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SUMMARY

Spam is an increasing menace for all forms of online messaging including email,
instant messaging, social media, blogs, and Web forums. Many past and current
approaches to tackling spam rely too heavily on content-based approaches, where fil-
ters use the content of spam messages to distinguish them from legitimate messages.
This approach, however, aims at a moving target: spammers are free to evolve the
content of their messages in a variety of ways in response to filtering rules, leaving
content-based filters to play “catch-up”. Content-based filters also incur more over-
head, because they need to accept, store, and process the content of an email before
making a decision; with 90% of email-—over 50 billion messages a day—being spam,
content-based filters are expensive both to maintain and to scale.

In this dissertation, we introduce email spam filtering using network-level features.
Network-level features are based on lightweight measurements that can be made in
the network, often without processing or storing a message. Beyond just the IP ad-
dress of a traffic source, network-level features also include the Autonomous System
(AS) numbers of the source, flow sizes, packet header information, data that can
be collected from structured application-level traffic streams such as DNS or HTTP
information, and aggregates of these features (e.g., the historical behavior of an IP
address). Unlike content-based features Network-level features also affords the op-
portunity to observe the coordinated behavior of spammers. Network-level attributes
of traffic stay relevant for longer periods and are harder for criminals to alter at will
(e.g., a bot cannot act independently of other bots in the botnet).

This dissertation has the following contributions.

Xvi



1. We perform a detailed characterization of the network-level behavior of spam
including its origins, volumetric and temporal behavior, and its relation to bot-
nets and hijacked BGP routes. We further perform a longitudinal analysis of
these features over a 6 year period to examine the robustness of network-level
features for email classification. We find that IP-based reputation systems such
as [P blacklists may not be able to keep up with the threat of spam from pre-

viously unseen IP addresses, and from new and stealthy attacks.

2. We present three unsupervised algorithms that detect correlated behavior of
spammers using network-level features. First, we introduce the stealthy spam-
mer behavior of reconnoitering IP Blacklists, and present techniques to detect
such queries using temporal and spatial features. Second, we present Spam-
Tracker, a system that distinguishes spammers from legitimate senders by ap-
plying clustering on the set of domains to which email is sent. Third, we intro-
duce vote-gaming attacks in large Web-based email systems that pollutes user
feedback on spam emails, and present an efficient clustering-based method to

mitigate such attacks.

We have evaluated our algorithms on real-world datasets, and our work has also
resulted in practical tools and applications: Our vote-gaming attack detection system
has been put to use by Yahoo! Mail to detect compromised bot-controlled accounts.
We have also designed a system to detect spam from potentially hijacked BGP prefixes

and integrated it with our real-time dynamic blacklisting system, SpamSpotter.
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CHAPTER 1

INTRODUCTION

Email remains the major method for business and personal online communication
for hundreds of millions of users and organizations. One of the key features that
initially drove its widespread adoption—the ability for any Internet-connected host
to send a message to a person using only their email address—has also become the
Achilles heel for email, and the chief reason for the overwhelming amount of spam
that must be processed by mail servers each day. Because a user might legitimately
receive email from any Internet host, the protocol used to send and receive email—
SMTP [68] (Simple Mail Transfer Protocol)—has no built-in measures for security or
accountability. Indeed, the protocol designers are well aware of the security concerns

of SMTP. To quote the SMTP RFC [68]:

SMTP mail is inherently insecure in that it is feasible for even fairly casual
users to megotiate directly with receiving and relaying SMTP servers and create
messages that will trick a naive recipient into believing that they came from

somewhere else.

- RFC 5321

Unfortunately, miscreants have been exploiting exactly this insecurity of the SMTP
protocol for their sustenance. As the costs of sending a message went down with ubiq-
uitous Internet adoption and increasing connection speeds, these spammers began to
use automated programs to send large numbers of spam messages that link to scam
Websites, phishing attacks, or sites that trick a user into installing malicious software

on their computers. Over the past decade, spam volumes have grown so high that



approximately 90% of all email-—about 70 billion messages—on the Internet today is
spam [5].

In the past, much spam was sent from dedicated “spam farms” and open mail re-
lays [21,90]; these services, however, were relatively easy for mail recipients to avoid
using IP address blacklists (or “blocklists”) of spam senders. Over the past few years,
the chief sources of spam have been botnets—distributed networks of compromised
computers under the control of a “botmaster”. Botnets are used for coordinated
attacks such as sending spam or mounting denial of service attacks. Botmasters as-
semble botnets by infecting the computers of unsuspecting users around the world,
and then use the combined bandwidth and processing power of these infected ma-
chines to manufacture and send spam to millions of users. Symantec MessagelLabs

estimates that currently, 88.2% of all spam sent can be traced to a botnet [131].

1.1 Spam Filtering: Techniques and Challenges

This section overviews the chief approaches for filtering spam, and problems faced by

each of these approaches due to new and emerging threats.
1.1.1 Types of Spam Filters

Figure 1.1 presents an overview of the chief classes of approaches for spam filtering
available to a typical victim organization. The first line of defense includes lightweight
network-level approaches, of which IP-based blacklisting is the only widely used ap-
proach. These methods are responsible in rejecting a majority of spam (70-90%)
early [122], leaving messages from unknown spam senders to be filtered by the re-
maining two methods. The recipient organization then feeds the spam through a
content-based filter, which uses features of the headers, body, or attachments of the
message as well as URLs and other embedded artifacts to determine whether the
message is potentially spam. Content-based filters are reputed to be highly accurate,

but they also incur high overhead. The few spam messages that are not caught by
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Figure 1.1: Overview of Spam Filtering Approaches

network-level or content-based filters end up in end-users’ Inboxes. At this stage,
organizations rely on end-users to report misclassified spam messages as such by, for
example, clicking a “Report as Spam” button. User feedback is crucial: once a number
of users report such messages, the organization’s automatic classifiers can learn from
the misclassified message to correctly filter similar spam messages in future—network-
level filters can learn network-level features of the spam sender, and content-based
filters can learn the content-based features that evaded it. Effective spam filtering
thus depends on the correct performance of all three components.

In this dissertation, we find that the use of a practically unlimited supply of bots,
emerging stealthy attacks, and constantly evolving spam content are posing massive
threats to all steps of spam filtering. Spammers are sending spam from IP addresses
that have not been observed spamming for many months, which makes them harder
to be listed in blacklists. We also find that spammers are monitoring IP blacklists
and sometimes sending spam using hijacked IP spaces, further complicating the IP
blacklisting process. To pollute end-user reporting of spam messages, spammers use

their own compromised user accounts to report their own spam messages as “not



spam”.

Each stage of spam filtering faces a number of problems—some of which are organic
to the technique, while others are due to new and stealthy attacks by spammers
and other miscreants. The next section discusses the problems with each filtering

approach.

1.1.2 Problems with Spam Filtering

Content-based Filters. Content-based filters such as SpamAssassin [120] are a
widely-deployed defense against spam. These filters analyze the content of email to
identify attributes that would distinguish large fractions of spam messages from legit-
imate ones. Because the majority of spam is auto-generated and designed to spread
a small set of scams (e.g., penny-stock scams, Rolex watches, pills from Canadian
pharmacies, etc.), content-based filters are able to use statistical learning and clas-
sification to differentiate the majority of spam from legitimate email with few false
positives.

However, content-based filters have several critical shortcomings. First, because
they operate on the content of messages, the mail recipient must accept, process, and
store all incoming messages—of which 90% is spam—before beginning classification.
As spam volumes increase, recipients must continuously upgrade their infrastructure
and software to be able to process email at scale. Second and perhaps more im-
portantly, designing content-based filters is an arms race against spammers with no
clear winner: as soon as a filter is fine-tuned to detect a particular spam campaign,
the spammer will alter his spam template such that his spam evades the filter. For
example, in response to a content-based filter that uses certain keywords to detect
spam (e.g., the phrase “Rolex Watches” and its variations), the spammer can embed
the words in an image that is then sent in the spam message.

These shortcomings make content-based filters unsuitable for use as a first line of



defense against spam. Indeed, most mail service administrators first apply lightweight
network-level filters such as IP blacklists to summarily reject the vast majority of
spam that strikes an organization’s mail servers. While content-based filters remain
highly accurate, especially with regards to false positive rates, they require constant
maintenance to keep up with the mutations of spam templates. Furthermore, content-
filters are dependent on network-level and end-user filters: because content-filters have
high processing and storage overhead, they rely on network-level filters to limit the
amount of spam they need to deal with; because they must constantly learn and
adapt their classifiers for new campaigns, they rely on end-user filters to quickly and
correctly report new spam templates that evade existing content filters. Thus, attacks

that weaken other filters indirectly affects content-based filtering as well.

Network-level Filtering. Network-level features include easily-observable attributes
of an email or email sender that are robust, lightweight, and applicable in detecting
many attacks mounted by spammers. We define network-level features as observations
and measurements that can be made cheaply and efficiently, usually at the network
layer of the TCP/IP protocol stack, and from anywhere in the network (i.e., not
necessarily at the recipient’s machine). Examples of network-level features include
(1) attributes of a single email such as the sender’s IP address, the sender’'s BGP
prefix and route, the Autonomous System (AS) that owns the prefix, the hostname
corresponding to the sender’s IP address, the size of the email (in bytes), etc.; (2)
attributes that are based on aggregates or historical observations, for example, the
set of domains to which a particular sender sends email, the fraction of known spam
senders in the BGP prefix of an email sender, the average and standard deviation of
email size in all messages from a sender, etc.

Network-level features offer a number of advantages over content-based features

for spam filtering.

o Network-level features are robust. Unlike the content of an email that spammers



can change at will, network-level features are far less malleable. Even if the
botmaster can rotate the bot IP addresses from which he sends spam, he has
little control over aggregate network-level features (BGP prefix, AS number,

etc.) or the coordinated behavior of the spam bots in his botnet.

e Network-level features are lightweight. Many network level features are based
on simple measurements that do not require an SMTP transaction to complete:
attributes such as the IP address block and AS number of the sender can be
detected anywhere in the network (e.g., in the sender’s own access network),
and attributes such as message size can be estimated by measuring the flow size

of the TCP connection.

o Network-level features can detect correlated behavior. Bots are usually centrally
controlled and send spam in a coordinated fashion, and this coordinated behav-
ior sets them apart from legitimate senders; indeed, this dissertation presents
various coordinated attacks mounted by spam bots, and methods to mitigate
such attacks. Content-based filters cannot detect such coordinated behavior be-
cause the content of spam sent by the bots in a botnet may be quite dissimilar

to each other,

State-of-the-art network-level filtering is largely limited to IP-based blacklists. Al-
though blacklist vendors claim 90% reduction in spam [122], our experiments indicate
that the actual fraction of blacklisted spammers is much lower—about 60-70%. The
prevalent use of large botnets is likely responsible for the inability of blacklists to keep
their detection rates up. A large botnet implies that the potential number of unique
IP addresses from which spam is sent is also large. Because many spam senders origi-
nate from IP address ranges that also contain legitimate email senders, IP blacklisting
is also prone to false positives. An additional challenge in IP blacklisting involves the

use of dynamic address assignment using protocols such as DHCP [30] by Internet



Service Providers; because DHCP can reassign a spam sender’s IP address to a le-
gitimate machine, blacklist vendors are hesitant to blacklist spammers from DHCP
senders.! Indeed, we have discovered that even at a spam trap—a domain with no
legitimate addresses that receives mail only from spammers—30% or more of spam-
mers are not listed in any of six blacklists, likely because many of these spammers
were never observed for months prior to when they sent out spam.

In this dissertation, we present new attacks that further reduce the effectiveness of
using IP reputation to filter spam. We find that spammers themselves may be stealthily
monitoring IP blacklists to discover which of their bots are listed. We also find evidence
for spam from hijacked BGP prefixes, which implies that certain spammers may be
hijacking a legitimate organization’s IP space and sending spam from IP addresses

within that space.

End-user Filtering. The final weapon in an organization’s spam filtering arsenal
are its end-users [39]. To quickly identify emerging spam campaigns that may have
evaded both network-level and content-based filters, organizations rely on their users
to quickly build consensus on the status of the spam message: if a few users who
received the misclassified spam message in their Inboxes report the message as spam,
the message can be retroactively removed from other users’ Inboxes and placed in
their spam folders. Furthermore, community clicks also aid IP reputation: if enough
users report mails sent from a particular IP address as spam, the sender may also be
placed in an IP blacklist.

End-user filtering has the potential to quickly neutralize spam campaigns and
render “new” spamming IP addresses ineffective. To counter this defense mechanism,
we discovered that spammers are mounting attacks of their own, especially within

large Web-based email services such as Yahoo! Mail and Gmail, to pollute votes

'Except by policy, as in the Spamhaus Policy Blacklist (PBL) [123].



from legitimate users. Spammer use bot-controlled compromised user accounts to
dishonestly vote “not spam” on their own spam email such that the true classification
of spam email is delayed. This attack reduces the effectiveness of user filtering and

delays the time before which the senders of spam can be placed on blacklists.

1.2 Thesis Statement

In this dissertation, we will show that although network-level features
offer unique advantages over content-based features for spam filtering,
IP-based reputation methods for filtering spammers are becoming less ef-
fective. Our evidence includes spammer techniques of using previously
unseen [P addresses to send spam, as well as stealthy attacks such as IP
blacklist reconnaissance, spam from hijacked prefixes, and dishonest vot-
ing in Webmail systems. We posit that, although IP-based reputation has
become less reliable, network-level features also expose the coordinated be-
havior of malicious senders—a consequence of using centrally-controlled
botnets to send spam. We show that network operators can construct
classifiers to identify such coordinated behavior, and use these behav-
ioral classifiers to mitigate various spam-related attacks in real time. As
future work, we argue that behavioral classifiers can be applied to many
botnet-orchestrated attacks beyond merely spamming, for example, denial

of service, click fraud, scam hosting, etc.

