
A METAMODELING APPROACH FOR
APPROXIMATION OF MULTIVARIATE, STOCHASTIC

AND DYNAMIC SIMULATIONS

A Thesis
Presented to

The Academic Faculty

by

Andres Felipe Hernandez Moreno

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Chemical & Biomolecular Engineering

Georgia Institute of Technology
May 2012

A METAMODELING APPROACH FOR
APPROXIMATION OF MULTIVARIATE, STOCHASTIC

AND DYNAMIC SIMULATIONS

Approved by:

Professor Martha A. Grover, Advisor
School of Chemical & Biomolecular
Engineering
Georgia Institute of Technology

Professor Roshan J. Vengazhiyil
School of Industrial & Systems
Engineering
Georgia Institute of Technology

Professor Matthew J. Realff
School of Chemical & Biomolecular
Engineering
Georgia Institute of Technology

Professor Jeff S. Shamma
School of Electrical & Computer
Engineering
Georgia Institute of Technology

Professor Clifford L. Henderson
School of Chemical & Biomolecular
Engineering
Georgia Institute of Technology

Date Approved: 22 March 2012

“Porque un soñador no muere,

hasta que la ultima esperanza sea abatida”

Andres F. Hernandez

“Only in death will the true dreamer,

be separated from his imagination”

Translation by Dr. Karen Head. CETL, Georgia Tech.

iii

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to God, for giving me the opportunity to

walk this very long story of getting a Ph.D, despite being so far away from home,

and finally accomplishing my dream. Then... I do not have enough words or ideas

to express my gratitude to Martha. I could not have a better advisor; her patience,

her charisma and thoughtful ideas, gave me strength during the darkest hours of this

journey. I will always appreciate all the work you did, and I will follow the way you

thought me about how to do science.

I would like to acknowledge all my committee members, Dr. Matthew Realff,

Dr. Clifford Henderson, Dr. Roshan Vengazhiyil and Dr. Jeff Shamma, for all

those significant comments and suggestions that make this work possible. Also, I

would like to express my gratitude to Dr. Jye-Chyi Lu, Dr. Nicholas Hud and Dr.

David Lynn from who I learned the value of a good research collaboration, and the

value of thinking outside of the engineering box. On a really special note, I want to

acknowledge the Center for the Enhancement of Teaching and Learning at Georgia

Tech, and in particular its graduate communication coordinator, Dr. Karen Head,

for making me improve every day in all aspect of my communication skills.

I would like to thanks all the members of the Grover research group, from the

ones who came first (Cihan, Rentian, Paul, Aparna and Jonathan), to the ones who

are right now (Huayu, Michael, Yuzhen, Dan, Christine, Ming-Chien and Xun). I will

appreciate their friendship. I want to express all my gratitude and appreciation to

Florencia Carrillo and her family for making me feel at home during all these years, to

Pedro P. Franco and his family who have been witnesses of this triumph, and Alonso

Herrera and his family for their unmeasurable friendship.

iv

Last, I want to say thanks to my mom Mercedes, my aunt Yolanda and all my

family back in Colombia who gave me their support during these years. I feel so

proud for been in the family I am, and this is achievement for all of us.

This thesis work was made possible by the financial support of the Air Force Office

of Scientific Research, the National Science Foundation and the NSF/NASA Center

for Chemical Evolution.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . xi

SUMMARY . xviii

I INTRODUCTION . 1

1.1 Approximate models of expensive dynamic simulations 1

1.2 Data-driven dynamic models . 5

1.3 Error estimation in data-driven dynamic models 8

1.4 Research summary and scientific contributions 10

II MATHEMATICAL BACKGROUND OF GAUSSIAN PROCESS
MODELS . 13

2.1 Deriving a Gaussian process model 15

2.1.1 Best linear unbiased estimator 17

2.1.2 From Gaussian process priors to conditional predictive distri-
butions . 19

2.2 Building a Gaussian process model 20

2.3 Parameter estimation methodologies for Gaussian process models . . 23

2.3.1 Parameter uncertainty for Gaussian process models 24

2.4 Computational issues for Gaussian process models 30

2.5 Dynamic systems modeling and Gaussian process models 32

2.5.1 Dynamic system identification using Gaussian process models 35

2.5.2 Uncertainty in state prediction for Gaussian process models 38

2.5.3 Combining uncertainty sources for Gaussian process models 43

2.6 Multivariate Gaussian process models 44

vi

III ERROR ESTIMATION IN STOCHASTIC SIMULATIONS US-
ING GAUSSIAN PROCESS MODELS 48

3.1 Background . 48

3.2 Error estimation for Gaussian process models 51

3.3 Case studies and testing implementation 52

3.3.1 Test problems and creation of noisy observations 53

3.3.2 Building Gaussian process models 55

3.3.3 Error estimation analysis . 55

3.4 Results . 56

3.4.1 Understanding stochastic simulations in a Gaussian process
model . 56

3.4.2 Error estimation in Gaussian process models 63

3.4.3 Error estimation of Gaussian process models under limited
number of function evaluations 67

3.5 Discussion . 70

IV PROPAGATION OF ERROR IN AN ITERATIVE MAPPING
USING GAUSSIAN PROCESS MODELS 76

4.1 Local and dynamic error in the GPM dynamic framework 77

4.2 Case study: Second-order reaction rate 79

4.3 Results . 84

4.3.1 Understanding the one-step-ahead prediction error 84

4.3.2 Understanding the prediction error in a complete dynamic tra-
jectory . 86

4.3.3 Propagation of error in the GPM dynamic framework 89

4.4 Discussion . 99

V RECURSIVE DYNAMIC FRAMEWORK USING MULTIVARI-
ATE GAUSSIAN PROCESS MODELS FOR STOCHASTIC SIM-
ULATIONS . 103

5.1 Background . 104

5.1.1 Implementing mGPM for dynamic systems modeling 104

vii

5.1.2 Error estimation framework for multivariate Gaussian process
models . 109

5.2 Case study for dynamic GPM prediction of multiple variables: Non-
adiabatic CSTR . 114

5.2.1 Collecting dynamic trajectories 116

5.2.2 Creation of a database for Gaussian process models 118

5.3 Analysis of a GPM dynamic framework under stochastic simulations 120

5.4 Results . 125

5.4.1 Effects of regression functions in the iGPM dynamic framework125

5.4.2 Error estimation of dynamic GPM predictions for multiple
variables . 140

5.4.3 Predictions of a multivariate Gaussian process model for sys-
tem dynamics . 146

5.5 Discussion . 152

VI EVALUATION OF METAMODELING APPROACHES FOR DIS-
CRETE TIME APPROXIMATIONS IN NANOPARTICLE SYN-
THESIS . 156

6.1 Case study: Deposition of platinum nanoparticles on carbon nan-
otubes under supercritical conditions 157

6.1.1 Implementation in model reduction of nanoparticle dynamics 163

6.2 Evaluation of data-driven models for nanoparticle dynamic predictions 166

6.2.1 Mathematical description of metamodeling approaches . . . 170

6.2.2 Research Analysis . 180

6.3 Results . 183

6.3.1 Comparison of metamodeling approaches for mean dynamic
predictions in nanoparticle synthesis 183

6.4 Discussion . 186

VII CONCLUSIONS AND FUTURE WORK 189

7.1 Conclusions . 189

7.2 Future Work . 192

REFERENCES . 195

viii

LIST OF TABLES

1 Parameters used in the Hartman-3 function with three variables . . . 53

2 Summary of Gaussian process model implementation for error estima-
tion analysis . 54

3 Average DEM values for the GPM dynamic framework, over 1000
different experimental designs and several initial values in the scaled
input space. The table compares the classical implementation of a
GPM, with its Taylor-series and Gaussian approximations for input
uncertainty. These different GPM implementations are evaluated at
several noise levels and experimental designs. 91

4 Summary of physical properties and design settings used in the non-
adiabatic CSTR case study. 116

5 Analysis of regression functions for the non-adiabatic CSTR case study,
using a iGPM dynamic implementation. 124

6 Mean values of σ2
c and σ2

u distribution of GPM parameters during the
dynamic framework for different regression functions. The estimated
parameters corresponds to the GPM for the scaled concentration. The
distributions are build over 1000 different sets of 20 dynamic trajecto-
ries from the initial sample region, using ∆t = 20 s and ∆g = 0.05. . 130

7 Mean values of log10(LEM) over the test samples in the dynamic region
for each of the scaled variables predicted by the iGPM. The mean values
have been computed at different noise levels and for the three different
types of regression functions. The iGPM uses the non-uniform data
sampling scheme with ndyn = 20 and ∆g = 0.05. 133

8 Mean values of log10(DEM) over the test samples in the state space.
The mean values have been computed at different noise levels and for
the three different types of regression function used in the iGPM. The
values with an asterisk represent cases where some dynamic trajectories
exhibit extrapolation problems during its iGPM prediction (see Figure
37b). 139

9 Comparison of the estimated σ2
c and σ2

u distributions in iGPM and
mGPM. This table summarizes the mean values of the estimated pa-
rameter distributions for the scaled concentration. The distributions
are build over 1000 different sets of ndyn = 20 dynamic trajectories
from the initial sample region, using ∆t = 20 s and ∆g = 0.05. All
iGPM and mGPM used a constant regression function. 147

ix

10 LEM and DEM prediction errors of iGPM and mGPM for the scaled
normalization variable. Both GPM dynamic implementations used the
non-uniform data sampling scheme with ndyn = 20 dynamic trajecto-
ries and a grid spacing of ∆g = 0.05. These LEM and DEM predic-
tion errors are averages over 1000 different experimental designs. . . . 150

11 Model parameters for platinum nanoparticles on carbon nanotubes us-
ing sc-CO2. 160

12 Mean values of log10(LEM) over the test samples for the nanoparticle
dynamics model. The table summarizes the LEM results in each of
the five reduced state variables as well as the overall LEM prediction
of each approximate model. The LEM values were calculated over 100
different experimental designs, each of them with a ndyn = 20 dynamic
trajectories and a grid spacing ∆g = 0.05. 184

13 Mean values of log10(DEM) over the test samples for the nanoparticle
dynamics model. The table summarizes the DEM results in each of
the five reduced state variables as well as the overall DEM prediction
of each approximate model. The LEM values were calculated over 100
different experimental designs, each of them with a ndyn = 20 dynamic
trajectories and a grid spacing ∆g = 0.05. The asterisk represents
DEM prediction errors where extrapolation problems have occurred. 185

14 Computational cost of different approximate models for the nanopar-
ticle dynamics model. The tables shows the average CPU time in sec-
onds for the parameter estimation and prediction of the approximate
models, as well as the different parameter estimation methodologies
in each of them. The CPU time calculations were computed with a
Intel R©CoreTM 2 @ 2.4 GHz, Matlab Version R2009b. 186

x

LIST OF FIGURES

1 Representation of the nanoparticle dynamic model as an expensive
dynamic simulation . 2

2 Approximate modeling for the nanoparticle dynamic model as an ex-
pensive dynamic simulation . 3

3 Summary of research work and scientific contributions in this thesis. . 12

4 Graphical representation of Krige’s idea for deterministic observations:
Gaussian process model. (a) Linear regression model. (b) Gaussian
process model. 14

5 Flowchart of the recursive one-step-ahead prediction scheme using a
GPM for dynamic systems modeling [57]. 36

6 Test functions: (a) Camelback function (b) Branin-Hoo function. . . . 54

7 Effect of stochastic observations on interpolator Gaussian process mod-
els. Test problem: Camelback function. The distributions of estimated
parameters in (a) and (b) were computed from 2000 different exper-
imental designs, using the maximum likelihood estimator at different
noise levels in the stochastic observations. (a) Estimated range param-
eters ℓi. (b) Estimated correlated variance parameter σ2

c on a 10-base
logarithmic scale. (c) GPM mean prediction ŷ (x) at 10 test points in
the design space for a typical experimental design. (d) GPM predic-
tive variance σ2

y (x) at 10 test points in the design space for a typical
experimental design. 58

8 Effect of stochastic observation on a regression Gaussian process mod-
els. Test problem: Camelback function. n = 30. (a) GPM mean
prediction ŷ (xi) at a sample point xi in a typical experimental design.
(b) GPM mean prediction ŷ (xt) at a test point xt in the design space.
Figure (c) shows the GPM predictive variance σ2

y (x) as a function of
σ2
u using (c) n = 30 sample points. Blue solid lines represent GPM

prediction variances at sample points in the set D, magenta dotted
lines represent GPM prediction variances at different test points in the
design space and black vertical line represent the estimated σ2

c for σ2
n = 0 60

9 Local error estimation using GPM prediction variance σ2
y (x) using

stochastic observations. Test problem: Camelback function. The noise
level σ2

n is labeled in each of the figures. (a) and (b) do not include σ2
u

in the GPM, n = 30. (c) and (d) σ2
u in the GPM, n = 30. (e) and (f)

include σ2
u in the GPM, n = 100. 62

xi

10 Description of true prediction error δ (x) distributions. (a) Scatter
plot of δ (x) values for 20 different experimental designs, σ2

n = 0. (b)
Scatter plot of δ (x) values for 20 different experimental designs, σ2

n =
1. Figures (c) and (d) shows sample mean and variances of the different
bins created from scatter plots of 2000 different experimental designs at
different σ2

n noise levels in the simulations. Test problem: Branin-Hoo
function. 65

11 Delta δ (x) distributions of three different bins at three different noise
levels for the Camelback test function. Figures (a), (b) and (c) corre-
sponds to σ2

n = 0. Figures (d), (e) and (f) corresponds to σ2
n = 1×10−2.

Figures (g), (h) and (i) corresponds to σ2
n = 1. 66

12 Describing the noise level limit in the Delta δ (x) distribution for dif-
ferent test problems. Figure (a): Branin-Hoo function. Figure (b):
Camelback function. Figure (c): Hartman-3 function. 68

13 Comparison between different parameter estimation when repetitions
are used in the Gaussian process model at different σ2

n noise levels.
Test problem: Hartman-3 function. n = 70. Figure 13a as a fraction
of repetitions equal to 0.1, Figure 13b as a fraction of repetitions equal
to 0.3. 69

14 Mean and variance of the prediction error distribution as a function of
the number of repetitions and noise level σ2

n. The fraction of function
evaluations used as repetitions is labeled in each of the figures. Noise
level in Figures (a) to (d): σ2

n = 1 × 10−6. Noise level in Figures (e)
and (f): σ2

n = 1 × 10−4. Figures (a), (c) and (e) corresponds to the
Branin-Hoo function and Figures (b), (d) and (f) corresponds to the
Camelback function. 71

15 Local Error Analysis. The black lines represents the prediction paths
using the true recursion function and the GPM. The red bracket rep-
resents the local error measurement (LEM) associated with the pre-
diction at x(s). The shaded region describes a statistical tolerance
region centered on the GPM mean prediction ŷ (x(s)) using the GPM
prediction variance σ2

y (x(s)). 77

16 Dynamic Error Analysis. The figure describes how the prediction error
propagates from one discrete time index to the next one by a recursive
dynamic GPM and compares the use of LEM and DEM in a dynamic
context. 79

xii

17 Description of a second-order reaction model. (a) Scaled dynamic map-
ping function for the second-order reaction rate in Equation (115) with
∆t = 10 s and the approximated GPM mapping functions at different
noise levels. (b) Scaled dynamic prediction made by the GPM for the
initial concentration C0 = 75 mol

m3 at different noise levels in the obser-
vations. The GPM uses n = 20 sample points equally spread across
the input space 0–1. 81

18 Average Local Error Measurement (LEM) and average GPM predic-
tion variance σ2

y for the discrete time model, Equation (115), ∆t = 10 s.
Figures (a) and (b) correspond to 1000 random experimental designs,
each of n = 20 sample points. Figures (c) and (d) correspond to 1000
realizations of an equally spaced experimental design with n = 20 sam-
ple points. 85

19 Average Dynamic Error Measurement (DEM) over complete dynamic
trajectories for the discrete time model, Equation (115), ∆t = 10 s.
Figures (a) corresponds to 1000 random experimental designs, each of
n = 20 sample points. Figures (b) corresponds to 1000 realizations of
a equally spaced experimental design with n = 20 sample points. . . . 86

20 Propagation of error in predicted dynamic trajectories by the GPM
recursive framework. The figures show the average values of LEM and
DEM for 6 different dynamic trajectories at each discrete time step s,
averaged over 1000 different experimental designs. The discrete time
interval is ∆t = 10 s and, the noise level in the stochastic observations
is σ2

n = 1× 10−8. 89

21 Average Dynamic Error Measurement (DEM) over complete dynamic
trajectories in the GPM dynamic framework, for the discrete time,
∆t = 10 s. The GPM in this figure uses an equally spaced experimen-
tal design with n = 20 sample points. (a) corresponds to the GPM
mean prediction with the Taylor-series approximation in Equation (59).
(b) corresponds to the GPM mean prediction with the Gaussian ap-
proximation in Equation (70). 90

22 Sample mean and sample variance for the δ(x) residual distribution of
the GPM at different time steps in the dynamic prediction. The figure
shows the correlation between the GPM residuals and the classical
GPM prediction variance σ2

y(x) in Equation (14). 92

23 Error estimation properties of the GPM dynamic framework during
a dynamic prediction. Blue dots corresponds to the error estimation
using the classical GPM equations. Figures (a), (c) and (e) corresponds
to the Taylor-series approximation (green dots), while figures (b), (d)
and (f) corresponds to the Gaussian approximation (red dots). 94

xiii

24 CPU Time per GPM input prediction in each of the three GPM imple-
mentations: Classical GPM, Taylor-series approximation and Gaus-
sian approximation as a function of the number of sample points n
in the model. The CPU time calculations were computed with a
Intel R©CoreTM 2 @ 2.4 GHz, Matlab Version R2009b. 95

25 Error estimation properties of the GPM dynamic framework during
a dynamic prediction using multiple delayed terms at different noise
levels σ2

n = [1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2]. Figures 25b corre-
sponds to the classical GPM equations, and Figures 25c corresponds
to the Gaussian approximation. 96

26 Error estimation properties of the GPM dynamic framework during a
dynamic prediction using different sampling rates. Figure 26a shows
the one-step-ahead prediction results for four different sampling rates
at different noise levels σ2

n = (1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2).
Figures 26b and 26d corresponds to the classical GPM equations, while
Figures 26c and 26e corresponds to the Gaussian approximation. . . . 98

27 Error estimation analysis for multivariate Gaussian process models.
Case study: Non-adiabatic CSTR (Section 5.2). (a) Scatter plots of
prediction errors in a multivariate GPM. (b) Ranking of prediction
errors. The color bar represents the magnitude of log10 (|S|) in each
of the predictions made by the mGPM. (c) Estimation of multivariate
Gaussian distributions for a set of prediction error vectors according to
their log10 (|S|). The ellipses represent automatic contour levels of the
estimated multivariate δ(x) Gaussian distribution. (d) Comparison
between the estimated |D| of the multivariate Gaussian distribution,
and the average |S| in each of the sets of prediction error vectors. . . 113

28 A continuous stirred tank reactor with cooling system 115

29 Collecting dynamic trajectories for GPM dynamic framework. (a) Rep-
resentation of the initial and dynamic region concepts. (b) Relation-
ship between the sampling time ∆t and the dynamic region. Figures
(c) and (d) shows the initial and dynamic regions for the non-adiabatic
CSTR case study using 20 dynamic trajectories and sampling times of
∆t = 20 s and ∆t = 2 s respectively. The description of the initial
sample region is defined by Equation (136). 117

30 Sparsification to create a database of dynamic information. (a) Rep-
resentation of the sparsification procedure. Figures (b) and (c) shows
the implementation of the sparsification on 20 dynamic trajectories
collected at ∆t = 20 s, using as grid sizes ∆g = 0.1 and ∆g = 0.05
respectively. 119

31 Graphical representation of the GPM dynamic framework. 123

xiv

32 Distribution of estimated GPM parameters during the dynamic frame-
work. The estimated parameters corresponds to a GPM with a con-
stant regression function describing the normalized concentration. The
distributions are built over 1000 different sets of 20 dynamic trajecto-
ries from the initial sample region, using ∆t = 20 s and ∆g = 0.05. . 127

33 Estimation of the uncorrelated variance parameter σ2
u in iGPM using

a constant regression function for the scaled concentration variable.
Figures (a) and (b) corresponds to the non-uniform data sampling
scheme generated by ndyn = 20 and ∆g = 0.05. Figures (c) and (d)
corresponds to the uniform data sampling scheme generated by ndyn =
300 and ∆g = 0.11. The distributions were obtained by 1000 different
experimental designs of the corresponding sampling scheme. 128

34 Average LEM for different test sample points in the dynamic region.
The figures show the location of the test points in the dynamic region,
and the color scale represents the average value of log10(LEM) created
by iGPM over 1000 different sets of 20 dynamic trajectories from the
initial sample region. The LEM values were calculated for the GPM
of the scaled concentration using a constant regression function. . . . 132

35 Average DEM values for different dynamic trajectories in the initial
sample region. The figures show the location of the initial values of the
trajectories in the initial sample region, and the color scale represents
the average value of log10(DEM) created by several iGPM over 1000
different sets of ndyn = 20 dynamic trajectories and ∆g = 0.05. The
DEM values were calculated for the GPM of the scaled concentration
using a constant regression function. 135

36 Average DEM values for dynamic trajectories at different discrete
times. The figures show the location of the initial values of the tra-
jectories in the initial sample region, and the color scale represents
the average value of log10(DEM) created by iGPM over 1000 different
sets of ndyn = 20 dynamic trajectories and ∆g = 0.05. The DEM
values were calculated for the GPM of the scaled concentration using
a constant regression function and a noise level of σ2

n = 1× 10−8. . . . 137

37 Potential problems during the prediction of dynamic trajectories using
iGPM for the non-adiabatic CSTR case study. (a). False prediction
of a final steady state for an initial value near to the unstable steady
state. (b) Extrapolation of GPM dynamic predictions from the training
dataset for a GPM with a quadratic regression function. Both of these
figures were made using a dataset of ndyn = 20 dynamic trajectories and
∆g = 0.05 from the initial sample region. Figure (a) uses observations
with a noise level of σ2

n = 1× 10−8, while Figure (b) uses observations
with a noise level of σ2

n = 1× 10−4. 140

xv

38 Error estimation analysis of iGPM for a one-step-ahead prediction er-
ror. The figures shows the number of dynamic trajectories ndyn used in
each of the iGPM. The figures were computed using 1000 different ex-
perimental designs of the various dynamic trajectories with ∆g = 0.05,
at different noise levels. All iGPM used a constant regression function. 142

39 Error estimation analysis of multivariate Gaussian process models for
a one-step-ahead prediction error using a uniform sampling scheme.
Figure 39 was computed using 1000 different experimental designs with
ndyn = 300 dynamic trajectories and ∆g = 0.11, at different noise
levels. All iGPM were using a constant regression function. 143

40 Error estimation analysis of iGPM at different discrete time steps. The
figure describes the propagation of error during the dynamic prediction
of the non-adiabatic CSTR case study, at three different discrete time
steps. Figures (a), (c) and (e) were made using ndyn = 20 dynamic
trajectories and ∆g = 0.05, while Figures (b), (d) and (f) were made
using ndyn = 300 dynamic trajectories and ∆g = 0.11. All figures
used 1000 different experimental design of their corresponding sampling
scheme, at several noise levels and using a constant regression function. 144

41 Distribution of estimated GPM parameters for the cross-covariance
term in a mGPM using the linear coregionalization model. Figures
41a and 41c show the negative estimated values of the cross-covariance
parameters σ2

c,12 and σ2
u,12, while Figures 41b and 41d show their pos-

itive estimated values. The distributions are build over 1000 different
sets of ndyn = 20 dynamic trajectories from the initial sample region,
using ∆t = 20 s and ∆g = 0.05. 148

42 Distribution of estimated Pearson linear correlation ρ(x) by the mGPM
implementation for a one-step-ahead prediction at different noise level
in the observations. The distributions were made using 1000 different
experimental designs, each of them with ndyn = 20 dynamic trajectories
and a grid spacing of ∆g = 0.05. 150

43 Error estimation analysis of mGPM dynamic implementation and com-
parison with the iGPM dynamic implementation. The blue dots cor-
responds to the iGPM scatter plots of the predictions errors, while
the red dots corresponds to the mGPM prediction errors. Figures (a)
and (b) evaluate the results of iGPM and mGPM under four differ-
ent noise levels σ2

n = [1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2]. (a) Error
estimation analysis for the one-step-ahead prediction error. (b) Error
estimation analysis for the dynamic predictions at t = 500 s. 151

xvi

44 (a) Platinum nanoparticle synthesis under thermal decomposition in an
inert atmosphere. (b) Transmission electron microscopy image from a
sc-CO2 process for Pt nanoparticles on carbon nanotubes (Image by
Dr. Galit Levitin, Georgia Institute of Technology). The scale bar is
10 nm. 158

45 Description of the approximate modeling for the nanoparticle dynamic
model as an expensive dynamic simulation. The figure describes the
reduction and reconstruction steps to link the expensive dynamic sim-
ulations with its approximated dynamic model. X represents any of
the evaluated mathematical approximated models, Gaussian process
model (GPM), second-order polynomial functions (SPF), radial basis
function (RBF), support vector regression (SVR), regression-based in-
verse distance weighting (RB-IDW), and equation-free approximations
(EFA) (See Section 6.2.1). 165

46 Approximated nanoparticle dynamic trajectory using a iGPM approx-
imate model. mPtOL = 155 mg, mCNT = 155 mg; (a) concentration
of elemental platinum on the CNT surface; (b) zero moment of the
nanoparticle size distribution m0. 168

47 A realization of the nanoparticle size distributions at two different pro-
cess times; (a) t = 1000 s (b) t = 7200 s. The iGPM realization is
drawn from a continuous distribution with mean and variance accord-
ing to Equations (149) and (150). 169

48 Description of the equation-free modeling. The figure shows the re-
lationship between the lifting / reconstruction and the restriction /
reduction steps of the equation-free modeling, applied to the nanopar-
ticle dynamic model. 180

49 LEM and DEM prediction error distributions in the prediction of
different metamodels for the nanoparticle dynamic model. Both figures
were constructed from the results of 100 different experimental designs,
each of them with ndyn = 20 dynamic trajectories and ∆g = 0.05. . . 185

xvii

SUMMARY

This thesis describes the implementation of metamodeling approaches as a

solution to approximate multivariate, stochastic and dynamic simulations. In the area

of statistics, metamodeling (or “model of a model”) refers to the scenario where an

empirical model is build based on simulated data. In this thesis, this idea is exploited

by using pre-recorded dynamic simulations as a source of simulated dynamic data.

Based on this simulated dynamic data, an empirical model is trained to map the

dynamic evolution of the system from the current discrete time step x(s), to the next

discrete time step x(s + 1). Therefore, it is possible to approximate the dynamics

of the complex dynamic simulation, by iteratively applying the trained empirical

model. The rationale in creating such approximate dynamic representation is that

the empirical models / metamodels are much more affordable to compute than the

original dynamic simulation, while having an acceptable prediction error.

The successful implementation of metamodeling approaches, as approximations

of complex dynamic simulations, requires understanding of the propagation of error

during the iterative process. Prediction errors made by the empirical model at earlier

times of the iterative process propagate into future predictions of the model. The

propagation of error means that the trained empirical model will deviate from the

expensive dynamic simulation because of its own errors. Based on this idea, Gaussian

process model is chosen as the metamodeling approach for the approximation of

expensive dynamic simulations in this thesis. This empirical model was selected not

only for its flexibility and error estimation properties, but also because it can illustrate

relevant issues to be considered if other metamodeling approaches were used for this

purpose.

xviii

The implementation of Gaussian process models for approximating expensive dy-

namic simulations begins by understanding and exploring the effects of stochastic

observations in this empirical model. It was found that Gaussian process models

have a noise limit at which the model is still capable of identifying the local corre-

lation in the residuals, from the stochastics observations. This noise level limit is

defined as a signal-to-noise ratio of 1× 101. If the signal-to-noise ratio in the obser-

vations is below this number, the identification of local correlation decreases. Also,

a methodology is proposed and developed to characterize the error estimation prop-

erties of a Gaussian process model. This methodology is later used to quantify the

propagation of error in dynamics and then expanded to include multivariate systems.

Then, the Gaussian process model is implemented as an iterative mapping function to

describe the dynamics of a one-dimensional state with stochastic observations. The

results shows how it is possible to track the propagated error during the dynamic

prediction by accounting for the input uncertainty in the traditional GPM prediction

distribution.

Then, the dynamic implementation of Gaussian process models moves towards

multidimensional, stochastic and dynamic systems. Using a well-studied dynamic

system in chemical engineering, it was possible to use a multivariate Gaussian process

model (cokriging) as an iterative mapping function for the prediction of multivari-

ate dynamic systems. Also, it was shown that Gaussian process models are a good

choice to describe the dynamics of systems with stable steady states, thanks to the

data density around the steady states. Finally, Gaussian process modeling is imple-

mented as an approximate model to describe the growth of platinum nanoparticles

on a carbon nanotube surface. With this elaborate and complex dynamic system,

other metamodeling approaches were explored for use can be used as approximate

models. In conclusion, the implementation of metamodeling approaches for approx-

imating expensive stochastic dynamic simulations is possible, but it may required of

xix

specific statistical tools tailored for the identification of dynamic characteristics in

the simulated dynamic data.

xx

CHAPTER I

INTRODUCTION

1.1 Approximate models of expensive dynamic simulations

Mathematical descriptions of dynamic systems range in their complexity, from simple

linear models to nonlinear expressions with a large number of parameters and assump-

tions. Fields in which expensive dynamic simulations are present include combustion,

turbulent flow, and nanoscale phenomena. In many nanoscale phenomena, expensive

dynamic simulations are used to characterized nanostructures at the atomic level and

to understand the mechanical and chemical properties of these materials. For exam-

ple, ab initio calculations can capture accurately the behavior of a complex chemical

system at microscopic scales, but their information is often high-dimensional, stochas-

tic, and sometimes impractical to be used at macroscopic length and time scales of

physical interest [80]. As a result, most of the information generated by these ex-

pensive simulations is not suitable for tasks like process control or material structure

design due to the long computational time. Simulating nanoscale phenomena for

practical purposes requires the reduction in the computational effort, accounting for

the errors in a less accurate simulation than the original detailed one.

To illustrate this modeling problem, consider the mathematical model of the depo-

sition of platinum nanoparticles on carbon nanotubes in supercritical carbon dioxide

[57], as an expensive dynamic simulation (a complete description of this nanoscale

process can be found in Section 6.1). Although the nanoparticle dynamics model

is fairly simple, it provides enough context to explain the necessity of approximate

models for expensive dynamic simulations. The majority of the computational cost in

1

the nanoparticle dynamics model is due to the stochastic nature of the kinetic Monte

Carlo (kMC) simulation used to simulate the growth of platinum nanoparticles. The

kMC simulation uses the Gillespie algorithm [39] to simulate chemical reactions of

individual atoms and/or molecules as probabilistic events that occur at known rates.

The reaction events are associated with the mechanistic descriptions and hypotheses

about how the growth of platinun nanoparticles is occurring, making the kMC simu-

lation a valuable tool for simulating chemical systems at a microscale level. However,

the computational cost of a kMC simulation increases when the number of reaction

events and the number of atoms/molecules used in the simulation increases.

To explain the computational cost of the kMC simulation, let us define z(s) ∈ R
m

as a variable that contains all the information from the expensive dynamic simulation.

For different chemical systems, z(s) could contain state variables, control variables

and parameters from a high-order simulation. For the kMC simulation in the nanopar-

ticle dynamic model, z(s) contains the concentrations of platinum nanoparticles at

different sizes, and the concentrations of other chemical species on the carbon nan-

otube surface. Figure 1 is a graphical representation of the expensive kMC simulation.

The figure shows how the kMC simulation can be understood as a discrete-time model

using the Markov property. As part of the discrete representation of the kMC sim-

ulation, a constant sampling rate, ∆t, is used to map from one discrete time to the

next one.

kMC kMC kMC(1)z(0)z ()sz (1)s +z ()
s

nz

0t = t t= ∆ t s t= ∆ (1)t s t= + ∆ ()
s f

t n t t= ∆ =

Figure 1: Representation of the nanoparticle dynamic model as an expensive dynamic
simulation

Usually the computational cost in many dynamic simulations is associated with

2

the number of variables that the model has, and/or the short sampling rate ∆t nec-

essary to capture the dynamic features of a fast timescale process. In the case of the

nanoparticle dynamics model, it is possible to decrease the computational cost of the

simulation by decreasing the dimensionality of the z(s) variables from the kMC simu-

lation. Figure 2 shows a simple scheme of the process of reduction and reconstruction

of the information from the nanoparticle dynamic model. Let define the variable

x(s) ∈ R
d as a low-order version of the high-order variables z(s). It is clear from the

discussion in this paragraph that d ≤ m, representing the dimensional reduction from

the high-order, expensive variables z(s) to the low-order, affordable variables x(s).

kMC()sz (1)s +z

()sx (1)s +x???

State
Reduction

ReconstructionReconstruction
State

Reduction

Figure 2: Approximate modeling for the nanoparticle dynamic model as an expensive
dynamic simulation

The rationale in creating an approximate dynamic model is the possibility to rep-

resent the dynamics of an expensive simulation, by constructing mathematical models

that are affordable to compute, and with an acceptable prediction error. In the case

of the nanoparticle dynamics model, the improvement in the computational cost is

conceived by combining the dimensional reduction of z(s) and, the construction of

a mathematical model that maps the dynamic information of x(s) faster than the

kMC simulation. However, a process systems engineer will still be interested in the

nanoparticle size distribution, making necessary to recover the information in x(s),

back to the original variables z(s). This is the reason to include a reconstruction step

as part of the modeling scheme. For other cases of expensive dynamic simulations,

3

the reduction and reconstruction steps may not be necessary to decrease the compu-

tational cost. Perhaps the dimension of the expensive variables z(s) is small enough,

such that an approximate dynamic model can be build directly with these variables,

approximating the system dynamics faster than the original simulation.

The research focus of this thesis is in the construction of mathematical models for

the low-order dynamics of the x(s) variables, using the nanoparticle dynamic model

as the main case study. This thesis does not analyze the reduction / reconstruction

process as part of the framework to reduce the computational cost of the nanoparti-

cle dynamic model. There is an extensive body of literature regarding this subject

including linear and nonlinear dimensionality reduction techniques, and some good

reviews about the implementation of these techniques in the approximate modeling

of expensive dynamic simulations [80, 106].

The approximate dynamic model of the low-order variables x(s) is built using

the expensive dynamic simulation as a data generator, and then estimating the pa-

rameters of a mathematical model that will approximate the system dynamics. This

approach for approximating expensive simulations has been explored previously in

the area of statistics under the name of metamodeling [131] (the word comes from

the idea of building a “model of a model”). The research developed in this thesis is

different from other metamodeling approaches. The nature of the simulated data, is

different since the nanoparticle dynamic model is a stochastic and dynamic simula-

tion. In the case of the nanoparticle dynamic model, the approximate dynamic model

is based on the dynamic data generated from the full kMC dynamic simulation after

the reduction step. Although the results in this thesis are obtained using simulated

dynamic data, they could be extended to cases where experimental dynamic data are

available and where closed-form expressions of physical experiments may be needed.

4

1.2 Data-driven dynamic models

Empirical modeling refers to the creation of models that capture trends in measured

data without explaining the mathematical or physical relationships that govern a sys-

tem. Empirical models are employed to accomplish several process operation tasks

like system identification, inferential modeling, process optimization and control. The

main advantage of an empirical model is its simplified mathematical structure, con-

necting inputs and outputs of a system. This simplified structure is helpful to repre-

sent complex systems in many research fields. However, the drawback of these type

of models is a required expertise from the modeler to choose the appropriate mathe-

matical structure that represents the system accurately. In practice, most empirical

models are formulated in an adaptive form to fit the information from the system. A

few examples of empirical models are polynomial functions, neural networks, genetic

algorithms and fuzzy models.

Iterative mapping is a particular application for empirical models for the dynamic

description of a system. The methodology uses the formulation of a dynamic model

written in a discrete-time formulation

x(s+ 1) = f (x(s),u(s)) , s = 0, 1, . . . (1)

with time t = s∆t. The user can build an empirical model based on the dynamic

data collected from the system, and use the model it as an approximation of the true

underlying model f . The approximated dynamic model, f̂ , represents the transition

mapping from one discrete time to the next one, and its recursive iteration predicts

dynamic trajectories of the state variables.

Traditional implementations of iterative mapping are based on the Markov as-

sumption, which means that the dynamics of the state variables x(s) can be described

using only information from the previous discrete time. However, iterative mapping

can encompass other mathematical descriptions such as

5

• autoregressive moving average models, including several past inputs and out-

puts, e.g. x(s+ 1) = f (x(s),x(s− 1),u(s),u(s− 1))

• time-dependent empirical models, e.g. x(s+ 1) = f (x(s),u(s), s)

An approximate dynamic model for expensive dynamic simulations can be built

using the principles of iterative mapping. The expensive dynamic simulation acts as

the “true” underlying model f , generating simulated data of the system. Informa-

tion from previous simulations is collected at different state variables x and control

inputs u. The stored information is used to generate an empirical model f̂ that pre-

dicts the outcome of a one-step-ahead prediction. Finally, the empirical model f̂ is

implemented in an iterative mapping to approximate the dynamics of the expensive

dynamic simulation. This is the reason why these approximate models are called data-

driven dynamic models. This implementation of approximated models for expensive

simulations has been studied previously in our group [106, 107, 108] for nanoscale

phenomena in thin film deposition.

One example of iterative mapping is in situ adaptive tabulation (ISAT) proposed

by Pope [114] for use in dynamic simulations of combustion, based on the concepts

of storage and retrieval. The idea is to store function evaluations of the expensive

combustion simulation in a database. The prediction of the mathematical model is

made by searching in the database for the closest values at the required input state.

Additional calculations in the methodology include the estimation of the gradient of

the function and a region of validity, to estimate the local error in the prediction.

Pope recognized the importance in the selection of the time step ∆t to capture the

changes in the state variables (which in his case were concentrations of several species

in the combustion process) due to the differences in the timescales of the combustion

reactions. The main challenge with ISAT is the intensive search in the table to find the

appropriate values to make the prediction, and the large number of expensive function

evaluations necessary to capture the noise in stochastic simulations. Some recent

6

publications related with ISAT involves studies in the error of the methodology [88],

improvements in the searching on the tables [146], sensitivity analysis [2], dynamic

optimization [145] and control [55].

A different approach to apply iterative mapping is to divide the state-space in

“cells”, and associate a constant value of f to generate the transition mapping. This

approach, known as cell mapping [59], has been used in the analysis of dynamic

systems [36] and optimal control [23, 166]. The main difficulty with this approach

is how to split the state-space to represent most accurately the iterative mapping,

particularly for high-dimensional systems. To address this problem, adaptive refine-

ment techniques were proposed to improve the approximation of the cell mapping

in regions where the long-term dynamics of the system take place [48]. Inspired by

the idea of cell mapping, other variations of iterative mapping had been formulated,

mixing techniques to subdivide the state-space with independent models on each sub-

domain. Two examples of this idea are a clustering algorithm like self-organizing map

to subdivide the state-space for a simple cell mapping [14], and the usage of response

surfaces for each subdomain to represent the iterative mapping [139].

In past years, more elaborate empirical models have been implemented to describe

the dynamics of a complex system. Qi and coworkers [116] build a data-based spa-

tiotemporal modeling approach based on the Karhunen-Loeve decomposition, com-

bined with a least-squares support vector machine, one of the most recent and effective

empirical models developed in the machine learning community. Another recent work

implements a data-based multimodel approach that combines several partial least

squares regression models, built locally in the state space, with a weighting function

constructed from fuzzy c-means clustering [9]. Fuzzy models have been used recently

on other settings such as a novel implementation of fuzzy cognitive maps and the

Hebbian learning algorithm [89], and as an iterative clustering algorithm combined

with a dynamic Takagi-Sugeno fuzzy model for the simulation of a heat exchanger

7

[52].

1.3 Error estimation in data-driven dynamic models

Using a data-driven dynamic model f̂ implies an approximation of the expensive dy-

namic simulation f . Because there is a finite amount of information or data used in

f̂ , there will be a prediction error in the model relative to f . In many of the previous

examples of data-driven dynamic models, it is not clear how to estimate the error

in the dynamic prediction. Most research on data-driven dynamic models focuses on

implementing a large sequence of data analysis tools to capture the dynamics of a

complex system. But few examples explore the relationship between the errors in

each of the data analysis tools and the overall prediction error of the methodology. In

fact, researchers have avoided the problem of estimating the prediction error in their

models by using large amounts of data collected from their examples that guarantee

a “good” representation of the complex system, or by using a validation set of data

that evaluates the methodology performance. For most of the complex systems that

are analyzed in chemical engineering, neither of these scenarios may be possible, due

to the potential costs of carrying out a physical experiment on a lab bench, or in the

case of this thesis, the high computational cost of the expensive dynamic simulation.

Therefore, before implementing an approximate model for expensive dynamic sim-

ulations, it is necessary first to address the issue of error estimation in data-driven

dynamic models.

The problem of error estimation in an empirical model is extremely important for

iterative mapping. Prediction errors made by the empirical model in earlier times

of the iterative mapping process propagate into future predictions of the data-driven

dynamic model. The propagation of error means that the data-driven dynamic model

will deviate from the expensive dynamic simulation because of its own errors. The

8

closest ideas regarding this subject are found in the mathematical analysis of numer-

ical methods. While the major source of propagated error in a numerical method like

Runge-Kutta is associated with the sampling rate ∆t, in the case of iterative mapping

the empirical model is the source of uncertainty. These research discussions are rarely

found in the current body of literature on data-driven dynamic models.

Because of these questions regarding the estimation of error in empirical models, a

probabilistic approach based on statistical models could be a better alternative to the

construction of data-driven dynamic models [80]. Using an empirical model with a

statistical framework also allows for a natural implementation of stochastic dynamic

observations in the data-driven dynamic model. Among the different statistical mod-

els, Gaussian process models have been one of the most attractive empirical models

for engineering applications. The reasons for the increasing interest in this particular

model are:

1. Good prediction performance

2. High degree of customization and flexibility, due to the multiple correlation

functions that can be used in the model

3. The model contains features of local and global estimation across the input

space, which is a recurrent discussion in the implementation of data-driven

models

4. It has convenient mathematical properties, thanks to the assumption of a Gaus-

sian process, that allows this empirical model to be used either in a Bayesian

or frequentist statistical framework

5. Based on the theory used to build these empirical models, Gaussian process

models provide a theoretical quantification of their own prediction error: the

prediction variance

9

Based on the problem of uncertainty propagation in data-driven dynamic models

and the statistical properties of Gaussian process models, the research in this thesis

builds on the following research question:

“Can a Gaussian process model estimate the propagated error generated

during an iterative mapping process, based on its error estimation proper-

ties?”

This research question is the driving force for the investigation presented in this the-

sis. The estimation of predicted errors are not only used to quantify the performance

of an empirical model, but also as a metric of the uncertainty and/or lack of knowl-

edge of the empirical model, relative to the true behavior of the system. Similarly

as the error estimation properties of Gaussian process models are used to improve

the performance of the model, the estimation of propagated error could be used to

improve the prediction of a data-driven dynamic model. Furthermore, estimating

the propagated error could be used to improve the understanding and exploration of

the dynamics in a complex system, coupling it with systematic procedures found in

sequential design of experiments. Finally, if the research question is demonstrated, it

will represent that Gaussian process models have such statistical behavior, regardless

of the system being modeled and/or approximated, a significant improvement that

goes beyond the field of chemical engineering.

1.4 Research summary and scientific contributions

This thesis is a study about the implementation of Gaussian process models as data-

driven dynamic models with the purpose of approximating an expensive stochastic

dynamic simulation, such as the nanoparticle dynamic model. The previous sections

in this introduction served to present the motivation about this study, to explain the

reasons for selecting Gaussian process models and, to illustrate the potential impact

of this work. The research question described in the Section 1.3 is not the goal of this

10

thesis, rather is a question that has emerged from it. In order to answer that ques-

tion, this thesis starts from understanding the error estimation properties of Gaussian

process models, and building up to the implementation of those properties in a mul-

tidimensional data-driven dynamic model for stochastic dynamic simulations. Each

chapter has a scientific contribution that could stand separately from the main topic

of the thesis, but also all chapters in the thesis contain practical recommendations to

other users about how Gaussian process models should be implemented in iterative

mapping.

Figure 3 shows the outline and organization between the different chapters in the

thesis. The research in this thesis is divided in three concepts: using stochastic data to

build a Gaussian process model, understanding Gaussian process models in dynamics

and, implementing multidimensional Gaussian process models as a data-driven dy-

namic model from stochastic information. Chapter 3 presents a framework to analyze

the error estimation of Gaussian process models, using the predicted error distribu-

tion across the input space. This chapter also evaluates the effect of using stochastic

data to estimate the parameters of a Gaussian process model. Chapter 4 shows how

to use Gaussian process models as data-driven dynamic models. Using a very simple

chemical system, this chapter illustrates relevant issues of this implementation that

are necessary to consider in more complex systems. Chapter 4 expands the error

estimation framework developed in Chapter 3 for its application in dynamics, with

the purpose of quantifying the propagated error by the Gaussian process models in

an iterative mapping.

Chapter 5 shows a realistic scenario for the construction of data-driven dynamic

models. This chapter uses the description and lessons learned in Chapter 4, to con-

struct a multidimensional Gaussian process model for dynamic systems. Chapter 5

also expands the implementation of the error estimation framework for Gaussian pro-

cess model to a stochastic, multidimensional and dynamic model. Finally, Chapter 6

11

Chapter No. 3: Error estimation in GPMs
q Systematic framework to analyze error estimation properties in GPMs

q Effect of stochastic data in the error estimation properties of GPMs

C
ha

p
te

r
N

o
.
2
:
M

a
th

e
m

a
ti
ca

l b
a
ck

g
ro

un
d
 o

f
G

a
us

si
a
n

P
ro

ce
ss

 M
o
d
e
ls
 (

G
P
M

s)

Chapter No. 1: Introduction

Chapter No. 4: Propagation of error in GPMs for dynamics
q Implementing systematic framework to analyze error estimation in dynamics

q Estimation of propagated error in GPMs during an iterative mapping

qDiscussion about how to implement GPM as a data-driven dynamic model

Chapter No. 6: Data-driven models in nanoscale phenomena
qMultivariate GPMs as a data-driven dynamic model for nanoparticle dynamics

qComparison between GPMs with other data-driven dynamic models and

strategies for approximate models of expensive dynamic simulations

Chapter No. 5: Multivariate GPMs for dynamics modeling
q Implementing multivariate GPMs as a data-driven dynamic model, using

stochastic data and propagation of error

q Systematic framework to analyze error estimation in multivariate GPMs

Chapter No. 7: Conclusions

Figure 3: Summary of research work and scientific contributions in this thesis.

is an application of all the research concepts developed in the previous chapters, to

the case of approximate models of expensive dynamic simulations. This application

offers a careful comparison between several data-driven dynamic models, including

Gaussian process models, support vector regression, regression-based inverse distance

weighting, radial basis functions and equation-free approximations.

