.6 describes scalable, distributed implementations of the

detection techniques and evaluates the speed of the two implementations. Section 6.7

evaluates the sensitivity of the algorithms to parameter settings. Section 6.8 discusses

open issues and avenues for future work, and Section 6.9 concludes.

6.2 Vote Gaming Attacks

Spam from Compromised Web Mail Accounts. Spammers reap many benefits

from sending spam through compromised Web mail accounts: such emails are un-

likely to get filtered or blacklisted using network-level or domain-based features, and

they can use Web mail provider’s infrastructure to deliver multiple copies of a spam

message. These advantages have inspired botmasters to acquire many user accounts

either by “phishing” the passwords of trustworthy customers, or through automated

registrations by cracking CAPTCHAs [38].

A recent study by Microsoft researchers found 26 million botnet-created user ac-

counts in Hotmail [149]. To independently verify whether spam is indeed being sent

through compromised accounts, we observed incoming spam at a spam sinkhole, a

domain with no valid users that accepts all connection attempts without bouncing

mail. We collected 1.5 million spam messages over 17 days to investigate whether
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spam that claims to originate from one of the top two Web mail providers, Hotmail

and Gmail (according to the “From:” address and “Return-Path”), were indeed re-

layed by these providers. Using SPF verification [44], we found that nearly 10% of

spam from gmail.com and nearly 50% of spam from hotmail.com are sent through

these provider’s servers. Although spammers can create fake “From:” addresses at

any provider, the prevalence of authentic “From:” address indicates that a significant

fraction of spam is sent through Web mail systems, likely by bots.

User Voting as a Spam-filtering Mechanism. Due to the shortcomings of

content-based spam filters and the intractability of blacklisting the IP addresses for

popular Web mail servers, Web mail providers rely on feedback from users to expedite

the classification of spam senders and messages. All popular Web mail interfaces in-

clude a “Report Spam” button that is used to build consensus on whether a particular

message, or emails received from a particular IP address, are likely spam. Figure 6.1

shows the prominent position of the “Not Spam” button on the reading panes of Ya-

hoo! Mail, Windows Live Mail, and Gmail. Soliciting user feedback is effective [39]:

when a number of users report a spam message, the system detects consensus and

can automatically learn to filter further messages from the sender. Web forums and

other media services also rely on similar approaches.

Fraudulent Voting. Figure 6.2 represents a typical pattern of vote gaming attacks

at a large Web mail provider. Spammers compromise or create new accounts that they

control and add some of these accounts to the recipient lists of spam messages. When

one of these accounts receives a spam message that is already classified as spam, the

bot controlling the account will report the message as “Not Spam”. When a number

of bots report the message as “Not Spam”, the spam filtering system will notice the

lack of consensus and refrain from automatically filtering the message into a user’s

spam folder, since misclassifying legitimate mail as spam is considerably detrimental.
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(a) Yahoo! Mail

(b) Windows Live

(c) Gmail

Figure 6.1: “Not Spam” buttons appear on the interfaces of popular Web mail
services when reading a message already classified as spam.

To make detection more difficult, botmasters do not typically use voting bots to send

spam, which maximizes the number of “not spam” votes that each voting bot can

cast before being detected. Figure 6.3 shows an example of the series of votes cast on

messages sent by a likely spammer IP address over the course of 19 days at a large

Web mail provider.

6.3 Modeling Vote Gaming Attacks

I1n this section, we develop a model for vote gaming attacks and explain how the

behavior of accounts used for vote gaming differ from that of legitimate users.

Consider a dataset that consists of:

• a set of “Not Spam” (NS) votes,

• the identities of the users who cast the votes ({U})

• the IP addresses that sent messages on which these votes were cast ({P}).
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Figure 6.2: A spammer sends mail to many legitimate user accounts, as well as a
few accounts controlled by voting bots. If the message is classified as Spam, bots will
report it as “Not Spam”, prolonging the true classification of the message.

We can represent voting as a bipartite graph, where each NS vote is an edge from a

user ID to an IP address, as shown in Figure 6.4. In practice, this dataset is unlabeled

(i.e., identities of the bots and spammers are unknown) even though they are labeled

in the figure for clarity.

Two properties of vote gaming attacks help detection:

1. Volume: Compromised user accounts cast NS votes to many different IP ad-

dresses

2. Collusion: Spammer IP addresses receive “not spam” votes from many different

compromised accounts.

Of course, legitimate users also cast NS votes, and a legitimate user may also

incorrectly cast a NS vote on a spam sender. Legitimate users may also cast many

NS votes, either because they receive a large amount of email, or perhaps because

they have subscribed to mailing lists whose messages are frequently marked as spam

by other users. However, legitimate users tend to not cast collections of NS votes
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Figure 6.3: Timeseries of Spam and Not Spam votes cast on a likely spammer IP
address over 19 days. Fraudulent voters need to cast fewer votes to annul the “spam”
classification of a message.

on a specific set of IP addresses, because it is extremely unlikely for multiple legiti-

mate users to receive a spam message from the same IP address and proceed to vote

NS on the same message. Thus, in combination with the second feature—that a

large fraction of IP addresses that a bot votes on will also be voted on by other bot

accounts—we can detect compromised accounts with very few false positives. Be-

cause legitimate users do not cast NS votes on messages because of the IP that sent

the message, they are unlikely to share a large set of their voted-on IPs with other

legitimate users.

Using these insights, we can apply unsupervised learning to the model of voting

data to extract sets of likely gaming accounts. To enable unsupervised learning, we

first represent the bipartite graph as a document-feature matrix, with user accounts
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Figure 6.4: NS votes as a bipartite graph matching voting user IDs ({U}) to sender
IP addresses ({P}). Dotted edges represent legitimate NS votes; thick edges represent
fraudulent NS votes. L: legitimate voter/sender; B: bot voter; S: Spam sender.

as documents and the IP addresses that are voted on as features. We then cluster ac-

counts that have high similarity with each other based on the number of IP addresses

they share. Section 6.4 describes our clustering approaches, and how it outperforms

a similar approach used in BotGraph [149].

Our detection methods rely on three assumptions:

A1 Compromising accounts is sufficiently costly to require spammers to reuse ac-

counts in U .

A2 A single user ID in U can vote on a specific IP address in P at most m times.

A3 The majority of votes on a spammer’s IP address are “Spam” votes from legit-

imate users.

All of these assumptions typically hold in reality. A1 holds because most Web mail

providers follow a reputation system with regards to voting. To prevent spammers
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from creating large amounts of accounts and using them only to cast NS votes, users

need to build up a voting reputation in order to be accounted for. This requires

spammers to compromise existing accounts with good voting reputation, which is

time-consuming. A2 holds because the Web mail provider must reach a consensus

across many users. Thus, most providers only allow a few votes per IP address (we

assume m = 1). A3 holds because legitimate recipients outnumber compromised

accounts. This assumption is inherent in the business model of spammers, who want

to reach as many users as possible and have fewer compromised accounts than target

“clients”. A3 implies that each spammer must cast several NS votes to affect the

consensus for an IP address. If each compromised account can only cast a single vote

per IP address, to achieve a critical number of NS votes, the spammer must cast

multiple NS votes from different accounts.

6.4 Detecting Vote Gaming Attacks

We now develop detection methods for vote gaming attacks. We review an existing

graph-based clustering algorithm from Kumar et al. [75] and later applied in Bot-

Graph [149]. We explain why this approach is not optimal for detecting vote gaming

attacks; we then present a new clustering approach using canopy-based clustering.

6.4.1 Problem: Clustering Voting Behavior

Figure 6.5 shows how we can represent a sample voting graph as the input document-

feature matrix M for a clustering algorithm. Let U be the set of users who voted

and P be the set of IPs they voted on. M ⊆ U × P , and each M(i, j) denotes the

number of votes given by user i to an email sent from IP j. The matrix M consists

of all users who have voted and all IPs that have received a non-spam vote. Our goal

is to extract groups of fraudulent user identities from M with few false-positives.

Large email providers have tens of millions of active users per month, and the

number of voted-on IPs is on the order of millions. We wish to identify the user IDs
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Figure 6.5: Representing the NS voting graph as an adjacency matrix. Labels on
edges represent the number of times a user votes on an IP.

that behave similarly by clustering in this high-dimensional space. Our setting differs

from conventional clustering setups [53] in the following ways:

1. Lack of cluster structure. Unlike the usual settings in which clustering is

performed, there are no clear clusters in our data. In fact, with a normal set

of users, two users will rarely receive emails from the same IP, and even more

rarely will they cast the same vote on the same IP. Thus, any form of tightly

connected clusters in our data is a signal of anomaly—as we shall see later, we

instead end up with a large number of clusters at various scales.

2. Sparsity. On average, users cast less than one non-spam vote during the en-

tire month, although we also observe a significant number of users with large

numbers of non-spam votes.

3. Data scale. Our data has many users and IPs. While many traditional clus-

tering algorithms are quadratic time, our data’s scale requires linear-time or

near-linear-time algorithms.

4. Adversarial nature. The data is generated adversarially. The spammers can
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succeed only if they can remain undetected by the anti-spam filters. This means

that we rarely get spammers casting a large number of non-spam votes from the

same ID. Instead, campaigns to vote “Not Spam” are distributed over a large

number of user IDs.

These features make the choice of clustering algorithm and distance metric critical. As

a simple example, clustering based on distance metrics such as the Euclidean metric

will erroneously show high similarity between IDs which have few IPs in common

as long as the common IPs have high weight.1 Consequently, we need to develop

clustering strategies specifically for our problem setting.

6.4.2 Baseline: Graph-based Clustering

As a baseline for comparison, we apply a graph-based clustering method that is similar

to the technique introduced by Kumar et al. [75] and later applied by BotGraph [149].

We choose this algorithm to enable direct comparison of methods used in previous

work, and with our second approach, canopy-based clustering. Kumar et al. [75]

proposed the k-neighborhood plot as a way to study the similarities between entities

using Web data. Given a bipartite graph G = (A,B,E), Kumar et al. define the

k-NC graph H corresponding to G as follows: H is defined over the vertex set A; we

include edge (u, u′) in H if there exist k distinct nodes {v1 . . . vk} ⊆ B such that for

each i, both (u, vi) and (u′, vi) are in G. Figure 6.6 illustrates the construction of a

k-neighborhood graph from a bipartite graph. Zhao et al. use the same construct in

BotGraph to discover botnets by working with the bipartite graph of users versus the

Autonomous System (AS) numbers of the IPs from which users log in [149]. We make

one improvement to the clustering approach in BotGraph: rather than mapping user

1Consider two vectors A = [1, 1, 1, 10], B = [0, 0, 0, 10], and C = [1, 1, 1, 3]. The distance between
A and B is dEuclidean(A,B) = 1.73, although A and B have only one feature in common. The
distance dEuclidean(A,C) = 7.0, i.e., greater than dEuclidean(A,B), even though A and C vote on the
same set of IPs. The high-valued feature influences the Euclidean metric more than, for example,
the Jaccard metric.
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Figure 6.6: k-neighborhood representation of {U} from Figure 6.5.

accounts to AS numbers, we map them to IP addresses, since mapping user accounts

to AS numbers hides the fact that a user account is accessed from multiple locations.

Efficiently finding a value for k. Two users voting NS on the same k sender

IPs is indicative of suspicious coordinated behavior. The success of this approach

depends on efficiently finding a value of k that identifies a significant number of

attackers with no false positives. A low value for k may retain some legitimate users

in components that mostly have bots. On the other hand, a high value for k produces

components whose voting behaviors are highly coordinated, although the sizes of the

components—and hence the number of bots identified—decrease.

A simple way to construct the k-NC graph for any fixed value of k first creates the

weighted graph G′ with vertex set U where for each (u, u′) the weight w(u, u′) equals

the number of common neighbors of u and u′ in G. Then, we can create the threshold

using the value of k that we desire and apply standard component finding algorithms.
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This takes time O(min(|U |2, imax|E|)) where imax is the maximum number of users

who vote on an IP. This approach is infeasible when the size of |U | is on the order of

tens of millions, and imax is typically of the order of thousands as well. For a fixed

value of k, Kumar et al. [75] show how to compute the k-NC graph in time O(n2−1/k)

where n = |U |, which is significant gain for small k. Our setting, however, requires a

larger k to ensure we do not create edges between normal users and bot accounts so

this algorithm is impractical in our setting. Furthermore, as with BotGraph [149], we

need to run the component-finding algorithm at various values of k to find the right

threshold.

