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SUMMARY

Nonnegative matrix factorization (NMF) is a useful dimension reduction

method that has been investigated and applied in various areas. NMF is consid-

ered for high-dimensional data in which each element has a nonnegative value, and it

provides a low-rank approximation formed by factors whose elements are also nonneg-

ative. The nonnegativity constraints imposed on the low-rank factors not only enable

natural interpretation but also reveal the hidden structure of data. Extending the

benefits of NMF to multidimensional arrays, nonnegative tensor factorization (NTF)

has been shown to be successful in analyzing complicated data sets. Despite the

success, NMF and NTF have been actively developed only in the recent decade, and

algorithmic strategies for computing NMF and NTF have not been fully studied. In

this thesis, computational challenges regarding NMF, NTF, and related least squares

problems are addressed.

First, efficient algorithms of NMF and NTF are investigated based on a connection

from the NMF and the NTF problems to the nonnegativity-constrained least squares

(NLS) problems. A key strategy is to observe typical structure of the NLS problems

arising in the NMF and the NTF computation and design a fast algorithm utilizing

the structure. We propose an accelerated block principal pivoting method to solve the

NLS problems, thereby significantly speeding up the NMF and NTF computation.

Implementation results with synthetic and real-world data sets validate the efficiency

of the proposed method.

In addition, a theoretical result on the classical active-set method for rank-deficient

NLS problems is presented. Although the block principal pivoting method appears

generally more efficient than the active-set method for the NLS problems, it is not

xv



applicable for rank-deficient cases. We show that the active-set method with a proper

starting vector can actually solve the rank-deficient NLS problems without ever run-

ning into rank-deficient least squares problems during iterations.

Going beyond the NLS problems, it is presented that a block principal pivoting

strategy can also be applied to the l1-regularized linear regression. The l1-regularized

linear regression, also known as the Lasso, has been very popular due to its abil-

ity to promote sparse solutions. Solving this problem is difficult because the l1-

regularization term is not differentiable. A block principal pivoting method and its

variant, which overcome a limitation of previous active-set methods, are proposed for

this problem with successful experimental results.

Finally, a group-sparsity regularization method for NMF is presented. A recent

challenge in data analysis for science and engineering is that data are often represented

in a structured way. In particular, many data mining tasks have to deal with group-

structured prior information, where features or data items are organized into groups.

Motivated by an observation that features or data items that belong to a group are

expected to share the same sparsity pattern in their latent factor representations,

We propose mixed-norm regularization to promote group-level sparsity. Efficient

convex optimization methods for dealing with the regularization terms are presented

along with computational comparisons between them. Application examples of the

proposed method in factor recovery, semi-supervised clustering, and multilingual text

analysis are presented.
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CHAPTER I

INTRODUCTION

Matrix factorization has been one of the most fundamental tools in machine learn-

ing, data mining, and other areas of computational science and engineering. Singular

value decomposition (SVD) and principal component analysis (PCA), for example,

have been standard factorization methods that have played a pivotal role. Low-rank

approximations based on SVD or PCA provide a compact representation of a large

matrix, and the compact representation not only enables data compression and di-

mension reduction but also discovers latent structure from multivariate statistical

data. The latent structure has been utilized in numerous applications: For exam-

ple, the low-rank approximation of term-document matrices based on SVD has been

known as latent semantic indexing, which significantly improves information retrieval

and text categorization.

Recently, nonnegative matrix factorization (NMF) emerged as a useful factoriza-

tion method. NMF was earlier introduced by Paatero and Tapper [85] as positive

matrix factorization and subsequently popularized with a seminal paper by Lee and

Seung [64]. A distinguishing feature of NMF is the requirement of nonnegativity:

NMF is considered for high-dimensional and large scale data in which the represen-

tation of each element is inherently nonnegative, and it seek low-rank factor matrices

that are constrained to have only nonnegative elements. There are many examples

of data with nonnegative representation. In a standard term-frequency encoding

[77], a text document is represented as a vector of nonnegative numbers since each

element represents the number of appearances of each term in the document. In

image processing, digital images are represented by pixel intensities, which can be
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only nonnegative. In sciences, chemical concentrations or gene expression levels are

nonnegatively represented.

To introduce the main idea of NMF, let us consider a matrix A ∈ R
M×N , in which

the rows represent features and the columns represent data items. Suppose a low-rank

approximation if A is given by two factor matrices W ∈ R
M×K and H ∈ R

N×K with

a small integer K < min {M,N}:

A ≈WHT . (1.1)

An illustration of this factorization model is given in Figure 1.1. Matrices W and H

are commonly interpreted as basis vectors and reconstruction coefficients, respectively.

With this interpretation, each data item is understood as an approximation given as

ai ≈
K
∑

k=1

wkhik,

where ai, wk, and hik denote the ith column of A, the kth column of W, and the

(i, k)th element of H, respectively. That is, the ith data item represented by ai is

composed of a linear combination of basis components w1, · · · ,wK with coefficients

hi1, · · · , hiK .

Now, for a A ∈ R
M×N that contain only nonnegative elements, such as text doc-

uments or images with pixel intensities, a key idea of NMF is to take advantage of

the inherent nonnegativity by enforcing that low-rank factor matrices are themselves

nonnegative. The fact that W and H are element-wise nonnegative enables natural

interpretations of the approximation model in Eq. (1.1). First, the nonnegativity of

basis factor W enforces that each basis component, which is each column of W, is

a physically meaningful instance of original data type. If wk contains a nonnega-

tive element, it does not represent a text document or a digital image any more. In

addition, the nonnegativity of H implies that each data item can be explained by

an additive linear combination of basis components, as opposed to an additive and

subtractive combination. The additive combination naturally represents the actual
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Figure 1.1: Matrix factorization, basis components, and reconstruction model

interaction of real-world objects, in which a subtraction does not have a direct in-

terpretation. Combining the two advantages, Lee and Seung [64] reported that a

part-based representation can be discovered with NMF. The nonnegativity of W en-

sures that its column is a meaningful data type, that can be interpreted as a ‘part’.

The nonnegativity of H ensures that the parts can only be combined additively with-

out subtractions.

The benefits of the nonnegative latent factor matrices have been recognized in

many applications. In text mining [88, 103, 92], NMF was shown to detect latent

topics from a large text corpus, and the discovered topics improved text categorization

and topic tracking. In computer vision [68, 48], NMF was used to analyze a collection

of facial images for feature extraction. In bioinformatics [16, 27, 55] NMF has been

used to analyze gene and protein expression microarray data. In signal processing,

NMF has been shown successful for blind source separation [26] and music analysis

[33]. In data mining, the use of NMF for clustering has been actively investigated

[29, 58].

NMF has become an indispensable tool in numerous data analysis problems. On
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the computational side, the computation of NMF is more demanding than that of

conventional factorization methods such as SVD. Since NMF has been developed only

for a decade, studies on its theoretical properties and algorithmic strategies have been

only in beginning. In this thesis, algorithmic and computational challenges of NMF,

its extensions, and constrained least squares problems are addressed. Mathematical

treatments of NMF, problem formulations, and the contributions of this thesis are

summarized in the following. Connections to the main body of this thesis are made

whenever needed.

1.1 Nonnegative Matrix Factorization

A mathematical formulation of NMF is given as follows. Suppose a nonnegative

matrix A ∈ R
M×N is given. With an integer K < min {M,N}, the goal of NMF is to

find two nonnegative factors W ∈ R
M×K and H ∈ R

N×K that satisfy Eq. (1.1). The

goodness of the approximation can be measured in various ways including Frobenius

norm, Kullback-Leibler divergence [65], and Bregman divergence [28]. This thesis is

focused on the most common choice, which is Frobenius norm. The factors W and

H are then found by solving the optimization problem:

min
W,H

f(W,H) =
1

2

∥

∥A−WHT
∥

∥

2

F
, (1.2)

subject to W,H ≥ 0 element-wise.

Due to nonnegativity constraints, Eq. (1.2) cannot be solved by traditional methods

such as SVD. Eq. (1.2) is a non-convex optimization problem with respect to variables

W and H, and it is shown that solving NMF is NP-hard [100]. Therefore, a good

algorithm is expected to compute a local minimum of Eq. (1.2).

In this thesis, an efficient algorithm for Eq. (1.2) is presented. A block coordinate

descent algorithm for Eq. (1.2), known as the alternating nonnegative least squares

framework, is recently shown theoretically sound and empirically efficient [56, 71]. A
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key component of this framework is an efficient algorithm to solve the nonnegativity-

constrained least squares (NLS) problems. The NLS problem is generally written

as

min
X≥0
‖BX−C‖2F , (1.3)

where B ∈ R
p×q, C ∈ R

p×r, and X ∈ R
q×r. In Chapter 4, a fast algorithm for NMF

is proposed using the block principal pivoting method [53] that efficiently solves the

NLS subproblems in Eq. (1.3). The block principal pivoting method is similar to the

classical active-set method due to Lawson and Hanson [63, 56], but it becomes more

scalable than the classical one by exchanging multiple variables at a time. Observa-

tions on the typical structure of the NLS problems arising in the NMF computation

are summarized, and an accelerated block principal pivoting method is designed ex-

ploiting the typical structure. Thorough experimental comparisons with competing

numerical methods for NMF are conducted on synthetic and real-world data sets, and

the proposed algorithm is shown to be a state-of-the-art method.

The material of Chapter 4 is partially based the following publication.

• Jingu Kim and Haesun Park, “Fast Nonnegative Matrix Factorization: An

Active-set-like Method and Comparisons”, SIAM Journal on Scientific Com-

puting, To appear.

• Jingu Kim and Haesun Park, “Toward Faster Nonnegative Matrix Factorization:

A New Algorithm and Comparisons,” in Proceedings of the 2008 Eighth IEEE

International Conference on Data Mining (ICDM), pp. 353-362, 2008.

1.2 Nonnegative Tensor Factorization

A tensor is a multi-dimensional array, of which a matrix is a two-dimensional special

case. Whereas a matrix can only represent data lying in an outer product of two

vector spaces, a tensor can flexibly represent data in an outer product of multiple
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vector spaces. The flexibility allows tensor-based methods to cope with complex data

sets, which cannot be handled with matrix-based methods. The rank of a tensor can

be defined analogously with the rank of a matrix, and various types of the low-rank

approximations of tensors have been studied.

In this thesis, we consider nonnegative tensor factorization (NTF) in which the

low-rank representation is constrained to be element-wise nonnegative. In particular,

we address the nonnegative CANDECOMP/PARAFAC (NCP) decomposition [62].

There are other approximation models for higher order tensors as discussed in [62],

but, in this thesis, whenever we mention nonnegative tensor factorization (NTF) for

simplicity, we refer to NCP. Given an N -way tensor A ∈ R
M1×···×MN and an integer

K, the problem of NCP is to find loading matricesH(1) ∈ R
M1×K , · · · ,H(N) ∈ R

MN×K

by solving an optimization problem:

min
H(1),··· ,H(N)

1

2

∥

∥

∥

∥

∥

A−
K
∑

k=1

h
(1)
k ◦ · · · ◦ h

(N)
k

∥

∥

∥

∥

∥

2

F

, (1.4)

subject to H(1), · · · ,H(N) ≥ 0 element-wise,

where h
(n)
k represents the kth column vector of factor matrix H(n), and ◦ represents an

outer product. In Eq. (1.4), we want to approximate the given tensor A by the sum of

K rank-one tensors. Observe that Eq. (1.4) with N = 2 reduces to the NMF problem

shown in Eq. (1.2). Nonnegativity-constraints imposed on the factor matrices enable

benefits similar to that of NMF in image processing [93, 102] and text mining [5].

In Chapter 5, a fast algorithm for Eq. (1.4) is presented. A block coordinate de-

scent algorithm for Eq. (1.4) again appears as a sequence of nonnegativity-constrained

least squares (NLS) problems. Utilizing the accelerated block principal pivoting al-

gorithm for NLS problems, Eq. (1.4) can be efficiently computed. Experiments with

synthetic and real-world data sets show that the proposed method outperforms ex-

isting methods.

The material of Chapter 5 is based the following publication.

6



• Jingu Kim and Haesun Park, “Fast Nonnegative Tensor Factorization with an

Active-set-like Method”, High-Performance Scientific Computing: Algorithms

and Applications, Springer, To appear.

1.3 L1-regularized Linear Regression

In development of efficient algorithms for NMF and NTF, a fast method for the NLS

problems play an important role. In particular, the block principal pivoting method is

used in this thesis to construct fast NMF and NTF algorithms having state-of-the-art

efficiency. Interestingly, it is discovered that a variant of the block principal pivoting

method can be used to solve l1-regularized linear regression, which is another very

important least squares problem that received much attention recently.

L1-regularized linear regression, also known as the Lasso [96], is an effective

method that improves generalization and feature selection. By constraining the l1-

norm of the coefficient vector, this method simultaneously avoids over-fitting to train-

ing data and achieves sparsity in obtained coefficients. The sparsity has two important

benefits; it improves the interpretation of a linear model by explicitly showing the

relationship between the response and the features [96], and it also allows computa-

tionally efficient models because only a small number of coefficients remain nonzero.

In signal processing, l1-norm has been successfully used as a penalty term in a tech-

nique called ‘basis pursuit denoising’ [22], and a related topic on ‘compressed sensing’

[18, 30] has been a very active research area.

Researchers used l1-regularization for many other learning problems including

logistic regression [67], graphical model selection [6, 38], principal component analysis

[106], and sparse coding [66, 76]. Although some researchers designed specialized

algorithms for those problems, many utilized l1-regularized linear regression as a

subproblem to solve their intended sparse learning tasks. Hence, an efficient algorithm

for l1-regularized linear regression is important not only in its own right but also for
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those extended sparse learning problems.

Suppose that data are given as (x(n), y(n))Nn=1 where y(n) ∈ R is the response of

x(n) ∈ R
P . L1-regularized linear regression can be written as

min
β∈RP

L(β, λ) = 1

2
‖y −Xβ‖22 + λ ‖β‖1 , (1.5)

where X =
(

x(1), · · · ,x(N)
)T

, y =
(

y(1), · · · , y(N)
)T

, and λ ≥ 0. In Chapter 6, a

new active-set-like method for Eq. (1.5) is presented. By showing that the optimality

conditions of Eq. (1.5) appear in a form of the linear complementarity problem with

bounds, we present an efficient block principal pivoting method, which overcomes

some difficulties of existing methods such as least angle regression. Implementation

results as well as extensions to the structure learning of Gaussian graphical models

are demonstrated as well.

The material of Chapter 6 is based the following publication.

• Jingu Kim and Haesun Park, “Fast Active-set-type Algorithms for L1-regularized

Linear Regression,” in Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics (AISTATS) 2010, JMLR: W&CP 9:397-

404, 2010.

1.4 Rank Deficiency

Active-set-like methods for solving the NLS problems, including the classical active-

set method and the block principal method, is at the core of NMF and NTF algorithms

studied in this thesis. Consider an NLS problem written as

min
x≥0
‖Bx− c‖2F , (1.6)

where B ∈ R
M×N , c ∈ R

M×1, and x ∈ R
N×1. There are trade-offs between active-

set-like methods in handling Eq. (1.6) for the cases that B is of full column rank and

that B is rank-deficient. The block principal pivoting method appears generally more
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efficient for the full-rank case, but it might break down when B is rank-deficient. It

has been believed that the classical active-set method by Lawson and Hanson [63]

handles the rank-deficient case; however, no supporting arguments were given to the

behaviour of active-set method for rank-deficient NLS problems.

In Chapter 7, a theoretical discovery that the active-set method with a proper

starting vector can actually solve the rank-deficient NLS problems is presented. An

in-depth analysis of the active-set method is presented, providing additional insights

on its properties.

The material of Chapter 7 is partially based the following publication.

• Barry Drake, Jingu Kim, Mahendra Mallick and Haesun Park, “Supervised Ra-

man Spectra Estimation based on Nonnegative Rank Deficient Least Squares,”

in Proceedings of the 13th International Conference on Information Fusion, Ed-

inburgh, UK, 2010.

1.5 Group Sparsity in Nonnegative Matrix Factorization

A recent challenge in data analysis for science and engineering is that data are often

represented in a structured way. In particular, many data mining tasks have to deal

with group-structured prior information, where features or data items are organized

into groups. However, a principled approach to incorporating group information into

NMF has been lacking in the literature. In Chapter 8, group-sparsity regularization

methods for NMF is developed. Motivated by an observation that features or data

items within a group are expected to share the same sparsity pattern in their la-

tent factor representation, we propose mixed-norm regularization to promote group

sparsity in the factor matrices of NMF.

Suppose the columns ofA ∈ R
M×N are divided into B groups asA =

(

A(1), · · · ,A(B)
)

,

where A(b) ∈ R
M×Nb and

∑B

b=1Nb = N . Accordingly, the coefficient matrix is divided

into B groups as HT =
(

(H(1))T , · · · , (H(B))T
)

where H(b) ∈ R
Nb×K . The proposed
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formulation is written as follows:

min
W≥0,H≥0

1

2

∥

∥A−WHT
∥

∥

2

F
+ α ‖W‖2F + β

B
∑

b=1

∥

∥(H(b))T
∥

∥

1,q
. (1.7)

L1,q-norm, which is commonly called a mixed-norm, is defined in Chapter 8. The

mixed-norm regularization has been shown to promote group-level sparsity [104, 74,

90]. Efficient convex optimization methods for solving Eq. (1.7) are presented along

with computational comparisons between them. Application examples of the pro-

posed method in factor recovery, semi-supervised clustering, and multilingual text

analysis are demonstrated.

1.6 Structure of Thesis and Notations

The rest of this thesis is organized as follows.

• In Chapter 2, background materials on numerical linear algebra and convex

optimization are introduced.

• In Chapter 3, algorithms for nonnegative matrix factorization are reviewed.

• In Chapter 4, a fast algorithm for nonnegative matrix factorization based on an

accelerated block principal pivoting method is presented.

• In Chapter 5, a fast algorithm for nonnegative CANDECOMP/PARAFAC de-

composition based on an accelerated block principal pivoting method is pre-

sented.

• In Chapter 6, fast block principal pivoting algorithms for l1-regularized linear

regression are presented.

• In Chapter 7, a theoretical discovery that the active-set method with a proper

starting vector can solve the rank-deficient nonnegativity-constrained least squares

problems is presented.
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• In Chapter 8, a nonnegative matrix factorization method that promotes group

sparsity using mixed-norm regularization method is presented.

• In Chapter 9, concluding remarks with the summary of contributions as well as

suggestions on future directions are made.

Throughout the thesis, the following mathematical notations are used.

• (Letters)

A lower-case or an upper-case letter, such as x or X , denotes a scalar. Boldface

lower-case and upper-case letters, such as x and X, denote a vector and a

matrix, respectively. A boldface Euler script letter, such as X, denotes a tensor

of order three or higher.

• (Indices and sequence)

Indices typically grow from 1 to an upper-case letter, e.g., n ∈ {1, · · · , N}.

Elements of a sequence are denoted by superscripts within parentheses, e.g.,

X(1), · · · ,X(N), and the entire sequence is denoted by
{

X(n)
}

.

• (Subvectors and elements)

For a matrix X, (X)·i, x·i, or xi denotes its i
th column, (X)i· or xi· denotes its

ith row, and xij denotes its (i, j)
th element.

• (Nonnegativity)

The set of nonnegative real numbers is denoted by R+, and X ≥ 0 indicates

that the elements of X are nonnegative. The notation [X]+ is used to denote

a matrix that is the same as X except that all its negative elements are set

as zero. A nonnegative matrix or a nonnegative tensor refers to a matrix or a

tensor with only nonnegative elements.

• (Built-in matrices and vectors)

1M×N and 0M×N denote matrices of size M × N in which every elements are
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one and zero, respectively. Similarly, 1M and 0M denote vectors of length M

in which every elements are one and zero, respectively. IM denotes an identity

matrix of size M ×M .

• (Cartesian product)

An operator ‘×’ denotes the Cartesian product.
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CHAPTER II

PRELIMINARIES

Materials on numerical linear algebra and convex optimization that are relevant to

this thesis are briefly summarized in this chapter.

2.1 Matrix Analysis

2.1.1 Singular value decomposition

Singular value decomposition (SVD) is a general and very strong property developed

in matrix analysis. Detailed introduction to SVD as well as the proofs of the following

theorems can be found in, e.g., Golub and Van Loan [42], Trefethen and Bau [97],

and Horn and Johnson [47],

Theorem 2.1. (Singular Value Decomposition) For any matrix A ∈ R
M×N , there

exist orthogonal matrices

U =

[

u1 · · · uM

]

∈ R
M×M and V =

[

v1 · · · vN

]

∈ R
N×N

such that

A = UΣVT ,

where Σ = diag(σ1, · · · , σP ) ∈ R
M×N with P = min {M,N} and

σ1 ≥ · · · ≥ σP ≥ 0.

Columns of U (that is, u1, · · · ,uM) are called the left singular vectors; columns

of V (that is, v1, · · · ,vN) are called the right singular vectors; the diagonal values

of Σ (that is, σ1, · · · , σP ) are called the singular values. If the rank of A is R, the

singular values satisfy

σ1 ≥ · · · ≥ σR ≥ σR+1 = · · · = σP = 0,
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and the SVD can be more compactly written as

A = ŨΣ̃ṼT , (2.1)

where

Ũ =

[

u1 · · · uR

]

∈ R
M×R,

Ṽ =

[

v1 · · · vR

]

∈ R
N×R,

Σ̃ = diag(σ1, · · · , σR) ∈ R
R×R.

One of the most important applications of SVD is its use for low-rank matrix approx-

imations.

Theorem 2.2. Suppose the SVD of a matrix A with rank R is given as Eq. (2.1).

For any integer K with 0 ≤ K < R, define the rank-K SVD as

ÃK =

K
∑

k=1

σkukv
T
k . (2.2)

Then,

∥

∥

∥
A− ÃK

∥

∥

∥

2
= inf

B∈RM×N ,rank(B)=K
‖A−B‖2 = σK+1,

∥

∥

∥
A− ÃK

∥

∥

∥

F
= inf

B∈RM×N ,rank(B)=K
‖A−B‖F =

√

σ2
K+1 + · · ·+ σ2

R.

Theorem 2.2 states that the best rank-K approximation of A in terms of mini-

mizing the l2-norm or the Frobenius norm of the residual matrix is the rank-K SVD

defined in Eq. (2.2).

2.1.2 Nonnegative matrices

Perron-Frobenius theorem [8, 47] is a well-known property of positive and nonnegative

matrices. For our discussion, the following extended theorem shown in Chapter 2 of

Berman and Plemmons [8] is convenient.
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Theorem 2.3. Consider a square matrix A ∈ R
N×N . If A ≥ 0, the eigenvalue of A

with the largest magnitude is nonnegative, and there exists a nonnegative eigenvector

corresponding to the largest eigenvalue.

A direct consequence of Theorem 2.3 is the nonnegativity of the best rank-one

approximation.

Corollary 2.4. Consider a nonnegative matrix A ∈ R
M×N and the following mini-

mization problem:

min
u∈RN ,v∈RN

∥

∥A− uvT
∥

∥

2

F
. (2.3)

There exists an optimal solution of Eq. (2.3) satisfying u ≥ 0 and v ≥ 0.

Another way to realizing Corollary 2.4 is using the SVD. Observing that for a

nonnegative matrix A ≥ 0,

∥

∥A− uvT
∥

∥

2

F
=

M
∑

m=1

N
∑

n=1

(amn − umvn)2 ≥
M
∑

m=1

N
∑

n=1

(amn − |um| |vn|)2 ,

for any vectors u ∈ R
M and v ∈ R

N , element-wise absolute values can be taken from

the first singular value and corresponding singular vectors to achieve the best rank-

one approximation satisfying nonnegativities. There might be other optimal solutions

of Eq. (2.3) involving negative numbers: See [39].

2.2 Optimization Theory

Two duality relationships, namely, Lagrangian duality and Fenchel duality, are used in

this thesis to understand and efficiently handle difficult optimization problems. Main

results of the duality relationships are briefly introduced in this section. Duality

theory plays a central role in convex optimization and has strong implications across

wide applications. Rockafellar [91], Boyd and Vandenberghe [14], Bertsekas et al. [11],

and Borwein and Lewis [13] describe the material in detail.

Before we discuss duality, a few basic notions of convex analysis are needed.
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Definition 2.5. (Affine hull and relative interior) For a subset C of RN , its affine

hull and relative interior are defined as, respectively,

aff C =
{

α1x1 + · · ·+ αKxK |x1, · · · ,xK ∈ C,
K
∑

k=1

αk = 1

}

, and

ri C =
{

x ∈ C|∃t > 0 such that
{

y ∈ R
N |y ∈ aff C, ‖x− y‖ < t

}

⊆ C
}

.

Convexity of a set, defined as follows, is the most elementary property in convex

analysis.

Definition 2.6. (Convex set) A subset C of R
N is convex if, for ∀x,y ∈ C and

0 < λ < 1, (1− λ)x+ λy ∈ C.

For easier discussion on convex functions, an extended definition of a function

that is allowed to take −∞ or∞ is commonly used. Note that a function f : X → R,

where X ∈ R
N , can be straightforwardly extended to f̃ : RN → R ∪ {−∞,∞} by a

transformation

f̃(x) =















f(x), if x ∈ X ,

∞, otherwise.

For extended functions, two properties are defined as follows.

Definition 2.7. (Domain and epigraph) For a function f : RN → R ∪ {−∞,∞}, its

domain and epigraph is defined as

dom f =
{

x ∈ R
N : f(x) <∞

}

,

epi f =
{

(x, µ) ∈ R
N × R : f(x) ≤ µ

}

The epigraph of a function is used to characterize the convexity of a function, as

follows.

Definition 2.8. (Convex function) A function f : RN → R∪{−∞,∞} is said convex

if its epigraph, epi f , is a convex subset of RN+1.

With these definitions, let us see Lagrangian duality first.