12

CHAPTER II

MATHEMATICAL BACKGROUND OF GAUSSIAN

PROCESS MODELS

According to a definition in the book of Carl Edward Rasmussen [120], “A Gaus-

sian process is a collection of random variables, any finite number of which have a

joint Gaussian distribution”. Gaussian processes have been used extensively because

of the mathematical properties that comes with the Gaussian distribution. The ap-

plications of Gaussian processes cover problems in classification [69], reinforcement

learning [28], latent variable models [154] and state reduction [152]. This chapter will

be focused on the mathematical description of Gaussian processes for a common prob-

lem in engineering: regression. This type of implementation of Gaussian processes is

usually referred as Gaussian process regression, or just Gaussian process model (from

now on referred to as GPM). This chapter begins by explaining the statistical and

mathematical relationships in a GPM. Then, the chapter explores several method-

ologies for the estimation of the GPM parameters, focusing on the quantification of

parameter uncertainty in the model. After completing the basic description of GPM,

the chapter introduces several implementations of GPM in spatio-temporal processes,

and the implementation of GPM as part of an iterative mapping procedure. Finally,

the chapter concludes with a brief description of a multivariate GPM and its potential

implementation for dynamic predictions.

Gaussian process model is a type of empirical model with a long history in the

statistics community, beginning with the seminal work by Daniel Gerhardus Krige

[81] and then expanded by French mathematician Georges Matheron in the 1960s

[100]. These ideas gave birth to the research area of spatial statistics where the GPM

13

is known as Kriging. Krige’s idea was that the difference between the prediction of a

linear model and the true mean value of a function at some point can be related with

the distance between the point of interest and a set of sampled points in the input

space.

Figure 4 is a visualization of Krige’s idea for deterministic observations. Fig-

ure 4a shows the regression made by a linear regression model, such as an ordinary

least-squares error. In these regression models, a residual value remains between the

prediction and the true value of the function at each point. This figure shows that it

is more likely that nearby points in the input space will have similar residual values.

If two points in the input space are far apart from each other, it is likely that their

residual values will be different. This local behavior suggests that the magnitude of

the residual at an unknown point could be related to the magnitude of the residuals

at different reference points in the domain and, the distances between them.

Regression Model

“True”Model

Residual

(a)

Gaussian Process Model

“True”Model

(b)

Figure 4: Graphical representation of Krige’s idea for deterministic observations:
Gaussian process model. (a) Linear regression model. (b) Gaussian process model.

In order to model this distance-based behavior, a stochastic Gaussian process

can be added to the linear regression model, using the location of the sample points

and their corresponding outcomes. The resulting model containg these two elements

is known as a Gaussian process model. A GPM uses explicitly the location of the

experimental points to construct the distance-based local correlation. This concept is

14

not usually employed in regression, in which the location of the experimental points

is not explicitly considered once the model had been identified.

2.1 Deriving a Gaussian process model

Consider a set D of n input/output pairs {xi, y (xi)}, where xi ∈ R
d , y (xi) ∈ R,

i = 1, . . . , n. This set of input/output pairs will be referred as sample points or

experimental points. Consider also that the observed data y (xi) contains an additive

measurement noise η ∼ N (0, σ2
u) to the true response of the simulation ytr (xi) ∈ R

y (xi) = ytr (xi) + η (2)

Despite the presence of noise in the observed data, the objective is to predict the true

response of the simulation ytr (x) at some other point x.

In a GPM, the set of unknown true responses of the simulations are treated as

random variables that are drawn from a joint Gaussian distribution [120]. For the

elements in the set D, the mean function m(x) and the covariance matrix K ∈

R
n×n, Kij = k (xi,xj) of the true response values ytr (xi) are defined as

ytr ∼ GP (m,K) (3)

E [ytr] = m (x) = Hβ (4)

E

[

(ytr −Hβ) (ytr −Hβ)T
]

= K (5)

where ytr = [ytr(x1) ytr(x2) . . . ytr(xn)]
T ,ytr ∈ R

n, H ∈ R
n×p represents a set of p

regression or trend functions evaluated at the xi inputs in D and, β ∈ R
p are the

p regression coefficients. The set of regression functions represent the linear model

mentioned on Figure 4. There is no limitation in the selection of these regression

functions as long as they preserve the linearity of the β coefficients.

Based on the description of the observed data in Equation (2), and the multivariate

distribution of the true response, the output/observed information y (xi) in the set

15

D can also be drawn from a multivariate Gaussian distribution as

y ∼ GP
(

m,K + σ2
u I
)

(6)

E [y] = m (x) = Hβ (7)

E

[

(y −Hβ) (y −Hβ)T
]

= K + σ2
u I (8)

where y = [y(x1) y(x2) . . . y(xn)]
T ,y ∈ R

n and I ∈ R
n×n is the identity matrix.

The covariance matrix K can be constructed only after defining the function k

that models the correlation between the true response values. Frequently, the corre-

lation is described using the distance between sample points, with a monotonically

decaying function. A common distance-based correlation function employed in the

GPM literature is

k (xi,xj) = σ2
c exp

[

−1

2

d
∑

a=1

(xi,a − xj,a)
2

ℓ2a

]

(9)

where θ = (ℓ21 . . . ℓ
2
d, σ

2
c , σ

2
u) are the parameters that control the features of the corre-

lation in the GPM between samples in the set D. Based on this correlation function,

the GPM can also be understood as an empirical model that uses a positive-definite

function to model the correlation between the residuals of a linear model in the β

parameters and the true responses [24, 79].

The mathematical description of GPM as a regression model can be obtained in

three different ways. Goldberger [43] obtained the GPM expressions by solving a

constrained optimization problem for the best linear unbiased predictor and its mean

square error. Other authors [70, 120] use a much simpler approach, taking advantage

of the mathematical properties of the Gaussian process to derive the GPM expressions

as conditional distributions to the joint Gaussian prior distribution in Equations (6)–

(8). Lastly, a full Bayesian interpretation of GPM can be formulated, assuming that

the coefficients of the linear model β are treated as random variables with some prior

distribution π [26, 79]. This last Bayesian approach for GPMs yields identical GPM

16

expressions as the first two approaches when the prior distribution π is assumed to

be non-informative. Since the first two approaches can be explained using the same

mathematical variables, only these approaches will be described in more detail.

2.1.1 Best linear unbiased estimator

In the interest of estimating the true response at a new point x ∈ R
d , consider a

linear predictor based on the stochastic observations of the set D

ŷ(x) = λT (x)y (10)

where λ(x) ∈ R
n represents a vector of weights to be assigned to each output value

in y. To obtain the weight vector, one must minimize the mean square prediction

error of the linear predictor

MSE [ŷ(x)] = E

[

(

ytr(x)− λT (x)y
)2
]

(11)

subject to the unbiased prediction constraint

E
[

ytr(x)− λT (x)y
]

= 0 (12)

This constrained optimization problem is used to force the linear predictor, on aver-

age, to be close to the true function that it is estimating, eliminating any bias that

the predictor could have. This constrained optimization problem is solve using the

method of Lagrange multipliers, and its solution is known as the best linear unbiased

predictor (BLUP) [43], which corresponds to:

ŷ (x,D) = hT (x) β̂ + kT (x,D)
(

K + σ2
u I
)−1
[

y −Hβ̂
]

(13)

where k (x,D) ∈ R
n is the correlation vector between x and each of the xi samples in

D using the correlation function in Equation (9); h ∈ R
p represents a set of p regres-

sion functions evaluated at x and β̂ (θ) =
(

HT (K + σ2
u I)

−1
H
)−1

HT (K + σ2
u I)

−1
y

17

is the generalized least-squares estimator of the regression coefficients. Similarly, the

GPM prediction variance of the linear predictor is calculated as

σ2
y (x,D) = k (x,x)−

[

hT (x) kT (x,D)
]







0 HT

H K + σ2
u I







−1 





h (x)

k (x,D)






(14)

where k(x,x) is the evaluation of the correlation function between the unknown point

and itself. It is also important to notice that in the original description of this

constrained optimization [43], Goldberger did not specify a correlation function to

describe the regression covariance matrix. Goldberger does not describe the nature

of the observations to be either deterministic or stochastic. This means that either

y or ytr can be used in the GPM equations. A GPM can be written as a predictive

distribution that depends on the observed data in the set D = {xi, y (xi)},

(ytr|x,D) ∼ N
(

ŷ (x,D) , σ2
y (x,D)

)

(15)

where the mean and variance are Equations (13) and (14) respectively. In summary, a

GPM provides a predictive distribution of possible true response values, but in most

of the GPM implementations, ŷ (x,D) is used as the GPM mean prediction.

Gaussian process models have been used as empirical models of expensive de-

terministic simulations for optimization or fast function evaluation [98]. In those

noise-free cases, there is no reason to estimate σ2
u as part of the GPM parameters

and, as a result, GPM becomes an interpolator of the outcomes y (xi) when GPM is

evaluated at the sample points xi. In his seminal book [24], Cressie describes σ2
u a pa-

rameter that represents measurement error in noisy data, calling it the nugget effect.

Recently, Ankenman et al. [6] thoroughly explain the role of σ2
u with their stochastic

kriging metamodel and point the attention of the readers to the relationship between

σ2
u and σ2

c in the GPM prediction.

18

2.1.2 From Gaussian process priors to conditional predictive distribu-
tions

This section presents the second approach to derive the GPM expressions in Equa-

tions (13) and (14). In the beginning of this chapter, the definition of a Gaussian

process was presented. This definition considers all true response values of the simu-

lation at any point in the input space ytr(x) to be in the same collection of random

variables, which is modeled by Equations (3)–(5). Consider then the subset of the

elements in the collection of random variables formed by all true response values at

the sample points ytr in the set D, and the true response value at any other point in

the input space ytr(x). By the marginalization property of the multivariate Gaussian

distribution, the joint distribution of a subset of elements from the collection of ran-

dom variables, modeled by Equations (3)–(5), will also be a multivariate Gaussian

distribution with similar modeling representation. This result allows one to write the

joint Gaussian distribution as






ytr

ytr(x)






∼ N













Hβ

hT (x)β






,







K k (x,D)

kT (x,D) k(x,x)












(16)

If the noise in the observed data is included as part of the joint Gaussian distribution,

the multivariate Gaussian distribution becomes






y

ytr(x)






∼ N













Hβ

hT (x)β






,







K + σ2
u I k (x,D)

kT (x,D) k(x,x)












(17)

Equation (17) can be used to derive a posterior predictive distribution of ytr(x), by

conditioning it to the joint Gaussian prior distribution of the observed data in the set

D in Equation (15) [120]. By doing this, the predictive distribution is restricted to

be in agreement with the stochastic observations. By creating the conditional distri-

bution of ytr given y, the equations that describe the GPM predictive distribution,

match the GPM expressions obtained by the constraint optimization procedure in

Section 2.1.1.

19

2.2 Building a Gaussian process model

The implementation of a Gaussian process models requires three elements:

1. The selection of the sample points xi in the set D, along with its noisy observed

data y

2. The selection of a basis set of regression functions H

3. A correlation function k that models the local correlation in the Gaussian pro-

cess

In statistics, the selection of sample points from simulated data to construct em-

pirical models has been developed extensively under the name of design and analysis

computer experiments (DACE) [21]. Over the years, the DACE community has devel-

oped a significant number of techniques and methodologies to improve the selection

of input points for deterministic simulations [19, 25, 77, 103]. Since the early 1990s,

Gaussian process modeling has been used in the DACE community [122] because its

singular behavior as an interpolator when the measurement noise η is not included in

the GPM predictive distribution. Most of the DACE methodologies can be classified

as model-based or space-filling. The first class takes advantage of the structure of

an empirical model, and builds a experimental design that satisfy a optimal criteria

derived from the model. The space-filling class is focused on spreading the sample

points in the input space to guarantee a good exploration of the region, regardless of

the empirical model to be estimated. Perhaps the most popular and most used of the

DACE methodologies is the Latin hypercube sampling (LHS)[101], because its simple

implementation, good space-filling and good statistical properties.

The selection of a basis set of regression functions in GPM plays an important

role, especially in the cases where the GPM is evaluated at points far away from the

sample points in the set D. In such cases, the GPM predictive distribution depends

20

only on the statistical characteristics of the selected regression functions. The simplest

implementation of GPM assumes that the regression function is a constant and known

value —usually this value is zero. This type of GPM implementation is known in

statistics as simple kriging, where the predictive distribution relies only in the local

correlation of the observed data. A more common GPM implementation assumes a

constant, but unknown, regression function and it is referred with the name ordinary

kriging. Last, a more complex and detailed implementation of a GPM involves a a

basis set of regression functions, like polynomial basis functions, and it is known as

universal kriging. There are no particular limitations in the selection of the basis

functions that can be used in the GPM, since the GPM requires only the evaluation

of the basis functions and not the particular mathematical structure of them. Joseph

et al. [64] consider the selection of regression functions using a Bayesian variable

selection technique for universal kriging.

The most unique element of a Gaussian process model is the correlation function

k. The correlation function, also known as the kernel function, represents the local

correlation features in the residual. Therefore, the performance and the mathematical

properties of the Gaussian process model, like mean square continuity and differen-

tiability, depend on the selection of this covariance function. In general, an arbitrary

function of the input points xi and xj can be a valid covariance function, if the func-

tion is positive semidefinite, since it will guarantee the inversion of the correlation

matrix K. The intention in this section is to illustrate some of the most common

choices of covariance functions for practical applications, but the seminal reference

that describes the theory behind the construction of valid covariance functions is the

book written by Noel Cressie [24].

Equation (9) is known as the Gaussian or squared exponential covariance function,

and it uses the distance between the input points xi and xj to describe the local cor-

relation of the residuals. A stationary correlation function is a function that describes

21

the local correlation based only on the difference between xi and xj. The stationary

condition describes a covariance function that is independent of the location of xi

and xj, which means that, no matter where the points are located in the input or

design space, the correlation between their residuals will remain the same, as long as

the magnitude of the lag vector xi − xj is the same. Other type of non-stationary

covariance functions for GPM [110, 155] could include dot product correlation func-

tions in the form of k (xi,xj) = σ2
c + xi · xj or some linear terms that emphasize the

local correlation of the GPM at specific locations in the input space. However, this

adds additional parameters to the model.

A brief list of common stationary correlation functions are [24, 91, 120, 153]:

• Exponential correlation function

k (xi,xj) = σ2
c exp

[

−
d
∑

a=1

|xi,a − xj,a|
ℓa

]

(18)

θ = (σ2
c , ℓa) where ℓa > 0 and a = 1, . . . , d

• Stable correlation function

k (xi,xj) = σ2
c exp

[

−
d
∑

a=1

(|xi,a − xj,a|
ℓa

)γa
]

(19)

θ = (σ2
c , ℓa, γa) where ℓa > 0, 0 < γa ≤ 2 and a = 1, . . . , d

• Rational quadratic correlation function

k (xi,xj) = σ2
c

d
∑

a=1

(

1 +
(xi,a − xj,a)

2

2αaℓ2a

)αa

(20)

θ = (σ2
c , ℓa, αa) where ℓa, αa > 0 and a = 1, . . . , d

The covariance function parameters ℓa are known as characteristic length-scale or

range parameters, since they define the length scales over which residuals are corre-

lated.

22

2.3 Parameter estimation methodologies for Gaussian pro-

cess models

After collecting the information in the set D, selecting a basis set of regression func-

tions, and selecting a local correlation function k, the next step is the estimation of

the parameters that define the GPM. The most common GPM parameter estimation

approach is the maximum likelihood estimator (MLE). This methodology is an em-

pirical Bayes approach to determine which are the parameter values that are most

consistent with the observed data in the set D, assuming that this parameter distri-

bution behaves as a multivariate Gaussian distribution. According to this approach,

the negative log-likelihood function of the MLE, which relates the GPM parameters

θ and β given the observed data in the set D, is

− lnL (θ,β|D) =
n

2
ln (2π) +

1

2
ln (|V (θ) |) + 1

2
(y −Hβ)T V −1 (θ) (y −Hβ) (21)

where V ∈ R
n×n and V = K+σ2

u I is the regression covariance matrix of the Gaussian

process model. To simplify the parameter estimation procedure in MLE, Equation

(21) can be written as a function that depends only on θ. The estimated regression

coefficients β̂ can be expressed as a function of θ by making the first derivative of

− lnL respect to β, be equal to zero. The result of this mathematical operation is

known as the generalized least-squares estimator of the regression coefficients [79].

∂ (− lnL)
∂β

= − (y −Hβ)T V −1H = 0

β̂ (θ) =
(

HTV −1H
)−1

HTV −1y (22)

Most of the time, the estimation of the GPM parameters is made with a nonlinear

optimization that minimizes the expression in Equation (21), due to the mathematical

complexity of obtaining analytical solutions for the θ in the correlation function. The

nonlinear nature of this optimization problem is found in the nonlinear Gaussian

correlation function that is uses the GPM parameters θ in the regression covariance

23

matrix V . As a result, the estimated GPM parameters θ̂ by the MLE methodology

are

θ̂ = argmin
θ

[− lnL (θ)] (23)

An alternative approach to the estimation of the GPM parameters is based on

maximizing the marginal distribution of the correlation function parameters in the

likelihood function, after averaging over all possible values of the β coefficients [72].

This method is called restricted maximum likelihood estimator (RMLE), it was first

presented by Patterson and Thompson in the context of analysis of variance [113] and

later Kitanidis [73] implemented it for the estimation of GPM. Several authors have

compared multiple parameter estimation methodologies for GPM [111, 125, 165], in-

cluding MLE and RMLE. The conclusion is that RMLE provides GPM estimated

parameters with less bias compared with the estimated parameters from MLE, but

at the cost of increasing their parameter uncertainty or variance. The major criticism

regarding MLE or RMLE is the necessity to assume a particular distribution, in this

case a multivariate Gaussian distribution. An alternative approach for the estimation

of the GPM parameters is cross-validation [26, 98], which does not assume a specific

distribution that relates the GPM parameters with the observed data. Nonetheless,

MLE is the most used GPM parameter estimator for its straightforward implemen-

tation in any of the available nonlinear optimization tools.

2.3.1 Parameter uncertainty for Gaussian process models

The parameter uncertainty in an empirical model occurs because the finite amount

of information collected in its training set. When the number of sample points in the

training set increases, the identification of the parameters is more robust, decreasing

the uncertainty around the estimated parameters. In statistics, the uncertainty in

the estimated parameters is modeled by considering the estimated parameters as a

random vector, created as a realization of the true parameter vector that characterize

24

the system. For this point of view, different sets of training data generate a realization

of the true parameter vector that corresponds to their estimated parameters. Some

authors have investigated the effect of parameter uncertainty in GPM [71, 74, 94,

96, 112], exploring the bias in the GPM estimated parameters and computational

suggestions for GPM calculations. Some results in this area are summarized here.

Consider a Gaussian process model that uses the Gaussian correlation function in

Equation (9) to describe its local correlation features. Assume that the distribution

of random GPM parameter vectors θ associated with this correlation function is a

normal distribution defined as:

θ ∼ N (E(θ), P) (24)

where E(θ) ∈ R
d+2 is the expected value of this distribution and P ∈ R

(d+2)×(d+2)

represents the parameter covariance matrix of the GPM parameters. This GPM

parameter distribution could be used to modify Equations (13) and (14), and account

for the parameter uncertainty using a Taylor-series approximation centered at the

input mean distribution E(θ). For simplicity in the notation and in the following

derivation, the expressions of the Gaussian process model are rearranged using the

blockwise matrix inversion as follows. Define:

G ∈ R
(n+p)×(n+p) =







0 HT

H V






(25)

g ∈ R
n+p =







h (x)

k (x,D)






(26)

ys ∈ R
n+p =







0

y






(27)

Using G, g and ys, Equations (13) and (14) can be rewritten in a simplified version

[138] of the GPM, emphasizing on the terms that depends on the GPM parameter

25

vector θ.

ŷ (θ) = yT
s G

−1 (θ)g (θ) (28)

σ2
y (θ) = k (x,θ)− gT (θ)G−1 (θ)g (θ) (29)

Using a second order Taylor-series expansion of Equation (28), the GPM mean

prediction can be approximated around the expected parameter vector E(θ). This

approximation is written as:

ŷ (θ) ≈ ŷ (E (θ)) + (θ − E (θ))T
[

∂ [ŷ (E(θ))]

∂θ

]

+
1

2
(θ − E (θ))T

[

∂2 [ŷ (E(θ))]

∂θ2

]

(θ − E (θ)) (30)

Applying the expectation operator in both sides of Equation (30), the expected GPM

mean prediction E [ŷ (θ)] due to parameter uncertainty is [138]:

E [ŷ (θ)] ≈ E [ŷ (E (θ))] +
✘

✘
✘
✘
✘

✘
✘
✘
✘✿0

(E (θ)− E (θ))T
[

∂ [ŷ (E(θ))]

∂θ

]

+
1

2
E

[

(θ − E (θ))T
[

∂2 [ŷ (E(θ))]

∂θ2

]

(θ − E (θ))

]

≈ ŷ (E(θ)) +
1

2
Tr

[

P
∂2 [ŷ (E(θ))]

∂θ2

]

+
1

2 ✘
✘
✘
✘

✘
✘
✘
✘
✘✿0

(E (θ)− E (θ))T
[

∂2 [ŷ (E(θ))]

∂θ2

]

✘
✘
✘

✘
✘
✘
✘

✘✘✿
0

(E (θ)− E (θ))

≈ ŷ (E(θ)) +
1

2
Tr

[

P
∂2 [ŷ (E(θ))]

∂θ2

]

(31)

Following a similar procedure as in Equation (31), the expected GPM prediction

variance E
[

σ2
y (θ)

]

due to parameter uncertainty is [138]:

E
[

σ2
y (θ)

]

≈ σ2
y (E(θ)) +

1

2
Tr

[

P
∂2
[

σ2
y (E(θ))

]

∂θ2

]

(32)

It is important to notice that the mean parameter vector E(θ) of the distribution is

unknown. Therefore, this quantity is approximated by the estimated mean parameter

vector θ̂ calculated in Equation (23). When θ̂ is used in Equations (31) and (32), the

GPM parameter covariance matrix P will then be used to represent the uncertainty

26

in the maximum likelihood estimates. Usually the parameter covariance matrix P

is approximated using the Cramer-Rao lower bound of unbiased estimators and the

Fisher information matrix. The Fisher information matrix I (θ) ∈ R
(d+2)×(d+2) of the

parameter set θ is defined as

Ii,j (θ) = −E

[

∂2

∂θi∂θj
lnL (θ)

∣

∣

∣

∣

θ

]

, i, j = 1, . . . , d+ 2 (33)

Applying the definition of I (θ) to the likelihood function in Equation (21), the Fisher

information matrix of θ̂ [74] is:

Ii,j(θ̂) =

[

∂β

∂θi

]T

HTV −1H

[

∂β

∂θj

]

+
1

2
Tr

[

V −1∂V

∂θi
V −1 ∂V

∂θj

]

, i, j = 1, . . . , d+2 (34)

where V is the regression covariance matrix of the GPM, which depends on θ̂, and

the derivative of the β regression functions with respect to each of the elements in

the GPM parameter vector, evaluated at θ̂,

∂β

∂θi
(θ̂) = −

(

HTV −1H
)−1
[

HTV −1∂V

∂θi
V −1

(

y −Hβ̂
)

]

, i = 1, . . . , d+ 2 (35)

Using the Cramer-Rao inequality, the lower bound of the parameter covariance

matrix P for an unbiased estimator is the inverse of the Fisher information matrix,

therefore

P ≥ I−1(θ̂) (36)

The implementation of Equation (36) to estimated the parameter uncertainty

in GPM requires additional comments regarding its usage. The Cramer-Rao lower

bound is based on the asymptotic behavior of the MLE as an unbiased estimator of

its parameters. This asymptotic behavior means that when n, the number of sample

points used in MLE, increases to infinity, the estimated GPM parameter θ̂ is equal

to the true GPM parameter vector E (θ). Originally, the definition in Equation (36)

is achieved asymptotically for MLE when independent and identically distributed

observations are used [112]. Because of the local correlation features of Gaussian

27

process models, the asymptotic behavior of MLE for GPM parameters does not only

depend on the number of sample points n, but also its distribution and location in

the input space. There are two asymptotic behaviors of MLE for GPM: Increasing

domain asymptotics refers to increase the number of sample points and the domain

of the input space, in order to preserve the data density. Infill asymptotics refers to

increase the number of sample points, while fixing the domain of the input space,

therefore increasing the data density.

Mardia and Marshall [96] demonstrate the application of Equation (36) for GPM

under increasing domain asymptotics. However, the majority of the GPM applications

are in infill asymptotics where the input domain is a fixed area. Some results have been

presented for GPM parameter uncertainty under fixed-area asymptotics [3, 159, 164]

concluding that part of the GPM parameters have an asymptotic efficient behavior in

their estimation, but this result is subject to the structure of the covariance function.

Moreover, achieving asymptotic efficient behavior in the parameter estimates could

be cumbersome because the growth in the GPM computational complexity when the

number of input points in the model increases. Under these conditions, it could be

more appropriate to use the biased version of the Cramer-Rao lower bound [33] to

estimate P . Recent theory about biased Cramer-Rao lower bound is limited to linear

regression models and has not yet been applied to nonparametric models like GPM.

Despite these considerations, Equation (36) still been used as a rough estimate of the

GPM parameter uncertainty. Although the research of this thesis does not involve

any asymptotic behavior of the GPM parameters, it is necessary to describe most of

these aspects for a complete picture of the GPM implementation.

The description of Equations (31) and (32) requires the second derivatives of

the GPM mean prediction and GPM prediction variance with respect to the GPM

parameter vector. The evaluation of Equations (31) and (32) employs the estimated

mean parameter vector θ̂ from the maximum likelihood estimator in Equation (23)

28

and its parameter covariance matrix P . Using matrix differential calculus Equations

(28) and (29), the Jacobian vector and Hessian matrix of the GPM mean prediction

ŷ(θ) and GPM prediction variance σ2
y(θ) respect to each of the GPM parameters are:

∂ [ŷ (θ)]

∂θ
∈ R

d+2,
∂2 [ŷ (θ)]

∂θ2 ∈ R
(d+2)×(d+2), i, j = 1, . . . , d+ 2

∂ [ŷ (θ)]

∂θi
= −yT

s G
−1∂G

∂θi
G−1g + yT

s G
−1 ∂g

∂θi
(37)

∂2 [ŷ (θ)]

∂θi∂θj
= 2 yT

s G
−1∂G

∂θi
G−1 ∂G

∂θj
G−1g − yT

s G
−1 ∂2G

∂θi∂θj
G−1g

− yT
s G

−1 ∂G

∂θj
G−1 ∂g

∂θi
− yT

s G
−1∂G

∂θi
G−1 ∂g

∂θj
+ yT

s G
−1 ∂2g

∂θi∂θj
(38)

∂
[

σ2
y (θ)

]

∂θ
∈ R

d+2,
∂2
[

σ2
y (θ)

]

∂θ2 ∈ R
(d+2)×(d+2), i, j = 1, . . . , d+ 2

∂
[

σ2
y (θ)

]

∂θi
=

∂ [k (x,x)]

∂θi
− 2 gTG−1 ∂g

∂θi
+ gTG−1∂G

∂θi
G−1g (39)

∂2
[

σ2
y (θ)

]

∂θi∂θj
=

∂2 [k (x,x)]

∂θi∂θj
− 2

[

∂g

∂θi

]T

G−1 ∂g

∂θj
− 2 gTG−1 ∂2g

∂θi∂θj

+ 2 gTG−1∂G

∂θi
G−1 ∂g

∂θj
+ 2 gTG−1 ∂G

∂θj
G−1 ∂g

∂θi

− 2 gTG−1∂G

∂θi
G−1 ∂G

∂θj
G−1g + gTG−1 ∂2G

∂θi∂θj
G−1g (40)

where, G, g and ys are defined in Equations (26) and (27) and, for the case of the

Gaussian correlation function

∂ [k (x,x)]

∂θi
=



















































0 if θi = ℓa, a = 1, . . . d

1 if θi = σ2
c

0 if θi = σ2
u

(41)

∂2 [k (x,x)]

∂θi∂θj
= 0, i, j = 1, . . . , d+ 2 (42)

To close the formulation of the parameter uncertainty in GPM using a Taylor-

series approximation, it is necessary to obtain the first and second derivatives of the

regression covariance matrix V with respect to each of the θ GPM parameters in

29

the correlation function. These derivatives are necessary to evaluate the parameter

covariance matrix P via the Fisher information matrix in Equation (34), and the

derivatives of G and g with respect to the GPM parameters. In the end, the im-

plementation of the parameter uncertainty for GPM comes down to how easy and

mathematically convenient it is to calculate the derivatives of the parameters in the

selected correlation function. For the case of the Gaussian correlation function in

Equation (9), the first and second derivatives of the regression covariance matrix V

are:

∂V

∂θa
,

∂2V

∂θa∂θb
∈ R

n×n, θ =
(

ℓ21 . . . ℓ
2
d, σ

2
c , σ

2
u

)

∂Vij

∂ℓa
= k (xi,xj)

[

(xi,a − xj,a)
2

ℓ3a

]

(43)

∂Vij

∂σ2
c

=
1

σ2
c

k (xi,xj) (44)

∂V

∂σ2
u

= I (45)

∂2Vij

∂ℓa∂ℓb
=



























k (xi,xj)
[

(xi,a−xj,a)
2

ℓ3a

]2

− 3 k (xi,xj)
[

(xi,a−xj,a)
2

ℓ4a

]

if a = a

k (xi,xj)
[

(xi,a−xj,a)
2

ℓ3a

]

[

(xi,b−xj,b)
2

ℓ3
b

]

if a 6= b

(46)

∂2Vij

∂σ2
c∂ℓa

=
∂Vij

∂σ2
c

[

(xi,a − xj,a)
2

ℓ3a

]

(47)

∂2Vij

∂σ2
u∂ℓa

=
∂2Vij

∂ (σ2
c)

2 =
∂2Vij

∂σ2
u∂σ

2
c

=
∂2Vij

∂ (σ2
u)

2 = 0 (48)

where a, b = 1, . . . , d and i, j = 1, . . . , n.

2.4 Computational issues for Gaussian process models

Some of the benefits of using Gaussian process models include the ability to measure

its prediction error based on the GPM prediction variance σ2
y , the relatively small

number of parameters, and its robustness when only a small number of sample points

are used in the model [47]. All these benefits come at the cost of a large computational

30

load and potential problems of numerical stability, especially during the parameter

estimation step. The evaluation of the negative log-likelihood function, Equation

(21), requires the inversion of the regression covariance matrix V , which requires time

O (n3), and the evaluation of the derivatives of the function with respect to each of the

GPM parameters in θ, which requires time O (n2) per parameter [99, 120]. However,

these computational issues are only relevant during the parameter estimation step and

not during the GPM implementation itself. The inverse of the regression covariance

matrix V needs to calculated once, and then it can be reused during the evaluation of

the GPM mean prediction and GPM prediction variance. In addition to this aspect

of the nonlinear optimization, it is also known that the likelihood function could have

multiple local optimal values in its surface. However, in practice, this multiple local

optima situation is not a problem that severely affects the prediction made by the

GPM. These issues are handle by implementing a Cholesky decomposition of the

regression covariance matrix V , which improves the computation load of the inverse

calculation, and by incorporating a probabilistic global optimization algorithm like

simulated annealing or by a stochastic search procedure that improves the selection

of an initial guess in the deterministic optimization.

The problems of numerical stability in the regression covariance matrix V are more

significant during the evaluation of the GPM expressions. A GPM considers the local

correlation between the sample points in the set D by modeling the off-diagonal

elements of the K matrix. This modeling procedure induces potential ill-conditioning

problems in the GPM calculations, that are more severe when the number of sample

points n increases. Several authors have described and analyzed the potential factors

that affect the condition number of V [27, 105] in a GPM, which are:

• The structure of the sample points in the set D (i.e. number, location, distri-

bution and density of the sample points in the input space)

• The correlation function k itself

31

The ill-conditioning problems in GPM due to the structure of the sample points are

very significant in the area of design of computer experiments, since applications in

this area targets modification in the data structure in order to satisfy certain predic-

tion property of the GPM. Ababou et al. [1] showed that the Gaussian correlation

function Equation (9), generates more numerical instabilities than the exponential

correlation function, Equation (18), in an ordinary kriging model. Thus, the most

commonly used correlation function in Gaussian process modeling is the one with

the most numerical instability. Perhaps the reason why the research community still

using the Gaussian correlation function is because its mathematical properties that

make possible detailed mathematical analysis like the one just presented in Section

2.3.1. Despite all these problems, the presence in the GPM of the parameter σ2
u

helps in the numerical stability of the GPM [97], since this parameter is added to the

diagonal of the K correlation matrix.

2.5 Dynamic systems modeling and Gaussian process mod-

els

Let us summarize what it has been described so far in this chapter, in order to connect

all the information with the creation of approximate models for expensive dynamic

simulations. This chapter started with a mathematical description and derivation of

a Gaussian process model, explaining each of the important aspects of this empir-

ical model. This mathematical description has also explained why GPM is widely

used as an approximate model for expensive deterministic simulations. Based on this

mathematical description, it is clear that all the properties in the model are related

to the correlation function k. Because of the significance of the correlation function,

this chapter spent several sections presenting the methodologies to estimate the pa-

rameters in the correlation function, the quantification of parameter uncertainty to

improve the model, and the computational issues regarding the correlation function.

32

All the previous sections are a summary of the implementation of GPM in metamod-

eling. Now, this chapter moves all this information to incorporate the concept of

dynamics. The next sections of this chapter includes a brief description of traditional

GPM implementations for spatio-temporal process in geostatistics, then it shows the

implementation of GPM in the framework of iterative mapping, and concludes with

a more complex mathematical formulation for multivariate Gaussian process models

and dynamics.

Gaussian process modeling is presented as an empirical model that describes a

function based on the spatial distribution of the information across the input space.

In many practical cases, these functions have a temporal component, to describe the

evolution over time. A few examples of spatio-temporal processes are motion capture

[22], climate change and meteorology [53], environmental monitoring [95] and financial

economics [38].

In geostatistics, spatio-temporal processes are modeled using two different ap-

proaches [83, 84]. In the reduction approach, the first step is an initial interpolation

over the time dimension at each of the spatial locations, so all the information is avail-

able at the same time interval. Then, these approximated values are used as inputs

of the GPM to make a spatial prediction. By repeating this procedure at different

time intervals, several GPMs are created as layers or snapshots of the process. This

approach is appropriate when the time period between measurements is large or when

the recording process of the information is not synchronized. Problems with this ap-

proach include the amount of information to be stored at each time interval, and the

extrapolation of the dynamics beyond the time frame of the recorded trajectories.

On the other hand, the extended approach considers time as an additional di-

mension in the input space, taking advantage of the multidimensional input formu-

lation of the GPM. This approach implies that time is included in the covariance

function k, considering time differences between sample points. The time difference

33

makes the mathematical modeling at different times easier for the model and also

reduces the amount of information to be stored. The controversy that exists around

this approach is due to the formulation of the covariance function that represents

the local correlation of this variable. Several references that address this topic are

[61, 63, 93, 115, 134].

Several authors have been using GPM in spatio-temporal processes using either of

the two previous approaches [11, 40, 92]. Given that the extended approach includes

the time dimension in the covariance function, time-series theory provides useful

indications for a correlation function to handle this variable. A dynamic application

of kriging can be seen as a multivariate time series where the information is correlated

in time by an autocorrelation function [135]. To mention a few dynamic applications

of kriging in geostatistics, Lindengergh et al. [87] proposed a kriging model based

on the reduced approach to estimate concentrations of water vapor, and Jost et al.

[66] formulate an extended approach for kriging to analyze the distribution of soil

water storage and nitrate concentration, respectively. Both of these implementations

consider time as a continuous variable that is incorporated in the correlation function

k.

In the engineering and machine learning communities, Gaussian process models

have been implemented to describe the dynamics of a system in a different way as in

geostatistics. In these fields, a Gaussian process model is used as a black-box model

that maps the states of the system, from a discrete time to the next discrete time,

describing its dynamic behavior. This recursive usage of an empirical model is known

as iterative mapping. Some of the recent applications where GPM is used in itera-

tive mapping involves the identification and dynamic modeling of a bioreactor using

GPM [10], dynamics of a hydraulic positioning system [47], dynamics for nanoparticle

deposition [56], and more recently combinations with model predictive control [46],

dynamic programming [28] and the temperature control of a building using multiple

34

past states [161]. All the previous dynamic implementations using GPM are limited

to predictions of one state variable, except the case of the dynamics for nanoparticle

deposition. This section contains a brief description of how a Gaussian process model

can be implemented for dynamic systems using an iterative mapping.

2.5.1 Dynamic system identification using Gaussian process models

The GPM structure presented in the previous sections could be used to build an

empirical model to describe the dynamics of a system, using either experimental or

simulated data. A GPM can be used recursively to predict dynamic states, in an

autoregressive mode, using current dynamic state information [10, 28, 78]. Assume

that a dynamic system f can be represented as a discrete-time model, with t = s∆t,

s ∈ Z, s ≥ 0 and

x(s+ 1) = f (x(s)) (49)

where x is a dynamic state and s is a discrete time index. An approximated version

of this discrete-time model f̂ using GPM can be written as [56, 57]

x̂(s+ 1) = f̂ (x̂(s),D) x = 0, 1, ... (50)

t = s∆t (51)

D = {xi, y (xi)} , yi = x(s+ 1) = f (xi(s)) (52)

where f̂ is the approximation of f , and x̂ is the approximated dynamic state of x using

Equation (13) as the state predictor in Equation (50). As an alternative to the usage

of the classic GPM mean prediction in Equation (13), the GPM implementation

using iterative mapping can also use Equation (31) to incorporate the parameter

uncertainty correction in the predictions. Figure 5 represents a flowchart of this

GPM implementation.

In the approximated dynamic representation using GPM, pre-computed evalua-

tions of the function to be approximated, f (xi(s)), at different input values xi(s) are

35

Gaussian Process Model

Pre-collected

Trajectories

Input

One-step-ahead

predic!on

New Itera!on

{ , ()}
i i

y= x xD

ˆ(+1)sx

ˆ ˆ() (+1)s s←x x

ˆ()sx

()2ˆ(,) (,), (,)
tr y

y y σx x x∼D N D D

Figure 5: Flowchart of the recursive one-step-ahead prediction scheme using a GPM
for dynamic systems modeling [57].

stored in D as a database for the system dynamics. The database is used as reference

information for state prediction at untried locations in the state space by interpolat-

ing between the sampled points using GPM. In practice, a subset of information from

the database may be extracted from the set D to approximate the dynamics at a new

value of x with reduced computational demands. The dynamic representation could

be extended to include control inputs u(s), as additional dimensions in the input

space of the GPM.

The dynamic implementation of GPM has some resemblance to the equation-

free prediction of system dynamics [67], in which evaluations of the original function

f (xi(s)) are made in the vicinity of xi(s) and with small ∆t, to approximate the dy-

namic evolution of the system. The difference between the two approaches is in the

function evaluations from the expensive dynamic simulations. In the equation-free

approach, the function evaluations are made “on line” while making the predictions,

compared to the presented methodology where the evaluations are made off-line and

used to map the states in time. A similar off-line implementation for expensive dy-

namic simulations has been used previously for dynamics of thin film deposition [108].

Compared to the previous example using expensive dynamic simulations, this thesis

uses a nonlinear mathematical model to generate dynamic predictions compared to

36

the single cell mapping approach in Reference [108], in addition to the error estimation

properties of the GPM.

To implement the iterative mapping in Equation (50) for multivariate systems,

a GPM is constructed for each of the d state variables. Using Equations (13), (14)

and (15), the distribution of the next state x(s + 1) is assumed to be a multivariate

Gaussian distribution with a state mean vector x̂(s+ 1) ∈ R
d and a state covariance

matrix S ∈ R
d×d as

(x(s+ 1)|x(s),D) ∼ N (x̂(s+ 1), S) (53)

x̂i(s+ 1) = ŷi(x̂(s),D) i = 1, . . . , d (54)

Sij =























σ2
y,i (x̂(s),D) if i = j, i, j = 1, . . . d

0 if i 6= j

(55)

where x̂i(x̂(s),D) and σ2
y,i (x̂(s),D) are the GPM mean prediction and GPM predic-

tion variance for the ith state variable. Notice in Equation (55) that the off-diagonal

terms of the state covariance matrix S are equal to zero. The reason for this consid-

eration is because each of the d GPMs are estimated independently from the other

GPMs used in the the prediction. Later on, in Section 2.6, this consideration will be

relaxed by the implementation of a multivariate Gaussian process model, where sev-

eral GPMs are estimated simultaneously. The main assumption in this GPM dynamic

framework is that the system dynamics can be completely characterized using only

the information from the previous time step (Markov property). This assumption

implies that the dynamic behavior of the system dynamics is well characterized by

the multiple GPMs, without the necessity of using states from previous time steps.

Other implementations of this GPM dynamic framework do not satisfy the Markov

property, relying the dynamic prediction in using information from several time steps

in the past [161], but only predicting a single state variable.

37

2.5.2 Uncertainty in state prediction for Gaussian process models

Due to the recursive nature of the GPM dynamic model, error in the prediction

will propagate from one step to the next. However, it is possible to calculate and

propagate the uncertainty in the GPMs, and also to use it as a correction term in the

state prediction. There are two different approaches to consider the state uncertainty

in the recursive dynamic framework. The first approach is using a Taylor-series

approximation, similar to the parameter uncertainty expressions in Section 2.3.1. The

second approach is an analytical analysis of the state uncertainty in GPM presented

by Girard and Murray-Smith [40]. The authors called this last approach as a Gaussian

approximation to the propagation of uncertainty in the state prediction.

2.5.2.1 Taylor-series approximation

This section explain how to calculate the state propagation in the GPM using a

Taylor-series approximation. By incorporating uncertainty propagation in the GPM

dynamic framework, the GPM mean prediction and the GPM prediction variance

from the previous time step are used to improve the prediction. The predicted state

distribution in Equations (53)–(55) is:

x ∼ N (x̂, S) (56)

Similarly to the parameter uncertainty in Section 2.3.1, a Taylor-series expansion

centered at the input mean distribution, x̂, is used to modify the GPM mean and

prediction variance. Since changes in the training set D are not considered here, this

symbol will no longer be explicitly stated. Using Equations (26) and (27), Equations

(13) and (14) are rewritten, indicating the elements in the GPM that depend on the

input point

ŷ (x) = yT
s G

−1g (x) (57)

σ2
y (x) = k (x,x)− gT (x)G−1g (x) (58)

38

Following a similar procedure as in Equation (31), a second-order Taylor-series

approximation on Equations (57) and (58) leads to the following expressions for the

expected GPM mean prediction E [ŷ (x)], and expected GPM variance E
[

σ2
y (x)

]

E [ŷ (x)] ≈ ŷ (x̂) +
1

2
Tr

[

S (x)
∂2 [ŷ (x̂)]

∂x2

]

(59)

E
[

σ2
y (x)

]

≈ σ2
y (x̂) +

1

2
Tr

[

S (x)
∂2
[

σ2
y (x̂)

]

∂x2

]

(60)

For the evaluation of Equations (59) and (60), the Jacobian vectors and Hessian

matrices of the GPM equations with respect to each of the state variables are required.

∂ [ŷ (x)]

∂x
∈ R

d,
∂2 [ŷ (x)]

∂x2
∈ R

d×d, i, j = 1, . . . , d

∂ [ŷ (x)]

∂xi

= yT
s G

−1 ∂g

∂xi

(61)

∂2 [ŷ (x)]

∂xi∂xj

= yT
s G

−1 ∂2g

∂xi∂xj

(62)

∂
[

σ2
y (x)

]

∂x
∈ R

d,
∂2
[

σ2
y (x)

]

∂x2
∈ R

d×d, i, j = 1, . . . , d

∂
[

σ2
y (x)

]

∂xi

=
∂ [k (x,x)]

∂xi

− 2 gTG−1 ∂g

∂xi

(63)

∂2
[

σ2
y (x)

]

∂xi∂xj

=
∂2 [k (x,x)]

∂xi∂xj

− 2

[

∂g

∂xi

]T

G−1 ∂g

∂xj

− 2 gTG−1

[

∂2g

∂xi∂xj

]

(64)

The state uncertainty propagation in GPM depends on the structure in the vector

g (x). Since g(x) contains information about the correlation function and the regres-

sion functions in the GPM, an explicit evaluation of the first and second derivatives

in each of the regression functions h(x) might be needed. Notice that when a con-

stant regression function is used in the GPM, the state uncertainty propagation in the

GPM dynamic implementation depends only on structure of the correlation function.

To close the description of the state uncertainty, the first and second derivatives

of the vector k (x,D) and k (x,x) with respect to the uncertain input state x are

derived for the Gaussian correlation function in Equation (9).

∂ [k (x,D)]

∂xi

,
∂2 [k (x,D)]

∂xi∂xj

∈ R
n, a = 1, . . . , n i, j = 1, . . . , d

39

∂ [ka (x,xa)]

∂xi

= k (x,xa)

[

−(xi − xa,i)

ℓ2i

]

(65)

∂2 [ka (x,xa)]

∂xi∂xj

=























k (x,xa)
[

− (xi−xa,i)

ℓ2i

]2

+ k (x,xa)
[

− 1
ℓ2i

]

if i = j

k (x,xa)
[

− (xi−xa,i)

ℓ2i

] [

− (xj−xa,j)

ℓ2j

]

if i 6= j

(66)

∂ [k(x,x)]

∂xi

=
∂2 [k(x,x)]

∂xi∂xj

= 0 (67)

where ka (x,xa) represents the ath element in the k (x,D) vector and xa is the ath

sample point in the set D. Notice that for the Gaussian correlation function in

Equation (9), k (x,x) = σ2
c , which explains the result in Equation (67).