1.3 Contributions

In support of the thesis statement, this dissertation presents the following contribu-

tions.



e Characterization of the Network-level Behavior of Spammers. We present the
first detailed analysis of spam sending behavior using data collected from a high-
volume spam “trap” or “sinkhole”—a domain that receives only spam—over a
17 month period from August 2004—December 2005. Further, we present a
unique 6.5-year longitudinal analysis of spam from spam sinkholes by analyzing
the evolution of the network-level properties of spam senders from the perspec-
tive of a network operator of a specific domain; we show that network-level
classifiers can be a powerful tool especially in the face of continually changing
spam campaigns and new spammer [P addresses which reduces the effectiveness

of IP-based blacklists.

o New Spammer Attacks. We introduce several new attacks mounted by spam-
mers such as (1) sending spam by hijacking large BGP prefixes using short-
lived announcements; (2) conducting stealthy reconnaissance on a DNS-based
IP blacklist to discover when a spam bot is blacklisted; (3) casting dishonest
“not spam” votes on spam email in Web-based email services to delay the true

classification of spam.

e Defenses Against Spammer Attacks. We present algorithms to detect coordi-
nated spammer behavior and to mitigate spammer attacks. Specifically, (1) to
detect bots that perform reconnaissance on DNS-based blacklists, we present
an algorithm that uses temporal and spatial relationships of bots that query the
blacklist; (2) to detect spam senders using their sending behavior, we present
SpamTracker, a clustering-based algorithm that uses the pattern of recipient
domains targeted by spam bots; (3) to detect bots that attempt to “game”
the true classification of spam in Web-based email services, we present an effi-
cient clustering-based algorithm based on the number of Webmail user identities

shared by each bot.



e Supporting Tools and Techniques. In support of our algorithms, we present the
following tools: (1) to make the deployment of algorithms such as SpamTracker
and SNARE [51] easier, we designed a generic real-time dynamic spam filtering
service based on the DNS-based query scheme used in IP blacklists that aims to
be both fast and scalable; (2) to detect spam from potentially hijacked routes,
we design a tool, SpamLoJack, that joins BGP announcements with the IP
addresses of spam senders in real-time to discover spam sent using potentially

hijacked or short-lived BGP routes.

1.4 Roadmap

Figure 1.2 presents the overview of the topics addressed by various chapters of this

dissertation.

Chapter 2.. This chapter presents background into spam and efforts in spam filter-
ing, with emphasis on network-level approaches to filtering spam. This chapter sets
the context for the work presented in dissertation within the wider body of spam-

filtering and botnet detection research.

Chapter 3. This chapter presents background on spammers, the prevalence of bots in
spamming, and introduces network-level features of spammers. This chapter presents
a detailed study using 17 months of spam data that analyzes various network-level
features of spam messages, including the top IP address ranges, AS numbers, and
country codes of spammers; the types of operating systems used to send spam; the
average sizes of spam messages, etc.; the chapter also investigates the continuing
relevance of these features over time using a 6-year longitudinal spam dataset. We
find that identifying and filtering spam based on individual IP addresses may be prone
both to false positives and false negatives, and filtering based on larger IP blocks, or
based on the sending behavior of spammers might overcome these shortcomings. This

chapter also presents a detailed analysis of a stealthy spamming method, which we
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Figure 1.2: Overview of the attacks addressed in this dissertation

call BGP “spectrum agility”, in which spammers hijack large BGP prefixes for short

periods to send spam.

Chapter 4. Driven by our finding in Chapter 3 that over 30% of spammers are
not listed in any DNS-based IP blacklist (DNSBL), we investigate a new attack in
this chapter, where spammers attempt to proactively detect when a particular bot
IP becomes listed in a popular DNSBL by making stealthy queries to the DNSBL
for spam bot IP addresses. We then leverage the coordinated behavior of bots in
performing such reconnaissance to develop a method to detect reconnaissance queries
and to opportunistically enumerate bot identities that perform the reconnaissance.

This method has resulted in a commercial patent, and has been has been used to

11



detect bots in practice.

Chapter 5. We established in Chapter 3 that blacklisting based on specific 1P
addresses may not be able to identify many spammers, especially given the fraction
of previously-unseen spammers that sent spam in a single burst to our spam sinkhole.
We hypothesize that spammers likely send email to multiple domains, and a network-
wide view from multiple vantage points may help identify such spammers based on
behavior rather than their IP address. We confirm this hypothesis and present a
clustering-based algorithm to detect coordinated spammer behavior in this chapter.
Our technique, called Spam Tracker, clusters email senders based on the set of recipient
domains to which messages are sent. We hypothesize that, because bots in a given
botnet are likely to send email to the same subset of domains, the sending patterns
of bots will cluster well. We use spectral clustering to construct a pattern of sending
behavior for known spammers, which can later be used to identify new, previously-
unknown spam senders only using their sending pattern. We evaluate our algorithm
using mail logs from a large email service provider that sinks email for over 115
recipient domains; we find that our algorithm is able to discover clusters of spam

bots, and also show that our technique can be applied in a real-time blacklist.

Chapter 6. In Chapter 3, we found that certain large IP address blocks that pre-
dominantly consist of legitimate email senders occasionally contain spam senders, and
hypothesized that these senders were likely to be large email service providers, who
were being abused by a few spammers to relay their spam. In this chapter, we look
at the problem of such compromised accounts in Yahoo! Mail, the largest Web-based
email service provider. Webmail services rely on user feedback to quickly build con-
sensus on the status of an email; thus, most Webmail services allow users to report
a message as “spam” or “not spam”. To influence this decision and to prolong the

true classification of spam messages, spammers use bot-controlled user accounts to
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dishonestly vote “not spam” on spam messages. We present an algorithm that uses
canopy-based clustering to detect Webmail user accounts used solely for dishonest
voting. The clustering algorithm is based on the insight that accounts used for dis-
honest voting are accessed from many different bot IP addresses, while legitimate
user accounts are typically accessed from very few IP addresses. We performed this
study using real data from Yahoo! Mail, the largest Web-based email provider; our

algorithm is being used by Yahoo! in practice.

Chapter 7. This chapter presents tools and techniques in support of our findings.
First, we present SpamSpotter, a high-performance dynamic, real-time blacklisting
system that presents mail recipients with a simple, uniform interface to query network-
level spam filtering algorithms such as SpamTracker (Chapter 5 and SNARE [51].
SpamSpotter offers a framework that presents developers of new network-level al-
gorithms with a simple set of abstractions to develop and deploy their algorithms.
To make these algorithms easily usable by recipients, SpamSpotter uses a modified
version of the widely-used DNS-based blacklist query structure. Next, we present a
SpamLoJack, a tool and a Web-based service that joins live feeds of BGP updates
and spam data to discover spam that is being sent from short-lived or other suspi-
cious BGP announcements; SpamLoJack is also integrated into the query interface of
SpamSpotter. Spam from hijacked routes is stealthy and a regular occurrence [6], and
we expect SpamLoJack can provide early warning against route hijacks deliberately

used for spamming.

Chapter 8. This chapter concludes this dissertation. We will summarize the lessons

learned in this dissertation and present various avenues for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides an overview of techniques both for sending and for mitigating
spam, and discusses related work in these areas, focusing on network-level methods

for spam filtering.

2.1 Spamming Methods

Spammers use various techniques to send large volumes of mail while attempting to
remain untraceable. We describe several of these techniques, beginning with “con-

ventional” methods and progressing to more intricate techniques.
2.1.1 Direct Spamming

In the “early” days of spam, when broadband connections were not as prevalent
as they are today, spammers purchased upstream connectivity from “spam-friendly”
ISPs, set up powerful servers, and churned out large amounts of spam from these
servers. Occasionally, spammers would buy connectivity and send spam from ISPs
that did not condone this activity and were forced to change ISPs. Ordinarily, chang-
ing from one ISP to another would require a spammer to renumber the IP addresses of
their mail relays. To remain untraceable and avoid renumbering headaches, spammers
sometimes obtain a pool of dispensable dialup IP addresses, send outgoing traffic from
a high-bandwidth host after spoofing its own IP address to appear as if it came from
the dialup connection, proxying the reverse traffic through the dialup connection back
to the spamming host [110]. Unfortunately, the downside of direct spamming is that
the spam sending machines are limited in number and represent a single point of fail-

ure for the spammer: once listed in an IP or IP prefix blacklist, spammers would have
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no way of churning out spam. Moreover, direct spamming usually involves traceable
money trails to the owner (i.e., spammer), for example, through the purchase of the
hosting service. As botnets rise to prominence due to their resilience and aggregate

bandwidth, direct spamming has seen a major decline.
2.1.2 Open Relays and Proxies

Open relays are mail servers that allow unauthenticated Internet hosts to connect and
relay email through them. Originally intended for user convenience (e.g., to let users
send mail from a particular relay while they are traveling or otherwise in a different
network), open relays have been exploited by spammers due to the anonymity and
amplification offered by the extra level of indirection. Spammers use tools to scan
for open relays by identifying servers that listen on SMTP port 25, and then by
sending a test email to an account under the spammers’ own control [90], which, if
received, confirms the existence of an open relay. Fortunately, open relay blacklists
such as SORBS [119] and ORDB [88] have forced most legitimate open relays to cease
service. However, as a recent study by Pathak et al. showed, spammers continue to
scan for open relays and exploit any relays that they find by sending high volumes of
spam through them.

Open proxies are services that merely route application-level traffic, allowing a
sender to anonymously access or use Internet services. When used for sending email,
the open proxy allows a spammer to mask their IP address: the recipient mail server
typically only uses the IP address of the host that made a TCP connection to it, and
the spammer is free to use fake IP addresses in the SM'TP headers of emails it sends.
As with open relays, open proxies have found themselves ending up in blacklists such

as Blitzed Open Proxy Monitor [141].
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2.1.3 Spam Using Unorthodox BGP Route Announcements

BGP [114], the Internet’s inter-domain routing protocol, is designed to be robust:
technically, any Autonomous System (AS) can announce connectivity to an IP prefix,
and the routers that receive many route announcements for a prefix are free to choose
the “best path” using attributes such as the number of ASes in the path (AS path
length). Unfortunately, because BGP has no built-in security, prefiz hijacks—the
announcement of a route to an IP prefix by an AS that causes traffic to not reach the
true owner of the prefix—are quite common.

The most common reason for prefix hijacks is a misconfiguration: configuring
router policies is a complex process that involves technical and policy decisions, and
operators may make mistakes that cause them to unintentionally hijack another IP
prefix. In a recent example of this nature, an ISP from Pakistan accidentally an-
nounced a highly specific prefix, a /24, that belonged to YouTube [115]. Because
YouTube’s legitimate route announcement was a /22 that encompassed the /24 an-
nounced by the Pakistani ISP, the more specific prefix announced by the Pakistani
ISP became the “best path” to some YouTube services for a large portion of the
Internet, thus disrupting connectivity to YouTube. Deliberately hijacking a prefix,
however, requires a malicious ISP who must convince its upstream provider to ac-
cept a fraudulent route announcement and re-announce it to the rest of the Internet.
This kind of activity is less common, and if discovered, can potentially result in the
provider losing upstream connectivity. Another potential approach for deliberately
hijacking a prefix is to compromise another ISP’s router and then announce stealthy
routes.

Figure 2.1 illustrates the two ways in which prefix hijacks typically occur: either
because a hijacker AS announces a shorter AS path to a prefix, or because it announces
a more specific sub-prefix of the hijacked prefix. Figure 1(a) shows a shorter-AS-path

hijack: in this scenario, AS 100, which owns the prefix 1.2.3.0/24, announces the
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Figure 2.1: Example of a malicious AS, AS 200, hijacking AS 100’s prefix.

prefix to its upstream provider, AS 50, and also prepends its own AS number to the
AS path—which, at this point, merely consists of a single number, “100”. AS 50
reannounces the 1.2.3.0/24 prefix to the rest of the Internet after appending its own
AS path (“50”), making the total AS path length from anywhere in the Internet at
least 2 or more. If a malicious entity, AS 200, is somehow able to announce AS 100’s
prefix to the Internet with a smaller AS path length, many ASes which see the smaller
path length will accept AS 200’s announcement as the best path to 1.2.3.0/24. Thus,
AS 200 can send traffic—including spam—from an IP address within 1.2.3.0/24 to
any AS that accepted its announcement. Figure 1(b) shows a case where a hijack
occurs because the hijacker announces a more specific sub-prefix: in this scenario,
both AS 200 and AS 100 have equal-length AS paths to the prefix in question, but
AS 200 announces a /25 instead of a /24. Thus, due to BGP’s longest-prefix-match
algorithm, traffic to IP addresses within 1.2.3.0/25 will be routed to AS 200 and not
to AS 100.

Although deliberate prefix hijacks and attacks using hijacked routes are not com-
mon, we have discovered a stealthy and advanced spamming method distinct from

the two hijack scenarios presented above, which we call BGP spectrum agility
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(Chapter 3.5). This new mechanism to cloak spam involves spammers briefly an-
nouncing hijacked less-specific IP prefixes from which they send spam. Although we
had observed this behavior informally several years ago [31], and subsequent anec-
dotal evidence has suggested that spammers may use this technique [9], our study
thoroughly documents this activity, and further finds that spammers may be using
spectrum agility to complement spamming by other methods. Recent reports about
hijacked prefixes used for spam from the North American Network Operators’ Group

(NANOG) indicate that spam from hijacked may be an increasing problem [6].

2.2 Spam from Botnets

Botnets have been in use as vehicles of cybercrime for quite some time: their activities
range from sending massive amounts of spam, mounting denial of service attacks on
commercial Web services for monetary gain (e.g., for ransom), hosting and spreading
viruses, malware, pornography, and scam pages, click fraud, and identity theft from
the owners of compromised computers. Previous research has traced the history of
botnets [111,127,136] and common modes of botnet operation [22].

Previous work has identified bots by examining the communication protocols used
by botnets (e.g., for “rallying”), most notably Internet Relay Chat (IRC) [28,148].
Some have suggested the use of such protocols to identify and remediate botnets. For
example, researchers have joined IRC-based botnets and enumerated victims using
IRC commands [33]; others have used network traffic to identify IRC zombies [100].
Some researchers have identified bot victims by observing the unwanted traffic they
generate, e.g., the RST storms or backscatter generated by DDoS attacks using forged
source addresses [86]. Recent network-level techniques for identifying bots using their
Command & Control traffic include BotHunter [46], and BotSniffer [47].

Most early methods of controlling and marshalling botnets involved a centralized

“Command & Control” (C&C) server—usually using the IRC or HTTP protocols.
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Centrally controlled botnets generally operate according to the pattern shown in
Figure 2(a) [23]. Studies show that although the C&C channels to manage bots were
predominantly TRC-based [22,136], newer botnets are almost entirely controlled by
peer-to-peer (P2P) protocols [72,128,129]. This development was in response to early
botnet mitigation strategies, which largely centered on identifying and neutralizing
a centralized C&C. P2P makes a botnet more robust as there is no single point of
failure. Another recent development has been the use of encryption for all botnet
C&C and data traffic using keys distributed within the bot binary itself.