16



2.2.1 Lagrangian duality

Consider an optimization problem:

minimize f(x) with x ∈ R
N (2.4)

subject to x ∈ X ,

gi(x) ≤ 0, ∀i ∈ {1, · · · , I} ,

hj(x) = 0, ∀j ∈ {1, · · · , J} .

where X is a non-empty subset of RN , and f , all gi’s, and hj ’s are functions from X

to R. Lagrangian function L : X ×R
I ×R

J → R for Eq. (2.4) is defined with x ∈ X ,

λ ∈ R
I , and µ ∈ R

J as

L(x,λ) = f(x) +

I
∑

i=1

λigi(x) +

J
∑

j=1

µjhj(x). (2.5)

Observe that the optimal value p∗ of Eq. (2.4), which is called the primal problem,

can be represented with the Lagrangian function as

p∗ = inf
x∈X

sup
λ∈RI ,λ≥0,µ∈RJ

L(x,λ,µ). (2.6)

The dual of this problem is obtained by exchanging the order of inf and sup. Defining

the Lagrange dual function φ : RI × R
J → [−∞,∞)

φ(λ,µ) = inf
x∈X
L(x,λ,µ),

the Lagrange dual problem of Eq. (2.4) is then written as

maximize φ(λ,µ) with λ ∈ R
I ,µ ∈ R

J (2.7)

subject to λ > 0.

The optimal value d∗ of Eq. (2.7) is expressed as

d∗ = sup
λ∈RI ,λ≥0,µ∈RJ

inf
x∈X
L(x,λ,µ), (2.8)

The following theorem states relationships between the optimal values p∗ and d∗ of,

respectively, the primal and the dual problems.
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Theorem 2.9. (Lagrangian duality) Suppose that X is a nonempty subset of R
N

and that f , all gi’s, and all hi’s are functions from X to R. If p∗ and d∗ respectively

represent the infimum and the supremum of Eq. (2.6) and Eq. (2.8), then the following

weal duality holds:

d∗ ≤ p∗.

If X is a convex set, f , all gi’s, and all hi’s are convex functions on X , and there exist

x̄ ∈ ri X such that gi(x̄) < 0 for ∀i ∈ {1, · · · , I}, then the following strong duality

holds:

d∗ = p∗.

Constraint qualifications for the strong duality in Theorem 2.9 is known as Slater’s

conditions. A common usage of the Lagrangian duality is that, when Slater’s con-

ditions are satisfied, we can transform the primal problem into the dual problem

and apply optimization methods to the dual problem instead of solving the primal

problem directly.

2.2.2 Fenchel duality

Fenchel duality deals with the conjugate of convex (or concave) functions. For the

discussion of Fenchel duality, let us define proper functions first.

Definition 2.10. A convex function f : RN → R ∪ {−∞,∞} is called proper if

f(x) > −∞ for ∀x ∈ R
N and there exists x̃ ∈ R

N such that f(x̃) < ∞. A function

g : RN → R ∪ {−∞,∞} is called proper concave if −g is proper convex.

Conjugacy of convex and concave functions is characterized as follows.

Definition 2.11. Let f : RN → R∪{∞} and g : RN → R∪{−∞} be proper convex

and proper concave functions, respectively. The convex conjugate f ∗ : RN → R∪{∞}

of f is defined by

f ∗(y) = sup
x∈RN

{〈y,x〉 − f(x)} , (2.9)
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and the concave conjugate of g : RN → R ∪ {−∞} of g is defined by

g∗(y) = inf
x∈RN

{〈y,x〉 − g(x)} . (2.10)

Theorem 2.12. (Fenchel duality) Let f be a proper convex function on R
N , and let

g be a proper concave function on R
N . Let p∗, d∗ ∈ [−∞,∞] be defined, respectively,

by

p∗ = inf
x
{f(x)− g(x)} , (2.11)

d∗ = sup
y

{g∗(y)− f ∗(y)} . (2.12)

We have d∗ ≤ p∗. If ri(dom f) ∩ ri(dom g) 6= ∅, then d∗ = p∗, and the supremum in

the dual problem in Eq. (2.12) is attained at some y∗ ∈ R
N .

A direct proof of Fenchel duality is given in Rockafellar [91] and Borwein and

Lewis [13], but it can also be derived from Lagrangian duality as discussed in Bertsekas

et al. [11].

2.2.3 First-order optimality conditions

Among numerous useful properties that are derived from duality properties, in this

thesis, the first-order optimality conditions are very important. The conditions are

well-known as the Karush-Kuhn-Tucker (KKT) conditions. Recall the minimization

problem in Eq. (2.4) and the Lagrangian function in Eq. (2.5).

Theorem 2.13. (Karush-Kuhn-Tucker conditions) Suppose functions f , gi’s, and

hi’s in Eq. (2.4) are differentiable. If x∗ achieves the primal optimal value p∗ in

Eq. (2.6) and (λ∗,µ∗) achieves the dual optimal value d∗ in Eq. (2.8) such that d∗ = p∗,
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λ∗ ∈ R
I and µ∗ ∈ R

J are called Lagrange multipliers, and they satisfy:

∂L
∂x

(x∗,λ∗,µ∗) = 0,

gi(x
∗) ≤ 0, for ∀i ∈ {1, · · · , I} ,

hj(x
∗) = 0, for ∀j ∈ {1, · · · , J} ,

λ∗i ≥ 0, for ∀i ∈ {1, · · · , I} ,

λ∗i gi(x
∗) = 0, for ∀i ∈ {1, · · · , I} .

That is, the KKT conditions are necessary conditions for x∗ and (λ∗,µ∗) be the

optimal solutions. A particularly interesting case is that X is a convex set, and f ,

all gi’s, and all hi’s are convex functions on X . In this case the KKT conditions are

sufficient for x∗ and (λ∗,µ∗) be the optimal solutions. The KKT conditions play a

crucial role in the development of efficient optimization algorithms for NMF, NTF,

and Lasso in this thesis.

2.3 Block Coordinate Descent Method

The block coordinate descent (BCD) method is a divide-and-conquer strategy that

can be generally applied to non-linear optimization problems. It divide variables

into several disjoint subgroups and sequentially minimize the objective function with

respect to the variables of each subgroup at a time. The BCD method is the backbone

of algorithms developed in this thesis for NMF and NTF. We here summarize the BCD

method and its convergence properties. More details can be found in Bertsekas [10].

Consider an optimization problem as follows:

minimizef(x) subject to x ∈ X (2.13)

where X is a closed convex subset of RN . An important assumption to be exploited

in the BCD method is that set X is represented by a Cartesian product:

X = X1 × · · · × XM , (2.14)
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where Xm, ∀m ∈ {1, · · · ,M}, is assumed to be a closed convex subset of RNm sat-

isfying N =
∑M

m=1Nm. Accordingly, vector x is partitioned as x = (x1, · · · ,xM)

so that xm ∈ Xm for ∀m ∈ {1, · · · ,M}. The BCD method solves for xm fix-

ing all other subvectors of x in a cyclic manner. That is, given the current iter-

ate at the kth step, x(k) = (x
(k)
1 , · · · ,x(k)

M ), the algorithm generates the next iterate

x(k+1) = (x
(k+1)
1 , · · · ,x(k+1)

M ) block by block, according to the solution of a subproblem

written as follows:

x(k+1)
m ← arg min

ξ∈Xm

f(x
(k+1)
1 , · · · ,x(k+1)

m−1 , ξ,x
(k)
m+1, · · · ,x(k)

M ). (2.15)

Also known as a non-linear Gauss-Siedel method [10], the BCD method updates

one block each time, always using the most recently updated values of other blocks

xm̃, m̃ 6= m. This is important since it ensures that, after each update, the objective

function value decreases. For a sequence
{

x(k)
}

where each x(k) is generated by the

BCD method, the following property holds.

Theorem 2.14. Suppose f is continuously differentiable in X = X1×· · ·×XM , where

Xm, m = 1, · · · ,M , are closed convex sets. Furthermore, suppose that for all m and

k, the minimum for

min
ξ∈Xm

f(x
(k+1)
1 , · · · ,x(k+1)

m−1 , ξ,x
(k)
m+1, · · · ,x(k)

M )

is uniquely attained. Let
{

x(k)
}

be the sequence generated by the block coordinate

descent method as in Eq. (2.15). Then, every limit point of
{

x(k)
}

is a stationary

point. The uniqueness of the minimum is not required when number of blocks M is

two.

The proof of Theorem 2.14 for an arbitrary number of blocks is shown in [10], and

the last statement regarding the two block case is due to Grippo and Sciandrone [44].

When applying the BCD method to a constrained non-linear programming problem,

it is critical to wisely choose a partition whose Cartesian product constitutes X . An
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important criterion is whether the subproblems in Eq. (2.15) are efficiently solvable.

In Chapter 3, difference choices of the block partition are discussed for the BCD

method applied to NMF.

2.4 Dual Norm and Regularization Problem

The last section of this chapter is the application of Fenchel duality to specific cases.

The results derived from this section will be used later in Chapter 8. Bach et al. [2]

summarize related materials. Let us begin with the definition of dual norm.

Definition 2.15. (Dual norm) Let ‖·‖ be a norm defined on R
N . The dual norm

‖·‖∗ of ‖·‖ is defined by

‖z‖∗ = max
x∈RN

zTx subject to ‖x‖ ≤ 1.

The following theorem, stating a relationship between lp-norm and its dual norm,

is easy to verify [14].

Theorem 2.16. If p, q ∈ [1,∞] satisfy 1
p
+ 1

q
= 1, lp-norm and lq-norm are dual to

each other in R
N .

There is a useful relationship between a function involving a norm and an indicator

function of its dual norm.

Theorem 2.17. Consider a concave function g(x) = −λ ‖x‖. Its concave conjugate

is

g∗(y) = −I(‖y‖∗≤λ) =















0, if ‖y‖∗ ≤ λ

−∞, otherwise.

Proof. First suppose ‖y‖∗ ≤ λ, and we will show that g∗(y) = 0. Note that ‖y‖∗ ≤ λ

implies

−λ ≤ yTx ≤ λ for ∀x satisfying ‖x‖ ≤ 1. (2.16)
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For any nonzero x ∈ R
N ,

yTx− g(x) = yTx+ λ ‖x‖ = ‖x‖
(

yT x

‖x‖ + λ

)

≥ 0,

where the last inequality is due to Eq. (2.16). Together with the fact that yTx−g(x) =

0 for x = 0, we have that g∗(y) = infx∈RN {〈y,x〉 − g(x)} = 0.

Next, let us suppose ‖y‖∗ > λ, and we will show that g∗(y) = ∞. Note that

‖y‖∗ > λ implies

∃x̃ such that ‖x̃‖ ≤ 1,yT x̃ > λ. (2.17)

Then,

inf
x∈RN

{〈y,x〉 − g(x)} ≤ inf
t∈R
{〈y,−tx̃〉+ λ ‖−tx̃‖}

= inf
t∈R

t {− 〈y, x̃〉+ λ ‖x̃‖}

≤ inf
t∈R

t {− 〈y, x̃〉+ λ}

= −∞.

where the last inequality is due to Eq. (2.17).

The following corollary is a direct consequence of Fenchel duality (Theorem 2.12)

and Theorem 2.17.

Corollary 2.18. Let f be a proper convex function on R
N . If f ∗ is the convex

conjugate of f and ‖·‖∗ is the dual norm of ‖·‖,

max
y∈RN :‖y‖∗≤λ

−f ∗(y) ≤ min
x∈RN

f(x) + λ ‖w‖ .

If the domain of f has non-empty interior, than equality holds.
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CHAPTER III

REVIEW OF NONNEGATIVE MATRIX

FACTORIZATION ALGORITHMS

Let us recall the problem formulation of NMF. Suppose a nonnegative matrix A ∈

R
M×N is given. For a small integer K < min {M,N}, we would like to solve the

following optimization problem to find W and H:

min
W,H

f(W,H) =
1

2

∥

∥A−WHT
∥

∥

2

F
, (3.1)

subject to W,H ≥ 0.

The goal in this chapter is to provide an overview of algorithms developed to solve

Eq. (3.1). The review is organized based on the block coordinate descent (BCD)

method presented in Section 2.3. Among numerous algorithms studied for NMF, the

most popular is the multiplicative updating algorithm by Lee and Seung [65]. This

algorithm has an advantage of being simple and easy to implement, and it has greatly

contributed to the popularity of NMF. However, slow convergence of the multiplicative

updating has been also pointed out [43, 71], and more efficient algorithms equipped

with stronger theoretical convergence property have been introduced. They are based

on either the alternating nonnegative least squares (ANLS) framework [56, 54, 71] or

the hierarchical alternating least squares (HALS) method [25, 24].

In Section 3.1, we show that many promising NMF algorithms can be derived using

one common framework of the BCD method. Other algorithms that are not based

on the BCD framework are reviewed in Section 3.2 with relations to the algorithms

within the BCD framework.
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3.1 BCD Framework for NMF

Observe that the optimization variable of Eq. (3.1) is (W,H) ∈ R
(M+N)×K
+ . The

BCD method in Section 2.3 can be applied to Eq. (3.1) with difference choices of the

block partition {X1, · · · ,XM} that constitute R
(M+N)×K
+ . In the following, we will

discuss how different choices of partitions lead to NMF algorithms developed in the

literature.

3.1.1 BCD with two matrix blocks – ANLS framework

In Eq. (3.1), the most natural partitioning of the variables is the two blocks repre-

senting W and H themselves. In this case, we take turns solving

W← arg min
W≥0

f(W,H) and H← argmin
H≥0

f(W,H).

These subproblems appear as

min
W≥0
‖HWT −AT‖2F and min

H≥0
‖WHT −A‖2F . (3.2)

Since the subproblems in Eqs. (3.2) are the non-negativity constrained least squares

(NLS) problems, the two-block BCD method has been called the alternating non-

negative least squares (ANLS) framework [56, 71]. Even though the subproblems

are convex optimization problems, they do not have a closed-form solution, and a

numerical algorithm for the subproblem has to be provided. Several algorithms have

been proposed to compute NMF based on the ANLS framework [56, 71, 54]. More

discussion on those algorithms and an even faster algorithm is presented in Chapter 4.

Denote W and H after the ith iteration by W(i) and H(i), respectively. According

to Theorem 2.14, the convergence property of the ANLS framework can be written

as follows.

Corollary 3.1. If a minimum of each subproblem in Eq. (3.2) is attained in each step,

every limit point of the sequence {
(

W(i),H(i)
)

} generated by the ANLS framework is

a stationary point.
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Note that a minimum is not required to be unique for the convergence result to

hold because we have only two blocks. On the other hand, numerical methods to solve

the NLS subproblems require some conditions for themselves to return a solution that

attains a minimum, as discussed in Chapter 4.

Each NLS subproblem in Eq. (3.2) can be decomposed into independent NLS

problems with a single right-hand side, where each problem concerns with a column

of WT or HT . This view corresponds to a BCD method with M +N vector blocks,

in which each block represents the row of W or H. In literature, however, this view

has not been emphasized because often it is more efficient to solve the NLS problem

with multiple right-hand sides altogether.

3.1.2 BCD with 2K vector blocks–HALS/RRI algorithm

Let us now partition the unknowns into 2K blocks in which each block is a column in

W or H. In this case, it is easier to consider the objective function in the following

form:

f(w1, · · · ,wK ,h1, · · · ,hK) =
1

2
‖A−

K
∑

k=1

wkh
T
k ‖2F , (3.3)

where W = (w1, · · ·wK) ∈ R
M×K
+ and H = (h1, · · · ,hK) ∈ R

N×K
+ . The form in

Eq. (3.3) represents that A is approximated by the sum of K rank-one matrices.

Following the BCD scheme, we can minimize f by iteratively solving

wk ← arg min
wk≥0

f(w1, · · · ,wK ,h1, · · · ,hK)

for k = 1, · · · , K, and

hk ← arg min
hk≥0

f(w1, · · · ,wK ,h1, · · · ,hK)

for k = 1, · · · , K. These subproblems appear as

min
w≥0
‖whT

k −Rk‖2F and min
h≥0
‖wkh

T −Rk‖2F , (3.4)
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where

Rk = A−
K
∑

k̃=1,k̃ 6=k

wk̃h
T

k̃
. (3.5)

A promising aspect of this 2K block case is that each subproblem in Eq. (3.4) has a

closed-form solution, as characterized in the following theorem.

Theorem 3.2. Consider a minimization problem

min
v≥0
‖uvT −B‖2F (3.6)

where B ∈ R
M×N and u ∈ R

M are given. If u is a nonzero vector, v = [BTu]+
uTu

is the

unique solution, where [bT
i u]+ = max(bT

i u, 0).

Proof. We show element by element. Regarding the ith element of v, vi, the problem

in Eq. (3.6) is narrowed down to

min
vi≥0
‖uvi − bi‖2F ,

where bi is the i
th column of B. Let h(vi) = ‖uvi−bi‖22 = ‖u‖22v2i − 2viu

Tbi+ ‖bi‖22.

Since ∂h
∂vi

= 2(vi‖u‖22−bT
i u), it is clear that the minimum value of h(vi) is obtained at

vi =
bT
i u

uTu
if bT

i u ≥ 0. If bT
i u < 0, the objective function value increases as vi becomes

larger above zero. Therefore, the minimum value is obtained at vi = 0 if bT
i u < 0.

Combining these two cases, the solution can be expressed as vi =
[bT

i u]+
uTu

.

Using Theorem 3.6, the solutions of Eq. (3.4) can be written as

wk ←
[Rkhk]+
‖hk‖22

and hk ←
[RT

kwk]+
‖wk‖22

. (3.7)

This 2K-block BCD algorithm has been studied in the name of the hierarchical al-

ternating least squares (HALS) method by Cichochi et al. [25, 24] and the rank-one

residue iteration (RRI) independently by Ho [46]. In view of Theorem 2.14, the

convergence property of the HALS/RRI algorithm can be written as follows.
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Corollary 3.3. If the columns of W and H remain nonzero throughout all the iter-

ations and if the minimum of each problem in Eq. (3.4) is uniquely attained, every

limit point of the sequence {
(

W(i),H(i)
)

} generated by the HALS/RRI algorithm is a

stationary point.

In practice, zero columns could occur fairly easily inW orH during the HALS/RRI

algorithm: In [40, 25], a small positive number is used for the maximum operator in

Eq. (3.7). That is, max(·, ǫ) is used instead of max(·, 0) with ǫ = 10−16.

For an efficient implementation, it is not necessary to explicitly compute Rk.

Replacing Rk in Eq. (3.7) with the expression in Eq. (3.5), the solutions can be

rewritten as

wk ←
[

wk +
(AH)·k − (WHTH)·k

(HTH)kk

]

+

, (3.8a)

hk ←
[

hk +
(ATW)·k − (HWTW)·k

(WTW)kk

]

+

. (3.8b)

The choice of update formulae is related with the choice of an update order. Two

versions of an update order can be considered:

w1 → h1 → · · · → wK → hK (3.9)

and

w1 → · · · → wK → h1 → · · · → hK . (3.10)

When using Eq. (3.7), because Rk is explicitly computed, the order of updates should

be Eq. (3.9) for efficiency. When using Eqs. (3.8), although either Eq. (3.9) or

Eq. (3.10) can be used, Eq. (3.10) tends to be more efficient in certain environ-

ments such as MATLAB. The convergence property in Corollary 3.3 is invariant of

the choice of these orders. To update all the elements in W and H, Eq. (3.7) with

the ordering of Eq. (3.9) require 8KMN + 3K(M + N) flops, whereas Eqs. (3.8)

with either choice of ordering require 4KMN + (4K2 + 6K)(M + N) flops. When
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K ≪ min(M,N), the latter is more efficient. Moreover, the memory requirement of

Eqs. (3.8) is smaller because Rk need not be stored. For more details, see [24].

3.1.3 BCD with K(M +N) scalar blocks

In one extreme, the unknowns can be partitioned into K(M +N) blocks of scalars.

In this case, every element of W and H is considered as a block in the context of

Theorem 2.14. In this case, it helps to write the objective function as a quadratic

function of a scalar wmk or hnk assuming all other elements in W and H are fixed:

f(wmk) =
1

2
‖(Rk)m· − wmkh

T
·k‖22 + constant, (3.11a)

f(hnk) =
1

2
‖(Rk)·n −w·khnk‖22 + constant. (3.11b)

According to the BCD framework, we iteratively update each element by

wmk ← arg min
wmk≥0

f(wmk) =

[

wmk +
(AH)mk − (WHTH)mk

(HTH)kk

]

+

, (3.12a)

hnk ← arg min
hnk≥0

f(hnk) =

[

hnk +
(ATW)nk − (HWTW)nk

(WTW)kk

]

+

. (3.12b)

The updates of wmk and hnk are independent of all other elements in the same

column. Therefore, it is possible to update all the elements in the same column of W

and H simultaneously. Once we organize the updates of Eqs. (3.12) column-wise, the

result is the same as Eqs. (3.8). Hence, a particular arrangement of the BCD method

with scalar blocks is equivalent to the BCD method with 2K vector blocks discussed

in Section 3.1.2. Accordingly, the HALS/RRI method can be derived by the BCD

method either with vector blocks or with scalar blocks. On the other hand, it is not

possible to simultaneously solve the rows of W and H because their solutions depend

on each other.

The convergence property of the scalar block case is similar to that of the vector

block case.

Corollary 3.4. If the columns of W and H remain nonzero throughout all the it-

erations and if the minimum of each problem in Eqs. (3.12) is uniquely attained,

29



every limit point of the sequence {
(

W(i),H(i)
)

} generated by the BCD method with

K(M +N) scalar blocks is a stationary point.

The multiplicative updating algorithm [65], which is one of the most widely used

for NMF, also focuses on each element in its derivation. It is however different in a

sense that the solution updated for each element is not the optimal one for the sub-

problems in Eq. (3.12). We discuss more about the multiplicative updating algorithm

in Section 3.2.1

3.1.4 BCD for NMF with regularization

To incorporate extra constraints or prior information, various regularization terms

can be added to the NMF formulation in Eq. (3.1). In general, we can consider a

minimization problem as follows:

min
W,H≥0

1

2

∥

∥A−WHT
∥

∥

2

F
+ φ(W) + ψ(H), (3.13)

where φ(·) and ψ(·) are regularization terms that often involve matrix or vector norms.

Here we discuss the Frobenius-norm and the l1-norm regularization and show how

NMF regularized by those norms can be easily computed using the BCD method.

In this subsection, scalars α or β represent parameters that control the strength of

regularization.

The Frobenius-norm regularization [87, 56] corresponds to

φ(W) = α‖W‖2F and ψ(H) = β ‖H‖2F . (3.14)

The Frobenius-norm regularization may be used to prevent the elements of W or H

from growing too large in their absolute values. In addition, it can be adopted to

stabilize the BCD methods. In the two matrix block case, since the uniqueness of

the minimum is not required according to Corollary 3.1 [44], the full column rank

condition is not necessary for the convergence of the BCD method. It is however
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needed for some algorithms that solve the NLS subproblems, as we discuss in Sec-

tion 4.5. The Frobenius-norm regularization ensures that the NLS subproblem of the

two matrix block case is of full column rank, as shown below. In the 2K vector block

or the K(M + N) scalar block case, the condition that wk and hk remain nonzero

throughout all the iterations can be relaxed when the Frobenius-norm regularization

is used.

Applying the BCD framework with two matrix blocks to Eq. (3.13) with the

regularization term of Eq. (3.14), W can be updated as

W← arg min
W≥0

∥

∥

∥

∥

∥

∥

∥







H
√
2αIK






WT −







AT

0K×M







∥

∥

∥

∥

∥

∥

∥

2

F

, (3.15)

andH can be updated with a similar reformulation. Clearly, if α is nonzero,







H
√
2αIK







in Eq. (3.15) is of full column rank. Applying the BCD framework with two vector

blocks, a column of W is updated as

wk ←
[

(HTH)kk
(HTH)kk + 2α

wk +
(AH)·k − (WHTH)·k

(HTH)kk + 2α

]

+

. (3.16)

Observe that if α is nonzero, the solution of Eq. (3.16) is uniquely defined without

requiring hk to be a nonzero vector.

The l1-norm regularization has been adopted to promote sparsity in the factor

matrices. Sparsity was shown to improve the ‘part-based’ interpretation [48] or to

improve clustering ability of NMF [55, 58]. When sparsity is desired on matrix H,

the l1-norm regularization can be set as

φ(W) = α‖W‖2F and ψ(H) = β
N
∑

n=1

‖hn·‖21, (3.17)

where hn· represents the nth row of H. The l1-norm term of ψ(H) in Eq. (3.17)

promotes sparsity on H while the Frobenius norm term of φ(W) is needed to prevent
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W from growing too large. Similarly, sparsity can be imposed on matrix W or on

the both of W and H.

Applying the BCD framework with two matrix blocks to Eq. (3.13) with the

regularization term of Eq. (3.17), W can be updated as Eq. (3.15), and H can be

updated as

H← argmin
H≥0

∥

∥

∥

∥

∥

∥

∥







W

√
2β11×K






HT −







A

01×N







∥

∥

∥

∥

∥

∥

∥

2

F

. (3.18)

Applying the BCD framework with two vector blocks, a column of W is updated as

Eq. (3.16), and a column of H is updated as

hk ←
[

hk +
(ATW)·k −H((WTW)·k + 2β1K)

(WTW)kk + 2β

]

+

. (3.19)

Note that the l1-norm term in Eq. (3.17) is written as the sum of the squares of

the l1-norm of the columns of H. Alternatively, we can impose the l1-norm based

regularization without squaring: That is,

φ(W) = α‖W‖2F and ψ(H) = β
N
∑

n=1

K
∑

k=1

|hnk| . (3.20)

Although both Eq. (3.17) and Eq. (3.20) promote sparsity, the squared form in

Eq. (3.17) is easier to handle with the two matrix block case, as shown above. Ap-

plying the 2K vector block framework on Eq. (3.13) with the regularization term of

Eq. (3.20), the update for a column of h is written as

hk ←
[

hk +
(ATW)·k − (HWTW)·k + β1K

(WTW)kk

]

+

.

For more information, see [24], Section 4.7.4 of [26], and Section 4.5 of [46]. When the

BCD framework with two matrix blocks is used, a custom algorithm for l1-regularized

least squares problem has to be involved: See, e.g., [34].
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3.2 Other Approaches

3.2.1 Multiplicative updating rules

The multiplicative updating rule [65] is by far the most popular algorithm for NMF.