2.5.2.2 Gaussian approximation

Girard and Murray-Smith [40] presented a careful analysis about how an uncertain

input distribution like Equation (56) will alter the GPM predictive distribution in

Equation (15). Theoretically, the GPM predictive distribution at an uncertain input

distribution is equal to

(ytr|D, x̂, S) =

∫ ∞

−∞

(ytr|D,x) (x|x̂, S) dx (68)

Due to the nonlinear relationship of the GPM predictive distribution on x, Equation

(68) cannot be solved analytically. The authors then approximate the solution of

Equation (68) by assuming that the resulting GPM predictive distribution will remain

as a Gaussian distribution. This is why the authors call this approach a Gaussian

approximation. With this assumption in place, the authors approximate the solution

of Equation (68) as

(ytr|D, x̂, S) ≈ N (µ (x̂, S) , ν (x̂, S)) (69)

where µ (x̂, S) and ν (x̂, S) represent the mean and variance of the approximated

GPM predictive distribution of an uncertain input distribution. In their work, Girard

and Murray-Smith derived µ and ν using the expected value of the GPM mean

40

prediction E [ŷ(x)], the expected value of the GPM prediction variance E
[

σ2
y(x)

]

,

and the variance of the GPM mean prediction Var [ŷ(x)], respect to the uncertain

input distribution in Equation (56). Except by the Gaussian approximation in the

resulting GPM predictive distribution on Equation (68), every term in this approach

was computed analytically.

Using the GPM description in Equations (57) to (58) and the law of iterated

expectations and conditional variances, the mean µ (x̂, S) and variance ν (x̂, S) of the

approximate GPM predictive distribution in Equation (69) are [40]:

µ (x̂, S) = αT
E[g(x)] (70)

ν (x̂, S) = E [k(x,x)]− Tr
((

G−1 −ααT
)

E
[

g(x)gT (x)
])

− (µ (x̂, S))2 (71)

where α ∈ R
n+p, α = G−1ys, E [g(x)] ∈ R

n+p is the vector that contains the expected

value of each gi entry in g and, E
[

g(x)gT (x)
]

∈ R
(n+p)×(n+p) is the matrix that

contains the expected value of each gigj product entry in g.

Like in the case of the Taylor-series approximations, the final expressions in the

Gaussian approximation depend on the mathematical structure of the elements in the

vector g, since they require the analytical solution of integrals of the form:

∫ ∞

−∞

k (x,x) p(x)dx

∫ ∞

−∞

g (x,xi) p(x)dx

∫ ∞

−∞

g (x,xi) g (x,xj) p(x)dx

where p(x) is the probability distribution of the uncertain input state, Equation (56).

In the original paper [40], the authors assumed a GPM that uses h(x) = 0 as a

regression function. This assumption allows them to not evaluate integrals in the

form of
∫ ∞

−∞

hi (x) p(x)dx i = 1, . . . , p

41

∫ ∞

−∞

hi (x)hj (x) p(x)dx i, j = 1, . . . , p

∫ ∞

−∞

hi (x) k (x,xj) p(x)dx i = 1, . . . , p j = 1, . . . , n

which could be difficult to solve, depending on the selected regression function. For-

tunately, the expressions derived in this paper [40] can be easily implemented when

a constant regression function h(x) = 1 is used in a GPM.

For a GPM that uses a Gaussian correlation function, Equation (9), and a con-

stant regression function h(x) = 1, the expressions for E [k (x,x)], E [g(x)] and

E
[

g(x)gT (x)
]

, with respect to probability density function p(x) of the uncertain

input distribution in Equation (56), are:

E [k(x,x)] =

∫ ∞

−∞

k (x,x) p(x)dx =

∫ ∞

−∞

σ2
c p(x)dx = σ2

c (72)

E [g(x)] ∈ R
n+1, E [g(x)] =







E [h(x)]

E [k (x,D)]







E [h(x)] =

∫ ∞

−∞

h (x) p(x)dx =

∫ ∞

−∞

p(x)dx = 1 (73)

E [k (x,D)] ∈ R
n, i = 1, . . . , n

E [k (x,xi)] =

∫ ∞

−∞

k (x,xi) p(x)dx

E [k (x,xi)] = σ2
c

√

|W |
|W + S| exp

[

−1

2
(x̂− xi)

T (W + S)−1 (x̂− xi)

]

(74)

E
[

g(x)gT (x)
]

∈ R
(n+1)×(n+1), E

[

g(x)gT (x)
]

=







E
[

h(x)hT (x)
]

E
[

h(x)kT (x)
]

E
[

k(x)hT (x)
]

E
[

k(x)kT (x)
]







42

E
[

h(x)hT (x)
]

=

∫ ∞

−∞

h2 (x) p(x)dx =

∫ ∞

−∞

p(x)dx = 1 (75)

E
[

h(x)kT (x,D)
]

= E
[

kT (x,D)
]

(76)

E
[

k (x,D)hT (x)
]

= E [k (x,D)] (77)

E
[

k (x,D)kT (x,D)
]

∈ R
n×n, i, j = 1, . . . , n

E [k (x,xi) k (x,xj)] =

∫ ∞

−∞

k (x,xi) k (x,xj) p(x)dx

E [k (x,xi) k (x,xj)] =
(

σ2
c

)2

√

|W |
|W + 2S| exp

[

−1

4
(xi − xj)

T
W−1 (xi − xj)

]

exp

[

−1

4
(2x̂− xi − xj)

T (W + 2S)−1 (2x̂− xi − xj)

]

(78)

where k (x,xi) and k (x,xj) represent the ith and jth element in the k (x,D), xi and

xj are the ith and jth sample point in the set D and,

W ∈ R
d×d, i, j = 1, . . . , d Wij =























ℓ2i if i = j

0 if i 6= j

(79)

Finally, a Gaussian approximation approach could also be used to describe the

effects of the parameter uncertainty in the GPM, using the parameter distribution

in Equation (24). To the best of my knowledge, no evidence exists of this type of

implementation to consider GPM parameter uncertainty.

2.5.3 Combining uncertainty sources for Gaussian process models

An advantage of using the Taylor-series approximation over the Gaussian approxima-

tion is the possibility to use simultaneously the results for the state and parameter

uncertainty on the GPM prediction. After presenting the state and parameter uncer-

tainty separately, the main results of these propagations can be combined in a single

expression for the GPM mean prediction and GPM prediction variance. Given the

normal distributions in Equations (24) and (56) and assuming that

Cov (xi, θj) = 0, i = 1, . . . , d j = 1, . . . , d+ 2 (80)

43

the expected GPM prediction E [ŷ (x,θ)], and expected GPM prediction variance

E
[

σ2
y (x,θ)

]

are:

E[ŷ(x,θ)] ≈ ŷ(x̂, θ̂) +
1

2
Tr

[

S
∂2[ŷ(x̂, θ̂)]

∂x2

]

+
1

2
Tr

[

P
∂2[ŷ(x̂, θ̂)]

∂θ2

]

(81)

E[σ2
y(x,θ)] ≈ σ2

y(x̂, θ̂) +
1

2
Tr

[

S
∂2[σ2

y(x̂, θ̂)]

∂x2

]

+
1

2
Tr

[

P
∂2[σ2

y(x̂, θ̂)]

∂θ2

]

(82)

Equations (81) and (82) are the summary of the application of uncertainty prop-

agation for Gaussian process model using Taylor-series approximations. The only

GPM uncertainty aspect that has not been explored is the model uncertainty, which

is a model selection problem on how to choose correlation and regression functions.

The assumption in Equation (80) is that the GPM parameters θ and the uncertain

input point x are completely independent, therefore you can divide the application

of the Taylor-series approximations in both random vectors without calculating the

cross-second partial derivatives.

2.6 Multivariate Gaussian process models

The original definition of a Gaussian process models uses a multidimensional input

point x ∈ R
d to make predictions of a scalar value y (x) ∈ R. Because of this, the

presented GPM dynamic implementation relies in the creation of d GPMs for each

of the state variables to be predicted. This is an undesirable dynamic formulation

for system identification, since the state covariance matrix S is not completely spec-

ified (remember the assumption in Equation (55) with the off-diagonal terms in S).

Statisticians have expanded the mathematical theory of Gaussian process models for

the prediction of multiple outputs simultaneously. Here is a brief description of this

approach and some comments about its implementation for dynamic systems model-

ing.

Consider a set D of n input/output pairs {xi,y (xi)}, where xi ∈ R
d , y (xi) ∈ R

m,

i = 1 . . . n. For simplicity in the description presented here, assume that m = 2.

44

According to the description of a Gaussian process in Section 2.1 and the GPM

dynamic framework in Section 2.5, each of the two output dimensions in the set D

can be considered independently as:

y1 ∼ GP
(

m1, K11 + σ2
u,1 I

)

(83)

E [y1] = m1 (x) = H1β1 (84)

E

[

(y1 −H1β1) (y1 −H1β1)
T
]

= K11 + σ2
u,1 I (85)

y2 ∼ GP
(

m2, K22 + σ2
u,2 I

)

(86)

E [y2] = m2 (x) = H2β2 (87)

E

[

(y2 −H2β2) (y2 −H2β2)
T
]

= K22 + σ2
u,2 I (88)

with their corresponding regression covariance matrices, V11 = K11 + σ2
u,1 I and

V22 = K22 + σ2
u,2 I.

A multivariate GPM enables the correlation of information among the multiple

outputs in the model. This means that a multivariate GPM not only correlates the

residuals of one variable based on its location, but also correlates the residuals of one

predicted variable with the residuals of another predicted variable. In order to model

the spatial correlation of residuals from two different predicted variables, statisticians

used a cross-covariance function. The cross-covariance function kij (xa,xb) describes

the spatial correlation between the residuals of the predicted variables yi and yj, at

the locations xa and xb. By using the cross-correlation function, the cross-correlation

matrix Kij ∈ R
n×n and the regression cross-covariance matrix Vij ∈ R

n×n are also

defined. With these new variables, the multivariate GPM can be obtained using

a similar constrained nonlinear optimization that was used to create the best linear

unbiased predictor in Section 2.1.1 [150]. For the simplified case of only two predicted

variables, the multivariate GPM predictive distribution is:

[ytr|x,D] ∼ N
(

ŷ (x,D) ,Σ2
y (x,D)

)

(89)

45

ŷ (x,D) = hT (x) β̂ + kT (x,D)V −1
[

y −Hβ̂
]

(90)

Σ2
y (x,D) = K0 (x,x)−

[

hT (x) kT (x,D)
]







0 HT

H V







−1 





h (x)

k (x,D)






(91)

where

y ∈ R
2n =







y1

y2






(92)

H ∈ R
2n×2p =







H1 0

0 H2






(93)

β ∈ R
2p =







β1

β2






(94)

h(x) ∈ R
2p×2 =







h1(x) 0

0 h2(x)






(95)

k (x,D) ∈ R
2n×2 =







k11 (x,D) k12 (x,D)

k21 (x,D) k22 (x,D)






(96)

K0 (x,x) ∈ R
2×2 =







k11 (x,x) k12 (x,x)

k21 (x,x) k22 (x,x)






(97)

V ∈ R
2n×2n =







V11 V12

V21 V22






(98)

Using a multivariate GPM could be cumbersome for some unfamiliar in the way

GPMs work. A multivariate GPM has a more challenging situation for parameter es-

timation, since the computational cost of calculating the inverse of the new regression

covariance matrix V increases to O (mn3), where m represents the number of multiple

variables to be predicted. But perhaps the biggest challenge in the implementation

of multivariate GPM is the appropriate selection of a cross-covariance function for

the model that is consistent with the individual correlation function of the predicted

46

variables [149]. A wrong selection of this function will lead to a non-positive semidef-

inite V matrix, generating numerical instabilities in the GPM predictions. Many

researchers have proposed new cross-covariance structures for the multivariate GPM

[16, 41, 60, 82, 109], but the linear corregionalization model [45] is the most commonly

used because its simple description to guarantee the positive semidefinite condition

on V . To the best of my knowledge, no implementation of a multivariate Gaussian

process model has been used in a dynamic framework as in the one presented here,

despite the fact that the multivariate GPM provides a full state covariance matrix S

with Equation (91).

47

CHAPTER III

ERROR ESTIMATION IN STOCHASTIC SIMULATIONS

USING GAUSSIAN PROCESS MODELS

The research papers in the area of metamodeling approximate expensive determinis-

tic simulations. As it will be shown in this chapter, Gaussian process models have

distinctive mathematical characteristics that are attractive as approximate models

for expensive deterministic simulations. However, in this research area, it is uncom-

mon to build approximate models for stochastic simulations. Only in recent years,

researchers in metamodeling started to propose and investigate implementations of

Gaussian process models for stochastic simulations. The focus in this chapter is to

elucidate the effects of using stochastic simulations in Gaussian process models. This

chapter gives a detailed description of how stochastic simulations affect the param-

eter estimation and error estimation properties of Gaussian process models. Last, a

framework for the analysis of error estimation in Gaussian process models is presented

in this chapter. This framework is a key element in the overall research work in this

thesis, since it will be used in the following chapters to analyze the error estimation

in the context of dynamics and multidimensional Gaussian process models.

3.1 Background

Assume that the response of an expensive simulation f can be described as ytr(x) =

f (x), where the subscript tr denote the mean response of the simulation at x. The

approximate model of the expensive simulation, f̂ , predicts the mean response at x

as: yapp(x) = f̂ (x). Therefore, the mean square prediction error of the approximate

48

model at x is:

δ2(x) = [ytr(x)− yapp(x)]
2 (99)

To calculate δ2(x) exactly, it is necessary to know the value of ytr. In the scenario of

expensive simulations, a user may not have the resources to make additional simula-

tions for the validation of the approximate model. This validation problem scales up

when the user is approximating stochastic simulations, since each observed response

y from the simulation is corrupted by a measurement noise η around the true re-

sponse y(x) = ytr(x) + η. An idea to handle this validation problem is to implement

estimators of the prediction error that do not require additional evaluations from the

expensive simulation.

Gaussian process model (GPM) is one of the most popular approximate models,

not only because its flexibility and good prediction results, but also because it has

its own error estimation on the GPM prediction variance. According to the theory of

GPM, when the GPM structure is completely known (that is, the true GPM param-

eter set, the true local correlation structure and the true regression functions in the

model are known), the GPM prediction variance is an error estimator of the mean

square prediction error. Many of the applications of GPM implement a “plug-in”

version of the Gaussian process, using an estimated parameter set. Santner et al.

[123] called this version of GPM the empirical best linear unbiased predictor. Sev-

eral authors already mentioned this situation [24, 29], suggesting that this empirical

version of GPM is an underestimator of the “true” GPM prediction variance. These

types of issues raises questions about how to understand error estimation in Gaussian

process models.

Error estimation measures are useful for the assessment of approximate models.

The success in many applications of approximate models depends on the accuracy in

the error estimation. Error estimators can be used to quantify the level of uncertainty

or “trust” in the prediction of an approximate model, therefore indicating particular

49

regions in the input space where additional samples might be required. Some examples

include improvement of design of experiments in the creation of approximate models,

and optimization of time-consuming computer simulations via black-box models [29].

Early findings about error estimation of GPM were made by Meckesheimer et al.

[102]. They evaluate leave-k-out cross-validation strategies as a procedure to assess

the accuracy of low-order polynomial functions, radial basis functions and kriging

models over the design space. Goel et al. [42] presented a detailed study on error

estimation, evaluating response surfaces and kriging models for 6 classical benchmark

examples in the statistics field. As a result of this study, Goel et al. concluded that

local evaluations of GPM prediction variance can be used for global error estimation of

Gaussian process models. Viana and Haftka [151] proposed to explain the correlation

between the GPM prediction variance and the mean square prediction error using

cross-validation, finding out that GPM prediction variance does not always correlate

well with the actual prediction errors. As relevant as these results are in the error

estimation of GPM, the studies were limited to deterministic simulations.

The presence of noise in the observations incorporates an additional element in the

GPM prediction that has been discussed previously in the literature. Kleijnen and

coworkers had worked extensively in the use of kriging models for random simulations

[75, 76, 142, 143], using replicates at each sample point in the GPM to calculate sample

means, and then treating those values as deterministic outcomes in the GPM. In the

area of error estimation, the same group implemented a parametric bootstrapping

approach to calculate the mean square prediction error of the GPM [29], but it was not

used as an error estimator in the approximate model and it was only employed with

deterministic simulations. A similar implementation of this bootstrapping approach

was also used to evaluate the uncertainty of time-course experimental data in cell

signaling pathways and network topology of time-series gene expression data [70].

Ankenman et al. [6] extended Kleijnen’s GPM for random simulations with their

50

stochastic kriging model, which models the intrinsic uncertainty, or noise, in the

simulations with an additional variance parameter for each sample point. Different

from these papers, where the major interest was the GPM mean prediction, this

chapter focuses on the GPM prediction variance and its role as an error estimator of

the approximate model when stochastic observations are used in GPM.

3.2 Error estimation for Gaussian process models

In the context of metamodeling, there are two scenarios for error estimation. In one

scenario, the user could be interested in a local (or pointwise) error estimation of the

approximate model at some sample point x in the design space. In another scenario,

the user could use a single error measure to quantify a global error estimation of

the approximate model over the entire design space, as studied by Goel et al. [42].

Gaussian process models offer a direct evaluation of the local error estimation based

on its prediction variance. According to Equations (99) and (11)

MSE [ŷ(x)] = E

[

(

ytr(x)− λT (x)y
)2
]

= E
[

δ2(x)
]

(100)

By the bias-variance decomposition of the mean square prediction error, and the

unbiased constraint used in the derivation of GPM, the mean square prediction error

can be estimated as

MSE [ŷ(x)] =
✘
✘
✘
✘

✘
✘
✘

✘
✘
✘
✘

✘✘✿
0

(

E
[

ytr(x)− λT (x)y
])2

+ σ2
y (x,D)

MSE [ŷ(x)] = σ2
y (x,D) (101)

where σ2
y (x,D) is described by Equation (14). Equation (101) allows the user to have

an assessment of the GPM accuracy at x without additional function evaluations from

the expensive simulation, based entirely on the statistical properties of the GPM.

Frequently, global error assessments over the entire design space are based on

integrated local error estimates. The most common of those global error metrics is

51

the root integrated mean square error (RIMSE) defined as [21, 42]:

RIMSE =

√

√

√

√

1

Ω

∫

x∗

δ2 (x) dx; Ω =

∫

x∗

dx (102)

The exact evaluation of Equation (102) for a Gaussian process model is a difficult

task. Equation (102) requires a closed-form expression of the expensive computer

simulation, which may not be available, as well as the evaluation of the integral for

the nonlinear GPM mean prediction.

Usually, a global error estimator of RIMSE is calculated assuming that the pre-

diction error δ2(x) is equal to the GPM prediction variance σ2
y(x). The global error

estimator is obtained by substituting Equation (14) in Equation (102). To further

simplify the calculation of the global error estimator, a summation over all sample

points is performed instead of evaluating the integral,

RIMSE =

√

√

√

√

1

nt

nt
∑

j=1

σ2
y (xj) (103)

where nt is the number of test points spread across the design space used in the

evaluation. As it can be seen on Equation (103), explaining the relationship between

σ2
y(x) and δ2(x) at the local error level is vital for an accurate error estimation at the

global error level.

3.3 Case studies and testing implementation

This section describes the different case studies that are used to evaluate the error

estimation properties in Gaussian process models in the presence of stochastic obser-

vations. Error estimates are computed using the GPM prediction variance, Equation

(14). The analysis of the error estimation is based on its assessment for local predic-

tion error, as was explained in Section 3.2. The main interest with this analysis is to

understand the role of the uncorrelated noise parameter σ2
u in the error estimation of

GPM, and to provide recommendations for future GPM users.

52

3.3.1 Test problems and creation of noisy observations

The set of test problems was selected from a database of deterministic functions [30]

that are frequently used in evaluating methods for global optimization.

Camelback function (CB)

f (x1, x2) =

(

4− 2.1x2
1 +

1

3
x4
1

)

x2
1 + x1x2 +

(

−4 + 4x2
2

)

x2
2

x1 ∈ [−2, 2], x2 ∈ [−1, 1] (104)

Branin-Hoo function (BH)

f (x1, x2) =

(

x2 −
5.1

4π2
x2
1 +

5

π
x1 − 6

)2

+ 10

(

1− 1

8π

)

cos (x1) + 10

x1 ∈ [−5, 10], x2 ∈ [0, 15] (105)

Hartman-3 function (HM3)

f (x) =−
4
∑

i=1

ci exp

[

−
3
∑

j=1

aij (xj − pij)
2

]

, aij, ci, pij ∈ R

x = [x1, x2, x3] , xi ∈ [0, 1] (106)

Table 1: Parameters used in the Hartman-3 function with three variables

i aij ci pij

1 3.0 10 30 1.0 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3.0 10 30 3.0 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.03815 0.5743 0.8828

The error estimation analysis for the test problems begins with the selection of an

experimental design to create the GPM. The experimental design is created using the

Latin hypercube algorithm built in MATLAB, incorporating a “maximin” criterion

to ensure that the sample points are distributed over the design space. Table 2 shows

the number of n sample points used to built the GPM for each test problem. The

53

−2
−1

0
1

2

−1

−0.5

0

0.5

1
−2

0

2

4

6

x
1

x
2

f(
x 1,x

2)

(a)

−5

0

5

10

0

5

10

15
0

50

100

150

200

250

300

x
1

x
2

f(
x 1,x

2)

(b)

Figure 6: Test functions: (a) Camelback function (b) Branin-Hoo function.

values of n were chosen to match the values in Reference [42]. At each of the n sample

points, the deterministic test problem is evaluated and its corresponding outcomes are

stored. In order to make comparisons between the different test problems, the sample

points and their corresponding observations are normalized between 0 and 1. Table 2

contains the values of the global minimum and maximum of the different test functions

for normalization. Finally, after the normalization procedure, stochastic observations

are created by adding a zero mean, Gaussian distributed and independent noise with

a variance of σ2
n. The magnitudes of σ2

n that are used in the analysis are

σ2
n =

[

0, 1× 10−8, 1× 10−6, 1× 10−4, 4× 10−4,

2.5× 10−3, 1× 10−2, 4× 10−2, 2.5× 10−1, 1
]

(107)

Table 2: Summary of Gaussian process model implementation for error estimation
analysis

Test Problem
Output Normalization

n ntMaximum Minimum

Camelback Function 5.7333 -1.0316 30 300
Branin-Hoo Function 308.1291 0.3979 20 300
Hartman-3 Function 3.7729×10−5 -3.8628 70 900

54

3.3.2 Building Gaussian process models

The GPMs for the different test problems are constructed using the normalized in-

put/output information. All GPMs are built using a constant regression function as

a trend component. The local correlation between sample points in the normalized

dataset is modeled using the Gaussian correlation function, shown in Equation (9).

To obtain the GPM parameter set θ̂ in the local correlation function, maximum likeli-

hood estimation (MLE) is implemented as a constrained nonlinear optimization. The

constraints in the parameter estimation are:

1× 10−3 ≤ ℓi ≤ 1; 1× 10−9 ≤ σ2
c , σ

2
u ≤ 10 (108)

For the analysis of error estimation, two different GPM implementations are used.

One of the GPM implementations does not include σ2
u as one of its estimated param-

eters. This GPM implementation is desirable for expensive deterministic simulations

because it will interpolate the noise-free observations. Because of this characteristic,

it will be called interpolator GPM. The second GPM implementation does include

σ2
u in its estimated parameter set, which it is called from now on regression GPM.

The main idea here is to see how an interpolator GPM will work with noise in the

observations, and to contrast the different implementations for GPM.

3.3.3 Error estimation analysis

The objective in the error estimation analysis is to describe the relationship between

a local error estimator and the true prediction error at some sample point xt in the

design space. For each test problem, nt test sample points were selected in the design

space according to Table 2. At each of the nt sample points, the true prediction

error δ (xt) and its corresponding GPM prediction variance σ2
y (xt) were computed

and stored. These calculations are repeated using 2000 different experimental designs

to account for the variability in the creation of a GPM. For example, in the case of

the Branin-Hoo function, 6× 105 pairs of
[

δ (xt) , σ
2
y (xt)

]

are stored. To analyze this

55

large amount of data, the values of σ2
y (xt) were organized in ascending order. Then,

the information is divided into bins of 1000 data points. For each of the bins, the

sample mean of δ (xt), the sample variance of δ (xt) and, the sample mean of σ2
y (xt)

were calculated. The goal is to relate the average σ2
y (xt) in a bin to the distribution

of the δ (xt) having similar values of σ2
y (xt). Finally, the entire mentioned procedure

is repeated for each of the σ2
n noise levels that are used in the stochastic simulations,

to analyze the effect of noise in the error estimation of the Gaussian process models.

3.4 Results

3.4.1 Understanding stochastic simulations in a Gaussian process model

Before describing how to perform error estimation on a Gaussian process model, it is

necessary to explain the effects of stochastic simulations in the model, more specifi-

cally on its parameters. Previously, Yin and coworkers [158] studied the influence of

stochastic simulations in the estimation of the range parameters ℓi of a GPM, and

their consequences on the mean square prediction error. However, these results were

limited to a perfect estimation of the variance parameters σ2
c and σ2

u, and to a single

experimental design on the design space.

Traditional implementations of GPM for deterministic observations do not include

σ2
u as one of the parameters to be estimated. The presence of σ2

u as an additional

parameter in GPM transforms the interpolation model into a regression model, which

is the more appropriate implementation for stochastic observations. Interpolation

through each observation does not make sense when the samples are stochastic and

could lead to erroneous predictions. However, the interpolator GPM is built using

stochastic observations for comparison purposes, because it shows clearly how the

GPM range parameters ℓ2i and the correlated variance parameter σ2
c change when

measurement noise is present in the observations.

Figure 7 shows how the different noise levels in the stochastic observations have

56

an effect on the interpolator GPM parameters. In a GPM, the range parameters ℓi

describe the distance-based local correlation, and the correlated variance parameter

σ2
c describes the corresponding data variability of the mean behavior of the function.

When the noise level in the simulations is low, the data variability in the observations

is due to the different mean values of the f simulation across the design space. As a

result, the value of σ2
c remains fairly constant and ℓi is larger than zero (Figures 7a

and 7b). When the noise level in the stochastic simulations increases, the estimated

value of σ2
c in the interpolator GPM is similar to the noise added in the observations,

and the range parameters ℓi decrease their values close to zero. As a result of this,

the interpolator GPM assumes that all data variability in the observations is due to

uncorrelated noise and is not capable of identifying a local correlation.

In an interpolator GPM, the effects of a local correlation in the data decrease

when the range parameters ℓi in the Gaussian correlation function of Equation (9)

also decrease. In more practical terms, when the range parameters ℓi decrease, the

off-diagonals elements in the regression covariance matrix V and the entries in the

correlation vector k (xt,D) in Equations (13) and (14) also decrease. In the limit that

all these entries become zero, the interpolator GPM mean prediction of a test point

ŷ (xt) is equal to the sample mean of the stochastic simulations and, the interpolator

GPM prediction variance σ2
y (xt) is equal to the estimated value of σ2

c . In other words,

an interpolator Gaussian process model without local correlation predicts similarly

to an ordinary linear least-squares model that uses the set of regression functions in

the GPM.

Figure 7 illustrates an important issue in the implementation of the interpola-

tor GPM for stochastic simulations. An interpolator Gaussian process model has a

limit in the magnitude of the noise that it can handle. Figures 7c and 7d illustrate

the behavior of the interpolator GPM around this noise limit behavior in the obser-

vations. Figure 7c shows the GPM mean prediction of 10 test points xt from the

57

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

200

400

600

800

1000

1200

Range Parameter

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 0

σ2
n
 = 1×10−6

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

σ2
n
 = 4×10−2

σ2
n
 = 2.5×10−1

σ2
n
 = 1

(a)

−2 −1.5 −1 −0.5 0 0.5 1
0

100

200

300

400

500

600

700

800

log
10

(σ2
c
) − Correlated Variance Parameter

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 0

σ2
n
 = 1×10−6

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

σ2
n
 = 4×10−2

σ2
n
 = 2.5×10−1

σ2
n
 = 1

(b)

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

−60

−40

−20

0

20

40

60

Noise Level − σ2
n

G
P

M
 M

ea
n

P
re

di
ct

io
n

Test Points
Sample Mean

(c)

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Noise Level − σ2
n

G
P

M
 V

ar
ia

nc
e

P
re

di
ct

io
n

−
 σ2 y(x

)

Test Points

Estimated σ2
c

(d)

Figure 7: Effect of stochastic observations on interpolator Gaussian process models.
Test problem: Camelback function. The distributions of estimated parameters in (a)
and (b) were computed from 2000 different experimental designs, using the maximum
likelihood estimator at different noise levels in the stochastic observations. (a) Es-
timated range parameters ℓi. (b) Estimated correlated variance parameter σ2

c on a
10-base logarithmic scale. (c) GPM mean prediction ŷ (x) at 10 test points in the
design space for a typical experimental design. (d) GPM predictive variance σ2

y (x)
at 10 test points in the design space for a typical experimental design.

same experimental design at different noise levels in the observations. The figure also

shows the sample mean of the stochastic observations at each of those noise levels.

Figure 7d represents the GPM prediction variance for the same 10 test points, and

the estimated σ2
c as a function of the noise level in the observations.

Based on the results in Figure 7, it is possible to identify the noise level when

the identification of local correlation in the data decreases in the interpolator GPM.

58

According to this figure, an interpolator GPM starts to lose its local correlation

features when the value of the noise is close to the value of σ2
c , approximately at

σ2
n = 1× 10−2. It is more practical to describe this limit in terms of a signal-to-noise

ratio of the observations. Since the interpolator GPM is using normalized output

information O(1) in its experimental design, the noise limit for an interpolator GPM

is a signal-to-noise ratio of:

SNR =
µ

σ
=

O(1)

σn

=
1

0.1
= 1× 101 (109)

A regression GPM includes σ2
u as an extra parameter, which decomposes the data

variability in the stochastic simulation between local correlation and an uncorrelated

measurement noise. Figure 8 illustrates the balance between the local correlation and

the noise, based on the ratio between σ2
c and σ2

u. In Figure 8, a perfect identification

of the variance parameters σ2
c and σ2

u is imposed in the regression GPM and the

remaining GPM parameters (the range parameters ℓi) are estimated by the maximum

likelihood estimator. This means that in Figure 8, σ2
u is equal to the noise level in

the observations σ2
n, and σ2

c is equal to the estimated σ2
c value when σ2

n = 0).

Figures 8a and 8b show how σ2
u changes the GPM mean prediction ŷ (x) as its

value gets closer to σ2
c . Figures 8a illustrates the prediction of the regression GPM at

one of the training points used in the model, and Figure 8b illustrates the regression

GPM mean prediction of one of the testing points xt. At low σ2
u values, the mean

prediction of the regression GPM at a sample point (Figures 8a) works almost as an

interpolator GPM. In this scenario, the local correlation is more significant for the

GPM prediction. As σ2
u increases, the prediction of the regression GPM begins to

deviate from the original output sample, since both the σ2
u and σ2

c terms are relevant.

For high-noise cases, where σ2
u is larger than σ2

c , the identification of a local correlation

in the data set becomes more difficult, and the regression GPM mean prediction at a

training point approaches the sample mean over all the stochastic simulations in the

sample set D. A similar behavior occurs for the training point in Figure 8b.

59

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

0.3

0.35

0.4

0.45

0.5

0.55

Noise Level − σ2
n

G
P

M
 M

ea
n

P
re

di
ct

io
n

Metamodel Prediction
Original Function Evaluation
Observations Sample Mean

Estimated σ2
c

(a)

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

0.3

0.35

0.4

0.45

0.5

0.55

Noise Level − σ2
n

G
P

M
 M

ea
n

P
re

di
ct

io
n

Metamodel Prediction
Observations Sample Mean

Estimated σ2
c

(b)

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Noise Level − σ2
n

G
P

M
 P

re
di

ct
ed

 V
ar

ia
nc

e
−

 σ2 y

y = σ2
u

y = (1/n) × σ2
u

Estimated σ2
c

(c)

Figure 8: Effect of stochastic observation on a regression Gaussian process models.
Test problem: Camelback function. n = 30. (a) GPM mean prediction ŷ (xi) at a
sample point xi in a typical experimental design. (b) GPM mean prediction ŷ (xt) at a
test point xt in the design space. Figure (c) shows the GPM predictive variance σ2

y (x)
as a function of σ2

u using (c) n = 30 sample points. Blue solid lines represent GPM
prediction variances at sample points in the set D, magenta dotted lines represent
GPM prediction variances at different test points in the design space and black vertical
line represent the estimated σ2

c for σ2
n = 0

Figure 8c illustrates the qualitative characteristics of GPM prediction variance

under various values of σ2
u. It is easy to see the low-noise and high-noise sections in

the GPM prediction variance. In the limit of high noise levels in the observations, the

regression GPM prediction variance at a test point σ2
y (xt) is equal to

σ2
u

n
, the variance

of the sample mean of the stochastic simulations. This result indicates a significant

difference in the error estimation between the interpolator and the regression GPM

60

with high noise. In Figure 8c, the GPM prediction variance at different sample

points in the design space start to deviate from the 1:1 line as the noise level in

the observations increases. As a result, the GPM prediction variance becomes lower

than σ2
u. This behavior in the prediction variance at the sample points seems to

be correlated with the ratio between the estimated σ2
u and σ2

c , more precisely, when

σ2
c

σ2
u
≈ 102. When the noise in the observations increases, the GPM prediction variance

becomes similar to the prediction variance when a constant regression function is used

for prediction, σ2
u

n
.

Finally, this section analyzes how the presence of the uncorrelated variance param-

eter σ2
u affects the local error estimation of the GPM prediction variance σ2

y . Different

from Figures 7 and 8, all parameters in the GPM in Figure 9 are estimated by a max-

imum likelihood estimator, emulating a usual implementation for GPM users. This

change in the parameter estimation allows one to analyze the efficacy of the maxi-

mum likelihood estimator in the identification of measurement noise. Figure 9 shows

the error estimation made by the interpolator and regression GPM in the presence of

noise in the observations for two scenarios, n = 30 and n = 100, without replicates in

the observations. In the case of deterministic observations σ2
n = 0 and with n = 30,

both interpolator and regression GPM (Figures 9a and 9c respectively) behave simi-

larly, because of the small value of the estimated σ2
u in the regression GPM. When the

observations contain a noise level of σ2
n = 1× 10−6, Figures 9b and 9d, there are not

significant differences compared to the deterministic results, suggesting that the noise

level added to the observations is too small to modify the GPM prediction results. It

is also clear how the scatter plots line up around the σ2
y (x) = δ2 (x) line, supporting

the proposed linear relationship between σ2
y(x) and the expected prediction error.

Figure 9d illustrates the difficulties in the accurate estimation of the measurement

noise with σ2
u in the GPM, since the estimated σ2

u is not close to the noise level in the

simulations. When the number of sample points in the model increases to n = 100,

61

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GPM Prediction Variance − σ2
y
(x)

T
ru

e
S

qu
ar

e
P

re
di

ct
io

n
E

rr
or

 −
 δ2 (x

)

Estimated σ2
c

σ2
n
 = 0

(a)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

GPM Prediction Variance − σ2
y
(x)

T
ru

e
S

qu
ar

e
P

re
di

ct
io

n
E

rr
or

 −
 δ2 (x

)

Estimated σ2
c

σ2
n
 = 1×10−6

(b)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

T
ru

e
S

qu
ar

e
P

re
di

ct
io

n
E

rr
or

 −
 δ2 (x

)

GPM Prediction Variance − σ2
y
(x)

Estimated σ2
c

σ2
n
 = 0

Estimated σ2
u

(c)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

T
ru

e
S

qu
ar

e
P

re
di

ct
io

n
E

rr
or

 −
 δ2 (x

)

GPM Prediction Variance − σ2
y
(x)

Estimated σ2
c

σ2
n
 = 1×10−6

Estimated σ2
u

(d)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

T
ru

e
S

qu
ar

e
P

re
di

ct
io

n
E

rr
or

 −
 δ2 (x

)

GPM Prediction Variance − σ2
y
(x)

Estimated σ2
c

σ2
n
 = 0

Estimated σ2
u

(e)

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

T
ru

e
S

qu
ar

e
P

re
di

ct
io

n
E

rr
or

 −
 δ2 (x

)

GPM Prediction Variance − σ2
y
(x)

Estimated σ2
c

σ2
n
 = 1×10−6

Estimated σ2
u

(f)

Figure 9: Local error estimation using GPM prediction variance σ2
y (x) using stochas-

tic observations. Test problem: Camelback function. The noise level σ2
n is labeled in

each of the figures. (a) and (b) do not include σ2
u in the GPM, n = 30. (c) and (d)

σ2
u in the GPM, n = 30. (e) and (f) include σ2

u in the GPM, n = 100.

62

Figures 9e and 9f, the maximum likelihood estimator improves the identification of

the measurement noise from the observations. Figures 9 shows the role of σ2
u in the

regression GPM as a potential lower range for the GPM prediction variance. When

the true square prediction error δ2 is lower than the estimated σ2
u, the GPM prediction

variance σ2
y looks like a constant value around the estimated σ2

u. When δ2 is greater

than the estimated σ2
u, σ

2
y exhibits a linear correlation with δ2, similar to the results

with the interpolator GPM.

In conclusion, the regression Gaussian process model also has a noise limit for

the identification of the local correlation. Similar to the interpolator GPM, the noise

limit for the regression GPM is a signal-to-noise ratio of 1× 101. The main difference

in this noise limit case between the two GPM implementations is in how the signal-

to-noise ratio can be calculated. While in the interpolator GPM, the user may need

additional information in the form of repetitions to estimate the signal-to-noise ratio

in the simulations, in the regression GPM, the signal-to-noise ratio can be in terms of

the ratio between the estimated σ2
u and σ2

c . Therefore, a regression Gaussian process

model identifies the local correlation between mean values of the simulations, as long

as the estimated σ2
u is two or more orders of magnitude lower than the estimated σ2

c .

Thus, the user may diagnose a GPM by its relative values of σ2
c and σ2

u. If σ
2
u ≥ σ2

c ,

then the GPM should not be expected to yield accurate predictions. This conclusion

is limited to Gaussian process models using a constant regression function and a small

sample size.

3.4.2 Error estimation in Gaussian process models

Figure 10 shows the results of implementing the error estimation analysis described

in Section 3.3.3. In this section, the value of the uncorrelated variance parameter σ2
u

is imposed to be equal to the value of the noise level in the observations. Figures 10a

and 10b provides a picture of the collected data in the error estimation, by performing

63

the same error estimation analysis described in Section 3.3.3, now with 20 different

experimental designs and for the Branin-Hoo test problem. In Figure 10a, all collected

δ values are centered around zero, confirming the unbiased prediction properties of the

GPM across the design space. This figure also shows how the δ distribution changes

as a function of σ2
y . As was described previously, these results are consequences of the

local correlation that is present in the regression GPM. On the other hand, in Figure

10b, the extremely high noise level in the observations causes the regression GPM

to lose the identification of the local correlation. The vertical stripes correspond to

individual realizations in which all points have the same value of σ2
y = σ2

u

n
.

Figures 10c and 10d shows the combined results of all the collected data points,

as was described in Section 3.3.3. On the left, Figure 10c illustrates the transition

in the δ distribution as the noise level in the observations increases. At low noise

levels, the sample mean of δ for each bin of the regression GPM is close to zero, but

the uncertainty in the nominal value of δ increases as the noise level increases. More

interesting is the relationship between the sample variance of the δ distribution with

σ2
y , as is shown in Figure 10d. These variables have a strong linear correlation that

covers from the low noise levels up to σ2
n = 1× 10−2. This knowledge can be used to

predict the error distribution at a particular point x, regardless of its location in the

design space. At higher noise levels, the sample variance of the δ distribution levels

off such that it no longer corresponds to the value of σ2
y .

As important as the values of the sample mean and sample variance of the δ

distribution are, the shape of the distribution defines many of its properties. Figure

11 shows the histograms of some of the bins that were created in the analysis. The

main idea is to describe what type of distribution can be used to interpret the δ

distribution, and how the noise level in the observations might or might not alter the

shape of the distribution. The presence of noise in the measurement incorporates a

source of uncertainty in the predictions made by the regression GPM. That is why

64

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

GPM Prediction Variance − σ2
y
(x)

T
ru

e
P

re
di

ct
io

n
E

rr
or

 −
 δ

(x
)

(a)

10
−2

10
−1

10
0

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

GPM Prediction Variance − σ2
y
(x)

T
ru

e
P

re
di

ct
io

n
E

rr
or

 −
 δ

(x
)

(b)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

M
ea

n
−

 δ(
x)

σ2
n
 = 0

σ2
n
 = 1×10−6

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

σ2
n
 = 4×10−2

σ2
n
 = 2.5×10−1

σ2
n
 = 1

(c)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

σ2
n
 = 0

σ2
n
 = 1×10−6

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

σ2
n
 = 4×10−2

σ2
n
 = 2.5×10−1

σ2
n
 = 1

(d)

Figure 10: Description of true prediction error δ (x) distributions. (a) Scatter plot of
δ (x) values for 20 different experimental designs, σ2

n = 0. (b) Scatter plot of δ (x)
values for 20 different experimental designs, σ2

n = 1. Figures (c) and (d) shows sample
mean and variances of the different bins created from scatter plots of 2000 different
experimental designs at different σ2

n noise levels in the simulations. Test problem:
Branin-Hoo function.

in Figure 11 there is an increase in the width of all distributions as the noise level

increases.

In each of the subfigures in Figure 11, the average value of σ2
y in each of the

corresponding bins is shown. Notice in the subfigures that the average value of σ2
y

increases from left to right. While the δ(x) distributions on the left (Figures 11a, 11d

and 11g) look like normal distributions, the δ(x) distributions on the right (Figures

11c, 11f and 11i) have a slightly bimodal character. This finding suggests that there

65

−1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

δ(x)

N
um

be
r

of
 O

cu
rr

en
ce

s

Epsilon Distribution
Mean Value

Sample Mean − δ(x) = 5.3652e−005
Sample Variance − δ(x) = 2.6322e−005
Average σ2

y
(x) = 6.8918e−006

Noise Level − σ2
n
 = 0

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

δ(x)

N
um

be
r

of
 O

cu
rr

en
ce

s

Epsilon Distribution
Mean Value

Sample Mean − δ(x) = −0.0014146
Sample Variance − δ(x) = 0.0014668
Average σ2

y
(x) = 0.0003494

Noise Level − σ2
n
 = 0

(b)

−1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

δ(x)

N
um

be
r

of
 O

cu
rr

en
ce

s

Epsilon Distribution
Mean Value

Sample Mean − δ(x) = 0.00822
Sample Variance − δ(x) = 0.029844
Average σ2

y
(x) = 0.029416

Noise Level − σ2
n
 = 0

(c)

−1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

δ(x)

N
um

be
r

of
 O

cu
rr

en
ce

s

Epsilon Distribution
Mean Value

Sample Mean − δ(x) = 0.015922
Sample Variance − δ(x) = 0.0053825
Average σ2

y
(x) = 0.0020918

Noise Level − σ2
n
 = 0.01

(d)

−1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

δ(x)

N
um

be
r

of
 O

cu
rr

en
ce

s

Epsilon Distribution
Mean Value

Sample Mean − δ(x) = −0.0068451
Sample Variance − δ(x) = 0.0072527
Average σ2

y
(x) = 0.0048205

Noise Level − σ2
n
 = 0.01

(e)

−1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

δ(x)

N
um

be
r

of
 O

cu
rr

en
ce

s

Epsilon Distribution
Mean Value

Sample Mean − δ(x) = 0.01174
Sample Variance − δ(x) = 0.029172
Average σ2

y
(x) = 0.032672

Noise Level − σ2
n
 = 0.01

(f)

−1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

δ(x)

N
um

be
r

of
 O

cu
rr

en
ce

s

Epsilon Distribution
Mean Value

Sample Mean − δ(x) = 0.028148
Sample Variance − δ(x) = 0.066525
Average σ2

y
(x) = 0.033333

Noise Level − σ2
n
 = 1

(g)

−1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

δ(x)

N
um

be
r

of
 O

cu
rr

en
ce

s

Epsilon Distribution
Mean Value

Sample Mean − δ(x) = −0.0092859
Sample Variance − δ(x) = 0.083074
Average σ2

y
(x) = 0.10318

Noise Level − σ2
n
 = 1

(h)

−1.5 −1 −0.5 0 0.5 1 1.5
0

10

20

30

40

50

60

δ(x)

N
um

be
r

of
 O

cu
rr

en
ce

s

Epsilon Distribution
Mean Value

Sample Mean − δ(x) = 0.070545
Sample Variance − δ(x) = 0.081714
Average σ2

y
(x) = 0.85314

Noise Level − σ2
n
 = 1

(i)

Figure 11: Delta δ (x) distributions of three different bins at three different noise levels
for the Camelback test function. Figures (a), (b) and (c) corresponds to σ2

n = 0.
Figures (d), (e) and (f) corresponds to σ2

n = 1 × 10−2. Figures (g), (h) and (i)
corresponds to σ2

n = 1.

is a correlation between the value of the local error estimator σ2
y and the shape of

the δ distribution. Moreover, this result suggests that there is a threshold value of

σ2
n where the Delta distribution changes from a normal distribution to, in the case of

the Camelback function, a bimodal distribution. However, even in the highest noise

bins, the peaks of the distribution are overlapping and the distribution may still be

approximated as a Gaussian distribution.

66

This section of results concludes with a more detailed exploration of the linear

correlation between the sample variance of the δ distribution and σ2
y . Figure 12 shows

the relationship between the sample variances and the average value of σ2
y up to a noise

level of σ2
n = 4×10−2 for the three test problems. These figures indicate a monotonic

relationship between σ2
y and the variance of the prediction error distribution δ(x), plus

σ2
y(x) have similar orders of magnitude with this variance. This results reinforces the

idea of using the GPM prediction variance for finding regions with high uncertainty

in its prediction. Although these figures show more clearly the linear correlation

between the variables, it is also interesting to see a small portion of the data that

levels-off at high values of σ2
y . This threshold value corresponds to the variance on

the residuals of the underlying true function when it is fitted by a constant regression

function. In other words, this threshold value represents the data variability of the

true mean values of the test problem across the design space. The value of this cannot

be predicted directly from the stochastic observations, since it requires a complete

knowledge of the true mean values of the function to be approximated.