To create components at various thresholds, we have developed a new technique

using dynamic graph algorithms for maintaining components under edge additions

and deletions. Although it is difficult to maintain components under edge deletions,

it is easier to do so under edge additions. Thus, we start with a maximum value kmax,

find components with threshold k = kmax, and then decrease k by 1. At each step

that we decrement k, the graph gains a new set of edges, and these could change the

component structure by joining some previously disconnected components. Updating

the component list efficiently only requires maintaining a union-find data structure,

and the whole process takes total time O(kmax(|U |+ |E|.α(E,U))), where α(E,U) is

the inverse Ackermann function, an extremely slow-growing function which is a small

value—less than 5—for almost all practical values of |E| and |U |.

Graph-based Clustering Produces False Positives. The most significant short-

coming of graph-based clustering such as BotGraph [149] for detecting bot-controlled

accounts is its false positive rate, which are typically unacceptable for email. In-

tuitively, graph-based clustering disconnects edges lower than a certain weight and

labels all nodes in a large connected component as bots; it does not pay attention to

the absolute degree of a node in a connected component when compared with other

nodes in the component. This behavior produces false positives.
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Figure 6.7 illustrates why graph-based clustering may produce false positives.

The nodes (i.e., user accounts) shown outside the cloud are legitimate, but the nodes

inside the cloud are controlled by bots. All the legitimate accounts share two IP

addresses between each other (e.g., perhaps due to a company proxy server that

cycles between two public IP addresses), as shown by the edges with weight two.

Unfortunately, one legitimate user has also logged in from two IP addresses that

have bot programs running on them. This scenario could be a false positive—for

example, the legitimate user’s IP address could have been recycled with DHCP to a

botted machine—or it could have occurred accidentally, because the legitimate user

has a bot program on his computer while he continues to use it. In either case, this

legitimate user acts as a “bridge” that connects a component of true voting bots,

and a number of legitimate users that would otherwise have been disconnected. A

clustering algorithm based on pairwise similarity comparisons is unlikely to make this

mistake because it would compare all-pairs similarity, and discover that the true bots

have a much higher similarity to each other than other pairs. Although this particular

false positive could have been avoided by increasing the value of the threshold k to 3,

the BotGraph algorithm would stop the component finding process at k = 2, because

the component sizes between successive steps differs by an order of magnitude: the

component of 14 nodes breaks to a largest component of 3 nodes if k is increased to

3.

6.4.3 Our Approach: Canopy-based Clustering

To reduce false positives and cope with high dimensionality, we adapt a two-stage

clustering technique by McCallum et al. called canopy clustering [82]. Canopy clus-

tering is a divide-and-conquer approach for clustering high-dimensional data sets.

Canopy clustering is more practical than graph-based clustering for detecting vote-

gaming attacks, because it produces fewer false positives and is more scalable. The
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Figure 6.7: Shortcoming of graph-based clustering: one false-positive edge can con-
nect a bot component (shown within the cloud) to a number of unrelated, almost-
disconnected legitimate users (outside the cloud). Edge labels are the edge-weights.
Here, the threshold k = 2.

algorithm proceeds in two stages:

Step 1: Canopy Formation. First, we partition the raw data into overlapping

subsets called canopies, using an inexpensive similarity metric and very few similar-

ity comparisons. We construct canopies such that all elements in a cluster in the

output of a traditional clustering algorithm will be within the same canopy. Thus,

the second stage of canopy clustering need only conduct more rigorous similarity com-

parisons for elements that are within the same canopy. Provided that the number of

elements in the largest canopies are much smaller than in the raw data, this method

typically reduces the number of expensive similarity measurements by many orders

of magnitude.

The choice of metric used to create the initial partition of the raw data into

canopies is important: a good metric is inexpensive (i.e., does not involve operations

such as division or multiplication), and minimizes the size of the largest canopy.

Following McCallum et al.’s suggestion of using the number of common features

between elements as an inexpensive metric, we use the number of common IPs voted
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on by two users as our canopy metric. We explain this metric in Section 6.6, and how

its parameter settings affect detection and false positive rates in Section 6.7.

Step 2: Conventional Clustering. The output of the first step are canopies of

tractable sizes, such that we can directly perform clustering on each canopy. For

this stage, we use a well-known hierarchical clustering scheme, greedy agglomerative

clustering (GAC), using α-Jaccard similarity2 as the metric. We choose GAC using the

Jaccard metric because it is appropriate for clustering user IDs where the similarity

metric should take into account the fraction of shared IPs. In Section 6.6, we introduce

an approximation of this method that works in a cluster computing infrastructure such

as Hadoop. We also discuss how to parallelize this clustering using techniques from

locality sensitive hashing [36].

GAC is an iterative method, where initially, each element in the data set is in

a cluster of its own. At each iteration, we find the similarity between every pair of

clusters using the Jaccard metric, and merge the two clusters that are the most similar

to each other, provided this similarity is greater than a threshold, α. We compute

the Jaccard metric between two clusters using the mean distance between elements

in the cluster. If C1 and C2 are two clusters of elements, the mean distance is

dmean(C1, C2) =
1

|C1| |C2|

∑

x∈A

∑

y∈B

dJaccard(x, y)

Iteration stops when either (1) only a single cluster remains, or (2) the similarity

between the two most-similar clusters is less than α. Because canopies are overlap-

ping, an element may be clustered into multiple clusters. To resolve this issue, after

we perform GAC on each canopy independently, we assign any element that is in

2Let x and y be two user identities, with X and Y representing the sets of IP addresses on which
they voted “not spam”. x and y will be clustered together only if

|X ∩ Y |

|X ∪ Y |
≥ α
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Figure 6.8: Workflow for finding and validating fraudulent voters from unlabeled
voting data.

multiple clusters solely to the largest cluster; we find that this choice does not incur

false positives because most large clusters are likely comprised of bot accounts.

6.5 Evaluation

We evaluate the accuracy and precision of the clustering algorithms for detecting

vote gaming attacks. Section 6.5.1 describes our dataset; Section 6.5.2 describes the

metrics used to evaluate the quality of the clustering algorithms, and presents the

basic performance of each algorithm for identifying vote gaming attacks. Figure 6.8

explains the workflow of our evaluation and validation technique.

Main Result. Although both canopy-based greedy agglomerative clustering (GAC)

and graph-based clustering both can detect vote gaming attacks, GAC finds more
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Table 6.1: Description of voting dataset.
Period 4 months (Jul.–Oct. 2009)
Total Voting Users 35 million
→֒ Total only-NS voters →֒ 13.93 million (39.8%)
→֒ Users labeled “good” →֒ 1.3 million (3.71%)

→֒ only-NS voters →֒ 22,853 (1.76%)
→֒ Users labeled “bad” →֒ 2.41 million (6.91%)

→֒ only-NS voters →֒ 164,941 (6.82%)
Total Spam votes 357 million
Total Not-spam votes 82 million
→֒ By only-NS voters →֒ 51.7 million (63%)
Voted-on IPs 5.1 million
→֒ Voted-on as NS →֒1.7 million (33.3%)

potentially dishonest voters overall (1.1 million vs. 160,101), has a higher detection

rate of confirmed dishonest voters (10% vs. 3%) and a lower false positive rate (0.17%

vs. 1.09%). (Section 6.5.2, Table 6.2)

6.5.1 Data

Our dataset consists of the logs of votes cast by the users of a large Web mail service

provider on mail that they receive, extending for four months from July–October

2009. Each line corresponds to one vote; the fields included are: (1) the ID of the

user who cast the vote, (2) the IP address of the sender of the email on which the

vote was cast (the “voted-on” IP), and (3) the type of vote—“S” for spam and “NS”

for not spam. Section 6.6 describes the filtering stage of our workflow.

Ground Truth. To validate whether the clusters of voters we obtain contain fraud-

ulent voting accounts, we use labels of confirmed fraudulent voting accounts obtained

from the Yahoo! Mail anti-spam team. These accounts were enumerated using tech-

niques other than the ones we described in this chapter (e.g., erratic clicking behavior,

voting too many “not spam”, etc.). To evaluate the percentage of false positives, we

use a list of users known to engage in reputable behavior; this list contains users who

have long-standing accounts with the provider, or users who have purchased items
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Table 6.2: Comparison of Greedy Agglomerative Clustering (GAC) and Graph-based
clustering that shows the median cluster (or component) size, the number of potential
dishonest voters detected, the percent of confirmed dishonest voters detected, and the
false positive rate.

Method Median clust. size Detection Detection rate FP rate
Canopy Clustering 109 1,138,368 10.24% 0.17%

Graph-based 32 157,177 3.51% 1.09%

from e-commerce sites also owned by the provider’s parent company. Because the

set of labeled users was collated independently by the anti-spam team at the large

Web mail provider, only a subset of these labeled accounts intersect with our 4-month

dataset of NS votes. Historically, these labeled lists are known to be highly accurate.

Table 6.1 summarizes the voting dataset and its intersection with user labels. We

have observed empirically that, although some NS votes are legitimate (e.g., there are

cases where a legitimate email contained keywords that triggered a content filter for

spam), the majority of NS votes are performed by bots to delay the identification of

spam sent by other bots: 63% of NS votes are cast by users who only cast NS votes.

Although we derive data labels using independent verification methods (e.g., manual

inspection, suspicious account activity), these labels can often only be attributed to

the users after they have performed a significant amount of malicious activity and

have been de-activated. Our goal is to identify as many undiscovered fraudulent voters

as possible, so we use accounts that are labeled after the time period during which

we evaluate our clustering methods.

6.5.2 Detection and False Positive Rates

Our aim is to identify large groups of bots without incurring many false positives.

Thus, for either clustering algorithms, we consider any user account that falls into

clusters (or components) above a threshold size to be a bot. We compare the two

techniques in terms of three metrics: (1) detection, i.e., the number of users that are

classified into clusters larger than the xth percentile cluster size (x being variable); (2)
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Figure 6.9: Performance of GAC and Graph-based clustering for various percentiles
of cluster/component sizes. The x-axis shows the percentile cluster size above which
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detection rate, i.e., the fraction of users labeled “bad” (i.e., fraudulent voters) who

are in clusters larger than the xth percentile cluster size, and (2) false positives (FPs),

which we quantify as the ratio of good users in clusters larger than the xth percentile

cluster size to all good users, for various values of x. Table 6.2 presents these statistics

for the median (i.e., x = 0.5) cluster size, and Figure 6.9 shows the detection and

FP rates for various percentile values (x). Neither GAC nor graph-based clustering

vary much in terms of detection or false positive rates with respect to x; thus, even a

small-sized cluster is likely to contain mostly bots. Graph-based clustering results use

k = 5, and canopy-based GAC uses a Jaccard similarity threshold of 0.85. Section 6.7

explains our parameter choices for both algorithms in detail.

Canopy-based GAC outperforms graph-based clustering in all metrics: the number
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of potential dishonest votes detected, the detection rate of confirmed dishonest voters,

and the false positive rate. GAC detects more potential dishonest voters because,

unlike graph-based clustering, it does not create clusters based on a discrete parameter

(i.e., k): graph-based clustering at k = 5 has a few large clusters with a steep drop

in cluster size, while the drop in cluster sizes is more gradual with GAC. GAC is

also more precise than graph-based clustering. in graph-based clustering, a large

connected component at some k may contain two or more sub-components which

are connected only by an edge of weight exactly k. Even if the users in one sub-

component do not vote on the same IPs as users in the other, they will be categorized

into one large component, potentially increasing false positives if some of these users

are legitimate. GAC performs all-pairs similarity comparison between users, which

results in clusters where all users are similar to one another.

One of the top three large Web mail providers is using our detection technique in

production. Although a 10% detection rate of confirmed dishonest voters may seem

low, even single-percentage-point gains are significant for a for large-scale Web mail

providers, given the high volumes of spam seen by Web mail providers. Any increase

in detection rates can help these providers make more accurate decisions about which

email connection attempts to reject early, and which mail can be more quickly and

efficiently classified as spam (e.g., without inspecting the message’s contents); indeed,

clustering is being applied in practice at the large Web mail provider to detect fraud-

ulent voters. Our techniques also identified fraudulent voters more quickly than other

methods: many of the bots we discovered were identified by the anti-spam team as

bots only well after our dataset was collected. We also note that the actual detection

rate may be higher that 10% in practice, because at least some of the users labeled

“bad” may have had the bulk of their malicious activity before or after the time

period of our dataset.
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6.6 Scalable Distributed Implementation

We describe scalable implementations of the distributed graph-based clustering (Sec-

tion 6.6.2) and canopy-based clustering (Section 6.6.3). We evaluate the performance

of the two methods in Section 6.6.4.