In this algorithm, each element is updated by a multiplication as

wmk ← wmk

(AH)mk

(WHTH)mk

and hnk ← hnk
(ATW)nk

(HWTW)nk
. (3.21)

Since elements are updated in this multiplication form, the nonnegativity is always

satisfied when A is nonnegative. This algorithm can be contrasted with the HALS

algorithm as follows. Observing that

∂f

∂wmk

∝ (WHTH)mk − (AH)mk and

∂f

∂hnk
∝ (HWTW)nk − (ATW)nk,

an element-wise gradient descent update can be written as

wmk ← wmk + λmk

(

(AH)mk − (WHTH)mk

)

,

hnk ← hnk + µnk

(

(ATW)nk − (HWTW)nk
)

,

where λmk and µnk represent step-lengths. The multiplicative updating rule is ob-

tained by taking

λmk =
wmk

(WHHT )mk

and µnk =
hnk

(WTWH)nk
, (3.22)

whereas the HALS algorithm interpreted as the BCD method with scalar blocks as

in Eqs. (3.12) is obtained by taking

λmk =
1

(HTH)kk
and µnk =

1

(WTW)kk
. (3.23)

The step-lengths chosen in the multiplicative updating rule is conservative enough so

that the result is always nonnegative. On the other hand, the step-lengths chosen

in the HALS algorithm could potentially lead to a nonnegative value, and therefore
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the projection [·]+ is involved. Whereas the HALS algorithm is built upon the BCD

framework and therefore convergence property in Corollary 3.4 holds, the property

does not hold for the multiplicative updating rule since the step-lengths in Eq. (3.22)

does not achieve the optimal solution. In practice, the convergence of the HALS

algorithm is much faster than that of the multiplicative updating.

Lee and Seung [65] showed that under the multiplicative updating rule, the ob-

jective function in Eq. (3.1) is non-increasing. However, it is unknown whether it

attains a stationary point. Gonzalez and Zhang [43] demonstrated the difficulty, and

the slow convergence of multiplicative updates has been reported in [56, 71] and in

Chapter 4 of this thesis. As an effort to overcome this issue, Lin [73] proposed a

modified update rule for which every limit point is stationary; however, after this

modification, the update rule becomes additive instead of multiplicative.

3.2.2 Alternating least squares method

In the BCD framework with the two blocks as shown in Section 3.1.1, it is important to

find a minimum of the nonnegativity-constrained least squares (NLS) subproblems in

Eq. (3.2). In some early work on NMF, Berry et al. [9] has proposed to approximately

solve these NLS subproblems hoping to accelerate the algorithm. In their alternating

least squares (ALS) method, they solved the least squares problems ignoring the

nonnegativity constraints, and then negative elements in the computed solution are

set to zeros. However, this solution does not achieve a minimum of the subproblems

with nonnegativity constraints. Therefore, although each iteration of the ALS method

is efficient, the convergence property in Corollary 3.1 is not applicable to the ALS

method. In fact, the ALS method does not necessarily decrease the objective function

after each iteration as shown in Chapter 4.

It is interesting to note that the HALS method does not have this problem al-

though the same projection is used. In the HALS method, a quadratic objective
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function is minimized with respect to each column or each element in W or H, and

the solution is set back to zero when negative. In this case, the projected solution is

indeed the minimum of the subproblem with nonnegativity constraints.

3.2.3 Successive rank-one deflation

Some algorithms have been designed to compute NMF based on successive rank-one

deflation. This approach is motivated from the fact that the singular value decompo-

sition (SVD) can be computed through successive rank-one deflation; however, when

considered for NMF, the rank-one deflation method has a few issues as we summarize

below.

Let us first recapitulate the deflation approach for SVD. Consider a matrix A ∈

R
M×N of rank R and its SVD written as

A = UΣVT =

R
∑

r=1

σrurv
T
r , (3.24)

where U =

[

u1 · · · uR

]

∈ R
M×R and V =

[

v1 · · · vR

]

∈ R
N×R are orthogo-

nal matrices, and Σ = diag (σ1, · · · , σR) ∈ R
R×R with σ1 ≥ · · · ≥ σR ≥ 0. Recall from

Section 2.1.1 that the rank-K SVD for K < R is a truncation of Eq. (3.24) obtained

by taking only the first K singular values and corresponding singular vectors:

ÃK = ŨKΣ̃KṼ
T
K =

K
∑

k=1

σkukv
T
k ,

where ŨK ∈ R
M×K and ṼK ∈ R

N×K are sub-matrices ofU andV obtained by taking

the left K columns. As state in Theorem 2.2, the best rank-K approximation of A

in terms of minimizing the l2-norm or the Frobenius norm of the residual matrix is

achieved by the rank-K SVD [97, 42]. The rank-K SVD, particularly when K ≪ R,

can be computed through successive rank-one reduction as follows. First, the best

rank-one approximation, σ1u1v
T
1 , is computed by an efficient algorithm such as the

power iteration. Then, the residual matrix is obtained as E1 = A − σ1u1v
T
1 =
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∑R

r=2 σrurv
T
r , and the rank of E1 is R − 1. Applying the power iteration to E1, its

best rank-one approximation, σ2u2v
T
2 , is obtained, and the residual matrix E2, whose

rank is R− 2, can be found in the same manner: E2 = E1− σ2u2v
T
2 =

∑R

r=3 σrurv
T
r .

Repeating this process for K times, one can obtain the rank-K SVD.

When it comes to NMF, Corollary 2.4 provides a useful insight about the K = 1

case. That is, for a nonnegative matrix, there exists a pair of nonnegative vectors that

achieve the best rank-one approximation. In other words, for a nonnegative matrix,

imposing nonnegativity on low-rank factors does not result in worse approximation

error if K = 1. This elegant property, however, is not very useful when K ≥ 2. After

the best rank-one approximation is deflated, the residual matrix E1 may contain

negative elements; if E1 contains negative elements, Corollary 2.4 is not applicable

any more.

In general, successive rank-one deflation is not an optimal approach for NMF

computation. Let us take a look at a small example which demonstrates this problem.

Consider matrix A given as

A =













4 6 0

6 4 0

0 0 1













.

The best rank-one approximation of A is shown as B1 below. The residual matrix is

Ẽ1 = A−B1, which contains nonnegative elements.

B1 =













5 5 0

5 5 0

0 0 0













, Ẽ1 =













−1 1 0

1 −1 0

0 0 1













.

One of the best rank-one approximation of Ẽ1 with nonnegativity constraints is B2,
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and the residual matrix is Ẽ2:

B2 =













0 0 0

0 0 0

0 0 1













, Ẽ2 =













−1 1 0

1 −1 0

0 0 0













.

The nonnegative rank-two approximation obtained by this rank-one deflation ap-

proach is

B1 +B2 =













5 5 0

5 5 0

0 0 1













.

However, the best nonnegative rank-two approximation of A is in fact Ã2 with resid-

ual matrix E2:

Ã2 =













4 6 0

6 4 0

0 0 0













, E2 =













0 0 0

0 0 0

0 0 1













.

Therefore, a strategy that successively finds the best rank-one approximation with

nonnegativity constraints and deflates in each step does not lead to an optimal solu-

tion of NMF.

Due to this difficulty, some variations of rank-one deflation has been investigated

for NMF. Biggs et al. [12] proposed a rank-one reduction algorithm in which they look

for a nonnegative submatrix that is close to a rank-one approximation. Once such

a submatrix is identified, they compute the best rank-one approximation using the

power method and ignore the residual. Gillis and Glineur [41] sought a nonnegative

rank-one approximation under the constraint that the residual remains nonnegative.

Due to this constraints, however, the problem of finding the nonnegative rank-one

approximation is more complicated and computationally expensive than the power

iteration. Optimization properties such as convergence to a stationary point has not

been shown for these modified rank-one reduction methods.

37



It is worth noting the difference between the HALS algorithm, described as the

2K vector block case in Section 3.1.2, and the successive rank-one deflation. Both

approaches have a similarity in that the best rank-one approximation of the resid-

ual matrix with nonnegativity constraints is computed in each step, filling in the kth

columns of W and H for k = 1, · · · , K. Whereas the columns of W and H are

computed only once in the successive rank-one deflation, the HALS algorithm repeat-

edly updates all the columns until a local minimum is achieved. This repetition is

necessary in NMF unlike in SVD.
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CHAPTER IV

A FAST ACTIVE-SET-LIKE METHOD FOR

NONNEGATIVE MATRIX FACTORIZATION

In this chapter, we introduce a new and fast algorithm for NMF based on the ANLS

framework described in Section 3.1.1. Previous NMF algorithms using the ANLS

framework include the active-set method [63, 56], the projected gradient method [71],

and the projected quasi-Newton method [54]. The names tell how each algorithm

solves the nonnegativity-constrained least squares (NLS) subproblem. The projected

gradient and the projected quasi-Newton methods apply techniques from uncon-

strained optimization with modifications for nonnegativity constraints. The active-set

method searches for the optimal active and passive sets of variables by maintaining

working sets as candidates. At each iteration, an unconstrained least squares problem

is solved, and the working sets are updated based on the result. The block principal

pivoting method [89, 53], which we call an active-set-like method due to its similarity

with the active-set method, also follows this framework, but it overcomes a limita-

tion of the active-set method. Unlike the active-set method, in which typically only

one variable is exchanged between working sets, the block principal pivoting method

allows the exchanges of multiple variables with a goal of finding the optimal active

and passive sets faster. In this chapter, we adopt the block principal pivoting method

in NMF computation. We introduce ideas that improve the block principal pivoting

method in the context of NMF and then build a new algorithm for NMF.

The block principal pivoting method was earlier introduced by Judice and Pires [89,

53] to solve the NLS problems with a single right hand side. In the computation of

NMF, it is important to efficiently solve the NLS problems with multiple right hand
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sides, and we introduce strategies to accelerate the block principal pivoting method

for multiple right hand sides. These acceleration strategies are based on important

observations on the typical structure of the NLS problems arising in the NMF com-

putation.

Thorough experimental comparisons among several NMF algorithms, including

the one proposed in this chapter, will follow the introduction of the new algorithm.

The ANLS-based algorithms [71, 54, 56] and the HALS algorithm [24] appeared re-

cently, and there has not been other papers with substantial comparisons such as the

ones we offer in this chapter. The comparisons were performed on text, image, and

synthetic data sets, and the results are demonstrated showing the relative computa-

tional efficiency of various NMF algorithms. The proposed new algorithm exhibits

state-of-the-art performance allowing only HALS to be comparable. We also show a

condition under which the proposed method outperforms the HALS algorithm.

The rest of this chapter is organized as follows. In Section 4.1, the ANLS frame-

work for NMF and related background materials are introduced. In Section 4.2, our

new algorithm for NMF is described. Implementation details and experimentation

settings are shown in Section 4.3, and comparison results are demonstrated in Sec-

tion 4.4. We conclude the chapter in Section 4.5 with discussion.

4.1 ANLS Framework for NMF

We begin by recapitulating the ANLS framework described in Section 3.1.1, as follows.

1. Initialize H ∈ R
K×N with nonnegative elements.

2. Repeat solving the following problems until a stopping criterion is satisfied:

min
W≥0

∥

∥HWT −AT
∥

∥

2

F
(4.1a)

where H is fixed, and

min
H≥0

∥

∥WHT −A
∥

∥

2

F
(4.1b)
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Figure 4.1: Typical structure of the NLS problems arising in NMF computation.

where W is fixed.

3. The columns of W are normalized to unit l2-norm and the columns of H are

scaled accordingly.

It is important to observe that the NLS problems in Eqs. (4.1) have special

characteristics. NMF is a dimension reduction algorithm, which is applied to high-

dimensional data. The original dimension is very large, e.g., several thousands or

more, and the reduced dimension is small, e.g., on the order of tens. Therefore, the

coefficient matrix W ∈ R
M×K in Eq. (4.1b) is typically very long and thin (M ≫ K),

and the coefficient matrix H ∈ R
N×K in Eq. (4.1a) is also long and thin (N ≫ K)

in general. At the same time, the matrices WT and HT of unknown variables in

Eqs. (4.1a) and (4.1b), respectively, are flat and wide for the same reason. Figure 4.1

illustrates these characteristics. These observations are critical in designing an effi-

cient algorithm for the subproblems in Eq. (4.1), and we will revisit this point in later

sections.
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In order to design an NMF algorithm based on the ANLS framework, one has to

devise a specific method to solve the subproblems in Eqs. (4.1). A classic algorithm

for the NLS problem is the active-set method by Lawson and Hanson [63]. The active-

set method searches for the optimal active and passive sets by exchanging a variable

between two working sets. Note that if we know the passive (i.e., strictly positive)

variables of the solution in advance, then an NLS problem can be easily solved by

a simple unconstrained least squares procedure on the passive variables. Although

the Lawson and Hanson’s algorithm has been a standard for the NLS problems,1 it is

extremely slow when used for NMF in a straightforward way. Faster versions of the

algorithm were recently developed by Bro and De Jong [15] and Van Benthem and

Keenan [99], and Kim and Park utilized them in their NMF algorithm [56].

A major limitation of the active-set method is that the variables of working sets are

exchanged satisfying the nonnegativity of the solution vector while making sure that

the objective function decreases after each iteration. As a result, typically only one

variable is exchanged between working sets per iteration, slowing down the algorithm

when the number of unknowns is large. Methods based on iterative optimization

schemes such as the projected gradient method due to Lin [71] and the projected

quasi-Newton method due to Kim et al. [54] are free of the above limitation. These

algorithms are modified from techniques in unconstrained optimization by providing

specialized rules to choose step-length and projecting the solution to the feasible

nonnegative orthant at every iteration.

The block principal pivoting method overcomes the limitation of the active-set

method in a different fashion. We now describe this method in detail.

1Lawson and Hanson’s algorithm is adopted as a MATLAB function lsqnonneg.
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4.2 Block Principal Pivoting Method

In this section, we present the block principal pivoting method for the NLS problems

and the NMF algorithm based on the method. We will first review the block principal

pivoting method that was developed for the NLS problems with a single right-hand

side [53] and then introduce methods that improve upon this to handle multiple

right-hand sides efficiently.

4.2.1 NLS with a single right-hand side vector

For the moment, let us focus on the NLS problem with a single right-hand side vector

formulated as

min
x≥0
‖Bx− c‖22 , (4.2)

where B ∈ R
p×q, c ∈ R

p×1, x ∈ R
q×1, and p ≥ q. The subproblems in Eqs. (4.1) can

be decomposed into several independent instances of Eq. (4.2) with respect to each

right-hand side vector. Thus, an algorithm for Eq. (4.2) is a basic building block for

an algorithm for Eqs. (4.1).

The Karush-Kuhn-Tucker optimality condition for Eq. (4.2) is written as follows:

y = BTBx−BTc (4.3a)

y ≥ 0 (4.3b)

x ≥ 0 (4.3c)

xiyi = 0, i = 1, · · · , q. (4.3d)

We assume that matrix B has full column rank. In this case, matrix BTB is positive

definite, and the problem in Eq. (4.2) is strictly convex. Then, a solution x that

satisfies the conditions in Eqs. (4.3) is the optimal solution of Eq. (4.2). Problems in

the form of Eqs. (4.3) are known as linear complementarity problems (LCP).

We divide the index set {1, · · · , q} into two groups F and G such that F ∪ G =

{1, · · · , q} and F ∩ G = ∅. Let xF , xG , yF , and yG denote the subsets of variables
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with corresponding indices, and let BF and BG denote the submatrices of B with

corresponding column indices. Initially, we assign

xG = 0 and yF = 0.

That is, all the elements of xG and yF are set as zero. Then, x and y always satisfy

Eq. (4.3d) for any values of xF and yG . Now, we compute xF and yG using Eq. (4.3a)

and check whether the computed values of xF and yG satisfy Eqs. (4.3b) and (4.3c).

The computation of xF and yG is done as follows:

xF = argmin
xF

‖BFxF − c‖22 , (4.4a)

yG = BT
G (BFxF − c). (4.4b)

One can first solve for xF in Eq. (4.4a) and substitute the result into Eq. (4.4b). We

call the pair (xF ,yG) a complementary basic solution if it is obtained by Eqs. (4.4).

If a complementary basic solution (xF ,yG) satisfies xF ≥ 0 and yG ≥ 0, then

it is called feasible. In this case, current x is the optimal solution of Eq. (4.2),

and the algorithm terminates. Otherwise, a complementary basic solution (xF ,yG)

is infeasible, and we need to update F and G by exchanging variables for which

Eq. (4.3b) or Eq. (4.3c) does not hold. Formally, we define the following index set

V = {i ∈ F : xi < 0} ∪ {i ∈ G : yi < 0} , (4.5a)

and then a variable xi with i ∈ V is called an infeasible variable. Now, choose a

non-empty subset V̂ ⊆ V. Then, F and G are updated by the following rules:

F = (F − V̂) ∪ (V̂ ∩ G), (4.6a)

G = (G − V̂) ∪ (V̂ ∩ F). (4.6b)

The size |V̂| represents how many variables are exchanged per iteration. If |V̂| > 1,

then the algorithm is called a block principal pivoting algorithm; if |V̂| = 1, then the
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Algorithm 4.1 Block principal pivoting method for the NLS problem with a single
right-hand side vector

Input: B ∈ R
p×q and c ∈ R

p

Output: x(∈ R
q×1) = argminx≥0 ‖Bx− c‖22

1: Initialize F = ∅, G = {1, · · · , q}, x = 0, y = −BT c, α = 3, and β = q + 1
2: Compute xF and yG by Eqs. (4.4).
3: while (xF ,yG) is infeasible do
4: Compute V by Eqs. (4.5).
5: If |V| < β, set β = |V|, α = 3, and V̂ = V.
6: If |V| ≥ β and α ≥ 1, set α = α− 1 and V̂ = V.
7: If |V| ≥ β and α = 0, set V̂ by Eq. (4.7).
8: Update F and G by Eqs. (4.6).
9: Update xF and yG by Eqs. (4.4).
10: end while

algorithm is called a single principal pivoting algorithm. The active-set method can

be understood as an instance of single principal pivoting algorithms. The algorithm

repeats this procedure until the number of infeasible variables (i.e., |V̂|) becomes zero.

In order to speed up the search procedure, one usually uses V̂ = V, which we call

the full exchange rule. The full exchange rule means that we exchange all variables

of F and G that do not satisfy Eqs. (4.3), and the rule accelerates computation by

reducing the number of iterations required until termination. However, contrary to

the active-set method in which the variable to exchange is carefully selected to reduce

the objective function, the full exchange rule may lead to a cycle and fail to find an

optimal solution although it occurs rarely. To ensure finite termination, we need to

employ a backup rule, which uses the following exchange set for Eqs. (4.6):

V̂ = {i : i = max {i ∈ V}} . (4.7)

The backup rule, where only the infeasible variable with the largest index is ex-

changed, is a single principal pivoting rule. This simple exchange rule guarantees a

finite termination: Assuming that matrix B has full column rank, the exchange rule

in Eq. (4.7) returns the solution of Eq. (4.3) in a finite number of iterations [53].

Combining the full exchange rule and the backup rule, the block principal pivoting
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method for the NLS problem with a single right-hand side is obtained as summarized

in Algorithm 4.1. Because the backup rule is much slower than the full exchange

rule, it is used only if the full exchange rule does not work well. Finite termination

of Algorithm 4.1 is achieved by controlling the number of infeasible variables. In

Algorithm 4.1, variable α is used as a buffer on the number of the full exchange

rules that may be tried. If the full exchange rule increases the number of infeasible

variables, then α is reduced by one. Once α becomes zero, the backup rule is used

until it makes the number of infeasible variables smaller than the lowest value achieved

so far, which is stored in β. This has to occur in a finite number of steps because the

backup rule has a finite termination property. As soon as the backup rule achieves

a new lowest number of infeasible variables, we return to the full exchange rule. We

used three as the default value of α, which means that we can try the full exchange

rule up to three times until it reduces the number of infeasible variables. Since the

number of infeasible variables is systematically reduced, the algorithm terminates in

a finite number of steps.

The block principal pivoting method was shown very efficient for the NLS problems

[89, 19]. In principle, the computational cost of the block principal pivoting method

will depend on how often the full exchange rule fails so that the backup rule has to

be activated. In our extensive tests in this chapter, the backup rule appearance was

not observed, suggesting that the full exchange rule works well in NMF. Since the

full exchange rule allows the exchanges of multiple variables between F and G, the

block principal pivoting method becomes much faster than the active-set method, as

we report in Section 4.4.

One might relate the two sets, F and G, of the block principal pivoting method

to the passive and active sets in the active-set method. However, they are not neces-

sarily identical. In the active-set method, the solution is sought while satisfying the

condition x ≥ 0, so a variable xi in which i is in the passive set is required to satisfy
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Figure 4.2: An example of the grouping of right-hand side vectors when q = 10 and
r = 6. Dark cells indicate variables with indices in F , which need to be computed
by Eq. (4.9). By grouping the columns that have a common F set, i.e., columns
{1, 3, 5},{2, 6} and {4}, we can avoid redundant computation for Cholesky factoriza-
tion in solving Eq. (4.9).

xi ≥ 0 in every iteration. In the block principal pivoting method, on the other hand,

a variable xi with i ∈ F can be of any sign except for the final iteration. Therefore,

the block principal pivoting method does not require an initial solution with x ≥ 0

while the active-set method does.

4.2.2 NLS with multiple right-hand side vectors

Now suppose we need to solve the following NLS problem:

min
X≥0
‖BX−C‖2F , (4.8)

where B ∈ R
p×q, C ∈ R

p×r, and X ∈ R
q×r. It is possible to simply run Algorithm 4.1

for each right-hand side vector c1, · · · , cr, where C = (c1, · · · , cr), since the columns

of X do not depend on each other. However, this approach is not computationally

efficient, and we will explain how we obtain an efficient algorithm for the multiple

right-hand side case using the ideas from [15] and [99] in the context of the block

principal pivoting method.

In Algorithm 4.1, the major computational burden is from the need to compute
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xF and yG as shown in Eqs. (4.4). We can solve Eq. (4.4a) by a normal equation

BT
FBFxF = BT

Fc, (4.9)

and Eq. (4.4b) can be rewritten as

yG = BT
GBFxF −BT

Gc. (4.10)

We need BT
FBF , B

T
Fc, B

T
GBF , and BT

Gc for solving Eqs. (4.9) and (4.10), and these

matrices and vectors vary throughout iterations because F and G are updated in each

iteration.

The improvements are closely related with the observations mentioned in Sec-

tion 4.1. First, note that for the NLS problems arising from NMF, matrix B is

typically very long and thin, and computing BT
FBF , B

T
Fc, B

T
GBF , and BT

Gc is com-

putationally expensive. However, we can compute BTB and BTC in the beginning

and reuse them in later iterations. As BT
FBF , B

T
Fc, B

T
GBF , and BT

Gc can be retrieved

as submatrices of BTB and BTC for any F and G, we can avoid expensive matrix-

matrix multiplications. Since the column size of B is small for the NLS problems

arising from NMF, storage needed for BTB and BTC will also be small. This idea is

also applicable to the single right-hand side case, but its impact is more dramatic in

the multiple right-hand side case.

Another improvement comes from the fact that matrix X is typically flat and

wide in the NLS problems for NMF. Suppose we simultaneously run Algorithm 4.1

for many right-hand side vectors. In each iteration, we have index sets Fj and Gj
for each column j ∈ {1, · · · , r}, and we must compute xFj

and yGj
using Eqs. (4.9)

and (4.10). The idea is to find groups of columns that share the same index sets

Fj and Gj and solve Eq. (4.9) for the columns in the same group. By doing so, we

avoid repeated computation for Cholesky factorization in solving Eq. (4.9). Figure 4.2

illustrates this grouping idea. Note that if X is flat and wide, which is the case for the

NLS problems in NMF, more columns are likely to share their index sets Fj and Gj ,
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Algorithm 4.2 Block principal pivoting method for the NLS with multiple right-
hand side vectors. XFj

and YGj
represents the subsets of j-th column of X and Y

indexed by Fj and Gj , respectively.
Input: B ∈ R

p×q,C ∈ R
p×r

Output: X(∈ R
q×r) = argminx≥0 ‖BX−C‖2F

1: Compute BTB and BTC.
2: Initialize Fj = ∅ and Gj = {1, · · · , q} for all j ∈ {1, · · · , r}. Set X = 0, Y =
−BTC, α(∈ R

r) = 3, and β(∈ R
r) = q + 1.

3: Compute XFj
and YGj

for all j ∈ {1, · · · , r} by Eqs. (4.4) using column grouping.
4: while any (XFj

,YGj
) is infeasible do

5: Find the indices of columns in which the solution is infeasible: I =
{

j : (XFj
,YGj

) is infeasible
}

.
6: Compute Vj for all j ∈ I by Eqs. (4.5).

7: For all j ∈ I with |Vj| < βj , set βj = |Vj |, αj = 3 and V̂j = Vj .
8: For all j ∈ I with |Vj| ≥ βj and αj ≥ 1, set αj = αj − 1 and V̂j = Vj .
9: For all j ∈ I with |Vj| ≥ βj and αj = 0, set V̂j by Eq. (4.7).
10: Update Fj and Gj for all j ∈ I by Eqs. (4.6).
11: Update XFj

and YGj
for all j ∈ I by Eqs. (4.4) using column grouping.

12: end while

allowing us to obtain bigger speed-up. We summarize the improved block principal

pivoting method for multiple right-hand sides in Algorithm 4.2.

4.2.3 NMF based on ANLS with block principal pivoting

The block principal pivoting method combined with the improvements is quite effi-

cient for the NLS problems with multiple right-hand sides. To compute NMF, we use

Algorithm 4.2 to solve the subproblems in Eqs. (4.1). As explained in Section 3.1.4,

the block principal pivoting method can also be applied to the Frobenius norm or

l1-norm regularized NMF, because the subproblems in those regularized formulations

appear as the NLS problems with multiple right-hand sides. Implementation issues

such as a stopping criterion are discussed in Section 4.3.

4.3 Implementation and Data Sets

We describe the details of our implementation and data sets used for comparisons.
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4.3.1 NMF algorithms compared

We compared the following algorithms for NMF. Due to space limitations, we do not

present the details of other algorithms but only refer to the papers in which they are

presented.