3.4.3 Error estimation of Gaussian process models under limited number
of function evaluations

In order to aid in the estimation of the noise level, a user could include repetitions of

the function evaluations at some sample points. When the total number of function

evaluations to be used in the GPM is fixed, the user must make the decision of how to

distribute the resources between the repetitions and covering the design space for a

good mean prediction. In this section, the effects of incorporating repetitions into the

regression GPM are evaluated, as well as its effect parameter estimation and on the

error estimation of GPM using stochastic simulations. The number of total function

evaluations in the different test problems is defined according to the values in Table

2. All the repetitions in the calculations are obtained at the center of the normalized

design space. In each of the figures in this section, the fraction of function evaluations

67

10
−8

10
−6

10
−4

10
−2

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

σ2
n
 = 0

σ2
n
 = 1×10−6

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

σ2
n
 = 4×10−2

Data Variability

(a)

10
−8

10
−6

10
−4

10
−2

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

σ2
n
 = 0

σ2
n
 = 1×10−6

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

σ2
n
 = 4×10−2

Data Variability

(b)

10
−8

10
−6

10
−4

10
−2

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

σ2
n
 = 0

σ2
n
 = 1×10−6

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

σ2
n
 = 4×10−2

Data Variability

(c)

Figure 12: Describing the noise level limit in the Delta δ (x) distribution for different
test problems. Figure (a): Branin-Hoo function. Figure (b): Camelback function.
Figure (c): Hartman-3 function.

that are used for repetitions is specified (e.g. in the case of a Branin-Hoo function,

a fraction of 0.3 means that 6 out of 20 total function evaluations are repetitions at

the center of the design space), while the remainder of the function evaluations are

spread out over the design space, following a Latin Hypercube design.

The repetitions at the center of the design space are intended to improve the

identification of the uncorrelated variance parameter σ2
u by the maximum likelihood

method. To compare the performance of the MLE in this situation, an additional

approach for the estimation of σ2
u was implemented. Instead of estimating all the

68

GPM parameters using the MLE simultaneously, the sample variance of the repeti-

tions at the center point of the design space is used as the estimated σ2
u, and then

the remaining of the GPM parameters are estimated by MLE. In this way, an inde-

pendent estimation of the uncorrelated variance parameter is guaranteed. Figure 13

presents a comparison between the two GPM parameter estimation procedures using

the relationship between the sample variance of the error distribution and the average

value of σ2
y . Figure 13 shows that the maximum likelihood estimator performs almost

identically to the proposed sample variance approach for the estimation of noise in the

simulations. However at a small number of sample points in the regression GPM, the

MLE yields unreliable results for the higher noise level, whereas the sample variance

approach is more robust. MLE is capable of identifying the noise level in the stochas-

tic simulations, aided by a few repetitions in the dataset or with a large number of

single evaluations on the design space.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

σ2
n
 = 1×10−6 − MLE

σ2
n
 = 1×10−2 − MLE

σ2
n
 = 1×10−6 − Variance

σ2
n
 = 1×10−2 − Variance

(a)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

σ2
n
 = 1×10−6 − MLE

σ2
n
 = 1×10−2 − MLE

σ2
n
 = 1×10−6 − Variance

σ2
n
 = 1×10−2 − Variance

(b)

Figure 13: Comparison between different parameter estimation when repetitions
are used in the Gaussian process model at different σ2

n noise levels. Test problem:
Hartman-3 function. n = 70. Figure 13a as a fraction of repetitions equal to 0.1,
Figure 13b as a fraction of repetitions equal to 0.3.

After looking into how the maximum likelihood estimator works with repetitions

in the sample points, the next question is how the error distribution of the regres-

sion GPM changes when some of the function evaluations are used for repetitions.

69

Figure 14 illustrates the effect of the modified experimental design in the mean and

variance of the prediction error distribution using MLE as a parameter estimation

methodology.

Figures 14c to 14f show interesting patterns, related to the presence of repetitions

in the regression GPM and the variance of the prediction error distribution. At the

lower noise level, the two test problems exhibit completely different behaviors. For the

Branin-Hoo function (Figure 14c), the presence of repetitions in the regression GPM

seems to not improve the potential 1:1 relationship between the variance of δ and σ2
y .

In fact, σ2
y becomes an even greater underestimator of the variance of the prediction

error distribution. In contrast, for the Camelback function at a low noise level (Figure

14d), there is no significant effect in the scatter plots due to the number of repetitions

in the GPM. Figure 14e shows the effects of the repetitions on the δ distribution at

an intermediate noise level for the Branin-Hoo function. In this case, the repetitions

do improve the relationship between the variance of the prediction error distribution

and σ2
y , by making the scatter plot closer to the 1:1 line up to a fraction of repetitions

equal to 0.2. Once the fraction of repetitions in the GPM reaches 0.3, the scatter

plot moves away from the 1:1 line. This behavior of the variance of the δ distribution

can be seen more clearly on Figure 14f for the Camelback function. The results on

Figures 13 and 14 could be associated with a trade-off between the exploration of

the underlying true function and the repetitions used to identify the noise in the

stochastic simulations.

3.5 Discussion

Although the main subject on this work is the analysis of error estimation on Gaus-

sian process models using stochastic simulations, the results describe how the GPM

balances its behavior between the noise and the signal in the observations. In the

70

10
−8

10
−6

10
−4

10
−2

10
0

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

M
ea

n
−

 δ(
x)

Fraction = 0
Fraction = 0.1
Fraction = 0.2
Fraction = 0.3
Fraction = 0.4

(a)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

M
ea

n
−

 δ(
x)

Fraction = 0
Fraction = 0.1
Fraction = 0.2
Fraction = 0.3
Fraction = 0.4

(b)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

Fraction = 0
Fraction = 0.1
Fraction = 0.2
Fraction = 0.3
Fraction = 0.4

(c)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

Fraction = 0
Fraction = 0.1
Fraction = 0.2
Fraction = 0.3
Fraction = 0.4

(d)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

Fraction = 0
Fraction = 0.1
Fraction = 0.2
Fraction = 0.3
Fraction = 0.4

(e)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

Fraction = 0
Fraction = 0.1
Fraction = 0.2
Fraction = 0.3
Fraction = 0.4

(f)

Figure 14: Mean and variance of the prediction error distribution as a function of
the number of repetitions and noise level σ2

n. The fraction of function evaluations
used as repetitions is labeled in each of the figures. Noise level in Figures (a) to (d):
σ2
n = 1× 10−6. Noise level in Figures (e) and (f): σ2

n = 1× 10−4. Figures (a), (c) and
(e) corresponds to the Branin-Hoo function and Figures (b), (d) and (f) corresponds
to the Camelback function.

71

end, this relationship defines all the error estimation aspects of the Gaussian pro-

cess model. If the GPM is capable of recognizing the underlying true function to

be approximated, via its local correlation features, then the model has a clear corre-

spondence between the prediction error of the approximate model and its prediction

variance. When this correlation is present in the GPM, the prediction error at a par-

ticular point in the design space can be modeled as a normally distributed, zero-mean

random variable, whose variance is approximately equal to the GPM prediction vari-

ance, Equation (14), at that point. If the GPM does not recognize the true function

(because of the presence of noise in the observations), then GPM exhibits the same

results as a much more simple model: the ordinary least-squares model. Because of

this limitation in the implementation of the GPM, the recommendation is to use a

Gaussian process model when the signal-to-noise ratio in the stochastic simulations

is larger than 1× 101, (i.e. 10 % noise or less).

In the implementation of Gaussian process models for stochastic simulations, the

first step is to decide an appropriate number of function evaluations to be used in the

model. The rule of thumb nt = 10 × d has been used over the years in the area of

metamodeling to build approximate models [17, 62]. Recently, Loeppky and coworkers

[90] verified this recommendation using an interpolator Gaussian process model in

high-dimensional deterministic simulations. However, the rule was not evaluated for

stochastic simulations or using a regression GPM, where the rule must be modified

to account for the noise effects in the simulations.

Section 3.4.3 offers a different perspective for the area of design of computer

experiments. The use of repetitions in the dataset is advantageous for the parameter

estimation of a GPM, and the MLE takes advantage of these repetitions. Fixing

the number of function evaluations to be used in the regression GPM proves to be

an interesting scenario for the discussion. With increasing repetitions, the GPM

decreases in its ability to identify the underlying true function via the local correlation,

72

because of the reduction in the exploration of the design space. This conclusion

is particularly true when the noise level in the simulations is small. These ideas

suggest that an experimental design for a Gaussian process model should favor the

space-filling of the design space, with a few repetitions that can aid the parameter

estimation of σ2
u. In this way, the regression GPM can preserve its local correlation

features and, therefore the error estimation characteristics that have been described

throughout this study. Although the MLE is capable of estimating the noise from the

repetitions, it may be more robust to estimate the uncorrelated variance parameter

σ2
u using the sample variance of the repetitions. In this way, the user guarantees to

decompose the data variability in the stochastic observations between local correlation

and measurement noise.

Several review papers have summarized the large number of design of computer

experiments for Gaussian process models [117, 127]. Unfortunately, most of these

experimental designs were developed for deterministic simulations. A sequential ex-

perimental design for random simulations in Gaussian process models is proposed

[143] using several repetitions of the sample points and a bootstrapping approach

to quantify the uncertainty in the GPM mean prediction. Their proposed approach

allows for multiple stopping criteria, including a fixed number of function evalua-

tions in the approximate model, but it fits an interpolator GPM using the sample

mean of the repetitions at each sample points as if they were deterministic outcomes.

Although this approximation is reasonable to filter the noise from the stochastic sim-

ulations, there is some uncertainty in the value of the sample mean relative to the

true mean value of the function that could be captured by σ2
u, especially at small

number of function evaluations. In addition, the interpolation of noisy observations

could induce oscillations in the approximated surface, making the optimization more

difficult.

All these effects become even harder to estimate when a non-constant noise level

73

is present in the stochastic simulation. Some authors have proposed to modified the

diagonal of the covariance matrix in the Gaussian process model by estimating the

variances at each of the sample points [6, 158], although it would required additional

function evaluations. All these issues could be use to redefine the concept of design

of computer experiments and to foster new and original ideas for the research area.

Further studies and discussions in the error estimation of Gaussian process models

could include the selection of the remaining elements in the model. The problem of

the identification of local correlation from the stochastic simulation is independent of

the correlation function used in the GPM. The selection of a correlation function only

has an effect in the diagnosis of the error estimation and in the conditions when the

local correlation of the GPM is lost. A different situation occurs in the selection of the

regression functions for the Gaussian process models. The results presented here are

limited to a constant regression function, which explains the behavior of the model at

high-noise levels in the simulations. If the basis set of regression functions used in the

GPM was input-dependent (like a polynomial basis functions), the identification of

the noise limit for the GPM would be more difficult, since part of the data variability

in the observations is now explained by the regression functions and not by the local

correlation. This situation suggests that the value of the estimated σ2
c with a complex

regression function will be smaller than the estimated σ2
c when a constant regression

function is used. As a result of this, it becomes harder to identify the local correlation

features of the GPM and, the recommended signal-to-noise ratio to preserve the error

estimation characteristics discussed in this study will be above the current limit of

1× 101.

To summarize this discussion, this study focuses on the error estimation properties

of the Gaussian process models, not the accurate mean prediction made by the model.

The objective in this study is to verify the consistency between the prediction error of

the approximate model and its GPM prediction variance, even if the prediction error

74

is above the desired target value for the GPM user. Based on the results of this chap-

ter, and if the user has some flexibility in the total number of function evaluations

that can be used, the GPM implementation presented by Ankenman et al. [6] for

building Gaussian process models with stochastic simulations will be recommended.

Their GPM implementation contains a preliminary data processing stage where the

noise in the stochastic simulations is filtered by calculating repetitions at the sample

points and considering the sample mean of these repetitions as the outcome to used in

the GPM. The major difference of this GPM implementation, compared to the GPM

implementation in Reference [143], is that the sample means are treated as random

values, which allows for the implementation of a regression GPM instead of a interpo-

lator GPM. By changing the number of repetitions in the data processing stage, the

GPM implementation can be tuned to satisfy the recommended signal-to-noise ratio

in the stochastic simulations. The estimation of the uncorrelated variance parameter

σ2
u could be made using MLE, or using the sample variance of the repetitions at each

sample point as a non-constant noise level in the diagonal of the correlation matrix,

for a maximum usage of the available information. This implementation can be com-

plemented with a tailored selection of the number of repetitions at each sample point

as it is described by Kleijnen and coworkers [75].

75

CHAPTER IV

PROPAGATION OF ERROR IN AN ITERATIVE

MAPPING USING GAUSSIAN PROCESS MODELS

Discrete time models are a traditional approach to understand and explain system

dynamics in science and engineering. A discrete time model is a recursion function

that maps dynamic information from a previous time step to the next time step at

a fixed (discrete) time interval. The scenario presented in this thesis is that the user

is building an approximate closed-form equation for the system dynamics, based on

the simulated data from the expensive dynamic simulations. This dynamic data is

used to approximate the recursion function with an empirical model, in this case a

Gaussian process model. Like any other empirical model, there is an error in the

prediction every time that the model is used but, because of the recursive nature of

the discrete time model, errors in previous time steps will also propagate into future

time steps.

The propagation of error is a critical aspect in the analysis and implementation of

data-driven dynamic models. This chapter analyzes the effects of error propagation

when a Gaussian process model is used in the recursive dynamic framework for a

simple chemical kinetics model. In particular, this chapter addresses the questions:

1. Can the error estimation properties of a Gaussian process model, explored in

Chapter 3, be used to describe the propagation of error in the dynamic frame-

work?

2. What is the effect of using stochastic data on the propagation of error made by

the Gaussian process model?

76

4.1 Local and dynamic error in the GPM dynamic frame-

work

Consider a stochastic dynamic system described as a discrete-time model using Equa-

tion (49) and the approximate discrete-time model of the GPM dynamic framework

in Equation (50). Each of these two expressions map the dynamic information from

x(s) to the next time step x(s + 1), making a one-step-ahead prediction every time.

Figure 15 shows a scheme describing the one-step-ahead prediction made by the true

discrete-time model of the system and the mean of the Gaussian process model. The

accuracy of the approximate discrete-time model can be evaluated using the Eu-

clidean distance between the true state x(s + 1), and the predicted state from the

approximate dynamic GPM x̂(s+ 1).

()sx

ˆ(())sy x

(1)s +x

2(())
y

sσ x

(())LEM sx

ˆ = (())sf xGPM

(())sf x

Figure 15: Local Error Analysis. The black lines represents the prediction paths
using the true recursion function and the GPM. The red bracket represents the local
error measurement (LEM) associated with the prediction at x(s). The shaded region
describes a statistical tolerance region centered on the GPM mean prediction ŷ (x(s))
using the GPM prediction variance σ2

y (x(s)).

77

This research work defines the local error measurement (LEM [x(s)]) as the vari-

able that quantifies the one-step-ahead prediction error of the GPM at the state x(s):

LEM (x(s)) =
1

d

d
∑

i=1

(xi(s+ 1)− x̂i(s+ 1))2

=
1

d

d
∑

i=1

(xi(s+ 1)− x̂i (x(s)))
2

=
1

d

d
∑

i=1

(xi(s+ 1)− ŷi (x(s)))
2 (110)

where xi(s + 1) ∈ R is the true state value in the ith dimension, and ŷi (x(s)) is

the GPM mean prediction in the ith dimension, using Equation (13). Notice that

the local prediction error depends on the location in the state space x(s), therefore

the accuracy of the GPM will depend on the local correlation of information in the

neighborhood of x(s). The definition of LEM can be used to define a global one-

step-ahead prediction error, by computing several values of LEM (x(s)) at different

states x(s) across the input space, and averaging them.

Once the first dynamic prediction is made by the GPM, the local prediction error

propagates during the recursive dynamic prediction. Figure 16 describes the relation-

ship between the propagation of error and the local prediction error made at each

discrete time step. Consider a particular dynamic trajectory, whose initial state is

x0 ∈ R
d at the discrete time step s = 0. This thesis defines the dynamic error mea-

surement (DEM (x0, s)) as the variable that quantifies the prediction error made by

the GPM dynamic framework for the dynamic trajectory as:

DEM (x0, s) =
1

d

d
∑

i=1

(xi(s+ 1)− x̂i(s+ 1))2

=
1

d

d
∑

i=1

(xi(s+ 1)− x̂i (x̂(s)))
2

=
1

d

d
∑

i=1

(xi(s+ 1)− ŷi (x̂(s)))
2 (111)

78

DEM uses the Euclidean distance between the true state in the ith dimension of the

dynamic system xi(s+1), and the GPM mean prediction ŷi (x̂(s)) using the uncertain

input state from the previous iteration x̂(s). Comparing Equations (110) and (111),

LEM is based on a known input state x(s), whereas DEM evaluates the prediction

error using the estimated x̂(s). The definition of DEM can be used to define a

dynamic error for a complete dynamic trajectory that starts at x0, by calculating

the average DEM (x0, s) over ns, the number of time steps or iterations necessary to

describe it. Notice that LEM (x(s = 0)) = DEM (x0, s = 0) since it is assumed that

the initial value of the dynamic trajectory x0 does not have uncertainty.

0
(0)x = x

((0))LEM x

GPM

0
(,1)DEM x

 = 0s

Discrete Time Index

 = 1s = 2s = 3s

((1))LEM x

((2))LEM x

0
(,2)DEM x

(1)x

(2)x

(3)x

ˆ((1))y x
ˆ ˆ((1))y x

ˆ ˆ((2))y x

ˆ((1))y x

ˆ((2))y x

GPM

GPM

GPM

GPM

((0))f x

((1))f x

((2))f x

0
(,0)DEM x

Figure 16: Dynamic Error Analysis. The figure describes how the prediction error
propagates from one discrete time index to the next one by a recursive dynamic GPM
and compares the use of LEM and DEM in a dynamic context.

4.2 Case study: Second-order reaction rate

To describe the propagation of error in the GPM dynamic framework, a second-order

reaction rate equation is chosen, described as

dC

dt
= −kC2, k = 0.005

m3

mol s
(112)

79

where C represents the concentration of a species in mol
m3 , and k represents the reaction

rate constant. The set of initial conditions C0 that are used to evaluate the dynamic

model is

0
mol

m3
≤ C0 ≤ 100

mol

m3
(113)

The reasons to choose such simple dynamic model are:

1. It is a one-dimensional dynamic system, which avoids the problem of not having

a full state covariance matrix S during the implementation of a multidimensional

GPM dynamic framework.

2. The state space of the dynamic system is fully specified to be between 0 and 100

mol
m3 , thanks to the decaying behavior of the system. This complete description of

the state space allows one to have complete control of the sampling design used

in the GPM. Later in Chapter 5, this subject will be revisited and explained in

more detail for a multidimensional Gaussian process model.

3. It has a known and analytical solution

C(t) =
C0

1− kC0 (t− t0)
(114)

where C0 and t0 are the initial concentration and time values to solve the ordi-

nary differential equation in Equation (112).

4. This simple model has a closed-form equation that could be used as a discrete-

time version of it. If a fixed discrete time interval ∆t is chosen, Equation (114)

can written as a discrete-time model.

C(s+ 1) =
C(s)

1− kC(s)∆t
(115)

In other words, the Gaussian process model should approximate Equation (115),

in the input space between 0 and 100 mol
m3 for a complete description of the

dynamic trajectories in the recursive dynamic framework.

80

Figure 17 shows an example of the implementation of the GPM dynamic frame-

work as an approximate discrete-time model for Equation (115). Similar to the case

studies in Chapter 3, the information provided by the second-order reaction model

is scaled between 0 and 1. The difference in the scaling procedure is that the input

and output information are in the same space (i.e. between 0 mol
m3 and 100 mol

m3), thus

the input and output information are scaled with the same values. This situation

explains why the y-axis on Figure 17a goes between 0 and 0.16, instead of the range

0 to 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Normalized Concentration − C(s)

N
or

m
al

iz
ed

 C
on

ce
nt

ra
tio

n
−

 C
(s

+
1)

Exact Mapping

σ2
n
 = 1 × 10−8

σ2
n
 = 1 × 10−6

σ2
n
 = 1 × 10−4

σ2
n
 = 1 × 10−2

(a)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (sec)

N
or

m
al

iz
ed

 C
on

ce
nt

ra
tio

n

Exact Trajectory

σ2
n
 = 1 × 10−8

σ2
n
 = 1 × 10−6

σ2
n
 = 1 × 10−4

σ2
n
 = 1 × 10−2

(b)

Figure 17: Description of a second-order reaction model. (a) Scaled dynamic mapping
function for the second-order reaction rate in Equation (115) with ∆t = 10 s and the
approximated GPM mapping functions at different noise levels. (b) Scaled dynamic
prediction made by the GPM for the initial concentration C0 = 75 mol

m3 at different
noise levels in the observations. The GPM uses n = 20 sample points equally spread
across the input space 0–1.

After the scaling, a zero-mean, Gaussian noise with variance σ2
n is added to the

recorded output information. Following the signal-to-noise recommendation in Chap-

ter 3, the noise levels evaluated in this comparison are:

σ2
n =

[

1× 10−8, 1× 10−6, 4× 10−6, 2.5× 10−5,

1× 10−4, 4× 10−4, 2.5× 10−3, 1× 10−2
]

(116)

81

The addition of noise to the output offers the possibility of creating negative measured

concentrations, especially at high noise levels. When the dataset contains negative

concentrations, the GPM correlates this erroneous output information, generating

unphysical dynamic predictions. To avoid this situation, a consistency check is added

during the creation of stochastic output information, making any negative concen-

tration to be replaced by a zero concentration value. With this consistency check in

place, a GPM is build at different noise levels, and dynamic predictions are made in

the scaled input space. Figure 17b shows the dynamic predictions made by the GPM

recursive framework at different noise levels. The major disadvantage in enforcing

this consistency check is an induced bias in the stochastic observations, especially in

the cases of low scaled concentrations and high noise levels.

For this case study, two types of experimental designs are evaluated. One is an

experimental design where n = 20 sample points are equally spaced in the region be-

tween 0 and 1. The second experimental design uses n = 20 sample points randomly

selected from a uniform distribution in the same range. Once an experimental design

is generated, 5 additional points are included as repetitions of the output information

at the scaled input x = 0.5. With this dataset of input/output information, a re-

gression GPM is built, using a constant regression function and maximum likelihood

as the parameter estimation methodology. To evaluate the local error measurement

(LEM), nt = 101 sample points equally spaced in the range between 0 and 1 are

used, to compare the GPM mean prediction ŷ (x) with the exact dynamic mapping

function in Equation (115). For a robust quantification of the local prediction er-

ror, average values of LEM and σ2
y(x) at each of the nt test locations are calculated

from the prediction results of 1000 different experimental designs, for each of the two

types of experimental designs. In the particular case of the equally spaced experi-

mental design, the locations of the sample points in the dataset remain constant, but

their stochastic output information in each experimental design is different due to the

82

random noise component.

To evaluate the performance of the GPM dynamic framework, 51 equally spaced

initial values x0 were selected in the range between 0 and 1 of the input space. Then,

a dynamic trajectory was calculated and stored from each of them, using a sampling

rate ∆t = 10 s, until a final time tf = 200 s. For each of these dynamic trajectories, a

GPM dynamic prediction is generated recursively using the GPM. According to the

selected sampling rate and final time, the GPM dynamic framework uses ns = 20

iterations in order to make a dynamic prediction. These dynamic trajectories are

used to evaluate the propagation of error in a Gaussian process model. This compari-

son uses the two modified GPM predictive distributions (Taylor-series approximation

and Gaussian approximation) that consider input uncertainty, which were presented

previously in Section 2.5.2. The comparison uses the modified mean predictions of

these two GPM versions, Equations (59) and (70), and the true value in each of the

dynamic trajectories, Equation (114), to calculate DEM values. Additionally, an

error estimation analysis similar to the one described in Section 3.3.3 is implemented

at each discrete time step of the dynamic predictions, to investigate how the corrected

forms of the GPM predicted variance σ2
y (x), Equations (60) and (71), correlate with

the propagated error. The analysis of propagation of error in this chapter does not

include the GPM correction due to parameter uncertainty described in Section 2.3.1.

Preliminary simulations using the GPM parameter uncertainty corrections show that

this correction does not improve significantly the error estimation properties of the

GPM.

83

4.3 Results

4.3.1 Understanding the one-step-ahead prediction error

Although the second-order reaction model is a simple dynamic model, it allows to

isolate and illustrate general aspects that also appear in a more complex and multidi-

mensional model. Figure 18 shows the comparison between the LEM and the GPM

prediction variance σ2
y(x) at different locations in the input space. The first element

to notice in all of the figures is the effect of the 5 repetitions at the center of the

input space, especially in the cases of low noise levels in the observations. It is clear

that these repetitions not only decrease the LEM local error at xi = 0.5, but also

decrease the LEM values of the neighboring input values.

Figures 18a and 18b correspond to the average values of LEM and σ2
y(x) at the

nt = 100 different locations of the scaled input space when the random experimental

design is used in the GPM. The GPM has substantial problems in the one-step-

ahead prediction at the boundaries of the input space. This situation occurs because

these regions are farther away from the sample points used to generate the model,

which means that less information is available for the distance-based local correla-

tion. The potential consequences of this situation could be severe in the dynamic

recursive framework, especially when one of the boundaries in the input space rep-

resents a physical constraint or stable attractor, like the zero concentration limit in

this example.

In contrast, the implementation of the equally spaced experimental design in the

GPM, shown in Figures 18c and 18d, exhibits a better performance in the prediction

over the input space. The LEM and σ2
y(x) are more uniform across the input space.

As the noise level increases in the stochastic observations, the value of the GPM

prediction variance σ2
y(x) approaches to the value of σ2

n

n
, like in the results of Chapter

3. Also, as the noise level increases, the location of the training points of the GPM

becomes more evident, as seen in the oscillations in Figure 18d. Including sample

84

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−9

10
−7

10
−5

10
−3

10
−1

Normalized Input Space

A
ve

ra
ge

 L
oc

al
 E

rr
or

 M
ea

su
re

m
en

t (
LE

M
)

σ2
n
 = 1×10−2

σ2
n
 = 2.5×10−3

σ2
n
 = 4×10−4

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−5

σ2
n
 = 4×10−6

σ2
n
 = 1×10−6

σ2
n
 = 1×10−8

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−9

10
−7

10
−5

10
−3

10
−1

Normalized Input Space

A
ve

ra
ge

 G
P

M
 P

re
di

ct
io

n
V

ar
ia

nc
e

−
 σ2 y

σ2
n
 = 1×10−2

σ2
n
 = 2.5×10−3

σ2
n
 = 4×10−4

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−5

σ2
n
 = 4×10−6

σ2
n
 = 1×10−6

σ2
n
 = 1×10−8

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−9

10
−7

10
−5

10
−3

10
−1

Normalized Input Space

A
ve

ra
ge

 L
oc

al
 E

rr
or

 M
ea

su
re

m
en

t (
LE

M
)

σ2
n
 = 1×10−2

σ2
n
 = 2.5×10−3

σ2
n
 = 4×10−4

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−5

σ2
n
 = 4×10−6

σ2
n
 = 1×10−6

σ2
n
 = 1×10−8

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−9

10
−7

10
−5

10
−3

10
−1

Normalized Input Space

A
ve

ra
ge

 G
P

M
 P

re
di

ct
io

n
V

ar
ia

nc
e

−
 σ2 y

σ2
n
 = 1×10−2

σ2
n
 = 2.5×10−3

σ2
n
 = 4×10−4

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−5

σ2
n
 = 4×10−6

σ2
n
 = 1×10−6

σ2
n
 = 1×10−8

(d)

Figure 18: Average Local Error Measurement (LEM) and average GPM prediction
variance σ2

y for the discrete time model, Equation (115), ∆t = 10 s. Figures (a) and
(b) correspond to 1000 random experimental designs, each of n = 20 sample points.
Figures (c) and (d) correspond to 1000 realizations of an equally spaced experimental
design with n = 20 sample points.

points at the boundaries of the scaled input space decreases the error prediction in

those regions. Figure 18c shows that, despite the equally spaced experimental design

across the scaled input space, the LEM prediction error is not uniform in the input

space. There is a significant increase in the LEM values in the left side of the

scaled input space. This situation is related with the presence of a larger gradient

of the mapping function in the region, as shown in Figure 17a. Overall, there is a

strong correspondence between LEM and σ2
y(x), indicating that the GPM prediction

variance can be used to inform the user about the expected prediction error of y(x).

85

4.3.2 Understanding the prediction error in a complete dynamic trajec-
tory

Similar to the one-step-ahead prediction error, it is important to see how the error in

a complete trajectory behaves, for different initial values. To do this, the definition of

DEM in Equation (111) and the 51 pre-selected dynamic trajectories are used. For

each of the dynamic trajectories, an average DEM value over the ns = 20 iterations

necessary to construct a GPM dynamic prediction is calculated (this number comes

from the discrete time interval ∆t = 10 s and the final time tf = 200 s). Then, this

average calculation is repeated for 1000 different experimental designs, either using

an equally spaced or a random experimental design. Those values are averaged again

in order to construct Figure 19. The predictions in this figure are computed using

the traditional GPM mean prediction in Equation (13). The average DEM value

on the equally spaced experimental design is smaller compared to the DEM values

in the random experimental design. The reason for the increase in the DEM values

of the random experimental design is the high prediction error near the boundaries,

particularly at low noise levels.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Normalized Initial Values

A
ve

ra
ge

 D
yn

am
ic

 E
rr

or
 M

ea
su

re
m

en
t (

D
E

M
)

σ2
n
 = 1×10−2

σ2
n
 = 2.5×10−3

σ2
n
 = 4×10−4

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−5

σ2
n
 = 4×10−6

σ2
n
 = 1×10−6

σ2
n
 = 1×10−8

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Normalized Initial Values

A
ve

ra
ge

 D
yn

am
ic

 E
rr

or
 M

ea
su

re
m

en
t (

D
E

M
)

σ2
n
 = 1×10−2

σ2
n
 = 2.5×10−3

σ2
n
 = 4×10−4

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−5

σ2
n
 = 4×10−6

σ2
n
 = 1×10−6

σ2
n
 = 1×10−8

(b)

Figure 19: Average Dynamic Error Measurement (DEM) over complete dynamic
trajectories for the discrete time model, Equation (115), ∆t = 10 s. Figures (a)
corresponds to 1000 random experimental designs, each of n = 20 sample points.
Figures (b) corresponds to 1000 realizations of a equally spaced experimental design
with n = 20 sample points.

86

It is interesting to see in Figure 19 that there are not significant differences in the

average DEM for different initial values in the input space except when x0 is very

small, less than about 0.05. Similarly, the spacing between each of the training points

in the uniform experimental design is approximately 0.05. This result is because

all dynamic trajectories are monotonically decreasing to zero concentration. Since

all dynamic trajectories are moving across the same regions in the input space, it

is expected that most of the trajectories will have similar prediction errors, which

later on results in similar average DEM values. This result is a consequence of the

system dynamics and not because of a mathematical property in the GPM dynamic

framework.

Figure 19 also shows results on the propagation of error in the GPM dynamic

framework, as a function of the noise level in the observations used in the model.

Based on Figure 18c, the average value of LEM in the scaled input space at σ2
n =

1 × 10−8 is approximately 1 × 10−8, while the average value of DEM at the same

noise level in Figure 19b, is approximately 1 × 10−6. The rationale here is that the

average value of DEM should be larger than the average value of LEM , due to the

propagation of error. But, when the noise level σ2
n in the observations increases, the

difference between the average DEM and the average LEM decreases. The reason

for this behavior could be related to the prediction properties of a GPM at high noise

levels. In Chapter 3, it was shown that, at high noise levels in the observations,

the GPM prediction becomes similar to the prediction of an ordinary least-squares

estimator of the regression functions used in the model (Section 3.4.1). In this chapter,

all GPMs use a constant regression function, so it means that at high noise levels the

GPM prediction is close to a constant number. (To be more precise, the sample

mean of the stochastic observations used in the GPM). If the GPM prediction is a

constant number, the recursive dynamic prediction made by the GPM will predict

the same constant number at each time step of the dynamic trajectory. Therefore,

87

the propagated error in the recursive dynamic framework is a constant value, which is

in the same order of magnitude of the one-step-ahead prediction error of the model.

Figure 19 is a summary of the global performance of the GPM dynamic framework,

but it does not give many indications about specific details of the GPM dynamic

prediction for a single trajectory. Figure 20 provides a comparison between DEM

and LEM for six different dynamic trajectories, at σ2
n = 1 × 10−8. In this figure,

the GPM uses the equally spaced experimental design to compare the DEM and

LEM at each discrete time step throughout the dynamic prediction. Instead of

calculating an average DEM for an entire trajectory over the ns recursive iterations,

Figure 20 calculates the average DEM values at each discrete time step for 1000

different dynamic predictions of the same dynamic trajectory, one from each of the

1000 experimental designs. Then, the figure compares this dynamic progression with

the LEM values that would correspond to each discrete time step of the trajectory,

if the input from the previous time step does not have uncertainty (similar to Figure

16).

From all the dynamic trajectories presented in Figure 20, the most interesting

and important is Figure 20a, which corresponds to x0 = 0. Since the equally spaced

experimental design used in the GPM collects information at xi = 0, the value of

the LEM remains constant and close to the noise level in the observations. But,

because the type of GPM used in the dynamic framework performs regression and

not interpolation, the GPM prediction deviates from zero at that sample point. As a

result, the propagation of error occurs in the dynamic prediction and the predicted

trajectory is completely different from the true, zero constant behavior. As seen in

Figure 17b, the system decays to a scaled concentration of C ≤ 0.052, within the

first 2 or 3 discrete time steps. Thus, the error for all simulations in Figure 20 is

dominated by the accuracy of the GPM near x = 0, as shown in Figure 20a.

88

0 50 100 150 200
10

−9

10
−8

10
−7

10
−6

10
−5

Time

P
re

di
ct

io
n

E
rr

or
 −

 G
P

M
 M

od
el

DEM
LEM

(a) x0 = 0

0 50 100 150 200
10

−9

10
−8

10
−7

10
−6

10
−5

Time

P
re

di
ct

io
n

E
rr

or
 −

 G
P

M
 M

od
el

DEM
LEM

(b) x0 = 0.2

0 50 100 150 200
10

−9

10
−8

10
−7

10
−6

10
−5

Time

P
re

di
ct

io
n

E
rr

or
 −

 G
P

M
 M

od
el

DEM
LEM

(c) x0 = 0.4

0 50 100 150 200
10

−9

10
−8

10
−7

10
−6

10
−5

Time

P
re

di
ct

io
n

E
rr

or
 −

 G
P

M
 M

od
el

DEM
LEM

(d) x0 = 0.6

0 50 100 150 200
10

−9

10
−8

10
−7

10
−6

10
−5

Time

P
re

di
ct

io
n

E
rr

or
 −

 G
P

M
 M

od
el

DEM
LEM

(e) x0 = 0.8

0 50 100 150 200
10

−9

10
−8

10
−7

10
−6

10
−5

Time

P
re

di
ct

io
n

E
rr

or
 −

 G
P

M
 M

od
el

DEM
LEM

(f) x0 = 1

Figure 20: Propagation of error in predicted dynamic trajectories by the GPM re-
cursive framework. The figures show the average values of LEM and DEM for 6
different dynamic trajectories at each discrete time step s, averaged over 1000 differ-
ent experimental designs. The discrete time interval is ∆t = 10 s and, the noise level
in the stochastic observations is σ2

n = 1× 10−8.

4.3.3 Propagation of error in the GPM dynamic framework

Section 2.5.2 presented two options for an uncertain input distribution in the GPM.

In this section of the results, both of these approaches will be used and implemented

to evaluate their performance in the GPM dynamic prediction. Figure 21 shows the

average DEM values for both the Taylor-series and Gaussian approximations used

to account for the input distribution in a GPM. The results in Figure 21 were made

similarly to the results in Figure 19. Comparing Figures 19 and 21, both corrected

GPMs using the Taylor-series approximation and the Gaussian approximation show

similar features to the traditional implementations of the GPM that do not consider

input uncertainty, particularly at low noise levels. The substantial difference in the

figure is the dramatic effect that high noise observations have on the Taylor-series

89

approximations. Table 3 summarizes the average DEM values of the GPM at dif-

ferent noise levels and experimental designs for the mean prediction of the dynamic

trajectories. The results presented on Table 3 are clear about the performance be-

tween the classical GPM mean prediction in Equation (13), and the two corrected

GPM implementations. By using either the Taylor-series or the Gaussian approxi-

mation in the GPM dynamic framework, there is approximately a 0.1% difference in

the performance compared to the common GPM mean prediction at low noise levels.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Normalized Initial Values

A
ve

ra
ge

 D
yn

am
ic

 E
rr

or
 M

ea
su

re
m

en
t (

D
E

M
)

σ2
n
 = 1×10−2

σ2
n
 = 2.5×10−3

σ2
n
 = 4×10−4

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−5

σ2
n
 = 4×10−6

σ2
n
 = 1×10−6

σ2
n
 = 1×10−8

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Normalized Initial Values

A
ve

ra
ge

 D
yn

am
ic

 E
rr

or
 M

ea
su

re
m

en
t (

D
E

M
)

σ2
n
 = 1×10−2

σ2
n
 = 2.5×10−3

σ2
n
 = 4×10−4

σ2
n
 = 1×10−4

σ2
n
 = 2.5×10−5

σ2
n
 = 4×10−6

σ2
n
 = 1×10−6

σ2
n
 = 1×10−8

(b)

Figure 21: Average Dynamic Error Measurement (DEM) over complete dynamic
trajectories in the GPM dynamic framework, for the discrete time, ∆t = 10 s. The
GPM in this figure uses an equally spaced experimental design with n = 20 sample
points. (a) corresponds to the GPM mean prediction with the Taylor-series approx-
imation in Equation (59). (b) corresponds to the GPM mean prediction with the
Gaussian approximation in Equation (70).

Perhaps the corrected GPM expressions for ŷ(x) did not improve the dynamic

predictions of the framework, but the corrected GPM expressions for σ2
y(x), Equations

(60) and (71), may still improve the propagation of error at each discrete time step. To

perform this analysis, the residual prediction error of the GPM recursive framework

in a dynamic trajectory is computed at each discrete time step. This computation is

different from Equation (111), where the DEM is computed with the squared value

of the prediction error at each discrete time step. For the case of this one dimensional

dynamic model, the residual prediction error of the GPM dynamic framework starting

90

Table 3: Average DEM values for the GPM dynamic framework, over 1000 different
experimental designs and several initial values in the scaled input space. The table
compares the classical implementation of a GPM, with its Taylor-series and Gaussian
approximations for input uncertainty. These different GPM implementations are
evaluated at several noise levels and experimental designs.

Noise
Classical GPM

Equally Spaced Random

1× 10−8 1.4546× 10−6 4.4616× 10−6

1× 10−6 1.1724× 10−5 3.8123× 10−5

4× 10−6 1.9883× 10−5 7.6341× 10−5

2.5× 10−5 6.9356× 10−5 2.0787× 10−4

1× 10−4 2.3760× 10−4 4.7252× 10−4

4× 10−4 7.6760× 10−4 0.0012
2.5× 10−3 0.0041 0.0049
1× 10−2 0.0092 0.0095

Noise
Taylor-series approximation
Equally Spaced Random

1× 10−8 1.4549× 10−6 4.4609× 10−6

1× 10−6 1.1742× 10−5 3.8107× 10−5

4× 10−6 1.9897× 10−5 7.6310× 10−5

2.5× 10−5 6.9245× 10−5 2.0776× 10−4

1× 10−4 2.3738× 10−4 4.7260× 10−4

4× 10−4 8.0534× 10−4 0.1038
2.5× 10−3 2.3448 2.8058
1× 10−2 8.0537 75.7516

Noise
Gaussian approximation

Equally Spaced Random

1× 10−8 1.4556× 10−6 4.4599× 10−6

1× 10−6 1.1760× 10−5 3.8099× 10−5

4× 10−6 1.9904× 10−5 7.6310× 10−5

2.5× 10−5 6.9182× 10−5 2.0774× 10−4

1× 10−4 2.3729× 10−4 4.7260× 10−4

4× 10−4 7.6352× 10−4 0.0012
2.5× 10−3 0.0040 0.0047
1× 10−2 0.0090 0.0093

at x0 at each discrete time step is

δ (x0, s) = x(s+ 1)− ŷ (x̂(s)) (117)

91

Note that the error is not squared here. This modification in the DEM calculation,

allows one to use the error estimation analysis of the δ(x) residual distribution, similar

to the analysis perform in Section 3.3.3. Since the dynamic trajectories generate

residual prediction errors at each discrete time step, the error estimation analysis can

be performed at each time step, following closely how the prediction errors propagate.

Figure 22 shows the error estimation analysis of the GPM at t = 10 s and t = 200 s

using an equally spaced experimental design. In this figure, the error estimation

analysis uses the common expression for the GPM prediction variance in Equation

(14).

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

M
ea

n
−

 δ(
x)

 (
D

E
M

)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(a) t = 10 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

 (
D

E
M

)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

Data Variability

(b) t = 10 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

M
ea

n
−

 δ(
x)

 (
D

E
M

)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(c) t = 200 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

 (
D

E
M

)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

Data Variability

(d) t = 200 s

Figure 22: Sample mean and sample variance for the δ(x) residual distribution of
the GPM at different time steps in the dynamic prediction. The figure shows the
correlation between the GPM residuals and the classical GPM prediction variance
σ2
y(x) in Equation (14).

92

Figures 22a and 22b are relevant to this dynamic analysis, because they represent

the error estimation properties of the GPM without input uncertainty, like in Chapter

3. These two figures show similar behaviors compared to the case studies in Chapter

3. On average the sample mean of the δ(x) residual distribution is mostly centered

on zero except at the highest noise levels in the observations, and the sample variance

of the residual distribution correlates well with the GPM prediction variance σ2
y(x).

On the other hand, Figures 22c and 22d represent the effects of error propagation

throughout the dynamic prediction. The sample mean of the residual distribution

is no longer centered at zero, and the deviation from the zero mean behavior grows

as the noise level in the observations increases. The sample variance of the residual

distribution is no longer correlated on a 1:1 relationship with σ2
y(x), and now σ2

y(x)

underestimates the sample variance of the distribution at several noise levels.

Figure 23 shows the implementation of the corrected GPM prediction variance

expression from the Taylor-series and Gaussian approximation, to correlate the sample

variance of the δ residual distribution at different discrete time steps. The rationale

for this implementation is that when the propagation of error occurs, the corrected

GPM prediction variance expressions will be able to track the uncertainty in the

prediction, preserving the 1:1 relationship exhibited in the one-step-ahead prediction

(Figure 21a). Based on this rationale, Figure 23 shows the error estimation analysis

at later discrete time steps during the dynamic prediction.

Figures 23a, 23c and 23e shows the scatter plots of the error estimation at three

different discrete time steps and three noise levels σ2
n = (1× 10−8, 1× 10−6, 1× 10−4)

for the classical GPM equations and the Taylor-series approximation. These figures

show that the Taylor-series approximation does not offer any improvement in track-

ing the propagated error during the prediction, compared to the traditional GPM

expressions for error propagation. In contrast, Figures 23b, 23d and 23f shows how

the implementation of the Gaussian approximation improves the correlation between

93

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

(a) t = 10 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

(b) t = 10 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

(c) t = 100 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

(d) t = 100 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

(e) t = 200 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

(f) t = 200 s

Figure 23: Error estimation properties of the GPM dynamic framework during a
dynamic prediction. Blue dots corresponds to the error estimation using the clas-
sical GPM equations. Figures (a), (c) and (e) corresponds to the Taylor-series ap-
proximation (green dots), while figures (b), (d) and (f) corresponds to the Gaussian
approximation (red dots).

the sample variance of the residual distribution and the GPM prediction variance

σ2
y(x) at low noise levels, since these scatter plots are closer to the 1:1 line. The fig-

ures showing the Gaussian approximation performance uses four noise levels for the

94

error estimation analysis, σ2
n = (1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2). To comple-

ment this comparison, Figure 24 shows the CPU time for a GPM prediction, where the

additional calculations in the Taylor-series approximation and the Gaussian approx-

imation increases the computational cost by approximately one order of magnitude

compared to the classical expressions used in the GPM. Also notice in Figure 24 that

the Taylor-series approximation is less costly to compute compared to the Gaussian

approximation. As a result, the Gaussian approximation improves the tracking of the

propagation of error in the dynamic predictions, at expense of a larger computational

cost.

5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

Number of Sample Points (n)

C
P

U
 T

im
e

pe
r

P
re

di
ct

io
n

(s
)

GPM Model
GPM Model + Taylor−Series Approximation
GPM Model + Gaussian Approximation

Figure 24: CPU Time per GPM input prediction in each of the three GPM implemen-
tations: Classical GPM, Taylor-series approximation and Gaussian approximation as
a function of the number of sample points n in the model. The CPU time calculations
were computed with a Intel R©CoreTM 2 @ 2.4 GHz, Matlab Version R2009b.

To exploit the potential advantages of the Gaussian approximation in the prop-

agation of error, two additional options are considered. The first of these options

is to expand the input space in the GPM by incorporating more delayed terms of

the system dynamics in the model in Equation (112). The Markov assumption in the

GPM dynamic framework of Equation (50) limits the implementation of the recursive

mapping function to one delayed term. Although this should be sufficient to represent

95

the one-state model, the prediction of this stochastic system might be improved by

adding more delay terms. Figure 25 shows the implementation of multiple delayed

terms in the GPM dynamic framework, comparing the classical GPM equations with

the Gaussian approximation. The implementation of the Gaussian approximation

requires a complete description of the state covariance matrix of the multiple delayed

terms in the GPM, especially because these terms are correlated with each other.

For a complete description of how to construct the covariance matrix of the uncer-

tain input distribution when multiple delayed terms are used in the GPM dynamic

framework, I refer the reader to the Reference [40].

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

Delayed Terms = 1
Delayed Terms = 1
Delayed Terms = 3
Delayed Terms = 4

(a) t = 10 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

Delayed Terms = 1
Delayed Terms = 2
Delayed Terms = 3
Delayed Terms = 4

(b) t = 200 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

Delayed Terms = 1
Delayed Terms = 2
Delayed Terms = 3
Delayed Terms = 4

(c) t = 200 s

Figure 25: Error estimation properties of the GPM dynamic framework during
a dynamic prediction using multiple delayed terms at different noise levels σ2

n =
[1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2]. Figures 25b corresponds to the classical GPM
equations, and Figures 25c corresponds to the Gaussian approximation.