Attempts have been made to detect such botnets using misuse-detection or basic
intrusion detection analysis [15,49]. Dagon et al. used DNS redirection to monitor
botnets [25]. Botminer [45] is a more recent work that takes a first-principles approach
to detecting bots using a protocol-independent model and passive monitoring of bot-
net activity. Botlab [62] is a recent effort to capture and study spamming botnets in

the wild.
2.2.1 Direct Spamming to the Recipient

Conventional wisdom suggests that the majority of spam on the Internet today is
sent by botnets [19,23,146]. The amount of spam attributed to botnets over the
past few years has been estimated at as high as 95% [130]; the most recent figure
from Symantec Labs estimates that 88.2% of spam on the Internet are attributable
to botnets [131]. In Chapter 3, we show that although the overall volume of spam
from bots is reputed to be high, our spam trap receives low volumes of spam from
each bot, which is likely a trick that spammers use to not “trip” volume-based spam
filters at any given recipient domain.

Most botnets include code that allows them to send spam using templates sup-
plied by the botmaster. In Chapter 3, we investigate the spamming behavior of the

W32/Bobax (“Bobax”) worm. Bobax (of which there are many variants) exploits the
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Figure 2.2: Differences in operation between centralized and peer-to-peer botnets

DCOM and LSASS vulnerabilities on Windows systems [83], allows infected hosts to
be used as a mail relay, and attempts to spread itself to other machines affected by
the above vulnerabilities, as well as over email. Agobot and SDBot are two other
bots purported to send spam [56] using the centralized C&C model.

Newer peer-to-peer botnets such as the Storm Worm [128] (also known as Tro-
jan.Peacomm, illustrated in Figure 2(b)) and Waledac [129] have more complex infec-
tion, rallying, and update behavior, making their eradication all that much harder.
In addition to heavy use of encryption and obfuscation techniques to confound re-
searchers, these botnets are rallied using peer-to-peer mechanisms. Each Storm bot,
for example, connects to a small subset of 30-35 other bots in the botnet; thus, there
is no centralized controller that has control of every bot, which eliminates the threat

of the typical approach to botnet takedown of neutralizing the C&C domain name.
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2.2.2 Spamming via Webmail Services

Web-based email accounts provided by Gmail, Yahoo! Mail, and Hotmail have also
brought new spam threats: spammers have begun using compromised Web mail ac-
counts to send spam. Recent estimates suggest that about 5.2% of accounts that
logged in to Hotmail were bots [149]. Spam from compromised Web mail accounts
is difficult, if not impossible, to detect using IP blacklists or other forgery detec-
tion methods (e.g., domain-key based authentication methods such as DKIM [29]).
Web mail providers attempt to detect compromised accounts used to send spam, but
these providers handle hundreds of millions of user accounts (193 million users at
Gmail [37] and 275 million at Yahoo [58]) and deliver nearly a billion messages each
day [139]. Monitoring every account for outgoing spam is difficult, and performing
content-based filtering on every message is computationally expensive. Automated
monitoring systems may not be able to differentiate a spam sender from a legitimate,
high-volume sender.

In Chapter 6, we present a unique attack that is directly used to sustain spamming
through Webmail systems. Webmail providers rely on users to quickly mark spam
messages as “Spam”, so that they can remove copies of the spam messages from other
users’ Inboxes and also blacklist the sender of the spam. Spammers, in an attempt to
pollute these votes, have begun voting “Not Spam” on spam email using a separate set
of Webmail accounts controlled by bots. Chapter 6 analyzes this attack, and presents

an efficient way to discover such dishonest voters.

2.3 Mitigation techniques

Techniques for mitigating spam are as varied as techniques to send spam. In this sec-

tion, we discuss the most common methods with emphasis on network-level methods.
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2.3.1 Content-based Filtering

One of the earliest and most widely used anti-spam techniques is content-based filter-
ing, which typically classifies email based on its content; content-based filtering uses
features of the contents of an email’s headers or body to determine whether it is likely
to be spam. Content-based filters, such as those incorporated by popular spam filters
like SpamAssassin [120], successfully reduce the amount of spam that actually reaches
a user’s Inbox. On the other hand, content-based filtering has drawbacks. Users and
system administrators must continually update their filtering rules and use large cor-
puses of spam for training; in response, spammers devise new ways of altering the
contents of an email to circumvent these filters. The cost of evading content-based
filters for spammers is negligible, since spammers can easily alter content to attempt
to evade these filters. Many commercial spam filtering services also use finely tuned
content-based filters to perform accurate classification of their email; for example,
Yahoo! Mail uses the Sparta system which includes a finely-tuned content-based
classifier that gives high accuracy [144]. Unfortunately, they too are vulnerable to
the problems of content-based filters—the high cost of running a resource-intensive
service, and the need for constant updates or retraining of the classifiers.

Recent large-scale content-based spam filtering techniques have concentrated on
using URLs embedded in spam messages—URLs are the sole way spammers can lure
unsuspecting users to their spam campaigns, thus, they can be clustered to identify
potential spam messages. Li et al. focus on clustering spam senders to predict whether
a known spammer will send spam in the future [78], and Anderson et al. cluster spam
according to URLs to better understand the relationship between the senders spam
messages that advertise phishing and scam sites and the Web servers that host the
scams themselves [8]. Xie et al. developed AutoRE [142] to automatically extract
regular expressions based on URLs in spam emails. Pathak [96] et al. builds upon this

work to develop an entirely unsupervised content-based URL clustering algorithm.
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Botnet Judo [91] is a system that uses captive bot binaries to capture spam at the
source, extract templates of spam emails, and use these to filter spam at recipient
domains. Monarch is a recent real-time URL filtering service that uses Amazon’s
Cloud infrastructure to build a scalable system capable of crawling URLs in email

and Twitter feeds and returning a scalable classification decision [132].
2.3.2 IP Blacklists

In addition to performing content-based checks, many mail filters, including Spa-
mAssassin, also perform lookups to determine whether the sending IP address is in
a “blacklist”. Conventional blacklists constitute lists of IP addresses of likely spam-
mers and are intended to help spam filters make better decisions about whether to
block a piece of email based on the sender [121,122]. Some blacklists are policy-
based (e.g., they list all IP addresses that belong to a certain class, such as dialup
addresses [119,123]). Other IP-based blacklists are “reactive”: they attempt to keep
track of whether an IP address is a spammer, bot, phisher, etc. and keep this list up-
to-date as hosts are renumbered, botnets move, and so forth [81,121,122,134]. These
blacklists must be vigilantly maintained so as to not going out of date or contain false
positives.

IP blacklists are also often referred to as DNSBLs (short for DNS-based IP black-
lists), because the method of querying these blacklists is usually through a specially-
crafted DNS query. DNSBLs are a “hack” on the DNS name resolution infrastructure
to allow users to query for blacklisted IP addresses using existing DNS client and
server protocols and utilities. A DNSBL maintainer keeps blacklisted IP addresses
in a zone file; the server responds to a query for a listed IP address (encoded in a
domain name) with another IP address (usually an address such as 127.0.0.2 that
has no meaning in the DNS resolution infrastructure) but returns an NXDOMAIN for

an unlisted address.
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Blacklists of known spammers, open relays and open proxies remain one of today’s
predominant spam filtering techniques. There are more than 30 widely used blacklists
in use today; each of these lists is separately maintained, and insertion into these lists
is based on many different types of observations (e.g., operating an open relay, sending
mail to a spam trap, etc.). The results presented in Chapter 3—in particular, that
IP address space is often “stolen” to send spam and that many bot IP addresses are
short-lived—indicate that this long-standing method for filtering spam could become

much less effective as spammers adopt more sophisticated techniques.
2.3.3 Other Filtering Methods

Sender Policy Framework (SPF) attempts to prevent IP addresses from sending mail
on behalf of a domain for which they are not authorized to send mail [140], and domain
keys associate a responsible identity with each mail [7]. Although both frameworks
make it more difficult for an arbitrary IP address to send mail, they do not allow a
recipient to classify an email sender with an unknown reputation.

Many existing systems perform collaborative filtering and whitelisting, which takes
inputs from many distributed sources to build information about known spam (or
spammers). Some of the most widely deployed collaborative filtering systems char-
acterize known spam based on the contents of a piece of spam that was reported or
submitted by another user or mail server [18,26,70,92,95,138]. These systems allow
mail servers to compare the contents of an arriving piece of email to the contents of
an email that has been confirmed as spam; they do not incorporate any information
about network-level behavior.

Other systems collect information from distributed sets of users either to help
filter spam or decrease the probability that legitimate mail is mistakenly filtered.

IronPort [60] and Secure Computing [117] sell spam filtering appliances to domains
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which then pass information about both legitimate mail and spam back to a cen-
tral processing engine that in turn improves the filters. The widespread deployment
of these products and systems make them ideal candidates for the deployment of

algorithms such as SpamTracker (Chapter 5).
2.3.4 Analysis of the Economics of Spam

Researchers primarily from the University of California, San Diego have conducted
a series of detailed experiments analyzing large-scale botnet-orchestrated spamming
operations. Kreibich et al. analyzed the logistics of a spam campaign by infiltrating
a Storm Worm botnet; their results present an overview of how spammers distribute
spamming tasks to bots, how spam templates are created and distributed, how ad-
dresses are harvested, etc. [73,74]. Another line of research investigates the conversion
rate of spam: by injecting spam messages into a botnet’s spam output, the researchers
attempt to put a dollar figure to the conversion rate of spam [65]; their results suggest

that the conversion rate of spam is very low.

2.4 Related Work in Network-level Spam Filtering

In this section, we survey research that is most related to the research presented in
this dissertation, i.e., techniques and algorithms that use network-level features to

filter spam.
2.4.1 Characterization of Network-level Properties

Early studies on network-level spam filtering include research by Jung et al. that
inspects DNS blacklist (DNSBL) traffic and the effectiveness of blacklists [64]; they
observed that 80% of the IP addresses that were sending spam were listed in DNSBLs
two months after the collection of the traffic trace. Cursory studies before ours have
suggested that spammers advertise routes to hijacked IP prefixes for short amounts

of time to send spam [31,124,133].
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Several previous and ongoing projects have studied spammers’ attempts to harvest
email addresses for the purposes of spamming. For instance, Project Honeypot sinks
email traffic for unused MX records and hands out “trap” email addresses to inves-
tigate harvesting behavior and to help identify spammers [94]. A previous study has
used the data from Project Honeypot to analyze the methods employed by spammers;
monitor the time it takes from when an email address is harvested to the time when
that address first receives spam; the countries where most harvesting infrastructure is
located; and the persistence (across time) of various harvesters [93]. We present pre-
liminary results from a similar study in a technical report version of Chapter 3 [104].
Moore et al. found that the majority of hosts—and more than 80% of the hosts in
Asia—did not patch the relevant vulnerability until well after actual outbreak [85],
which makes it more reasonable to assume that [P addresses of Bobax drones remain
infected for the duration of our spam trace.

Anderson et al. mines emails in real time and follows URLs embedded in them
to cluster spam campaigns and the servers that these campaigns are hosted on [8];
they find that though many hosts are used to send spam about various scams, the
scams themselves are hosted on very few machines. Konte et al. also analyze the
hosting infrastructure of scam and find similar results: the scam campaigns and the
server they are hosted on tend to few in number and long-lasting. Botlab [62] studies
spamming botnets by capturing bots in a virtual machine and analyzing the spam
that they send. The authors captured six spam bot variants and discovered that these
were responsible for 79% of all incoming spam at the authors’ location.

Table 2.1 summarizes recent research in the characterization of network-level proper-

ties of spammers.
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Table 2.1: Research in Characterization of Network-level Properties of Spammers

Year ‘ Author

Approach

‘ Results

2006 | Ramachandran | Measurement-based Spam senders exhibit high similarity
et al. [103] characterization using | in terms of the IP prefixes from which
a spam sinkhole they originate, number of messages
sent, the operating systems used, the
size of messages, etc.
Spam bots often send a large amount
of spam in a “single shot”
Some spammers adopt a stealthy tech-
nique of sending spam by hijacking
large 1P prefixes using fake BGP an-
nouncements.
2007 | Xie et al. [143] | Correlating User login | 97% of mail senders from dynamic IP
data and IPs from Hot- | address regions send only spam
mail to detect dynamic | 42% of spam arriving at Hotmail is
IP address regions due to spammers in dynamic IP ranges
2007 | Collins et al. | Reports of the IP ad- | IP addresses that are ‘“unclean”
[20] dresses of bots, spam- | (i.e., have spam/phishing/scan re-
mers, and phishing | ports against them) tend to cluster
hosts with other unclean IP addresses in 1P
space (“spatial uncleanliness”)
IP addresses ranges that have a rela-
tively large number of unclean hosts
continue to contain unclean hosts for
a longer period of time (“temporal un-
cleanliness”)
2008 | Pathak et al. | Connection data col- | Spammers actively scan and “test”
[90] lected at an open relay | open relays before sending spam
through them
Spammers are either high-volume or
low-volume; high-volume spammers
send large amounts of spam on their
own, while low-volume each send low
volumes of spam but act in coordina-
tion with other low-volume spammers
2010 | Qian et al. | Probing experiments | Studies the extent of a well-known at-
[98] to discover the ex- | tack [110] and finds that 97% of ISPs
tent of Triangular | that disallow outgoing SMTP mes-
Spamming sages may be vulnerable to it.

2.4.2 Network-level Spam Mitigation Techniques

Behavioral modeling of email sending patterns. Hershkop et al. suggested

techniques for analyzing email by looking at behavioral features of users (e.g., sending
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patterns of individual users), as well as n-gram analysis and keyword spotting [54,126].
However, these techniques still rely to some extent on analysis of email contents and
focus on the spread of email viruses; the work also proposes an offline analysis toolkit,

whereas SpamSpotter (Chapter 7) is a scalable system for online, real-time detection.

Filtering using network-level features. Recent years have seen work that builds
on this behavioral modeling by studying the network-level behavior of spammers. Our
previous work studied the network-level behavior of spammers, with an eye towards
developing filters that are based on behavioral features (i.e., how the spam was sent,
as opposed to the contents of individual messages) [105]. Clayton et al. ’s spamHINTS
project has also recently been developing techniques for distinguishing spammers from
legitimate senders [17]; SpamSpotter could also be a deployment platform for these
algorithms and others. Xie et al. [143] discovered that a vast majority of mail servers
running on dynamic IP address were used solely to send spam. Hao et al. developed
SNARE, a Spatio-temporal Automated Reputation System that uses a combination
of network-level features to build a robust classifier [52]. Beverly and Sollins built a
sender-reputation classifier based on transport-level characteristics (e.g., round-trip

times, congestion windows) [10] using a support vector machine.