1. (ANLS-BPP) ANLS with the block principal pivoting method proposed in this

chapter

2. (ANLS-AS) ANLS with Kim and Park’s active-set method [56]

3. (ANLS-PGRAD) ANLS with Lin’s projected gradient method [71]

4. (ANLS-PQN) ANLS with Kim et al.’s projected quasi-Newton method [54]

5. (HALS) Cichocki and Phan’s hierarchical alternating least squares algorithm

[25, 24]

6. (MU) Lee and Seung’s multiplicative updating algorithm [65]

7. (ALS) Berry et al.’s alternating least squares algorithm [9]

We implemented our ANLS-BPP method in MATLAB. For ANLS-AS, we imple-

mented two different versions. The first one is using the grouping idea for multi-

ple right-hand sides as described in [99, 56], and we refer to this implementation

as ANLS-AS-GROUP. Alternatively, the ANLS-AS method can be implemented by

solving the NLS problems with a single right-hand side separately using the updat-

ing of the Cholesky factor. We refer to this case as ANLS-AS-UPDATE. For the

ANLS-PGRAD method, we used the MATLAB code written by its author, and for

ANLS-PQN, we refined the code written by its authors since it was not carefully

optimized for high-dimensional data, in which NMF is typically used. Our refined

version of ANLS-PQN is much faster than the original one by the authors, and thus

we used the refined version in our experiments. In [24], two versions of the HALS
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algorithm are introduced, and we used a faster version that updates all columns of

W (H) before proceeding to update H (W). We implemented MU and ALS, which

are straightforward to implement.

In all the algorithms, once we obtain H and W as the result of the ith iteration,

we used them as initial values of the (i + 1)th iteration. As iteration progress, the

solutions H and W do not change much, and therefore starting from the result of the

previous iteration is a good warm start for the next iteration. In particular, for the

block principal pivoting method, warm starting means that only the partitioning of

the indices into sets F and G from the result of the previous iteration is used instead

of specific numerical values.

4.3.2 Stopping criterion

When an iterative algorithm is executed in practice, one needs a criterion to stop

iterations. In the case of NMF, a stopping criterion can be designed to check whether

a local minimum of the objective function has been reached. In practice, one usually

checks whether a point is stationary, which can be checked by the following criterion

suggested by Lin [71].

According to the KKT condition, (W,H) is a stationary point of Eq. (3.1) if and

only if

W ≥ 0 , H ≥ 0, (4.11a)

∇fW = ∂f(W,H)/∂W ≥ 0 , ∇fH = ∂f(W,H)/∂H ≥ 0, (4.11b)

W. ∗ ∇fW = 0 , H. ∗ ∇fH = 0, (4.11c)

where .∗ represents element-wise multiplications. Defining the projected gradient

∇pfW as

(∇pfW)ij ≡















(∇fW)ij if (∇fW)ij < 0 or Wij > 0

0 otherwise
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and ∇pfH similarly, the conditions in Eqs. (4.11) can be rephrased as

∇pfW = 0 and ∇pfH = 0.

We use the norm of the projected gradients defined as

∆ =

√

‖∇pfW‖2F + ‖∇pfH‖2F . (4.12)

Using this definition, the stopping criterion is

∆

∆0
≤ ǫ, (4.13)

where ∆0 is the value of ∆ using the initial values of W and H, and ǫ is a toler-

ance value to choose. This criterion has been useful in determining when to stop

iterations, but we found some issues with it in our experiments. We explain them in

Section. 4.4.2.

4.3.3 Data sets

We have used several real-world data sets for our comparison, and the information of

four data sets is shown in Table 4.1. Among them, two text data sets are in sparse

format. The Topic Detection and Tracking 2 (TDT2) text corpus2 contains news

articles from various sources such as NYT, CNN, and VOA in 1998. The corpus is

manually labeled across 100 different topics, and it has been widely used for text

mining research. From the corpus, we randomly selected 40 topics in which the

number of articles in each topic is greater than 10. By counting the term frequency

of each term in each document, we obtained a matrix of size 19, 009× 3, 087. The 20

Newsgroups data set3 is a collection of newsgroup documents in 20 different topics.

We used a term-document matrix of size 26, 214× 11, 314.4

2http://projects.ldc.upenn.edu/TDT2/
3http://people.csail.mit.edu/jrennie/20Newsgroups/
4http://www.zjucadcg.cn/dengcai/Data/TextData.html
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Two image data sets in Table 4.1 are in dense format. The facial image database

by AT&T Laboratories Cambridge5 contains 400 facial images of 40 different people

with 10 images per person. Each facial image has 92×112 pixels in 8-bit gray level.

The resulting matrix was of size 10, 304× 400. The CMU PIE database6 is collection

of human faces under different poses, illumination conditions, and expressions. A

matrix of size 4, 096× 11, 554, from a resized version in 64× 64 pixels,7 was used for

our executions.

In addition to data sets in Table 4.1, we also employed synthetically created data

sets and massive-scale data sets. The details of these data sets are described in

Section 4.4.3 and Section 4.4.4, respectively.

4.4 Comparison Results

All experiments were executed in MATLAB on a Linux machine with a 2.66GHz

Intel Quad-core processor and 6GB memory except that the experiments on massive

data sets in Section 4.4.4 were performed on machines with higher performance as

explained there. The multi-threading option of MATLAB was disabled. In all the

executions, all the algorithms were provided with the same initial values.

4.4.1 The active-set and the block principal pivoting methods

We first report observations about the ANLS-AS and the ANLS-BPP methods. As

mentioned before, we implemented two versions of ANLS-AS: ANLS-AS-GROUP is

based on a column grouping strategy, as used in Kim and Park [56], and ANLS-

AS-UPDATE solves each right-hand side vector separately using the updating of the

Cholesky factor. We compared the performance of the two versions, and we are also

interested in how they perform compared to ANLS-BPP.

5http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
6http://www.ri.cmu.edu/projects/project_418.html
7http://www.zjucadcg.cn/dengcai/Data/FaceData.html
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Figure 4.3: Comparison of the active-set (ANLS-AS) and the block principal pivoting
(ANLS-BPP) methods on the TDT2 text data set. The left column shows the exe-
cution time of each iteration, and the right column shows cumulative execution time.
Average of 5 different random initializations are shown. Top row: K = 10, middle
row: K = 80, bottom row: K = 160.
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Figure 4.4: Comparison of the active-set (ANLS-AS) and the block principal pivoting
(ANLS-BPP) methods on the ATNT image data set. The left column shows the
execution time of each iteration, and the right column shows cumulative execution
time. Average of 5 different random initializations are shown. Top row: K = 10,
middle row: K = 80, bottom row: K = 160.
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Table 4.1: Data sets, their sizes, the sparsity of solutions, and the grouping effects of
the ANLS-AS-GROUP and the ANLS-BPP methods. Sparsities are calculated as the
proportions of zero elements in each factor. See text for the description of grouping
effects.

Data set
Size and
Format

K
Sparsity
(%)

Grouping effect (%)
BPP AS-GROUP

W H W H W H

TDT2

10 53.1 46.4 94.3 76.2 94.4 76.2
19,009×3,087 20 70.6 60.2 54.1 12.4 53.6 13.6

Sparse (99.58% sparsity) 80 85.4 77.7 40.7 3.1 28.6 3.2
160 89.4 84 39.4 2.8 21.3 2.7

20
Newsgroups

10 58.3 44.6 97.1 95.8 97 95.7
26,214×11,314 20 67.5 53.3 48.0 19.4 53.3 48.5

Sparse (99.66% sparsity) 80 80.5 73.1 9.6 0.9 7.6 1.2
160 86.8 78.8 7.4 0.7 4.6 0.8

ATNT

10 14.1 9.6 97.6 87.1 97.6 87.1
10,304×400 20 20.8 18.8 66.4 20.3 66.4 21.8

Dense 80 33.9 41.1 0.6 0.7 1.6 1.7
160 32.7 61.3 0.5 0.5 0.6 0.7

PIE 64

10 27.4 14.5 91.7 96.6 91.8 96.8
4,096×11,554 20 38.8 17.3 44.2 68.9 46.6 71.1

Dense 80 58.7 21.3 0.8 1.5 1.4 3.3
160 63.4 28.1 0.5 0.5 0.5 1.3

In Table 4.1, we present the results from the execution of ANLS-AS-GROUP and

ANLS-BPP. Both methods were executed with 5 different random initializations for

100 iterations, and average results are shown in the table. Sparsities are calculated

as the proportions of zero elements in each factor after 100 iterations. The grouping

effect (GE) is calculated as

GE =
# of Cholesky factorizations that are omitted thanks to column grouping

# of systems of equations needed to be solved
.

Both the numerator and the denominator are summed over the 100 iterations. When

GE is close to 100%, it means that significant savings are achieved; when GE is close

to zero, there are only little savings. In Table 4.1, it can be seen that significant

savings from grouping were observed when K = 10 and K = 20 whereas only limited

savings were observed when K = 80 and K = 160.

Now let us see Figures 4.3 and 4.4 where we present the average execution time
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of each iteration and their accumulation. Unlike the ANLS-PGRAD and the ANLS-

PQN methods, both the ANLS-AS and the ANLS-BPP methods solve the NLS sub-

problems in each iteration exactly. Hence, when the same initial values are provided,

solutions after each iteration from these methods are the same up to numerical round-

ing errors. It is therefore enough to observe the amount of time spent in each iteration

for the purpose of comparing these methods. In Figure 4.3, which shows results on

the TDT2 text data set, it can be seen that ANLS-AS-UPDATE remains slower than

ANLS-AS-GROUP for various K values. On the other hand, in Figure 4.4, which

shows results on the ATNT image data set, the trend is a little different: While

ANLS-AS-UPDATE performed slower than ANLS-AS-GROUP for small K values,

ANLS-AS-UPDATE became faster than ANLS-AS-GROUP for large K values. Par-

tial explanations of this difference are as follows.

For small K values, ANLS-AS-GROUP and ANLS-BPP achieved significant sav-

ings by grouping as can be seen from Table 4.1. Consequently, in the K = 10 cases

of Figures 4.3 and 4.4, ANLS-AS-GROUP was significantly faster than ANLS-AS-

UPDATE. For large K values, in contrast, it is generally expected that using the

updating of the Cholesky factor is beneficial. For the ATNT image data set, this

was the case as can be seen from the fact that ANLS-AS-UPDATE outperformed

ANLS-AS-GROUP for K = 160. For the TDT2 text data set, however, nontrivial

savings from grouping was observed even when K = 160. Hence, ANLS-AS-GROUP

remained faster than ANLS-AS-UPDATE for all K values.

It is important to note that ANLS-BPP is either as fast as ANLS-AS-GROUP or

is significantly faster than both the ANLS-AS methods. For the K = 160 case on the

ATNT data set, the iteration cost of ANLS-AS-UPDATE becomes smaller than that

of ANLS-BPP after many iterations; however, the cumulative cost of ANLS-BPP

is still much smaller than that of ANLS-AS-UPDATE. This observation suggests

that a hybrid method can be potentially investigated, where we employ ANLS-BPP
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but replace ANLS-BPP with ANLS-AS-UPDATE in later iterations only for large K

values. On the other hand, since the ANLS-AS and the ANLS-BPP methods typically

converge within 20 to 30 iterations, the benefit of the hybrid method is not expected

to be significant in practice.

Results on the 20 Newsgroups and the PIE 64 data sets showed similar trends,

and we do not present them here.

4.4.2 Comparison with other algorithms

We now show comparison results of ANLS-BPP with all other methods that are

listed in Section 4.3.1. The computational cost of each iteration and the objective

function reduced after each iteration in those algorithms are generally different, so

a fair way to compare them would be observing “how well an algorithm minimizes

the objective function in how much computation time.” Figures 4.5 and 4.6 show the

average execution results of 5 different random initializations. We have recorded the

relative objective value
(∥

∥A−WHT
∥

∥

F
/ ‖A‖F

)

at the end of each iteration, and the

time spent to compute the objective value is excluded from the execution time. One

execution result with relative objective values measured at discrete time points gives

us a piecewise-linear function, and we averaged piecewise-linear functions for different

random initializations to plot in the figures. Because the first several iterations of

ANLS-AS took too much time, the results of ANLS-AS are not shown.

The results on the TDT2 and the 20 Newsgroups data sets are shown in Figure 4.5.

When K = 10, most algorithms except ANLS-PQN tended to quickly converge.

When K = 80 or K = 160, it becomes clear that ANLS-BPP and HALS are the best

performing algorithms among the ones we tested. The ANLS-PGRAD, the ANLS-

PQN, and the MU algorithms showed a trend of convergence although the convergence

was slow, but the ALS algorithm showed difficulty in convergence. Among ANLS-

BPP and HALS, while HALS generally appeared to converge faster in early iterations,
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Figure 4.5: Relative objective value (
∥

∥A−WHT
∥

∥

F
/ ‖A‖F ) vs. execution time on

the TDT2 and the 20 Newsgroups text data sets. Average results of 5 different random
initializations are shown. Left column: TDT2, right column: 20 Newsgroups, top row:
K = 10, middle row: K = 80, bottom row: K = 160. See text for more details.
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Figure 4.6: Relative objective value (
∥

∥A−WHT
∥

∥

F
/ ‖A‖F ) vs. execution time on

the ATNT and the PIE 64 image data sets. Average results of 5 different random
initializations are shown. Left column: ATNT, right column: PIE 64, top row: K =
10, middle row: K = 80, bottom row: K = 160. See text for more details.
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ANLS-BPP was the only algorithm with comparable performance.

In Figure 4.6, execution results on the ATNT and the PIE 64 data sets are pre-

sented. Similarly to previous data sets, ANLS-PGRAD, ANLS-PQN, and MU showed

slow convergence, and ALS was unpredictable as the relative objective value fluctu-

ated up and down without converging to a small value. In the K = 160 cases, the

results of ALS are not shown because it was not able to reduce the objective value

in the range of the plot. Again, it can be seen that the ANLS-BPP and the HALS

algorithms are the best performing ones. Among the two, HALS showed faster con-

vergence in the ATNT data set whereas ANLS-BPP outperformed HALS in the PIE

64 data set.

In Table 4.2, relative norms of the projected gradient defined in Eq. (4.13) after

executions for specified durations are shown. It can be seen that ANLS-BPP appeared

very successful in minimizing this criterion. A caveat here is that a smaller value of ∆
∆0

does not necessarily imply a smaller objective value or vice versa, as can be seen from

the fact that HALS sometimes produced high values of ∆
∆0

although it often showed

one of the best performance in terms of the objective value. A partial explanation

about these results is given as follows. Note that the diagonal scaling of W and

H does not affect the quality of approximation: For a diagonal matrix D ∈ R
K×K

with positive diagonal elements, WHT = WD−1DHT . However, the norm of the

projected gradients in Eq. (4.12) is affected by a diagonal scaling: It is easy to check

that
(

∂f

∂(WD−1)
, ∂f

∂(DH)

)

=
((

∂f

∂W

)

D,
(

∂f

∂H

)

D−1
)

. Hence, two solutions that are only

different up to a diagonal scaling have the same objective function value, but they can

be measured differently in terms of the norm of the projected gradients. In particular,

the solution from the HALS algorithm is typically unbalanced having large elements

in W and small elements in H. This can be a reason for the relatively poor evaluation

of the HALS algorithm in Table 4.2. Ho [46] considered including a normalization

step before computing Eq. (4.12) to avoid this issue.
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Table 4.2: The relative norm of the projected gradient (i.e., ∆/∆0) after executions
of specified amounts of time.

Data set K time
ANLS

HALS MU ALS
BPP PGRAD PQN

TDT2

10 100 2.64e-17 1.93e-05 3.82e-04 0.0015 0.0057 3.51e-04

80 300 1.35e-07 4.33e-05 8.29e-05 8.04e-05 0.0013 1.61e-04

160 700 2.40e-06 1.61e-05 9.03e-05 3.04e-05 7.47e-04 9.65e-05

20
Newsgroups

10 100 2.45e-08 8.71e-05 0.0020 0.0051 0.0058 0.0025

80 300 4.05e-05 1.09e-04 0.0013 1.54e-04 0.0012 2.34e-04

160 700 1.14e-05 8.40e-05 8.52e-04 5.28e-05 6.48e-04 1.33e-04

ATNT

10 100 4.12e-05 1.98e-04 0.0022 3.4601 0.0553 31.6

80 300 2.56e-04 0.0018 0.0065 0.865 0.0136 57.6

160 700 4.18e-04 0.0015 0.0059 0.533 0.0115 71.6

PIE 64

10 100 6.43e-04 7.42e-04 0.0065 19.3 0.437 114

80 300 7.46e-04 0.0034 0.0045 4.32 0.0584 140

160 700 0.0010 0.0043 0.0050 3.24 0.0369 180

Among the ANLS-based algorithms that have been actively studied recently, re-

sults in Figures 4.5 and 4.6 demonstrate that ANLS-BPP is clearly the best. Among

all the NMF algorithms, the HALS algorithm showed very promising behaviour as

it outperformed ANLS-BPP in some cases. In the following subsection, we further

investigated the two algorithms using synthetic data sets.

4.4.3 ANLS-BPP and HALS on synthetic data sets

In order to further understand the behaviour of the ANLS-BPP and the HALS al-

gorithms, we performed experiments using synthetic data sets. Using M = 10, 000,

N = 2, 000, and K = 160, we created factor matrices W ∈ R
M×K and H ∈ R

N×K

having 50%, 90%, and 95% sparsities. We then multiplied the factors to obtain

A = WHT upon which the ANLS-BPP and the HALS algorithms were executed.

Figure 4.7 shows the results. Our expectation was that the sparser the factors are,

the better ANLS-BPP would perform compared to HALS: If the factors are sparse,

the ANLS-BPP method only needs to solve for a small number of nonzero elements in

W and H matrices whereas the HALS method still needs to update all the elements

of W and H in each iteration. In the top row of Figure 4.7, when the sparsity of the
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Figure 4.7: Execution results on synthetic data sets with factors of different sparsities.
The top row shows relative objective values (

∥

∥A−WHT
∥

∥

F
/ ‖A‖F ) with respect

to execution time, and the bottom row shows sparsity patterns of W and H that
are obtained from ANLS-BPP. ‘W sparsity’ and ‘H sparsity’ show the proportions
of zero elements of W and H, respectively, and ‘W change’ and ‘H change’ show
the proportions of elements that switched between zero and nonzero in W and H,
respectively. Sparsity in original factors used to create data sets are 50% in the left
figures, 90% in the middle figures, and 95% in the right figures. Average results of 5
different random initializations are shown.

original factors increases, ANLS-BPP method showed noticeably faster convergence

than HALS. Relevant information is shown in the bottom row: The sparsity pattern of

W and H obtained by ANLS-BPP quickly became close to that of the original factors

that were used to create data sets, and the pattern changed only little as iteration

progressed. When W and H are sparse, the cost of each iteration of ANLS-BPP

decreases since only the nonzero elements needs to be updated.

4.4.4 Massive scale factorization

In this subsection, we discuss issues in the factorization of massive-scale data as well as

experimental results on huge matrices from real-world applications. A critical concern

arising in massive-scale factorization is the amount of memory required to hold the
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Table 4.3: Memory requirements of NMF algorithms. The data matrix may be rep-
resented as a sparse matrix, occupying memory only for nonzero elements.

Method Common Additional

ANLS-BPP

A: RM×K(maybe sparse)

W: RM×K

H: RN×K

AH or AT
W: Rmax{M,N}×K

H
T
H or WT

W: RK×K

{0, 1}max{M,N}×K
+R

K×K

ANLS-AS-GROUP

ANLS-AS-UPDATE R
K+R

K×K

ANLS-PGRAD R
2×max{M,N}×K

ANLS-PQN R
K+R

K×K

HALS N/A

MU N/A

ALS R
K×K

data matrix A, factor matrices W and H, and other information necessary to execute

an algorithm. In Table 4.3, we present the memory requirement of the algorithms

compared in this chapter. For all the algorithms, the following common information

is needed in memory. Input matrix A may be represented in a sparse format because

it is used only through AH and ATW, for which a multiplication operator suffices.

Typically, K is quite small in NMF applications, but, for a large matrices, factor

matrices W and H could take a large amount of memory. In addition, matrix AH

or ATW take as much as the factor matrices: Observe that either AH or ATW is

needed to update W and H, respectively; therefore, space for max {M,N} ×K real

numbers is needed. Similarly, to store HTH or WTW, space for K×K real numbers

is needed. If the stopping criterion in Section 4.3.2 is adopted, additional memory is

needed to compute ∆ in Eq. (4.12).

In addition to the common information, some algorithms spend additional mem-

ory in their operation. In ANLS-based algorithms, observe that the subproblems in

Eq. (4.1) involve variables of size M ×K and N ×K, so the NLS subproblem with

at most max {M,N}×K variables needs to be handled. For the ANLS-BPP method

equipped with the grouping acceleration for multiple right hand sides, the information

of workings sets, F and G, as binary numbers should kept track of, and space to store

the Cholesky factor is needed when solving normal equations as in Eq. (4.9). Variable

64



Y in Algorithm 4.2 does not take additional space due to the complementarity condi-

tion in Eq. (4.3d). For the ANLS-AS-GROUP method, which involves the grouping

acceleration, the same additional space with ANLS-BPP is needed; for the ANLS-AS-

UPDATE method, only small space is enough because the NLS problem is solved for

each right hand side separately. The ANLS-PGRAD method spend additional space

for storing a gradient matrix and selecting step length. The ANLS-PQN method sep-

arately solves the NLS problem for each right hand side, and therefore the required

amount of space is small. Method that are not based on the ANLS-framework require

a less amount of memory than the ANLS-based methods. No additional memory is

needed in the HALS and MU methods, and the ALS method only need space to store

the Cholesky factor.

Having the memory characteristics noted, let us see the performance of the meth-

ods on the Netflix’s movie ratings8 and RCV1 text corpus9 data sets, shown in Fig-

ure 4.8. The Netflix’s movie ratings matrix is of size 17, 770 × 480, 189 with about

100 million nonzero entries, and the term-document matrix from the RCV1 text cor-

pus is of size 34, 803 × 804, 427 with about 60 million nonzero entries. Experiments

on Netflix and RCV1 data sets were executed on Linux machines with 16GB and

48GB memory, respectively, with the multi-threading option of MATLAB disabled.

The results of ANLS-AS and ALS are not shown because of too expensive iterations

and failure to converge, respectively. Similarly to previous results, ANLS-BPP and

HALS showed the best performance, significantly outperforming the rest. Note that

due to the massive size of the data matrix, the amount of execution time is much

larger than those in Figure 4.5 and 4.6. In the K = 80 and the K = 160 cases,

MU, ANLS-PGRAD, and ANLS-PQN were slower than ANLS-BPP and HALS with

8http://www.netflixprize.com/
9http://trec.nist.gov/data/reuters/reuters.html
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Figure 4.8: Relative objective value (
∥

∥A−WHT
∥

∥

F
/ ‖A‖F ) vs. execution time on

the Netflix and the RCV1 data sets. Average results of 5 different random initial-
izations are shown. Left column: Netflix, right column: RCV1, top row: K = 10,
middle row: K = 80, bottom row: K = 160. See text for more details.
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several hours of difference in computation time. It is common to repeat NMF com-

putation with several initial values to find the best factor matrices, and then the

difference in computation time becomes even more significant.

4.5 Discussion

In this chapter, a new algorithm for computing NMF based on the ANLS frame-

work is proposed. The new algorithm is built upon the block principal pivoting

method for the NLS problem. The method allows exchanges of multiple variables

between working sets with a goal to reach the final partitioning into the active and

passive sets quickly. We improved the method to handle the multiple right-hand

side case of the NLS problems efficiently. The newly constructed algorithm inherits

the convergence theory of the ANLS framework, and it can easily be extended to

other constrained NMF formulations such as sparse or regularized NMF. Thorough

experimental comparisons with recently developed NMF algorithms were performed

using both real-world and synthetic data sets. The proposed algorithm demonstrated

state-of-the-art performance allowing only the hierarchical alternating least squares

(HALS) algorithm to be comparable. In a test using synthetic data sets, the proposed

algorithm clearly outperformed the HALS algorithm when the low-rank factors are

sparse.

Although we explored various values for K (from 10 to 160), it has to be under-

stood that all these values are much smaller than the original dimension. This trend

is generally expected for a dimension reduction method, as mentioned in Section 4.1.

We emphasize that the long-and-thin structure of the coefficient matrix and the flat-

and-wide structure of the matrix with unknowns are key features that enables us

to use speed-up techniques explained in Section 4.2.2 and thus obtain the successful

experimental results of our new algorithm.

Different limitations of different algorithms can be noted. A limitation of a NMF
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algorithm based on the ANLS framework with the active-set or the block principal

pivoting method is that it may break down if matrix B in Eq. (4.2) does not have full

column rank. The regularization method mentioned in Section 3.1.4 can be adopted

to remedy this problem making these algorithms generally applicable for the compu-

tation of NMF. Even without regularization, the algorithms behave well in practice

as shown in our experiments. An algorithm based on the ANLS framework with the

projected quasi-Newton method [54] also requires the full column rank condition. On

the other hand, the HALS algorithm breaks down when either a column of W or a

row of H becomes a zero vector in the process of iterations. As this problem indeed

happens quite often, typically a small number ǫ ≈ 1e−16 is used in places that are

supposed to be zero [26, 40]. Due to this modification, the factors obtained by the

HALS algorithm are not sparse unless explicitly thresholded afterwards.
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CHAPTER V

A FAST ACTIVE-SET-LIKE METHODS FOR

NONNEGATIVE TENSOR FACTORIZATION

Tensors are mathematical objects for representing multidimensional arrays. Tensors

include vectors and matrices as first-order and second-order special cases, respectively,

and more generally, tensors of N th-order can represent an outer product of N vector

spaces. Recently, decompositions and low-rank approximations of tensors have been

actively studied and applied in numerous areas including signal processing, image

processing, data mining, and neuroscience. Several different decomposition models,

their algorithms, and applications are summarized in recent reviews by Kolda and

Bader [62] and Acar and Yener [1].

We discuss tensors with nonnegative elements and their low-rank approximations.