Figure 25 shows that the variance of the δ(x) residual distribution decreases when

the number of delayed terms in the GPM dynamic framework increases. This result

96

means that the GPM dynamic framework improves its prediction with the additional

terms in the model. Figure 25a shows this improvement on the one-step-ahead predic-

tion error. A consequence of improving the one-step-ahead prediction error is that the

propagation of error in the recursive framework decreases, as it is shown on Figures

25b and 25c. Despite the use of multiple delayed terms in the Gaussian approxima-

tion on Figure 25c, there is not significant improvement in the correlation between

the sample variance and the corrected GPM prediction variance.

The second option to consider in the propagation of error using the Gaussian

approximation is using different sampling rates to describe the system dynamics.

The recursive use of the GPM has many resemblances with the implementation of

iterative numerical methods like the Euler method or the Runge-Kutta method, to

approximate the dynamics of a system. The efficiency in these numerical methods

is associated with the step size used to discretize the process. The recursive GPM

dynamic framework described in this research can not be compared directly with

these numerical methods since these approaches assume that the closed-form solution

of the system dynamics is known. Nevertheless, the sampling rate used in the GPM

dynamic framework will have an impact in the framework, since the recursive mapping

function that needs to be approximated by the GPM will change.

Figure 26 shows the implementation of four sampling rates to describe the dy-

namics of the second-order reaction model in Equation (112), and its effects on the

propagation of error. Figure 26a shows the correlation between the variance of the

δ(x) residual distribution and the GPM prediction variance for the different sampling

rates for a one-step-ahead prediction error. This figure shows that lower one-step-

ahead prediction errors can be obtained by using a smaller ∆t in the construction of

the GPM dynamic framework.

The problem with using a smaller sampling rate is the increase in the number of

iterations ns necessary to describe a dynamic trajectory. Figures 26b to 26e compares

97

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

∆t = 20 s
∆t = 10 s
∆t = 5 s
∆t = 2 s

(a) One-step-ahead prediction

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

∆t = 20 s
∆t = 10 s
∆t = 5 s
∆t = 2 s

(b) t = 60 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

∆t = 20 s
∆t = 10 s
∆t = 5 s
∆t = 2 s

(c) t = 60 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

∆t = 20 s
∆t = 10 s
∆t = 5 s
∆t = 2 s

(d) t = 200 s

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Average GPM Prediction Variance − σ2
y
(x)

S
am

pl
e

V
ar

ia
nc

e
−

 δ(
x)

∆t = 20 s
∆t = 10 s
∆t = 5 s
∆t = 2 s

(e) t = 200 s

Figure 26: Error estimation properties of the GPM dynamic framework during a
dynamic prediction using different sampling rates. Figure 26a shows the one-step-
ahead prediction results for four different sampling rates at different noise levels
σ2
n = (1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2). Figures 26b and 26d corresponds to

the classical GPM equations, while Figures 26c and 26e corresponds to the Gaussian
approximation.

the propagation of error of different sampling rates at two different instances in the

dynamic predictions. For similar instances in time, the smaller sampling rates propa-

gate more error, through more iterations of the dynamic prediction, compared to the

98

larger sampling rates, meaning that these predictions are ultimately less accurate.

These figures show that the propagation of error is a problem that is not solved by

simply reducing ∆t. In fact, the best results are obtained with the Gaussian approxi-

mation, by increasing ∆t to 20 s. This reduces the propagation of error by decreasing

the number of iterations.

4.4 Discussion

The propagation of error is an unavoidable problem in the implementation of a data-

driven approximate model for system dynamics. Several researchers have been using

empirical models as a recursive mapping function to describe system dynamics, but

few attempt to characterize the propagated error in their predictions. The main

reasons for not doing it could be:

• their empirical models do not offer a good estimation of its prediction error

• their methodologies uses large datasets that have been tailored specifically for

their objectives, so there is sufficient data to characterize the system dynamics

without worrying much about the propagation of error

• it is difficult to characterize the prediction error due to the large sequence of

data analysis tools used in the methodology

This research is unique and distinct relative to many of these implementations because

of the level of uncertainty during the construction of the data-driven dynamic model.

The identification of the dynamics of a complex system involves an exploration of the

state space, that is usually made by a careful selection of data points. Potentially, the

information about the propagation of error in the data-driven dynamic model could

be fed back and used in the exploration stage, improving the selection of new data

points for the model.

99

In my opinion, Gaussian process models seem to have all the theoretical frame-

work to estimate the propagation of error in a data-driven dynamic models. Chapter

3 described the properties and advantages of using the GPM prediction variance to

correlate the error prediction in the model and, the theory about how to propagate

uncertain inputs through the GPM has been developed previously. This chapter does

not try to prevent the propagation of error in a GPM dynamic framework, instead

it asks what the user can do with the tools and properties of the GPM to quantify

this problem. In particular, this chapter goes back to the research question presented

in Section 1.3: can the uncertainty in the GPM prediction be estimated? With this

idea in mind, the corrected GPMs were implemented as part of the dynamic recursive

framework. As a result, the modified GPM equations using the Gaussian approxima-

tion is a promising approach to account for the propagation of error in the Gaussian

process model. Future studies regarding this particular issue in the GPM dynamic

framework is to propose a heuristic rule, based on the GPM prediction variance that

can improve the correlation with the variance of the residual distribution. This may

require additional sampling near the boundaries, sampling in regions with high gra-

dients of the output information or the use of a different correlation function. Model

selection methods could be used to tailor the correlation function to the particular

dataset, potentially improving the error estimation.

Despite using a simple dynamic model as a second-order reaction rate, this chapter

illustrates many significant points for a GPM user in dynamic systems modeling. The

first lesson learned in this chapter is the necessity of using samples at the boundaries

of the input space. In the particular case of the second-order reaction model, these

boundary samples not only reduce the prediction error in their neighborhood, but also

contribute in the specification of the dynamic behavior of the system. The second

lesson learned in this chapter is that an empirical model by itself will not satisfy the

physical principles that govern a chemical system, as it was shown in the case of a

100

dynamic prediction for x0 = 0.

As important as the boundary behavior in a GPM is, the predictions of a Gaussian

process model in areas with large gradients are also important. An example of a

large gradient situation is when the GPM dynamic framework approximates a stiff

dynamic system. Stiffness has been a recurrent topic in the mathematical modeling of

multiscale dynamic systems, leading to the creation of specific numerical methods to

handle it. Moreover, this chapter shows how a usual solution to model stiff systems,

which is decrease the time step ∆t, will not work in the recursive dynamic framework

due to the large propagation of error. Therefore, the data-driven approach presented

in this work has to address this issue, and analyze how to account for this situation.

When the function to be estimated has areas with large positive or negative gradients,

the assumption of a stationary correlation function does not represents accurately

the behavior of the residuals in the GPM. One solution for this issue is to modify

the structure of the correlation function into a non-stationary function, where the

residuals are now related with the specific location in the input space. The second

solution could be the addition of new sampled data on the regions of large gradients to

improve the prediction in those regions. A possible third option to be considered is to

design a time-dependent GPM dynamic framework. With this option, the database

is not restricted to record dynamic data at a fixed discrete time interval, allowing

some flexibility in the identification of stiff systems.

This discussion has centered the attention on the different challenges that a data-

driven approach faces in the identification of dynamic systems. Most of the issues

discussed here are not related with a particular empirical model, rather they are

general and they should always be considered in data-driven dynamic models. The

main conclusion from this chapter is that, without a good dataset to characterize

the system dynamics, any empirical model will suffer of all these problems. Ulti-

mately, the improvement of the dynamic recursive framework comes from improving

101

the experimental design on the one-step-ahead prediction.

102

CHAPTER V

RECURSIVE DYNAMIC FRAMEWORK USING

MULTIVARIATE GAUSSIAN PROCESS MODELS FOR

STOCHASTIC SIMULATIONS

The goal of this thesis is to implement a data-driven empirical model to describe

the dynamics of stochastic systems, with the purpose of reducing the computational

cost in expensive dynamic simulations. Chapter 2 provides all the tools required

to build up such data-driven approach using the Gaussian process model. Chapter 3

describes the effect that stochastic data have on a Gaussian process model and defines

the limitations of the model regarding noise and statistical identification of local

correlations. Chapter 4 explains the challenges that a Gaussian process model faces

when it is implemented as a recursive mapping function for dynamic predictions, and

its consequences in the propagation of predicted errors. With these tools and lessons

learned, Chapter 5 expands the implementation of Gaussian process models to predict

the dynamics of systems with more than one state variable. This chapter offers a more

practical description of the dynamic implementation of Gaussian process models than

Chapter 4. This chapter not only explains the dynamic prediction of multiple state

variables with Gaussian process models, but also describes the preliminary steps

in the identification of the state space and the dataset construction for the model.

For this purpose, a mathematical model describing the dynamics of a non-adiabatic

continuous stirred tank reactor (CSTR) with a cooling jacket [144] is used as a case

study. The reasons to selected this particular chemical process system are:

1. It is a simple deterministic mathematical model, common in the field of chemical

engineering, with a well studied dynamic behavior, including multiple stable and

103

unstable steady states.

2. It is small enough for a complete implementation and interpretation of all ele-

ments in the dynamic framework for Gaussian process models.

3. It allows for a precise control of the additive noise in the deterministic sim-

ulations, compared to a more complex simulation like a kinetic Monte Carlo

simulation.

This chapter begins with a mathematical background section explaining the construc-

tion of cross-covariance functions for multivariate Gaussian process models (mGPM),

and the error estimation analysis for predictions made by a multivariate Gaussian

process model, based on the one-dimensional error estimation analysis in Chapter

3. Then, this chapter follows with a brief introduction of the non-adiabatic continu-

ous stirred tank reactor as a case study, and a step-by-step description to construct

datasets for the mGPM based on pre-collected dynamic trajectories. To conclude,

this chapter analyzes and discusses the implementation of mGPM and its error es-

timation analysis for the case study, providing conclusions on how Gaussian process

models could be used for complex simulations with multiple state variables.

5.1 Background

5.1.1 Implementing mGPM for dynamic systems modeling

Section 2.6 presented a brief description of multivariate Gaussian process models.

In that section, mGPM is shown as a generalized version of GPM, where the local

correlation is enhanced by using additional information or observations from other

variables that can be correlated simultaneously. This simultaneous local correlation

between the residuals of two or more variables is made possible by the cross-covariance

function kij (xa,xb). Here in this chapter, this background section describes the con-

struction of cross-covariance functions using the linear coregionalization model [45],

104

the implementation and parameter estimation of the linear coregionalization model

for mGPM, and the usage of mGPM as a recursive mapping function to generate

multivariate dynamic predictions.

Consider a set D of n input/output pairs {xi,y (xi)}, where xi ∈ R
d , y (xi) ∈ R

m,

i = 1 . . . n. For simplicity, assume that m = 2 and d = 2. The regression covariance

matrix V of a multivariate Gaussian process model corresponds to

V ∈ R
2n×2n =







V11 V12

V21 V22






(118)

where V11 ∈ R
n×n and V22 ∈ R

n×n are the regression covariance matrices that locally

correlate the residuals within the same variable, and V12 ∈ R
n×n, V12 = V21 is the

regression cross-covariance matrix that locally correlates the residuals between differ-

ent variables. Generally, to define the mGPM regression covariance matrix V , m(m+1)
2

covariance and cross-covariance matrices are needed, where m is the number of vari-

ables to be predicted. At first glance, all covariance and cross-covariance matrices

could be modeled similarly as it has been done throughout this thesis work. In the

case of using a Gaussian correlation function, Equation (9), the regression covariance

and cross-covariance matrices V11, V22 and V12 could be modeled as

V11,ij = σ2
u,11δij + σ2

c,11 exp

[

−1

2

d
∑

a=1

(xi,a − xj,a)
2

ℓ2a,11

]

(119)

V22,ij = σ2
u,22δij + σ2

c,22 exp

[

−1

2

d
∑

a=1

(xi,a − xj,a)
2

ℓ2a,22

]

(120)

V12,ij = σ2
u,12δij + σ2

c,12 exp

[

−1

2

d
∑

a=1

(xi,a − xj,a)
2

ℓ2a,12

]

(121)

where i, j = 1, . . . , n, δij is the Kronecker’s delta, and θ11, θ22, θ12 are the GPM

parameter sets in each of the correlation functions of the regression covariance and

cross-covariance matrices in Equations (119)–(121) . For a mGPM, all parameters

should be estimated simultaneously using, for example, a maximum likelihood esti-

mator.

105

By inspecting the mGPM predictive distribution in Equations (89)–(98), the esti-

mation of the mGPM parameter set must satisfy the positive semidefinite condition in

the regression covariance matrix V . This condition guarantees that V can be inverted

during the prediction of mGPM. At the end, the inversion of V is associated with the

values of the estimated mGPM parameters and the mathematical structure of covari-

ance and cross-covariance matrices. In the way Equations (119)–(121) are written, it

is very challenging to describe a set of constraints on the mGPM parameters such that

the inversion of V is guaranteed. This estimation problem is even harder when one

of the variables already has a GPM parameter set, and other variables become avail-

able as additional information for local correlation. As a result of these challenges,

research in geostatistics have been focusing on alternative mathematical formulations

to model the parameters in the covariance and cross-covariances matrices.

A linear coregionalization model (LCM) is a simple approach to model covari-

ance and cross-covariance matrices simultaneously in mGPM. The key assumption of

the LCM is that all of the variables can be modeled with the same local correlation

features acting additively at different spatial scales [45]. This assumption means, in

practical terms, that all covariance and cross-covariances matrices will have the same

correlation functions, but they will be weighted differently in each of the matrices.

The weights in each of the matrices correspond to the estimated values of the corre-

lated and uncorrelated variance parameters
(

σ2
u,ij , σ

2
c,ij

)

. For example, in the case of

Equations (119)–(121), an LCM will look like

V11,ij = σ2
u,11δij + σ2

c,11 exp

[

−1

2

d
∑

a=1

(xi,a − xj,a)
2

ℓ2a

]

(122)

V22,ij = σ2
u,22δij + σ2

c,22 exp

[

−1

2

d
∑

a=1

(xi,a − xj,a)
2

ℓ2a

]

(123)

V12,ij = σ2
u,12δij + σ2

c,12 exp

[

−1

2

d
∑

a=1

(xi,a − xj,a)
2

ℓ2a

]

(124)

106

where θ =
[

ℓ1, ℓ2, σ
2
u,11, σ

2
u,22, σ

2
u,12, σ

2
c,11, σ

2
c,22, σ

2
c,12

]

corresponds to the mGPM param-

eter set when d = 2 and m = 2. Notice in Equations (122)–(124) that all the matrices

have the same range parameters ℓa, meaning that all of them have the same local cor-

relation features. Because of the additive characteristic of the LCM, a user could add

more local correlation functions to each of the matrices, weighted by their set of cor-

related variance parameters. By using the LCM in a mGPM, the positive semidefinite

condition of the regression covariance matrix V will depend on the estimated values

of the weights
(

σ2
u,ij , σ

2
c,ij

)

. To guarantee the inversion of the regression covariance

matrix V in the mGPM, the uncorrelated and correlated variance parameters must

satisfy the following constraints [109, 156]

σ2
u,ii σ

2
u,jj ≥

(

σ2
u,ij

)2
i, j = 1, . . . ,m (125)

σ2
c,ii σ

2
c,jj ≥

(

σ2
c,ij

)2
i, j = 1, . . . ,m (126)

where m is the number of variables to be predicted by the mGPM. These constraints

guarantees that V in Equation(118) is invertible.

Once a particular set of correlation functions have been selected to model the

covariance and cross-covariance matrices, an LCM can be used to model the regression

covariance matrix V in Equation (118). The parameter estimation of a mGPM can be

written as a nonlinear constrained optimization problem, using the likelihood function

in Equation (21). For the particular case of an LCM defined by Equations (122)–(124),

the mGPM parameter estimation of normalized input/output information using the

107

likelihood function is made as follows

min
θ

[− lnL (θ|D)]

− lnL (θ|D) =
n

2
ln (2π) +

1

2
ln (|V |) + 1

2
(y −Hβ)T V −1 (y −Hβ)

subject to

β (θ) =
(

HTV −1H
)−1

HTV −1y

σ2
u,ii σ

2
u,jj ≥

(

σ2
u,ij

)2
i, j = 1, 2 (127)

σ2
c,ii σ

2
c,jj ≥

(

σ2
c,ij

)2
i, j = 1, 2

1× 10−9 ≤ σ2
u,ii, σ

2
c,ii ≤ 1× 10−1 i = 1, 2

− 1× 10−1 ≤ σ2
u,ij , σ

2
c,ij ≤ 1× 10−1 i 6= j, i, j = 1, 2

1× 10−3 ≤ ℓi ≤ 1 i = 1, 2

where θ =
[

ℓ1, ℓ2, σ
2
u,11, σ

2
u,22, σ

2
u,12, σ

2
c,11, σ

2
c,22, σ

2
c,12

]

, and y, H and V are defined by

Equations (92), (93) and (98) respectively. The upper and lower bounds of the mGPM

parameters in Equation (127) correspond to the case where the observations y have

been scaled previously, as it was done in Section 3.3.2. This is done to avoid potential

numerical problems regarding the different orders of magnitude between the predicted

variables.

Similar to the GPM in Chapter 4, mGPM can be used as a recursive mapping

function to describe system dynamics. The mGPM multivariate predictive distribu-

tion in Equation (89) can be used to map information from the current vector state

x(s) at the discrete time step s, to the next vector state x(s+ 1). According to this

description, a one-step-ahead predictive distribution using mGPM can be written as

(x(s+ 1)|x(s),D) ∼ N (x̂(s+ 1), S) (128)

x̂(s+ 1) = ŷ (x̂(s),D) (129)

S = Σ2
y (x̂(s),D) (130)

108

where ŷ (x(s),D) and Σ2
y (x(s),D) are defined by Equations (90) and (91) respectively.

Previously in Chapter 2, Equations (53) – (55) presented a simpler implementation

of GPM for multivariate dynamic predictions,

(x(s+ 1)|x(s),D) ∼ N (x̂(s+ 1), S)

x̂i(s+ 1) = ŷi(x̂(s),D) i = 1, . . . ,m

Sij =























σ2
y,i (x̂(s),D) if i = j, i, j = 1, . . . m

0 if i 6= j

based on the independent construction of m GPMs, one for each of the predicted

state variables. Hernandez et al. [56] used this simpler implementation of GPM for

stochastic dynamic predictions, but it has not been compared against the mGPM

dynamic implementation.

5.1.2 Error estimation framework for multivariate Gaussian process mod-
els

In previous chapters, the error estimation properties of GPM have been described

and analyzed for two scenarios. Chapter 3 discusses how the GPM error estimation

properties respond when stochastic observations are used in the datasetD. In Chapter

4, the error estimation properties of GPM are applied to the field of dynamic systems

modeling, to address the challenge of estimating the propagation of error in recursive

mapping functions. This chapter concludes the implementation of the GPM error

estimation properties, by expanding their interpretation to multivariate stochastic

dynamic predictions based on the mGPM predictive distribution.

To build up the error estimation properties of a mGPM, it is necessary to define the

multivariate prediction error distribution of the model. The mGPM prediction error

distribution and its error estimation analysis, are made following the same concepts

for the GPM prediction error distribution back in Chapter 3. As a reminder, the

109

GPM prediction error δ(x) is the difference between the GPM mean prediction ŷ(x)

and the true value of the function ytr(x)

δ(x) = ytr(x)− ŷ(x)

Consider the prediction made by a mGPM predictive distribution in Equations (89)–

(91). By analogy with the definition of δ(x), the mGPM mean prediction error

δ(x) ∈ R
m is defined as

δ(x) = ytr(x)− ŷ(x) (131)

In the one-dimensional case, δ(x) is defined as a prediction error between the GPM

mean prediction and the true value of the function. However, due to the uncertainties

associated with the observations in the dataset D, such as sample points locations

and stochastic observations, the GPM mean prediction ŷ(x) is treated as a random

variable, therefore δ(x) is also treated as a random variable. In Chapter 3, the error

estimation analysis characterized the GPM prediction error distribution using the

GPM prediction variance σ2
y(x). Using σ2

y(x), it was possible to estimate the variance

of the predicted error, under the assumption that the GPM prediction error distribu-

tion follows a Gaussian distribution. Using the same principle, the mGPM prediction

covariance Σ2
y(x) can be used to described the uncertainty in the multivariate mGPM

prediction error distribution of δ(x).

Since δ(x) is a vector of predicted errors in each of the m predicted variables, the

mGPM prediction error distribution is modeled as a multivariate Gaussian distribu-

tion

δ(x) ∼ N (0, D(x)) (132)

where 0 is the mean of the multivariate Gaussian distribution based on the unbiased

constraint of the mGPM, and D ∈ R
m×m is the covariance matrix of the multivariate

distribution. The uncertainty in the mGPM prediction error distribution is described

by the covariance matrix D. By analogy with the one-dimensional error analysis

110

for GPM, the covariance matrix D(x) should be similar to the mGPM prediction

covariance matrix Σ2
y(x). To establish an error estimation analysis for mGPM, it is

necessary to compare how similar these two matrices are. The comparison between

the matrices must be easy to understand, and it has to account all the elements in

them. A simpler approach could be to compare diagonal elements in both matrices,

one by one, as if they were independent one-dimensional GPMs, but it would not

consider the effects of cross-covariance matrices on the off diagonal terms in each of

the matrices.

The determinant of a covariance matrix is frequently used as a metric to character-

ize information of multivariate distributions. In the case of the multivariate Gaussian

distribution, the determinant of the covariance matrix is part of the normalization

constant of the probability density distribution. The determinant of a covariance

matrix has also served as an indicator of uncertainty for parameter estimation, as

it is the case of D-optimal designs, where maximizing the determinant of the design

matrix implies minimizing the covariance of the parameter estimates [19]. In addition

to these aspects, the mathematical computation of a determinant considers all ele-

ments in the covariance matrix. Based on these ideas, the error estimation analysis

of the mGPM will be based on the comparison between |D(x)|, the determinant of

the mGPM prediction error distribution, and
∣

∣Σ2
y(x)

∣

∣, the determinant of the mGPM

prediction covariance matrix. This means that these two matrices are similar if their

determinants are also similar.

By using a scalar like the determinant of a covariance matrix, it is possible to

make error estimation plots like in Chapter 4, for multivariate stochastic dynamic

predictions. Based on the recursive mapping description on Equations (128) – (130),

the error estimation analysis for mGPM at different discrete time steps compares

|D (x(s))| and |S (x(s))|. Figure 27 is a brief description of how the error estimation

analysis for mGPM is made, based on |D| and |S|. Figure 27a shows a scatter

111

plot made from δ(x) prediction error vectors of 790 different test sample points.

The mGPM prediction error vectors are estimated at each test sample point, using

10 different mGPM models built from different datasets of stochastic observations.

The noise level in the stochastic observations is σ2
n = 1 × 10−8. Figure 27a shows

a strong negative linear correlation between the prediction error of the normalized

concentration, and the prediction error of the normalized temperature for the case

study in this chapter. The implementation of mGPM in this case study, not only

considers the identification of this negative correlation, but also its effect in the error

estimation analysis via |S|.

Each of the prediction error vectors has a mGPM prediction covariance S (x) as-

sociated with its prediction. Figure 27b shows on a color bar the different magnitudes

of log10|S| for each of the prediction error vectors. Notice that prediction error vectors

which are closer to the origin have smaller values of |S|. This means that accurate

mGPM predictions have smaller |S|.

The next step to characterize the multivariate prediction error distribution is to

sort all the prediction error vectors in ascending order, according to their |S| values.

The sorted list of 7900 prediction error vectors is then divided into groups with 790

prediction error elements each. Figure 27c shows a scatter plot of prediction error

vectors for one of these groups. The assumption in the error estimation analysis is

that mGPM predictions with similar |S| covariance matrix, will also have a similar

|D| prediction error covariance matrix. Therefore the prediction errors in each of

these groups can be used altogether to estimate D, regardless of the location of the

sample points where the prediction was obtained. In this sense, each group repre-

sent different levels of uncertainty and/or accuracy in the mGPM prediction. To

characterized the multivariate δ prediction error distribution in each group, a mul-

tivariate Gaussian distribution is fitted using all the prediction error vectors in each

group. The estimated mean of the multivariate Gaussian distribution represents, on

112

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Prediction Error − Normalized Concentration

P
re

di
ct

io
n

E
rr

or
 −

 N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

(a)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Prediction Error − Normalized Concentration

P
re

di
ct

io
n

E
rr

or
 −

 N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

−18

−16

−14

−12

−10

−8

−6

−4

(b)

−3 −2 −1 0 1 2 3

x 10
−4

−3

−2

−1

0

1

2

3
x 10

−4

Prediction Error − Normalized Concentration

P
re

di
ct

io
n

E
rr

or
 −

 N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

(c)

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

E
st

im
at

ed
 |D

| −
 δ(

x)

(d)

Figure 27: Error estimation analysis for multivariate Gaussian process models. Case
study: Non-adiabatic CSTR (Section 5.2). (a) Scatter plots of prediction errors in
a multivariate GPM. (b) Ranking of prediction errors. The color bar represents the
magnitude of log10 (|S|) in each of the predictions made by the mGPM. (c) Estimation
of multivariate Gaussian distributions for a set of prediction error vectors according
to their log10 (|S|). The ellipses represent automatic contour levels of the estimated
multivariate δ(x) Gaussian distribution. (d) Comparison between the estimated |D|
of the multivariate Gaussian distribution, and the average |S| in each of the sets of
prediction error vectors.

average, the mGPM mean prediction error in the group, and the estimated covari-

ance matrix represents an approximation to the covariance matrix of the multivariate

mGPM prediction error distribution D. As an example, the estimated multivariate

113

δ(x) Gaussian distribution for the prediction error vectors in Figure 27c is

δ ∼ N













0.1251× 10−4

−0.1710× 10−4






,







0.1025× 10−7 −0.0349× 10−7

−0.0349× 10−7 0.0473× 10−7













Finally, the error estimation analysis of mGPM concludes with the comparison

between the determinant of the estimated covariance matrix in each of the groups,

against the average value of |S| in each group. Figure 27d shows an example of this

comparison. The closer this line is to the 1:1 line in the figure, the mGPM has better

chances to estimate its prediction error. To provide some context of this comparison,

the mGPM predicted covariance matrix S of one of the test points in Figure 27c is

S =







0.1377× 10−7 −0.0193× 10−7

−0.0193× 10−7 0.0243× 10−7







which is close to the estimated covariance matrix in δ. This whole procedure can be

repeated with a larger number of mGPM, at different noise levels in the stochastic

observations, and at different discrete time step, for a complete error estimation

analysis of mGPM in dynamic predictions.

5.2 Case study for dynamic GPM prediction of multiple

variables: Non-adiabatic CSTR

The GPM dynamic framework described in Section 2.5 is applied to the dynamics of

a non-adiabatic continuous stirred tank reactor. Figure 28 shows a schematic of the

CSTR with a cooling system that removes the heat generated from the reaction.

The CSTR system shown in Figure 28 illustrates the dynamics of a first-order

reaction inside the reactor. The process is defined by a system of differential equations,

114

,C T

, ,C T q
V

c
T

,
f

T q,
f

C

Figure 28: A continuous stirred tank reactor with cooling system

based on mass and energy balances around the reactor [144].

V
dC

dt
= q (Cf − C)− V f(C, T) (133)

V Cpρ
dT

dt
= qCpρ(Tf − T)− UA(T − Tc) + (−∆H)V f(C, T) (134)

f(C, T) = k0Cexp

[−E

RgT

]

(135)

0 ≤ t ≤ tf tf = 500 s

C = C0, T = T0 at t = 0

where C is the reactant concentration in [mol/m3], T is the reactor temperature in

Kelvin [K], t is time in seconds [s] and f(C, T) is the reaction rate in
[

mol
m3 s

]

. The

remaining variables in Equations (133)–(135) represent physical properties of the

reactants and design settings of the CSTR. These parameters are summarized and

described in Table 4.

Using different combinations of the values in the Table 4, different dynamic behav-

iors can be observed, particularly in the number of steady states and their stability.

In addition to Equations (133)–(135), a set of initial values of C0, T0 is also specified.

The set of initial values for [C0, T0] is defined as:

0
mol

m3
≤ C0 ≤ 8000

mol

m3
300 K ≤ T0 ≤ 450 K (136)

115

Table 4: Summary of physical properties and design settings used in the non-adiabatic
CSTR case study.

Variable Description Units Value

Cf Feed concentration mol/m3 8000
Tf Feed temperature K 300
A Heat transfer area m2 0.1
Cp Heat capacity of reaction mixture J/ (kg K) 4181.3
q Volumetric flow rate m3/s 1
Tc Coolant temperature K 300
U Heat transfer coefficient J/ (m2 s K) 2.5× 106

V Reactor volume m3 60
∆H Heat of reaction J/mol -70000
ρ Density of reaction mixture kg/m3 1000
k0 Pre-exponential in Arrhenius equation 1/s 2.5× 105

E Activation energy J/mol -50000
Rg Universal gas constant J/ (mol K) 8.314

5.2.1 Collecting dynamic trajectories

The construction of the GPM dynamic framework starts with an exploration step to

delineate the sampling region used to build the empirical model. The exploration

of the dynamic region is made by selecting a potential set of initial conditions and

running dynamic trajectories from each of them. These dynamic trajectories describe

the reachable area of the system dynamics of interest. The description of the reachable

area has direct implications for the GPM, since this area is the input space used by

the GPM for its dynamic prediction. To simplify the description, the set of initial

conditions is called the initial sample region and the reachable dynamic area is called

the dynamic region. Figure 29a is a graphical representation of these two concepts.

For the case study described here, the initial region is defined by the set of initial

conditions in Equation (136).

The objective with the GPM dynamic framework is to provide a good prediction

of any dynamic trajectory that starts in the initial sample region. In some specific ap-

plications like process control, the interest could be the approximation of a particular

116

Initial
Sample
Region

Dynamic Region

Training Trajectory

(a)

∆() =t
Data density and shape

of dynamic region

Initial
Sample
Region

Dynamic Region

Database from Trajectories

(b)

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

500

550

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

Dynamic Trajectories
Initial Sample Region
Dynamic Region

(c) n = 520 points

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

500

550

600

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

Dynamic Trajectories
Initial Sample Region
Dynamic Region

(d) n = 5020 points

Figure 29: Collecting dynamic trajectories for GPM dynamic framework. (a) Repre-
sentation of the initial and dynamic region concepts. (b) Relationship between the
sampling time ∆t and the dynamic region. Figures (c) and (d) shows the initial and
dynamic regions for the non-adiabatic CSTR case study using 20 dynamic trajectories
and sampling times of ∆t = 20 s and ∆t = 2 s respectively. The description of the
initial sample region is defined by Equation (136).

dynamic trajectory to be tracked, but here the aim with the dynamic implementation

of GPM is a complete identification and prediction over the reachable region from the

initial sample region. Therefore, the description of the dynamic region depends on

117

how well explored the initial sample region is. For this case study, where the initial

sample region is square, a space-filling Latin Hypercube design is used to explore the

region and to select a finite number of dynamic trajectories. In addition to 16 interior

points from the Latin Hypercube design, 4 additional dynamic trajectories are added

at the corners of the region to ensure sampling at the boundaries. This yields a total

of 20 dynamic trajectories.

There are two additional elements that have an effect on the dynamic region (see

Figure 29b). One is the final time of the dynamic trajectory tf , and it is important

because it defines the boundaries of the dynamic area. However, for this particular

case study, the final time has been selected long enough so the dynamic trajectories

could reach the steady states. The sampling rate ∆t is associated with the shape and

data density of the information inside the dynamic region. A shorter ∆t means a

larger number of points in the dynamic trajectory, providing more information to be

used in the GPM. Figures 29c and 29d show the effects of different values of ∆t on the

dynamic region in the case study, for a final time tf = 500 s. To visualize the changes

in the shape of the dynamic regions as a function of the sampling rate, convex hulls

are drawn to enveloped all 20 dynamic trajectories. Using these convex hulls, it is

easier to see the change in the shape of the dynamic regions near T = 550 K. It is

also easy to see the significant difference in data density by decreasing the sampling

rate from ∆t = 20 s to ∆t = 2 s.

5.2.2 Creation of a database for Gaussian process models

Due to the known problems that GPM faces with a large number of sample points, a

sparsification procedure is implemented to reduce the number of sample points in the

model. If many points are included that are highly correlated, the covariance matrix

will be ill-conditioned, and the redundant points will provide little new information.

The sparsification is made not only to reduce of the number of sample points, but

118

also to preserve the coverage of the information in the dynamic region. To achieve

this task, the sample points from the dynamic trajectories are clustered based on a

square lattice grid of size ∆g in all dimensions of the input space. Then, from each of

the occupied lattice sites, one sample point is chosen to be included in the database D

used in the GPM. When two or more sample points are found in an occupied lattice

site, the selected sample point is the one closer to the centroid of all sample points

in the lattice. Figure 30 shows the implementation of the described sparsification

approach for the case study.

() =g∆
Coverage and
local resolution

Initial
Sample
Region

Dynamic Region

Database from Trajectories

()g∆

()g∆

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Concentration

N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

(b) n = 43 points

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Concentration

N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

(c) n = 70 points

Figure 30: Sparsification to create a database of dynamic information. (a) Represen-
tation of the sparsification procedure. Figures (b) and (c) shows the implementation
of the sparsification on 20 dynamic trajectories collected at ∆t = 20 s, using as grid
sizes ∆g = 0.1 and ∆g = 0.05 respectively.

In order to implement a unique ∆g grid size value over the dynamic trajectories, a

119

scaling procedure was performed over the collected data. The scaling is similar to the

one used in Section 3.3.1, making all collected information be between 0 and 1. The

scaling is also important to reduce effects of orders of magnitude between the different

predicted variables in the framework. After rescaling and sparsification, all selected

sample points are collected as input points xi for the GPM, and their corresponding

scaled one-step-ahead predictions xi(s + 1) are the output information yi in the set

D. For the non-adiabatic continuous stirred tank reactor case study, xi ∈ R
2 and

yi ∈ R
2, such that d = 2 and m = 2.

5.3 Analysis of a GPM dynamic framework under stochas-

tic simulations

This section describes the analysis used to test the GPM dynamic framework when

stochastic simulations are included in the set D. To do this analysis the scaled

output information yi is corrupted with a white constant noise N (0, σ2
n) to both the

scaled concentration and scaled temperature data at different noise levels σ2
n. This

manipulation will test the robustness of the GPM dynamic model to predict the mean

response of the system using noisy information. Following the signal-to-noise ratio

of 1 × 10−1 recommended for the implementation of GPM models in Chapter 3, the

evaluated noise levels are:

σ2
n =

{

1× 10−8, 1× 10−6, 4× 10−6, 2.5× 10−5,

1× 10−4, 4× 10−4, 2.5× 10−3, 1× 10−2
}

(137)

The analysis of the GPM dynamic framework is constructed as follows: 20 dynamic

trajectories are selected over the initial sample region as described in Section 5.2.1.

The dynamic trajectories are collected over a time frame tf = 500 s using ∆t =

20 s as a sampling rate. The set of dynamic trajectories are scaled and sparsified

using the procedures in Section 5.2.2 with a constant grid size ∆g = 0.05. To the

scaled output information in D, a white noise normally distributed zero-mean random

120

number with variance σ2
n is added, using the values in Equation (137) to create the

stochastic simulations for the GPM dynamic framework. Similar to the second-order

reaction model in Chapter 4, the scaling of the input and output information uses

the same constant values, since they belong to the same dynamic region. Also, to

prevent negative concentrations in the dataset, a consistency check was added in the

generation of data, like the one used in the second-order reaction model in Chapter

4.

Based on the input-output information in the set D, and the mathematical back-

ground explained in Section 5.1.1, a GPM dynamic model can be written in two

different ways. One of the approaches builds the multivariate dynamic model based

on m GPMs, one for each of the m predicted variables. For now on, this approach

is refer as independent GPMs or just iGPM. A iGPM approach to approximate the

dynamics of the non-adiabatic CSTR system in Section 5.2, is described as:

x̂(s) = [x̂C(s), x̂T(s)]

(x(s+ 1)|x(s),D) ∼ N (x̂(s+ 1), S)

x̂(s+ 1) =







x̂C(s+ 1)

x̂T(s+ 1)






=







ŷC (x̂(s),D)

ŷT (x̂(s),D)






(138)

S =







σ2
y,CC

(x̂(s),D) 0

0 σ2
y,TT

(x̂(s),D)







s = 0, 1, . . . , ns

t = s∆t

where the subscripts C, T correspond to the predicted normalized concentration and

normalized temperature by independent GPM predictive distributions in Equation

(15), and ns is the total number of discrete time steps required for the prediction of

a dynamic trajectory. Based on the ratio between the final time tf = 500 s and the

sampling rate ∆t = 20 s used in the database D, ns =
tf
∆t

= 25.

121

The second approach is using the mGPM as a recursive mapping function to de-

scribe the dynamics of the non-adiabatic CSTR in the case study. Based on Equations

(128)–(130), this GPM dynamic implementation is as follows

x̂(s) = [x̂C(s), x̂T(s)]

(x(s+ 1)|x(s),D) ∼ N (x̂(s+ 1), S)

x̂(s+ 1) =







x̂C(s+ 1)

x̂T(s+ 1)






= ŷ (x̂(s),D) (139)

S =







σ2
y,CC

(x̂(s),D) σ2
y,CT

(x̂(s),D)

σ2
y,TC

(x̂(s),D) σ2
y,TT

(x̂(s),D)






= Σ2

y (x̂(s),D)

s = 0, 1, . . . , ns

t = s∆t

Figure 31 is a graphical representation of the dynamic prediction made by either of

the GPM dynamic frameworks. Each of the GPMs in the iGPM uses a Gaussian

correlation function in Equation (9) to describe the local correlation in each variable,

whereas the mGPM uses the LCM in Equations (122)–(124). The parameter estima-

tion methodology for both of the GPM dynamic frameworks is a maximum likelihood

estimator (MLE). In the case of the iGPM, m MLE constrained optimizations are

computed to complete the parameter estimation of the model, compared to a single

MLE constrained optimization for mGPM. Despite the differences between iGPM and

mGPM for this case study, both of them have the same number of GPM parameters

to be estimated.

The analysis section of this chapter begins with a discussion regarding the use of

regression functions in GPM. Up to this point, the selection of regression functions

have been left out of the examples, limiting all GPM implementations to used the

constant regression function h = 1. Here this additional factor is included as part

of the dynamic implementation of GPM. The performance of the constant regression

122

GPM Predicted Path

Initial
Sample
Region

Dynamic Region

Training Set (D)

Local Correlations

() (1)s s→ +x x

Figure 31: Graphical representation of the GPM dynamic framework.

function is compared against two polynomial subsets of regression functions. The

polynomial subsets used as regression functions h(x) are:

Linear regression function

h(x) = [1, xC, xT] (140)

Quadratic regression function

h(x) =
[

1, xC, xT, xCxT, x
2
C
, x2

T

]

(141)

The analysis of regression functions is made using the iGPM dynamic implemen-

tation in Equation (138). For this analysis, both GPMs use the same regression

function, excluding the possibility of a GPM using a constant regression function and

the other GPM using a quadratic regression function. However, since the constant

regression function is a special case of the quadratic regression functions, this is not

particularly restrictive. Table 5 summarizes the 24 different combinations, between

the noise level in the observations and regression functions, that are evaluated in the

analysis of the regression functions. To ensure a robust analysis of the regression

functions, each of the 24 combinations is repeated 1000 times, each time with a dif-

ferent experimental design of 20 dynamic trajectories drawn from the initial sample

region.

The analysis discusses the effect of regression functions in the estimated param-

eters of the iGPM, and on the iGPM dynamic predictions. The accuracy of the

123

Table 5: Analysis of regression functions for the non-adiabatic CSTR case study,
using a iGPM dynamic implementation.

Analysis Topic Description

Noise levels σ2
n Eight different values, Equation (137)

Regression functions h(x) Constant, Linear, Quadratic

iGPM is measured by comparing its dynamic prediction with the numerical solution

of the ODE model in Equations (133)–(135). As it was with the one-dimensional case

study in Chapter 4, LEM (Equation (110)) and DEM (Equation (111)) are used to

quantify the error in the predictions. The test dataset used to evaluate the LEM

across the dynamic region is generated from ndyn = 200 dynamic trajectories starting

in the initial sample region, Equation (136), whose data has been normalized and

sparsified using a value of ∆g = 0.01. These trajectories were selected using a Latin

hypercube design. Each of these dynamic trajectories is recorded with ∆t = 20 s and

tf = 500 s. After the sparsification, the test dataset for LEM has 783 sample points,

and the reported LEM value is the average LEM over these test points. The test

dataset used to compute the DEM uses the same ndyn = 200 dynamic trajectories

that were previously used for the LEM test dataset. For each initial value x0 in the

test dataset, a dynamic trajectory is computed using the ODE system of equations

and then compared with its iGPM dynamic trajectory prediction. The final reported

DEM value is the average prediction error over all ns discrete time steps in a trajec-

tory, and over all 200 dynamic trajectories. Remember that all these computations

are repeated 1000 times, for each of the 24 combinations of noise level and regression

functions in Table 5. The goal with this analysis of regression functions is to under-

stand the role of the regression functions, for selection in future implementations of

the GPM dynamic framework.

Once a regression function has been selected for the iGPM dynamic framework,

based on the results of the previous analysis, the error estimation methodology de-

scribed in Section 5.1.2 is performed. The prediction error vectors used in this iGPM

124

error estimation analysis are the ones that previously were used in the analysis of

regression functions. For example, in the case of a noise level σ2
n = 1 × 10−8, there

are 783 × 1000 prediction error vectors that can be used to describe the error esti-

mation properties of the iGPM, for a one-step-ahead prediction. Similarly, at each

discrete time step s, there are 200× 1000 prediction error vectors that can be used to

describe the error estimation and propagation of error in the iGPM dynamic frame-

work. Section 5.4.3 in this chapter is the comparison between GPM implementations

for multivariate dynamic predictions. Using the selected regression function from

the analysis, a mGPM dynamic framework in Equation (139) is built. Then, the

entire study that was described in the previous paragraphs for the iGPM dynamic

framework is repeated for the mGPM dynamic framework. These research studies

will allow a comparison between iGPM and mGPM dynamic frameworks, including

analysis of the estimated parameters for both models, LEM and DEM calculations

for mean prediction, and the error estimation analysis in Section 5.1.2.

5.4 Results

5.4.1 Effects of regression functions in the iGPM dynamic framework

5.4.1.1 Identification of GPM parameters in dynamic systems modeling

Chapter 3 described the difficulties that the maximum likelihood estimator has in the

estimation of GPM parameters. The identification of local correlations in a dataset

is associated with n, the number of sample points used in the model. More sample

points spread out in the sampling space makes the identification of local correlation

easier. In addition to the total number of sample points, Chapter 3 shows how

repetitions are helpful to characterize the additive noise in the simulations using the

estimated σ2
u. Because of these aspects, the decision of using a constant ∆g in the

sparsification has significant consequences in the iGPM parameter estimation and

dynamic predictions. When a constant ∆g is used in the sparsification, the number

125

of sample points used in the iGPM dynamic framework does not change significantly

between different experimental designs of 20 dynamic trajectories from the initial

sample region. Additionally, any repetitions that have been captured in the database

of dynamic trajectories are neglected, due to the selection of only one data point per

square lattice location in the dynamic region. Therefore, it is necessary to analyze

how this sparsification alters the MLE parameter estimation and then, how these

parameters change when different regression functions are used in GPM.

Figure 32 shows the distribution of estimated GPM parameters using MLE over

1000 different experimental designs of 20 dynamic trajectories from the initial sample

region for one of the GPMs in the iGPM dynamic framework. For this case, the

GPM uses a constant regression function. Figures 32a and 32b show how the range

parameters of each input dimension in the GPM increase as the noise level in the

observation increases. Larger range parameters in a GPM mean that the residuals of

the underlying deterministic function are similar across the dynamic region. In this

particular case study, the presence of noise in the observations makes the residuals

of the underlying deterministic function look more similar to each other. Figure 32c

demonstrates that the MLE parameter estimation is capable of identifying the local

correlation in the iGPM in each of the evaluated noise levels.

The estimation of the uncorrelated variance parameter σ2
u deserves a separate dis-

cussion from the rest of the GPM parameters in this case study. Figure 33 shows the

estimation of σ2
u in the GPM that predicts the scaled concentration in the iGPM. Fig-

ures 33a is the distribution of estimated σ2
u over 1000 different experimental designs,

with 20 dynamic trajectories starting in the initial sample region and ∆g = 0.05.

This figure shows a clear estimation of the uncorrelated variance parameter, despite

the potential problems that the sparsification procedure could carry in the estimation

of this parameter. The reason for these estimation results is the particular sampling

scheme generated by the sparsification for this non-adiabatic CSTR case study. To

126

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

Range Parameter − Concentration

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(a)

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

700

800

900

Range Parameter − Temperature

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(b)

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
0

50

100

150

200

250

300

350

400

450

Correlated Variance Parameter − log
10

(σ2
c
)

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(c)

Figure 32: Distribution of estimated GPM parameters during the dynamic frame-
work. The estimated parameters corresponds to a GPM with a constant regression
function describing the normalized concentration. The distributions are built over
1000 different sets of 20 dynamic trajectories from the initial sample region, using
∆t = 20 s and ∆g = 0.05.

explain this, Figure 33b (copy of Figure 30c) shows one of the experimental designs

generated when ndyn = 20 and ∆g = 0.05. Notice how there is a higher data density

in the neighborhood of the two steady states of the system. Since all the dynamic

trajectories in the initial sample region are going to a steady state, it makes sense

that most of the square lattices around the steady states are filled with sample points.

Also, because of this behavior, the data density decreases as it moves away from any

of the steady states, then the regions from where the trajectories started are not sam-

pled as well. This is a trait of the dynamics in this case study, that has been capture

127

by the sparsification and the appropriate selection of ∆g.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
0

50

100

150

200

250

300

350

400

Uncorrelated Variance Parameter − log
10

(σ2
u
)

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Concentration

N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

(b) n = 70 points

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
0

50

100

150

200

250

300

350

400

Uncorrelated Variance Parameter − log
10

(σ2
u
)

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Concentration

N
or

m
al

iz
ed

 T
em

pe
ra

tu
re

(d) n = 65 points

Figure 33: Estimation of the uncorrelated variance parameter σ2
u in iGPM using a

constant regression function for the scaled concentration variable. Figures (a) and (b)
corresponds to the non-uniform data sampling scheme generated by ndyn = 20 and
∆g = 0.05. Figures (c) and (d) corresponds to the uniform data sampling scheme
generated by ndyn = 300 and ∆g = 0.11. The distributions were obtained by 1000
different experimental designs of the corresponding sampling scheme.