Clustering for Spam classification. Due to the unique properties by which spam
is generated and sent, spam data is highly suitable for clustering. As mentioned
earlier, previous research has attempted to cluster spam content in various forms:
templates of spam message, URLs, and the sites hosted on these URLs, etc.; there
have been fewer attempts to perform purely network-level clustering. Our work on
SpamTracker [108] clusters both legitimate and spam senders based on the subsets
of domains to which they send email. Other work has also attempted to group
senders based on recipient [40,61,77]. Venkataraman [137] suggest using network-

aware clusters (i.e., IP prefixes with high propensity for spam) to detect spam from
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Table 2.2: Research in Classifiers and Blacklists using Network-level Features

Year‘ Author ‘ Approach ‘ Results
2007 | Venkataraman | Measurements wusing | IP address blocks are a stable indi-
et al. [137] spam and legitimate | cator of the nature of message (i.e.,
email received at 700 | spam or legitimate email)
user mailboxes Legitimate email mainly comes from
long-lived IP addresses, while spam
originates from long-lived BGP pre-
fixes (called network-aware clusters)
2007 | Ramachandran | Measurements on | Bots in a botnet target the same sub-
et al. [108] sending patterns of | set of recipient domains as other bots
legitimate and spam | Legitimate senders do not have a dis-
emails to over 100 | cernible pattern in the subset of do-
recipient domains mains to which they send email.
2008 | Zhang et al. | Logs from a large-scale | IP Blacklists can be made highly pre-
[147] security  log-sharing | dictive and targeted to consumers of
system, DShield the blacklist by correlating multiple
reports of an IP address using a link-
rank like scheme
2009 | Hao et al. [52] | Legitimate and spam | A classifier built using only network-
data for 1 month from | level features such as message size,
a security vendor number of recipients, sender’s AS
number, etc. shows good classification
performance
2009 | Zhao et al. | User login IDs and lo- | User IDs of bots can be clustered using
[149] gin IPs from Hotmail | the IPs that they login from
2010 | Qian et al. | Email collected from a | As a continuation of [137], this study
[97] University shows that filtering based on IP-prefix
clusters can be augmented using DNS
responses corresponding sender IP ad-
dresses.

legitimate email. Qian et al. extend this notion of clusters to also include clusters of

rDNS servers corresponding to email sender IPs [97].

Other clustering approaches for spam filtering includes BotGraph [149], which

attempts to cluster bots that log in to Hotmail using the number of IPs shared by

them: accounts controlled by bots are likely to log in from more IPs than a legitimate

user account. We use inspiration from this work to use clustering to analyze voting

fraud in a large Webmail service provider [102].

Table 2.2 highlights recent and closely-related research that uses network-level
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features to develop spam mitigation techniques.

2.5 Where This Dissertation Fits in

e Our work on understanding the network-level behavior of spammers was the
first exhaustive study in the area [103]. Subsequent research has both analyzed
and proved various results presented in this paper. For example, our observation
that certain areas of IP space send disproportionately more spam (and contain
disproportionate numbers of bots) has been confirmed in later studies [20, 137,
143]; these studies confirm our finding that a sender’s IP address ranges can be

used as a predictor for the likelihood of its “spamminess”.

e Our work was the first to highlight the shortcomings of blacklists [103, 107,
108], and we have extended this study using a longitudinal investigation of the
blacklisting status of spammers and a study of dishonest voting patterns in

Webmail systems [102].

e We have introduced three novel attacks that were previously unknown or not
analyzed in detail [102,103,107]. Each of these attacks shed insight into unique
facets of the behavior of spammers, and adds to a growing body of work in

understanding the intricacies of the spamming process.

e The theme of this dissertation—that IP-based reputation is becoming ineffec-
tive, but that spammers can be classified using their coordinated network-
level behavior (and not their IP address)—is also well-supported: similar re-
search includes studies on dynamic IP regions [143], network-aware clusters of
spam [97,137], uncleanliness of IP prefixes [20], and BotGraph [149]. Of course,
network-level filters alone cannot provide classification of sufficient quality; they
must be combined with various content-based filters such as SpamAssassin, or

one of the template- or URL-based filters mentioned above [91,132,142]. We,
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however, restrict our work to investigating spam filtering only using network-

level features.

We have built SpamSpotter to address the lack of practical deployment for
new network-level classification methods. Although DNS-based IP blacklists
are widely used, most new spam-filtering techniques never see public deploy-
ment. SpamSpotter implements three network-level spam filtering algorithms:
SpamTracker, SNARE [52] and Trinity [13] into a familiar DNSBL-like query
interface that can be easily integrated into existing spam-filtering pipelines. We
have also implemented SpamLoJack, a tool that identifies spam from potentially

hijacked BGP routes, using a DNSBL like interface.
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CHAPTER 3

CHARACTERIZING THE NETWORK-LEVEL
BEHAVIOR OF SPAMMERS

3.1 Introduction

This chapter studies the network-level behavior of spammers, including: IP address
ranges that send the most spam, common spamming modes (e.g., bots, direct spam-
ming, BGP route hijacking, etc.), how persistent across time each spamming host is,
and characteristics of spamming botnets. We present the results from two kinds of

studies of the network-level characteristics of spammers:

1. A focused study using a 17-month trace of over 10 million spam messages col-
lected at an Internet “spam sinkhole” between August 2004 and December 2005.
This study establishes the network-level characteristics of spammers and spam
bots, the IP ranges from which they originate, their listing status in major

blacklists, and their correlation with behavior exhibited by known spam bots.

2. A longitudinal study that studies the “staying power” of network-level attributes
using data collected from spam sinkholes between 2006-2011. This study inves-
tigates the variations over time of several network-level characteristics of spam,
including the prefixes from which spam is sent, the size of spam messages, the
amount of previously unseen “fresh” bots, the number of messages sent by bots,

and their listing status in blacklists.

Our results show that most spam is being sent from a few regions of IP address
space, and that spammers appear to be using transient “bots” that send only a few

pieces of email over very short periods of time. We also find that a large fraction
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of spammers are “fresh”, i.e., not seen before in the months preceding their spam
activity. We find that an increasing fraction of fresh spammers are not listed in any
IP blacklists, indicating that spammer tactics may be successful at evading existing
network-level defenses. We also found a small, yet non-negligible, amount of spam is
received from IP addresses that correspond to short-lived BGP routes, typically for
hijacked prefixes.

These trends suggest that filtering email messages based on network-level prop-
erties beyond just the IP address (which are less variable than email content), and
improving the security of the Internet routing infrastructure, may prove to be ex-
tremely effective for combating spam. Our longitudinal analysis shows that though
variable over the course of 6 years, many characteristics—for example, the prefixes
originating the most spam, the average size of emails, the average number of emails
sent by a spam bot, etc—are stable and can be used in filtering spam.

Beyond merely exposing spammers’ behavior, characterizing the network-level be-
havior of spam could be a major asset for designing spam filters that are based on
spammers’ network-level behavior (presuming that the network-level characteristics
of spam are sufficiently different than those of legitimate mail, a question we explore
further in Section 3.3). Whereas spammers have the flexibility to alter the content
of emails—both per-recipient and over time as users update spam filters—they have
far less flexibility when it comes to altering the network-level properties of the spam
they send. It is far easier for a spammer to alter the content of email messages to
evade spam filters than it is for that spammer to change the ISP, IP address space,
or botnet from which spam is sent.

We draw the following conclusions from our study:

o The vast majority of received spam arrives from a few concentrated portions
of IP address space (Section 3.3). Spam filtering techniques currently make

no assumptions about the distribution of spam across IP address space. In a
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related area, many worm propagation models assume a uniform distribution of
vulnerable hosts across IP address space (e.g., [125]). In contrast, we find that
the vast majority of spamming hosts—and, perhaps not coincidentally, most
Bobax-infected hosts—lie within a small number of IP address space regions.

This finding has been further investigated in related work [137,143]

Most received spam is sent from Windows hosts, each of which sends a relatively
small volume of spam to our domain (Section 3.4). Most bots send a relatively
small volume of spam to our sinkhole (i.e., less than 100 pieces of spam over
17 months), and about three-quarters of them are only active for a single time
period of less than two minutes (65% of them send all spam in a “single shot”).
Although we have not been able to join bot IPs with more recent data spam
data, other researchers [97] and our own later research discussed in Chapter 5
have confirmed that many spammers are indeed “single-shot”, with a large

fraction of spam each day being sent by previously-unseen IP addresses.

A small set of spammers continually use short-lived route announcements to
remain untraceable (Section 3.5). A small portion of spam is sent by sophis-
ticated spammers, who briefly advertise IP prefixes, establish a connection to
the victim’s mail relay, and withdraw the route to that IP address space after
spam is sent. Anecdotal evidence has suggested that spammers might be ex-
ploiting the routing infrastructure to remain untraceable [6,9,133]; this chapter
quantifies and documents this activity for the first time. To our surprise, we
discovered a new class of attack, where spammers attempt to evade detection
by hijacking large IP address blocks (e.g., /8s) and sending spam from widely

dispersed “dark” (i.e., unused or unallocated) IP addresses within this space.

Many network-level features of spam, such as the IP ranges from which spam-
mers send spam, the average size of messages, etc. remain surprisingly stable

over a period of even 6 years, indicating that these features are suitable for
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designing robust spam filters.

Beyond these findings, this chapter’s joint analysis of several datasets provides
a unique window into the network-level characteristics of spam. To our knowledge,
our study is the first that examined the interplay between spam, botnets, and the
Internet routing infrastructure. We acknowledge that our spam corpus represents
only a single vantage point and does not represent conclusive figures about Internet-
wide characteristics of spam. On the other hand, the spam we have collected reflects
the complete set of spam emails received by a single Internet domain. This dataset
exposes spamming as a typical network operator for some Internet domain might also
witness it. This unique view can help us better understand whether the features of
spam that any single network operator observes could be useful in developing more
effective filtering techniques.

With these goals in mind and an understanding of the context of our data, we
offer the following additional observations on the implications of our results for the
design of more effective techniques for spam mitigation, which we revisit in more
detail in Section 3.6. First, the distribution of spam and botnet activity across IP
space suggests that, for some IP address ranges and networks, spam filters might
monitor network-wide spam arrival patterns and attribute higher levels of suspicion
to spam originating from networks with higher spam activity. Second, spammer
techniques such as using previously-unseen IPs and sending a number of spam emails
in a “single-shot” may be adversely affecting IP-based reputations systems such as
DNS-based blacklists. Finally, the ability to trace the identities of spammers hinges
on securing the routing infrastructure. Given the highly variable nature of the content
of spam messages, incorporating general network-level properties of spam into filters
may ultimately provide significant gains over more traditional methods (e.g., content-
based filtering), both through increased robustness and the ability to stop spam closer

to its source.
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The rest of this chapter is organized as follows. In Section 3.2, we describe our
data collection techniques and the datasets we used in our analysis. In Section 3.3, we
present focused and longitudinal studies of the distribution of spammers, spamming
botnets, and legitimate mail senders across IP address space. Section 3.4 presents
our findings regarding the relationship between the spam received at our sinkholes
and known spamming bots. Section 3.5 examines the extent to which spammers
use IP addresses that are generally unreachable (e.g., using short-lived BGP route
announcements) to send spam untraceably. Based on our findings, Section 3.6 offers
positive recommendations for designing more effective mitigation techniques. We

conclude in Section 3.7.

3.2 Data Collection

This section describes the datasets that we use in our analysis. Our primary dataset
consists of the actual spam email messages collected at a large spam “trap” or “sink-
hole”, over a 6.5-year period between August 2004 and December 2011. We perform
a focused study on a 17-month aggregate of this dataset from August 2004—December
2005. We use the remainder of the dataset to perform longitudinal studies of certain
network-level features. We call this sinkhole “Spamtrap #1”.

Unfortunately, due to problems with the collection server, Spamtrap #1 has had
intermittent outages between 2006—-2009, some of which lasted many months; thus,
there were several gaps in spam collection. Thus, we augment the spam feed for
our longitudinal study using spam data from a second spam trap that receives a
similar amount of spam per day (“Spamtrap #2”). Both spamtraps sink email for
predominantly US-based domain names, receive approximately similar amounts of
email, and have a similar collection setups: the spamtraps are physically located in
US universities, and both run a “catch-all” setup that accepts any email coming to

the mail server.
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Figure 3.1: The amount of spam received per day at our sinkhole from August 2004
through December 2005.

To study the specific characteristics of certain subsets of spammers, we augment
this dataset with three other data sources. First, to identify the regions of IP space
from which spam arrives and to confirm that these regions are distinct from regions
where legitimate mail arrives, we use legitimate email data from a large email security
services vendor. Second, we intercept the “command and control” traffic from a Bobax
botnet at a sinkhole to identify IP addresses that were infected with the Bobax worm
(and, hence, are likely members of botnets that are used for the sole purpose of
sending spam). Third, we collect BGP routing data at the upstream border router of
the same network where we are receiving spam and monitor the routing activity for

the IP prefixes corresponding to the IP addresses from which spam was sent.
3.2.1 Spam Email Traces

To obtain a sample of spam, we registered a domain with no legitimate email addresses
and established a DNS Mail Exchange (MX) record for it. Hence, all mail received by

this server is spam. The “sinkhole” has been capturing spam since August 5, 2004.
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Figure 3.2: The spam received and the number of IPs seen per month at the two
spam traps between August 2004—December 2010.

In addition to simply collecting spam traces, the sinkhole runs Mail Avenger [80],
a customizable Simple Mail Transfer Protocol (SMTP) server that allows us to take
specific actions upon receiving email from a mail relay (e.g., running traceroute to the
mail relay sending the mail, performing DNSBL lookups for the relay’s IP address,
performing a passive TCP fingerprint of the relay). We have configured Mail Avenger
to (1) accept all mail, regardless of the username for which the mail was destined and
(2) gather network-level properties about the mail relay from which spam is received.

In particular, the mail server collects the following information about the mail relay

when the spam is received:

e the IP address of the relay that established the SMTP connection to the sinkhole
e a traceroute to that IP address, to help us estimate the network location of the

mail relay
e a passive “p0f” TCP fingerprint, based on properties of the TCP stack, to allow
us to determine the operating system of the mail relay

e the result of DNS blacklist (DNSBL) lookups for that mail relay at eight different

DNSBLs.
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Note that, unlike many features of the SMTP header, these features are not easily
forged.