In particular, we are interested in computing a CANDECOMP/PARAFAC decom-

position [20, 45] with nonnegativity constraints on factors. In higher-order tensors

with nonnegative elements, tensor factorizations with nonnegativity constraints on

factors have been developed in several papers [15, 83, 102, 21]. Interestingly, some

methods for finding nonnegative factors of higher-order tensors were introduced even

before nonnegative matrix factorization [21]. Recent work dealt with properties such

as degeneracy [70] and applications such as sound source separation [35], text min-

ing [4], and computer vision [93]. Although we focus on CANDECOMP/PARAFAC

decomposition, a few other decomposition models of higher order tensors have been

studied [62, 1].

Suppose a tensor of order three, A ∈ R
M1×M2×M3, is given. We introduce main

concepts using this third-order tensor for the sake of simplicity and will deal with a

69



tensor with a general order later. A canonical decomposition (CANDECOMP) [20],

or equivalently a parallel factorization (PARAFAC) [45], of A can be written as

A =
K
∑

k=1

ak ◦ bk ◦ ck, (5.1)

where ak ∈ R
M1 , bk ∈ R

M2 , ck ∈ R
M3 , and “◦” represents an outer product of vectors.

Following Kolda and Bader [62], we will call the decomposition in Eq. (5.1) the CP

(CANDECOMP/PARAFAC) decomposition. A tensor a ◦ b ◦ c is called a rank-one

tensor: In the CP decomposition, tensor A is represented as a sum of K rank-one

tensors. A smallest integer K for which Eq. (5.1) holds with some vectors ak, bk,

and ck for k ∈ {1, · · ·K} is called the rank of tensor A. The CP decomposition

can be more compactly represented with factor matrices (or loading matrices), A =

[a1 · · ·aK ], B = [b1 · · ·bK ], and C = [c1 · · · cK ], as follows:

A = JA,B,CK,

where JA,B,CK =
∑K

k=1 ak ◦ bk ◦ ck. With a tensor A of rank R, given an integer

K ≤ R, the computational problem of the CP decomposition is finding factor matrices

A, B, and C that best approximates A.

Now, for a tensor A with only nonnegative elements, we are interested in recover-

ing factor matrices A, B, and C that also contain only nonnegative elements. Using

the Frobenius norm as the criterion of approximation, the factor matrices can be

found by solving an optimization problem:

min
A,B,C

1

2
‖A− JA,B,CK‖2F s.t. A,B,C ≥ 0. (5.2)

Inequalities A,B,C ≥ 0 denote that all the elements of A,B, and C are nonnegative.

The factorization problem in Eq. (5.2) is known as nonnegative CP (NCP). The

computation of NCP is demanding not only because many variables are involved in

optimization but also because nonnegativity constraints are imposed on the factors.
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A number of algorithms have been developed for NCP [15, 57, 36, 102], and we will

review them in Section 5.1.

In this chapter, we present a new and efficient algorithm for computing NCP.

Similarly to NMF, we apply the block coordinate descent (BCD) method of Section 2.3

and observe that the subproblems appear in the form of nonnegativity-constrained

least squares (NLS) problems. The NLS subproblems can in turn be solved by the

block principal pivoting method presented in Chapter 4.

The remaining of this chapter is organized as follows. In Section 5.1, related

work is reviewed. In Section 5.2, the BCD methods for NCP are described, and the

application of the block principal pivoting method is explained in Section 5.3. In

Section 5.4, we describe how the proposed method can be used to solve regularized

and sparse formulations. In Section 5.5, experimentation settings and results are

shown. We conclude this chapter in Section 5.6.

5.1 Related Work

Several computational methods for NCP have been proposed based on the BCD

method with matrix blocks, which we describe in Section 5.2.1 and call the alternat-

ing nonnegative least squares (ANLS) framework. A classical method for solving the

NLS problem is the active-set method of Lawson and Hanson [63]; however, apply-

ing Lawson and Hanson’s method directly to NCP is extremely slow. Bro and De

Jong [15] suggested an improved active-set method to solve the NLS problems, and

Ven Benthem and Keenan [99] further accelerated the active-set method, which was

later utilized in NMF [56] and NCP [57]. In Friedlander and Hatz [36], the NCP

subproblems are solved by a two-metric projected gradient descent method.

Numerous other algorithms that are not based on the ANLS framework were

suggested. Paatero discussed a Gauss-Newton method [83] and a conjugate gradient

method [84], but nonnegativity constraints were not rigorously handled in those work.
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Extending the multiplicative updating rule of Lee and Seung [65], Welling and Weber

[102] proposed a multiplicative updating method for NCP. Earlier in [21], Carroll et al.

proposed a simple procedure that focuses on a rank-one approximation conditioned

that other variables are fixed. Recently, Cichocki et al. proposed a similar algorithm,

called hierarchical alternating least squares (HALS), which updates each column of

factor matrices at a time [25].

5.2 BCD Framework for NCP

Let us describe the BCD method applied to the NCP problem. Toward that end, we

consider a general N th-order tensor A ∈ R
M1×···×MN and its nonnegative CANDE-

COMP/PARAFAC (CP) decomposition. For an integer K, we are interested in find-

ing nonnegative factor matricesH(1), · · · ,H(N) whereH(n) ∈ R
Mn×K for n = 1, · · · , N

such that

A ≈ JH(1), · · · ,H(N)K, (5.3)

where

JH(1), · · · ,H(N)K =

K
∑

k=1

h
(1)
k ◦ · · · ◦ h

(N)
k . (5.4)

Note that the CP decomposition reduces to matrix decomposition if N = 2. When K

is small, which is typical for low-rank approximation methods, we find factor matrices

that best approximate a tensor with the CP model. A corresponding optimization

problem can be written as

min
H(1),··· ,H(N)

f(H(1), · · · ,H(N)) =
1

2

∥

∥A− JH(1), · · · ,H(N)K
∥

∥

2

F
(5.5)

s.t. H(n) ≥ 0 for n = 1, · · ·N.

To present how the BCD method is applied to the NCP problem in Eq. (5.5), we need

definitions of some operations of tensors. See Kolda and Bader [62] for more details.

Mode-n matricization The mode-n matricization of a tensor A ∈ R
M1×···×MN ,

denoted by A(n), is a matrix obtained by linearizing all indices except n. More
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formally, A(n) is a matrix of size Mn ×
∏N

i=1,i 6=nMi, and the (m1, · · · , mN)
th element

of A is mapped to the (mn, I)
th element of A(n) where

I = 1 +

N
∑

i=1

(mi − 1)Ii and Ii =

i−1
∏

j=1,j 6=n

Mj .

Mode-n product The mode-n product of a tensor A ∈ R
M1×···×MN and a matrix

U ∈ R
J×Mn denoted by A×nU, is a tensor obtained by multiplying all mode-n fibers

of A with the columns of U. The result is a tensor of size M1 × · · · ×Mn−1 × J ×

Mn+1 × · · · ×MN having elements as

(A×n U)m1···mn−1jmn+1···mN
=

Mn
∑

mn=1

xm1···mN
ujmn

.

In particular, the mode-n product of A and a vector u is a tensor of size M1 × · · · ×

Mn−1 ×Mn+1 × · · · ×MN .

Khatri-Rao product The Khatri-Rao product of two matrices A ∈ R
J1×L and

B ∈ R
J2×L, denoted by A⊙B ∈ R

(J1J2)×L, is defined as

A⊙B =



















a11b1 a12b2 · · · a1LbL

a21b1 a22b2 · · · a2LbL

...
...

. . .
...

aJ11b1 aJ12b2 · · · aJ1LbL



















.

5.2.1 BCD with N matrix blocks

A simple case of the BCD method is that each of the factor matrices H(1), · · · ,H(N)

are considered as a block. Using above notations, the approximation model in

Eq. (5.3) can be written as, for any n ∈ {1, · · · , N},

A(n) ≈ H(n)
(

B(n)
)T
, (5.6)

where

B(n) = H(N) ⊙ · · · ⊙H(n+1) ⊙H(n−1) ⊙ · · · ⊙H(1) ∈ R
(
∏N

i=1,i6=n Mi)×K . (5.7)
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Eq. (5.6) simplifies the treatment of this N matrix block case. Using the BCD method,

H(2), · · · ,H(N) are initialized with arbitrary nonnegative elements. Then, for n =

1, · · ·N , the following subproblem is solved iteratively:

H(n) ← argmin
H≥0

∥

∥

∥
B(n)HT −

(

A(n)
)T

∥

∥

∥

2

F
. (5.8)

Observe that Eq. (5.8) is the nonnegativity-constrained least squares (NLS) problem.

Because the subproblems are in the NLS problems, similarly to the matrix factor-

ization case in Chapter 4, we call this matrix-block BCD method as the alternating

nonnegative least squares (ANLS) framework.

The convergence property of a BCD method in Theorem 2.14 states that if each

subproblem in the form of Eq. (5.8) has a unique solution, then every limit point

produced by the ANLS framework is a stationary point. In particular, if matrices

B(n) are of full column rank, each subproblem has a unique solution.

For higher order tensors, the row size of B(n) and
(

A(n)
)T

, that is,
∏N

i=1,i 6=nMi,

can be quite large. However, often they need not be explicitly constructed, and

it is enough to have
(

B(n)
)T (

A(n)
)T

and
(

B(n)
)T

B(n).
(

B(n)
)T (

A(n)
)T

can be

computed by successive mode-n product of A with H(1),· · · ,H(n−1),H(n+1),· · · ,H(N).
(

B(n)
)T

B(n) can be efficiently computed as

(

B(n)
)T

B(n) =

N
⊗

i=1,i 6=n

(

H(i)
)T

H(i),

where
⊗

represents element-wise multiplication.

5.2.2 BCD with KN vector blocks

Another case of the BCD method applied to the NCP problem is that each column

of matrices H(1), · · · ,H(N) is used as a block. The subproblem pertaining only one

column can be written as

h
(n)
k ← argmin

h≥0

∥

∥

∥
Jh

(1)
k , · · · ,h(n−1)

k ,h,h
(n+1)
k , · · · ,h(N)

k K−Rk

∥

∥

∥

2

F
. (5.9)
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where

Rk = A−
K
∑

k̃=1,k̃ 6=k

h
(1)

k̃
◦ · · · ◦ h(N)

k̃
.

Using matrix notation, the problem in Eq. (5.9) can be rewritten as

h
(n)
k ← argmin

h≥0

∥

∥

∥

∥

b
(n)
k hT −

(

R
(n)
k

)T
∥

∥

∥

∥

2

F

, (5.10)

where R
(n)
k is the mode-n matricization of Rk and

b
(n)
k = h

(N)
k ⊙ · · · ⊙ h

(n+1)
k ⊙ h

(n−1)
k ⊙ · · · ⊙ h

(1)
k ∈ R

(
∏N

i=1,i6=n Mi)×1.

If b
(n)
k is a nonzero vector, based on Theorem 3.2, the unique solution of Eq. (5.10)

is,

h
(n)
k ←







R
(n)
k b

(n)
k

(

b
(n)
k

)T

b
(n)
k







+

.

Cichocki et al. [24] proposed this vector-block BCD method with the name of the

hierarchical alternating least squares (HALS) method, and we present a comparison

with this method in Section 5.5. In view of Theorem 2.14, for the sequence of solutions

generated by the HALS method, every limit point is a stationary point. A condition

for this property is that b
(n)
k is nonzero for all ∀k and ∀n.

5.3 Block Principal Pivoting Method

The proposed algorithm for computing NCP is based on the ANLS framework in Sec-

tion 5.2.1. Observe the following characteristics of the NLS subproblems in Eq. (5.8).

Due to flattening by the Khatri-Rao product, matrix B(n) in Eq. (5.8) is typically long

and thin. Also, as NCP is often used for low-rank approximation, matrix
(

H(n)
)T

in Eq. (5.8) is typically flat and wide. Recall that the NLS subproblems of NMF in

Chapter 4 have the same characteristics and that the block principal pivoting algo-

rithm with accelerations for multiple right hand sides solves the subproblems very

efficiently. We therefore propose to solve Eq. (5.8) with the block principal pivoting

algorithm presented in Section 4.2 with accelerations for multiple right hand sides.
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5.4 Regularized and Sparse NCP

We note that the BCD methods described in Section 5.2 can be easily extended

to formulations with regularization. We focus on the ANLS framework described

in Section 5.2.1, but the application of regularization is also straightforward to the

HALS method.

In a general form, a regularized formulation appears as

min
H(1),··· ,H(N)

1

2

∥

∥A− JH(1), · · · ,H(N)K
∥

∥

2

F
+

N
∑

n=1

λnφn(H
(n)), (5.11)

s.t. H(n) ≥ 0 for n = 1, · · ·N,

where φn(H
(n)) represents a regularization term and λn ≥ 0 is a parameter to be

chosen. A commonly used regularization term is the Frobenius norm:

φn(H
(n)) =

∥

∥H(n)
∥

∥

2

F
.

In this case, the subproblem for finding H(n) is modified as

min
H(n)

∥

∥

∥

∥

∥

∥

∥







B(n)

√
2λnIK×K






×

(

H(n)
)T −

(

A(n)
)T

∥

∥

∥

∥

∥

∥

∥

2

F

(5.12)

s.t. H(n) ≥ 0,

where IK×K is a K × K identity matrix. Observe that matrix







B(n)

√
2λnIK×K






is

always of full column rank if λn > 0; hence, when B(n) is not necessarily of full col-

umn rank, the Frobenius norm regularization can be adopted to ensure that the NLS

subproblem is formed with only a matrix of full column rank, satisfying the require-

ment of the convergence property of the BCD method, mentioned in Section 5.2.1. In

addition, the block principal pivoting method assumes that the matrix B in Eq. (4.8)

is of full column rank, and the Frobenius norm regularization automatically satisfies

this condition.
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If it is desired to promote sparsity on factor matrix H(n), l1-norm regularization

can be used:

φn(H
(n)) =

Mn
∑

j=1

∥

∥

∥
h
(n)
j·

∥

∥

∥

2

1
,

where h
(n)
j· represents the jth row of H(n). See [55, 58] for applications of this l1-norm

regularization in microarray data analysis and clustering. In this case, the subproblem

for finding H(n) is modified as

min
H(n)

∥

∥

∥

∥

∥

∥

∥







B(n)

√
2λn11×K






×

(

H(n)
)T −

(

A(n)
)T

∥

∥

∥

∥

∥

∥

∥

2

F

(5.13)

s.t. H(n) ≥ 0,

where 11×K is a row vector of ones. Regularization term φn(·) can be separately

chosen for each factor H(n), and if necessary, both of the Frobenius norm and the

l1-norm may be used.

5.5 Implementation and Results

In this section, we describe the details of our implementation, data sets used, and

comparison results. All experiments were executed in MATLAB on a Linux machine

with a 2.66GHz Intel Quad-core processor and 6GB memory. The multi-threading

option of MATLAB was disabled. In all the executions, all the algorithms were

provided with the same initial values.

5.5.1 Algorithms and data sets

The following algorithms for NCP were included in our comparison.

1. (ANLS-BPP) ANLS with the block principal pivoting method proposed in this

chapter

2. (ANLS-AS) ANLS with H. Kim and Park’s active-set method [57]
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3. (HALS) Cichocki and Phan’s hierarchical alternating least squares algorithm

[25, 24]

4. (MU) Welling and Weber’s multiplicative updating algorithm [102]

We implemented all algorithms in MATLAB. Besides above methods, we also have

tested Friedlander and Hatz’s two-metric projected gradient method [36] using their

MATLAB code1; however, not only it was much slower than methods listed above,

but it also required so much memory that we could not execute all comparison cases.

We hence do not include the results of Friedlander and Hatz’s method here. In all the

algorithms, once we obtain factors
{

H(1), · · · ,H(N)
}

, they are used as initial values

of the next iteration.

We have used three data sets for comparisons. The first data set include dense

tensors using synthetically generated factors. For each of K = 10, 20, 60, and 120,

we constructed H(1), H(2), and H(3) of size 300×K using random numbers from the

uniform distribution over [0, 1]. Then, we randomly selected 50 percent of elements in

H(1), H(2), and H(3) to make them zero. Finally, a three way tensor of size 300×300×

300 is constructed by JH(1),H(2),H(3)K. Different tensors were created for different

K values.

The second data set is a dense tensor obtained from Extended Yale Face Database

B.2 We used aligned and cropped images of size 168× 192. From total 2424 images,

we obtained a three-way tensor of size 168× 192× 2424.

The third data set is a sparse tensor from NIPS conference papers.3 This data

set contains NIPS papers volume 0 to 12, and a tensor is constructed as a four-way

tensor representing author×documents×term×year. By counting the occurrence of

each entry, a sparse tensor of size 2037× 1740× 13649× 13 was created.

1http://www.cs.ubc.ca/~mpf/2008-computing-nntf.html
2http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
3http://www.cs.nyu.edu/~roweis/data.html
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Figure 5.1: Relative objective value (
∥

∥A− JH(1), · · · ,H(N)K
∥

∥

F
/ ‖A‖F ) vs. execution

time on the synthetic tensors. Average results of 5 different random initializations
are shown. Top row: K = 10 and K = 20, bottom row: K = 60 and k = 120.

5.5.2 Experimental results

To observe the performance of several algorithms, at the end of each iteration we have

recorded the relative objective value,
∥

∥A− JH(1), · · · ,H(N)K
∥

∥

F
/ ‖A‖F . Time spent

to compute the objective value is excluded from the execution time. One execution

result involves relative objective values measured at discrete time points and appears

as a piecewise-linear function. We averaged piecewise-linear functions from different

random initializations to plot figures.

Results on the synthetic data set are shown in Figure 5.1. This data set was

synthetically created, and the value of global optimum is zero. From Figure 5.1, it
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can be seen that ANLS-AS and ANLS-BPP performed the best among the algorithms

we tested. The HALS method showed convergence within the time window we have

observed, but the MU method was too slow to show convergence. ANLS-AS and

ANLS-BPP showed almost the same performance although ANLS-BPP was slightly

faster when K = 120. The difference between these two methods are better shown in

next results.

Results on YaleB and NIPS data sets are shown in Figure 5.2. Similarly to the

results in Figure 5.1, ANLS-AS and ANLS-BPP showed the best performance. In

Figure 5.2, it can be clearly observed that ANLS-BPP outperforms ANLS-AS for

K = 60 and K = 120 cases. Such a difference demonstrates a difficulty of the active-

set method: Since typically only one variable is exchanged between working sets, the

active-set method is slow for a problem with a large number of variables. On the other

hand, the block principal pivoting method quickly solves large problems by allowing

exchanges of multiple variables between F and G. The convergence of HALS and MU

was slower than ANLS-AS and ANLS-BPP. Although the convergence of HALS was

faster than MU in the YaleB data set, the initial convergence of MU was faster than

HALS in the NIPS data set.

Lastly, we present more detailed information regarding the executions of ANLS-

AS and ANLS-BPP in Figure 5.3. In Figure 5.1 and Figure 5.2, we have observed

that ANLS-BPP clearly outperforms ANLS-AS for large K’s. Because both of the

methods solve each NLS subproblem exactly, solutions after each iteration from the

two methods are the same up to numerical rounding errors. Hence, it suffices to

compare the amount of time spent at each iteration. In Figure 5.3, we showed average

execution time of each iteration of the two methods. It can be seen that the time

required for ANLS-BPP is significantly shorter than the time required for ANLS-AS

in early iterations, and their time requirements became gradually closer to each other.

The types of NLS problems in which ANLS-BPP accelerates ANLS-AS is that there
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Figure 5.2: Relative objective value (
∥

∥A− JH(1), · · · ,H(N)K
∥

∥

F
/ ‖A‖F ) vs. execution

time on the YaleB and NIPS data sets. Average results of 5 different random initial-
izations are shown. Left: NIPS data set, right: YaleB data set, top row: K = 10,
middle row: K = 60, and bottom row: K = 120.
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Figure 5.3: Execution time of each iteration of the active-set (ANLS-AS) and the
block principal pivoting method (ANLS-BPP) for K = 120 cases of each data set.
Average results of 5 different random initializations are shown. Left: synthetic data
set, center: YaleB data set, right: NIPS data set.

is a much difference in the zero and nonzero pattern between the initial value and

the final solution of the NLS problem. As iteration goes on, factors
{

H(1), · · · ,H(N)
}

do not change much from one iteration to the next; hence there are little difference

between the computational costs of the two methods.

5.6 Discussion

We have introduced an efficient algorithm for nonnegative CP (NCP). The new

method is based on the block principal pivoting method for the nonnegativity-constrained

least squares (NLS) problems. The block principal pivoting method accelerates the

classical active-set method by allowing exchanges of multiple variables per iteration.

The NLS problems from NCP computation share the same long-and-thin and flat-

and-wide structures with the NMF case in Chapter 4, and the acceleration of the

block principal pivoting method for the multiple right-hand sides is effective to NCP

as well. Computational comparisons showed the state-of-the-art performance of the

proposed method for NCP.

A drawback of an NCP algorithm based on the active-set or the block principal

pivoting method is that the methods assume that the Khatri-Rao product in Eq. (5.7)

is of full column rank for all n ∈ {1, · · · , N} throughout iterations. To alleviate

this concern, as noted in Section 5.4, Frobenius norm-based regularization can be
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used to avoid rank-deficient cases. In practice, the algorithms performed well in our

experiments without the regularization.
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CHAPTER VI

FAST ACTIVE-SET-LIKE METHODS FOR

L1-REGULARIZED LINEAR REGRESSION

L1-regularized linear regression, also known as the Lasso [96], has been a highly suc-

cessful method for various applications. By constraining the l1-norm of the coefficient

vector, this method simultaneously avoids over-fitting to training data and achieves

sparsity in obtained coefficients. The sparsity has two important benefits; it improves

interpretation by explicitly showing the relationship between the response and the fea-

tures [96], and it also allows computationally efficient models because only a small

number of coefficients remain nonzero. Researchers used l1-regularization for many

other learning problems including logistic regression [67], graphical model selection

[6, 38], principal component analysis [106], and sparse coding [66, 76]. An efficient

algorithm for l1-regularized linear regression is important not only in its own right

but also for those extended sparse learning problems.

Since the objective function of l1-regularized linear regression is not differentiable,

development of an efficient algorithm is not trivial. Among several approaches, one of

the most influential has been the least angle regression (LARS) by Efron et al. [32]. In

LARS, features are sequentially selected so that they remain equiangular, exploiting

the fact that coefficient paths are piecewise linear with respect to the regularization

parameter. Despite its ability to discover the full regularization paths, however, LARS

is designed to select one feature at a time, and it can become very slow when applied

to large problems. Lee et al. [66] proposed the feature-sign search algorithm as a part

of their study on sparse coding. This algorithm is a relaxed form of LARS so that

a particular solution can be efficiently found by not following the exact coefficient
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path. The algorithm follows the structure of active-set methods [82] and shares

the same difficulty of LARS for large problems. Several iterative methods have been

introduced to overcome the scalability issue. Recent developments in signal processing

literature include an interior point method [59] and a gradient projection method [34].

Such methods have a particular advantage for their intended purpose, which is signal

reconstruction, because they can handle very large problems. Another promising

algorithm using a coordinate descent method [37] was recently introduced.

In this chapter, we present new active-set-like methods for l1-regularized linear

regression. By an active-set-like method, we mean an algorithm that directly searches

for the sets of active and passive variables and computes the solution only up to

numerical rounding errors. By showing a relationship between l1-regularized linear

regression and the linear complementarity problem with bounds (BLCP), we present

an efficient method, called block principal pivoting, which overcomes the difficulty of

the LARS and feature-sign search methods. Although the block principal pivoting

method was proposed for linear complementarity problems [53], its substantial benefit

to l1-regularized linear regression has not been studied previously and is an important

contribution of this chapter. We further propose an improvement of this method,

discuss its characteristics, and also show a connection to the structure learning of

Gaussian graphical models. Experimental comparisons on both synthetic and real

data sets show the proposed method significantly outperforms several existing ones.

6.1 Active-set-like Methods

6.1.1 Formulations and optimality conditions

Suppose data are given as (x(n), y(n))Nn=1 where y
(n) ∈ R is the response of x(n) ∈ R

P .

We assume that y(n)’s are centered so that
∑N

n=1 y
(n) = 0. The coefficients β ∈ R

P

are to be found by solving a minimization problem,

min
β∈RP

L(β, λ) = 1

2
‖y −Xβ‖22 + λ ‖β‖1 , (6.1)
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where X =
(

x(1), · · · ,x(N)
)T

, y =
(

y(1), · · · , y(N)
)T

, and λ ≥ 0 is a parameter.

Whereas we are concerned in Eq. (6.1) in this chapter, an alternative formulation in

which l1-norm is used for constraints is possible [96]. The Lagrangian dual of Eq. (6.1)

can be written as

min
r∈RN

L(r, λ) = 1

2
rT r− yTr s.t.

∥

∥XT r
∥

∥

∞
≤ λ, (6.2)

using the derivation given in [59]. Eq. (6.2) is easier to handle because the objective

function is smooth and constraints are simple.

Our discussion for the derivation of new methods starts from writing down the

optimality conditions for the dual problem in Eq. (6.2). Let r∗ be the solution of

Eq. (6.2), and let β∗
+,β

∗
− ∈ R

P be corresponding Lagrange multipliers for the two

inequality constraints, XT r ≤ λ and XTr ≥ −λ, respectively. Defining β∗ = β∗
+−β∗

−,

the Karush-Kuhn-Tucker (KKT) conditions for Eq. (6.2) can be written as

d∗ = XT r∗ = XTy −XTXβ∗, (6.3a)

−λ ≤ d∗ ≤ λ, (6.3b)

−λ < d∗p < λ ⇒ β∗
p = 0 for ∀p ∈ {1, · · · , P} , (6.3c)

d∗p = λ ⇒ β∗
p ≥ 0 for ∀p ∈ {1, · · · , P} , (6.3d)

d∗p = −λ ⇒ β∗
p ≤ 0 for ∀p ∈ {1, · · · , P} . (6.3e)

Note that because the problem in Eq. (6.2) is convex, a solution satisfying Eqs. (6.3)

is optimal for Eq. (6.2).