This non-uniform data sampling is going to play a major role during the analysis

and the discussion of this chapter, starting from its effects on the parameter esti-

mation. If there were replicates in the dataset D of the iGPM, those replicates will

appear on the regression covariance matrix V as a highly correlated pair of sample

points. Because of the sparsification and ∆g selection, some sample points are located

at shorter distances to each other than the estimated range parameters ℓi, resulting

128

in high local correlation entries in the regression covariance matrix V . Therefore,

the iGPM uses these highly correlated values as if they were replicates, leading to an

improved estimation of the uncorrelated variance parameter σ2
u.

To see how significant is the effect of the non-uniform data sampling on the pa-

rameter estimation, Figures 33c and 33d show an uniform sampling scheme that can

be obtained from the non-adiabatic CSTR case study. The uniform sampling scheme

is generated by simulating ndyn = 300 dynamic trajectories from the initial sample

region, with a sampling rate ∆t = 20 s and a grid spacing of ∆g = 0.11. A example

of this uniform sampling scheme for iGPM is shown in Figure 33d. On average the

non-uniform and uniform sampling schemes have the same number of sample points

in the iGPM —the only difference is the reorganization of the sample points over

the dynamic region. Using the configuration for the uniform sampling scheme, 1000

different experimental designs were generated to be used in a iGPM with constant

regression functions. Figure 33c shows the distribution of the estimated σ2
u for the

uniform sampling scheme from this repeated exercise. The uniform sampling scheme

is not able to properly estimate the low noise level in the observations. The noise

level in the observations is so small that the only way to perceive them is by having

repetitions, or “pseudo-replicates” of the sample information, a trait that this uni-

form sampling scheme does not have. As a result of that, the estimated σ2
u in the

uniform sampling scheme for low noise cases is much higher than the true noise level.

In contrast, the high noise levels are easily estimated because their presence in the

stochastic observations is evident, even for this sparser sampling scheme.

After the discussion between the non-uniform and uniform data sampling schemes,

the non-uniform data sampling scheme is used to analyze the estimated GPM param-

eters, when different regression functions are implemented in the iGPM. Similar to

the presentation in Figure 32, a distribution of estimated parameters can be created

when 1000 different experimental designs use either the linear or quadratic regression

129

function in the iGPM. Table 6 is a summary of the results of these distributions of

estimated parameters. The table collects the mean values of the estimated σ2
c and

σ2
u distributions at different noise levels and regression functions when ndyn = 20 and

∆g = 0.05. While the correlation functions explain the local correlation of the data

in the dataset D, the regression functions explain the global trends that can be found

in the dataset D. The prediction made by a GPM is a balance between these two

types of data correlation.

Table 6: Mean values of σ2
c and σ2

u distribution of GPM parameters during the dy-
namic framework for different regression functions. The estimated parameters cor-
responds to the GPM for the scaled concentration. The distributions are build over
1000 different sets of 20 dynamic trajectories from the initial sample region, using
∆t = 20 s and ∆g = 0.05.

Noise
Constant Linear Quadratic

log10σ
2
c log10σ

2
u log10σ

2
c log10σ

2
u log10σ

2
c log10σ

2
u

1.0× 10−8 -1.0025 -7.6475 -1.3674 -7.7475 -1.8198 -7.8189
1.0× 10−6 -1.0426 -5.8898 -1.3963 -5.9312 -1.8798 -5.9726
4.0× 10−6 -1.0485 -5.3311 -1.4013 -5.3557 -1.8974 -5.3996
2.5× 10−5 -1.0503 -4.5330 -1.4081 -4.5833 -1.9197 -4.6261
1.0× 10−4 -1.0375 -3.9444 -1.3978 -3.9818 -1.9321 -4.0307
4.0× 10−4 -1.0192 -3.3482 -1.3853 -3.3992 -1.9549 -3.5068
2.5× 10−3 -1.0004 -2.6106 -1.3966 -2.7398 -2.0530 -3.2068
1.0× 10−2 -1.0094 -2.1155 -1.4595 -2.5028 -2.2937 -3.8393

In Table 6, the two columns on the left represent the behavior of the constant

regression function, where the MLE offers a good estimation of the noise level in the

stochastic observations in σ2
u, as well as a good identification of the local correlation

in σ2
c . When the linear and quadratic regression functions are used in the iGPM, the

estimated value of σ2
c decreases at all noise levels in the stochastic observations. This

means that the regression functions explains part of the data variability that previ-

ously was associated to the local correlation. Table 6 also shows that the presence of

the linear and quadratic regression functions do not affect the identification of the low

noise levels with the uncorrelated variance parameter σ2
u. But, the correct estimation

130

of σ2
u at high noise levels is more difficult with the linear and quadratic regression

functions, than with the constant regression functions. A possible explanation is that

the regression functions are also explaining part of the data variability that should

be associated to the noise level in the observations. This situation may be solved

by increasing the number of sample points used in the iGPM, but here the analysis

focuses on accurate estimations with small sample sets.

5.4.1.2 Local and dynamic predictions of iGPM using different regression func-
tions

The comparison between the usage of the regression functions in iGPM will be eval-

uated using the local error measurement LEM and the dynamic error measurement

DEM . Before reaching a conclusion about this comparison, it is necessary to describe

how the non-uniform data sampling scheme, generated by using ndyn = 20 dynamic

trajectories and ∆g = 0.05, affects the LEM and DEM prediction errors. Figure 34

shows the average LEM values at different locations in the dynamic region over 1000

different experimental designs of the non-uniform data sampling scheme. All LEM

prediction errors were obtained with a iGPM using the constant regression function.

The figure shows the LEM values at two different noise levels in the stochastic obser-

vations. As a consequence of the non-uniform data sampling, the LEM are not evenly

distributed across the dynamic regions. The regions where the two steady states are

located are the regions with better prediction errors, due to the higher data density.

Areas with lower data density make larger LEM prediction errors. The non-uniform

LEM prediction errors becomes less significant as the noise level in the observations

increases, this is a reasonable consequence of using stochastic observations in the

predictions.

The non-uniform LEM prediction error across the dynamic region is associated

with the differences in the data density in the region. When the data density de-

creases, the LEM prediction error increases. Due to the dynamics of this case study,

131

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

500

550

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(a) σ2

n = 1× 10−8

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

500

550

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(b) σ2

n = 1× 10−2

Figure 34: Average LEM for different test sample points in the dynamic region. The
figures show the location of the test points in the dynamic region, and the color scale
represents the average value of log10(LEM) created by iGPM over 1000 different
sets of 20 dynamic trajectories from the initial sample region. The LEM values
were calculated for the GPM of the scaled concentration using a constant regression
function.

the regions with the lower data density correspond to regions visited by the dynamic

trajectories at earlier discrete time steps, and also to regions with larger LEM pre-

diction errors. This non-uniform sampling scheme has the potential of create large

propagation of errors due to the large errors at the beginning of the dynamic tra-

jectories. Similarly, because the data density increases in the direction of the steady

states, the iGPM dynamic predictions decrease the amount of propagated error over

the predicted dynamic trajectory. This behavior of the non-uniform data sampling

makes the prediction error of the first discrete time step to be exceptionally important

for the appropriate prediction of the system dynamics.

The local prediction errors shown in Figure 34 describe the performance of a

iGPM at specific locations in the dynamic region, but a user might be interested in

a single number that summarizes these pointwise values of LEM . An alternative to

do this is to average all the local average LEM values over the dynamic region. This

average number can be computed for each of the evaluated noise levels in the iGPM.

Moreover, it can be calculated for different iGPM implementations with different

132

regression functions. This analysis is made to compare the performance of the three

regression functions and is summarized in Table 7. Since the iGPM uses two different

GPMs in its implementation, the results in Table 7 are presented separately for both

the scaled concentration and the scaled temperature. There are not many surprises in

the LEM values as a function of the noise level in the observations. It is interesting

to notice that the prediction of the two GPMs used in the iGPM is quite similar,

despite the fact that they were build independently.

Table 7: Mean values of log10(LEM) over the test samples in the dynamic region
for each of the scaled variables predicted by the iGPM. The mean values have been
computed at different noise levels and for the three different types of regression func-
tions. The iGPM uses the non-uniform data sampling scheme with ndyn = 20 and
∆g = 0.05.

Noise
Concentration Temperature

Constant Linear Quadratic Constant Linear Quadratic

1.0× 10−8 -6.6077 -6.6482 -6.6747 -6.9417 -6.9850 -7.0163
1.0× 10−6 -5.7405 -5.7596 -5.7993 -5.9614 -5.9854 -6.0230
4.0× 10−6 -5.4039 -5.4223 -5.4549 -5.6159 -5.6441 -5.6761
2.5× 10−5 -4.9509 -4.9684 -4.9970 -5.1382 -5.1669 -5.1882
1.0× 10−4 -4.5904 -4.6121 -4.6298 -4.7714 -4.7783 -4.7967
4.0× 10−4 -4.2073 -4.2227 -4.2336 -4.3644 -4.3751 -4.3435
2.5× 10−3 -3.6781 -3.6764 -3.5790 -3.8071 -3.7700 -3.5703
1.0× 10−2 -3.2908 -3.2111 -2.9734 -3.4334 -3.1372 -3.1131

Table 7 shows that a more descriptive regression function does not necessarily

guarantee an improvement in the LEM prediction errors. In general, the prediction

of a GPM is a balance between the localized correlation of the data, and the global

trends captured in the regression functions. In this case study, using a more descrip-

tive regression function, like the linear or quadratic function, does not significantly

decrease the iGPM predictions. At low noise levels, the quadratic regression function

improves the LEM prediction error in 1% relative to the results obtained with the

constant regression function. It is interesting to contrast the behavior of the LEM at

low noise levels with the observed behavior at high noise levels. At high noise levels,

133

a iGPM with a constant regression function has lower LEM prediction errors than

a iGPM with a linear or quadratic regression functions. As an attempt to explain

this result, the results on Table 7 were repeated with an iGPM using more sample

points, generating the non-uniform data sampling with ndyn = 80 dynamic trajecto-

ries and ∆g = 0.05, but the LEM prediction errors exhibit the same behavior at high

noise. When the noise level in the observations increases, the identification of the lo-

cal correlation from the stochastic observations becomes more difficult, and the GPM

prediction will depend heavily on the selected regression function. Thus it is possible

that a high-noise levels, the linear and quadratic regression functions are enforcing a

global trend on the stochastic observations when in reality there might not be such

global behavior. The consequences of this situation are larger LEM prediction errors

over the dynamic region than the constant regression function.

The comparison between the three different regression functions concludes with

the performance of the iGPM dynamic predictions. Before making some final con-

clusions about the usage of regression functions, this section will describe the effects

of the non-uniform data sampling in the dynamic predictions made by the iGPM.

Figure 35 shows the average DEM prediction error of 200 dynamic trajectories start-

ing from the initial sample region. The average DEM are calculated over ns = 25

discrete time steps and 1000 different experimental designs using the non-uniform

data sampling ndyn = 20 and ∆g = 0.05. In Figure 35b, it is difficult to distinguish

any differences between the average DEM values in the initial sample region. Using

stochastic observations with a high noise level hinders the effects of the non-uniform

data sampling in the iGPM. In contrast, the effects of the non-uniform data sampling

are clearly observed in Figure 35a, where the noise level in the observations is lower.

Figure 35a shows two areas in the initial sample region where the DEM prediction

errors are significantly lower (upper left and lower right corners in Figure 35a). These

two regions of lower DEM prediction error are related with initial sample points that

134

are already close to the steady states in the system dynamics. But it is more impor-

tant to recognized that these two regions have different DEM prediction errors. The

upper left corner has DEM prediction errors around 1 × 10−6 and the lower right

corner has DEM prediction errors of 1 × 10−7. These differences in the DEM pre-

diction values around the steady states means that there are two data densities in the

non-uniform data sampling, represented by the dynamic trajectories going towards

each of the steady states.

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(a) σ2

n = 1× 10−8

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(b) σ2

n = 1× 10−2

Figure 35: Average DEM values for different dynamic trajectories in the initial sam-
ple region. The figures show the location of the initial values of the trajectories in the
initial sample region, and the color scale represents the average value of log10(DEM)
created by several iGPM over 1000 different sets of ndyn = 20 dynamic trajecto-
ries and ∆g = 0.05. The DEM values were calculated for the GPM of the scaled
concentration using a constant regression function.

The presence of the two data densities in the non-uniform data sampling gener-

ates an additional challenge to the iGPM dynamic prediction: generating a dynamic

prediction to the wrong steady state. There is a region in the initial sample region

where the dynamic trajectories are more susceptible to be falsely predicted. As was

mentioned previously, the most important discrete time step to be predicted in this

case study is the first time step. If the dynamic prediction of the first time step is in

the wrong direction, the next iterations of the mapping process will lead the dynamic

trajectory in the wrong direction. There is no opportunity for the iGPM to recover

135

from the prediction error at the first time step, because the data density in the next

discrete time steps increases, making more accurate predictions towards the wrong

steady state. In Figure 35a, a circle is drawn around a particular dynamic trajectory

in the middle of the initial sample region. This dynamic trajectory has the highest

DEM prediction error in the initial sample region, ironically in the middle of the re-

gion, where the iGPM predictions are supposed to be more accurately. This dynamic

trajectory has a unique situation, not only because it has been falsely predicted to

go towards the wrong steady state, but also because it is close to an area that lacks

sample points due to the repulsion characteristic of the unstable steady state.

The average DEM prediction errors in Figure 35 do not offer a view of how the

iGPM dynamic predictions is made at each discrete time step. Figure 36 shows six

different snapshots of the iGPM dynamic predictions at different discrete time steps.

Using the non-uniform data sampling ndyn = 20 and ∆g = 0.05, this figure calculates

the average over 1000 different experimental designs of the DEM prediction errors at

different discrete time steps. This sequence ofDEM prediction error figures shows the

evolution of the iGPM dynamic prediction. Figure 36a shows the DEM prediction

error at the first time step, which is the same as the LEM prediction error of the

corresponding initial value points x0 in the dynamic trajectories. Figures 36b – 36e

show how the DEM prediction errors decrease for all dynamic trajectories as time

goes on. This is the consequence of the increase in the data density as the dynamic

prediction progresses in time, making more accurate predictions.

Finally, Figure 36f is a representation of the different data densities generated by

the non-uniform sampling scheme and its consequences for the dynamic predictions.

It is easy to see which dynamic trajectories are going towards each of the stable steady

states. Also in Figure 36f, some dynamic trajectories have been circled in the initial

sample region, to describe the trajectories with the largest DEM prediction errors.

These dynamic trajectories can be used as a boundary between the two regions that

136

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(a) t = 20 s

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(b) t = 40 s

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(c) t = 60 s

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(d) t = 100 s

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(e) t = 300 s

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

(f) t = 500 s

Figure 36: Average DEM values for dynamic trajectories at different discrete times.
The figures show the location of the initial values of the trajectories in the initial
sample region, and the color scale represents the average value of log10(DEM) created
by iGPM over 1000 different sets of ndyn = 20 dynamic trajectories and ∆g = 0.05.
The DEM values were calculated for the GPM of the scaled concentration using a
constant regression function and a noise level of σ2

n = 1× 10−8.

137

are present in the initial sample region. These trajectories are located in an area

which it is more susceptible to generating dynamic predictions to the wrong steady

state. This erroneous dynamic prediction does not occur the 100 % of the cases, since

it depends of the selected sample points in the D dataset of the iGPM. After the

figures and discussions about LEM and DEM prediction errors in this multivariate

dynamic system, it is possible to conclude that Gaussian process models are a good

choice to model system dynamics with one stable steady state, or models that are

required to be around a single point in the state space. The reason for this is because

in these two cases the higher data density around the region of interest will favor the

performance of the dynamic implementation of Gaussian process model, in trying to

obtain the best prediction possible.

The comparison between the three regression functions in iGPM for dynamic

predictions in the non-adiabatic CSTR case study is shown in Table 8. The plots

made in Figure 35, can be made also at the different noise levels, and iGPM using

the three regression functions of this study. The reported values in Table 8 are the

average DEM prediction error for the two independent GPM, over 1000 different

experimental designs, 25 discrete time steps necessary to describe each trajectory,

and 200 different dynamic trajectories over the initial sample region. This table

shows a similar interpretation as the results for the LEM prediction error in Table 7.

At low noise levels, there are not substantial differences between the three regression

functions and its prediction qualities in iGPM. At high noise levels of the observations,

the constant regression function has lower DEM prediction errors than a iGPM with

either the linear or quadratic regression function.

The implementation of iGPM as a recursive mapping function imposes a strong

dependence on the sampled data in the dynamic region, in order to generate ac-

curate dynamic predictions. When this dependence is weakened, for example by

using stochastic observations with high noise level, the iGPM dynamic prediction

138

Table 8: Mean values of log10(DEM) over the test samples in the state space. The
mean values have been computed at different noise levels and for the three different
types of regression function used in the iGPM. The values with an asterisk repre-
sent cases where some dynamic trajectories exhibit extrapolation problems during its
iGPM prediction (see Figure 37b).

Noise
Concentration Temperature

Constant Linear Quadratic Constant Linear Quadratic

1.0× 10−8 -5.1719 -5.2397 -5.3139 -5.4440 -5.5614 -5.6233
1.0× 10−6 -4.4969 -4.5405 -4.5965* -4.6456 -4.7074 -4.7497*
4.0× 10−6 -4.2006 -4.2374 -4.2679* -4.3122 -4.3492 -4.3673*
2.5× 10−5 -3.7690 -3.7740 -3.5713* -3.8281 -3.8182 -3.6109*
1.0× 10−4 -3.3962 -3.3509 -2.0797* -3.4416 -3.3579 -2.1060*
4.0× 10−4 -2.9597 -2.9014 0.5355* -3.0243 -2.9181 0.4818*
2.5× 10−3 -2.2319 -2.1599 0.5779* -2.3393 -2.2041 0.4850*
1.0× 10−2 -1.8120 -1.4788 0.3552* -1.8598 -1.5284 0.2387*

will depend more on the regression function. Therefore, the iterative usage of a set

of regression functions that do not capture the global trend in the residuals of the

function to be approximated could lead to an uncontrolled dynamic prediction by

the iGPM. This problem can be explained as an extrapolation from the dataset D

in the iGPM dynamic framework, shown in more detail on Figure 37. This situation

describes why some of the DEM prediction errors for the quadratic regression func-

tion go to infinity in Table 8. The extrapolation problem in this case study does not

appear in all the tested dynamic trajectories, and it does not happen in the 100% of

the iGPM dynamic frameworks that were tested.

With the results from the DEM prediction errors, it is then possible to reach a

conclusion regarding the usage of regression function in Gaussian process models for

system dynamics. For the purposes of using Gaussian process modeling as a recursive

mapping function from stochastic observations, the constant regression function offers

the best overall performance in this task. This case study cannot disregard the

usage of more descriptive regression functions, because this study shows that they

improve the iGPM dynamic predictions at very low noise levels. However, the better

139

0 1000 2000 3000 4000 5000 6000 7000 8000
300

350

400

450

500

550

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

GPM Sample Points
Exact Trajectory
GPM Predicted Trajectory

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
250

260

270

280

290

300

310

320

330

340

350

Concentration (mol m−3)

T
em

pe
ra

tu
re

 (
K

)

Exact Trajectory
GPM − Constant
GPM − Linear
GPM − Quadratic

(b)

Figure 37: Potential problems during the prediction of dynamic trajectories using
iGPM for the non-adiabatic CSTR case study. (a). False prediction of a final steady
state for an initial value near to the unstable steady state. (b) Extrapolation of
GPM dynamic predictions from the training dataset for a GPM with a quadratic
regression function. Both of these figures were made using a dataset of ndyn = 20
dynamic trajectories and ∆g = 0.05 from the initial sample region. Figure (a) uses
observations with a noise level of σ2

n = 1 × 10−8, while Figure (b) uses observations
with a noise level of σ2

n = 1× 10−4.

prediction of the constant regression function at moderate to high noise levels, and

the potential risks with the extrapolation problem, makes the constant regression

function a more robust choice for Gaussian process models. There is one additional

scenario to consider, in which a user has the knowledge to use a suitable set of

regression functions to represent the dynamics of a system. While it seems that

it will prevent the extrapolation problem from happening, the prediction of such

iGPM will not depend on the local correlation of residuals. Remember that a more

descriptive regression function limits the identification of a local correlation between

the residuals in the GPM. Therefore, all the error estimation properties of the iGPM

will be lost.

5.4.2 Error estimation of dynamic GPM predictions for multiple variables

For the remainder of this analysis, and based on the conclusion shown in the previous

paragraph, all iGPM and mGPM will use a constant regression function as part of

140

their implementation. With a more concrete selection of regression functions, the

next step is show how the error estimation analysis described in Section 5.1.2 is

implemented for the non-adiabatic CSTR case study. First, this section evaluates the

error estimation analysis for the one-step-ahead prediction error. Figure 38 shows

the implementation of the error estimation analysis for a iGPM using a constant

regression function. This error estimation analysis uses the unbalaced data sampling

scheme with ∆g = 0.05, but changing the number of dynamic trajectories in the

analysis. These figures shows the correlation between the estimated |D| and the

average |S| in each of the prediction vectors of the model. Also, this figure shows

the improvement in the error estimation properties of the iGPM by increasing the

number of dynamic trajectories used for the database D.

In previous chapters, the evaluation of the error estimation properties of a GPM

has been made using some sort of uniform sampling across the sampling space. Re-

member that in Chapter 3, a Latin hypercube design was used to describe the error

estimation analysis across the design space, and in Chapter 4 the equally-spaced de-

sign of sample points was used to evaluate the propagation of error in a GPM. Figure

38 shows the results of the error estimation analysis for the non-uniform data sam-

pling, but the question here is if a more uniform data sampling scheme has better

error estimation properties. Figure 39 shows the results of the error estimation anal-

ysis when a uniform data sampling scheme is used in the non-adiabatic CSTR case

study. The uniform data sampling scheme was previously describe in Section 5.4.1.1

and Figure 33d as an example to explain the accurate estimation of the noise level in

the non-uniform data sampling scheme, with only one repetition.

The results shown in Figure 39 are compared with the results in Figure 38a, since

both of those sampling schemes have on average the same number of sample points,

n = 65. The scatter plots for the uniform data sampling are much closer to the 1:1

line than the scatter plots for the non-uniform data sampling, indicating a better

141

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

E
st

im
at

ed
 |D

| −
 δ(

x)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(a) ndyn = 20

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

E
st

im
at

ed
 |D

| −
 δ(

x)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(b) ndyn = 80

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

E
st

im
at

ed
 |D

| −
 δ(

x)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(c) ndyn = 140

Figure 38: Error estimation analysis of iGPM for a one-step-ahead prediction error.
The figures shows the number of dynamic trajectories ndyn used in each of the iGPM.
The figures were computed using 1000 different experimental designs of the various
dynamic trajectories with ∆g = 0.05, at different noise levels. All iGPM used a
constant regression function.

error estimation properties of its iGPM prediction. In contrast, the uniform data

sampling does not have a good iGPM mean prediction, like the non-uniform data

sampling. By using larger grid spacing ∆g = 0.11, the uniform data sampling scheme

does not reflect in its dataset the steady states that are present in the dynamics of

the system. As a result, the scatter plots for the error estimation in Figure 39 are

a higher range [1× 10−11 − 1× 10−4], compared to the scatter plots for the error

estimation in the non-uniform data sampling [1× 10−17 − 1× 10−4]. The idea with

these error estimation studies is not to obtain the most accurate iGPM possible, but

142

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

E
st

im
at

ed
 |D

| −
 δ(

x)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

Figure 39: Error estimation analysis of multivariate Gaussian process models for a
one-step-ahead prediction error using a uniform sampling scheme. Figure 39 was com-
puted using 1000 different experimental designs with ndyn = 300 dynamic trajectories
and ∆g = 0.11, at different noise levels. All iGPM were using a constant regression
function.

to describe which model is more capable to estimate its own error, no matter if it is

a good or a bad prediction.

Chapter 4 shows a first glance of using the error estimation analysis to evaluate

the properties of GPM in dynamics. Using a similar procedure, the error estimation

analysis for multivariate dynamic systems can be implemented to characterize how the

prediction error of the iGPM changes over the course of a dynamic prediction. Figure

40 shows the implementation of the error estimation analysis to the prediction error

vectors of 200 dynamic trajectories at different discrete time steps. The figures on

the left (Figures 40a, 40c and 40e) are generated by the non-uniform data sampling,

while the figures on the right Figures 40b, 40d and 40f) correspond to the uniform

data sampling scheme.

The effects of the non-uniform data sampling on the error estimation analysis are

clear. Since the data sampling has two different data densities, with two different

prediction errors, it was expected that the error estimation will also be divided be-

tween the two steady states. There is a clear division in the error estimation of the

143

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

|D
| −

 δ(
x)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(a) t = 100 s

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

|D
| −

 δ(
x)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(b) t = 100 s

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

|D
| −

 δ(
x)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(c) t = 300 s

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

|D
| −

 δ(
x)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(d) t = 300 s

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

|D
| −

 δ(
x)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(e) t = 500 s

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

|D
| −

 δ(
x)

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(f) t = 500 s

Figure 40: Error estimation analysis of iGPM at different discrete time steps. The
figure describes the propagation of error during the dynamic prediction of the non-
adiabatic CSTR case study, at three different discrete time steps. Figures (a), (c) and
(e) were made using ndyn = 20 dynamic trajectories and ∆g = 0.05, while Figures
(b), (d) and (f) were made using ndyn = 300 dynamic trajectories and ∆g = 0.11.
All figures used 1000 different experimental design of their corresponding sampling
scheme, at several noise levels and using a constant regression function.

144

iGPM as the time progresses in the dynamic prediction. The division between the

error estimation properties between the two steady states is clearer at the low noise

levels, where it is easier to identify both of them. As the noise level in the observation

increases, the estimation of the steady states becomes harder, making the error esti-

mation properties of the iGPM more similar across the dynamic region. To contrast

the behavior of this divided error estimation analysis, a similar study was made with

the uniform data sampling scheme, to evaluate its properties in a dynamic context.

By increasing ∆g to create the uniform data sampling scheme, the dataset D does not

contain enough spatial resolution to capture the presence of the steady states in the

input space. By removing the description of the steady states in the dataset D, the

error estimation is more uniform during the dynamic predictions made by the iGPM.

Figures 39 and 40 support the conclusion that a uniform experimental design is a de-

sired feature in a Gaussian process model to improve the error estimation properties

of the model.

An additional comment in the error estimation analysis presented in Figure 40, is

to notice how the scatter plots get closer to the 1:1 line, despite that many discrete

time steps have passed. This situation occurs in both the non-uniform and the uniform

data sampling schemes. At t = 100 s, both scatter plots are far away from the 1:1

line, compared to the results at t = 500 s. This change is more evident in the non-

uniform data sampling scheme. This sudden improvement of the error estimation is

based on the behavior of the iGPM when the dynamic prediction is getting closer

to a high data density area. As the iGPM dynamic prediction progresses in time,

the dynamic trajectory visits areas with higher data density than the previous time

steps. A natural consequence in GPM of doing predictions in regions with high data

density is that these predictions are more accurate. In the context of a recursive

mapping function, more accurate predictions along the dynamic trajectory means

less propagation of error, leading to better error estimation properties of the iGPM.

145

5.4.3 Predictions of a multivariate Gaussian process model for system
dynamics

This results section concludes with the implementation of the multivariate Gaussian

process model (mGPM) as a recursive mapping function for the non-adiabatic CSTR

case study. This chapter has described key aspects to consider in the implementation

of iGPM to predict multivariate dynamic systems. However, mGPM offers an alterna-

tive mathematical approach and implementation as a recursive mapping function for

system dynamics. Based on the mathematical description in Section 5.1.1, mGPM is

used to describe the dynamics of the non-adiabatic CSTR case study, using the non-

uniform data sampling scheme with ndyn = 20 dynamic trajectories and ∆g = 0.05.

This last section presents a comparison between mGPM and iGPM, where both of

the dynamic implementations use a constant regression function. The first compari-

son between these models is the results of the parameter estimation for both of these

models. Table 9 summarizes the estimation of σ2
c and σ2

u in both iGPM and mGPM

models, for the prediction of the scaled normalization variable in the case study. This

comparison between the estimated parameters of iGPM and mGPM is possible be-

cause both GPM dynamic implementations use the same correlation function. The

results in Table 9 shows that the LCM parameterization in the mGPM is capable of

estimating the noise level in the observations with the uncorrelated variance param-

eter σ2
u in the scaled normalization variable. The accurate identification of the noise

level also occurs for the scaled temperature variable.

Table 9 shows that the estimated value of the correlated variance parameter σ2
c in a

mGPM is greater than in the iGPM. This result in the parameter estimation appears

in both the scaled concentration and scaled temperature variables. An increase in the

nominal value of σ2
c represents that the mGPM is strengthening the local correlation

between the residuals of the variables. The presence of additional variables is a

synergistic effect in the identification of local correlations in the multivariate data,

146

Table 9: Comparison of the estimated σ2
c and σ2

u distributions in iGPM and mGPM.
This table summarizes the mean values of the estimated parameter distributions
for the scaled concentration. The distributions are build over 1000 different sets of
ndyn = 20 dynamic trajectories from the initial sample region, using ∆t = 20 s and
∆g = 0.05. All iGPM and mGPM used a constant regression function.

Noise
iGPM mGPM

log10σ
2
c log10σ

2
u log10σ

2
c log10σ

2
u

1.0× 10−8 -1.0025 -7.6475 -0.6094 -7.2803
1.0× 10−6 -1.0426 -5.8898 -0.6842 -5.6902
4.0× 10−6 -1.0485 -5.3311 -0.7033 -5.1299
2.5× 10−5 -1.0503 -4.5330 -0.7163 -4.3851
1.0× 10−4 -1.0375 -3.9444 -0.7490 -3.8286
4.0× 10−4 -1.0192 -3.3482 -0.8057 -3.2661
2.5× 10−3 -1.0004 -2.6106 -0.8553 -2.5447
1.0× 10−2 -1.0094 -2.1155 -0.9017 -2.0275

possibly leading to a more robust GPM dynamic implementation.

Implementing a multivariate Gaussian process models means modeling the cross-

covariance terms in the regression covariance matrix V . Figure 41 shows the distribu-

tions of the estimated σ2
c and σ2

u for the cross-covariance matrix in the non-adiabatic

CSTR case study. This figure is divided between the estimated negative and posi-

tive values of the σ2
c and σ2

u for the cross-covariance matrix. The MLE parameter

estimation for mGPM shows a tendency to identify the negative correlation of the

prediction errors, since most of the estimated values of σ2
c and σ2

u are negative. This

is in agreement with the results shown in Figure 27a with the prediction error vectors

for the error estimation analysis. Figures 41a and 41b shows how σ2
c,12 identifies the

underlaying negative correlation between the residuals of the scaled concentration and

temperature. It is also clear from these figures that the identification of the negative

correlation is not 100% of the cases accurate. Some of the estimated negative values

and the few positive values of σ2
c,12 are much more smaller (≈ ±1× 10−8), than the

correlated variance parameters σ2
c,11, σ

2
c,22 (0.1− 0.2).

The estimated values for σ2
u,12, shown in Figures 41c and 41d, indicate that part

147

−14 −12 −10 −8 −6 −4 −2 0 2
0

100

200

300

400

500

600

Correlated Variance Parameter − log
10

(−σ2
c
)

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(a)

−14 −12 −10 −8 −6 −4 −2 0 2
0

100

200

300

400

500

600

Correlated Variance Parameter − log
10

(σ2
c
)

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(b)

−14 −12 −10 −8 −6 −4 −2 0
0

20

40

60

80

100

120

140

160

Uncorrelated Variance Parameter − log
10

(−σ2
u
)

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(c)

−14 −12 −10 −8 −6 −4 −2 0
0

20

40

60

80

100

120

140

160

Uncorrelated Variance Parameter − log
10

(σ2
u
)

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

(d)

Figure 41: Distribution of estimated GPM parameters for the cross-covariance term
in a mGPM using the linear coregionalization model. Figures 41a and 41c show
the negative estimated values of the cross-covariance parameters σ2

c,12 and σ2
u,12, while

Figures 41b and 41d show their positive estimated values. The distributions are build
over 1000 different sets of ndyn = 20 dynamic trajectories from the initial sample
region, using ∆t = 20 s and ∆g = 0.05.

of the local correlation between the predicted errors is explained by a correlation of

the measurement noise in the observations. This result is contradictory with the arti-

ficial and uncorrelated measurement noise that is added in the observations. Figures

41c and 41d exhibit clear mean distribution values of σ2
u,12 that are slightly smaller

than the estimated noise levels in σ2
u,11 and σ2

u,22. This indicates a strong correlation

between these mGPM parameters. Perhaps the most important element in Figures

41c and 41d is the large number of positive estimated values, which could suggest the

148

erroneous correlation between the prediction error of the system.

The next step in the comparison between iGPM and mGPM is the mean predic-

tion of the system dynamics. To do this, LEM and DEM prediction error values for

the overall dynamic region are calculated for the mGPM dynamic implementation,

as it was done for the iGPM in Tables 7 and 8 respectively. The LEM and DEM

values are tabulated in Table 10, for comparison with the iGPM results. The values

in this table correspond to the prediction of the scaled normalization. Although,

the mGPM dynamic implementation does not improve the one-step-ahead prediction

over the iGPM implementation, it does improve the accuracy of the dynamic pre-

dictions in the non-adiabatic CSTR case study, specially at the higher noise levels.

The biggest improvements in the predictions are made at higher noise levels, due to

the improvement in the identification of the local correlation in the estimated σ2
c . In

contrast with these mean prediction results, the mGPM identifies the negative corre-

lation of the prediction errors in the mGPM predictive covariance matrix S. Using

the elements in this matrix, it is possible to calculate an estimated Pearson linear

correlation ρ(x) at each of the test sample points, since it contains the variances and

covariances between the predicted state variables. Using the definition of the state

covariance matrix S in Equation (139), the estimated Pearson linear correlation in

the mGPM for this case study is:

ρ(x) =
σ2
y,CT

(x)

σy,CC (x) σy,TT (x)
(142)

Figure 42 shows the distribution of the estimated Pearson linear correlation at each

of the sample points in the computation of LEM , over 1000 different experimental

designs. Figure 42 shows the mGPM is capable of predicting the strong negative

correlation in the data at lower noise levels. This figure also shows that the mGPM

identifies the negative correlation despite the increase in the noise level of the obser-

vations, a trait that would be impossible with the iGPM implementation.

The major advantage for the mGPM comes from its mathematical formulation

149

Table 10: LEM and DEM prediction errors of iGPM and mGPM for the scaled
normalization variable. Both GPM dynamic implementations used the non-uniform
data sampling scheme with ndyn = 20 dynamic trajectories and a grid spacing of
∆g = 0.05. These LEM and DEM prediction errors are averages over 1000 different
experimental designs.

Noise
log10(LEM) log10(DEM)

iGPM mGPM iGPM mGPM

1.0× 10−8 -6.6077 -6.4561 -5.1719 -5.0876
1.0× 10−6 -5.7405 -5.6490 -4.4969 -4.4828
4.0× 10−6 -5.4039 -5.3394 -4.2006 -4.2004
2.5× 10−5 -4.9509 -4.9108 -3.7690 -3.7700
1.0× 10−4 -4.5904 -4.5509 -3.3962 -3.4132
4.0× 10−4 -4.2073 -4.1922 -2.9597 -3.0013
2.5× 10−3 -3.6781 -3.6959 -2.2319 -2.3772
1.0× 10−2 -3.2908 -3.2907 -1.8120 -2.0273

−1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6

8

10

12

14
x 10

4

Predicted Pearson Linear Correlation − ρ(x)

N
um

be
r

of
 O

cc
ur

en
ce

s

σ2
n
 = 1×10−8

σ2
n
 = 1×10−6

σ2
n
 = 4×10−6

σ2
n
 = 2.5×10−5

σ2
n
 = 1×10−4

σ2
n
 = 4×10−4

σ2
n
 = 2.5×10−3

σ2
n
 = 1×10−2

Figure 42: Distribution of estimated Pearson linear correlation ρ(x) by the mGPM
implementation for a one-step-ahead prediction at different noise level in the obser-
vations. The distributions were made using 1000 different experimental designs, each
of them with ndyn = 20 dynamic trajectories and a grid spacing of ∆g = 0.05.

to represent correlations between the predicted variables in the mGPM predicted

covariance matrix S. The role of these additional correlations could be more relevant

at the moment of evaluating the error estimation properties of the mGPM. Figure

43 shows a final comparison of the error estimation properties of the iGPM and the

mGPM. The construction of the scatter plots for mGPM is made in a similar fashion

150

as for the iGPM in Figures 38a and 40f. These scatter plots are made using the 1000

different experimental designs of the non-uniform data sampling scheme with ndyn =

20 and ∆g = 0.05. Figure 43a shows the results for the one-step-ahead prediction

error, where the mGPM exhibit a slight improvement over the iGPM implementation.

Figure 43b shows the error estimation analysis of a dynamic prediction at the end of

all dynamic trajectories. This last figure shows that iGPM and mGPM have similar

error estimation properties, despite the improve mathematical formulation of the

multivariate Gaussian process model. Based on the results shown here demonstrated

that mGPM is a more robust GPM dynamic implementation at higher noise levels in

the observations, because of its improved identification of the local correlation in the

multivariate dynamic data.

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

|D
| −

 δ(
x)

(a)

10
−20

10
−15

10
−10

10
−5

10
0

10
−20

10
−15

10
−10

10
−5

10
0

Average |S| − σ2
y
(x)

E
st

im
at

ed
 |D

| −
 δ(

x)

(b) t = 500 s

Figure 43: Error estimation analysis of mGPM dynamic implementation and compari-
son with the iGPM dynamic implementation. The blue dots corresponds to the iGPM
scatter plots of the predictions errors, while the red dots corresponds to the mGPM
prediction errors. Figures (a) and (b) evaluate the results of iGPM and mGPM under
four different noise levels σ2

n = [1× 10−8, 1× 10−6, 1× 10−4, 1× 10−2]. (a) Error esti-
mation analysis for the one-step-ahead prediction error. (b) Error estimation analysis
for the dynamic predictions at t = 500 s.

151

5.5 Discussion

This chapter discusses the implementation of Gaussian process models to approximate

the dynamics of a multivariate stochastic system. At first, the non-adiabatic contin-

uous stirred tank reactor seems to be a fairly easy mathematical model to describe.

However, this simple case study illustrates some of the challenges of treating the sys-

tem identification problem from the spatial statistics point of view. In most cases

when GPM is used in spatial statistics, the user has full control of the experimental

design that is going to be used in the model. Many applications use a hypercube

input space, allowing space-filling designs to provide a good coverage over the region.

In this case study, the relevant sampling region for the model is the dynamic region,

which is indirectly constructed from the exploration of the initial sample region. This

means that the user does not know a priori the input space for the GPM. In addition

to this situation, the shape of the dynamic region in this case study is a non-convex

area, with a non-uniform distribution of the sample points, thanks to the two stable

steady states. These are not characteristics that are regularly faced in spatial statis-

tics and design of computer experiments, which suggest that novel techniques will be

required.

The approach used in this thesis to model the system dynamics is the construc-

tion of a time-invariant iterative model (in this case the GPM) based on a set of

pre-recorded dynamic trajectories. This characteristic of the GPM dynamic imple-

mentation means this research is in the area of spatial statistics, and not in the

time-series analysis area, where the correlation of sample points in time is explicitly

stated. The database D in the Gaussian process model captures the dynamics of a

system through the location of the sample points in the dynamic region, and through

the analysis of the output information. The first one because it is necessary a good

exploration of the dynamic region, and the second one, because it represents the dy-

namic evolution of the system. The analysis of the output information, in particular

152

the gradient and Hessian of the output, points the dynamic prediction in the ap-

propriate direction. If the gradients of the outputs were also considered during the

selection of sample points in the sparsification, then the number of falsely predicted

steady-states might have be smaller. The selection of sample points for the GPM

dynamic implementation must consider the gradient of the approximated function as

part of their selection criteria.

While the exploration of the initial sample region is important to build the dy-

namic region, the sparsification procedure is the step that captures the unique dy-

namic features of this case study. This chapter shows the effects of using different

spatial resolutions (measured by the different values of ∆g) in the identification of the

GPM parameters and later in its predictions. Although this chapter does not provide

indications about the selection of the appropriate grid spacing, the value ∆g = 0.05,

on a normalized [0 - 1] space seems to be reasonable for a good spatial resolution.

The major concern with this simple, but effective procedure is the quantification of

the GPM prediction error due to lack of spatial resolution, and then later how this

error propagates into the iterative mapping for dynamics. Researchers in the area of

machine learning have proposed several methods to reduce the computations during

the inverse of the regression covariance matrix V . A review about this subject can

be found in Reference [118]. In many of these approaches, the researchers select a

subset of the available sample points as an approximation of the whole dataset. In

particular, Shen and cooworkers [128] present an approximation method for GPM

based on kd-trees, where an adaptive procedure is implemented to subdivided the

input space in hyper-rectangles, and then a weighted sum of the information in each

hyper-rectangle is used for GPM prediction. This type of research could be important

in the approximation of expensive stochastic dynamic simulations, since all available

information will be considered, instead of just a subset of it.

Although the Gaussian process model has the capacity to include functions (either

153

linear or non-linear basis functions) as global trends in the dynamic information, this

is not a recommended practice for iterative mapping functions. The reasons for this

recommendation are clear: the extrapolation problem and the effects of those global

trends in the identification of local correlations. The extrapolation problem might

be caused by the undersampling in certain areas of the dynamic region, or because

a problem of model mismatch in the selection of regression functions. Chapter 3

showed that the local correlation in GPM is responsible for all its error estimation

properties. Then, by using global trends in the GPM, the user is losing one of the

most important traits of the model.

This chapter shows that it is possible to quantify the prediction error of a mul-

tivariate GPM using the predicted covariance matrix S. This chapter also shows

that using |S| as a metric for error estimation in mGPM is a good idea, and that it

correlates appropriately with the uncertainty level in a multi-dimensional prediction.

Perhaps a problem with the implemented error estimation analysis for mGPM is that

it does not allow one to separate between the different sources of propagation of error,

meaning, it is not possible to identify which variables are less accurate than others.

Future studies on this covariance matrix could explore the relationships between the

off-diagonal terms in the predicted covariance matrix with the individual effects of

each input dimension in the mGPM prediction.

Overall, the results of using mGPM for dynamic predictions in multivariate sys-

tems were below expectations. Although the LEM and DEM prediction error in

mGPM decrease at all noise levels for the scaled concentration and temperature,

there is not significant improvement over the iGPM results. It is important to real-

ize that mGPM was capable of identifying the negative correlation in the prediction

errors of this case study, but that identification did not improve the error estimation

properties of the model. An initial hypothesis about why mGPM did not perform

154

better during the error estimation analysis might be associated with its local corre-

lation structure. mGPM exhibits a synergistic effect between the variables in their

mean prediction, at the cost of a fixed description of the local correlation features

of the variables. Compared to the two independent GPM models, where there are

two different range parameters in each of them to capture local correlations in each

direction, the mGPM does not have enough flexibility to capture local correlations.

Further studies must be carry out to explore this hypothesis, but the recommended

GPM implementation as an approximation of multivariate, stochastic and dynamic

systems is the iGPM framework with a constant regression function.

155

CHAPTER VI

EVALUATION OF METAMODELING APPROACHES

FOR DISCRETE TIME APPROXIMATIONS IN

NANOPARTICLE SYNTHESIS

This last chapter closes the discussion regarding Gaussian process models, with a

systematic comparison between metamodeling approaches as alternatives to approx-

imate models of expensive dynamic simulations. So far, this thesis has focus on

understanding, developing and exploiting a framework where Gaussian process mod-

els are used to describe the dynamics of a system. This chapter puts to the test such

GPM dynamic implementation by comparing it with other metamodeling approaches.

The objective in this chapter is to provide a more general context to the theoreti-

cal analysis developed from GPM, and to explore alternative solutions that can be

implemented as approximate models. The case study used in this chapter is the

nanoparticle dynamic model, which describes the growth of platinum nanoparticles

on the surface of a carbon nanotube. This chapter starts with a detailed description

of the nanoparticle dynamic model. Then, it continues with a description of how the

nanoparticle dynamic model is implemented for metamodeling. Next, a brief math-

ematical description of different metamodeling approaches is presented to provide a

general context to the systematic comparison. Finally, this chapter concludes with

the results from the comparison of metamodels.

156

6.1 Case study: Deposition of platinum nanoparticles on

carbon nanotubes under supercritical conditions

The chemical process used as a case study in this chapter is the deposition of plat-

inum nanoparticles on carbon nanotubes in supercritical carbon dioxide (sc-CO2)

[57]. Large-scale production of nanoparticles of controlled size are needed for a va-

riety of applications, from fuel cells to drug delivery. The sc-CO2 process has been

investigated recently for nanoparticle synthesis, with advantages including the high

solubility of precursor in sc-CO2, the lack of organic solvents which are environmental

hazards, the scalability to three-dimensional processing via porous supports or pow-

ders, and the ease of separation of the final product from the solvent (by lowering

the pressure) [34]. The mathematical model for this chemical process couples a mass

action kinetics model of the supercritical fluid phase to a stochastic simulation for the

surface kinetics on the carbon nanotubes. While a number of assumptions were made

in constructing this model, it highlights the challenges and opportunities to create

approximate models of nanoscale phenomena based on the dynamic data collected

from a simulation.

A brief description of the process is provided in Figure 44a, motivated by the pro-

cedure of Bayrakceken and co-workers [13]. This synthesis involves two stages: the

adsorption of the platinum precursor onto the surface, and the subsequent growth of

platinum nanoparticles on the surface. Specifically, the organometallic platinum pre-

cursor dimethyl(1,5-cyclooctadiene)platinum(II) (PtOL) is first solubilized in a high

pressure sc-CO2 environment, so that it may be adsorbed by the functionalized multi-

walled carbon nanotubes (CNT), both present in a chamber. Once the adsorption

step is complete, the pressure is released, and N2 gas flows into the chamber at an

elevated temperature. The platinum precursor PtOL undergoes a thermal reduction

in an inert N2 atmosphere, leaving isolated platinum atoms (Pt1) on the surface of

the carbon nanotubes, and releasing the organic ligands (OL) back into the fluid

157

phase. The platinum atoms then form nuclei on the surface which grow into larger

nanoparticles. Many other variations on this process also exist, such as the use of

hydrogen in a chemical reduction of the platinum precursor [86].