Main Result. Both implementations run on our 4-month dataset in only a few hours,

making it practical to run on a sliding window that includes new voting data. GAC

is slower than graph-based clustering due to the overhead of all-pairs comparisons

(Section 6.6.4, Table 6.3).

6.6.1 Overview

At the scale of large Web mail providers, raw voting data totals tens of millions of

unique identities that map to millions of IP addresses. At this scale, analyzing data

on a single machine is often infeasible. Many large organizations such as Yahoo!,

Google, and Microsoft use distributed computing to analyze Web-scale datasets, by

storing the data on distributed filesystems and using methods such as MapReduce [27]

to process them.

MapReduce is appropriate for tasks that are inherently parallelizable, such as

searching and sorting, but solving clustering tasks using MapReduce poses a number

of challenges. First, because individual rows of the matrix M may be split across

different mappers and reducers, MapReduce clustering algorithms often take many

iterations to converge to a high-quality clustering. Second, between each iteration

of clustering, there could be a large amount of inter-node communication in the

distributed filesystem as potentially similar rows of M are sent to the same map-

per/reducer. Finally, the intermediate output containing the results of comparing

every pair of rows may sometimes be much larger than the raw dataset. Although

some clustering algorithms, such as k-means [53], are parallelizable, they are ill-suited
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for our problem.3 Unfortunately, our clustering algorithms expect a shared-memory

architecture and are not inherently parallelizable. Below, we present efficient ap-

proaches to implementing both graph-based clustering and canopy-based clustering

using MapReduce that trade off accuracy for efficiency.

6.6.2 Distributed Graph-based Clustering

Step 1: Creating an approximate user-user graph using MapReduce. In a

distributed infrastructure, computing the k-neighborhood graph is challenging due to

the amount of intermediate output it generates. Suppose the original bipartite graph

is stored in the following format:

<user ID> <list of (IP, NS votes) pairs>

Because this file is split across many machines, the straightforward approach to

construct the k-neighborhood graph uses two MapReduce iterations. The first itera-

tion’s Map phase outputs the inverse edge file where each line has an IP address as

the key and a user ID that voted on it as the value. The Reduce phase will then collect

all lines with the same key and output all pairs of users who have the same key. The

second iteration counts the number of time a specific user-user pair has been written

out, which yields the number of IPs shared between the two users—the edge weight

in the user-user graph. The main bottleneck in this process is the size of intermediate

output between the two iterations: for example, an IP that has been voted on by

1000 users will produce
(

1000

2

)

pairs of user-user entries, and when repeated for many

high-degree IPs can overflow even the terabytes of space on a distributed filesystem.4

3k-means, although widely applied, has flaws: (1) every point in the data is forced into a cluster,
which may affect the cluster quality if points are outliers; (2) as mentioned before, the euclidean
distance metric is both expensive to compute, and gives weight to the larger-valued features than the
number of common features; (3) the number of clusters, k, may not be easy to determine beforehand.

4Zhao et al. also face this problem, but alleviate it using DryadLINQ [145] that offers a “merge”
capability to reduce intermediate output size; we use the more widely-used MapReduce platform.
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We apply approximations to filter the number of intermediate user-user edges

that must be output. We first filter users who have voted on very few IPs. Next,

because we are interested only in users who fall into large components at reasonably

high values of k, we suppress user-user edges where the two users are unlikely to

have many IPs in common. To do so, we hash the IPs that are voted on by a user

into a fixed-size bit-vector, essentially a variant of a count-min sketch [24]. Before

outputting a user-user edge, we compare the overlap between the two users’ bit vectors

and proceed only if the overlap is greater than a certain threshold (which we set to

lower than kmax because hashing different IPs to a fixed-size bit vector could create

collisions). Similarly, when outputting all the user-user pairs for a certain IP that

has a large number—say p users, voting for it—instead of outputting all
(

p
2

)

pairs,

we select a random subset of size αp and output them only. It is possible to tune

the value of α with respect to the threshold k desired to ensure that we do not break

apart large connected components in the resulting user-user graph.

Step 2: Finding connected components on the user-user graph. Finding

connected components using MapReduce needs at least O(d) iterations, where d is

the diameter of the graph (i.e., maximum length shortest-path between any two

vertices). In this approach, the input is the edge file of the user-user graph and a

vertex-component mapping that maps each vertex to its “component ID”, initially set

to the ID of the vertex itself. In each iteration, a mapper processes each edge e(u, v)

in the edge file and outputs two lines < u, i > and < v, i > where i is the minimum

component ID of vertices u and v. This output becomes the new vertex-component

mapping. The process is repeated until no vertex changes its component ID. In the

case that the set of vertices fits into memory, we can employ the algorithms outlined

in [67] to actually find components in a constant number of passes.
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6.6.3 Distributed Canopy-based Clustering

Step 1: Creating Canopies. Although our dataset comprises tens of millions

of user accounts that cast votes on millions of IP addresses, the graph is sparsely

connected. Because the adjacency matrix M is sparse, we choose a sparse matrix

representation, M ′, where each row M ′(i) is a set of t tuples, where t is the number

of IP addresses that ID i has cast votes on. M ′ is constructed such that, if an entry

(j, k) ∈ M ′(i), then M(i, j) = k.

We create canopies using an inexpensive similarity metric and use the number of

common IP addresses to measure similarity between two rows of M . Adapting the

method by McCallum et al. [82], we first create an inverted index N that maps IP

addresses to the set of users who vote on them. To create a new canopy, we pick

a random row i from M and add it to the canopy as the first row. For each non-

zero column j in M(i), we find the other rows in M that also vote on IP j using

the row N(j). Using the inverted index allows us to ignore all rows of M and only

compare with the rows from N(j). We use upper and lower thresholds—Thigh and

Tlow (Thigh > Tlow)—to measure similarity: if the similarity of a given row in M to

M(i) is greater than Thigh, we remove the row fromM and add it to the canopy. If the

similarity is less than Thigh but greater than Tlow, we add the row to the canopy but do

not remove it from M . This procedure explains why canopies can be overlapping: if a

row is removed from M , it will not be considered for inclusion in any more canopies.

In our implementation, we set Thigh to 7 and Tlow to 5; i.e., a row is added to a canopy

removed from M if it has at least 5 rows in common with the first row in the canopy,

and it is also removed from M if it has at least 7 rows in common with the first row.

We explain how we obtain these numbers in Section 6.7.2.

Step 2: Greedy Agglomerative Clustering. After computing canopies, we read

each canopy and cluster only the rows in that canopy. To reduce the workload,
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we skip canopies smaller than 10 rows and canopies where the first has fewer than

two non-zero columns. We use the average-linkage clustering metric to decide the

similarity between rows in a canopy. If a row is a member of multiple canopies, we

include that row in the clustering input for all canopies. In the final output, we

include such rows as members of the largest cluster among different canopies. In a

distributed setting such as MapReduce, accurate canopy clustering can be quicker

than an accurate graph-based component-finding algorithm: provided the largest

canopy can be clustered by a single node, agglomerative clustering of canopies can

be done entirely in parallel in one step, without involving the inter-node overhead or

the O(d) iterations of graph-based component-finding.

Although for our dataset, the näıve implementation that compares every pair of

clusters within a canopy before merging the two most similar clusters is sufficient,

locality sensitive hashing (LSH) makes this step faster [36]. With LSH, we can create

a hash-function on the vectors of the IPs that two users vote on, such that with high

probability, two users with Jaccard coefficient above α are going to fall in the same

hash-bucket. The threshold α and the probability desired will control the parameters

of the hash-function. We compare pairwise all user IDs that fall within each bucket,

and choose the most similar pair of IDs to merge as one cluster. Once we form a

new cluster by merging two user IDs, we can repeat the process using the vector

representation of the new cluster using the same hash function. This process ensures

that at any step, we find the nearest neighbors with high probability.

6.6.4 Comparison: Clustering Speed

To evaluate the speed of each approach, we implemented and tested each approach

on an unloaded 8-core Intel Xeon 2Ghz machine (4MB L2 cache) with 36GB of

main memory running Linux 2.6.32. Both implementations were single-threaded.

In addition, we tested our approximate graph-based clustering implementation on a
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Table 6.3: Speed and memory consumption of our GAC and graph-based clustering
implementations. Times for graph-based clustering include the multiple iterations of
finding connected components, from k = 20 to k = 7. We could not measure the
system time or RSS for our Hadoop implementation.

Method WC time Sys. time Max RSS

Graph-based 86.7 min 6.8 sec 5944 MB
→֒ Hadoop 14 min N.A. N.A
GAC 5.5 hrs 2.3 min 8221 MB
→֒ Canopy formation 30.1 min 2.7 sec 3109 MB

distributed cluster using the Hadoop MapReduce framework. The input was the edge

file for the bipartite graph that maps users to the IPs that they vote on.

Table 6.3 presents the times taken and maximum resident set size for each method.

Although GAC performs better than graph-based clustering, GAC takes longer and

consumes more CPU time because of many all-pairs similarity computations between

users in a canopy. The GAC phase does not require more memory consumption than

the canopy formation; the extra memory usage is likely due to the memoization used

to speed up our implementation. Canopy-based clustering can be easily parallellized,

so with a multi-threaded application, we expect to gain a speedup proportional to

the number of cores. Table 6.3 also shows the large improvement in running time

for our approximate graph-based clustering algorithm on a grid infrastructure such

as Hadoop [48]. Although we could not implement canopy clustering on the same

infrastructure, we expect a significant speedup for that method as well.

6.7 Sensitivity Analysis

In this section, we analyze the sensitivity of the detection and false positive rates for

the algorithms evaluated in Section 6.5.

Main Result. The effectiveness of both techniques depends on parameter settings.

Because graph-based clustering has a single parameter (the neighborhood density, k),

its cluster sizes are more sensitive to the setting of k (Section 6.7, Figure 6.10).
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(b) Size of the largest component.

Figure 6.10: Variation of the number of components and the size of the largest
component as the value of k increases from 1 through 20. The number of components
do not increase much past k = 2, but the size of the largest component decreases
exponentially from k = 2 to k = 8. We pick a value of k that gives a good tradeoff
between the component size and number of components (k = 5).

6.7.1 Graph-Based Clustering

Our goal is to find a value of k that yields clusters that are as large as possible with

few false positives. This task is challenging: selecting the smallest value of k where

the largest component fragments might yield k = 2. However, k = 2 may not yield

large components containing only bots with no false positives, because to be in a

connected component at k = 2, a legitimate user only needs to vote “not spam” on

two IPs that a voting bot also votes on as “not spam”; this event may occur either
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(a) Fraction of fraudulent voters in largest component at various k. A value of 1 indicates zero false
positives.
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(b) Fraction of labeled users in each component that are dishonest, for different component sizes and
at different values of k. Low values on the y-axis indicate a higher false positive rate.

Figure 6.11: (a) Fraction of “bad” users in the largest component as k is varied;
and (b) the fraction of “bad” users as component size varies for two specific values of
k. The largest component only contains users labeled “bad” above k = 2, but there
is higher variability in the false positive rate for smaller-sized components at k = 2
than at k = 5.

if a user votes “not spam” by accident or because the voted-on IPs were re-assigned

during our data timeframe due to DHCP reassignment. Thus, instead of choosing the

stopping value of k only using the decrease in size of the largest component, we stop

when a large fraction of labeled users in the largest components are known dishonest

voters.

Figure 6.10 shows the number of components and the size of the largest component

as k increases from 1 to 19. As Figure 10(a) shows that at k = 1, almost all nodes are
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in a giant component that includes nearly all nodes in the user-user graph, but just

by increasing k to 2, the giant component fragments from over 14.6 million nodes to

just 52,006 nodes, and the number of components increases from 30,225 to over 14.5

million. Figure 10(b) highlights the decrease in the size of the largest component,

echoing the structure of the Web pages-vs.-ads bipartite graph in Kumar et al.’s

work [75].5

Even for low values of k, the largest component consists mostly of “bad” users.