Figure 3.1 shows the amount of spam that this sinkhole received per day through
January 6, 2006 (the 17-month period of time over which we conduct our focused
analysis). Although the total amount of spam received on any given day is rather
erratic, the data indicates two unsettling trends. First, the amount of spam that the
sinkhole is receiving generally appears to be increasing. Second, and perhaps more
troubling, the number of distinct IP addresses from which we see spam on any given
day also appears to be on the rise.

Figure 2(a) shows the data we use in our longitudinal study: the amounts of spam
received by the two spamtraps each month over the 6.5-year period, which shows the
gaps in collection. Correspondingly, Figure 2(b) shows the number of unique IPs seen
each month. The hardware hosting Spamtrap 1 suffered occasional crashes, causing
it to not collect spam for months at a time. Whenever collection setup was resumed,
we notice that spam “ramps up”, indicating that spammers continuously monitor
whether mail servers for domains are active even after long periods of inactivity, and
correspondingly ramp up mails to domains that accept email.

To make longitudinal analysis easier, we choose 1-month periods of spam roughly
one year apart for each year from 2004-2010. Table 3.1 describes the months of data
we choose to perform this longitudinal analysis, and the number of unique messages
and spammer [P addresses for each month. We expect that, by using data of one
month at a time instead of aggregating data from a longer period, we can avoid
problems with reallocation of IP addresses, IP address blocks, effects of transient

spam campaigns, etc.
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Table 3.1: Statistics for the dataset used in our longitudinal study

Month | Spam messages | Distinct IPs | Spam Feed
11/2004 221,131 57,807 Spamtrap 1
11/2005 281,119 113,839 Spamtrap 1
10/2006 1,052,139 421,526 Spamtrap 1
11/2007 1,054,980 385,152 Spamtrap 2
08/2008 363,161 133,206 Spamtrap 1
11/2009 3,271,885 355,610 Spamtrap 1
11/2010 4,963,155 1,175,786 Spamtrap 1

3.2.2 Legitimate Email Traces

One of the motivations for our study was to determine whether the network-level
characteristics of spam differ markedly from those of legitimate email. To perform
this comparison, we obtained a corpus of the features of various mail received by a
large email security appliance vendor that has appliances deployed at hundreds of
enterprises. This corpus contains, among other fields, the IP address of each email
sender, and an accurate classification of whether the email was classified as spam
or not by the vendor’s (content-based and network-level) spam-filtering algorithms.
Because the logs are post-spam-filtering, we can assume that the incidence of false
positives or false negatives is low (e.g., the vendor advertises a false positive rate of
lower than 0.01%). We possess this trace only for a period of one day in 2005, but
due to the large volume of email handled by the vendor, this trace includes over 4.8

million distinct IP addresses (of which over 94% are spammers).
3.2.3 Botnet Command and Control Data

To identify a set of hosts that are sending email from botnets, we used a trace of
hosts infected by the W32/Bobax (“Bobax”) worm from April 28-29, 2005. This trace
was captured by hijacking the authoritative DNS server for the domain running the
command and control of the botnet and redirecting it to a machine at a large campus

network. This method was only possible because (1) the Bobax drones contacted a
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centralized controller using a domain name, and (2) the researchers who obtained the
trace were able to obtain the trust of the network operators hosting the authoritative
DNS for that domain name. This technique directs control of the botnet to the
honeypot, which effectively disables it for spamming for this period. On the upside,
because all Bobax drones now attempt to contact our command-and-control sinkhole
rather than the intended command-and-control host, we can collect a packet trace to
determine the members of the botnet.

To obtain a sample of spamming behavior from known botnets, we correlate Bobax
botnet membership from the 1.5-day trace of Bobax drones with the IP addresses
from which we receive spam in the sinkhole trace. This technique, of course, is not
perfect: over the course of our spam trace, hosts may be patched; the hosts’ IP
addresses may also have changed if they use DHCP. Although we cannot precisely
determine the extent to which the transience of bots affects our analysis, previous
work suggests that, even for highly publicized worms, the rate at which vulnerable
hosts are patched is slow enough to expect that many of these infected hosts remain

¢

unpatched [85]; more recent research on the “uncleanliness” of prefixes [20] confirms
this fact. However, we believe that the resulting inaccuracies are small: We observe
a significantly higher percentage of Windows hosts in the subset of spam messages
sent by IP addresses in our Bobax trace than in the complete spam dataset, which

indirectly suggests that the hosts with IP addresses from the Bobax trace were indeed

part of a spamming botnet when they spammed our sinkhole.
3.2.4 BGP Routing Measurements

We wish to identify cases of spamming where a route for a spammer is reachable
for only a short period of time, coinciding with time spam was sent. To measure
network-layer reachability from the network where spam was received, we co-located

a “BGP monitor” in the same network as our spam sinkhole, similar to that in our
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Figure 3.3: At each collection host, we collect BGP messages from the network’s
border router. The figure shows the configuration for a large campus network, which
obtains upstream connectivity from Genuity (AS 1) Cogent (AS 174), Comcast (AS
7015), and Internet2 via Abilene.

previous work [32]. Figure 3.3 shows the placement of the BGP collection host in
relation to the border router of its own network (the MIT campus network) and its
upstream connection to the rest of the Internet. The monitor receives BGP updates
from the border router, and our analysis includes a BGP update stream that overlaps
with our spam trace. Since the monitor has an internal BGP session to the network’s
border router, it will see only those BGP updates that cause a change in the border
router’s choice of best route to a prefix. Despite not observing all BGP updates, the
monitor receives enough information to allow us to study the properties of short-lived
BGP route announcements: the monitor will have no route to the prefix at all if the
prefix is unreachable.

Because our spam sinkhole was moved since mid-2009 to Georgia Tech, we require
BGP routing measurements also from Georgia Tech to perform joint studies of spam
and BGP routes. Due to recent incidents of hijacked prefixes being used for spamming,
we have developed a joint collection setup in the Georgia Tech campus network to
detect spam from hijacked routes with our tool; we present this setup and our tool,

SpamLoJack, in Chapter 7.
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3.3 Network-level Characteristics of Spammers

In this section, we study some first-order network-level characteristics of spam sources.
We survey the portions of IP address space from which our sinkhole received spam
and the ASes that sent spam to the sinkhole. To determine whether these network
level characteristics could be suitable for filtering spam, we compare the network-level
characteristics of spam and legitimate email received by a security appliance vendor.

We find that the distribution of spam across IP address space is quite different
from the arrival of legitimate email, especially when observed at the granularity of
larger blocks of IP addresses (e.g., /24s). Still, the distribution of spam senders
across [P address space is far from uniform, and spam arrival by IP address range
is much more pronounced, persistent, and concentrated than similar characteristics
by IP address. Additionally, we find that a large fraction of spam was received from
just a handful of ASes: nearly 12% of all received spam originated from mail relays
in just two ASes (from Korea and China, respectively), and the top 20 ASes were
responsible for sending nearly 37% of all spam. This distribution (as well as the main
perpetrators) is also persistent over time. This heavily skewed distribution suggests
that spam filtering efforts might better focus on identifying high-volume, persistent
groups of spammers (e.g., by IP block or AS number), rather than on blacklisting

individual IP addresses, many of which are transient.
3.3.1 Distribution Across Networks

To determine the address space from which spam was arriving (“prevalence”) and
whether the distribution across IP addresses changes over time (“persistence”), we
tabulated the spam in our trace by IP address space. We find that spam arrivals

across IP space are far from uniform.

Finding 3.3.1 (Distribution across IP address space) The majority of spam is

sent from a relatively small fraction of IP address space.
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Figure 3.4: Fraction of spam email messages and comparison with legitimate email
received (as a function of IP address space); also, fraction of client IP addresses that
sent spam, binned by /24.

Figure 3.4 shows the number of spam email messages received over the course of
the entire trace, as a function of IP address space. A few IP address ranges have
significantly more spam than legitimate mail (e.g., 80.*-90.*), and vice versa (e.g.,
60.*-70.%). Although Figure 3.4 may indicate that legitimate email and spam email
arrives from largely the same prefixes, the plot does not show variations in sending
behavior smaller IP blocks adjacent to each other (e.g., /24s).

To investigate the nature of /24s better, we plot the IP addresses of legitimate
and spam email address senders using a Hilbert curve representation of IP address
space. A Hilbert curve is a space-filling curve with the property that when used to
represent numbers, adjacent numbers always occupy adjacent positions on the curve.

To draw a Hilbert curve that represents each /24 block as a single pixel, we used a
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Figure 3.5: Hilbert space representation of the prefixes that send only spam (cyan),
only legitimate email (green), or both (white). Each pixel corresponds to one /24.

12th order Hilbert curve—i.e., a square with 22 pixels in each dimension, where each
pixel represents an IP address.

Figure 3.5 shows the Hilbert curve [55] representation of the entire IP address
space. /24s that sent only spam email are denoted in cyan, and /24s that send only
legitimate email are in green. /24s which include IPs which sent both spam and

legitimate email are in white. This graph confirms our hypothesis that email senders
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Figure 3.6: Zoomed-in view of a single /8 from Figure 3.5, 86.0.0.0/8.

from large, adjacent IP blocks tend to be either predominantly spam or predominantly
legitimate, as indicated by multi-pixel square blocks of green and cyan, and the
relative absence of white pixels.

Figure 3.6 shows a close-up only of a specific block, 86.0.0.0/8—one of the “spam-
mier” /8s in our corpus, which offers a detailed look at the sending behavior of
adjacent /24s. We see many blocks larger than a /24 that have entirely spam or

legitimate senders. An interesting observation is that nearly all of the false positive
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/24s (white pixels) appear within blocks of green (i.e., legitimate senders only). We
hypothesize that most of these false positives correspond to true legitimate mail ser-
vice providers; although most email sent from these providers is legitimate, spammers
often compromise accounts and attempt to send using these legitimate servers that
thwarts blacklisting approaches [149]. This emerging threat of compromised accounts
at legitimate mail service providers (e.g., Webmail providers such as Yahoo! Mail
and Gmail) is further complicated by the existence of vote gaming—an attack that
stymies the provider’s efforts to quickly identify spam messages and senders using
feedback from its legitimate users. We present this attack and a mitigation technique

in Chapter 6.

Longitudinal Study. We wish to see whether the regions that send the most spam
have changed over time; a knowledge of the regions that have a propensity for spam
can help mail recipients have some prior idea whether a particular previously-unseen

IP address is likely to be a spammer or not.

Finding 3.3.2 (Distribution Across IP space (Longitudinal Study)) Over time,
historically spam-heavy IP address ranges continue to grow, and new spammer IP ad-

dress ranges tend to be close to past spammer ranges.

Figure 3.7 shows the Hilbert space representations of spammer I[P addresses for the
7 months in our longitudinal dataset. We can see that there are increasing numbers
of spam bots each year, but these are concentrated in certain regions of IP space.
For example, the bottom left octant the map roughly corresponds to the European
RIPE NCC allocation (highlighted in the first figure). Some European ISPs are
traditionally known to be spam-friendly, and we see that the number of such spam
bots has increased in these IP address ranges over the years. We also see that the
Asia Pacific allocation (APNIC) has grown from nearly no spammers in 2004 to a

large number of spammers in 2010. Most of this IP address range (110/8-126/8) was



Figure 3.7: Hilbert curve representations of IP space sending the most spam (indi-
cated in colored pixels) for different points of time over 6 years.
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allocated between 2007-2009, and the increase in spam from these IP addresses also

supports at the large amount of spam arriving from Asia (India, China etc.).
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These results indicate that although the number of spammers are increasing glob-
ally, we can make a few observations about the future growth of spam senders in IP
space. (1) they tend to concentrate in regions of IP space that correspond to ISPs
(and geographical locations) that historically have large amounts of spam; and (2)
new spammer IPs tend to be close in IP space to past spammer IPs. These obser-
vations can be help in the better design of spam filters: because ISPs do not change
or sell their IP allocations often, and becuase spam-friendly ISPs are unlikely to take
an anti-spam stance all of a sudden, we can assume that if an IP block is known
to contain spammers, it is quite likely that it will contain spammers in future—an
observation also confirmed by Collins et al. [20]. Similarly, because new spammer IPs
(and blocks of IPs) tend to be close in IP space to previous spammer IPs; a spam
filter could automatically “grow” a previously-known spammer IP address block if it

sees spam from adjacent blocks.
3.3.2 Distribution Across ASes and Countries

In many cases, IP address ranges are not adequate for distinguishing spam from
legitimate email. To determine whether other network-level properties, such as the
AS from which the email was sent, could serve as better classifiers, we examined the
distribution of spam across ASes and compared this feature to the distribution of

legitimate email across ASes.

Finding 3.3.3 (Distribution across ASes) More than 10% of spam received at
our sinkhole originated from mail relays in two ASes, and 36% of all received spam
originated from only 20 ASes. With a few exceptions, the ASes containing hosts re-
sponsible for sending large quantities of spam differ from those sending large quantities

of legitimate email.

The concentration of spammers in a small collection of offending ASes—and the fact

that this collection of ASes differs from the ASes responsible for sending legitimate
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Table 3.2: Amount of spam received by our spam trap between August 2004—
December 2005 from mail relays in the top 20 spammy ASes. 11 of the top 20
networks from which we received spam are primarily based in the United States.

AS Number | # Spam | AS Name Primary Country
766 | 580559 | Korean Internet Exchange Korea
4134 | 560765 | China Telecom China
1239 | 437660 | Sprint United States
4837 | 236434 | China Network Communications | China
9318 | 225830 | Hanaro Telecom Japan
32311 | 198185 | JKS Media, LLC United States
5617 181270 | Polish Telecom Poland
6478 | 152671 | AT&T WorldNet Services United States
19262 142237 | Verizon Global Networks United States
8075 | 107056 | Microsoft United States
7132 99585 | SBC Internet Services United States
6517 94600 | Yipes Communications, Inc. United States
31797 89698 | Galaxy Visions United States
12322 87340 | PROXAD AS for Proxad ISP France
3356 87042 | Level 3 Communications, LLC United States
22909 86150 | Comcast Cable Corporation United States
8151 81721 | UniNet S.A. de C.V. Mexico
3320 79987 | Deutsche Telekom AG Germany
7018 74320 | AT&T WorldNet Services United States
4814 74266 | China Telecom China

Table 3.3: Top 10 ASes (by email volume) in our legitimate email trace.