N2

Adsorp�on Growth

OL(f)

MWCNT

PtOL(f)

sc-CO2

Pt(s)
Pt(s)

Pt(s)

OL(f)

OL(f)OL(f)

OL(f)

PtOL(f)
PtOL(f)

PtOL(f)
PtOL(f)

PtOL(f) = Pt(COD)Me2

α(s)

PtOLα(s)

PtOLα(s)

α(s) α(s)

PtOLα(s)

α(s)

(a)

(b)

Figure 44: (a) Platinum nanoparticle synthesis under thermal decomposition in an
inert atmosphere. (b) Transmission electron microscopy image from a sc-CO2 process
for Pt nanoparticles on carbon nanotubes (Image by Dr. Galit Levitin, Georgia
Institute of Technology). The scale bar is 10 nm.

Figure 44b is a transmission electron microscopy image of platinum nanoparti-

cles deposited on multi-walled carbon nanotubes by a sc-CO2 process. The typical

nanoparticle size is between 5–10 nm, with a visible distribution of sizes. From a

practical standpoint, it is not desirable to have a wide nanoparticle size distribution,

since many applications demand a specific size for optimal performance. However,

in practice there will always be some distribution of sizes, and a key manufacturing

158

question is to determine what distribution will provide adequate performance while

minimizing processing cost.

A coupled deterministic-stochastic model is presented here, motivated by the pro-

cedure in Reference [13] and previous modeling studies [35, 49, 121]. A system of

ordinary differential equations (ODE) is constructed for the adsorption step and a

kinetic Monte Carlo (kMC) simulation is used to model the platinum reduction, nu-

cleation, and nanoparticle growth [57]. Due to the sequential nature of the process,

as shown in Figure 44a, the final conditions from the ODE adsorption simulation are

used as initial conditions for the kMC growth simulation. The main assumption in

the ODE-kMC coupled model is the independence between the process steps, that is,

nanoparticles are not formed during the adsorption step and platinum precursor is

not adsorbed in the growth step. The kinetic and thermodynamic parameters in this

model are listed in Table 11.

The exact nanoscale mechanisms occurring during the process are not fully under-

stood or quantified, and this is generally a challenge for the robust optimal processing

of nanomaterials. For example, in this case study the release of the organic ligands

might also occur during the adsorption phase, and there could also be nanoparticle

nucleation occurring during adsorption. Despite the limitations of the existing process

models, their construction and validation in conjunction with experiments encodes

current understanding of the process and thus are needed for process engineering [34].

The simulations begin with the specification of the precursor mass (mPtOL) and

carbon nanotube mass (mCNT), in the ranges listed in Table 11, while the rest of the

parameters in the table are constant. Before the ODE adsorption process is simu-

lated, the solubility of the platinum precursor in sc-CO2 is evaluated, to determine

the initial concentration of platinum in the supercritical fluid phase. Using reported

experimental information for the solubility of the precursor in sc-CO2 [7, 8, 160], a

159

Table 11: Model parameters for platinum nanoparticles on carbon nanotubes using
sc-CO2.

Operating Conditions
Description Variable Value
Pressure [13] P 24.2 MPa
Temperature [13] T 343 K
Reactor volume [163] V 54 cm3

Precursor mass mPtOL [130–170] mg
Carbon nanotube mass mCNT [130–170] mg
Adsorption time tads 2 h
Growth time tgr 2 h

Adsorption Isotherm

Langmuir adsorption constant [13] Keq 0.299 g sc-CO2

mg PtOL

Adsorption capacity [13] Q0 334 mg PtOL
g CNT

Kinetic Parameters

Adsorption kads 4.11× 101 cm3

mol PtOL·s

Desorption kdes 3× 10−4 1
s

Reduction kred 1× 10−3 1
s

Nucleation knuc 1× 101 cm3

mol Pt1·s

Growth kgr 1× 106 cm3

mol Pt1·s

Material Constants
Molecular weight of precursor MWPtOL 333.34 g

mol

Molecular weight of active site MWα 45.0 g
mol

Chrastil model [20] was fit and then used to compute the initial precursor concentra-

tion. The fitted Chrastil model is

ln S = 5.13 ln (ρsc-CO2
(T, P))− 9240

T
+ 31.6 (143)

where S is the solubility limit at the process conditions in units of
(

mg PtOL
cm3 sc-CO2

)

, and

ρsc-CO2
is the density of the sc-CO2. The sc-CO2 density depends on the temperature

and pressure, and is computed using an equation of state [133]. If the precursor

density is lower than S, all platinum precursor can be solubilized in the fluid phase

and the initial concentration of platinum is mPtOL

V
, otherwise the maximum platinum

precursor is limited by the solubility and the initial concentration is defined according

to this limit.

The adsorption-desorption dynamics of the precursor on the carbon nanotubes in

160

the sc-CO2 fluid can be modeled as

PtOL(f) + α(s) ⇋ PtOL-α(s)

where PtOL(f) is the platinum precursor in the fluid phase, α(s) is an active site on

the carbon nanotube support, and PtOL-α(s) is the adsorbed platinum precursor on

a carbon nanotube active site. The forward reaction is adsorption and the reverse

reaction is desorption, with rate constants kads and kdes, respectively. Their ratio

determines the Langmuir adsorption constant Keq that is reported in Table 11.

The initial conditions for the platinum precursor concentration and active sites

concentration must also be specified. After the solubility verification described pre-

viously, the initial concentration of the platinum precursor in the sc-CO2 fluid is

CPtOL,0 =
mPtOL

MWPtOL V
(144)

where MWPtOL is the molecular weight of the platinum precursor, and V is the reactor

volume.

The initial concentration of the available active sites is related to the initial amount

of carbon nanotube mCNT in the system. Different functional groups (such as the

carboxyl group -COOH) have been incorporated onto the CNTs to enhance their

reactivity [157]. We assume here that the adsorption of platinum precursor only

occurs at these functionalized sites and not directly on other sites on the carbon

nanotube surface—however, this is in fact another open mechanistic question in the

literature [157]. The initial concentration of active sites is thus dependent on the

extent of functionalization of the CNT, and here we use a value of 4.5 w/w % of the

carbon nanotube mass, based on typical commercially available values. Using this

information, we can calculate the initial concentration of active sites on the CNT as

follows

Cα,0 =
0.045 mCNT

MWα V
(145)

161

where MWα is the molecular weight of the functional group, which is a carboxyl

group here. With the initial conditions CPtOL,0, Cα,0 and the adsorption time tads, the

ODE adsorption model simulates the process dynamics and in the end predicts the

final concentration of adsorbed platinum precursor on the carbon nanotube surface,

CPtOLα (t = tads).

This value for the adsorbed precursor is then used as the initial condition for

the kMC growth model. The kMC growth model is evaluated using a stochastic

simulation—in particular, the Gillespie algorithm [39] is used to simulate individ-

ual chemical reactions as probabilistic events that occur at known rates. The kMC

simulation includes three surface reactions on the CNT surface: thermal reduction

of the adsorbed platinum precursor PtOL to release the organic ligands from the

platinum atom, nucleation of a nanoparticle from two individual Pt atoms, and sub-

sequent growth of platinum nanoparticles by the incorporation of additional Pt atoms.

Specifically, these reactions take the form

PtOL-α(s)
kred→ Pt1(s) + OL(f)

2Pt1(s)
knuc→ Pt2(s) + α(s) (146)

Ptn(s) + Pt1(s)
kgr→ Ptn+1(s) + α(s), n = 2, 3, . . .

where Pt1(s) is an isolated platinum atom on the CNT surface, Ptn(s) is a nanopar-

ticle with n platinum atoms and OL(f) is the organic ligand released to the nitrogen

fluid phase from the adsorbed platinum precursor. The kMC growth model assumes

that platinum is released in its elemental state; two platinum atoms form a stable

nucleus; a size-independent growth rate exists for the nanoparticles, and no aggre-

gation between particles contributes to nanoparticle growth [147]. The number of

nanoparticles of each size (Ptn) thus defines the nanoparticle size distribution.

The rate constants for these reactions are listed in Table 11 and they define the

162

typical rates of reaction for the probabilistic events. Particular features of the distri-

bution like mean and variance are related to the ratio between nucleation and growth

rate [35], and their numerical values in Table 11 were estimated to fit the nanoparti-

cle size distribution in Reference [13]. Each kMC simulation proceeds until no single

platinum atoms are on the CNT surface or until the growth time tgr is achieved. The

kMC system size, defined by the number of platinum atoms used to simulate the

overall growth step was 70000 atoms.

6.1.1 Implementation in model reduction of nanoparticle dynamics

Previously in Section 1.1, the problem of reducing the computational demands of the

nanoparticle dynamics model was briefly introduced to frame this thesis work. In

this chapter, this problem formulation is revisited and presented in more detail and,

incorporating some of the definitions used in Chapter 5 for multivariate dynamic

systems. As it was the case with the non-adiabatic CSTR case study in Chapter 5,

the nanoparticle dynamic model is an initial value problem, where different selections

of initial values of precursor mPtOL and carbon nanotubes mCNT mass loaded into

the chamber, create different nanoparticle size distributions. Therefore, the initial

sample region for this nanoparticle dynamics model is defined from Table 11 as

130 mg PtOL ≤ mPtOL ≤ 170 mg PtOL

130 mg CNT ≤ mCNT ≤ 170 mg CNT (147)

After defining the initial sample region in Equation (147), the next step in the descrip-

tion of the nanoparticle dynamics model is to define the dynamic region of it. For this

case study, the dynamic region is build with a constant sampling time of ∆t = 200 s

and a final simulation time of tf = 7200 s, for both the ODE adsoption model and

the kMC growth model. The dynamic region of the nanoparticle dynamic model is

made by exploring the initial sample region with multiple intial values selected by a

Latin Hypercube. The major difference between the case studies in Chapters 5 and 6

163

is that the initial sample region and the dynamic region of the nanoparticle dynamic

model are not in the same mathematical space, as it was in the non-adiabatic CSTR

model. In the non-adiabatic CSTR case study, the variables that define the initial

sample region were the same as the state variables that describe the CSTR dynamics.

In the nanoparticle dynamic model, due to the coupled ODE-kMC structure of the

model and the state reduction of the kMC variables to decrease its computational

cost, the variables in the initial sample region and the dynamic region are completely

different. The variables that define the initial sample region are the precursor and

carbon nanotube mass mPtOL, mCNT whereas the variables used to define the dynamic

region are the concentrations of nanoparticles at different sizes in the kMC growth

simulation.

In the nanoparticle case study considered here, the coupled ODE-kMC simulation

is approximated by an ODE-X simulation, where X represents one of mathematical

approximate models evaluated in this chapter and described later on Section 6.2.1.

Gaussian process models are among these approximate models for comparison of

their approximated dynamic predictions. Figure 45 describes the major steps in the

model reduction of the nanoparticle growth dynamics from the kMC simulation to the

approximate models. In order to build these approximated models from the simulated

data, a dimensional reduction is perform over the higher-order state variables z(s) of

the kMC growth model, to map their information to the low-order and more affordable

state variables of the approximate models x(s). The kMC simulation can be seen as

a one-step-ahead recursive function, mapping information from one discrete time s to

the next discrete time s + 1, at a constant ∆t. Five state variables are used in x(s)

as a reduced state to describe the kMC growth simulation in Equation (146), that is

d = 5. The first two states (x1 and x2) are the volumetric concentrations of platinum

atoms (Pt1) and adsorbed platinum precursor (PtOL-α) on the CNT surface. The

remaining three state variables describe the nanoparticle size distribution Ptn, using

164

a reduced state created from a moments approximation [5, 119]. The basic equation

for the moments of a distribution is

mq =
∞
∑

n=2

nqNn (148)

where mq is the qth moment of the nanoparticle size distribution, and Nn is the

number of nanoparticles of size n in the kMC simulation.

kMC()sz (1)s +z

()sx (1)s +xX

Reconstruction:
Stochastic Samples from

Gaussian Distribution

State Reduction:
Moments Approximation
to a Gaussian Distribution

X = GPM, SPF, RBF, SVR, RB-IDW, EFA

X

Figure 45: Description of the approximate modeling for the nanoparticle dynamic
model as an expensive dynamic simulation. The figure describes the reduction and
reconstruction steps to link the expensive dynamic simulations with its approximated
dynamic model. X represents any of the evaluated mathematical approximated mod-
els, Gaussian process model (GPM), second-order polynomial functions (SPF), radial
basis function (RBF), support vector regression (SVR), regression-based inverse dis-
tance weighting (RB-IDW), and equation-free approximations (EFA) (See Section
6.2.1).

The dynamics of the population balance defined in Equation (146) are infinite

dimensional, while an approximated model must be built for each finite state that

is modeled; therefore some approximation of the size distribution is required. If the

nanoparticle size distribution followed a normal distribution across the state space at

any discrete time s, it would only need the first three moments to completely describe

the distribution. Specifically, the moments can be used to compute the mean µ and

165

variance σ2 of a normal distribution.

µ =
m1

m0

(149)

σ2 =
m2

m0

− µ2 (150)

Here, these three moments are used as a state reduction step to approximate the

nanoparticle size distribution x3−5(s) = [m0,m1,m2] in Equations (148) – (150) as a

normal distribution, based on the observations of typical distributions such as the one

shown in Figure 47b. Using the same Gaussian distribution assumption, it is possible

to obtain a reconstruction of the original higher-dimension z(s) variables, by sam-

pling from this distribution. A sampled reconstruction is generated from stochastic

samples of the Gaussian distribution, until it reaches the kMC system size of 70000

atoms. The reconstruction step in this model reduction is not a one-to-one math-

ematical operation, contrary to the one-to-one state reduction step, because of the

stochastic sampling in the Gaussian distribution. This stochastic characteristic of the

reconstruction induces an uncertainty in the attempt of recover the original variables.

Clearly the true size distribution cannot be exactly normal since negative nanoparti-

cle sizes are not possible, so some error will be incurred with this reconstruction step.

At early discrete times such as that shown in Figure 47a, the Gaussian distribution

must be significantly truncated during a sampling (n ≥ 2), since here the spread of

the distribution is large relative to the mean.

6.2 Evaluation of data-driven models for nanoparticle dy-

namic predictions

The procedure to build approximate models for the nanoparticle dynamic model

follows the same steps as in the non-adiabatic CSTR case study in Chapter 5. The

initial sample set D is constructed from dynamic trajectories of the original ODE-

kMC simulation, based on the exploration of the initial sample region in Equation

(147). A ODE-kMC simulation is defined by an initial precursor mass mPtOL and

166

carbon nanotube mass mCNT selected from the rectangular initial sample region. The

ODE-kMC simulation is then run for tf = 7200 s, using a constant sampling rate

∆t = 200 s, corresponding to ns = 36 discrete time steps. Twenty precollected

dynamic trajectories ndyn = 20 are simulated, four of them at the corners of the

initial sample region, and the remaining sixteen to be selected using a Latin hypercube

experimental design. The set of initial operating conditions maybe well-defined, but

in a dynamic context, that does not guarantee that a dynamic region is well-defined,

since the trajectories of this nonlinear stochastic system are not known ahead of time.

Once the dynamic trajectories have been collected, the reduced order state is cre-

ated using the moments approximation, as it was described previously with Equation

(148). Then, the reduced-order state variables are scaled in the range 0 - 1 to reduced

the possible effects from the different orders of magnitude in the variables. To select

the sample points that are used in the approximate model, the scaled reduced-order

dynamic trajectories go trough a sparsification procedure as it is described in Section

5.2.2, with a grid spacing of ∆g = 0.05. This sparsification procedure reduces the

number of sample points in an approximate model from 720 sample points (ndyn × ns)

to 275 sample points approximately. With this reduced set of sample points, one of

the approximate models listed in Figure 45 can be build as a one-step-ahead mapping

function, and then used to describe the dynamics of the scaled reduced-order state

variables.

An example of a predicted trajectory is shown in Figure 46. This dynamic pre-

diction was made using an iGPM approximate model, by building d = 5 independent

GPM models. Each of the GPM models used the Gaussian correlation function in

Equation (9), a constant regression function and the maximum likelihood approach

to estimate their parameters. Two of the five dynamic states are plotted versus time,

beginning from an initial sample point defined by a precursor mass ofmPtOL = 155 mg

and a carbon nanotube mass of mCNT = 140 mg. Since the reactor volume V is fixed,

167

these two species along with the parameters in Table 11 define the initial state of

the system and the dynamics. The trajectories in Figure 46 compare the results of

10 individual stochastic realizations of the ODE-kMC model (blue) to the prediction

by the ODE-iGPM model (red). Since each of the GPM computes both the mean

prediction and prediction variance, it is possible to plot both the mean value and the

uncertainty. The dashed red line denotes ŷ ± z95
√

σ2
y where z95 is the normal score

for a 95% confidence interval.

The stochastic realizations shown in Figures 46a and 46b for the reduced-order

state variables illustrates the non-constant noise level during the dynamic trajectory

in the nanoparticle dynamic model. Along this thesis, the implementation of Gaussian

process models for dynamic predictions has always considered a constant noise level

in the observations, by estimating a single parameter value for this purpose σ2
u. The

nanoparticle dynamic model is a good case study to discuss how GPM handles this

particular noise structure, and its implication for the parameter estimation, dynamic

predictions and error estimation properties of the model.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6
x 10

−7

Time (s)

P
t 1 C

on
ce

nt
ra

tio
n

(m
ol

/c
m

3)

iGPM Prediction
Confidence Interval
kMC Simulation

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−9

Time (s)

Z
er

o
M

om
en

t [
m

ol
/(

cm
3 ×

 a
to

m
s)

]

iGPM Prediction
Confidence Interval
kMC Simulation

(b)

Figure 46: Approximated nanoparticle dynamic trajectory using a iGPM approximate
model. mPtOL = 155 mg, mCNT = 155 mg; (a) concentration of elemental platinum
on the CNT surface; (b) zero moment of the nanoparticle size distribution m0.

The nanoparticle size distribution is plotted in Figure 47, at two representative

168

times. The blue bars are histograms coming directly from a single stochastic real-

ization of the original simulation, using the same precursor and nanotube masses as

in Figure 46. In contrast, the red bars are based on the predictions from the iGPM.

Because the iGPM only predicts the first three moments of the nanoparticle size dis-

tribution, these moments are then used to construct a Gaussian distribution. The red

bars in Figure 47 are histograms resulting from stochastic samples from this Gaussian

distribution, until it reaches the kMC system size of 70000 atoms. Figure 47a corre-

sponds to a time early in the process, and neither histogram appears smooth due to

the small number of particles in the simulation domain. At the later time in Figure

47b, both histograms appear smoother and consistent with a Gaussian distribution.

At both times, the mean and variance of the GPM histogram appears consistent with

that of the original simulation.

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6
x 10

−10

Particle Size (Pt
1
 Atoms)

C
on

ce
nt

ra
tio

n
of

 N
an

op
ar

tic
le

s
(m

ol
/c

m3)

iGPM Reconstruction
kMC Simulation

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
x 10

−10

Particle Size (Pt
1
 Atoms)

C
on

ce
nt

ra
tio

n
of

 N
an

op
ar

tic
le

s
(m

ol
/c

m3)

iGPM Reconstruction
kMC Simulation

(b)

Figure 47: A realization of the nanoparticle size distributions at two different process
times; (a) t = 1000 s (b) t = 7200 s. The iGPM realization is drawn from a continuous
distribution with mean and variance according to Equations (149) and (150).

The plots in Figures 46 and 47 are illustrative examples of how to use a approxi-

mate model to describe the nanoparticle dynamics model. Following the same scheme,

other approximate models can be used as iterative mapping functions for dynamic

predictions. The nanoparticle dynamic model provides a case study for a systematic

comparison of several approximate models for multivariate, stochastic and dynamic

169

complex simulations. The list of approximate models evaluated in this study includes

models with a background in statistics, such as Gaussian process models, and models

developed in the areas of artificial intelligence and machine learning, such as support

vector regression. This difference in the models will limit the comparison between

the approximate models to their mean prediction and not to evaluate their error esti-

mation properties. The next section provides a brief description of the approximate

models included in this study, except iGPM, which it was discussed extensively in

Chapter 5.

6.2.1 Mathematical description of metamodeling approaches

6.2.1.1 Second-order polynomial regression functions

Polynomial basis functions have been used over the years in many fields in engi-

neering and sciences in general. Their straightforward parameter estimation, simple

interpretation and convenient mathematical properties make these models one of the

most utilized. Despite several non-linear models that have appeared as alternatives

for data mining, linear models based on polynomial basis functions remain as a ref-

erence for comparison and analysis. In this case study, a second-order polynomial

function (from now on SPF) is used as an iterative mapping function to approximate

the dynamics of the reduced state variables in the nanoparticle dynamic model.

Given a dataset of sample points D of n input/output points {xi, yi}, yi ∈ R,

xi ∈ R
d a second-order polynomial model predicts the outcome ŷ(x) as

ŷ(x) = w0 +
d
∑

i=1

wjxj +
d
∑

i=1

d
∑

j≥i

wijxixj (151)

where all w parameters represent coefficients for each of the polynomial basis func-

tions. The most common methodology to estimate the wi coefficients is by minimizing

the sum of the squared errors at each xi in D. For the approximation of the nanoparti-

cle dynamic model, d = 5 independent second-order polynomial models are estimated,

one for each of the reduced state variables.

170

One second-order polynomial model with d = 5 has 21 coefficients to be esti-

mated for the pre-collected dynamic trajectories, giving a total of 105 parameters for

the complete reduced state prediction. This number of coefficients largely surpasses

most of the approximate models compared in this case study (for example, iGPM

has 35 parameters for the same complete reduced state prediction). A stepwise re-

gression procedure [58] has been used to reduce the number of estimated coefficients

in each of the second-order polynomial models, while preserving the statistical iden-

tification of the available data. Despite the potential extrapolation problems that a

polynomial model could suffer (see Section 5.4.1.2), these models are included in the

comparison of approximate models to represent a global trend approach for dynamic

predictions, in contrast with a localized approach such as iGPM. There are few cases

where polynomial basis functions, by themselves, are used in an iterative mapping

framework to describe a system’s dynamics [51]. Generally, polynomial basis func-

tions are combined with other methodologies to obtain a more robust representation

of a continuous spatio-temporal dynamics.

6.2.1.2 Radial basis functions

Radial basis functions (from now on RBF) have been used for over 30 years since

their appearance in the 1970s, as a methodology to represent irregular surfaces in

topography [54]. Radial basis functions have been employed as empirical models in

many research fields including multi-objective optimization [18], metamodeling [130],

bioinformatics [136] and classification [104]. A radial basis function approximates a

function using a linear combination of radial functions spread across the input space.

Given a dataset of sample points D of n input/output points {xi, yi}, yi ∈ R, xi ∈ R
d,

a RBF is constructed as

ŷ(x) =
n
∑

i=1

wiri(x) (152)

171

where ri(x) represents a radial function, and wi represents the weight in each of

the radial functions. The radial function ri(x) is usually a monotonically decreasing

function relative to the distance of a central point [85]. In Equation (152), each of the

radial functions has been centered around one of the xi sample points of the dataset

D, to maximize the coverage across the input space. Many radial functions can be

used in RBF, but for the fairest comparison of this model with other approximate

models in this study, a Gaussian radial basis function [130] similar to Equation (9) is

being used.

ri (x) = exp

[

−1

2

d
∑

a=1

(xa − xi,a)
2

ℓ2a

]

(153)

where xi is an input point in D

The set of parameters to be estimated in the RBF are the weights wi for each of

the radial functions, as well as the set of range parameters θ = [ℓ1, . . . , ℓd] in Equation

(153). In this case study, the estimation of the weights for the RBF is done using the

ridge regression approach. This approach minimizes the sum of squared prediction

errors of the model, with a regularization term that accounts for potential ill-posed

formulated problems. RBF is known for having similar ill-conditioning problems as

GPM. The parameter estimation of the weights wi using the ridge regression approach

minimizes the function C (w,θ, γ)

C (w,θ, γ) = (y −Rw)T (y −Rw) +
√
γ wTw (154)

where w ∈ R
n,w = [wi, . . . , wn] is the vector of weights in the RBF, y ∈ R

n,y =

[yi, . . . , yn] is the vector of output values in the datasetD, and R ∈ R
n×n, Rij = ri (xj),

is a matrix that contains each of the radial functions evaluated at each of the sample

points in the dataset D. The regularization parameter γ is included in this cost

function to alleviate the ill-conditioning problems in the inversion of the matrix R.

The estimated weights for the RBF ŵ as a function of θ and γ, can be obtained

172

analytically from the minimization of the cost function in Equation (154).

ŵ (θ, γ) =
(

RTR + γI
)−1

RTy (155)

where I ∈ R
n×n is the identity matrix.

Most of the RBF implementations leave the values of θ and γ to be selected by

the user. In this case study these values are selected via a nonlinear constrained opti-

mization that minimize the mean square cross-validation error (MSCV) [65, 102]. A

leave-one-out cross-validation error computes the prediction error between the output

value yi and the predicted value ŷ (xi) of a RBF where the information of the sample

point {xi, yi} has been left out on purpose from the estimated ŵ. The mean square

cross-validation error of a RBF is the mean of the leave-one-out cross-validation errors

at each of the n sample points of the dataset D. According to this error metric, the

nonlinear constrained optimization used to estimate θ and γ is

min
θ,γ

MSCV (θ, γ) =
1

n

n
∑

i=1

(

yi − ŷRBF (xi)
)2

subject to (156)

1× 10−3 ≤ ℓa ≤ 1 i = 1, . . . , d

1× 10−9 ≤ γ ≤ 1× 109

where ŷRBF (xi) represents the RBF prediction in Equation (152) without the infor-

mation of the ith sample point.

Radial basis functions have been used extensively to represent system dynamics.

Early implementations of RBF in system identification were made by Elanayar and

Shin [32]. More recently, RBF have been used as a meshless method to solve partial

differential equations [162], as part of a model predictive control schemes for unstable

nonlinear chemical processes [148] and distributed parameter systems [4]. In contrast

with the previous deterministic examples, this case study build RBF using data from

a stochastic dynamic model.

173

6.2.1.3 Support vector regression

Support vector machine is an classification model developed in the machine learning

community by Vapnik and cooworkers [15] while they were working on a separable

bipartition problem at AT&T Bell Laboratories. The original formulation of support

vector machines creates a mathematical hyperplane boundary that classifies data

points in two separate and different groups of data. Later, Vapnik extended this

classification model to create support vector regression (from now on SVR) [31], by

understanding that a regression model is also a hyperplane that divides the set of

outcomes whose distance margin to this mathematical boundary is minimized. Given

a dataset of sample points D of n input/output points {xi, yi}, yi ∈ R, xi ∈ R
d, a

SVR can be constructed as

ŷ(x) =
n
∑

i=1

wiri(x) + b (157)

where w ∈ R
n,w = [wi, . . . , wn] and b ∈ R are coefficients to be estimated. In SVR,

the radial function ri(x) in Equation (153) has a completely different meaning as in the

RBF model. Here, the radial functions work as mapping functions from the original

input space Rd to a higher dimensional feature space Rn. The rationale for doing this

is that it may be easier to create a linear mathematical hyperplane to separate the

output information in a high dimensional feature space, than creating a non-linear

mathematical hyperplane in the original input space. This type of mathematical

mapping procedure is quite common in the machine learning community and it is

known as kernalization. Because the usage of the radial basis functions as kernel

functions in SVR, the range parameters θ = [ℓ1, . . . , ℓd] in the radial functions must

also be estimated.

The mathematical theory behind the estimation of the w vector coefficients and

the b bias term in SVR is well documented [12, 50, 132]. In summary, the estima-

tion of these coefficients is made by solving a quadratic programming optimization

174

problem, after including slack variables to account for the misclassification of the

output information, creating a dual optimization problem with Lagrange multipliers

and evaluating the Karush-Kuhn–Tucker (KKT) conditions that must be satisfied

by the optimal solution. Instead of using the traditional ǫ-insensitive loss function

developed by Vapnik in its original SVR formulation [31], the SVR parameter esti-

mation in this study uses a quadratic loss function [50], to keep consistency with all

the loss functions in the different approximate models of this chapter. The quadratic

programming problem used to estimate the wi coefficients as a function of θ and γ

in SVR is

min
w(θ,γ)

C (w,θ, γ) =
1

2
wTRw −wTy + γ wTw

subject to (158)

n
∑

i=1

wi = 0

where the definitions of R,y and γ were presented previously for the RBF. From

Equation (158), the estimated weight vector ŵ and estimated bias b̂ to be used in the

SVR prediction in Equation (157) are

ŵ (θ, γ) = arg min
w(θ,γ)

C (w,θ, γ) (159)

b̂ =
1

n

n
∑

i=1

(

yi −
n
∑

j=1

ŵjrj (xi)

)

(160)

Like in the case of the RBF model, the additional parameters θ and γ for SVR are

estimated using the mean square cross-validation error MSCV , leaving one sample

point {xi, yi} at a time. The nonlinear constrained optimization used to estimate θ

175

and γ in SVR is

min
θ,γ

MSCV (θ, γ) =
1

n

n
∑

i=1

(

yi − ŷSV R (xi)
)2

subject to (161)

1× 10−3 ≤ ℓa ≤ 1 i = 1, . . . , d

1× 10−9 ≤ γ ≤ 1× 109

where ŷSV R (xi) represents the SVR prediction in Equation (157) without the infor-

mation of the ith sample point.

Despite that SVR is a fairly recent empirical model, its success has already reached

other research fields outside the machine learning community. SVR has already been

used as a state estimator in a model predictive flight control [130], as a approximate

model for the dynamic description of financial time series [141], as a system identifi-

cation methodology for Wiener models [140], and as an approximated dynamic model

for a tubular reactor [116]. In the machine learning community, SVR and GPM are

considered the current state-of-the-art for artificial intelligence and data mining. De-

spite that both empirical models are highly adaptive thanks to their non-parametric

characteristics, most authors will argue that SVR has significant advantages over

GPM.

The current algorithms for solving quadratic programming problems are an advan-

tage for SVR, against the potential local optimal problems during the MLE method-

ology in GPM. Additionally, SVR could use only a subset of the sample points in D

when the ǫ-insensitive loss function is employed, compare to the GPM implementation

where all sample points are always used. However, the robust statistical framework

of GPM provides error estimations that SVR cannot, a trait that has been explored

and exploited in this thesis work. To the best of my knowledge, there has not been a

comparison between these two empirical models in the context of system dynamics.

176

6.2.1.4 Regression-based inverse distance weighting

Inverse distance weighting is an empirical model for interpolation proposed in the

late 1960s [129], which uses a weighted average of the observations yi to make its

prediction. The original version of the inverse distance weighting uses the Euclidean

distance as a inverse metric to define the weights of each observation in the model,

a much simple formulation compare with some of the most recent empirical models

like GPM, RBF or SVR. The attractive feature of the inverse distance weighting

is that it does not require the inversion of a —sometimes ill-conditioned— matrix.

As was mentioned previously in this thesis, the inversion of covariance matrix V in

GPM or the inversion of the R matrix in RBF and SVR, is the common bottleneck

of these models. Recently, Joseph and Kang [65] has proposed an alternative version

of the inverse distance weighting, by including a linear regression model as part of

its prediction (from now on RB-IDW), with the idea that many complex systems in

spatial statistics and computer experiments have global trends.

Given a dataset of sample points D of n input/output points {xi, yi}, yi ∈ R,

xi ∈ R
d, a RB-IDW can be constructed as

ŷ(x) = µ (x,β) +

∑n

i=1 wi(x)ei
∑n

i=1 wi(x)
(162)

where µ (x,β) is a linear regression model that capture the global trend of the ob-

servations, ei ∈ R is the error between the regression model at the sample points xi

and the observation yi, ei = yi − µ (xi,β). Last, the weight coefficients wi(x) ∈ R

represent the contribution from the inverse distance weighting model to account for

possible local effects in the prediction. Joseph and Kang [65] also proposed to use

a new weighting function for their RB-IDW model, which has some similarities with

the radial basis functions used in GPM, RBF, and SVR

wi (x,θ) =
exp

[

−∑d

a=1
1
2

(xa−xi,a)
2

ℓ2a

]

∑d

a=1
1
2

(xa−xi,a)
2

ℓ2a

(163)

177

where θ = [ℓ1, . . . , ℓd] are the range parameters that control the distance effects in

each of the input space dimensions.

According to this mathematical description, a RB-IDW requires a linear regression

for µ (x,β) and an estimate of θ for the weighting function. The selection of a

regression model for RB-IDW could be done with any variable selection technique in

statistics. For example, the second-order polynomial function described previously

could be used in the RB-IDW to capture global trends. However, in this case study,

the main interest is in evaluating the local behavior in the prediction of the RB-IDW

that makes it comparable to GPM, RBF, and SVR. Therefore, the RB-IDW will use a

constant regression function, µ (x,β) = β, and the estimated value of the coefficient β

is equal to the mean of the output observations yi. Lastly, the estimation of the range

parameters θ in the weighting function wi(x) is made with a nonlinear constrained

optimization using the MSCV error of the residuals between the yi observations and

the estimated β̂. Such constrained optimization to estimate θ in RB-IDW is

min
θ

MSCV (θ) =
1

n

n
∑

i=1

(

ei − êIDW (xi)
)2

subject to (164)

1× 10−3 ≤ ℓa ≤ 1 i = 1, . . . , d

where êIDW (xi) represents the IDW prediction of the residual ei without the infor-

mation of the ith sample point.

6.2.1.5 Equation-free modeling

Equation-free modeling is not a metamodel like any of the previous empirical models

presented in this chapter. Equation-free modeling is often presented as a model-

ing paradigm in multiscale computation, where the time evolution of a macroscopic,

coarse-level state variable is described as a function of the time evolution of a micro-

scopic, fine-level state variable [37, 137]. The reason to take such approach is that

178

“the methodology bypasses the derivation of macroscopic evolution equations when

these equations conceptually exist but are not available in closed form, hence the

term equation-free” [68].

According to this description, an equation-free approximation (from now on EFA)

can be implemented to model the dynamics of the low-order, macroscopic, coarse-

level variables x(s) using the high-order, microscopic, fine-level variables z(s) in the

nanoparticle dynamic model. Figure 48 is a representation of EFA for the case study

in this chapter. The coarse time-stepper, which is the essential tool in the EFA

methodology, involves three steps: lifting, fine-level simulation and restriction. Lift-

ing µ (x(s)) and restriction M (z(s)) are two functions that map the information

between the multiscale levels of the simulation. In practice, there are not generic

lifting/restriction functions that will work for all systems where EFA is used, these

functions heavily depends on the mathematical understanding of the system to be

simulated. In this case study, the sampling procedures for reconstruction and the

moments approximation for reduction explained in Figure 45 will work as the lift-

ing/restriction functions of the EFA. Due to the stochastic nature of the reconstruc-

tion step and the kMC dynamic simulation, it is necessary to perform repetitions of

the EFA methodology at each evaluated x(s). The EFA dynamic prediction at x(s+1)

is created by averaging the results from 5 repetitions of the coarse time-stepper (a

repetition means reconstruction of the nanoparticle size distribution, moving the dis-

tribution in time with the kMC simulation, and reducing the state with the moments

approximation).

In this case study, equation-free modeling is not used as a methodology to improve

the computational time of expensive dynamic simulations. However, researchers have

explored the possibility of using EFA to accelerate the macroscopic dynamic model

using a coarse projective integration [37, 68]. Figure 48 also reveals why EFA can be

compared with the approximate models previously described in this chapter. While

179

Lifting
(Reconstruction)

fine-level

Microscopic

time-stepper (kMC)

coarse-level

Input Macroscopic
time-stepperX
Macroscopic dynamic model

(GPM, SPF, RBF, SVR, RB-IDW)

One-step-ahead
prediction

Restriction
(Reduction)

ˆ()sx
ˆ(1)s +x

 : () ()

() = (())

s s

s s

µ

µ

x z

z x

֏ : () ()

() = (())

s s

s s

z x

x z

֏M

M

Figure 48: Description of the equation-free modeling. The figure shows the relation-
ship between the lifting / reconstruction and the restriction / reduction steps of the
equation-free modeling, applied to the nanoparticle dynamic model.

EFA assumes a equation-free modeling for the dynamics of the state variables x(s),

the remaining approximate models propose a close-form equation to represent these

dynamics, at the cost of potentially using the erroneous mathematical structure. Since

EFA assumes that the fine-level dynamic model is an accurate representation of the

system, it reasonable to think that the prediction error in EFA is because the errors

in the reconstruction and reduction steps. Based on this, EFA allows this case study

to compare the state reduction errors in an expensive dynamic simulation with the

prediction errors of the metamodels.

6.2.2 Research Analysis

The analysis in this chapter is focused on the comparison between different metamod-

els as potential approximate models for multivariate stochastic dynamic predictions

under the iterative mapping framework.

As it has been done throughout this thesis, the research analysis for dynamic

models is based on the one-step-ahead prediction error LEM , Equation (110) and

the global prediction error of a dynamic trajectory DEM , Equation (111). For clar-

ification, all LEM and DEM values are calculated for the prediction of the scaled

180

reduced state variables of the kMC simulation, and not for the full-state variables z(s)

or even the reduced state varianles x(s). Therefore, the LEM and DEM values of

the metamodels are not directly influenced by the state reduction procedure, except

for the equation-free approximations, where most of its prediction error is related

to this mathematical transformation. A test dataset of 200 dynamic trajectories is

constructed as reference for the DEM calculations. The initial sample values of these

200 trajectories are located in the initial sample region, Equation (147), and selected

using a Latin hypercube approach. The sampling rate used in these trajectories is

∆t = 20 s and the final time for the kMC growth simulation is tgr = 7200 s as it

appears in Table 11.

Each of the 200 dynamic trajectories is simulated 100 times to capture the mean

behavior of the stochastic kMC simulation. Each of these kMC repetitions is first

reduced using the moments approximation, and then averaged at each discrete time

step to derive the reference mean dynamic trajectories in the DEM prediction error.

The selected test sample points for LEM are chosen by a sparsification procedure

using all 200 mean dynamic trajectories in the DEM test dataset, with a grid spacing

of ∆g = 0.01. Approximately, 2000 sample points are used in the LEM calculations,

spread across the five-dimension dynamic region. For any finite sample size, the

sample mean dynamic trajectory will fluctuate from the true mean kMC behavior,

and this will of course limit the minimum value of the DEM and LEM that can be

achieved. However, by using a fixed value, this case study is able to use the LEM and

DEM to compare the performance of various approximate models in this chapter.

The comparison of approximate models considers 6 different mathematical models:

iGPM, SPF, RBF, SVR, RB-IDW, and EFA. From all these models, the first five will

correspond to a metamodeling approach where pre-collected information is used to

generate a recursive mapping function, while the last one bypasses the construction

of a close-form equation. For the case of the metamodels, the idea is to create d

181

independent metamodels to predict each of the scaled reduced state variables x(s).

Each of the metamodels is build using a set of ndyn = 20 dynamic trajectories, and a

sparsification with ∆g = 0.05. The initial sample points for the dynamic trajectories

are selected using a Latin hypercube approach. There are some specific considerations

in this comparison study:

1. There is not repeated information in the datasets used to build each of the

different metamodels. This is in contrast to some previous work also focused in

compared metamodeling approaches using stochastic observations [85], in which

the average value of the repetitions is used as the training target. This study

does not aid the predictions of the metamodels by using average values of the

stochastic dynamic information.

2. No additional sample points can be added to the database D for any of the

metamodels. This condition is explicitly stated here, to justify why a com-

mon methodology in the area of fast function evaluations like in-situ adaptive

tabulation (ISAT) [114] is not used in this study. The adaptive component of

ISAT will require additional function evaluations of the nanoparticle dynamic

model to enrich its database D for tabulation. While there are implementations

of sequential procedures that add information for a dynamic GPM framework

[56], such mathematical implementations have not been found for the remaining

metamodels.

3. The parameter methodology to estimate the GPM has been changed from the

recurrent MLE methodology to the cross-validation approach. The reason for

this change is the substantial difference in the computational cost of parameter

estimation that could favor the GPM over the rest of the metamodels.

4. The comparison between the different metamodels is based on LEM predic-

tion errors, DEM prediction errors, CPU Time for the parameter estimation

182

and CPU Time for a one-step-ahead prediction in the five-dimensional dy-

namic region. Other performance metrics for the evaluation of computationally-

expensive black-box functions can be found in [126].

6.3 Results

6.3.1 Comparison of metamodeling approaches for mean dynamic pre-
dictions in nanoparticle synthesis

The last part of this results section is the comparison of data-driven models for

approximate dynamic predictions of the nanoparticle dynamic model. To the best of

my knowledge, this is the first systematic comparison between metamodels to describe

system dynamics as an iterative mapping function. Therefore, the comparison will

evaluate their one-step-ahead prediction error (LEM) and their global prediction

error (DEM). To provide robustness to the study, 100 different experimental designs

have been using in each of the selected metamodels for dynamic prediction. The one-

step-ahead prediction error considers nearly 2000×100 prediction errors in each of the

metamodels. Then, average values of the prediction errors can be computed. Table

12 summarizes the results from these computations. The first element to noticed

in Table 12 is that equation-free approximations have major difficulties for the one-

step-ahead prediction error with only a percentage error of 0.57 %, which still a small

value. More important is to see that EFA has a poor performance because its large

prediction errors on the three moments derived from the nanoparticle size distribution

[x3,x4,x5]. These are the three reduced state variables that are directly involved in

the reconstruction / reduction mechanism of the EFA. Potentially, by increasing the

number of repetitions required in the EFA for its prediction, those prediction errors

could decrease significantly.

The performance of RB-IDW in the one-step-ahead prediction error is similar to

the EFA results. In principle, RB-IDW should not be used to model the stochastic

nanoparticle dynamic model because its characteristics as an interpolator. But, the

183

Table 12: Mean values of log10(LEM) over the test samples for the nanoparticle
dynamics model. The table summarizes the LEM results in each of the five reduced
state variables as well as the overall LEM prediction of each approximate model. The
LEM values were calculated over 100 different experimental designs, each of them
with a ndyn = 20 dynamic trajectories and a grid spacing ∆g = 0.05.

Model x1 x2 x3 x4 x5 Overall

iGPM -6.0172 -6.8450 -5.3611 -6.5489 -6.7201 -5.4743
SPF -6.1269 -8.9813 -5.9249 -7.1274 -7.2014 -5.8747
RBF -6.1890 -6.5998 -5.1638 -5.8573 -6.1690 -5.1383
SVR -6.1037 -6.7589 -5.4575 -6.4467 -6.5558 -5.4585

RB-IDW -5.5256 -6.5984 -4.7884 -5.3845 -5.3486 -4.7532
EFA -6.5194 -8.2556 -4.1748 -5.3958 -5.1870 -4.4854

results in this table indicate that RB-IDW has similar prediction error performance as

the iGPM, SVR and RBF for the prediction of x2, the scaled concentration of active

sites on the carbon nanotube surface. The reason for this is that this particular

reduced state variable has the smallest noise level across the dynamic region. The

best performance of all the metamodels in this one-step-ahead prediction error is for

the SPF, closely followed by the iGPM and SVR, with a percentage error of 0.12

%. Perhaps one of the reason for this outstanding behavior is the large number of

available regression functions that are screened during its construction.

Table 13 summarizes the results regarding the dynamic predictions of each of the

metamodels. First, as in Chapter 5, the presence of global trend functions like SPF

lead to a potential extrapolation problem during its iterative mapping. Also, the

interpolation characteristics of the RB-IDW, where the model begins to interpolate

noise observations in regions with high-noise levels, leads the RB-IDW to generate

extrapolation problems. In the end, from the four remainder metamodels, iGPM

is exhibits the best performance in terms of DEM , closely followed by the SVR

metamodel. To provide a more robust representation of the results in these tables,

Figure 49 shows the LEM and DEM distributions over the different test sample

points and dynamic trajectories for the different metamodels.

184

Table 13: Mean values of log10(DEM) over the test samples for the nanoparticle
dynamics model. The table summarizes the DEM results in each of the five reduced
state variables as well as the overallDEM prediction of each approximate model. The
LEM values were calculated over 100 different experimental designs, each of them
with a ndyn = 20 dynamic trajectories and a grid spacing ∆g = 0.05. The asterisk
represents DEM prediction errors where extrapolation problems have occurred.

Model x1 x2 x3 x4 x5 Overall

iGPM -4.1668 -5.1500 -3.2664 -3.7326 -3.4900 -3.4939
SPF -4.3967* -7.1003* 3.5441* -4.4567* 3.8685* -3.8369*
RBF -4.0692 -4.6837 -2.7381 -2.9337 -2.7476 -2.8949
SVR -4.2276 -5.0854 -3.3083 -3.7230 -3.4447 -3.4857

RB-IDW -4.1014* -5.0454* -3.2062* -3.5689* -3.3367* -3.3947*
EFA -3.7133 -6.9880 -2.5825 -2.5572 -2.1922 -2.5668

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
0

1000

2000

3000

4000

5000

6000

7000

log
10

(LEM) − Overall

N
um

be
r

of
 O

cu
rr

en
ci

es

iGPM
SPF
RBF
SVR
RB−IDW
EFA

(a)

−6 −5 −4 −3 −2 −1 0
0

200

400

600

800

1000

1200

1400

log
10

(LEM) − Overall

N
um

be
r

of
 O

cu
rr

en
ci

es

iGPM
RBF
SVR
EFA

(b)

Figure 49: LEM andDEM prediction error distributions in the prediction of different
metamodels for the nanoparticle dynamic model. Both figures were constructed from
the results of 100 different experimental designs, each of them with ndyn = 20 dynamic
trajectories and ∆g = 0.05.

The ultimate goal in building approximate models for expensive dynamic simula-

tions, is to reduce the computational cost of these function evaluations. So far, the

best prediction performance has been made by the non-parametric models, iGPM

and SVR. Table 14 summarizes the computational costs of building each of these

mathematical models. The implementation of a cross-validation approach increases

the computational cost for parameter estimation of iGPM, RBF and SVR, compared

to SPF. To give an idea in the increase of the computational cost for parameter

185

estimation due to cross-validation, an iGPM using the MLE parameter estimation

methodology takes approximately 88 seconds to be completed, or 0.8 % of the com-

putational time employed in the cross-validation approach. The major reason for

this significant increase in the computational time is in the inversion of the matrices

that locally correlates the information in each of these models. Once the parameter

estimation is completed, the speed-up obtained by the metamodeling approaches is

significant compared to the original kMC simulation. A kMC simulation for one of

the dynamic trajectories takes approximately 55 seconds to be completed, compared

to 0.03 seconds that will take an iGPM to perform the prediction of a mean dynamic

trajectory, a computational reduction of nearly 99.9 %, with a percentage error in the

dynamic trajectory of 1.79 %.