Figure 11(a) shows how the fraction of users labeled as fraudulent in the largest

component varies as a fraction of all labeled users, for various values of k. Even at

k = 2, the largest component has no users labeled “good” (i.e., no false positives).

This characteristic holds as k increases: there are no false positive “good” users in

the largest component at any value of k greater than two. However, the minimum

component size above which there are no false positives is dependent on k. We

examine the size of the largest component and the fraction of dishonest voters in each

component (among labeled users). Figure 11(b) shows the number of false positives

in each component, rank-ordered by the size of the component, for k = 2 and k = 5.

Smaller components for small values of k often include many “good” users; at k = 2,

even the second-largest component contains more than half good users. As we increase

k to 5, the good-user portion of the large component fragments, resulting in smaller

components with even fewer false positives, which is why we picked this threshold for

our evaluation.
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Figure 6.12: Canopy characteristics for various upper and lower thresholds, Thigh

and Tlow.

6.7.2 Canopy-Based Clustering

Choosing thresholds for canopy formation. The first step in canopy-based ag-

glomerative clustering is canopy formation, which is parameterized by the thresholds

Thigh and Tlow (Section 6.6.3). These thresholds control the extent to which the data

is partitioned and the extent to which canopies overlap with one another. Because we

apply canopy clustering to reduce the size of our input dataset, we must pick values of

5This work illustrates the similarity of Web pages based on the number of advertisements they
share; they found that sharing even 5 advertisements did not say much about the connection between
Web pages, but six or more shared advertisements implied a stronger notion of similarity. Similarly,
we find that two users in the same component at k = 2 or k = 3 are not necessarily similar but
connections at a slightly higher value of k = 6 or k = 7 implies high similarity.
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Table 6.4: Sensitivity of the detection and false positive rates to the choice of the
similarity threshold. We chose 0.85 (highlighted).

Sim. Threshold Detection Rate FP rate
0.90 8.74% 0.14%
0.87 9.01% 0.15%
0.85 10.24% 0.172%
0.82 15.52% 0.217%
0.78 17.52% 0.244%
0.76 19.24% 0.35%
0.74 21.70% 0.328%
0.72 23.29% 0.499%

Thigh and Tlow such that: (1) the average size of canopies are reduced, (2) the overlap

between canopies is reduced, and (3) the total number of canopies are reduced. Low

values of Thigh reduce overlap, and high values of Tlow decrease the size of canopies.

However, if both Thigh and Tlow are too large, all but highly similar rows will be in

non-singleton canopies.

Figure 12(a) plots the size distribution of canopies on varying Thigh and Tlow,

and Figure 12(b) plots the CDF of the user IDs which are mapped onto multiple

canopies. These figures show that setting Thigh = 7 and Tlow = 5 partitions the users

into distinct canopies into a few small canopies with minimal overlap.

Choosing a threshold for the Jaccard Metric. We cluster each canopy using

average-linkage similarity (Section 6.4.3). For each canopy, GAC iteratively performs

all-pairs similarity computation and merges the most similar clusters if their Jaccard

similarity exceeds a similarity threshold. Table 6.4 shows how the detection rate and

false positive rates change for other settings of the similarity threshold. A similarity

threshold of 0.85 yields a high detection rate and a low false positive rate.

Figure 13(a) shows the size distribution of the clusters we obtained. More than

99% of clusters are singletons (i.e., likely legitimate users). Figure 13(b) shows the

distribution of dishonest voters for various cluster sizes, presented as a fraction of

158



 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0  5000  10000 15000 20000 25000 30000 35000 40000 45000 50000

C
D

F

Cluster size
(a) Size distribution of clusters obtained using GAC

 0

 0.5

 1

 1.5

 2

 0  5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

F
ra

ct
io

n
 o

f 
la

b
el

ed
 

u
se

rs
 t

h
at

 a
re

 b
ad

Cluster size
(b) Distribution of dishonest voters in clusters as a fraction of all labeled users.

Figure 6.13: Analysis of Greedy Agglomerative Clustering: (a) shows that over 99%
of clusters are singletons, and (b) shows that in the clustering output at our chosen
parameter settings, most clusters over size 2 (with very few exceptions, as explained
in text) have only users that are labeled “bad”.

labeled users in the cluster. All large clusters except for one have almost no false

positives. The exception—a cluster of 12,890 users—has 517 users labeled “good”

2,776 users labeled “bad”. Considering that all of these false positives fall into a

single cluster, these users are likely compromised users that were mislabeled.

6.8 Discussion

We present the results of identifying voting bots using a complementary dataset,

where we map user accounts to the login IP address of the user who cast a not-spam

vote (i.e., the IP address of the host from which the user logged in to the Web mail
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Table 6.5: Results of applying graph-based clustering on login IP data, and extract-
ing the largest 4 components. Because this dataset has different characteristics than
our primary 4-month dataset, we found that a neighborhood density of k = 8 gave
the best results.

Users IPs Validated as Voting Bots NS Votes
102991 56 102991 (100%) 6.11m
69710 32 64629 (92.7%) 5.14m
59077 39 26592 (45%) 2.58m
49045 65 49045 (100%) 4.5m

service). We also discuss potential limitations of our approach and our evaluation.

Clustering Using Login IPs. We have an additional dataset from May–June 2009

that has the login IP address of the user (recall that the dataset in Section 6.5.1 has

the IP address of the sender of the email on which the user cast a vote). We expect

that the IP addresses from which a dishonest NS-voting user logs in should also follow

the model of Section 6.3. Table 6.5 summarizes the results of graph-based clustering

applied to the graph that maps user IDs to these login-IPs. Indeed, a large number

of IP addresses shared a given bot account (specifically, larger on average than the

number of IP addresses a bot account votes on); hence, a higher neighborhood density

of k = 8 yields the best results. As expected, most users in the largest components

were identified as bot-controlled. Certain components have significant fractions of

accounts not yet labeled (e.g., the third-largest component has 55% accounts not yet

labeled), which represents significant savings in terms of the number of fraudulent

NS votes that can be prevented. Because we only had access to this data for a

limited time, we were unable to compare the results of graph-based clustering with

canopy-based clustering.

Low Detection Rate of Known Dishonest Voters. Although our 10.24% detec-

tion rate may appear low, this number amounts to nearly 26,000 fraudulent voters

that were previously undetected by other methods, with only 0.17% false positives. As
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the sensitivity analysis in Table 6.4 illustrates, if the operators find a slightly higher

false positive rate of 0.5% acceptable, they can detect up to 23.29% of the labeled bad

users. Another reason for this seemingly low detection rate is that many users labeled

“bad” in the set of labeled users may have had the bulk of their NS votes before or

after the timeframe of our data set; such users will not have enough NS voting activity

to cluster well with other heavy NS voters. Recall that our actual detection—defined

to be the number of user accounts that were in clusters above a particular size—is

much larger: we detected 1.13 million accounts belonging to clusters above size 109,

which amounts to nearly 10% of all not-spam voters.

As the false positive rate analysis in Figure 13(b) shows, large clusters have zero

false positives (with one exception that is likely due to mislabeling). Because these

clusters likely consist of only bot accounts, the actual number of bot accounts detected

by our technique will be much greater. For example, the largest cluster in Figure 13(b)

alone has nearly 50,000 users, all of which are likely bots.

Dataset Limitations. Because the data that we used in our study was not times-

tamps, we could not analyze datasets on smaller timeframes. However, our analysis

using login IPs shows that smaller timescales also work to identify voting bot accounts.

Regardless, our approach can be used for day-to-day detection of bots: because both

clustering methods complete in a few hours, an operator could run the analysis daily

on a sliding historical window of voting data.

Using Voting Clusters for Real-time Detection. From clusters of dishonest

voting accounts, one can go back to the original user-IP graph to retrieve the IP

addresses shared by users in the cluster. The IPs and user accounts corresponding to

large clusters can then be put on a “watch list”, and any new users or IPs that map to

a watched user or IP can be investigated before they cause much damage. A second

avenue for using our approach in real-time filtering is to combine information obtained
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using clustering to improve other classifiers. Clustering extracts macroscopic patterns

from the activity graph of voting. A traditional supervised classifier for voting would

use features at the level of each user (e.g., the user account’s age, it’s reputation,

etc.) and might miss accounts that can be discovered by clustering. As an example,

consider a reputable user account that becomes compromised and used for dishonest

voting. The traditional classifier will likely continue to classify the account as “good”,

but our clustering approach could instead discover that the account falls into large

clusters and raise an alert.

6.9 Summary

Web mail providers rely heavily on user votes to identify spam, so preserving the

integrity of user voting is crucial. We have studied a new attack on Web mail sys-

tems that we call a vote gaming attack, whereby spammers use compromised Web

mail accounts to thwart Web mail operators’ attempts to identify spam based on user

votes. Using four months of voting data from a large Web mail provider, we found

that vote gaming attacks are prevalent in today’s Web mail voting systems. As a first

step towards defending against these attacks, we have developed and implemented a

clustering-based detection method to identify fraudulent voters. Our method iden-

tifies 1.1 million dishonest voters, over the course of several months (most of whom

were previously undetected), while yielding almost no false positives. The techniques

presented in this chapter are an important step in stemming the tide of this new

class of attacks and are already being used in production as part of a large Web mail

provider’s techniques to detect fraudulent votes. We believe that these techniques

may also be applicable to other online Web forums where bots perform vote gam-

ing, such as user-generated content sites or online polls. We intend to explore the

applicability of our methods to these other settings as part of our future work.
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CHAPTER 7

TOOLS: SPAMSPOTTER AND SPAMLOJACK

7.1 Introduction

This chapter presents the design, implementation, evaluation, and initial deployment

of two tools that resulted from this dissertation: SpamSpotter and SpamLoJack.

SpamSpotter. First, we present SpamSpotter, an open, large-scale, real-time repu-

tation system for filtering spam. Existing blacklists (e.g., SpamHaus [122]) are based

on static lists; as we demonstrated in Chapters 4 and 5, they have come under attack,

and cannot keep pace with spammers’ ability to send spam from “fresh” IP addresses.

The inherent flaw of IP blacklists is their reliance on IP addresses as persistent iden-

tifiers. Despite new spammer tactics and attacks presented in this dissertation that

erode the effectiveness of IP reputation, IP blacklists continue to be the only form

of practical network-level filtering accessible to users and mail server administrators.

Although there have been techniques such as SpamTracker, SNARE [52], network-

aware clusters [97], etc. that can identify spammers using network-level features other

than their specific IP addresses, these techniques tend to remain in the fringes: most

such research is conducted using offline logs, and seldom see practical use.

We designed SpamSpotter to bridge the vast gap between the technology that

exists in spam filtering research and the technology that is actually used for spam

filtering in the industry. Instead of trying to build a new algorithm or technique to

classify spammers, we concentrate on building a scalable framework that designers of

new spam filtering algorithms can leverage to easily build and deploy their algorithms.

In addition to making novel spam-filtering techniques available to a wider audience,

SpamSpotter helps researchers better tune their methods: the real-time performance
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of an algorithm on a varied dataset from many recipient domains may be very different

from its performance on an offline dataset from a single domain, and we expect

SpamSpotter deployment will enable the development of faster and more accurate

network-level spam filters.

SpamSpotter currently incorporates three network-level spam filtering techniques:

SpamTracker (Chapter 5), SNARE [52], and Trinity [13]. SpamSpotter’s framework

allows combining various spam-filtering algorithms and deploying and testing new

email classification algorithms. We tackle significant design challenges involving scal-

ability, speed, and accuracy. We have evaluated the performance and accuracy of

SpamSpotter using traces from a spam-appliance vendor and a large email-hosting

provider. Due to its familiar DNSBL-like query interface, network administrators can

easily incorporate SpamSpotter’s blacklist into their spam filtering systems in the

same way that they would use any other static blacklist, with only minor configura-

tion changes. This chapter presents the motivation and design behind SpamSpotter;

a full description and detailed evaluation is available in our technical report [109].

SpamLoJack. Second, we present SpamLoJack, a tool that identifies potential BGP

prefix hijacks in real-time using a joint feed of BGP updates combined with a feed

of spam from a spam sinkhole. Spam from hijacked BGP prefixes is hard to defend

against using IP-based or behavioral approaches: if a miscreant is able to hijack a

large IP prefix, he may be able to send each spam message from a new IP address,

thwarting any potential IP-based or behavioral detection approach.