AS Number | # Email | AS Name Primary Country
15169 49500 | Google Inc. United States
5731 38238 | AT&T WorldNet Services | United States
26101 30406 | Yahoo United States
3561 22730 | Savvis United States
4355 17381 | Earthlink, Inc United States
8560 16666 | Schlund Partner AG Germany
8075 14699 | Microsoft Corp United States
14779 13115 | Inktomi Corporation United States
6541 12493 | GTE.net LLC United States
14780 11597 | Inktomi Corporation United States

20



email (with the exception of ASes 5731 and 8075)—suggests that spam filters should
attribute more suspicion to email coming from ASes where spam commonly originates.
This observation begs the question about why Figure 3.4 does not show similar differ-
ences. Indeed, the spamming behavior of specific IP address ranges deserves further
study, since Figure 3.4 really only exposes macro-level behavior of IP address ranges
(i.e., differences for small IP address ranges may not be visible in the figure). We are
studying the behavior of fine-grained address ranges in ongoing work.

Recent reports have claimed that most spam originates in the United States [63].
On the other hand, Figure 3.4 suggests that many spamming hosts reside in IP address
space that is allocated to the Asia-Pacific region (e.g., 61.0.0.0/8). To perform a rough
estimate of the amount of spam originating from each country, we associated the ASes
from which we received spam to the countries where those ASes were based.! Table 3.2
also shows the distribution of hosts that sent spam to the sinkhole by country, for the

top 20 ASes from which we received spam.

Finding 3.3.4 (Distribution by country) Although the top two ASes from which
we recetved spam were from Asia, 11 of the top 20 ASes from which we received spam

were from the United States and comprised over 40% of all spam from the top 20
ASes.

We mapped the most prolific IP address (i.e., the top 11.6% of IP addresses, respon-
sible for 65% of all spam received at the sinkhole) to their respective countries. Our
analysis indicates that nearly three times as much spam in our trace originates from
ISPs based in the United States than from either of the next two most prolific coun-
tries (Korea and China, respectively). This conclusion does differ from other reports,

which also indicate that most spam comes from the U.S., but to a much lesser degree.

L Although some ASes span multiple countries, typically even large transit providers have different
AS numbers for backbone networks in different countries. In any case, we use the primary country
where the AS is based.
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The distribution of spam by country, when compared to the statistics for legitimate
email (Table 3.3), also suggests that, in some cases, assigning a higher level of suspi-
cion according to an email’s country of origin may be an effective filtering technique

for some networks.
3.3.3 Sending Patterns of Spammers

Finding 3.3.5 (Transience of Spammers) Individual spammer IP addresses are

transient: a large majority send emails to our sinkholes only once.

Individual IP addresses are far more transient than IP address ranges. Figure 3.8
shows that even though a few IP addresses sent more than 10,000 emails to our
spam trap, about 85% of client IP addresses sent less than 10 emails to the sinkhole
in the entire 17 month period, indicating that targeting an individual IP address
might not help mitigate spam without sharing information across domains. This
finding has an important implication for spam filter design: Though the individual
IP addresses from which spam is received changes from day-to-day, the fact that
spam continually comes from the same IP address space suggests that incorporating
these more persistent features may be more effective, particularly in portions of the

IP address space that send either mostly spam or mostly legitimate email.

Longitudinal Study. In this Section, we investigate how the sending patterns of
spammers change over the 6.5 year longitudinal trace. Specifically, we investigate two
artifacts: (1) what fraction of spammers are “fresh”, i.e., ones that send email to our
sinkhole for the first time in a long period (e.g., one month); and (2) what fraction
of spammers maintain the behavior of sending spam to our sinkhole just once within
the 1-month observation period. Both techniques would hinder the ability to reliably

blacklist a spammer’s IP address.

Finding 3.3.6 (Fraction of “Fresh” Spammers (Longitudinal Study)) Well over
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Figure 3.8: The number of distinct times that each client IP sent mail to our sinkhole
(regardless of the number emails sent in each batch).

90% of spammers we see at our spam trap in a month were not observed for the pre-

vious one month, and approzimately 90% were not seen for the previous two months.

Table 3.4 shows the fraction of spamming IP addresses we did not observe at our
sinkhole in the preceding month before the spam was received, and the amount of
spam due to such fresh IPs each month. 90% or more of the IPs that sent spam to our
sinkhole are “fresh” by this measure; even if we “look back” for two months instead
of one month, this fraction does not decrease. For example, 96.5% of IPs seen during
October 2006 at our spam trap were not seen for at least 1 month before, and 92.9%
were not seen for at least 2 months. The overwhelming number of such fresh addresses
indicates that a single domain—or even a small group of domains—are unlikely to
be able to filter spam effectively using just IP-based blacklisting. We also note that
the fraction of fresh IPs remains consistent over time, indicating that blacklists will

continue to have a hard time keeping up with such fresh IP addresses.
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Table 3.4: The fraction of spamming IPs that have not been seen in the previous
month (“fresh” IPs), and the fraction of spam from such IPs.

Month | % IPs that are “fresh” | % Spam from fresh IPs
11/2004 88.9% 28.1%
11/2005 92.3% 44.0%
10/2006 96.5% 49.6%
11/2007 92.2% 38.1%
08/2008 94.2% 43.7%
11,2009 0L.0% 31.3%
11/2010 91.5% 32.3%

An interesting observation from Table 3.4 is the relatively small amount of spam
from such fresh IP addresses. As we show in Chapter 5, these fresh IP addresses
each send small amounts of spam to many domains, implying that only a view from
multiple vantage points can reveal the true magnitude of the volume of spam sent by
these IPs. The majority of spam to our spam trap is being sent by a small fraction
(less than 10%) of spammers. We expect, however, that such high-volume spammers
will be easily filtered at large mail service providers, implying that the remaining

“fresh” IPs are the ones that contribute to the majority of the hard-to-filter spam.

Finding 3.3.7 (Fraction of “single-shot” Spammers (Longitudinal Study))
More than 90% of spammers we see at our spam trap in a month sent multiple spam
messages over a single 10-second window; such single-shot spammers amounted to

80.1% of all spam received in 2010.

Spam from single-shot senders. Next, we investigated whether the single-shot
nature of senders that we observed in Figure 3.14 persists over time. We calculate the
number of IPs in each month that sent email in a single short burst to our spam trap,
which is defined as a 10-second interval to account for delays at the sender and our
spam trap setup. Table 3.5 shows this finding. There is a clear trend of increasing

amounts of IPs that hit mail recipients in a single shot, and also an increasing trend
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Table 3.5: The fraction of IPs in our trace that sent email in a single shot, and the
amount of spam attributable to single-shot IPs. We define “single-shot” as an IP
sending email only within a 10-second interval.

Month | % single-shot IPs | % spam from single-shot IPs
11/2004 70.4% 25.0%
11,2005 784% 13.6%
10/2006 86.5% 67.0%
11/2007 80.1% 46.0%
08/2008 89.5% 74.2%
11/2009 90.6% 80.0%
11/2010 0L7% 80.1%

of the amount of spam attributable to such IPs. We believe that this trend further
supports anecdotal evidence about a bot behavior: spammers, in an attempt to avoid
blacklisting, use their bots to hit one domain at a time and do not return to the same
domain for months. Moreover, to maximize the amount of spam delivered, nearly all
these single-shot bots send multiple messages at a time, which amounts to 80.1% of

received spam by the end of 2010.
3.3.4 The Effectiveness of Blacklists

Given the transience of each IP address sending spam to our sinkhole (i.e., the results
shown in Figure 3.8), we suspected that filtering based on IP address, a method
commonly employed by DNSBLs, would be affected by these techniques. To test this
hypothesis, we used the results from real-time DNSBL lookups performed by Mail
Avenger to 8 different blacklists at the time the mail was received .

Figure 3.9 indicates that IP-based blacklisting is still working reasonably well if
many blacklists are consulted simultaneously: Although 20% of spam came from IP
addresses that were not listed in any blacklist, (as shown by the middle line “All
spam”, where about 80% spam was listed in at least one blacklist), more than 50%
of such spam was listed in two or more blacklists, and 80% was listed in two or more

blacklists. Unfortunately, the 20% which were not listed in any blacklist are likely to

25



I I I Slparn from blobax droneé —
All spam —*—
Spam from transient BGP announcements

0.8 E
]
o
2
3]
e 0.6 .
=
3
&
=
Gy
c
.5 04 g
=

02 J

0 1 1 1 1 L L
0 1 2 3 4 5 6 7 8

Minimum number of DNSBLS listing this spammer

Figure 3.9: The fraction of spam emails that were listed in a certain number of
blacklists or more, at the time each mail was received.

cause the most uncaught spam; this was our motivation in designing SpamTracker, a
behavioral blacklisting system described in Chapter 5.

More troubling, however, is that the spam that we received from spammers using
“BGP spectrum agility” techniques (Section 3.5) are not blacklisted nearly as much:
half of these IP addresses do not appear in any blacklist, and only about 30% of these

IP addresses appear in more than one blacklist.

Finding 3.3.8 (Effectiveness of blacklists) Nearly 80% of all spam was received
from mail relays that appear in at least one of eight blacklists. A relatively higher
fraction of Bobax drones were blacklisted, but relatively fewer IP addresses sending
spam from short-lived BGP routes were blacklisted—only half of these mail relays

appeared in any blacklist.
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Figure 3.10: The cumulative fraction of spam emails that were listed in each blacklist

at the time each mail was received, sorted from most aggressive to least aggressive
blacklist.

Although this finding appears to suggest that DNSBLs are effective at identifying
most types of spam based on IP address, the reality is actually not as bright as it
appears. First, this result is based on an aggressive approach that sends queries
to eight blacklists; Figure 3.10 shows the cumulative fraction of spam listed in each
blacklist, from most aggressive DNSBL to least aggressive and shows that even the
most aggressive blacklist, Spamcop, only lists about half of all spam received. Second,
many of the more aggressive blacklists are known to have a significant number of
false positives. Finally, even aggressive mechanisms, such as querying eight different
blacklists, are fairly ineffective at identifying IP addresses using more sophisticated

cloaking techniques (e.g., the BGP spectrum agility technique, which we discuss in
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more detail in Section 3.5).

Longitudinal Study. We expect that spammers use techniques such as fresh IPs
and single-shot spamming to escape blacklisting. Because our spam collection in-
frastructure automatically queries the recipient IP address in one of six blacklists.?,
we can quantify exactly how well spammers were escaping blacklisting with fresh IP
addresses versus previously seen IPs.

We studied the difference in listing behavior between “fresh”, previously unseen
[Ps (as defined earlier) and IPs that have been seen in the past. Figure 3.11 plots the
percentage of IPs that were not listed in one of six DNS blacklists on arrival. The three
plots correspond to sender IPs in the “fresh” set, the remaining “seen” sender IPs, and

finally, fresh IPs which were only listed by Spamhaus’s policy blacklist (PBL) [123].

Finding 3.3.9 (Listing status of “Fresh” IPs (Longitudinal Study)) A signif-
icant fraction of spamming IPs—nearly 40% of all fresh IPs in 2007—are not listed in
any of 6 blacklists at the time the mail was received. This fraction goes up to 50% if we
also discount fresh IPs only listed by policy (and not by actual confirmation of spam),
indicating that spammer techniques are successfully avoiding listing in blacklists, and

that coordinated detection methods are necessary.

The IPs listed in the PBL are put on the blacklist not due to evidence of malicious
behavior, but because they were identified by their ISP as belonging to a dynamic IP
address space that should typically not be making direct SM'TP connections to remote
mail recipients. Because of the chance of false positives due to legitimate residential
senders being blacklisted, many mail server administrators do not reject email using
the PBL alone. Hence, we include a third plot that captures the listing status of

fresh TP addresses that were listed only in the PBL. Note that we only have PBL

2Two out of the eight blacklists we queried in 2004 have shut down since, and we exclude these
blacklists in our longitudinal study.
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Figure 3.11: The percentage of IPs that are not listed in any blacklist at the time it
hits our spam trap. “Fresh” IPs belong to senders which have not been seen at our
spam trap for at least a month, and “Seen” IPs include all other senders. The third
plot represents fresh IPs that were either unlisted or only listed in Spamhaus’s policy
blacklist [123].

lookup information from 2008 onwards. We see that fresh IPs have a significantly
lower listing rate than “seen” IPs, and this listing rate is even worse when PBL is not
consulted: In November 2010, about 32% of fresh IPs were not listed in any blacklist
at all, and when adding fresh IPs listed only in the PBL, the fraction jumps to over

51%.
3.3.5 Message Size Distribution of Spam

In this section, we study the average message size distribution of spam across our
longitudinal trace. As illustrated in Figure 3.12, we find that most months have an
average of 1000 bytes or less, with a significantly higher month correlating with the
peak of PDF spam. Although we do not have a longitudinal legitimate email trace to
compare message size growth, we believe that legitimate email will exhibit a higher

average and a higher standard deviation; indeed, the SNARE algorithm [51] uses
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Figure 3.12: The average message size (in bytes) per month in our spam trap 1 trace,
with error bars showing one standard deviation.

message size as one of the discriminating features in designing its spam classifier.

Finding 3.3.10 (Message Size Distribution of Spam (Longitudinal Study))
Average message sizes of spam remain small and approrimately constant over time,
indicating that bots continue to churn out large volumes of small spam messages to

efficiently use the traditionally slow uplinks in home Internet connections.

3.4 Spam from Botnets

In this section, we amass circumstantial evidence that suggests that a majority of
spam originates from bots. Although, given our limited datasets, we cannot determine
a precise fraction of the total amount of spam that is coming from bots, we use our
trace of “Bobax” command and control data to study the patterns of spam that
are being sent from hosts that are known to be bots. First, we study the activity
profile of drones from the “Bobax” botnet and find that the IP address space where

we observe worm activity bears close similarity to the IP address space where we
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Figure 3.13: The number of all Bobax drones, and the amount of spam received
from those drones at the sinkhole, as a function of IP address space. On the x-axis,
IP address space is binned by /24.

observed spamming activity (Finding 3.3.5). Second, we observe that about 70%
of all remote hosts spamming our sinkhole—and 95% of hosts for which we could
attribute some operating system—appear to be running Windows; additionally, these
hosts each send relatively low volumes of spam to the sinkhole, regardless of their

persistence.
3.4.1 Bobax Topology

We studied the prevalence of spamming hosts versus the prevalence of known Bobax
drones to better understand how the distribution of IP addresses of Bobax-infected
hosts compared to the IP distribution of spammers in general. Figure 3.13 shows the
results of this analysis; the distribution of all Bobax-infected hosts is quite similar to

that of the distribution of all spammers (Figure 3.4).
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Finding 3.4.1 (Bobax vs. spammer distribution) Spamming hosts and Bobax
drones have similar distributions across IP address space, which indirectly suggests

that much of the spam received at the sinkhole may be due to botnets such as Bobaz.