Table 14: Computational cost of different approximate models for the nanoparticle
dynamics model. The tables shows the average CPU time in seconds for the param-
eter estimation and prediction of the approximate models, as well as the different
parameter estimation methodologies in each of them. The CPU time calculations
were computed with a Intel R©CoreTM 2 @ 2.4 GHz, Matlab Version R2009b.

Model Parameter Estimation
CPU Time (s)

Estimation Prediction

iGPM Cross-Validation (CV) 11193 7.5719× 10−4

SPF Least-Squares Estimator 4.4684 0.2976× 10−4

RBF Ridge Regression + CV 18963 2.3216× 10−4

SVR Quadratic Programming + CV 18897 2.5425× 10−4

RB-IDW Least-Squares Estimator + CV 31.8472 3.0913× 10−4

EFA N/A —- 1.1797

6.4 Discussion

The nanoparticle dynamics model is a more realistic case study for the dynamic

implementation of Gaussian process models. Although the case study explored in

this chapter is not truly an “expensive” dynamic simulations (i.e. it only takes 55

seconds to describe a dynamic trajectory), the main result in this chapter shows that

metamodeling approaches can be used to significantly decrease the computational

186

time of expensive dynamic simulations. Despite that in this thesis Gaussian process

models have been used for dynamic predictions, it is necessary to recognized support

vector regression as a viable and efficient approximate model for dynamic predictions.

This case study has provided additional challenges for the implementation of the

GPM error estimation properties in expensive dynamic simulations. The kMC simu-

lation generates a non-constant noise level in the stochastic observations used in the

model. This non-constant noise level has shown significant effects in the performance

of the proposed error estimation analysis for multivariate dynamic systems. The re-

sults in this chapter suggests that it is necessary to implement solutions within the

framework of GPM, that aids in the identification of the noise structure. The stochas-

tic kriging model proposed by Ankenman and cooworkers [6] contains an additional

set of variables σ2
u,ii that represent the characteristic variance of a sample point in

the model. Other suggestions include incorporating additional correlation functions

in the regression covariance matrix V . With this idea, the non-constant noise level

will be seen as an additional local correlation process that is simultaneously present

in the stochastic observations.

One of the arguments in these comparisons of several mathematical models is

that multiple dynamic problems must be evaluated in order to provide a more solid

conclusion regarding these models. While this is a valid argument, the nanoparticle

dynamic model is a fairly complex simulation in terms of the dimensional size, the

issue with the state reduction and the non-constant noise level. Regardless of this, a

deterministic dynamic model with the same dimension, and a even simpler dynamic

model, with a highly nonlinear behavior could be a good addition to complete the

metamodeling comparison.

In summary, based on their accuracy of mean prediction and the computational

requirements of the mathematical models, support vector regression is a recommended

choice for approximate models of expensive dynamic trajectories. Support vector

187

regression has similar LEM and DEM accuracy as the iGPM metamodel, but it

generates dynamic predictions three times faster than the iGPM metamodel. In

favor of the Gaussian process models, the implementation of the MLE as a parameter

estimation will be significantly lower compared to the SVR metamodel. Moreoever,

the statistical interpretation of the Gaussian process model allows the estimation of

the prediction error, as it has been shown in this thesis. This type of results about

the prediction error cannot be obtained with the support vector regression.

188

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This thesis shows the implementation of metamodeling approaches as a solution to

approximate complex, and also expensive, dynamic simulations. The metamodel is

implemented by constructing a iterative mapping function with an empirical model.

For that purpose, the selected metamodel was a Gaussian process model. The iter-

ative use of this mapping function approximates the dynamic evolution of a system.

The major source of error in this type of metamodeling implementation is the model

itself. By using recursively its own prediction, the model propagates the prediction

errors at early times. Therefore, understanding the propagation of error in these it-

erative mapping functions is an essential element in the successful implementation of

metamodeling for dynamic simulations.

The results in this thesis provide evidence that metamodeling is a viable option

for approximating dynamic simulations. This thesis concludes that metamodeling

approaches are suitable for approximations when the user has a good control over

the data acquisition from the complex dynamic simulations. Ideally, the user should

have enough control to obtain sample information at a specific state and a specific

time during a dynamic prediction. This level of sampling control allows the user to

incorporate dynamic information about unexplored areas in the dynamic region, or

about regions where additional data points are required for precise predictions. This

thesis recommends that metamodeling approaches can be used to approximate low-

dimensional dynamic simulations (up to 8 state variables). Additionally, this thesis

shows that metamodeling techniques can be combined with state reduction techniques

189

to approximate high-dimensional dynamic simulations, as it is the nanoparticle dy-

namic model. Last, this thesis uses metamodeling techniques for approximation of

dynamic simulations over a continuous state space, further studies are required to

generate dynamic predictions of a discrete state space.

Gaussian process models are one of the most popular empirical models used in

engineering. Its convenient mathematical properties, its flexibility and its error esti-

mation properties makes this model a recurrent candidate to approximate non-linear

functions. This thesis analyzes the implications of the error estimation properties

of the model when stochastic observations are used. The conclusion is that these

properties depend on the identification of local correlations in the stochastic output

information. This thesis defines a lower limit of the signal-to-noise ratio µ

σ
= 10, to

guarantee those error estimation properties, despite the presence of noise in the obser-

vations. This thesis reveals two scenarios where the identification of local correlation

is significantly reduced: when the noise in the observations is sufficiently large (i.e.

when the signal-to-noise ratio is below the recommended noise limit) or when highly

descriptive global trend functions are included in the model.

Traditionally the Gaussian process model uses a maximum likelihood estimator

as a methodology to estimate its parameters. While the maximum likelihood esti-

mator showed a good performance in the identification of the noise in the stochastic

observations, a more robust approach to estimate this particular parameter is us-

ing repetitions and a sample variance calculation. This isolated estimation of the

noise level effectively separates the data variability in the stochastic observations. At

the same time, this thesis shows that experimental designs for GPM should favor a

space-filling approach, even in the cases of stochastic observations. In this way, the

identification of the local correlation in the model is enhanced and the error estimation

properties of GPM are preserved.

One of the major questions in this thesis is: can Gaussian process models estimate

190

the propagated error in dynamics? This thesis evaluates two dynamic implementa-

tions where the input uncertainty was explicitly considered in the GPM predictive

distribution. The result indicates that it is possible to track the propagated error us-

ing the Gaussian approximation for input uncertainty. This result requires additional

evaluations, including the effects of the number of sample points and the evaluation

with another one-dimensional dynamic model.

The implementation of Gaussian process models for the prediction of the non-

adiabatic reactor in Chapter 5 provided a large amount of information to be considered

in the entire dynamic framework. This thesis is the first case where a multivariate

Gaussian process model (known also as cokriging in spatial statistics), is implemented

as an iterative mapping function. This thesis expands the error estimation analysis

to multivariate systems and shows that it is possible to provide information about the

prediction error distribution. This chapter opens the discussion about sparsification

and the appropriate methods to select sample points for system dynamics. This

chapter shows the difficulties that occur with global trend functions, thanks to the

extrapolation problem. The presence of the two steady states suggests the importance

of including gradient and Hessian output information as part of the selection of sample

points in the GPM dynamic framework. This case study shows that Gaussian process

models are suitable for representing the dynamics of stable steady states.

At last, this thesis returned to the beginning of this work, by implementing all

the knowledge that has been created around Gaussian process models, and compar-

ing it with other metamodeling approaches. As a result, support vector regression

is a recommended choice, over the Gaussian process model, if the only interest is

is obtaining accurate mean dynamic predictions. To conclude with a final remark,

the best GPM implementation for the task of approximating complex and expensive

dynamic trajectories is the stochastic kriging model [6], using a constant regression

191

function. This particular version of Gaussian process models allows features to cap-

ture constant and non-constant noise levels, as well as the local correlation necessary

to preserve the error estimation properties of the model.

7.2 Future Work

The most important element in the construction of a Gaussian process model dynamic

framework is the generation of the database D for the model. In metamodeling, the

selection of sample points for an empirical model is based on certain geometrical

and/or spatial properties in the input space, or tailored to improve certain charac-

teristics of the empirical models to be used. The research area of design and analysis

computer experiments (DACE) explores the implementation of novel techniques to

improve the construction of metamodels. Then the idea is to bring some of the con-

cepts from the DACE research area and apply them for the dynamic implementation

presented in this thesis.

Most of the current implementations in DACE are related to a sequential selection

of the sample points in the input space, such that at every iteration, the metamodel

gains information about the approximated function. Such concept could be imple-

mented in this dynamic implementation of GPM to improve the dynamic prediction

of the metamodel. Hernandez and Grover implemented a preliminary version of a

sequential DACE for the identification of system dynamics using Gaussian process

models [56]. Usually these sequential DACE approaches begins with an initial set

of sample points in the input space. Then the selection of the next sample points

is made via an optimization problem, where the new sample point for the dataset is

selected from the predetermined input space.

In the case of this thesis the preliminary database for this sequential DACE can

be generated following the exploration of the initial sample region and the sparsifi-

cation procedure. The major challenges in the implementation of these ideas appear

192

at the moment of performing the selection of a new sample point. The dynamic re-

gion, which is the input space where the metamodel is built, does not have a clear

mathematical boundary that describes it. Hernandez and Grover [56] solved this sit-

uation by constructing a convex hull that envelops all sample points in the dynamic

region, and then used those hyperplanes as constraints for the optimization in a five-

dimensional state space. The drawback of this solution is to assume that the dynamic

region is indeed a convex region. If the dynamic region is non-convex, then is possible

that the solution of this optimization problem is a sample point with no significant

value to describe the dynamics of the system.

Another element that was not incorporated in this thesis is the model selection of

the correlation functions in Gaussian process models. During the thesis, only one cor-

relation function was used, the Gaussian correlation function. This thesis explained

in Chapter 2 the mathematical reasons why this correlation function has been used in

most metamodeling research. There are a few references where the problem of model

selection for correlation functions is addressed [44, 61, 124]. The current emphasis in

the implementation of correlation functions is to use non-stationary correlation func-

tions. The Gaussian correlation function in Equation (9) is a stationary correlation

function, because the correlation between two residuals does not depend of the loca-

tion of those points in the input space, it only depends on the distance between them.

In a non-stationary correlation function, the specific location of the sample points in

the input space is used as part of the local correlation. In the context of the dynamic

implementation of GPM, a non-stationary correlation function is capable of capturing

nonlinear behaviors of the output information that occurs in specific locations of the

dynamic region. The non-stationary correlation function allows a more descriptive

local correlation, but it requires a larger number of sample points in the dataset D

to estimate the larger number of parameters in the function. Although these types

of correlations are not so common in engineering, there are few cases where these

193

functions have been used in GPM for computer experiments [155] and real climate

data [110].

194

REFERENCES

[1] Ababou, R., Bagtzoglou, A. C., and Wood, E. F., “On the condition
number of covariance matrices in kriging, estimation and simulation of random
fields,” Mathematical Geology, vol. 26, pp. 99–133, 1994.

[2] Abrol, S., Lu, M., Hill, D., Herrick, A., and Edgar, T. F., “Faster
dynamic process simulation using in situ adaptive tabulation,” Industrial &
Chemistry Engineering Research, vol. 49, pp. 7814–7823, 2010.

[3] Abt, M. and Walsh, W., “Fisher information and maximum likelihood esti-
mation of covariance parameters in Gaussian stochastic processes,” Canad. J.
Statist., vol. 26, pp. 127–137, 1998.

[4] Aggelogiannaki, E. and Sarimveis, H., “Nonlinear model predictive con-
trol for distributed parameter systems using data driven artificial neural network
models,” Computers and Chemical Engineering, vol. 32, pp. 1225–1237, 2008.

[5] Alexander, F. J., Johnson, G., Eyink, G. L., and Kevrekidis, I. G.,
“Equation-free implementation of statistical moment closures,” Physical Review
E, vol. 77, p. 026701, 2008.

[6] Ankenman, B., Nelson, B. L., and Staum, J., “Stochastic kriging for
simulation metamodeling,” Operations Research, vol. 58, no. 2, pp. 371–382,
2010.

[7] Aschenbrenner, O., Dahmen, N., Schaber, K., and Dinjus, E., “Ad-
sorption of dimethyl(1,5-cyclooctadiene)platinum on porous supports in cuper-
critical carbon dioxide,” Ind. Eng. Chem. Res., vol. 47, no. 9, pp. 3150–3155,
2008.

[8] Aschenbrenner, O., Kemper, S., Dahmen, N., Schaber, K., and Din-

jus, E., “Solubility of β-diketonates, cyclopentadienyls, and cyclooctadiene
complexes with various metals in supercritical carbon dioxide,” Journal of Su-
percritical Fluids, vol. 41, pp. 179–186, 2007.

[9] Aumi, S. and Mhaskar, P., “Integrating data-based modeling and nonlinear
control tools for batch process control,” AICHE Journal, 2011. In Press, DOI:
10.1002/aic.12720.

[10] Azman, K. andKocijan, J., “Application of Gaussian processes for black-box
modelling of biosystems,” ISA Transactions, vol. 46, pp. 443–457, 2007.

[11] Baggett, L. S., A comprenhensive approach to spatial and spatiotemporal
dependence modeling. PhD thesis, Rice University, 2000.

195

[12] Basak, D., Pal, S., and Patranabis, D. C., “Support vector regression,”
Neural Information Processing Letters and Reviews, vol. 11, pp. 203–224, 2007.

[13] Bayrakceken, A., Kitkamthorn, U., Aindow, M., and Erkey, C.,
“Decoration of multi-wall carbon nanotubes with platinum nanoparticles using
supercritical deposition with thermodynamic control of metal loading,” Scripta
Materialia, vol. 56, pp. 101–103, 2007.

[14] Blasco, J. A., Fueyo, N., Dopazo, C., and Chen, J.-Y., “A self-
organizing-map approach to chemistry representation in combustion applica-
tions,” Combustion Theory and Modelling, vol. 4, pp. 61–76, 2000.

[15] Boser, B. E., Guyon, I. M., and Vapnik, V. N., “A training algorithm for
optimal margin classifiers,” in Proceedings of the 5th Annual ACM Workshop
on Computational Learning Theory, pp. 144–152, ACM Press, 1992.

[16] Boyle, P. and Frean, M., “Dependent Gaussian process,” in Advances in
Neural Information Processing Systems 17 (Saul, L. K., Weiss, Y., and
Bottou, L., eds.), pp. 217–224, Cambridge, MA: The MIT Press, 2005.

[17] Chapman, W. L., Welch, W. J., Bowman, K. P., Sacks, J., andWalsh,

J. E., “Arctic sea ice variability: Model sensitivities and a multidecadal simu-
lation,” Journal of Geophysical Research, vol. 99, pp. 919–935, 1994.

[18] Chen, G., Han, X., Liu, G., Jiang, C., and Zhao, Z., “An efficient multi-
objective optimization method for black-box functions using sequential approx-
imate technique,” Applied Soft Computing, vol. 12, pp. 14–27, 2012.

[19] Chen, V. C. P., Tsui, K.-L., Barton, R. R., and Meckesheimer, M.,
“A review on design, modeling and applications of computer experiments,” IIE
Transactions, vol. 38, no. 4, pp. 273–291, 2006.

[20] Chrastil, J., “Solubility of solids and liquids in supercritical gases,” J. Phys.
Chem, vol. 86, pp. 3016–3021, 1982.

[21] Crary, S. B., “Design of computer experiments for metamodel generation,”
Analog Integrated Circuits and Signal Processing, vol. 32, pp. 7–16, 2002.

[22] Crespo, J. L., Zorrilla, M., Bernardos, P., and Mora, E., “A new
image prediction model based on spatio-temporal techniques,” Visual Comput.,
vol. 23, pp. 419–431, 2007.

[23] Crespo, L. G. and Sun, J. Q., “Fixed final time optimal control via simple
cell mapping,” Nonlinear Dynamics, vol. 31, pp. 119–131, 2003.

[24] Cressie, N., Statistics for Spatial Data. Wiley Interscience, 3rd ed., 1993.

[25] Crombecq, K., Laermans, E., and Dhaene, T., “Efficient space-filling
and non-collapsing sequential design strategies for simulation-based modeling,”
European Journal of Operational Research, vol. 214, pp. 683–696, 2011.

196

[26] Currin, C., Mitchell, M., Morris, M., and Ylvisaker, D., “Bayesian
prediction of deterministic function, with applications to the design and analy-
sis of computer experiments,” Journal of the American Statistical Association,
vol. 86, pp. 953–963, 1991.

[27] Davis, G. J. and Morris, M. D., “Six factors which affect the condition
number of matrices associated with kriging,” Mathematical Geology, vol. 29,
pp. 669–683, 1997.

[28] Deisenroth, M. P., Rasmussen, C. E., and Peters, J., “Gaussian process
dynamic programming,” Neurocomputing, vol. 72, pp. 1508–1524, 2009.

[29] den Hertog, D., Kleijnen, J. P. C., and Siem, A. Y. D., “The cor-
rect kriging variance estimated by bootstrapping,” Journal of the Operational
Research Society, vol. 57, pp. 400–409, 2006.

[30] Dixon, L. C. W. and Szeg, G. P., “The global optimization problem: An
introduction,” in Towards Global Optimisation 2 (Dixon, L. C. W. and Szeg,

G. P., eds.), pp. 1–15, Amsterdam: Elsevier Service, 1978.

[31] Drucker, H., Burges, C., Kaufman, L., Smola, A., and Vapnik, V.,
“Support vector regression machines,” in Proceedings of the 1996 Conference:
Advances in Neural Information Processing Systems, vol. 9, pp. 155–161, 1996.

[32] Elanayar, S. and Shin, Y. C., “Radial basis function neural network for
approximation and estimation of nonlinear stochastic dynamic systems,” IEEE
Transactions on Neural Networks, vol. 5, pp. 594–603, 1994.

[33] Eldar, Y. C., “Minimum variance in biased estimation: Bounds and asymp-
totically optimal estimators,” IEEE Transactions on Signal Processing, vol. 52,
pp. 1915–1929, 2004.

[34] Erkey, C., “Preparation of metallic supported nanoparticles and films using
supercritical fluid deposition,” Journal of Supercritical Fluids, vol. 47, pp. 517–
522, 2007.

[35] Finney, E. E. and Finke, R. G., “Nanocluster nucleation and growth kinetic
and mechanistic studies: A review emphasizing transition-metal nanoclusters,”
Journal of Colloid and Interface Science, vol. 317, pp. 351–374, 2008.

[36] Fischer, J. and Kreuzer, E., “Generalized cell mapping for randomly per-
turbed dynamical systems,” Z. Angew. Math. Mech., vol. 81, no. 11, pp. 769–
777, 2001.

[37] Gear, C. W., Kevrekidis, I. G., and Theodoropoulos, C., “Coarse inte-
gration/bifurcation analysis via microscopic simulators: micro-Galerkin meth-
ods,” Computers and Chemical Engineering, vol. 26, pp. 941–963, 2002.

197

[38] Gelfand, A. E., Ghosh, S. K., Knight, J. R., and Sirmans, C. F.,
“Spatio-temporal modeling of residential sales data,” Journal of Business &
Economic Statistics, vol. 16, no. 3, pp. 312–321, 1998.

[39] Gillespie, D. T., “A general method for numerically simulating the stochas-
tic time evolution of coupled chemical reactions,” Journal of Computational
Physics, vol. 22, pp. 403–434, 1976.

[40] Girard, A. and Murray-Smith, R., “Gaussian processes: Prediction at a
noisy input and application to iterative multiple-step ahead forecasting of time
series,” in Switching and Learning in Feedback Systems (Lecture Notes in Com-
puter Science 3355) (Murray-Smith, R. andGirard, A., eds.), pp. 158–184,
Berlin: Springer, 2005.

[41] Gneiting, T., Kleiber, W., and Schlather, M., “Matern cross-covariance
functions for multivariate random fields,” Journal of the American Statistical
Association, vol. 105, no. 491, pp. 1167–1177, 2010.

[42] Goel, T., Hafkta, R. T., and Shyy, W., “Comparing error estimation
measures for polynomial and kriging approximation of noise-free functions,”
Struct. Multidisc. Optim., vol. 38, pp. 429–442, 2009.

[43] Goldberger, A. S., “Best linear unbiased prediction in the generalized linear
regression model,” Journal of the American Statistical Association, vol. 57,
no. 298, pp. 369–375, 1962.

[44] Gorsich, D. J. and Genton, M. G., “Variogram model selection via non-
parametric derivative estimation,” Mathematical Geology, vol. 32, pp. 249–270,
2000.

[45] Goulard, M. and Voltz, M., “Linear coregionalization model: Tools for es-
timation and choice of cross-variogram matrix,” Mathematical Geology, vol. 24,
pp. 269–286, 1992.

[46] Grancharova, A., Kocijan, J., and Johansen, T. A., “Explicit stochastic
predictive control of combustion plants based on Gaussian process models,”
Automatica, vol. 44, pp. 1621–1631, 2008.

[47] Gregorcic, G. and Lightbody, G., “Gaussian process approach for mod-
eling of nonlinear systems,” Engineering Applications of Artificial Intelligence,
vol. 22, pp. 522–533, 2009.

[48] Guder, R. and Kreuzer, E., “Control of an adaptive refinement technique
of generalized cell mapping by system dynamics,” Nonlinear Dynamics, vol. 20,
pp. 21–32, 1999.

[49] Gummalla, M., Tsapatsis, M., Watkins, J. J., and Vlachos, D. G.,
“Multiscale hybrid modeling of film deposition within porous substrates,”
AIChE Journal, vol. 50, no. 3, pp. 684–695, 2004.

198

[50] Gunn, S. R., “Support vector machines for classification and regression,”
tech. rep., Image Speech and Intelligent Systems Research Group, University of
Southampton, 1997.

[51] Guo, L., Billings, S., and Coca, D., “Identification of partial differential
equation models for a class of multiscale spatio-temporal dynamical systems,”
International Journal of Control, vol. 83, pp. 40–48, 2010.

[52] Habbi, H., Kidouche, M., and Zelmat, M., “Data-driven fuzzy models for
nonlinear indentification of a complex heat exchanger,” Applied Mathematical
Modeling, vol. 35, pp. 1470–1482, 2011.

[53] Handcock, M. S. and Wallis, J. R., “An approach to statistical spatial-
temporal modeling of meteorological fields,” Journal of the American Statistical
Association, vol. 89, no. 426, pp. 368–378, 1994.

[54] Hardy, R. L., “Multiquadric equations of topography and other irregular
surfaces,” Journal of Geophysical Reseach, vol. 76, pp. 1905–1915, 1971.

[55] Hedengren, J. D. and Edgar, T. F., “Approximate nonlinear model pre-
dictive control with in situ adaptive tabulation,” Computers and Chemical En-
gineering, vol. 32, pp. 706–714, 2008.

[56] Hernandez, A. F. and Grover, M. A., “Stochastic dynamic predictions us-
ing Gaussian process models for nanoparticle synthesis,” Computers & Chemical
Engineering, vol. 34, no. 12, pp. 1953–1961, 2010.

[57] Hernandez, A. F. and Grover, M. A., “Comparison of sampling strate-
gies for Gaussian process models, with application to nanoparticle dynamics,”
Industrial & Chemistry Engineering Research, vol. 50, pp. 1379–1388, 2011.

[58] Hocking, R., “The analysis and selection of variables in linear regression,”
Biometrics, vol. 32, pp. 1–49, 1976.

[59] Hsu, C. S., “A theory of cell-to-cell mapping dynamical systems,” Journal of
Applied Mechanics - Transactions of the ASME, vol. 47, no. 4, pp. 931–939,
1980.

[60] Huang, C., Yao, Y., Cressie, N., and Hsing, T., “Multivariate intrinsic
random functions for cokriging,” Mathematical Geosciences, vol. 41, pp. 887–
904, 2009.

[61] Huang, H.-C., Martinez, F., Mateu, J., and Montes, F., “Model com-
parison and selection for stationary space-time models,” Computational Statis-
tics & Data Analysis, vol. 51, pp. 4577–4596, 2007.

[62] Jones, D., Schonlau, M., and Welch, W., “Efficient global optimiza-
tion of expensive black-box functions,” Journal of Global Optimization, vol. 13,
pp. 455–492, 1998.

199

[63] Jones, R. H. and Zhang, Y., “Models for continuous stationary space-time
processes,” in Modelling Longitudinal and Spatially Correlated Data (Lecture
Notes in Statistics 122) (Gregoire, T. G., Brillinger, D. R., Diggle,

P. J., Russek-Cohen, E., Warren, W. G., and Wolfinger, R. D., eds.),
pp. 289–298, New York: Springer, 1997.

[64] Joseph, R., Hung, Y., and Sudjanto, A., “Blind kriging: A new method for
developing metamodels,” Journal of Mechanical Design, vol. 130, no. 3, 2008.

[65] Joseph, V. R. and Kang, L., “Regression-based inverse distance weighting
with applications to computer experiments,” Technometrics, vol. 53, pp. 254–
265, 2011.

[66] Jost, G., Heuvelink, G. B. M., and Papritz, A., “Analysing the space-
time distribution of soil water storage of a forest ecosystem using spatio-
temporal kriging,” Geoderma, vol. 128, pp. 258–273, 2005.

[67] Kevrekidis, I. G., Gear, C. W., and Hummer, G., “Equation-free:
The computer-aided analysis of complex multiscale systems,” AIChE Journal,
vol. 50, no. 7, pp. 1346–1355, 2004.

[68] Kevrekidis, I. G. and Samaey, G., “Equation-free multiscale computation:
algorithms and applications,” Annual Review of Physical Chemistry, vol. 60,
pp. 321–344, 2009.

[69] Kim, H.-C. and Ghahramani, Z., “The EM-EP algorithm for Gaussian pro-
cess classification,” in Proceedings of the International Conference in Computer
Vision, 2003.

[70] Kirk, P. D. W. and Stumpt, M. P. H., “Gaussian process regression boot-
strapping: exploring the effects of uncertainty in time course data,” Bioinfor-
matics, vol. 9, no. 10, pp. 1300–1306, 2009.

[71] Kitanidis, P. K., “Parametric estimation of covariances of regionalized vari-
ables,” Water Resources Bulletin, vol. 23, no. 4, pp. 557–567, 1987.

[72] Kitanidis, P. K. and Shen, K.-F., “Geostatistical interpolation of chemical
concentration,” Advances in Water Resources, vol. 19, no. 6, pp. 369–378, 1996.

[73] Kitanidis, P. K., “Statistical estimation of polynomial generalized covari-
ance functions and hydrologic applications,” Water Resources Research, vol. 19,
pp. 909–921, 1983.

[74] Kitanidis, P. K. and Lane, R. W., “Maximum likelihood parameter esti-
mation of hydrologic spatial process by the Gauss-Newton method,” Journal of
Hydrology, vol. 79, pp. 53–71, 1985.

200

[75] Kleijnen, J. P. C., van Beers, W., and van Nieuwenhuyse, I., “Con-
strained optimization in expensive simulation: Novel approach,” European
Journal of Operational Research, vol. 202, pp. 164–174, 2010.

[76] Kleijnen, J. P. C. and van Beers, W. C. M., “Robustness of kriging
when interpolating in random simulation with heterogeneous variances: Some
experiments,” European Journal of Operational Research, vol. 165, pp. 826–834,
2005.

[77] Kleijnen, J. P., “An overview of the design and analysis of simulation ex-
periments for sensitivity analysis,” European Journal of Operational Research,
vol. 164, pp. 287–300, 2005.

[78] Kocijan, J. and Likar, B., “Gas-liquid separator modeling and simula-
tion with Gaussian-process models,” Simulation Modeling Practice and Theory,
vol. 16, pp. 910–922, 2008.

[79] Koehler, J. R. and Owen, A. B., “Computer experiments,” in Handbook of
Statistics (Ghosh, S. and Rao, C. R., eds.), pp. 261–308, New York: Elsevier
Science, 1996.

[80] Koutsourelakis, P.-S. and Bilionis, E., “Scalable Bayesian reduced-order
models for simulating high-dimensional multiscale dynamical systems,” Multi-
scale Modeling and Simulation, vol. 9, pp. 449–485, 2011.

[81] Krige, D. G., “A statistical approach to some basic mine valuation problems
on the witwatersrand,” J. of the Chem., Metal. and Mining Soc. of South Africa,
vol. 52, pp. 119–139, 1951.

[82] Kunsch, H., Papritz, A., and Bassi, F., “Generalized cross-covariances and
their estimation,” Mathematical Geology, vol. 29, pp. 779–799, 1997.

[83] Kyriakidis, P. C. and Journel, A. G., “Geostatistical space-time models:
A review,” Mathematical Geology, vol. 31, no. 6, pp. 651–684, 1999.

[84] Li, L. and Reverz, P., “Interpolation methods for spatio-temporal geographic
data,” Computers, Environment and Urban Systems, vol. 28, pp. 201–227, 2004.

[85] Li, Y., Ng, S., Xie, M., and Goh, T., “A systematic comparison of meta-
modeling techniques for simulation optimization in decision support systems,”
Applied Soft Computing, vol. 10, pp. 1257–1273, 2010.

[86] Lin, Y., Cui, X., Yen, C., and Wai, C. M., “Platinum/carbon nanotube
nanocomposite synthesized in supercritical fluid as electrocatalysts for low-
temperature fuel cells,” J. Phys. Chem. B, vol. 109, pp. 14410–14415, 2005.

[87] Lindenbergh, R., Keshin, M., der Marel, H. V., and Hanssen, R.,
“High resolution spatio-temporal water vapour mapping using gps and meris
observations,” International Journal of Remote Sensing, vol. 29, no. 8, pp. 2393–
2409, 2008.

201

[88] Liu, B. J. D. and Pope, S. B., “The performance on in situ adaptive tabu-
lation in computations of turbulent flames,” Combustion Theory and Modeling,
vol. 9, no. 4, pp. 549–568, 2005.

[89] Liu, X. and Zhang, Y., “Numerical dynamic modeling and data driven con-
trol via least square techniques and Hebbian learning algorithm,” International
Journal of Numerical Analysis and Modeling, vol. 7, pp. 66–86, 2010.

[90] Loeppky, J. L., Sacks, J., and Welch, W. J., “Choosing the sample size
of a computer experiment: A practical guide,” Technometrics, vol. 51, pp. 366–
376, 2009.

[91] Lophaven, S. N., Nielsen, H. B., and Sondergaard, J., DACE: A Matlab
Kriging toolbox, v. 2.0. IMM Technical University of Denmark, Lyngby, 2002.

[92] Luo, X., Spatiotemporal Stochastic Models for Earth Science and Engineering
Applications. PhD thesis, McGill University, 1998.

[93] Ma, C., “Spatio-temporal variograms and covariance models,” Adv. Appl.
Prob., vol. 37, pp. 706–725, 2005.

[94] Marchant, B. and Lark, R., “Optimized sample schemes for geostatistical
surveys,” Mathematical Geology, vol. 39, no. 1, pp. 113–134, 2007.

[95] Mardia, K. V. andGoodall, C. R., “Spatial-temporal analysis of multivari-
ate environmental monitoring data,” in Multivariate Environmental Statistics
(Patil, G. and Rao, C., eds.), pp. 347–386, Amsterdam: Elsevier Science,
1993.

[96] Mardia, K. V. and Marshall, R. J., “Maximum likelihood estimation
of models for residual covariance in spatial regression,” Biometrika, vol. 71,
pp. 135–146, 1984.

[97] Marrel, A., Iooss, B., Dorpe, F. V., and Volkova, E., “An efficient
methodology for modeling complex computer codes with Gaussian processes,”
Computational Statistics and Data Analysis, vol. 52, pp. 4731–4744, 2008.

[98] Martin, J. D. and Simpson, T. W., “Use of kriging models to approximate
deterministic computer models,” AIAA Journal, vol. 12, no. 4, pp. 115–125,
2005.

[99] Martin, J. D., “Computational improvements to estimating kriging meta-
model parameters,” Journal of Mechanical Design, vol. 131, p. 084501, 2009.

[100] Matheron, G., Traite de Geostatistique Appliquee, Tome II: Le Krigeage.
Editions Bureau de Recherche Geologiques et Minieres, Paris, 1963.

[101] McKay, M., Beckman, R., and Conover, W., “A comparison of three
methods for selecting values of input variables in the analysis of output from a
computer code,” Technometrics, vol. 21, pp. 239–245, 1979.

202

[102] Meckesheimer, M., Booker, A. J., Barton, R. R., and Simpson, T. W.,
“Computationally inexpensive metamodel assessment strategies,” AIAA Jour-
nal, vol. 40, no. 10, pp. 2053–2060, 2002.

[103] Morris, M. and Mitchell, T., “Exploratory designs for computational ex-
periments,” Journal of Statistical Planning and Inference, vol. 43, pp. 381–402,
1995.

[104] Musavi, M., Ahmed, W., Chan, K., Faris, K., andHummels, D., “On the
training of radial basis function classifiers,” Neural Networks, vol. 5, pp. 595–
603, 1992.

[105] O’Dowd, R. J., “Conditioning of coefficient matrices of ordinary kriging,”
Mathematical Geology, vol. 23, pp. 721–739, 1991.

[106] Oguz, C. and Gallivan, M. A., “A data-driven approach for reduction of
molecular simulations,” International Journal of Robust and Nonlinear Control,
vol. 15, no. 15, pp. 727–743, 2005.

[107] Oguz, C. and Gallivan, M. A., “Identification of a dynamic model for a
thin film deposition process using a self-organizing map,” in IEEE International
Joint Conference on Neural Networks, (Vancouver), pp. 973–980, 2006.

[108] Oguz, C. and Gallivan, M. A., “Optimization of a thin film deposition pro-
cess using a dynamic model extracted from molecular simulations,” Automatica,
vol. 44, no. 8, pp. 1958–1969, 2008.

[109] Oliver, D. S., “Gaussian cosimulation: Modeling of the cross-covariance,”
Mathematical Geology, vol. 35, pp. 681–698, 2003.

[110] Paciorek, C. J. and Schervish, M. J., “Spatial modelling using a new class
of nonstationary covariance functions,” Environmetrics, vol. 17, pp. 483–506,
2006.

[111] Pardo-Iguzquiza, E. and Dowd, P. A., “The second-order stationary uni-
versal kriging model revisited,” Mathematical Geology, vol. 30, pp. 347–378,
1998.

[112] Pardo-Iguzquiza, E., Mardia, K. V., and Chica-Olmo, M., “ML-
MATERN: A computer program for maximum likelihood inference with the
spatial matern covariance model,” Computers & Geosciences, vol. 35, pp. 1139–
1150, 2009.

[113] Patterson, H. and Thompson, R., “Recovery of inter-block information
when block sizes are unequal,” Biometrika, vol. 58, pp. 545–554, 1971.

[114] Pope, S. B., “Computationally efficient implementation of combustion chem-
istry using in-situ adaptive tabulation,” Combustion Theory and Modeling,
vol. 1, no. 1, pp. 41–63, 1997.

203

[115] Porcu, E., Mateu, J., and Saura, F., “New class of covariance and spec-
tral density functions for spatio-temporal modeling,” Stoch. Environ. Res. Risk
Assess., vol. 22, pp. S65–S79, 2008. Suppl 1.

[116] Qi, C., Li, H.-X., Zhang, X., Zhao, X., Li, S., and Gao, F., “Time/space-
separation-based svm modeling for nonlinear distributed parameter processes,”
Industrial & Chemistry Engineering Research, vol. 50, pp. 332–341, 2011.

[117] Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R.,
and Tucker, P. K., “Surrogate-based analysis and optimization,” Progress in
Aerospace Sciences, vol. 41, no. 1, pp. 1–28, 2005.

[118] Quiñonero-Candela, J. and Rasmussen, C. E., “A unifying view of sparse
approximate Gaussian process regression,” Journal of Machine Learning Re-
search, vol. 6, pp. 1939–1959, 2005.

[119] Ramkrishna, D., Population Balances: Theory and Applications to Particu-
late Systems in Engineering. Academic Press, 2000.

[120] Rasmussen, C. E. and Williams, C. K. I., Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[121] Ratsch, C. and Venables, J. A., “Nucleation theory and the early stages of
thin film growth,” Journal of Vacuum Science & Technology. A., vol. 21, no. 5,
pp. S96–S109, 2003.

[122] Sacks, J., Welch, W. J., Mitchell, T. J., andWynn, H. P., “Design and
analysis of computer experiments,” Statistical Science, vol. 4, no. 4, pp. 409–
435, 1989.

[123] Santner, T. J., Williams, B. J., and Notz, W., The Design and Analysis
of Computer Experiments. Springer, 1st ed., 2003.

[124] Seeger, M., “Bayesian model selection for support vector machines, Gaussian
processes and other kernel classifiers,” in Advances in Neural Information Pro-
cessing Systems 12 (Solla, S. A., Leen, T. K., and Muller, K.-R., eds.),
pp. 603–609, Cambridge, MA: The MIT Press, 2000.

[125] Shallow, W. H. andMonahan, J. F., “Monte carlo comparison of ANOVA,
MIVQUE, REML, and ML estimators of variance components,” Technometrics,
vol. 26, pp. 47–57, 1984.

[126] Shan, S. and Wang, G. G., “Survey of modeling and optimization strate-
gies to solve high-dimensional design problems with computationally-expensive
black-box functions,” Struct. Multidisc. Optim., vol. 41, pp. 219–241, 2010.

[127] Shao, T. and Krishnamurty, S., “A clustering-based surrogate model up-
dating approach to simulation-based engineering design,” Journal of Mechanical
Design, vol. 130, p. 041101, 2008.

204

[128] Shen, Y., Ng, A. Y., and Seeger, M., “Fast Gaussian process regres-
sion using kd-trees,” in Advances in Neural Information Processing Systems
18 (Weiss, Y., Schlkopf, B., and Platt, J., eds.), Cambridge, MA: The
MIT Press, 2006.

[129] Shepard, D., “A two-dimensional interpolation function for irregularly-spaced
data,” in Proceedings of the 1968 ACM National Conference, (New York),
pp. 517–524, 1968.

[130] Shin, M., Sargent, R. G., and Goel, A. L., “Gaussian radial basis func-
tions for simulation metamodeling,” in Proceedings of the 2002 Winter Simula-
tion Conference, pp. 483–488, 2002.

[131] Simpson, T. W., Poplinski, J., Koch, P. N., and Allen, J. K., “Meta-
models for computer-based engineering design: Survey and recommendations,”
Engineering with Computers, vol. 17, pp. 129–150, 2001.

[132] Smola, A. J. and Scholkopf, B., “A tutorial on support vector regression,”
Tech. Rep. NC-TR-98-030, Royal Holloway College, University of London, UK,
1998.

[133] Span, R. and Wagner, W., “A new equation of state for carbon dioxide cov-
ering the fluid region from the triple-point temperature to 1100 K at pressures
up to 800 MPa,” J. Phys. Chem. Ref. Data, vol. 25, no. 6, pp. 1509–1596, 1996.

[134] Stein, M. L., “Space-time covariance functions,” Journal of the American
Statistical Association;, vol. 100, no. 469, pp. 310–321, 2005.

[135] Stulajter, F., “Predictions in time series using multivariable regression mod-
els,” Journal of Time Series Analysis, vol. 22, no. 3, pp. 365–373, 2001.

[136] Takasaki, S., Kawamura, Y., andKonagaya, A., “Selecting effective sirna
sequences by using radial basis function network and decision tree learning,”
BMC Bioinformatics, vol. 7, p. S22, 2006.

[137] Theodoropoulos, C., Qian, Y.-H., and Kevrekidis, I. G., “Coarse sta-
bility and bifurcation analysis using time-steppers: A reaction-diffusion exam-
ple,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 97, pp. 9840–9843, 2000.

[138] Todini, E. and Ferraresi, M., “Influence of parameter estimation uncer-
tainty in kriging,” Journal of Hydrology, vol. 175, pp. 555–566, 1996.

[139] Tonse, S. R., Moriarty, N. W., Frenklach, M., and Brown, N. J.,
“Computational economy improvements in prism,” International Journal of
Chemical Kinetics, vol. 35, no. 9, pp. 438–452, 2003.

205

[140] Ttterman, S. and Toivonen, H. T., “Support vector method for identifi-
cation of Wiener models,” Journal of Process Control, vol. 19, pp. 1174–1181,
2009.

[141] Tung, H. andWong, M., “Financial risk forecasting with nonlinear dynamics
and support vector regression,” Journal of the Operational Research Society,
vol. 60, pp. 685–695, 2009.

[142] van Beers, W. C. M. and Kleijnen, J. P. C., “Kriging for interpolation
in random simulation,” Journal of the Operational Research Society, vol. 54,
pp. 255–262, 2003.

[143] van Beers, W. C. M. and Kleijnen, J. P. C., “Customized sequential
designs for random simulation experiments: Kriging metamodeling and boot-
strapping,” European Journal of Operational Research, vol. 186, pp. 1099–1113,
2008.

[144] Varma, A. and Morbidelli, M., Mathematical Methods in Chemical Engi-
neering. Oxford University Press, USA, 1997.

[145] Varshney, A. and Armaou, A., “Multiscale optimization using hybrid
pde/kmc process systems with application to thin film growth,” Chemical En-
gineering Science, vol. 60, pp. 6780–6794, 2005.

[146] Veljkovic, I., Plassmann, P. E., and Haworth, D. C., “A scientific on-
line database for efficient function approximation,” in Computational Science
and its Applications (Lecture Notes in Computer Science 2667) (Kumar, V.,
Gavrilova, M. L., Tan, C. J. K., and L’Ecuyer, P., eds.), pp. 643–653,
New York: Springer, 2003.

[147] Venables, J. A., “Rate equation approaches to thin-film nucleation kinetics,”
Philosophical Magazine, vol. 27, no. 3, pp. 697–738, 1973.

[148] Venkateswarlu, C. and Rao, K. V., “Dynamic recurrent radial basis func-
tion network model predictive control of unstable nonlinear processes,” Chem-
ical Engineering Science, vol. 60, pp. 6718–6732, 2005.

[149] ver Hoef, J. M. and Barry, R. P., “Constructing and fitting models for
cokriging and multivariable spatial prediction,” Journal of Statistical Planning
and Inference, vol. 69, pp. 275–294, 1998.

[150] ver Hoef, J. M. and Cressie, N., “Multivariable spatial prediction,” Math-
ematical Geology, vol. 25, pp. 219–240, 1993.

[151] Viana, F. A. C. and Haftka, R. T., “Cross validation can estimate how
well prediction variance correlates with error,” AIAA Journal, vol. 47, no. 9,
pp. 2266–2270, 2009.

206

[152] Vivarelli, F. and Williams, C. K. I., “Discovering hidden features with
Gaussian processes regression,” in Advances in Neural Information Processing
Systems 11 (Kearns, M. S., Solla, S. A., and Cohn, D. A., eds.), pp. 613–
619, Cambridge, MA: The MIT Press, 1999.

[153] Wackernagel, H., Multivariate Geostatistics. Springer, 3 ed., 2003.

[154] Wang, J. M., Fleet, D. J., and Hertzmann, A., “Gaussian process dy-
namical models for human motion,” IEEE Transactions of pattern analysis and
machine intelligence, vol. 30, pp. 283–298, 2008.

[155] Xiong, Y., Chen, W., Apley, D., and Ding, X., “A non-stationary
covariance-based kriging method for metamodelling in engineering design,” In-
ternational Journal for Numerical Methods in Engineering, vol. 71, pp. 733–756,
2007.

[156] Yao, T., “Nonparametric cross-covariance modeling as exemplified by soil
heavy metal concentrations from the swiss jura,” Geoderma, vol. 88, pp. 13–38,
1999.

[157] Ye, X.-R., Lin, Y., Wang, C., Engelhard, M. H., Wang, Y., and Wai,

C. M., “Supercritical fluid synthesis and characterization of catalytic metal
nanoparticles on carbon nanotubes,” Journal of Materials Chemistry, vol. 14,
pp. 908–913, 2004.

[158] Yin, J., Ng, S. H., and Ng, K. M., “A study on the effects of parame-
ter estimation on kriging model’s prediction error in stochastic simulations,”
in Proceedings of the Winter Simulation Conference, pp. 674–685, 2009. doi:
10.1109/WSC.2009.5429703.

[159] Ying, Z., “Maximum likelihood estimation of parameters under a spatial sam-
pling scheme,” Ann. Statist., vol. 21, pp. 1567–1590, 1993.

[160] Yoda, S., Mizuno, Y., Furuya, T., Takebayashi, Y., Otake, K., Tsuji,

T., and Hiaki, T., “Solubility measurements of noble metal acetylacetonates
in supercritical carbon dioxide by high performance liquid chromatography
(HPLC),” Journal of Supercritical Fluids, vol. 44, pp. 139–147, 2008.

[161] Zavala, V. M., Constantinescu, E. M., Krause, T., and Anitescu,

M., “On-line economic optimization of energy systems using weather forecast
information,” Journal of Process Control, vol. 19, pp. 1725–1736, 2009.

[162] Zhang, X., Song, K. Z., Lu, M. W., and Liu, X., “Meshless methods based
on collocation with radial basis functions,” Computational Mechanics, vol. 26,
pp. 333–343, 2000.

[163] Zhang, Y., Kang, D., Saquing, C., Aindow, M., and Erkey, C., “Sup-
ported platinum nanoparticles by supercritical deposition,” Ind. Eng. Chem.
Res., vol. 44, no. 11, pp. 4161–4164, 2005.

207

[164] Zhu, Z. and Stein, M. L., “Spatial sampling design for parameter estima-
tion of the covariance function,” Journal of Statistical Planning and Inference,
vol. 134, pp. 583–603, 2005.

[165] Zimmerman, D. L. and Zimmerman, M. B., “A comparison of spatial semi-
variogram estimators and corresponding ordinary kriging predictors,” Techno-
metrics, vol. 33, pp. 77–91, 1991.

[166] Zufiria, P. J. and Martinez-Marin, T., “Improved optimal control meth-
ods based upon the adjoining cell mapping technique,” Journal of Optimization
Theory and Applications, vol. 118, no. 3, pp. 657–680, 2003.

208