Because spam from hijacked prefixes continues to occur [6], we leverage our co-

located collection setups—the spam trap to collect spam and the BGP speaker to

collect routing updates—to identify spam from potentially hijacked prefixes. The key

idea in our approach is to continuously monitor incoming BGP updates for route

changes, and to maintain the history of the various Autonomous Systems that an-

nounce each prefix. When our spam sinkhole receives a message from an IP address in
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a “suspicious” prefix—e.g., a prefix whose origin AS does not match IANA allocation

records—we log an alert that includes information such as the route corresponding to

the received spam, the AS that originated the route, the AS that legitimately owns

the prefix according to records, and historical and statistical information concerning

the prefix. With incidents of spam from hijacked prefixes being reported regularly, we

believe this service will be of use to many network operators both for spam filtering

and to quickly identify hijacked prefixes. We make SpamLoJack available through

the same DNSBL interface provided by SpamSpotter; we believe this interface makes

it easy for operators to integrate SpamLoJack into their production systems. We plan

to design a Web-based front-end to SpamLoJack in future work.

We acknowledge that SpamLoJack cannot possibly detect all hijacked prefixes;

in fact, a remote vantage point such as SpamLoJack’s collection servers cannot even

reliably determine whether the change of a route or even an origin AS is malicious:

Internet link failures regularly cause route changes, and multiple-origin ASes may

legitimately have different origin ASes. Despite these issues, SpamLoJack still pro-

vides valuable intelligence to IP prefix owners and mail server operators: from the

perspective of a AS such as our collection server, paths and origin ASes for prefixes

are stable, and any change in those might indicate a likely hijack. In addition, be-

cause SpamLoJack performs joint analysis only on the arrival of a spam email—a

clear sign of malicious activity—SpamLoJack is more likely to detect truly malicious

prefix hijacks than other approaches such as PHAS [76].

The rest of this chapter is organized as follows. The design of SpamSpotter is

presented in Section 7.2, and its implementation in Section 7.3 (for a full evaluation

of SpamSpotter’s performance and and discussion of its use-cases, we refer the reader

to the SpamSpotter technical report [109]). Section 7.5 motivates the need for Spam-

LoJack, and Section 7.6 presents the design and implementation of SpamLoJack.

Section 7.7 concludes.
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Figure 7.1: High-level architecture of a deployment of SpamSpotter. The data store
is updated using incoming queries and external data sources.

7.2 SpamSpotter Design

This section presents the design of SpamSpotter. Figure 7.1 shows SpamSpotter’s

three-tier architecture, which has a front-end interface to clients (i.e., mail servers)

and back-end interfaces to data sources and various network-level classification algo-

rithms. We discuss each component in turn. We have designed SpamSpotter so that

the presentation tier looks like a standard DNSBL-based interface. The rest of this

section presents each component of SpamSpotter in detail.

7.2.1 Front-End Interface: Augmented DNSBL

The client-facing interface to SpamSpotter is a DNS-based lookup interface simi-

lar to those offered by popular IP blacklists such as Spamhaus [122] and Spam-

Cop [121]. DNS-based IP blacklists (DNSBLs) operate using a “hack” on the DNS

message format: the domain names do not correspond to a real domain name, but

166



instead encode the IP address of an email sender. Responses contain a score that

is embedded within a 32-bit IPv4 address. For example, to query an IP address

such as 12.34.56.78 at SpamHaus, the client issues a DNS “A” record query for

78.56.34.12.zen.spamhaus.org. At the SpamHaus DNSBL, the IP address is

compared with blacklist entries (reversing the order of quads in the queried IP ad-

dress helps here); if the IP is blacklisted, the server returns an IP address such

as 127.0.0.2; otherwise, it returns NXDOMAIN. Typically, only the last octet of the

returned IP address is meaningful to the client (e.g., for SpamHaus, ‘2’ refers to

unsolicited commercial email senders, ‘4–8’ refer to exploit senders).

1. Use DNSBL queries as a data source. Mail servers and end-hosts typically

issue DNSBL queries immediately after an email is received. Most DNSBL providers

discard this data, but SpamSpotter uses these queries as a real-time data feed that

contains the IP addresses of the sender and recipient and the time at which the email

was received; unsupervised algorithms such as SpamTracker can construct clusters of

email senders from unlabeled input data; using labels on a small fraction of the data or

using domain knowledge (e.g., only spam senders form large clusters based on sending

behavior), this data can be used to construct a behavioral classifier. In the process

of constructing this classifier, SpamSpotter automatically “summarizes” input data

thereby reducing its volume. SpamSpotter may still be vulnerable to malicious DNS

query sequences designed to disrupt classification; please see our technical report [109]

for a full description of attack defenses.

Using query data as a source of information about email activity poses a few other

challenges. (1) The data is not labelled into spam senders and legitimate senders (if

it were, DNSBL clients would not need to issue queries in the first place), and thus,

the DNSBL provider cannot use query data to augment their blacklist; (2) queries to

DNSBLs are typically not authenticated, and if query data was used to update black-

lists, the blacklists would be susceptible to bias through targeted queries by malicious

167



entities; (3) query volume is massive, and even leading DNSBLs today do not have

a method to summarize or capture interesting information in incoming queries. We

address these challenges using unsupervised learning, using only a subset of queries

from certain trusted mail recipients to update blacklists, and through implementation

decisions that allow SpamSpotter to scale to large query volumes.

2. Embed additional metadata into queries and responses. Although DNS

message size limits are large enough to allow senders to encode many attributes of

emails in a DNSBL query, DNSBL queries today contain only the IP address of

the email sender. To make it easy for existing mail servers to use SpamSpotter ex-

actly as they would use a DNSBL, SpamSpotter supports the conventional DNSBL

format of prepending the sender’s IP address to the DNSBL’s domain name (i.e.,

sender-ip.dnsbl-domain-name). To support behavioral filtering algorithms that use

other network-level features as input, SpamSpotter also allows other encoding at-

tributes of emails such as the target domain of the email, the size of the email body,

or the BGP route used advertised by the sender, etc. SpamSpotter currently supports

the following attributes, in addition to the sender’s IP address:

• rcpt ip: this attribute allows SpamSpotter to construct features such as geodesic

distance [52] between sender and receiver, time-of-day at the sender and receiver,

etc. The IP address issuing a DNSBL query is often the server that receives the

email, so this field may be inferred from the DNS request packet and need not

be explicitly specified.

• rcpt domain: this format allows SpamSpotter to also enable SpamTracker clas-

sification by computing features based on recipient (i.e., target) domains.

• msg size: SNARE [52] also includes a classifier based on message size; prefix-

ing the message size to the DNSBL query allows SpamSpotter to also use the

message size classifier in computing the response.

168



• nrcpt: The number of recipients each message receives is yet another feature

used by SNARE; this value can also be prefixed to a DNSBL query to SpamSpot-

ter.

Any of these fields can be prepended to a single DNSBL query; the accuracy of

classification increases with the level of detail of the query. Each input query is parsed

by SpamSpotter’s DNSBL server, and the fields of the query are marshalled into a

message that is forwarded to the back-end server.

SpamSpotter’s DNSBL responses include a score as a fixed-point number, encoded

as an IPv4 address and returned as a DNS “A” response (DNSBLs today return scores

as an IP address whose first three octets are fixed at 127.0.0). The response can also

include richer information, such as a numeric score for each lookup, which permits

clients to enforce fine-grained, customized filtering rules. Currently, the responses

issued by SpamSpotter’s DNSBL server use the last three octets of an IPv4 address.

The first octet is always 127. The second octet is 0 if the score is positive, and 1 if it

is negative. The third octet is the integer portion of the score; the maximum possible

score is 255. The fourth octet is the decimal part of the score to two decimal places.

For example, a score of -310.279 would be represented by the IP address 127.1.255.28.

SpamSpotter’s precision allows various spam filtering tools to filter messages with

varying levels of confidence. SpamSpotter can also return scores without encoding

them, using DNS “TXT” records, but for compatibility with existing DNS lookup

tools (e.g., dig) and lookup systems that understand only the dotted-quad notation,

SpamSpotter outputs the score in a format that is easy to read as an IPv4 address.

7.2.2 Logic: Spam Classifiers

We built the logic tier of SpamSpotter such that individual algorithm designers do

not need to worry about input or output formatting—merely the specifics of their

algorithm. We assume that each classification algorithm accepts a chunk of input
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data, builds a classifier, and makes the classifier available for lookup. When a query

arrives from the DNSBL, the back-end sends the relevant metadata to each classifi-

cation algorithm. Each algorithm responds with a score normalized between 0 and 1,

where higher values indicate greater likelihood of spam according to an algorithm’s

classifier. The back-end server may also combine these responses to obtain a single

real value (e.g., using weighted averaging). The back-end also makes all decisions

about the amount of data to provide to each algorithm, the spam-ham thresholds of

scores returned by the algorithms, when to trigger re-training of each algorithm, etc.

SpamSpotter’s back-end already incorporates three statistical spam-filtering al-

gorithms; we present a brief overview of each algorithm below. To demonstrate

generality, we show how SpamSpotter can incorporate both unsupervised and super-

vised learning algorithms, as well as simple heuristics. We chose these algorithms due

to our familiarity with their implementations or their relative ease of implementa-

tion, but SpamSpotter’s interfaces are general and could presumably incorporate and

synthesize additional behavior-based classification algorithms (e.g., [10]).

1. Unsupervised Learning: SpamTracker [108]. SpamTracker constructs clus-

ters of senders who have similar sending patterns (i.e., set of domains targeted within

a short period of time). Our hypothesis is that large-scale spamming occurs in an

organized fashion, with many infected machines (bots) acting in concert to send spam

to a set of email addresses. The behavior of such bots, when observed across multiple

large domains, will appear as a single “fingerprint”. Legitimate email senders, on

the other hand, do not act in a coordinated fashion, and different legitimate senders

will usually not have similar patterns. To look up a new IP address, SpamTracker

constructs a fingerprint for the IP address and compare it with patterns obtained

from the clustering process. The score is the similarity of the new IP address’s recent

sending behavior to the best matching pattern. SpamTracker is unsupervised: it can

form clusters of sending patterns without requiring labels on the data; a good match

170



to a pattern formed by a large cluster of IP addresses indicates that the queried IP

address is a spammer. SpamTracker’s accuracy can also be improved if even a small

fraction of input data has reliable labels.

2. Supervised Learning: SNARE [52]. SpamTracker has some shortcomings.

First, the feature that SpamTracker uses is evadable; second, it requires coordination

and aggregation of received email data across many recipient domains. To counter

these weaknesses, we designed SNARE (Spatio-Temporal Automated Reputation En-

gine), which uses supervised learning to construct a classifier based on robust yet

lightweight network-level features that can often be gleaned from a single packet, and

with minimal communication with other recipient domains. In this work, we identify

a collection of ten lightweight network-level features that together can be used as

inputs to a robust, lightweight sender reputation system based on network-level clas-

sifiers. Table 7.1 summarizes these features and categorizes them into three: those

that can be determined from a single packet, those that require inspecting the mes-

sage or SMTP header, and those that require aggregation over time. SNARE gathers

these features from the DNS queries from mail servers, as described in Section 7.2.1.

SpamSpotter trains using a labelled sample of this data.

3. Heuristic: Trinity [13]. Trinity is a heuristic-based unsupervised algorithm

developed by Brodsky et al. The algorithm maintains a database of the number

of emails each IP address sends in a short time-period. The hypothesis is that, to

maximize their “productivity”, spam bots send a large amount of email (to many

domains) in a short period of time; thus, a system that collates the number of emails

each IP address sends to a large set of domains can be queried to determine whether

an IP address is a potential spam sender. Trinity discretizes the count over four 15-

minute intervals and “ages” the counters every 15 minutes; in our implementation,
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Table 7.1: Features used for network-level sender reputation in SNARE.
Feature Description

Single-Packet Features

AS number the autonomous system number of the sender
Neighborhood density number of IP addresses in neighborhood also sending

email
Sender-receiver distance geographic distance between sending IP and receiving

mail server
Port status open service ports on sender IP
Time of day ratio of spam/ham for hour-of-day

Single-Message Features

Recipients number of recipients in “To” field
Size message size in bytes

Aggregate Features (24+ Hour History)

Average length average message length
Average density average neighborhood density
Std. density standard deviation of density

we use the same time-periods.