6.1.2 Active-set methods and limitation

The key idea of active-set-like methods for Eqs. (6.1) and (6.2) is the following. Let

E∗+, E∗− ⊆ {1, · · · , P} denote the active constraints of the solution r∗ in Eq. (6.2); that

is, E∗+ =
{

p|
(

XT r∗
)

p
= λ

}

and E∗− =
{

p|
(

XT r∗
)

p
= −λ

}

. If we know E∗+ and E∗− in

advance, then the solution β∗ can be easily computed by using Eq. (6.3c) and solving
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a normal equation for Eq. (6.3a). The goal of active-set methods is to find the sets
(

E∗+, E∗−
)

in some systematic way.

A standard example of active-set-like methods is the active-set method [82], which

is a well known scheme generally applicable to quadratic programming problems. The

active-set method begins with an initial feasible solution, for which a zero vector is

usually used. The method maintains working sets (E+, E−) as candidates for
(

E∗+, E∗−
)

and iteratively exchanges a variable among (E+, E−, {1, · · · , P} − (E+ ∪ E−)) in such

a way that the value of the objective function monotonically decreases. Due to the

monotonic-decreasing property, the active-set method is guaranteed to finish in a

finite number of steps.

In the case of l1-regularized linear regression, the feature-sign algorithm in [66]

exactly follows the structure of the active-set method. In fact, applying the standard

active-set method to the dual problem in Eq. (6.2), the feature-sign algorithm can be

directly derived although the authors did not use this derivation. LARS is a modified

active-set algorithm in which the modification is elegantly designed so that the full

coefficient paths can be computed.

Despite the finite termination property, the active-set methods have a major lim-

itation: Because typically only one variable is exchanged among the working sets per

iteration, they can become very slow for large problems. The number of iterations

severely depends on the number of nonzero elements of the optimal solution. For large

problems, an algorithm in which the number of iterations does not depend upon the

problem size is needed. We now describe such an algorithm.

6.2 BLCP and Block Principal Pivoting Methods

The optimality conditions in Eqs. (6.3) are indeed equivalent to the linear comple-

mentarity problem with bounds (BLCP) [53]. BLCP is a generalized class of problems

from linear complementarity problems (LCP) [80], and LCP and BLCP frequently

87



arise in quadratic programming. Among several approaches for BLCP, an efficient

algorithm proposed in [53] implements an intuitive way of speeding up the process of

finding
(

E∗+, E∗−
)

. In this section, we summarize the algorithm and also propose its

improvement.

6.2.1 Block principal pivoting

Suppose the index set {1, · · · , P} is partitioned into three disjoint subsets (H,F+,F−);

i.e., F = F+ ∪ F− = {1, · · · , P} − H and F+ ∩ F− = ∅. The sets (H,F+,F−) will

be our working sets. We eventually want to make (F+,F−) identical to
(

E∗+, E∗−
)

up

to exchanges of degenerate variables.1 Let βH and dH denote the subsets of vectors

β and d corresponding to index set H. Likewise, let XH denote a submatrix of X

that consists only of the column vectors whose indices belong to H. The subsets and

submatrices for F+,F−, and F are similarly defined.

We start with an initial setting for (H,F+,F−), where H = {1, · · · , P} ,F+ =

F− = ∅ is usually used. For the subsets, we assume

βH = 0, dF+ = λ, dF− = −λ, (6.4)

and compute the remaining elements of β and d using Eqs. (6.3) as follows:

dF =
(

XTy
)

F
−XT

FXFβF , (6.5a)

dH =
(

XTy
)

H
−XT

HXFβF . (6.5b)

Since dF is fixed by the assumptions in Eq. (6.4), one can first solve for βF in

Eq. (6.5a) and substitute the result into Eq. (6.5b) to obtain dH.

Then, we check if the obtained values are optimal using the following conditions:

−λ ≤ dH ≤ λ, βF+ ≥ 0, βF− ≤ 0. (6.6)

If β and d satisfy Eqs. (6.4)-(6.6), then they satisfy the optimality conditions in

Eqs. (6.3). If β and d satisfy all these conditions, we call the pair (β,d) feasible;

1We say βp is degenerate if βp = 0 and (dp = λ or −λ) are satisfied at the same time.
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otherwise, it is called infeasible. If a feasible pair (β,d) is found, then it means

that the current working sets (F+,F−) are the same with
(

E∗+, E∗−
)

, and therefore the

algorithm terminates with the solution β. Otherwise, we change the sets (H,F+,F−)

and try the process again.

The issue is how we update the sets (H,F+,F−). To this end, we define infeasible

variables to be the ones that violate at least one condition in Eq. (6.6), which consist

of the following four cases:

V = ∪4k=1Jk, (6.7a)

J1 = {p ∈ H : dp > λ} , (6.7b)

J2 = {p ∈ H : dp < −λ} , (6.7c)

J3 = {p ∈ F+ : βp < 0} , (6.7d)

J4 = {p ∈ F− : βp > 0} . (6.7e)

The set V contains all infeasible variables. Now choose a subset V̂ ⊆ V and let

Ĵ1 = V̂ ∩ J1, Ĵ2 = V̂ ∩ J2, Ĵ3 = V̂ ∩ J3, Ĵ4 = V̂ ∩ J4.

Then, the update rule is given as

H ← (H− (Ĵ1 ∪ Ĵ2)) ∪ (Ĵ3 ∪ Ĵ4), (6.8a)

F+ ← (F+ − Ĵ3) ∪ Ĵ1, (6.8b)

F− ← (F− − Ĵ4) ∪ Ĵ2. (6.8c)

The size |V̂| represents how many variables are exchanged per iteration, and the

choice of V̂ characterizes the algorithm. If |V̂| > 1, then the algorithm is called a

block principal pivoting algorithm. If |V̂| = 1, then the algorithm is called a single

principal pivoting algorithm. The active-set method can be understood as an instance

of single principal pivoting algorithms. After updating by Eqs. (6.8), the algorithm

repeats the entire procedure until the number of infeasible variables (i.e., |V|) becomes

zero.
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In order to speed up the procedure, V̂ = V is used, which we call the full exchange

rule. This exchange rule considerably improves the search procedure by reducing

number of iterations. Although this property is desirable, however, using only the

full exchange rule does not guarantee finite termination, and we need more refinement.

6.2.2 Finite termination

In active-set methods, the variable to exchange is carefully selected to reduce the

objective function. However, the full exchange rule does not have this property and

may lead to a cycle although it occurs rarely. To fix this problem, a backup exchange

rule is used to guarantee termination in a finite number of steps.

The backup rule is to exchange the infeasible variable with the largest index:

V̂ = {i : i = max {j : j ∈ V}} . (6.9)

In this case, the set V̂ contains only one variable, so it is a single principal pivoting

rule. This simple rule guarantees a finite termination: Assuming that matrix XTX

has full rank, the single principal pivoting rule in Eq. (6.9) returns the solution for

Eqs. (6.3) in a finite number of steps [52].

Combining the full exchange rule and the backup rule, the block principal pivoting

algorithm is summarized in Algorithm 6.1. Because the backup rule is slower than

the full exchange rule, it is used only if the full exchange rule does not work well.

Variable t is used to control the number of infeasible variables, and variable k is used

as a buffer on the number of the full exchange rules that may be tried. When the

full exchange rule fails to decrease the number of infeasible variables within Kmax

iterations, the backup rule is used until it reduces the number of infeasible variables

under the lowest value achieved so far, which is stored in t. This has to occur in

a finite number of steps because the backup rule has a finite termination property.

As soon as the backup rule achieves a new lowest number of infeasible variables,

then we return to the full exchange rule. Since the number of infeasible variables is
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Algorithm 6.1 Block principal pivoting algorithm for the l1-regularized liner regres-
sion
Input: X ∈ R

N×P , y ∈ R
N , λ ∈ R

Output: β

1: Initialize H = {1, · · · , P}, F+ = F− = ∅, β = 0, d = −XTy, k = Kmax, t = P+1
2: Set Eq. (6.4) and compute (βF ,dH) by Eqs. (6.5).
3: while (β,d) is infeasible do
4: Find V by Eqs. (6.7).
5: If |V| < t, set t = |V|, k = Kmax, and V̂ = V.

If |V| ≥ t and k ≥ 1, set k = k − 1, and V̂ = V.
If |V| ≥ t and k = 0, set V̂ by Eq. (6.9).

6: Update (H,F+,F−) by Eqs. (6.8).
7: Set Eq. (6.4) and compute (βF ,dH) by Eqs. (6.5).
8: end while

systematically reduced, the algorithm terminates in a finite number of steps. The

choice of Kmax has trade-offs, and Kmax = 3 was shown to work well in practice [53].

6.2.3 Reduced block exchange

The full exchange rule is the most greedy version of exchange rules, and it can slow

down if features are highly correlated. In this case, the full exchange rule tends to ex-

change too many variables unnecessarily and spend more iterations until termination.

For large problems, this behaviour can be more problematic because unnecessarily in-

creasing the size of F means that we have to solve large linear equations in Eq. (6.5a)

even though the final number of nonzero values,
∣

∣E∗+ ∪ E∗−
∣

∣, can be small.

To address this difficulty, we designed reduced block exchange rule by constraining

the maximum increase of |F| as follows.

1. Allow full exchanges for reducing |F|, i.e., Ĵ3 = J3 and Ĵ4 = J4.

2. Limit the increase of |F| by enforcing that |Ĵ1 ∪ Ĵ2| ≤ αp where 0 < α < 1 is

a parameter.

The sets Ĵ1 and Ĵ2 can be naturally determined by sorting J1 and J2 based on

the absolute values of the violation, i.e., di − λ for J1 and −λ − di for J2. In our
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Table 6.1: Characteristics of active-set-like methods: LARS, feature-sign (FS), and
block principal pivoting (BP)

LARS FS BP

variable search equiangular active-set block

regularization path X

monotonic decrease X X

finiteness X X X

scalable X

experiments, α = 0.2 generally produced good results. We modify Algorithm 6.1 by

using this exchange rule in the first two cases of Step 5 and call the modified one

reduced block principal pivoting method.

6.2.4 Summary of characteristics

A summary of active-set-like methods is shown in Table 6.1. LARS computes the

entire regularization path by spending more time to compute the equiangular vector.

The feature-sign algorithm maintains the monotonic-decreasing property but does not

follow the regularization path. The block principal pivoting method maintains the

finite termination property and becomes scalable to large problems. While LARS has

benefits for computing the full regularization path, for obtaining a particular solution,

block principal pivoting methods have advantage. This is the case if the parameter

is estimated by prior knowledge or by theoretical analysis, or if l1-regularized linear

regression is used as a subroutine for other sparse learning tasks.

Block principal pivoting methods require that the feature matrixX has full column

rank. However, since the other two methods are typically implemented using normal

equations, they similarly require that features in active set have full column rank

in every iteration. Furthermore, additional l2-norm regularization such as elastic

net [105] can be adopted to alleviate this concern. In return, block principal pivoting

methods enable significant speed-up.
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In some sparse learning tasks in which l1-regularized linear regression is used as a

subroutine, the full rank assumption is always satisfied. We describe an example in

the following section.

6.3 Gaussian Structure Learning

For graphical models such as Markov random fields (MRFs), sparse structures often

need to be learned from data. In the Gaussian case, learning structure is equivalent

to identifying zero and nonzero elements of the inverse covariance matrix. We briefly

describe how the proposed method can be used to accelerate the structure learning

of Gaussian graphical models within the framework of [6].

Suppose (x(n))Nn=1, x
(n) ∈ R

P are observed from multivariate Gaussian distribu-

tion, N(µ,Σ). Our goal is to estimate the inverse covariance matrix Σ−1 such that

a small number of elements in Σ−1 are nonzero. Following [6], a penalized maximum

likelihood formulation can be written as

max
Z

log detZ− trace(ZΣ̂)− η
P
∑

i,j=1

|Zij| , (6.10)

where Σ̂ = 1
N

∑N

n=1(x
(n)− µ̂)(x(n)− µ̂)T , µ̂ = 1

N

∑N

n=1 x
(n), and η > 0 is a parameter

to control the strength of penalty. The dual form for Eq. (6.10) is written as

min
W
− log det(Σ̂+W)− d (6.11)

s.t. Σ̂+W ≻ 0, − η ≤Wij ≤ η, ∀i, j ∈ {1, · · · , P}

where A ≻ 0 means that A is positive definite.

Eq. (6.11) can be efficiently solved by block coordinate descent approach. Let

V = Σ̂+W, initialize V with Σ̂+ ηI, and assume that Σ̂ and V are partitioned as

V =







V11 v12

vT
12 v22






, Σ̂ =







S11 s12

sT12 s22






,
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where v12, s12 ∈ R
P−1 and v22, s22 ∈ R. Then, we update v12 (and vT

12, of course)

while fixing all other elements. Using Schur complement, the update problem can be

simplified as

v12 = argmin
v

vTW−1
11 v s.t. ‖v− s12‖∞ ≤ η. (6.12)

One can solve Eq. (6.12) for each column (and corresponding row) of V by permuta-

tions. [6] solved Eq. (6.12) using a smooth optimization technique, and [38] used a

coordinate descent method for the dual of Eq. (6.12).

We efficiently solve Eq. (6.12) by exploiting its relation to Eq. (6.2). As we did

for Eq. (6.2), we can write the KKT optimality conditions for Eq. (6.12) as

k = s12 −W11l, (6.13a)

−η ≤ k ≤ η, (6.13b)

−η < kp < η ⇒ lp = 0 for p ∈ {1, · · · , P} , (6.13c)

kp = η ⇒ lp ≥ 0 for p ∈ {1, · · · , P} , (6.13d)

kp = −η ⇒ lp ≤ 0 for p ∈ {1, · · · , P} . (6.13e)

where v = s12 − k. Hence, the proposed method presented in Section 6.2 can be di-

rectly used for Eqs. (6.13). As shown in [6], W11 remains positive definite throughout

iterations, satisfying the full rank assumption.

6.4 Experimental Validation

We implemented the proposed methods in MATLAB and compared with several

existing ones. We first compared active-set-like methods under various conditions,

and then we compared with iterative methods and tested on real data sets. We also

provide results for Gaussian structure learning task. All experiments were executed

on a 2.66GHz Intel Quad Core processor with Linux OS, with multi-threading option

disabled. All results are the average of 10 executions.
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Table 6.2: Execution results of the LARS, feature-sign (FS), block principal pivoting
(BP), and reduced block principal pivoting (BPR, with α = 0.2) methods on data
sets with sparse random features (see text). The third column shows the number of
nonzero elements in obtained β for the corresponding value of λ.

# of iterations Time (seconds)

Problem size λ Nonzeros LARS FS BP BPR LARS FS BP BPR

16 70 71 71 2 2 1.07 0.367 0.341 0.34

9.71 263 264 264 4 4 4.23 1.53 0.357 0.352

2500 × 1000 5.89 485 486 486 4 5 12.3 6.49 0.402 0.378

3.58 654 655 655 4 8 23.5 13.0 0.439 0.459

2.17 769 772 770 5 8 41.0 21.2 0.516 0.493

25.9 83 84 84 2 2 5.46 2.32 2.37 2.37

15.7 436 437 437 4 4 24.3 7.79 2.41 2.41

5000 × 2000 9.56 884 887 885 4 5 91.1 45.0 2.62 2.57

5.80 1226 1233 1228 4 8 222 118 2.94 2.90

3.52 1493 1500 1495 4 7 462 226 3.31 3.05

35.3 269 270 270 3 3 79.7 29.6 27.2 27.2

21.4 1134 1135 1135 4 5 394 145 27.8 27.7

10000 × 5000 13.0 2128 2129 2129 5 6 2112 872 31.2 29.6

7.89 3027 3030 3028 5 7 7632 2955 36.4 33.1

4.79 3675 3696 3676 5 9 15969 5954 42.4 40.8

6.4.1 Active-set-like methods

To see the behaviour of active-set-like methods under various conditions, we tested

them with synthetic data sets generated by a linear model: y = Xβ + ǫ. We tried

two types of feature matrix X, and how we generated them is described below. Each

elements of β was sampled from uniform distribution on [−1, 1]. Then, independent

Gaussian noise ǫ was generated and scaled so that the average magnitude of ele-

ments in ǫ is five percent of the average magnitude of elements in Xβ. MATLAB

implementations of the feature-sign [66] and the LARS algorithms [95] were used.2

We first tested active-set-like methods with sparse random features. We sampled

each element ofX from uniform distribution on [0, 1] and randomly selected 70 percent

of the elements to make them zero. As shown in Table 6.2, considerable improvements

2The LARS algorithm was modified to stop at the solution for given parameter λ.
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Figure 6.1: (a,b): Iteration counts and execution time of the LARS, FS, BP, and
BPR methods on data sets with correlated features (see text) (c): Speed-up by BPR
upon BP (d): Execution time of BPR and other iterative optimization schemes (e):
Execution time for Gaussian structure learning for various sizes.
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were achieved by the two new methods: the block principal pivoting (BP) and reduced

block principal pivoting (BPR). The numbers of iterations required by these methods

are small for various problem sizes and values of parameter λ. Accordingly, the

execution time of these methods depend less severely on such variations than the

LARS and feature-sign methods. One can see that the BP and BPR algorithms are

up to 100 (or more) times faster than LARS.

Next, we observed behaviour with correlated features. For various values of ρ, we

created X by generating 1000 samples of multivariate Gaussian distribution with 500

variables where the correlation coefficient of each pair of variables is ρ. We generated

ten instances of such data for each ρ, and for each instance, all algorithms were

executed for several λ’s obtained as follows. We computed the smallest λ that allows

β = 0 as a solution, which is λmax =
∥

∥XTy
∥

∥

∞
, and then we divided the interval

(λmax, λmax × 0.01) by six in log-scale to get the five values in the middle. Average

results over ten data sets and the five parameter values are shown in Figure 6.1-(a,b,c).

Initially, we thought that BP can much slow down with highly correlated features;

however, both BP and BPR appeared faster than other methods even for the highly

correlated case. As correlation increase, a smaller number of features tend to remain

nonzero because all the features become more similar. This generally resulted in

smaller number of iterations and execution time for the LARS, feature-sign, and

BPR methods in high correlation.

BPR showed a clear advantage against BP especially for the highly correlated

case. Figure 6.1-(a,b) show that BPR reduced both the number of iterations and the

execution time of BP, and Figure 6.1-(c) illustrates the speed-up of BPR against BP.

For high correlation, the reduced block exchange rule effectively controls the increase

of |F| and becomes more efficient than the full exchange rule. Hence, we focused on

BPR in the following experiments.
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Table 6.3: Execution results on data sets from UCI data repository. The results for
gradient projection (GPSR) and coordinate descent (CD) methods are given for two
tolerance (τ) values. AS stands for active-set-like methods, which include LARS,
feature sign (FS), and reduced block principal pivoting (BPR) methods. The number
of selected features represent the number of nonzero coefficients.

Time (sec) # of selected features

AS 10−2 10−3 AS 10−2 10−3

size λ LARS FS BPR GPSR CD GPSR CD GPSR CD GPSR CD

Arrhy- 452 0.86 0.046 0.041 0.014 0.028 0.015 0.043 0.023 52 54 53 53 52

thmia ×279 0.57 0.073 0.063 0.022 0.045 0.026 0.072 0.025 78 83 80 80 80

0.16 0.224 0.144 0.023 0.046 0.033 0.163 0.042 140 174 155 143 140

6238 0.74 2.61 0.75 0.41 4.80 0.693 36.4 0.954 116 137 117 116 116

Isolet ×617 0.11 9.37 3.94 0.431 8.93 2.09 63.7 3.57 301 362 308 305 301

0.017 24.5 13.3 0.728 4.49 3.76 74.2 8.73 515 604 532 529 520

Internet 3279 0.53 9.02 2.72 1.52 5.32 1.82 17.9 1.96 243 256 189 243 196

Ad ×1558 0.28 17.0 6.14 1.57 3.79 1.86 19.3 2.54 408 448 330 424 357

0.081 76.6 38.5 1.85 2.86 3.31 19.0 5.46 862 1075 755 882 771

6000 0.64 160 44.8 30.4 75.6 36.3 249 39.0 465 534 464 466 465

Gisette ×5000 0.34 448 153 31.2 73.5 48.5 264 58.1 1070 1330 1121 1083 1057

0.18 1495 606 35.0 58.2 74.7 304 100.0 1829 2702 1964 1877 1825

6.4.2 Comparison with iterative methods

To see relative performance against iterative optimization methods, we compared

BPR with two recently proposed methods: the gradient projection method by [34]

(GPSR) and the coordinate descent method by [37] (CD).3

To compare these algorithms under the same condition, we stopped both algo-

rithms in the following way. Suppose the solution in the kth iteration is β(k), let

d(k) = XTy −XTXβ(k), and define g(k) by

g
(k)
i =































−d(k)i + λ if (β
(k)
i > 0) or (β

(k)
i = 0 and di > λ)

−d(k)i − λ if (β
(k)
i < 0) or (β

(k)
i = 0 and di < −λ)

0 if β
(k)
i = 0 and − λ ≤ di ≤ λ

3The code of GPSR was obtained from the authors. For CD, although the authors provide an
R package, we reimplemented in MATLAB/C to compare in the same environment and stopping
criterion. Our implementation of CD was carefully optimized by using C (i.e., MEX files) for iterative
operations, which can be slow in MATLAB script. Note that other implementations used in our
comparisons, including the implementations of BP and BPR, are purely in MATLAB only.
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where
(

g(k)
)T

=
(

g
(k)
1 , · · · , g(k)P

)

∈ R
P . Then, with ∆k =(

∥

∥gk
∥

∥

2
/# of nonzeros in gk),

an algorithm was stopped if ∆k ≤ τ∆0 where ∆0 is the value using initial values and

τ is a chosen tolerance. This criterion can be obtained by using the subdifferential of

l1-norm along with the criterion in [72]. We observed that at most τ = 10−2 or 10−3

is recommended because values larger than these produced very inaccurate solutions

in our repeated trials (See also Section 6.4.3).

Execution results of these algorithms on the correlated data set mentioned in the

previous subsection are presented in Figure 6.1-(d).4 The results indicate that BPR

is highly competitive against these state-of-the-art iterative methods, even for a loose

tolerance. Interestingly, BPR and the two iterative methods showed reverse trends

with respect to the correlation coefficients: the two iterative methods became slower

for highly correlated data unlike BPR.

It is worth mentioning that all the active-set-like methods, including LARS,

feature-sign, and BPR, return an exact solution. In contrast, iterative methods do so

only if very small tolerance is applied. The BPR method enjoys the property that it

returns an exact solution without loosing scalability.

6.4.3 UCI data sets

In Table 6.3, the execution results on data sets from UCI repository5 are shown.

Linear regression was considered for each data set with elastic net penalty with small

l2-norm regularization (parameter 10−4 × λ when λ is given for l1-norm). Being

consistently faster than the LARS and feature-sign methods, BPR was competitive

against iterative methods. For τ = 10−2, solutions from iterative methods were

inaccurate as can be seen from the fact that the number of selected features are

different from that of exact solutions obtained by active-set-like methods. When

4We report the best results from the two methods: the Barzilai-Borwein version for GPSR and
the covariance updating with active-set arrangement for CD.

5http://archive.ics.uci.edu/ml/
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Table 6.4: Execution time (sec) of Gaussian structure learning on Rosetta Com-
pendium gene expression data set (6316 features and 300 samples)

COVSEL feature-sign BP gplasso
53.55 225.24 4.82 4.07

τ = 10−3 was applied for higher accuracy, the computation time increased. While

providing exact solutions, BPR was very fast among all the methods tested.

6.4.4 Gaussian structure learning

Figure 6.1-(e) and Table 6.4 show execution results for the structure learning of

Gaussian graphical models. Parameter η was selected using the formulation in [6],

and time was measured until the duality gap, described in the same paper, of 10−1

is achieved. For the results shown in Figure 6.1-(e), with various dimensions P , 1
3
P

samples of multivariate Gaussian distribution with sparse inverse covariance matrix

were generated and used. BPR appeared significantly faster than the COVSEL [6]

and feature-sign method, where the feature-sign method was used for Eq. (6.12). BPR

showed comparable performance with graphical Lasso (gplasso) [38]. The same trend

can be observed from Table 6.4, which shows execution times on the gene expression

data set used in [6].

6.5 Discussion

We introduced new active-set-like algorithms for l1-regularized linear regression and

demonstrated their computational benefits through experimental comparisons. The

proposed method achieved significant speed-up maintaining the accuracy of solutions.

The block principal pivoting algorithm described in this chapter can be compared

with the block principal pivoting method in Chapter 4 as follows. The optimality

conditions for the NLS problems appear as a linear complementarity problem (LCP)

as in Eq. (4.3), which is simpler than BLCP in Eq. (6.3). A notable difference is that

in the NLS problem, variables are exchanged between two groups (zero or positive)

100



due to nonnegativity constraints, whereas in l1-regularized linear regression, variables

can take any sign, and thus they are exchanged among three groups (negative, zero, or

positive). Due to the difference, the exchange rules of the proposed method are more

complicated, and the finite-termination proof becomes more difficult [52]. One might

observe that l1-regularized linear regression can be reformulated as the NLS problems

[96, 34], and the algorithm in Chapter 4 might be used. However, this approach is

inefficient because the reformulation doubles the variable size. Furthermore, after

reformulation, the matrix B in Eq. (4.3) becomes always rank-deficient, making the

application of the algorithm in the algorithm in Chapter 4 infeasible.
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CHAPTER VII

NONNEGATIVE RANK-DEFICIENT LEAST SQUARES

In the efficient algorithms for NMF and NCP proposed in Chapters 4 and 5, a fast

algorithm for the the nonnegativity-constrained least squares (NLS) problems plays

a key role. The block principal pivoting method, discussed in those chapters, has

similarities with the classical active-set method [63] but overcomes its limitation by

allowing exchanges of multiple variables between working sets per iteration. By reduc-

ing the number of iterations required until termination, the block principal pivoting

method significantly accelerates the active-set method when the number of unknowns

are large. There are, however, other trade-offs between the two methods. Although

the block principal pivoting method is typically faster than the active-set method, it

requires that the matrix involved in the NLS problem is of full column rank. On the

other hand, in this chapter, we show that the active-set method can deal with the

rank-deficient NLS problems. We analyze the active-set method in detail and show

that the columns corresponding to passive variables remain linearly independent if

the method is appropriately initialized. Analysis provided in this chapter enables a

deeper understanding of the behaviour of the active-set method for the NLS problems.