This similarity provides evidence of correlation, not causality, but the fact that the
distribution of IP addresses from which spam is received more closely resembles botnet
activity than the spread of IP addresses of legitimate email suggests that a significant
amount of spam activity may be due to botnet activity.

Although the range 60.* — 67.* has a significant fraction of spamming IP addresses
(Figure 3.4), we see relatively less spam from Bobax drones from this space, which led
us to suspect that spammers may be using techniques other than botnets for sending
spam from many of the hosts in this range. Indeed, in Section 3.5, we present findings
that suggest that one or more sophisticated groups of spammers appear to be sending
spam from a large number of machines (or, perhaps, a smaller number of machines
with changing IP addresses), numbered from portions of unused IP space within this

range that are unroutable except for when they are sending spam.
3.4.2 Operating Systems of Spamming Hosts

In this section, we investigate the prevalence of each operating system among the
spam we received, as well as the total amount of spam we received from hosts of each
type. For this purpose, we used the passive OS fingerprinting tool, pOf, which is
incorporated into Mail Avenger; thus, we can attribute an operating system to each
remote host that sends us spam. Using this technique, we were able to identify the
operating system for about 75% of all hosts from which we received spam. Table 3.6
shows the results of this study. Roughly 70% of the hosts from which we receive
spam, and 95% of these hosts to which we could attribute an operating system, run
Windows; this fraction is consistent with the fact that roughly 95% of all hosts on

the Internet run Windows [87].
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More striking is that, while only about 4% of the hosts from which we receive spam
are from hosts are running operating systems other than Windows, this small set of
hosts appears to be responsible for at least 8% of the spam we receive. The fraction,
while not overwhelmingly large, is notable because of the conventional wisdom that
most spam today originates from compromised Windows machines that are serving
as botnet drones. As recent research has shown, spammers continue to seek out
open relays and proxies to relay large volumes of spam [90]; we expect that these
non-Windows machines are likely such relays or “high-volume” spammers hosted on

spammer-friendly hosting providers.

Finding 3.4.2 (Prevalence of spam relays by OS type) About /% of the hosts
sending spam to the sinkhole are not Windows hosts but our sinkhole receives about

8% of all spam from these hosts.

A significant fraction of the spamming infrastructure is apparently still Unix-based,
likely indicating open relay servers or high-volume spam servers hosted in rogue host-

ing providerrs.?
3.4.3 Spamming Bot Activity Profile

The results in Section 3.4.2 indicate that an overwhelming fraction of spam is sent
from Windows hosts. Because a very large fraction of spam comes from Windows
hosts, our hypothesis is that many of these machines are infected hosts that are bots.
In this section, we investigate the characteristics of spamming hosts that are known

to be Bobax drones. Specifically, we seek to answer the following three questions:

1. Intersection: How many of the known Bobax drones send spam to our sink-

hole?

3 Alternatively, this spam might be sent from Windows machines whose stacks have been modified
to emulate those of other operating systems. Although we doubt that this is likely, since most spam
filters today do not employ pOf checks, we acknowledge that it may become more common in the
future, especially as spammers incorporate these techniques.
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Operating System

Clients

Table 3.6: The operating system of each unique sender of received spam, as deter-
mined by passive OS fingerprinting.

Total Spam

Windows

- Windows 2000 or XP

- Windows 98
- Windows 95

- Windows (other/unconfirmed)

854404 (70%)
604252 (49%)
13727 (1.1%)
559 (<0.1%)
235866 (19%)

5863112 (58%)
4060290 (40.2%)
54856 (0.54%)
2797 (<0.1%)
1745169 (17.2%)

it 58135 (9.3%) 1553 (B50)
FreeBSD 6584 (0.5%) 152456 (1.5%)
MacOS 2044 (0.2%) | 46151 (0.4%)
Solaris 1275 (< 0.1%) 18084 (0.2%)
OpenBSD 797 (< 0.1%) | 21496 (0.2%)
Cisco 108 736 (< 0.1%) | 5949 (<0.1%)
NetBSD 44 (< 0.1%) 327 (<0.1%)
HP-UX 31 (< 0.1%) 120 (<0.1%)
Tru64 26 (< 0.1%) 143 (<0.1%)
ATX 23 (< 0.1%) 366 (<0.1%)
OpenVMS 18 (< 0.1%) 62 (<0.1%)
TRIX 7 (< 0.1%) 62 (<0.1%)
Other/Unidentified 128580 (10.4% 1212722 (12%

No Fingerprint

)
204802 (16.7%)

)
2225410 (22%)

Total

1228403
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2. Persistence: For how long does any particular Bobax drone send spam ?*

3. Volume: How much of the spam from Bobax drones originates from hosts that

are only active for a short period of time?

The rest of this section explores these three questions. Although our trace sees spam
from only a small fraction of all Bobax-infected drones, this sample nevertheless can

offer insight into the behavior of spamming bots.

Intersection and prevalence. To satisfy our curiosity (and to compare with other
claims about the amount of spam coming from botnets [19]), we wanted to deter-
mine the total fraction of received spam that originated from botnets versus other
mechanisms. The circumstantial evidence in Sections 3.4.1 and 3.4.2 suggests that
the fraction of spam that originates from botnets is quite high. Unfortunately, there
are no techniques for isolating botnets from mail logs alone; we can only determine
whether a particular piece of spam originated from a botnet based on whether the IP
address of the relay sending the spam appears in our trace of machines known to be
infected with Bobax.

Even this information is not sufficient to answer questions about the amount of
spam coming from botnets, since machines other than Bobax-infected hosts may be
enlisted in spamming botnets. Indeed, good answers to this question depend on
both additional vantage points (i.e., sinkhole domains) and better botnet detection
heuristics and algorithms. Not only will more vantage points and better detection
algorithms aid analysis, but they may also prove useful for massively collaborative
spam filtering—identification of botnet membership, for example, could prove a very

effective feature for identifying spammers.

4Previous work has noted that the “DHCP effect” can create errors in estimation for both per-
sistence and prevalence (e.g., a single host could dynamically be assigned different IP addresses over
time) [85]. Although the DHCP effect can introduce problems for estimating the total population of
a group of spammers, it is not as problematic for the questions we study in this chapter. Since one
of our objectives is to study the effectiveness of IP-based filtering (rather than, say, count the total
number of hosts), we are interested more in measuring the persistence of IP addresses, not hosts.
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At our spam sinkhole, we receive spam from only 4,693 of the 117,268 Bobax-
infected hosts in our command-and-control trace. This small (though certainly non-
negligible) view into the Bobax botnet emphasizes the need for observing spamming
behavior at multiple domains to observe more significant spamming patterns of a
botnet. Nevertheless, this set of hosts that appear both in our spam logs and in the
Bobax trace can provide useful insight into the spamming behavior and network-level
properties of individual bots; it also appears to be a reasonable cross-section of all
spamming bots (Figure 3.13 indicates that the IP distribution of bots from which
our sinkhole receives spam is quite similar to the distribution of all spamming hosts

across IP address space as shown in Figure 3.4).

Persistence. Figure 3.14 shows the persistence of each Bobax-infected IP address
that sent spam to the sinkhole. The figure indicates that the majority of botnets make
only a single appearance in our trace; these “single shot” bots account for roughly

25% of all spam that is known to be coming from Bobax drones.

Finding 3.4.3 (Single-shot bots) More than 65% of IP addresses of hosts known
to be infected with Bobax send spam only once, and nearly 75% of these addresses
send spam to our sinkholed domain for less than two minutes, although many of them

send several emails during their brief appearance.

Of the spam received from Bobax-infected hosts, about 25% originated from hosts
that only sent mail from IP addresses that only appeared once. The persistence
of Bobax-infected hosts appears to be mildly bimodal: although roughly 75% of
Bobax drones persist for less than two minutes, the remainder persist for a day or
longer, about 50 persist for about six months, and 10 persist for entire length of the
trace. Although these short-lived bots do not yet send the majority of spam coming
from botnets, this “single shot” technique may become more prominent over time as

network-level filtering techniques improve and spammers employ more sophisticated
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Figure 3.14: Bobax drone persistence.

evasion techniques.

Because most bot IP addresses are short-lived, we hypothesized that IP-based
blacklists (e.g., DNSBL filtering) would be somewhat ineffective for blocking spam. To
our surprise, Figure 3.9 shows that the botnet hosts from which we received spam were
actually more likely to be listed than the typical spamming mail relay (although, as we
describe in Section 3.3.4, the technique appears to be somewhat ineffective in general).
Intuitively, this result is justifiable, because other domains likely received spam from
drones with the same IP addresses. This result also demonstrates the benefits of
collaborative spam filtering, which facilitates the identification of spammers that send

only a single piece of spam but send spam to multiple domains.

Volume and Rate. Figure 3.15 shows the amount of spam sent for each Bobax
drone, plotted against the persistence of each drone. This graph shows that most
Bobax drones do not send a large amount of spam, regardless of how long the drone

was active. Indeed, nearly all of the Bobax drones observed in our trace send fewer
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Figure 3.15: Number of spam email messages received vs. bobax drone persistence.

than 100 pieces of spam over the entire period of the trace. This finding suggests that
spammers have the ability to send spam from a large number of hosts, each of which
is typically used for a short period of time and nearly always used to send only a
relatively small amount of spam. Thus, not only are IP-based filtering schemes likely
to be ineffective, but volume-based detection schemes for spamming botnets may also

be ineffective.

Finding 3.4.4 (Spam arrives from bots at very low rates) Regardless of per-
sistence, 99% of bots sent fewer than 100 pieces of spam to our domain over the entire

trace.

Most persistent bots sent fewer than 100 pieces of spam to our sinkhole, indicating
that typical rates of spam from Bobax drones, for spam received by a single domain,

are less than a single piece of spam per bot per day.
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3.5 Spam from Short-lived BGP Announcements

Many spam filtering techniques leverage the ability to positively identify a spammer
by its IP address. For example, DNS blacklists catalog the IP addresses of likely
spammers so that spam filters may later send queries to determine whether an email
was sent by a likely spammer. Of course, this technique implicitly assumes a connec-
tion between an IP address and the physical infrastructure that a spammer uses to
distribute email. In this section, we study the extent to which spammers use such
transient identities by examining spam received by the sinkhole domain that coincides
with short-lived BGP route announcements.

Informal anecdotes have claimed that some spammers briefly advertise portions
of IP address space, send spam from mail relays with IP addresses in that space, and
subsequently withdraw the routes for that space after the relays have sent spam |9,
124,133]. This practice makes it difficult for end users and system administrators to
track spam sources because the network from which a piece of spam was sent is likely
to be unreachable at the time a user lodges a complaint. Although it is technically
possible to log BGP routing announcements and mine them to perform post-mortem
analysis, the relative difficulty of doing so (especially since most network operators
do not monitor interdomain routes in real time) essentially makes these spammers
untraceable.

Little is known about (1) whether the technique is used much in practice (and
how widespread it is), (2) what IP space spammers tend to use to mount these types
of attacks and (3) the announcement patterns of these attacks. This study seeks to
answer two sets of questions about the use of short-lived BGP routing announcements

for sending spam:

e Prevalence across ASes and persistence across time. How many ASes use short-

lived BGP routing announcements to send spam? Which ASes are the most
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guilty, in terms of number of pieces of spam sent, and in terms of persistence

across time?

e Length of short-lived BGP announcements. How long do short-lived BGP an-

nouncements last (i.e., long enough for an operator to catch)?

As we will see, sending spam from IP address space corresponding to short-lived
route announcements is not, by any means, the dominant technique that spam is
sent today (when this technique is actively being used, it accounts for no more than
10% of all spam we receive, and it generally accounts for much less). Nevertheless,
because our domain only observes spamming behavior from a single vantage point,
this technique may be more common than we are observing. Additionally, because
this technique is not well defended against today, and because it is complementary
to other spamming techniques (e.g., it could conceivably be used to cloak botnets),
we believe that this behavior is worth attention, particularly since some of the tech-
niques we observe (i.e., hijacking large prefixes) represents a significant departure

from conventional wisdom on prefix hijacking.
3.5.1 BGP Spectrum Agility

Figure 3.16 shows an example of 61.0.0.0/8 being announced by AS 4678 for a brief
period of time on September 30, 2005, during which spam was also sent from IP
addresses contained within this prefix.

To investigate further the extent to which this technique is used in practice, we
performed a joint analysis of BGP routing data (described in Section 3.2.4) and the
spam received at our sinkhole, which is co-located with the BGP monitor. Given
the sophistication required to send spam under the protection of short-lived routing
announcements (especially compared with the relative simplicity of purchasing access
to a botnet), we doubted that it was particularly prevalent. To our surprise, a small

number of parties appear to be using this technique to send spam quite regularly. In
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Figure 3.16: Observation of a short-lived BGP route announcement for 61.0.0.0/8,
spam arriving from mail relays in that prefix, and the subsequent withdrawal of that
prefix.

fact, looking in further detail at the several (prefix, AS) combinations, we observed

the following remarkable patterns:

e AS 21562, an Internet service provider (ISP) in Indianapolis, Indiana (according

to ra.net and arin.net), originated routing announcements for 66.0.0.0/8.
e AS 8717, an ISP in Sofia, Bulgaria, originated announcements for 82.0.0.0/8.

e In a third, less persistent case, AS 4678, an ISP in Japan, Canon Network
Communications (according to apnic.net), originated routing announcements

for 61.0.0.0/8.

We were surprised that three of the most persistent prefixes involved in short-lived
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Figure 3.17: Observation of a short-lived BGP route announcement for 82.0.0.0/8,
spam arriving from mail relays in that prefix, and the subsequent withdrawal of that
prefix.

BGP routing announcements were so large. Although some short-lived routing an-
nouncements may be misconfigurations [79], the fact that these routing announce-
ments continually appear, that they are for large address blocks, and that they typi-
cally coincide with spam arrivals (as shown in Figure 3.16) raised our suspicion about
the veracity of these announcements. Indeed, not only are these route announce-
ments short-lived and hijacked, but they are also for large address blocks. Although
the use of large address blocks might initially seem surprising, the distribution of the

IP addresses of hosts sending spam using this technique suggests the following theory.