Synthesis. SpamSpotter can not only run each classification algorithm indepen-

dently, but it can also combine the outputs from a combination of supervised (e.g.,

SNARE) and unsupervised (e.g., SpamTracker) learning algorithms to produce a more

accurate classifier that takes input from each classification algorithm. We explore two

ways of synthesizing the outputs from multiple classifiers:

1. Incorporate the SpamTracker score as a feature in a supervised learning algo-

rithm like SNARE.

2. To reduce false positives, only consider a sender a spammer if some number of

classification algorithms have classified the sender as a spammer.

We evaluate synthesis techniques in the accompanying tech report, and in future work

in Section 8.4.
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Table 7.2: Set of attributes for each message in SpamSpotter’s data store. Italicized
entries may not be available for all data feeds. Fields such as rblstatus and result are
updated as new information becomes available. There may be multiple score fields
for each algorithm.

Field Description

feed name The name of the data feed where this record was ob-
tained

timestamp UNIX timestamp
target domain The domain name in the ‘RCPT TO:’ SMTP com-

mand
sender ip IP address of the email sender
rcpt ip IP of the email recipient
result Email classification (i.e., spam or ham)
score A normalized [0, 1] score for the message; higher val-

ues indicate greater likelihood of spam.
msg size The size of the email in bytes
rblstatus The listing status of the sender in multiple blacklists

(encoded as a bit-vector)

7.2.3 Data: Aggregation and Storage

SpamSpotter’s data tier consists of the data store and access routines that allow the

back-end server to fetch data from, and insert data into the data store. The back-end

expects one record per email, with all records sorted by arrival time of the email.

The data store integrates many types of email feeds, including data from spam traps,

data from a large mail service provider who manages hundreds of domains, and a

spam appliance vendor whose appliances observe over 300 million emails per day. It

also logs all incoming queries and the scores returned by each algorithm. These logs

serve two purposes: (1) they can be used as future training data for the algorithms,

and (2) they can be used to evaluate the performance and false positive rates of

each algorithm when ground truth data (e.g., human reports a mail as spam, highly

accurate IP-based blacklists begins listing the sender IP address, etc.) eventually

become available, which can help assess the need for re-training. These logs, or the

output of each classifier, can also ultimately be shared with back-ends run by other

parties. Table 7.2 shows set of columns for the data store. The data store is typically
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Figure 7.2: SpamSpotter implementation.

a database, but SpamSpotter can interpret many data representations (e.g., flat file,

XML feed, etc.).

7.3 SpamSpotter: Implementation

This section describes the implementation of SpamSpotter. Figure 7.2 shows the

various components of SpamSpotter and the interfaces between them. We briefly

describe how we implement each of the three components of our design.

174



Table 7.3: DNS queries that show how to piggyback email features on the DNSBL
query string. SpamSpotter can also support more expressive responses using DNS
TXT records.

DNS Query Response Explanation

5.6.7.8.-.gmail.com.-
.4.3.2.1.rbl.gtnoise.net

127.0.1.97 The IP address 1.2.3.4 sent email to
the domain gmail.com which was re-
ceived by the server IP address 5.6.7.8.
The returned score is +1.97.

5000.-.3.-.gmail.com.-
.4.3.2.1.rbl.gtnoise.net

127.1.4.50 As before, but the receiver IP is in-
ferred from IP address of the machine
sending the query to our server. This
query also specifies two extra features:
the message size (5000 bytes), and the
number of recipients for the message
(3). The score returned is -4.50.

7.3.1 Implementation Overview

Front-end: Augmented DNSBL and client plugins. Our prototype uses a

modified version of rbldnsd [112], an open-source DNSBL server, to serve DNSBL

queries using SpamSpotter as a back-end (instead of a static blacklist). rbldnsd mar-

shalls metadata in the queries it receives and forwards it to the back-end server,

and returns the score to the client embedded within an IP address. This interface

requires minimal changes to client-side software: for SpamAssassin [120], the popu-

lar client-end spam filter, SpamSpotter-style DNS queries can be incorporated either

with plugins or with only two lines of edits1. The back-end server communicates to

the DNSBL server using an interface that can be easily adapted for other forms of

query such as XML-RPC or HTTP. Our installation can be queried using DNS as

shown in Table 7.3.

Logic: Integrating classification algorithms. The back-end server controls all

algorithms in SpamSpotter. When executed, the server first spawns separate threads

1At line 255 in the file Plugin/DNSEval.pm for SpamAssassin v3.2.5.
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to begin training each supported algorithm with input data. Each algorithm further

spawns one or more low-priority threads to perform training while waiting to serve

lookup requests. Input data is multiplexed from many sources (e.g., a DB, a file,

etc.) and can be passed through sampling modules before being sent to an algorithm.

Finally, the server also spawns a pool of worker threads to quickly process incoming

reputation lookup queries. For each query, the back-end server performs the following

operations: (1) Un-marshall the query parameters, re-pack them in another format,

and forward the queries to each algorithm in parallel; (2) Collect responses, perform

any operations on the scores, and forward a single real value to the front-end; (3) Log

the query and computed score to the data store for use in later stages of training, or

for performance validation.

The SpamSpotter prototype and patches are about 10,000 lines of C and C++

code. SpamTracker is implemented using EigenCluster [16]. SNARE is implemented

using an off-the-shelf Decision Tree classifier, C4.5 [99]; we are currently upgrading

the decision-tree based classifier to a method with better predictive power, such as

Boosted Decision Trees [34] or RuleFit [35]. Integrating new behavioral classification

algorithms into SpamSpotter is simple: each algorithm is implemented according to

an interface that provides it a stream object that can be read to retrieve message

features (in order of message arrival). In addition, each algorithm must define one

retrain function callback that is executed periodically by the back-end server, and

one lookup function – called by the back-end server with the contents of incoming

DNS queries – that returns a score for the DNS query attributes.

Data Store. We use a MySQL database for data from the mail service provider and

the spam-collection facility (“Spamtrap”), and a formatted flat text file for the spam

appliance vendor’s data. Because each file in the latter data source is massive (65 GB

or greater), it is pointless to store the file in a database. Both the database and

flat files are multiplexed (according to message arrival time) and made accessible to
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Table 7.4: Summary of evaluation results for SpamSpotter.
Goal Result

Speed (Training Time) Training typically requires about 10 min-
utes, and no more than one hour; training time is linear in
the input size.
(Memory Requirements) No more than 1.5 GB of memory for
training; memory requirements are linear in the input size.

Accuracy (Detection) SNARE: ≈ 98.6% detection rate for ≈ 3.4% false
positive rate; Trinity: ≈ 99.5% with ≈ 0.5% false positive
rate.

Scale (Federation) Significant reduction in false positives with low
detection rate penalty
(Sampling) Accurate classification requires as little as a few
thousand samples of spam and legitimate mail.

Deployability (Response Time) SpamSpotter returns reputation scores in
about 10 ms or less on a local network, even for workloads
that are equivalent to today’s blacklist mirrors.

algorithms through a simple interface: a read function that reads the next message

record in order of message arrival time, and a seek function that sets the data position

indicator (e.g., in order to start reading data from a different time-period).

7.3.2 Performance

Table 7.4 summarizes our evaluation of SpamSpotter. Please refer to our technical

report for a full description of the evaluation [109].

7.4 Limitations of SpamSpotter

The chief limitation of SpamSpotter is in obtaining high-quality, labeled data that can

be used to train various network-level algorithms. Obtaining spam data is relatively

easy; we use the IP addresses and other network-level features of emails that arrive

at our spam trap. Obtaining legitimate email, however, is more difficult: we must

either rely on another spam filtering method to determine if an email is legitimate,

or rely on human-labeled legitimate email. The shortcoming on relying on another
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approach is that errors can propagate due to that method’s false positives and neg-

atives; as we showed in Chapter 5, some of the 15% of misclassified spam from an

email service provider were correctly classified by SpamTracker, but we had no way

to verify whether all email classified by SpamTracker were indeed spammers.

The alternative approach is to use hand-labeled legitimate email from a few trusted

users to build the classifier. This approach, while highly accurate, raises two concerns:

(1) privacy: users may not be willing to divulge all necessary network-level features

for certain algorithms, and (2) lack of variety: a small set of users at a single

institution (e.g., a university campus) may receive mail from a limited set of senders;

training using such data may affect a classifier’s ability to correctly identify legitimate

email from other types of senders.

To make SpamSpotter viable in practice, we plan to ask groups of legitimate

users to run a plugin or script on their email clients (e.g., Mozilla Thunderbird,

Microsoft Outlook) or Webmail client instances (e.g., as a browser extension) that

will automatically extract certain features from the user’s Inbox and forward the

information to SpamSpotter.

7.5 SpamLoJack: Motivation

SpamLoJack is based on our observations in Chapter 3, Section 3.5: certain stealthy

spammers hijack BGP routes, send quick bursts of spam, and then withdraw the

route soon after spam is sent. This activity is malicious and extremely hard to

defend against: once miscreants gain access to a BGP-speaking router (either through

compromise, or by colluding with a rogue ISP), they can hijack nearly any prefix—

even those belonging to legitimate mail servers such as Yahoo! Mail or Gmail—for

at least portions of the Internet.

Spam via hijacked routes has always been “under the radar”: because botnets

continue to deliver large amounts of spam direct to their destinations, spammers
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have not adopted hijacking as a significant means of delivering spam. Indeed, in our

study from 2006, we found that only about 10% of spam could have been attributed to

suspicious, short-lived routes. However, as the Internet’s routing infrastructure and

its security are no better today than it was 5 years ago, spam from hijacked routes

continues to be a significant source of worry. Recent events indicate that spammers

continue to hijack routes to send spam. In a widely-discussed event on the North

American Network Operators’ group mailing list [6], a spammer friendly US-based

ISP, Circle Internet, was found to have hijacked the IP space belonging to a defunct

chemical company’s unused IP address space. Although, in this particular instance,

the Spamhaus DSNBL had listed the spammer’s IP prefix, many hijacks—especially

short-lived ones—may go undiscovered, especially since blacklists usually take 30

days or more to list a new spammer IP prefix. Moreover, because a large amount of

IPv4 space is “dark”—i.e., either not routed or not used for services, spammers and

spammer-friendly ISPs have a large amount of IP address blocks to hijack at their

leisure. Advanced techniques such as BGP spectrum agility (described in Section 3.5)

further complicate the detection of prefix hijacks.

Our goal in designing SpamLoJack is to allow mail recipients to quickly discover

whether a mail that they received might have originated from a hijacked route. De-

tecting whether a route is hijacked is fraught with problems—multiple-origin ASes

may legitimately announce multiple routes, different vantage points in the Internet

may observe different routes and origin ASes, etc.—thus, SpamLoJack cannot guaran-

tee that a particular email indeed arrived from a hijacked route. Instead, SpamLoJack

uses heuristics such as the historical records of ASes that originated the route and

the records of spam received from these prefixes to arrive at an estimate of whether

a route qualifies as “suspicious”. In addition to recipients of email, SpamLoJack can

also be useful to network operators: whenever SpamLoJack discovers a suspicious

route that appears to be hijacked and sending spam, SpamLoJack can notify the
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true owner of the prefix such that immediate action can be taken; in this respect,

SpamLoJack resembles Lad et al’s previous work on the Prefix Hijack Alert System

(PHAS) [76]. Unlike PHAS, however, we use malicious events (i.e., the appearance

of spam) as a trigger to look for hijacked routes; thus, our system may potentially

trigger fewer false alerts.

7.6 SpamLoJack: Design & Implementation

This section describes the design and implementation of SpamLoJack. Figure 7.3

describes the data collection setup used in SpamLoJack.

7.6.1 Data Collection

The spam we collect comes from a sinkhole set at Autonomous System number 2637

that belongs to the Georgia Institute of Technology. Ideally, to identify the routes by

which spam arrives to our sinkhole, we would require a feed from the border routers

of Georgia Tech. However, due to the practical difficulties of getting a real-time

feed from a production setup such as Georgia Tech, we use an alternate setup: we

leverage the routes received to a stub AS (AS 47065) that has Georgia Tech as its

sole upstream provider. This AS has been set up by researchers in our lab for the

GENI Transit Portal (TP) project [135].