Consider a NLS problem as follows.

min
x≥0

J(x) =
1

2
‖Bx− c‖22 (7.1)

where B ∈ R
M×N , c ∈ R

M . In Section 7.1, we will first introduce the active-set

method for solving Eq. (7.1) due to Lawson and Hanson [63] and provide additional

explanations for its property. In Section 7.2, we provide a proof of a statement

regarding the behaviour of the active set method in handling the rank-deficient case.
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Algorithm 7.1 The active-set method [63] for the NLS problems

Input: B ∈ R
M×N , c ∈ R

M

Output: argminx≥0 ‖Bx− c‖22
1: x← 0, E ← {1, 2, · · · , N}, S ← ∅, w ← BT (c−Bx).
2: while E 6= ∅ and ∃j ∈ E such that wj > 0 do
3: Let t ∈ E be such that wt = max {wj : j ∈ E}
4: E ← E − {t} and S ← S ∪ {t}.
5: Let BS ∈ R

M×|S| be the submatrix of B containing only the columns indexed
by S. Consider a vector z ∈ R

N , whose elements are found by

zS ← arg min
y∈R|S|

‖BSy − c‖22

and zE ← 0, where zS and zE represent the subvectors of z indexed by S and
E , respectively.

6: while zj ≤ 0 for any j ∈ E do

7: Let q ∈ S be such that xq

xq−zq
= min

{

xj

xj−zj
: zj ≤ 0, j ∈ S

}

, and let α ←
xq

xq−zq
.

8: x← x+ α(z− x).
9: Let H = {j : j ∈ S and xj = 0} and update E ← E ∪ H and S ← S −H.
10: zS ← argminy∈R|S| ‖BSy − c‖ and zE ← 0.
11: end while
12: x← z.
13: w ← BT (c−Bx).
14: end while

7.1 Active-set method for NLS problems

The active-set method for Eq. (7.1) is presented in Algorithm 7.1. This algorithm

is a standard method for the NLS problems, and its implementation is included in

MATLAB as the function lsqnonneg. A key idea underlying Algorithm 7.1 is that,

if the zero and nonzero variables of the optimal solution of Eq. (7.1) is known in

advance, the optimal solution can be easily computed. Let x∗ be a minimizer of

Eq. (7.1), then the index set

E∗ = {j|x∗j = 0, j = 1, 2, · · · , N} (7.2)

is called the active set since the nonnegativity constraints are actively satisfied in
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those indices. Similarly, the index set

S∗ = {j|x∗j 6= 0, j = 1, 2, · · · , N} (7.3)

is called the passive set. In Algorithm 7.1, (E ,S) is maintained as candidates for

(E∗,S∗), and indices are exchanged between E and S until (E∗,S∗) is identified.

Typically, a zero vector is used as an initial value, i.e., S = ∅.

Algorithm 7.1 is composed of two nested loops: the inner loop consisting of from

Step 7 to Step 10 and the outer loop consisting of from Step 3 to Step 13. In the

inner loop, the solution of an unconstrained least squares problem with respect to

the current passive set S is computed in Step 10. If the solution is nonnegative, the

inner loop is terminated at Step 6; otherwise, a step length is chosen so that at least

one passive variable becomes active (Step 7), and the loop is repeated. In the outer

loop, a check is made to determine if the current solution obtained from the inner

loop is the optimal solution (Step 2). If it is not the optimal solution, then one index

is chosen from the active set and moved to the passive set (Steps 3 and 4).

Assuming that B is of full column rank, the correctness of Algorithm 7.1 is shown

in [63]. In order to formally describe this property, let us see the following lemma

whose proof is given in Chapter 23 of [63].

Lemma 7.1. Let G ∈ R
M×N be a matrix of rank N and let h ∈ R

N satisfying

GTh =





0N−1

λ





with λ > 0. If y∗ = argminy∈RN ‖Gy − h‖22 , then y∗N > 0.

Lemma 7.1 is essential in proving that Algorithm 7.1 is well defined, as presented

in the following theorem.

Theorem 7.2. In Algorithm 7.1, for t chosen at Step 3, vector z obtained in Step 5

satisfies zt > 0 .
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Proof. First observe that x in Step 3 satisfy the relationship

xS = arg min
y∈R|S|

‖BSy − c‖22 . (7.4)

Eq. (7.4) is trivial at the first iteration, in which S = ∅, and at the second or later

iteration, this is guaranteed by Step 5 and Step 10. Eq. (7.4) translates into

∂‖BSy − c‖22
∂y

(y = xS) = BT
SBSxS −BT

Sc = 0.

Using xE = 0, we have Bx = BSxS and therefore

BT
SBx−BT

Sc = 0.

Now, for the index t chosen at Step 3, we know that

wt =
(

BT (c−Bx)
)

t
> 0

due to the condition of the while-loop. Let G̃ =
(

BS bt

)

and h̃ = c−Bx. Then

G̃T h̃ =





BT
S

bT
t



 (c−Bx) =





0

wt



 ,

with wt > 0.

Now, observe that

G̃v − c = G̃v −
(

h̃+Bx
)

= G̃v −



h̃+ G̃





xS

0









= G̃



v−





xS

0







− h̃.

Therefore, two solutions

y∗ = arg min
y∈R|S|+1

∥

∥

∥
G̃y − h̃

∥

∥

∥

2

2

105



and

v∗ = arg min
v∈R|S|+1

∥

∥

∥
G̃v − c

∥

∥

∥

2

2

has the relationship

y∗ = v∗ −





xS

0



 ,

since G̃ is of the full column rank.

Applying Lemma 7.1, y∗|S|+1 > 0, and therefore v∗|S|+1 > 0. Finally, observe that

v∗|S|+1 is assigned to zt in Step 5.

To understand the implication of Theorem 7.2, let us assume that the statement

is not true, i.e., zt ≤ 0. In this case, α in Step 7 is zero, and therefore the current

solution candidate x is not updated in Step 8 making further updates impossible.

Therefore, Theorem 7.2 is essential in showing that α is positive and all the steps in

Algorith 7.1 are well defined.

Now, the following argument shows that Algorithm 7.1 terminates in a finite

number of iterations. For the inner loop, observe that at least one index is removed

from S at each iteration. Hence, the inner loop terminates in at most |S| steps. The

finiteness of the outer loop can be shown by considering the value of the cost function

J(x). Because the value of J(x) is strictly reduced after each iteration, set S at Step

3 is different from all the previous instances of itself. Since only a finite number of

cases are possible for set S, the outer loop terminates in a finite number of iterations.

In practice, the number of iterations of the outer loop is usually the same or slightly

bigger than the size of the passive set, |S∗|.

7.2 Rank deficient NLS

When B in Eq. (7.1) is rank deficient, it turns out that Algorithm 7.1 is applicable

without modification. We prove this by asserting and proving a theorem regarding

the new variable chosen at Step (3) in presence of the overall rank deficiency of B.
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A key issue is whether BS ever becomes rank deficient during the execution of

Algorithm 7.1. If this happens, a problem arises because the solutions in Steps 5 and

10 are not uniquely determined, and then Theorem 7.2 does not hold. If Theorem 7.2

does not hold, it is difficult to show the finite termination property. In the follow-

ing, however, we show that the columns in BS indeed remain linearly independent

throughout all iterations.

Theorem 7.3. In Algorithm 7.1, the column corresponding to the index t chosen in

Step 3 is linearly independent of the columns indexed by the current S.

Proof. When S = ∅, there is nothing to prove. Suppose that S is nonempty and

that k /∈ S. Denote the kth column of B by bk. We will show that if bk is linearly

dependent on the columns in BS , then k is not selected in Step 3.

Note that, at the end of the previous iteration of the inner loop, x is feasible

(x ≥ 0) and is the optimal solution with respect to the current passive set S. We

therefore have

∂‖BSxS − c‖22
∂xS

= BT
SBSxS −BT

Sc = 0. (7.5)

Now, if bk is linearly dependent on the columns in BS , then bk = BSu with some

vector u. Then, the kth element of w in Step 13 is

wk = (bk)
T (BTx− c)

= (BSu)
T (BT

SxS − c)

= uTBT
S (B

T
SxS − c) = 0,

using Eq. (7.5). Therefore, k is not selected in Step 3.

Theorem 7.3 shows that BS does not become rank deficient after Step 3. Because

the inner loop only reduces the passive set S, BS does not become rank deficient

during the inner loop. Hence, Theorem 7.3 is enough to show that BS remains

full column rank throughout the iterations. The remaining argument of the finite
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termination property of Algorithm 7.1 for the rank-deficient case is the same as that

of the full rank case described above.

Our proof provides deep understanding regarding the initialization of the active-set

method. Although x is initialized with a zero vector in Algorithm 7.1, it is possible to

use prior information and initialize x by a nonzero vector. When B is rank deficient,

however, care must be taken if x is initialized with a nonzero vector. If x is set to be

a zero vector initially, then S is initially empty and the column rank of BS remains

full as we have shown above. If x is initialized with a nonzero vector for which the

corresponding BS is rank deficient, then the steps of Algorithm 7.1 might not be

well defined. Therefore, unless we have other information that an initial value of x

can be set to nonzero and the corresponding BS has full column rank, Algorithm 7.1

needs to be started from x = 0, i.e., with S = ∅. For this case, the algorithm will

correctly find a solution even when the matrix is rank deficient without ever running

into rank-deficient subproblems.
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CHAPTER VIII

GROUP SPARSITY IN NONNEGATIVE MATRIX

FACTORIZATION

In this chapter, we propose an extension of NMF that incorporates group structure

as prior information. Many matrix-represented data sets are inherently structured

as groups. For example, a set of documents that are labeled with the same topic

forms a group. In drug discovery, various treatment methods are typically applied

to a large number of subjects, and the subjects that received the same treatment

are naturally viewed as a group. In addition to these groups of data items, a set of

features forms a group as well. In computer vision, different types of features such

as pixel values, gradient features, and 3D pose features can be viewed as groups.

Similarly in bioinformatics, features from microarray and metabolic profiling become

different groups.

The motivation of our work is that there are similarities among data items or

features belonging to the same group in that their low-rank representations share the

same sparsity pattern. However, such similarities have not been previously utilized

in NMF. In order to exploit the shared sparsity pattern, we propose to incorporate

mixed-norm regularization in NMF. We adopt l1,q-norm regularization, and the defi-

nition of l1,q-norm is shown in Section 8.2. Regularization by l1-norm is well-known

to promote a sparse representation [96]. When l1-norm is extended to groups of pa-

rameters, l1,q-norm has been shown to induce a sparse representation at the level of

groups [104]. By employing l1,q-norm regularization, the latent factors obtained by

NMF can be improved with an additional property of shared sparsity.
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The adoption of mixed-norm regularization introduces a new challenge to the op-

timization algorithm for NMF. Since the mixed-norm term is not a smooth function,

conventional methods such as the steepest gradient descent cannot be applied. To

address the difficulty, we present two algorithms based on recent developments in con-

vex optimization. Both algorithms are developed using the block coordinate descent

(BCD) method [10]. The first approach is a matrix-block BCD method, in which

the subproblems are handled with an efficient first order optimization scheme [98].

The second approach is a vector-block BCD method, which often converges faster

than the former. A strength of the two algorithms we propose is that they generally

handle l1,q-norm regularization for common cases: q =∞ and q = 2. We also provide

computational comparisons of the two methods.

We show the effectiveness of mixed-norm regularization for factor recovery using

a synthetic data set. In addition, we demonstrate application examples in semi-

supervised clustering and multilingual text mining. Our application examples are

novel in that the use of group-sparsity regularization for these applications has not

been shown before. In the applications, the benefits of nonnegativity constraints

and group-sparsity regularization are successfully combined demonstrating that the

mixed-norm regularized NMF can be effectively used for real-world data mining ap-

plications where nonnegative representations are used.

The rest of this chapter is organized as follows. We begin with discussion on re-

lated work in Section 8.1. We then introduce the concept of group sparsity and lead

to a problem formulation of NMF with mixed-norm regularization in Section 8.2. We

describe optimization algorithms in Section 8.3. We provide the demonstration of re-

covery example, application examples, and computational comparisons in Section 8.4.

We finalize the chapter with discussion in Section 8.5.
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8.1 Related Work

Incorporating group information using mixed-norm regularization has been applied

to numerous learning problems. Earlier, regularization for sparse representation was

popularized with the l1-norm penalized linear regression called Lasso [96]. L1-norm

penalization is known to promote a sparse solution and improve generalization. Tech-

niques for promoting group-level sparsity using l1,2-norm regularization have been in-

vestigated by Yuan and Lin and others [104, 61, 79] under the name of group Lasso.

Approaches that adopt l1,∞-norm regularization have been subsequently proposed by

Liu et al. and others [74, 90, 23] for multi-task learning problems. Regularization

methods for more sophisticated structure have also been proposed recently [60, 75].

In matrix factorization, Bengio et al. [7] and Jenatton et al. [50] considered l1,2-

norm regularization in sparse coding and principal component analysis, respectively.

Jenatton et al. [49] further considered hierarchical regularization with tree structure.

Jia et al. [51] recently applied l1,∞-norm regularization to sparse coding with a focus

on a computer vision application. Masaeli et al. [78] used the idea of l1,∞-norm

regularization for feature selection in PCA. The group structure studied in our work

is close to those of [7, 49, 51] since they also considered group sparsity shared across

data items or features. On the other hand, the hierarchical regularization in [49]

is different from ours because their regularization was imposed on parameters within

each data item. Most importantly, we focus on nonnegative factorization in algorithm

development as well as in applications, whereas [7, 49, 51] focused on sparse coding

or PCA.

In the NMF literature, efforts to incorporate group structure have been fairly lim-

ited. Badea [3] presented a simultaneous factorization of two gene expression data

sets by extending NMF with an offset vector, as in the affine NMF [26]. Li et al. [69]

and Singh and Gordon [94] demonstrated how simultaneous factorization of multiple

matrices can be used for knowledge transfer. Jenatton et al. [49] mentioned NMF as

111



a special case in their work on sparse coding, but they only dealt with a particular

example without further developments. In addition, the hierarchy structure consid-

ered in [49] is different from ours as explained in the previous paragraph. To our

knowledge, algorithms and applications of applying group-sparsity regularization to

NMF have not been fully investigated before our work in this chapter.

Efficient optimization methods presented in this chapter are built upon recent

developments in convex optimization and NMF algorithms. The block coordinate

descent (BCD) method forms the basis of our algorithms. In our first algorithm, which

is a matrix-block BCD method, we adopt an efficient convex optimization method

in [98]. The motivation of our second algorithm is from the hierarchical alternating

least squares (HALS) method [24] for standard NMF. Convex optimization theory,

in particular the Fenchel duality described in Chapter 2, plays an important role in

both of the proposed algorithms.

8.2 Problem Statement

Let us begin our main discussion with a matrixA ∈ R
M×N
+ . Without loss of generality,

we assume that the rows of A represent features and the columns of A represent data

items. In standard NMF, we are interested in discovering two low-rank factor matrices

W ∈ R
M×K
+ and H ∈ R

N×K
+ such that A ≈ WHT . This is typically achieved by

minimizing an objective function defined as

f(W,H) =
1

2

∥

∥A−WHT
∥

∥

2

F
. (8.1)

with constraints W ≥ 0 and H ≥ 0. In this section, we show how we can take group

structure into account by adding a mixed-norm regularization term into Eq. (8.1).

8.2.1 Group structure and group sparsity

Let us first describe the group structure using motivating examples. Diagrams in Fig-

ure 8.1 show group structure considered in our work. In Figure 8.1-(a), the columns
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(that is, data items) are divided into three groups. This group structure is prevalent

in clustered data, where data items belonging to each cluster define groups. In text

mining, a group can represent documents having the same topic assignment. Another

example can be seen from bioinformatics. For the purpose of drug discovery, one typ-

ically applies various treatment options to different groups of subjects. In this case,

it is important to analyze the difference at the level of groups and discover funda-

mental understanding of the treatments. The subjects to which the same treatment

is applied can be naturally viewed as a group.

On the other hand, groups can be formed from the rows (that is, features) as shown

in Figure 8.1-(b). This structure can be seen from multi-view learning problems. In

computer vision, as Jia et al. [51] discussed, a few different feature types such as pixel

values, gradient-based features, and 3D pose features can be simultaneously used to

build a recognition system. In text mining, a parallel multilingual corpus can be

seen as a multi-view data set, where the term-document frequency features in each

language form a group.

Our motivation is that the feature or data instances that belong to a group are

expected to share the same sparsity pattern in low-rank factors. In Figure 8.1-(a),

the gray and white rows in (H(1))T , (H(2))T , and (H(3))T represent nonzero and zero

values. For example, columns in (H(1)))T share the same sparsity pattern that their

second components are all zero. Such group sparsity improves the interpretation of

the factorization model: For the reconstruction of data items in A(1), only the first,

the third, and the fourth latent components are used whereas the second component is

irrelevant. Similar explanation holds forA(2) andA(3) as well. That is, the association

of latent components to data items can be understood at the level of groups instead

of each data item.

In Figure 8.1-(b), group sparsity is shown for latent component matrices W(1),

W(2), and W(3). A common interpretation of multi-view matrix factorization is that
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Figure 8.1: (a) Matrix with column groups and its factorization with group sparsity
(b) Matrix with row groups and its factorization with group sparsity. The bright rows
of (H(i))T in (a) and the bright columns of W(i) in (b) (i = 1, 2, 3) represent zero
subvectors.

the ith columns of W(1), W(2), andW(3) are associated with each other in a sense that

they play the same role in explaining data. With group sparsity, missing associations

can be discovered. In Figure 8.1-(b), the second components of W(1) and W(2) are

associated with each other, but there is no corresponding component in the third

view since the second column in W(3) appeared as zero.

Examples and interpretations provided here are certainly not exhaustive, and we

believe the group structure can be found in many other data mining problems. With

these motivations in mind, now we proceed to discuss how group sparsity can be

promoted by employing mixed-norm regularization.

8.2.2 Formulation with mixed-norm regularization

We discuss using the case of Figure 8.1-(a), where the columns are divided into groups.

By considering the factorization AT , however, all the formulations can be applied to
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a case with row groups.

Suppose the columns ofA ∈ R
M×N are divided into B groups asA =

(

A(1), · · · ,A(B)
)

,

where A(b)∈RM×Nb and
∑B

b=1Nb=N . Accordingly, the coefficient matrix is divided

into B groups as H =











H(1)

...

H(B)











where H(b) ∈ R
Nb×K . The objective function in

Eq. (8.1) is now written as a sum:

f(W,H) =
1

2

B
∑

b=1

∥

∥A(b) −W(H(b))T
∥

∥

2

F
.

To promote group sparsity, we add a mixed-norm regularization term for coefficient

matrices
{

(H(b))T
}

using l1,q-norm and consider an optimization problem

min
W≥0,H≥0

f(W,H) + α ‖W‖2F + β

B
∑

b=1

∥

∥(H(b))T
∥

∥

1,q
. (8.2)

We show the definition of ‖·‖1,q below, and the Frobenius norm regularization on W

is used to prevent W from growing arbitrarily large. Parameters α and β control the

strength of each regularization term.

Now let us discuss the role of l1,q-norm regularization. For a matrix Y ∈ R
a×b, its

l1,q-norm is defined by

‖Y‖1,q =
a

∑

j=1

‖yj·‖q = ‖y1·‖q + · · ·+ ‖ya·‖q .

That is, the l1,q-norm is the sum of lq-(vector) norms of its rows. Penalization with

l1,q-norm promotes as many number of zero rows as possible to appear in Y. In

Eq. (8.2), the penalty term on (H(b))T promotes that coefficient matrices (H(b))T

contain as many zero rows as possible, and the zero-rows correspond to group sparsity

described in Section 8.2.1. Any scalar q, 1 < q ≤ ∞, can be potentially used, but for

the development of algorithms, we focus on the two cases of q = 2 and q =∞, which

are also common in related literature discussed in Section 8.1. In the following, we

describe efficient optimization strategies for solving Eq. (8.2).
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Algorithm 8.1 Matrix-block BCD method for Eq. (8.2)

Input: A =
(

A(1), · · · ,A(B)
)

∈ R
M×N ,α, β ∈ R+

Output: W ∈ R
M×K
+ , HT =

(

(H(1))T , · · · , (H(B))T
)

∈ R
K×N
+

1: Initialize W and H(1), · · · ,H(B), e.g., with random entries.
2: repeat
3: Update W as

W← arg min
W≥0

1

2

∥

∥A−WHT
∥

∥

2

F
+ α ‖W‖2F . (8.3)

4: For each b = 1, · · · , B, update H(b) as

H(b) ← arg min
H(b)≥0

1

2

∥

∥A(b) −W(H(b))T
∥

∥

2

F
+ β

∥

∥(H(b))T
∥

∥

1,q
. (8.4)

5: until convergence

8.3 Optimization Algorithms

With mixed-norm regularization, the minimization problem in Eq. (8.2) becomes even

more difficult than the standard NMF problem. We here propose two strategies based

on the block coordinate descent (BCD) method shown in Chapter 2. The first method

is a BCD method with matrix blocks; that is, a matrix variable is minimized at each

step fixing all other entries. The second method is a BCD method with vector blocks;

that is, a vector variable is minimized at each step fixing all other entries. In both

algorithms, the l1,q-norm term is handled by using Fenchel duality.

8.3.1 Matrix-block BCD method

The matrix-block BCD method minimizes Eq. (8.2) with one submatrix at a time

fixing all other variables. Overall procedure is summarized in Algorithm 8.1.

The subproblem for W in Eq. (8.3) is easy to solve as it can be transformed to

W← arg min
W≥0

1

2

∥

∥

∥

∥

∥

∥





H
√
2αIK



WT −





AT

0K×M





∥

∥

∥

∥

∥

∥

2

F

, (8.5)

which is the nonnegativity-constrained least squares (NLS) problem. An efficient

algorithm for the NLS problem, as discussed in Chapter 4, can be used to solve
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Algorithm 8.2 A convex optimization method for Eq. (8.7)

Input: B ∈ R
p×r, C ∈ R

p×t, β ∈ R+

Output: X ∈ R
r×t
+

1: Choose X(0),X̃(0) and let τ (0) = 1.
2: for k = 0, 1, 2, · · · , until convergence do
3: Y(k) ← τ (k)X(k) + (1− τ (k))X̃(k)

4: Update

X(k+1) ← argmin
X≥0

∥

∥X−U(k)
∥

∥

2

F
+

2β

τ (k)L
‖X‖1,q , (8.6)

where U(k) = X(k) − 1
τ (k)L

(

BTBY(k) −BTC
)

and L = σmax

(

BTB
)

.

5: X̃(k+1) ← τ (k)X(k+1) + (1− τ (k))X̃(k)

6: Find τ (k+1) > 0 such that

(

τ (k+1)
)−2 −

(

τ (k+1)
)−1

=
(

τ (k)
)−2

.

7: end for
8: Return X̃(k).

Eq. (8.5). Solving the subproblem for H(b) in Eq. (8.4) is a more involved task, and

an algorithm for this problem is discussed in the following.

The problem for H(b) can be generally written as follows. Given two matrices

B ∈ R
p×r
+ and C ∈ R

p×t
+ , we would like to solve

min
X≥0

1

2
‖BX−C‖2F + β ‖X‖1,q . (8.7)

Observe that the objective function of Eq. (8.7) is composed of two terms: g(X) =

1
2
‖BX−C‖2F and h(X) = β ‖X‖1,q. The both of g(X) and h(X) are convex func-

tions, the first term g(X) is differentiable, and ∇g(X) is Lipschitz continuous. Hence,

an efficient convex optimization method can be adopted.

Algorithm 8.2 shows a first-order convex optimization method [98] derived for

Eq. (8.7). It is a variant of the Nesterov’s method [81], which has been widely used

due to its theoretical strength and empirical success. An important requirement in

Algorithm 8.2 is the ability to efficiently solve the subproblem in Eq. (8.6). Observe

that the problem can be separated with respect to each row of X. Focusing on the
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ith row of X, it suffices to solve a problem in the following form:

min
x≥0

1

2
‖x− v‖2 + η ‖x‖q (8.8)

where x, v, and η replace xi·,
(

U(k)
)

i·
, and β

τ (k)L
, respectively.

It is important to observe that the problem in Eq. (8.8) can be handled without

the nonnegativity constraints. The following proposition summarizes this observation.

Jenatton et al. [49] briefly mentioned the statement but did not provide the proof.

Suppose [·]+ denotes the element-wise projection operator to nonnegative numbers.

Proposition 8.1. Consider the minimization problem in Eq. (8.8) and a modified

problem as follows:

min
x

1

2

∥

∥x− [v]+
∥

∥

2
+ η ‖x‖q . (8.9)

If x∗ is the minimizer of the problem in Eq. (8.9), then x∗ is element-wise nonnegative,

and it also attains the minimum of the problem in Eq. (8.8).

Proof. The nonnegativity of x∗ can be seen by the fact that any negative element

can be set as zero decreasing the objective function of Eq. (8.9). The remaining

relationship can be seen by considering an intermediate problem

min
x≥0

1

2

∥

∥x− [v]+
∥

∥

2
+ η ‖x‖q . (8.10)

Comparing Eq. (8.9) and Eq. (8.10), since the minimizer x∗ of the unconstrained prob-

lem in Eq. (8.9) satisfies nonnegativity, it is certainly a minimizer of the constrained

problem in Eq. (8.10). Now, let the minimizer of Eq. (8.8) be x̃∗, and consider the set

of indices N = {i : vi ≤ 0}. Then, it is easy to check (x̃∗)i = (x∗)i = 0 for all i ∈ N .