Finding 3.5.1 (Spectrum Agility) A small, but persistent, group of spammers ap-
pear to send spam by (1) advertising (in fact, hijacking) large blocks of IP address
space (i.e., /8s), (2) sending spam from IP addresses that are scattered throughout
that space, and (3) withdrawing the route for the IP address space shortly after the

spam 1S sent.
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We have called this technique “spectrum agility” because it allows a spammer the
flexibility to use a wide variety of IP addresses within a very large block from which
to send spam. The large IP address block allows the mail relays to “hop” between
a large number of IP addresses, thereby evading IP-based filtering techniques like
DNSBLs. Judging from Figure 3.9 and our analysis in Section 3.3.4, the technique
seems to be rather effective. As an added benefit, route announcements for shorter
IP prefixes (i.e., larger blocks of IP addresses) are less likely to be blocked by ISPs’
route filters than route announcements or hijacks for longer prefixes.

Upon further inspection, we also discovered the following interesting features:
(1) the IP addresses of the mail relays sending this spam are widely distributed across
the IP address space; (2) the IP addresses from which we see spam in this address
space typically appear only once; (3) on February 6, 2006, attempts to contact the
mail relays that we observed using this technique revealed that that roughly 60-
80% of these hosts were not reachable by traceroute; (4) many of the IP addresses
of these mail relays were located in allocated, albeit unannounced and unused IP
address space; and (5) many of the AS paths for these announcements contained
reserved (i.e., to-date unallocated AS numbers), suggesting a possible attempt to
further hamper traceability by forging elements of the AS path. We are at a loss to
explain certain aspects of this behavior, such as why some of the machines appear to
have IP addresses from allocated space, when it would be simpler to “step around”
the allocated prefix blocks, but, needless to say, the spammers using this technique
appear to be very sophisticated.

Whether spammers are increasingly using this technique is inconclusive. Still,
many of the ASes that send the most spam with this technique also appear to be
relative newcomers. Variants of this type of technique may be used in the future
to make it more difficult to track and blacklist spamming hosts, particularly since

the technique allows a spammer to relatively undetectably commandeer a very large
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Figure 3.18: CDF of the length of each short-lived BGP episode, from September
2005—December 2005.

number of IP addresses.
3.5.2 Prevalence of BGP Spectrum Agility

Because of the volume of data and the relatively high cost of performing longest-prefix
match queries, we performed a more extensive analysis on a subset of our trace, from
September 2005 till December 2005, to detect the fraction of spam coming from short-
lived announcements and to determine a reasonable threshold for studying short-lived
announcements across the entire trace. Figure 3.18 shows that, for all of the IP ad-
dresses for which we received spam over the course of these four months, almost 99%
of the corresponding BGP routing announcements were announced continuously for
at least a day. In other words, most of the received spam corresponded to routing
advertisements that were not short-lived. On the other hand, this technique appears
to be used intermittently, and during time periods when this activity was more preva-
lent, as much as 10% of all received spam coincides with routing announcements that

lasted less than a day.
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Finding 3.5.2 (Prevalence: Spam from Short-Lived Routes) Only about 1%
of spam was received from route that persisted for less than a single day, although
during intervals when this technique was used more commonly, as much as 10% of all

spam coincided with routes that lasted less than a day.

Unfortunately for traditional filtering techniques, the spammers who are the most
persistent across time are, for the most part, not the spammers who send the most
spam using this technique. Indeed, only two ASes—AS 4788 (Telekom Malaysia) and
AS 4678 (Canon Network Communications, in Japan)—appear among both the top-
10 most persistent and most voluminous spammers using short-lived BGP routing

announcements.
3.5.3 How Much Spam from Spectrum Agility?

A comparatively small fraction of spam originates from IP addresses that correspond
to short-lived BGP route announcements (i.e., routing announcements that persist
for less than a day) that coincide with spam arrival. The total amount of spam
received as a result of this technique seems to pale in comparison to other techniques:
no more than 10% of all spam—and more likely as little as 1% —appears to be sent
using this technique. Although this technique is not apparent for most of the spam
we receive (after all, a botnet makes traceability difficult enough), the few groups
of spammers that employ this technique typically use it quite regularly. We also
observed that many of the ASes using this technique for the longest period of time
do not, in fact, rely on this technique for sending most of their spam. Even the most
prolific spamming AS in this group, Malaysia Telekom, appears to send only about

15% of their spam in this fashion.

Finding 3.5.3 (Persistence vs. Volume) The ASes from where spammers most
continually use short-lived route announcements to send spam are not the same ASes

from which the most spam originates via this technique.
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Many ASes that advertise short-lived BGP routing announcements and send large
volumes of spam from these routes do not appear to be hijacking IP prefixes. In the
case where spam volume is high, these short-lived routing announcements may simply
coincide with spam being sent via another means (e.g., from a botnet). The ASes that

persistently advertise short prefixes, however, appear to be doing so intentionally.

3.6 Lessons for Better Spam Mitigation

Existing spam mitigation techniques have focused on either throttling senders (e.g.,
recent attention has focused on cost-based schemes [42,50]) or having receivers filter
spam according to the content of a message. The results of this chapter, however,
highlight several important lessons that strongly indicate that devoting more attention
to the network-level properties of spammers that may be a useful addition to today’s
spam mitigation techniques. Using network-level information to help mitigate spam
not only provides a veritable font of new features for spam filters, but network-level
properties have two important properties that could potentially lead to more robust

filtering.

1. Network-level properties are less malleable than those based on an email’s con-

tents.

2. Network-level properties may be observable in the middle of the network, or
closer to the source of the spam, which may allow spam to be quarantined or

disposed of before it ever reaches a destination mail server.

From our findings, we derive the following lessons regarding the network-level behavior

of spammers that could help in designing better mitigation techniques.
Lesson 1 Spam filtering requires a better notion of host identity.

We observed a significant amount of spam from “fresh” bots, “single-shot” bots, and

spammers using spectrum agility. Short-lived bots, short-lived BGP route hijacks,
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and dynamic addressing effects foil the common practice of using a host’s IP address
as its identity, e.g., in IP blacklisting. This finding suggests that observations from a

single vantage point cannot be used to identify who is a spammer and who is not.

Lesson 2 Detection techniques based on aggregate behavior are more likely to expose

nefarious behavior than techniques based on observations of a single IP address.

Although comprehensive IP-based blacklisting is somewhat effective, blacklisting tech-
niques may also benefit by exploiting other network-level properties such as IP address
ranges or prefixes, many of which (e.g., 80.*-90.%) send mostly spam. This indicates
that IP prefix-based or ownership-based blacklisting—already followed to some extent
by Spamhaus, through its “Registry of Known Spammers” (ROKSO) list—would be

effective.

Lesson 3 Securing the Internet routing infrastructure is a necessary step for bolster-

ing identity and traceability of email senders.

Although BGP spectrum agility is by no means responsible for most received spam,
several characteristics make the technique extremely troubling. Most notably, the
technique can be combined with other spamming techniques (possibly even spamming
with botnets) to give spammers more agility in evading IP-based blacklists. Indeed,
our analysis of DNSBLs indicates that spammers may already be doing this. A routing
infrastructure that instead provided protection against route hijacking (specifically,
unauthorized announcement of IP address blocks) would make BGP spectrum agility

attacks more difficult to mount.

Lesson 4 Many network-level features are robust even across a period of 6 years,
indicating that these features can be incorporated relatively easily into spam filters

and can be quite effective at detecting spam that is missed by other techniques.

7



We found that features such as the network prefix and AS that originated an email,
its size distribution, sending behavior, listing status in DNSBLs, etc. can potentially
be used as features to classifiers.

Given the benefits that network-wide analysis could provide for stemming spam,
we imagine that the ability to witness the network-level behavior of spammers across
multiple distinct domains could also expose patterns that are not evident from a single
domain. One organization might be able amass such a dataset either by sinkholing
a large number of domains; for example, Project Honeypot [94] solicits donations of
MX records for registered domains that do not receive email (though its corpus is
still significantly smaller than ours). As we have discovered thus far from our initial
experiences establishing new sinkholes, attracting spam to a new domain takes some
effort (we found some amusement in the difficulty of attracting spam when we actually
wanted to receive it). In addition to using sinkholes, network operators might share
network-level statistics of received email from real network domains to pre-emptively

detect and filter spamming hosts.

3.7 Summary

This chapter has studied the network-level behavior of spammers using a joint analysis
of a unique combination of datasets—a 17-month-long trace of all spam sent to a single
domain with real-time traceroutes, passive TCP fingerprints, and DNSBL lookup
results; BGP routing announcements for the network where the sinkholes are located;
command and control traces from the Bobax spamming botnet; and mail logs from a
large commercial email provider.

This analysis allowed us to study some new and interesting questions that should
guide the design of better spam filters in the future, based on the lessons in Section 3.6.
We studied network-level behavior of spammers and compared these characteristics to

those of legitimate email, noting some differences that could help identify spammers
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by IP address space or AS. We also used “ground truth” Bobax drones to better
understand the characteristics of spamming botnets, and we found that most of these
drones do not appear to revisit the same domain twice. While this property does not
appear to hamper the use of blacklists for identifying bots (emphasizing the benefits
of collaborative spam filtering), we found that blacklists were remarkably ineffective
at detecting spamming relays that sent spam from IP addresses scattered throughout
a briefly announced (and typically hijacked) IP address block—a new technique we
call “BGP spectrum agility”. This technique is lethal because it makes traceability
and blacklisting significantly more difficult. Spam filters that incorporate network-
level behavior could not only mitigate this class of attack and many others, but they
could also prove to be more resistant to evasion than content-based filters.

We complete this analysis by looking at a longitudinal trace of 6 years of spam
data from the same sinkhole to investigate how well certain network-level features are
useful in terms of robustness and longevity. We find that many unique network-level
features, such as the IP blocks from which spammers operate, the mean size of spam
messages, the ASes and countries most responsible for spam, ther sending behavior
(e.g., whether they have been seen before, and the number of emails sent in a “single

shot”, etc. all provide good indicators of the nature
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CHAPTER 4

IDENTIFYING BOTNETS THAT PERFORM IP
BLACKLIST RECONNAISSANCE

4.1 Introduction

Botnets are the engines behind much malicious activity on the Internet, ranging from
spam to denial of service to click fraud [33], since they allow attackers to distribute
tasks over thousands of hosts distributed across the Internet. A botnet is network of
compromised hosts (“bots”) connected to the Internet under the control of a single en-
tity (“botmaster”, “controller”, or command and control) [22]. The large cumulative
bandwidth and relatively untraceable nature of spam from bots makes botnets an at-
tractive choice for large-scale spamming. Previous work provides further background
on botnets [22,25].

Identifying members of botnets could help stem these attacks, but passively detect-
ing botnet membership (i.e., without disrupting the operation of the botnet) would
be more desirable. The last chapter also demonstrated that botmasters use their bots
cleverly: they ensure that bots “cycle” between their targets, and techniques such as
hitting a target (e.g., a recipient mail server) from previously unseen IP addresses, or
by sending multiple spam messages at one time, are effective.

Seeing that a significant fraction of bots that send email to our spam trap were
not listed in any DNS-based blacklist, we wondered whether botmasters used these
unlisted bots intentionally to send spam—i.e., whether the botmaster actually queried
the same DNS blacklists we used to figure out which bots in a botnet were listed and
which ones were not. If this activity did indeed occur, we hypothesize that we might

be able to identify members of the botnet not using attack data, but by passively

80



monitoring queries to the blacklist.

We performed counter-intelligence based on the insight that botmasters them-
selves perform DNSBL lookups to determine whether their spamming bots are black-
listed. Using heuristics to identify which DNSBL lookups are perpetrated by a bot-
master performing such reconnaissance, we were able to compile a list of likely bots.
This chapter studies the prevalence of DNSBL reconnaissance observed at a mirror of a
well-known blacklist for a 45-day period, identifies the means by which botmasters are
performing reconnaissance, and suggests the possibility of using counter-intelligence
to discover likely bots. We find that bots are performing reconnaissance on behalf
of other bots. Based on this finding, we suggest counter-intelligence techniques that
may be useful for early bot detection.

If network operators and system administrators could reliably determine whether
a host is a member of a botnet, they could take appropriate steps towards mitigating
the attacks they perpetrate. Although previous work has described an active detec-
tion technique using DNS hijacking technique and social engineering [25], there are
few efficient methods to passively detect and identify bots (i.e., without disrupting
the operation of the botnet). Indeed, detecting botnets proves to be very challeng-
ing: a victim of a botnet attack can typically only observe the attack from a single
network, from which point the attack traffic may closely resemble the traffic of le-
gitimate users. Regrettably, the state-of-the-art in botnet identification is based on
user complaints, localized honeypots and intrusion detection systems, or through the
complex correlation of data collected through darknets [71].

Using passive analysis of lookup traffic to a DNS-based blackhole list (DNSBL),
we find evidence of a new, stealthy phenomenon: we find that spammers themselves
are looking up the listing status of bots in DNSBLs. Many Internet Service Providers
(ISPs) and enterprise networks use DNSBLs to track IP addresses that originate

spam, so that future emails sent from these IP addresses can be rejected. For the same
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reason, botmasters are known to sell “clean” bots (i.e., not listed in any DNSBL) at a
premium. This chapter addresses the possibility of performing opportunistic counter-
intelligence to help us discover identities of bots, based on the insight that botmasters
themselves must perform “reconnaissance” lookups to determine their bots’ blacklist
status. We propose a set of techniques to identify botnets using passive analysis of
DNS-based blackhole list (DNSBL) lookup traffic.

The contributions of this chapter include:

1. Study of DNSBL reconnaissance techniques. We study the prevalence
of DNSBL reconnaissance by analyzing logs from a mirror of a well-known
blackhole list for a 45-day period from November 17, 2005 to December 31,
2005. Section 4.4 discusses the prevalence of the different types of reconnais-
sance techniques that we observed. Much to our surprise, we find that bots are
performing reconnaissance on behalf of other (possibly newly infected) bots.
Although some bots perform a large number of reconnaissance queries, it ap-
pears that much of the reconnaissance activity is spread across many bots each

of which issue few queries, thus making detection more difficult.

2. Passive heuristics for counter-intelligence. We develop