Georgia Tech forwards all route announcements and withdrawals received form

its upstreams—which include Tier 1 ISPs Cogent and Qwest—to the TP router. As

updates arrive, the TP router appends them in real time to a file on disk. SpamLoJack

runs an agent on the TP router that will push any modifications to the BGP updates

file to the host that runs the SpamLoJack code. A similar agent runs on our spam

sinkhole to push the details of incoming spam to the primary SpamLoJack machine.
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Figure 7.3: Setup used to collect BGP routing updates and spam feeds at AS 2637
(Georgia Institute of Technology)

7.6.2 Design

The design of SpamLoJack is motivated by its essential functionalities, which are as

follows.

1. Maintain a lookup table for all active prefixes such that SpamLoJack can rapidly

look up the route corresponding to the IP address from which a spam email

arrived.
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2. Maintain a record of the details of current and past routes for all prefixes in-

cluding the AS path, the community attributes, the times of announcement and

withdrawal, and a historical record of the number of spam emails received from

these routes as well the number of unique spammer IPs in these routes.

3. Implement an alert mechanism based on heuristics that indicate whether a

particular route appears suspicious. For example, SpamLoJack currently im-

plements an alert if spam is received from a route that is announced shortly

before spam is sent, and withdrawn soon afterwards. A related alert is raised

when the origin AS for the best path for a prefix is different from the origin AS

for the prefix according to Internet Registrars, or if it is different from the origin

AS for the best path that persists for the majority portion of a time period.

4. Allow users to query the historical records of each prefix, includng amount of

spam received from each prefix and corresponding origin ASes. SpamLoJack

should also strive to make this information easily available; currently, we offer

a front-end similar to the DNS-based query interface used in SpamSpotter.

7.6.3 Implementation

SpamLoJack Agents on Data Collection Machines. We run agents on both

the TP router and the spam sinkhole that monitor updates to log files and imme-

diately pushes the update over an RPC interface to the SpamLoJack core server.

These agents use the Linux inotify(7) interface that efficiently monitors updates to

files.2 Both use Google Protocol Buffers [43] to push information to the SpamLoJack

server via Remote Procedure Calls (RPC). Both agents are written in C++ and total

approximately 500 lines of code.

SpamLoJack Core Processing. The core SpamLoJack code is implemented in

2The inotify interface is used to implement the tail(1) functionality in newer Linux systems.
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C++. There are four components to the server code.

1. RPC server. This server runs as a separate threads and processes and serializes

updates that arrive from the agents on the spam sinkhole and the TP BGP

router. The updates it receives are queued into a buffer which is processed by

the thread that performs the core processing.

2. Core processing. The thread that performs core processing maintains routes

in a Patricia trie [69]. Given an IP address and a set of prefixes, a Patricia trie

allows fast lookup of the longest prefix that matches any given IP address. For

each spam email that matches a certain prefix, the thread logs the event to a

database. If the prefix is withdrawn in future, the database is updated to reflect

the time of withdrawal.

3. Database. The database maintains records of each BGP prefix and various

attributes associated with each prefix. It maps each BGP prefix to (1) its

owner AS (according to IANA records); (2) the various best AS paths that

were seen at various points in the past 1 month; (3) the periods of time for

which each AS path was the best path, and the number of spam emails received

while each AS path was the best path. The database also logs whenever spam

is received when the existing AS path configuration appears “suspicious”, for

example, when the origin AS in the best path does not match the AS that owns

the prefix, or when route that receives spam is short-lived.

4. Front-end. This component accepts queries from the rbldnsd front-end for

SpamSpotter for a specialized zone corresponding to SpamLoJack. For example,

to look up an IP address 1.2.3.4’s route behavior, the querier can issue a DNS

query for a TXT record as follows:
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$ dig +short 4.3.2.1.spamlojack.rbl.gtnoise.net TXT

1.2.3.4 p:1.2.3.0/21 orig_asn:25000 cc:US

p:1.2.0.0/21 path:2637,701,100,200,25000 spam:10 active_percent:90

p:1.2.0.0/22 path:2637,701,100,300,4000 spam:5000 active_percent:10

This sample lookup response indicates a number of useful features. The first line

of the response comprises the queried IP and information about the IP according to

IANA records, such as the IP allocation, origin AS, and the origin AS’s country code.

Each following line includes details of each best path that was seen at our BGP speaker

for this IP address when spam was received from this prefix. For example the second

line indicates that our spam sinkhole received spam from the allocation corresponding

to the queried IP address for two distinct best paths. The first, likely the “real” AS

path, shows a path that ends in the true owner of the /21 allocation; this path was

active for 90% of time during the past month, and this route was used by spammers to

send 10 spam emails. The second line indicates a more suspicious route: this route’s

origin AS is AS 400—different from the AS that owns the /21 allocation. Moreover,

we note that this route announces a more specific /22 allocation, effectively hijacking

half of AS 25000’s IP space. Further, we see that although this route has been active

for only 10% of time in the past month, it originated 5000 spam messages that arrived

at our sinkhole. We plan to extend SpamLoJack’s query/response interface with more

expressive queries and responses. For example, a query could specifically ask for spam

only from short-lived routes and the response could be augmented to indicate such

routes.

Although we have not yet discovered examples that are as clearly malicious as

above using SpamLoJack, we hope that SpamLoJack can allow network operators to

keep tabs on their prefixes, and mail server administrators to discard email (or nearly
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any of unwanted traffic) from prefixes that appear to be hijacked. A final use of

SpamLoJack is similar to the Prefix Hijack Alert System by Lad et al [76]: operators

can make regular queries of their prefixes for suspicious activity (or sign up to be

notified using a modified interface to SpamLoJack) so that they can easily discover

if their IP blocks have been hijacked, especially using stealthy techniques such as

spectrum agility.

SpamLoJack Performance. Because SpamLoJack is integrated into the SpamSpot-

ter system, its performance is in line with SpamSpotter: on a local network Spam-

LoJack also returns queries in 10ms or less. Because we maintain the entire routing

table in memory, running SpamLoJack incurs additional memory overhead: we find

that maintaining a full routing table and additional metadata (e.g., historical records

of spam received from each prefix) uses between 3–4 gigabytes of memory.

We expect to extend SpamLoJack to include integrating a detailed database that

keeps track of the historical records of spam received from each prefix and AS path on

a longer timescale. Because using a traditional disk-backed relational database may

cause unacceptable overhead (i.e., takes more than 100ms on average), we plan to use

one of the many new high-performance key-value stores based on the noSQL paradigm

that all maintain a large in-memory cache in addition to an on-disk database [84,113].

7.7 Summary

In this section, we presented two tools—SpamSpotter and SpamLoJack—to help net-

work operators and mail server administrators discover spammers and filter spam

using network-level features. SpamSpotter is a framework that allows designers of

new network-level spam-filtering techniques to easily build, integrate and deploy their

services without worrying about the details of data collection, extraction of features,

or deployment. SpamSpotter presents a unified interface to data for algorithms, is

machine-learning aware (i.e., understands the need of periodic retraining), and is
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easily integrated into production spam-filtering systems using the popular DNSBL

query interface. We also presented SpamLoJack, a tool that joins data feeds from a

co-located BGP router and spam sinkhole to identify spam arriving via potentially

hijacked routes. SpamLoJack is also easily usable through the same DNS-based query

interface that is used by SpamSpotter as well as popular spam filtering mechanisms

such as SPF. We believe that SpamSpotter and SpamLoJack lay the foundations for

an extensible network-level spam-filtering framework that that can prove useful for

mail server administrators, network operators, and security researchers.
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CHAPTER 8

CONCLUDING REMARKS

The Internet becomes a larger portion of our daily lives each year, and people spend

increasing amounts of time online communicating with their colleagues, friends, and

family. Email continues to be one of the major modes for personal and business

communication, but other methods such as messaging on Web forums, syndicated

messaging using platforms such as Facebook Connect, and micro-messaging platforms

such as Twitter, have also gained widespread use. Spam is the chief menace for all

these modes of communication: if people are spending enough time on a service, then

it instantly becomes of interest to spammers.

Email spam is a well-acknowledged and well-studied problem, and many solutions

have been proposed over the years. Most early efforts hinged on content-based clas-

sification: because humans could easily distinguish spam emails from legitimate ones

with a quick glance, researchers implemented algorithms to do the same: construct

features from email, learn the differences between spam and legitimate email, and

use it for classification. Content-based filters continue to be widely used in all areas

that are affected by spam, and tools such as SpamAssassin [120] and proprietary

algorithms from security vendors exhibit high detection rates and low false positive

rates. Unfortunately, content-based approaches suffer from two major shortcomings.

First, spammers do not idly sit by while researchers develop classifiers to filter

spam; instead, they constantly monitor the performance of open-source and commer-

cial filters to identify how much of their spam is reaching their intended targets, and

easily develop new spam message formats to circumvent classifiers. For example, if a
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content-based classifier is extremely good at identifying a keyword and all its varia-

tions (e.g., “VIAGRA” spelled as “V14GR4”), the spammer may attempt to embed

the word “VIAGRA” in an image file and send the image file as an attachment;

researchers must now expend time and effort to extend their classifier to perform

optical character recognition (OCR) on all image attachments in email. This never-

ending “arms-race” drives up costs and drives down productivity, and any effort in

this direction is but a stop-gap measure until spammers develop their next trick.

Second, content-based filters are expensive. Each email must be accepted by the

mail server, spooled on disk, and processed through a spam filter before a decision

can be made to accept or reject the email. Not only does this increase the processing

time per email, it also greatly affects scalability: with 90% of email being spam, the

majority of the delay and computational power is spent analyzing and classifying

spam. To scale with the increasing volumes of email each year, mail server adminis-

trators either must constantly upgrade their systems or face long queuing delays even

for legitimate email.

8.1 The Need for Network-level Spam Filtering

This dissertation has introduced network-level features as an alternative and robust

basis for creating classifiers and filters to stem the tide of spam. Network-level features

are attributes of the sender that can be easily measured or observed even from the

network layer (as opposed to the application layer), such as the IP address of the

sender, its AS and origin country, and its historical behavior.

Although IP blacklists are a popular and effective network-level method of filtering

known spam senders, we have demonstrated that this method has many shortcomings:

for example, they cannot include IPs that send spam from dynamic address ranges

for fear of false positives, or are ineffective from any spam originating from hijacked

prefixes. Although collecting IP addresses that send to spam traps is one source

188



of identifying spammer IPs that are active at any instant, they are not sufficient:

many IPs that hit a spam trap may be reassigned to legitimate hosts in future, and

a blacklist vendor cannot reliably add the IP address to his list without proof that

the IP address will remain assigned to a spam bot’s machine for some period of time.

Because the blacklist vendor have no assurance that an IP address will continue to

map to a spam bot, they typically do not list every IP address that appears at their

spam trap for fear of false positives.

Although an IP address is a transient identifier of a spammer, the activity of the

spammer is a more stable identifier. The techniques introduced in this dissertation do

not rely on the IP address of a spammer remaining assigned to them for a long time; we

merely use the IP address as an identifier for a short period such that we can identify

the spammer’s behavioral pattern. In support of our thesis, we have demonstrated

three unique attacks against IP-based reputation systems, and ways to defend against

these attacks only using network-level features and models of coordinated behavior

of spammers.

8.2 Summary of Contributions

This dissertation established that network-level properties of spammers are suffi-

ciently different from those of legitimate users, and that these features can be incor-

porated into practical systems both to detect and prevent various spammer attacks.

More specifically, the contributions of this dissertations are as follows.

• Comprehensive Characterization of the Network-level Behavior of Spammers. We

analyze the sending IP address ranges, sending patterns, chief ASes and coun-

tries responsible for sending spam, the chief operating systems that spammers

use, the listing characteristics of spammers in DNSBLs, etc. Further, we analyze

many of these features over a longitudinal trace over 6 years from 2004–2010;

we find that many distinguishing network-level features of spammers remain
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stable over time.

• Filtering Spam using Behavioral Blacklisting. We found in Chapters 3 and 5

that IP blacklists perform poorly against a significant fraction of spammers,

particularly ones that send spam from “fresh” IP addresses. Thus, we design a

system to detect spammers not using their identity, but using their behavior:

because spam bots in a botnet likely send email to the same set of domains,

we cluster senders based on the set of domains to which they send email. We

find that groups of spam senders cluster well because they hit the same set of

domains, while legitimate senders do not cluster into large groups. Our system,

SpamTracker, can detect many spam senders months before they become listed

in blacklists.