Moreover, ignoring the variables corresponding to N , the problems in Eq. (8.8) and

Eq. (8.10) are equivalent. Therefore, x∗ is the minimizer of Eq. (8.8)

Proposition 8.1 transforms Eq. (8.8) into Eq. (8.9), where the nonnegativity con-

straints are dropped. This transformation is important since Eq. (8.9) can now be
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solved with Fenchel duality as follows. According to Fenchel duality and Corol-

lary 2.18, the following problem is dual to Eq. (8.9):

min
s

1

2

∥

∥s− [v]+
∥

∥

2

2
subject to ‖s‖q∗ ≤ η, (8.11)

where ‖·‖q∗ is the dual norm of ‖·‖q. Eq. (8.11) is a projection problem to a lq∗-norm

ball of size η. Based on Theorem 2.16, the dual norm of ‖·‖2 is itself, and the dual

norm of ‖·‖∞ is ‖·‖1. Therefore, the problem in Eq. (8.11) with q = 2 is written as

min
s

1

2

∥

∥s− [v]+
∥

∥

2

2
subject to ‖s‖2 ≤ η, (8.12)

which can be solved simply by normalization. With q =∞, Eq. (8.11) is written as

min
s

1

2

∥

∥s− [v]+
∥

∥

2

2
subject to ‖s‖1 ≤ η, (8.13)

which can be solved by an algorithm described in [86, 31]. Once Eq. (8.11) is solved

with a minimizer s∗, the optimal solution for Eq. (8.8) is recovered by x∗ = [v]+− s∗.

8.3.2 Vector-block BCD Method

The matrix-block BCD algorithm has been shown to be quite successful for NMF

and its variations. However, observations in Chapter 4 indicate that the vector-

block method [24] is also very efficient, often outperforming the matrix-block method.

Accordingly, for the group regularized problem in Eq. (8.2), we develop a vector-block

method as follows.

In vector-block BCD method, optimal solutions to subproblems with only respect

to each column of W,H(1), · · · ,H(b) are sought. Overall procedure is shown in Al-

gorithm 8.3. In Algorithm 8.3, the solution of the first subproblem in Eq. (8.14) is

simply written as

wk ←
[

Rkhk

2α + ‖hk‖2
]

+

.

The second subproblem in Eq. (8.15) is rewritten as

min
h≥0

‖wk‖2
2

∥

∥

∥

∥

∥

∥

∥

h−

(

R
(b)
k

)T

wk

‖wk‖22

∥

∥

∥

∥

∥

∥

∥

2

+ β ‖h‖q , (8.16)
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Algorithm 8.3 Vector-block BCD method for Eq. (8.2)

Input: A =
(

A(1), · · · ,A(B)
)

∈ R
M×N ,α, β ∈ R+

Output: W ∈ R
M×K
+ , HT =

(

(H(1))T , · · · , (H(B))T
)

∈ R
K×N
+

1: Initialize W and H(1), · · · ,H(B), e.g., with random entries.
2: repeat
3: For each k = 1, · · · , K, update wk(∈ R

M×1) as

wk ← argmin
w≥0

1

2

∥

∥Rk −whT
k

∥

∥

2

F
+ α ‖w‖2 , (8.14)

where Rk = A−∑K

k̃=1,k̃ 6=k wk̃h
T

k̃
.

4: For each b = 1, · · · , B and then for each k = 1, · · · , K, update h
(b)
k (∈ R

Nb×1)
as

h
(b)
k ← argmin

h≥0

1

2

∥

∥

∥
R

(b)
k −wkh

T
∥

∥

∥

2

F
+ β ‖h‖q , (8.15)

where R
(b)
k = A(b) −∑K

k̃=1,k̃ 6=k wk̃(h
(b)

k̃
)T .

5: until convergence

where h ∈ R
Nb×1. Comparing Eq. (8.16) and Eq. (8.8), observe that the two are

equivalent by replacing v and η of Eq. (8.8) with

(

R
(b)
k

)T

wk

‖wk‖
2
2

and β

‖wk‖
2 of Eq. (8.16).

Therefore, Eq. (8.16) in turn can be solved based on Proposition 8.1 and the dual

problem in Eq. (8.11).

Remark.

It is worth emphasizing the difference of the matrix-block and the vector-block

BCD methods. Although the both eventually rely on Proposition 8.1 and the dual

form in Eq. (8.11), the goal of matrix-block subproblems is finding optimal solutions

of Eq. (8.3) and Eq. (8.4), where a matrix is a variable to optimize. In contrast, the

vector-block method seeks optimal solutions of Eq. (8.14) and Eq. (8.15), where a

vector is a variable to optimize. The matrix-block method is a BCD method with

B + 1 blocks whereas the vector-block method is a BCD method with K(B + 1)

blocks. They share the same convergence property that every limit point is stationary

based on Theorem 2.14, but their actual efficiency may be different as we show in

Section 8.4.4.
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8.4 Implementation Results

Our implementation section is composed of four folds. We first demonstrate the effec-

tiveness of group-sparsity regularization with a synthetically generated example. We

then show an application of the column grouping (Figure 8.1-(a)) in semi-supervised

clustering and an application of the row grouping (Figure 8.1-(b)) in multilingual text

analysis. Finally, we present the computational comparison of the matrix-block and

the vector-block methods.

8.4.1 Factor recovery

Our first demonstration is the comparison of several regularization methods using a

synthetically created data set. Figure 8.2 shows the original data and recovery results.

The five original images in the top of Figure 8.2-(a) are of 32 × 32 pixels, and each

of them are vectorized to construct a 1, 024 × 5 latent component matrix W. Five

coefficient matrices (H(1))T , · · · , (H(5))T of size 5×30 each are constructed by setting

the ith row of (H(i))T as zero for i = 1, 2, 3, 4, 5 and then filling all other entries by

taking random numbers from the uniform distribution on [0, 1]. The top image of

Figure 8.2-(b) shows the zero and nonzero pattern of HT =
(

(H(1))T , · · · , (H(5))T
)

∈

5×120, where dark entries represent nonzeros and bright entries represent zeros. The

zero rows of each block are clearly shown as bright rows.

We multiplied W with HT to generate a matrix with five blocks and added Gaus-

sian noise so that the signal-to-noise ratio is 0.3. Under this high noise condition, we

tested the ability of various regularization methods in terms of recovering the group

structure of the original matrices. Strong noise is common in applications such as

video surveillance or Electroencephalography (EEG) analysis in neuroscience. Two

alternative regularization methods are considered as competitors:

min
W≥0,H≥0

f(W,H) + α ‖W‖2F + β ‖H‖2F , (8.17)
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l1,2

(b)

Figure 8.2: (a) Original latent factor images and recovered factor images with var-
ious regularization methods (b) Original coefficient matrix and recovered coefficient
matrices with various regularization methods. In each of (a) and (b), first row: orig-
inal factors, second row: recovered by Eq. (8.17), third row: recovered by Eq. (8.18),
fourth row: recovered by Eq. (8.2) with q =∞, fifth row; recovered by Eq. (8.2) with
q = 2. See text for more details.
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and

min
W≥0,H≥0

f(W,H) + α ‖W‖2F + β
N
∑

n=1

‖hn·‖21 . (8.18)

Eq. (8.17) and Eq. (8.18) impose the Frobenius norm and l1-norm regularization on

H, respectively, and neither of them take the group structure into account. Re-

formulations for solving Eq. (8.17) and Eq. (8.18) are described in Section 3.1.4.

For the group-sparsity regularization method, we considered Eq. (8.2) with q = ∞

and q = 2. For all cases, parameters α and β need to be provided as input, and

we determined them by cross validation: We iterated all possible combinations of

α, β ∈ {103, 102, · · · , 10−4} and chose a pair for which the reconstruction error is the

minimum for another data matrix constructed in the same way. For each case of α

and β pair, ten random initializations are tried, and the best is chosen.

In Figure 8.2-(a), it can be seen that the recovered latent components from the

four different regularization methods are visually similar to each other. However, in

the coefficient matrix shown in Figure 8.2-(b), the drawback of conventional regular-

ization methods stands out. In the coefficient matrices recovered by the Frobenius

norm or the l1-norm regularization, the group structure was lost, and nonzero (dark)

elements appeared in the rows of zero (bright) values that present in the original

matrix. In contrast, in the coefficient matrices recovered by the l1,∞-norm or the

l1,2-norm regularization, the group structure was preserved because the zero (bright)

rows remained the same as the original matrix.

The failure to recover the group structure leads to a misinterpretation about the

role of latent factors. In original matrices, the first group is constructed only with

the 2nd, 3rd, 4th, and 5th latent components, and the second group is constructed

with only 1st, 3rd, 4th, and 5th latent components, and so on. However, the coefficient

matrices recovered by Frobenius norm or the l1-norm regularization suggest that all

the five factors participate in all the groups, which is an incorrect understanding.
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8.4.2 Semi-supervised clustering

Our next demonstration is an application example of the group-sparsity regularization

with the column groups as shown in Figure 8.1-(a). One of successful applications of

NMF is document clustering, and here we show that the group-sparsity regularization

can be used for incorporating side-information for clustering.

When NMF is used for clustering (see [103, 58]), the maximum element from each

column of H is chosen to determine clustering assignments. That is, for a group

of documents belonging to the same cluster, their representations in matrix H are

similar to each other in a sense that the indices of elements having the maximum

value at each column are the same. In particular, if a group of columns in H share

the same sparsity pattern, it is likely that their clustering assignments are the same.

Motivated by this observation, we propose to impose group-sparsity regularization

for the documents that are supervised to be in the same cluster (i.e., ‘must-link’

constraints). In this way, the documents will be promoted to have the same clustering

assignments, and latent factor matrix will be accordingly adjusted. As a result, the

accuracy of clustering assignments for the unsupervised part can be improved.

We tested this task with two text data sets as follows. The Topic Detection

and Tracking corpus 2 (TDT2)1 is a collection of English news articles from various

sources such as NYT, CNN, and VOA in 1998. The 20 Newsgroups data set2 is

a collection of newsgroup documents in 20 different topics. From term-document

matrices constructed from these data sets [17]3, we randomly selected K = 5 (and

K = 10) topics that have at least 60 documents and extracted random samples

of 60 documents from them. Then, 10 documents from each topic were used as

a supervised set, and the rest 50 were an unsupervised (i.e., test) set. A matrix

1http://projects.ldc.upenn.edu/TDT2/
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://www.zjucadcg.cn/dengcai/Data/TextData.html
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Figure 8.3: Accuracy of semi-supervised clustering with group-sparsity regularization.
The x-axis shows the values of α, and the y-axis shows clustering accuracy. Baseline
represents the result of no regularization (α = β = 0). Top: TDT2 data set with
K = 5, middle: TDT2 data set with K = 10, bottom: 20 newsgroups data set with
K = 5, left: q =∞, right: q = 2.
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factorization problem is constructed with (K+1) groups: For the first K groups each

having 10 supervised documents, group-sparsity regularization is applied, whereas the

last group having total 50×K unsupervised documents was with no regularization.

As a result, for a matrix A =
(

A(1), · · · ,A(K),A(K+1)
)

where A(K+1) represents the

unsupervised part, we used the following formulation

min
W≥0,H≥0

f(W,H) + α ‖W‖2F + β
K
∑

b=1

∥

∥(H(b))T
∥

∥

1,q
, (8.19)

where HT =
(

(H(1))T , · · · , (H(K))T , (H(K+1))T
)

. Note that no regularization is im-

posed for the last group H(K+1). The goal is to solve Eq. (8.19) and accurately assign

clustering labels using H(K+1). We selected the most frequent 10,000 terms to reduce

the matrix size. We repeated with 10 different random samples and evaluated the

average clustering accuracy with the Hugarian method.4

The execution results are shown in Figure 8.3. In semi-supervised clustering,

choosing a good parameter setting is difficult because a standard method such as

cross validation is not straightforward to apply. Therefore, instead of showing results

for a specific choice of α and β, we present how the performance of suggested approach

depends on α and β. The results shown in the figures show a reasonable trend. The

group-sparsity regularization does boost the clustering performance, but too strong

regularization such as α > 10 is often harmful. It can be seen that a wide selection

of the parameter values, α ∈ [10−4, 10] and β ∈ [10−4, 102], can be used to improve

the clustering accuracy.

Note that the goal of our demonstration is not to argue that the group-sparsity

regularization is the best semi-supervised clustering approach. Such an investigation

requires the in-depth consideration of other semi-supervised clustering methods, and

it is beyond the scope of this chapter. In fact, the group-sparsity regularization can

4http://en.wikipedia.org/wiki/Hungarian_method

126



be potentially combined with other matrix-factorization based semi-supervised clus-

tering methods [101], and the combination will be an interesting future work. In

addition, the group-sparsity regularization takes into account only ‘must-link ’ con-

straints, and combining with another approach for handling ‘cannot-link ’ constraints

is also a promising avenue for further study.

8.4.3 Multilingual text analysis

Now, we turn to an application of the group-sparsity regularization with the row

groups (as opposed to the column groups in the previous subsection). We consider

the task of analyzing multilingual text corpus, which is becoming more important

under the trend of rapidly increasing amount of web text information. Demand for a

multilingual system is particularly high in a nation or a community, such as EU, where

multiple official languages are used. An effective approach in multilingual modeling

is to make use of parallel (i.e., translated) corpus to discover aligned latent topics.

Aligned latent topics can then be used for topic visualization, cross-lingual retrieval,

or classification. In this subsection, we show how group-sparsity regularization can

be used to improve the interpretation of aligned latent topics.

We have used the DGT Multilingual Translation Memory (DGT-TM)5 in our

analysis. This corpus contains the body of EU law, which is partially translated into

22 languages. We have analyzed documents in English, French, German, and Dutch,

which will be denoted by EN, FR, DE, and NL. Applying stop-words and stemmer

for each language, we selected the most frequent 10,000 terms in each language to

construct term-document matrices. Matrix factorization problem was set up as in

Figure 8.1-(b). As we deal with four languages, the source matrix A consists of

four row blocks: AT =
(

(A(1))T , · · · , (A(4))T
)

. Columns of these matrices contain

the term-document representation of the same document in four different languages.

5http://langtech.jrc.it/DGT-TM.html
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Not all documents are translated into all languages, so a script to extract pairwise

corpora was used. The source matrix A is not fully observed in this case, and missing

parts were treated with zero weights. Once a low-rank factorization is obtained, the

columns of W(1), · · · ,W(4) with the same column index are interpreted as aligned

latent topics that convey the same meaning but in different natural languages.

The expected benefit of group-sparsity regularization is removing noisy alignments

of the latent factors. That is, if a certain topic component appear in documents only

in a subset of languages, we would like to detect a zero column in the latent factor

for the language where the topic is missing. To test this task, we used a partial

corpora from DGT-TM as follows. We collected pairwise translation corpora for EN-

FR, EN-DE, and EN-NL (of sizes 1,273, 1,295, and 632, respectively), and appended

single language documents in EN, FR, DE, and NL (of sizes 1,300, 930, 610, and 699,

respectively). Using q =∞, K = 500, α = 10, and β = 30, the algorithm described in

Section 8.3 was applied to AT . The columns in W are sorted in a decreasing amount

of explained variance, and keywords in each topic are listed in a decreasing order of

the weights given to each term. The results are summarized in Table 8.1.

Out of K = 500 columns, six of them resulted empty, making the 494th topic be

the last one in Table 8.1. Two aspects of the results can be noted as a summary.

First, the keywords in each language of the same topic appeared quite well aligned in

general. Second, zero columns indeed were detected in some of the discovered topics.

For example, the 231th topic, which is regarding vehicles and trailers, appeared only

in English and Dutch documents. Similarly, the 452th topic, which is regarding ships,

appeared only in English and German documents. When we tried without group-

sparsity regularization, however, all the columns of W appeared as nonzero.
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Table 8.1: Summary of topics analyzed by group-sparsity regularized NMF.

Id Keywords

2

EN member, state, institut, benefit, person, legisl, resid, employ, regul, compet, insur, pension

FR procdur, march, de, passat, membr, adjud, recour, d’un, consider, une, aux, concili

DE akt, gemeinschaft, rechtsakt, bestimm, europa, leitlini, organ, abfass, dies, sollt, erklar,

artikel

NL regel, bevoegd, artikel, grondgebied, stat, organ, lid-stat, tijdvak, wettelijk, uitker,

werknemer, krachten

14

EN test, substanc, de, use, en, toxic, prepar, soil, concentr, effect, may, method

DE artikel, nr, verordn, flach, eg, absatz, mitgliedstaat, flachenzahl, gemass, erzeug, anhang,

wirtschaftsjahr

NL word, and, effect, stoff, test, preparat, teststof, stof, la, per, om, kunn

231
EN brake, shall, vehicl, test, system, point, trailer, control, line, annex, requir, type

NL de, moet, voertuig, punt, bijlag, aanhangwag, op, remm, wordt, niet, dor, mag

302

EN statist, will, develop, polici, european, communiti, programm, inform, data, need, work,

requir

FR statist, europen, une, polit, programm, un, dvelopp, don, aux, communautair, l’union, mis

DE statist, europa, dat, entwickl, programm, information, erford, bereich, neu, dies,

gemeinschaft, arbeit

NL vor, statistisch, statistiek, europes, word, ontwikkel, over, zull, om, gebied, communautair,

programma

392
EN shall, requir, provid, class, system, space, door, deck, fire, bulkhead, ship, regul

DE so, schiff, raum, muss, klass, tur, absatz, vorhand, deck, stell, maschinenraum, regel

452
EN must, machineri, design, use, oper, safeti, manufactur, risk, requir, construct, direct, person

NL moet, machin, zijn, de, dor, om, fabrikant, niet, lidstat, overeenstemm, eis, elk

488
EN clinic, case, detect, antibodi, isol, compat, diseas, demonstr, specimen, fever, pictur, specif

FR dtect, cliniqu, une, cas, mis, vident, malad, isol, part, chantillon

DE nachweis, klinisch, prob, isolier, bild, vereinbar, fall, spezif, fieb, krankheit, akut, ohn

NL klinisch, geval, dor, ziekt, aanton, isolatie, beeld, detectie, monster, bevestigd, niet, teg

494

EN european, council, schengen, union, treati, visa, decis, articl, provis, nation, protocol,

common

FR europen, conseil, l’union, vis, dcis, prsent, trait, schengen, commun, tat, communaut,

protocol

DE europa, rat, union, beschluss, vertrag, gemeinsam, ubereinkomm, artikel, dies,

schengen-besitzstand

NL de, europes, rad, besluit, overeenkomst, verdrag, protocol, bepal, betreff, lidstat, unie,

gemeenschap
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8.4.4 Timing comparison

Our last experiments are the comparison of computational efficiency of the two al-

gorithms for solving group-sparsity regularized NMF. Using the data sets used for

previous three demonstrations, we executed the two methods and compared time-vs-

objective value graphs. Several initialization values are typically tried in NMF, and

the execution of one initial value appears as a piece-wise linear decreasing function.

We averaged the graphs for 10 initializations and used to generate the plots shown in

Figure 8.4.

From the figure, it can be seen that the vector-block BCD method converges to a

minimum faster than the matrix-block BCD method does. The trend is consistent in

both dense (synthetic data set) and sparse (text data sets) matrices. In a non-convex

optimization problem such as NMF, each execution may converge to a different local

minimum, but the converged minima found by the two methods were in general close

to each other.

8.5 Discussion

In this chapter, we proposed mixed-norm regularization methods for promoting group

sparsity in NMF. Regularization by l1,q-norm successfully promotes that the sparsity

pattern is shared among data items or features within a group. Efficient convex

optimization methods based on the block coordinate descent (BCD) method are pre-

sented, and the comparisons of them are also provided. Effectiveness of group-sparsity

regularization is demonstrated with application examples for factor recovery, semi-

supervised clustering, and multilingual analysis.
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Figure 8.4: Computational comparisons of the matrix-block and the vector-block
BCD methods. The x-axis shows execution time, and the y-axis shows the value of
the objective function in Eq. (8.2.1) divided by its evaluation with initial random
inputs. All graphs show average results from 10 random initializations. (a) synthetic
data set used in Section 8.4.1 (b) TDT2 data set with K = 5 (c) TDT2 data set
with K = 10 (d) 20 newsgroup data set with K = 5 (e) 20 newsgroup data set with
K = 10. In each of (a)-(e), top: q =∞, bottom: q = 2.
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CHAPTER IX

CONCLUSIONS AND DISCUSSION

9.1 Summary of Contributions

Having the details of this thesis presented in previous chapters, now we summarize

the contributions from a wider view as follows.

1. The block principal pivoting method with the grouping acceleration for the

nonnegativity-constrained least squares (NLS) problem constitutes a state-of-

the-art algorithm for nonnegative matrix factorization (NMF) and nonnegative

CANDECOMP/PARAFAC (NCP) decomposition. The success of this method

is closely related with a critical observation that matrices involved in the NLS

subproblems that arise in the NMF and NCP computation have long-and-thin

and flat-and-wide structures (See Chapters 4 and 5). There have been previ-

ous studies on NMF and NCP based on other algorithms for solving the NLS

subproblems; however, these important characteristics of the NLS subproblems

have not been recognized or used to design fast algorithms. Our contribution

exemplifies a general lesson in algorithm design for real-world problems: There

are numerous algorithmic strategies for the NLS problems in general, but no

single algorithm performs the best in all circumstances. By understanding the

characteristics of the NMF and NCP problem, we were able to design the best

algorithm for the NLS subproblems in the context of NMF and NCP computa-

tion.

2. The trade-offs between active-set-like methods for the NLS problems, that in-

clude the block principal pivoting method and the active-set method, are ex-

plained empirically and theoretically. The two methods are called active-set-like
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methods in this thesis because both of them work under the following frame-

work: (1) the active and passive workings sets are kept track of, (2) an uncon-

strained least squares problem is solved in each iteration, and (3) the workings

sets are updated based on the solution. Whereas the active-set method ex-

changes typically only one variable between workings sets, the block principal

pivoting method exchanges multiple variables per iteration, thereby requiring

smaller number iterations until termination. In Chapters 4 and 5, this com-

putational advantage is utilized to develop fast algorithms for NMF and NCP:

In particular, Section 4.4.1 provides detailed analysis on the behaviour of the

two methods. Despite the computational advantage, the block principal pivot-

ing method requires a stronger condition that the matrix involved in the NLS

problem is of full column rank. The full column rank condition is not required

in the active-set method, as we proved in Chapter 7. This theoretical discovery

fills the gap in the trade-offs of the two methods: Previously, it has not been

formally shown that the active set method is capable of handing rank-deficient

problems. Overall, this thesis elucidates the trade-offs of active-set-like methods

through empirical demonstrations and a theoretical proof.

3. The trade-offs of active-set-like methods are further demonstrated in l1-regularized

linear regression. The l1-regularized linear regression, also known as the Lasso,

has received much attention in the recent decade due to its ability to promote

sparsity. Existing active-set methods for Lasso include the least angle regression

(LARS) and the feature-sign search algorithm, and these algorithms are similar

to the active-set method for the NLS problem in that typically only one variable

is exchanged among working sets, thereby showing limitations for large prob-

lems. In Chapter 7, the block principal pivoting method for the l1-regularized

linear regression is developed. Similarly to the NLS problems, the block prin-

cipal pivoting method considerably accelerates existing active-set methods in
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large problems. These results strengthen understanding on the trade-offs of

active-set-like methods: In addition to the NLS problems, the block princi-

pal pivoting strategy accelerates the active-set method in l1-regularized squares

problems.

4. An effective and efficient method for incorporating group-structure prior infor-

mation in NMF is proposed. In many applications to which NMF was shown

successful, group structure prior information is commonly found: Features or

data items are divided into groups defined by a certain kind of similarity. Moti-

vated by the fact that the features or data items belonging to the same group are

likely to share the same sparsity pattern in their low-rank factor representation,

we proposed to adopt mixed-norm regularization to promote group sparsity in

NMF. In Chapter 8, mixed-norm based formulation, efficient algorithms based

on convex optimization methods, and application examples are presented. This

contribution deepens the discussion on NMF in this thesis: Whereas Chap-

ters 4 and 5 addressed computational challenges in standard NMF, Chapter 8

addressed challenges in incorporating prior information with a goal to improve

upon standard NMF.

9.2 Future Directions

There are a number of interesting directions of further investigation on the problems

or techniques discussed in thesis. We summarize those directions with comments

based on experiences and observations from the work of this thesis.

1. A deeper investigation on various block coordinate descent (BCD) methods for

NMF and NCP is worth attention. In Chapters 4 and 5, the block principal piv-

oting method was shown to perform the best among several methods based on

matrix-block BCD framework, which is called the alternating nonnegative least

squares (ANLS). On the other hand, the vector-block BCD method, called the
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hierarchical alternating least squares (HALS) algorithm, also perform very effi-

ciently, often outperforming the ANLS method with the block principal pivoting

(ANLS-BPP) for NMF. In Section 4.4.3, we presented interesting trade-offs be-

tween ANLS-BPP and HALS depending on the sparsity of the latent factors.

On the other hand, for higher order tensors, our experimental results in Chap-

ter 5 indicate that HALS is clearly slower than ANLS-BPP for NCP. Research

on these two successful methods, potentially with deeper understanding on the

BCD methods in NMF and NCP computation, will be a valuable direction.

2. Further refinements on the block principal pivoting strategy is an interesting

direction. The performance of block principal pivoting strategy would depend

on how often the full exchange rule fails so that the backup rule has to be

activated. In our extensive tests on NMF, NCP, and Lasso, the backup rule

appearance was not observed, showing that the full exchange rule in practice

work well for various problems. Still, further analysis on conditions under which

the backup rule could appear and how much it affects the performance of overall

algorithm will help understanding on this method. In addition, the current

simple backup rules in Eq. (4.7) and Eq. (6.9) might not be the best ones, and

the design of alternative backup rules will be useful.

3. Challenging questions regarding the group-sparsity regularization and its exten-

sions remain. In the l1,q-norm regularization method studied in Chapter 8, an

interesting open question is to understand its effects depending on the choice of

q. In this thesis, for computational convenience, only the q = 2 and the q =∞

cases are addressed, but other choices that define lq-norm for vectors can be

generally considered. In fact, this issue on l1,q-norm regularization goes beyond

NMF literature and concerns wider audience who investigate group sparsity in

supervised multi-task learning. In NMF, improving upon the group-sparsity
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regularization studied in Chapter 8, more sophisticated techniques can be con-

sidered to enrich NMF and NCP methodologies. For example, algorithms and

applications incorporating prior information with overlapping and hierarchical

groups can be considered [49, 75].
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