• Real-time Dynamic Spam-filtering Framework . Many network-level (or content-

based) spam-filtering algorithms never find deployment because they offer an

interface that cannot be easily modified for real-time, practical use. Thus,

we designed SpamSpotter, a real-time dynamic blacklisting system that allows

clients to make queries using the familiar DNS-based query interface of DNS-

BLs. Unlike DNSBLs, however, SpamSpotter uses dynamic algorithms on its

back-end to perform classification—a claim we demonstrated by implement-

ing three different algorithms in SpamSpotter: SpamTracker, SNARE [51], and

Trinity [14].

• Vote gaming to Pollute User Feedback in Webmail. Large Webmail providers

rely on user feedback to filter spam on which even their finely-tuned classi-

fiers cannot make decisions on; by soliciting user feedback, the provider can

quickly build consensus on whether a particular message is spam, and filter

future messages from that sender. We present evidence that spammers use a

stealthy attack, which we call vote gaming, where spammers vote “Not Spam”
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on their own spam messages that pollutes the consensus, and prolongs the true

classification of spam messages and senders. We create a model and design an

efficient system that clusters user accounts that perform vote gaming using the

IP addresses from which they perform voting. We find that spammers form large

clusters while legitimate users do not cluster well.

• Spam from Hijacked BGP Prefixes. We present evidence of a stealthy attack

where spammers hijack large prefixes (e.g., an entire /8) for short periods of

time from rogue ISPs to send spam. This technique, which we call “spectrum

agility” allows spammers to hop between unannounced prefixes within smaller,

legitimate allocations. We design a system, SpamLoJack, that joins a real-

time spam feed with a co-located feed of BGP updates to detect spam from

potentially hijacked routes (using origin AS number) or those from route an-

nouncements that are short-lived. We further integrate SpamLoJack into our

real-time dynamic blacklisting tool, SpamSpotter.

• Spammers performing DNSBL Reconnaissance. We find that certain spammers

continually query DNS-based IP blacklists to discover if / when their own bots

become listed in the blacklist. Because spammers use coordinated sets of bots

to perform such queries, we design spatial and temporal features to discover co-

ordinated queries, and, potentially, divulge the IP addresses of bots performing

such queries.

8.3 Lessons Learned

This dissertation presents new attacks and answers several questions about spammer

behavior, but the performance of this research has also provided the author with

several non-trivial revelations and takeaways that we hope will be useful for future
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research in this area. We explore some of these lessons below.

IP addresses are not a reliable indicator of a spammer. We demonstrated in

Chapters 3 and 5 IP blacklists fail to list a significant fraction of spam senders, many

of which are “fresh” IP addresses that have not been seen before in previous months.

Even though DNSBL operators can run their own spam traps and list any IP address

from which it receives spam, they do not do so due to fear of false positives (e.g.,

if the IP is dynamically allocated, it may be re-allocated to a legitimate machine in

future). There are multiple reasons why we expect the amount of spammers caught

by DNSBLs to further decline.

First, due to the exhaustion of the IPv4 address space, more users and organiza-

tions are using NATs [57] to create a private pool of IP addresses behind fewer public

IP addresses. If there are a few spam bots in the private network, DNSBLs must

either blacklist all of an organization’s public addresses (risking false positives), or

not list any IPs and risk false negatives. Both scenarios will decrease the utility of IP

blacklists.

Second, instead of sending email directly from a bot’s IP address—which may

be in a dynamic IP address range and blacklisted based on policy alone (e.g., the

SpamHaus Policy Blacklist [123]), spammers have begun finding new ways to deliver

spam to their recipients. Spammers have begun compromising (or creating accounts

en-masse) at Web-based messaging services. Such services include Web-based email

providers such as Gmail, Yahoo! Mail and Hotmail (who boast a total of nearly a

billion users), as well as instant messaging services and social messaging sites such

as Facebook. Spam delivered through such services will carry the IP address of the

Web service which would render IP blacklisting or methods such as DKIM [29] and

SPF [44] useless.

In the above cases, content-based filters will continue to work provided they are

constantly updated, maintained, and scaled. We believe that network-level features

192



will also continue to be useful in filtering out spam. For example, we showed that

coordinated voting behavior in Webmail services can be identified using clusters built

on network-level properties (Chapter 6). Web-based service providers may also em-

ploy spatial and temporal features to identify coordinated activity on their services

(Chapter 4). Finally, for large business email service providers such as Gmail which

sinks email for thousands of domains, they can deploy a recipient-oriented clustering

algorithm such as SpamTracker to identify new spammers (Chapter 5).

Obtaining ground truth is hard. One of the chief problems we faced in our

research was the lack of good-quality labels on data—something that can be used

as “ground truth” in developing algorithms and techniques. It is extremely hard to

obtain good quality labels for large-scale services, even after relying on IP blacklists:

blacklist only stop senders who are almost certainly spammers, and a significant

amount of spam gets by these blacklists. Of the email that is let through, only a

fraction is truly legitimate. The rest may include true spam and also some unsolicited

bulk email—which is not technically “spam” but is considered by many users as such.

Because mail service providers prefer to be cautious with classifying emails as spam,

we expect that the labels provided by mail service providers contain quite a few false

negatives (i.e., spam classified as ham); we showed in Chapter 5 that 15% of the

email that SpamTracker classified as spam was let through by the provider.

Many spam studies use small datasets (e.g., those collected from a mail server of

a single campus) where researchers use a high-accuracy content-based filter to label

their email dataset. This approach, while useful to demonstrate the properties of a

specific algorithm, is unlikely to work at scale of production mail servers that receive

email for many different domains. At such large scale, ground truth can only be

obtained by heavily sampling email data and manually validating sampled emails, or

alternatively, by using consensus built by users on certain emails. The latter point

underscores the importance of ensuring that user votes are not polluted by attacks
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such as vote gaming (Chapter 6).

Learning spam behavior is hard. Related to the observation that ground truth is

not easy to obtain, we also emphasize that implementing spam classifiers, using super-

vised or unsupervised learning, is hard. Even assuming that we have accurate labels

(for supervised learning), it is difficult—if not impossible—to obtain good classifica-

tion performance using a single technique in a real dataset from a large mail service

provider. The chief reason is due to the massive variety of both legitimate and spam

email that large providers receive: the mail they receive includes internationalization

and foreign-language support, varying message formats, varying attachment formats,

image formats, audio and video, etc. Large providers deal with such varied spam

with variety of their own: they use a complex combination of network-level features,

classifiers, per-recipient classifiers, and heuristics to achieve acceptable detection and

false positive rates for all types of email.

The above fact offers a cautionary tale for spam-filtering algorithms that use

datasets from a single campus and present high detection rates and low false posi-

tives. Researchers and peer-reviewers often focus their attention too heavily on these

numbers, but these numbers may not mean anything in a real deployment: an al-

gorithm that has good performance on a campus dataset may perform much worse

when subject to a broader variety of spam. Fortunately, large email service providers

do not expect new spam-filtering algorithms to provide a 99.9% detection rate; they

may often be satisfied with a 20% detection rate provided the false positive rates

are kept to a low figure (usually 1% or lower). This is why our algorithm for vote

gaming—which, on the surface, detects a relatively small fraction of gamed users—is

a useful tool for Yahoo! Mail.

We designed and built SpamSpotter with the goal of testing and improving new

spam filtering algorithms. By providing an open framework and service for researchers

to deploy their algorithms, we expect to attract a broad variety of mail recipients to
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use and contribute data to our service. We believe that such a service would help

researchers design algorithms that perform better on real data, and, in turn, improve

the real-world performance of these algorithms.

8.4 Future Work

The research in this dissertation suggests various avenues for future work in spam

filtering using network-level features. We present three projects below that may be

highly relevant to spam filtering in future.

8.4.1 Collaborative Spam Detection using Network Level Features

Spam is a problem that affects all mail recipients, yet there have been very few efforts

for coordinated mitigation of spam using network-level features. As we show in this

dissertation, spammers—especially, spam bots—exhibit unique, coordinated behavior

that can be used to construct behavioral classifiers that go beyond just the identity of

the bot or the format of messages it sends. A collaborative system where multiple mail

recipients contribute information about the network-level characteristics (as well as

content-based features) would allow all collaborators to improve their spam classifiers

and to quickly identify spammers that may be “new” from the perspective of just a

single domain.

Some projects, such as Vipul’s Razor [92], have attempted to build collaborative

systems based on content features, but these remain largely unused due the complexity

of installing and integrating the agent with recipient mail servers. Present-day mail

server administrators want a third-party hosted service that they can quickly integrate

with their systems with a few lines of modifications to configuration files. This ease

of deployment was one of the goals in our design of SpamSpotter, where mail server

operators could contribute data and receive responses using a single DNS query to

the remotely-hosted SpamSpotter service.

Because all spam bots in a botnet run the same code, we believe that there may
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be many more ways to detect the coordinated behavior of these bots. For example,

we have found that spammers are often bursty, sending multiple emails in a single

shot; if we find this behavior occurring from the same bot at multiple domains,

we may proactively reject email from this bot. Another area for research could be

the pattern by which bots cycle across domains: because we find that each bot sends

small amounts of email to a set of domains, collaboration between the domains would

allow them to detect new spam campaigns using telltale patterns of spamming, as

we demonstrated with SpamTracker. We expect that developing these algorithms

and integrating them in a SpamSpotter-like system will improve the current state of

collaborative spam filtering.

8.4.2 Exploiting Coordinated Bot Behavior for Supervised Classifiers

It is well-understood that bots behave in a coordinated fashion, and that unsupervised

learning techniques such as clustering (e.g., SpamTracker, canopy clustering, etc.), or

the graph-based technique demonstrated in BotGraph [149] can be used to identify

bots or create real-time classifiers. These classifiers are based on the global behavior

of all bots in a botnet, as opposed to the specific behavior of a single bot.

Domain-specific classifiers are complementary to the clustering-based techniques

mentioned above. Domain-specific classifiers are typically supervised learning algo-

rithms that use domain-specific features to generate a classifier. For example, a

classifier such as SpamAssassin may use content-based features of each message, and

a classifier like SNARE uses network-level features of each sender. These methods

learn classifiers based on the individual attributes of a particular sender (in the case

of SNARE) or a particular message (in the case of SpamAssassin). In practice, both

domain-specific classifiers and unsupervised classifiers are used—separately—in pro-

duction spam filters to ensure better overall classification.

A potential area for future work is to combine these types of classifiers instead of
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using each independent of the other—i.e., use the data generated from a clustering

approach to improve domain-specific classifiers. For example, a domain-specific clas-

sifier used to filter spam in Webmail accounts may involve features such as historical

attributes of the user account, the features of the user’s profile, etc. Because unsu-

pervised classifiers are generated from the dynamics between sender IP addresses and

higher-layer identifiers (e.g., the domains to which an IP sends email, or the Webmail

accounts from which an IP address logs in), they form an orthogonal feature set to

the features used to train the domain-specific classifier. We expect that techniques

such as co-training [11] and regularization can be used to combine these orthogonal

classifiers into a potentially stronger overall classifier.

8.4.3 Limits on Evasion of Behavioral Classifiers

A question posed at any new spam filtering technique is the following: once spammers

learn of the technique, what stops them from evading it? A benefit of behavioral

algorithms based on network-level features is that they do not use features of spam

that spammers can easily modify—for example, a bot cannot act independently of

other bots in its botnet. However, knowing the specifics of an algorithm, spammers

can still attempt to evade the classifier. Our research question is: what is the relation

between the fraction of spammers that can successfully evade a network-level spam

classifier, and the impact it has on the spam botnet’s output?

To illustrate this question, consider SpamTracker. Suppose we form a large cluster

of spammers each of whom send spam to at least 10 common recipient domains. If

the botmaster that owns these bots wishes to evade SpamTracker, he might attempt

to have each bot send spam to no more than 9 domains in common with another

bot, which implies that each bot would now be sending at least 10% less spam than

before (assuming 10 total domains and that each bot sends the same amount of spam

to each domain). However, if SpamTracker clusters spammers who send spam to at
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least 3 common domains and the spammer restricts each bot to at most 2 domains in

common with another bot, each bot now sends at least 33% less spam than before.

What we seek, for each network-level spam filtering algorithm, is the relationship

between the ease of evasion and the loss of “productivity” of the spammer. Our

hypothesis is that, because bots rely so much on the low-and-slow sending pattern of

sending small amounts of spam to many recipients, they will suffer a massive drop

in spam output if they attempt to evade behavioral detection techniques such as

SpamTracker.
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