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SUMMARY

Most applications in computer vision suffer from two major difficulties. The first is they

are notoriously ridden with sub-optimal local minima. The second is that they typically

require high computational cost to be solved robustly. The reason for these two drawbacks

is that most problems in computer vision, even when well-defined, typically require finding

a solution in a very large high-dimensional space.

It is for these two reasons that multiscale methods are particularly well-suited to prob-

lems in computer vision. Multiscale methods, by way of looking at the coarse scale nature

of a problem before considering the fine scale nature, often have the ability to avoid sub-

optimal local minima and obtain a more globally optimal solution. In addition, multiscale

methods typically enjoy reduced computational cost.

This thesis applies novel multiscale active contour methods to several problems in com-

puter vision, especially in simultaneous segmentation and reconstruction of tomography

images. In addition, novel multiscale methods are applied to contour registration using

minimal surfaces and to the computation of non-linear rotationally invariant optical flow.

Finally, a methodology for fast robust image segmentation is presented that relies on a lower

dimensional image basis derived from an image scale space.

The specific advantages of using multiscale methods in each of these problems is high-

lighted in the various simulations throughout the thesis, particularly their ability to avoid

sub-optimal local minima and their ability to solve the problems at a lower overall compu-

tational cost.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Most applications in computer vision suffer from two major difficulties. The first is they

are notoriously ridden with sub-optimal local minima [19, 37, 38, 75]. The second is that

they typically require high computational cost to be solved robustly. The reason for these

two drawbacks is that, even when well-defined, these applications typically require finding

the minimizer of a complicated cost functional in a very high-dimensional space. In this

thesis we introduce novel multiscale active contour and active surface methods to avoid

sub-optimal local minima and to reduce computational cost of various computer vision

problems.

For instance, the problem of image segmentation can be defined as distinguishing objects

from their background [7]. The discrete version of the problem can be seen as labelling each

pixel as either foreground or background. Thus, the space of possible segmentations has as

many dimensions as there are pixels in the image. Searching over all such segmentations

is an intractable problem even for small images. Therefore, it is necessary to use heuristic

techniques for segmenting an image.

Simple point-based methods for segmentation, such as thresholding, are not sufficiently

robust since they are extremely sensitive to the noise in an image, and since they rely on

unrealistic assumptions about the difference between foreground and background intensity.

Furthermore, they use no knowledge of geometric properties, such as the object’s shape

or connectedness [21, 57]. Edge detection methods that are based on thresholding a local

statistic of the image, such as those using the Laplacian of Gaussian (LoG) operator, often

have convenient mathematical properties and efficient implementation. In addition, edge

detection with the LoG produces edges that are closed contours. However, since they involve

the second derivative of the image, they are extremely sensitive to noise [45]. Furthermore,
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it is difficult to incorporate prior shape information into these techniques, especially in

regions where contour lines are not connected when some part of an object’s boundary has

weak, noisy, or blurred edges.

Snakes, or active contours1, introduced by Kass et al. [39, 69], proved to be a suffi-

ciently powerful and robust framework for object segmentation since they model the object

geometry directly. Active contour models are attractive since they are able to incorpo-

rate prior knowledge about the geometric nature of the objects to be segmented, such as

shape, size, or connectedness. Many works have appeared based on geometric models for

active contours [15, 16, 44, 73] including edge-based models [39, 44] and region-based mod-

els [37, 38, 59, 76, 80]. Mumford and Shah presented a variational model for representing

piecewise smooth functions, thus simultaneously representing the boundaries of an object

within an image and the smoothness of the functions within the boundaries [48].

Much of the early work done in active contours was done using parametric representa-

tions of the contours or surfaces. Level set methods, first presented by Osher and Sethian,

gave a flexible way to represent the contours or surfaces of interest implicitly without re-

gard to parameterization, and without the encumberance of explicitly handling topological

changes [17, 51]. This thesis will concentrate on active contour methods for solving problems

in computer vision using the level set framework, specifically in tomographic reconstruction.

While active contours have a number of attractive features, one of which is avoiding

sub-optimal local minima by directly modeling object geometry, local minima still appear

frequently using active contour methods, largely due to their variational formulation and the

way in which they are implemented, i.e., as gradient flows. Figure 1 illustrates an example of

a segmentation local minimum that occurs due to the choice of contour initialization using

the active contour segmentation technique proposed in Chapter 8. This local minimum is

avoidable by starting with a different contour initialization, but often it is difficult to know

a priori what initialization to use. Chapter 4 addresses how to choose initial contours for

the application of simultaneous segmentation and reconstruction of tomography images.

1Active surfaces are the generalization of active contours for three-dimensional images.
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Figure 1: Local minimum in piecewise smooth segmentation of simple image. Evolution of
contour from left to right starting from the initial image and initial contour.

As the images get larger, more complex, have higher dimensionality, and more compli-

cated construction, more local minima appear due to the increase in complexity of the cost

functional. Furthermore, the way a coupled gradient flow2 is numerically implemented often

affects the solution, since the evolution of the contour often depends on the simultaneous

evolution of some other function. The top row of Fig. 2 illustrates a local minimum that

occurs while segmenting a cube using a non-multiscale version of the active surface method

for reconstructing tomography images presented in Chapter 2. Evolution of the surface

progresses from left to right starting from the initial surface on the left and ending in the

cube with inverted surface on the right. Such local minima are often avoidable by com-

puting the coupled gradient flow more accurately using multiscale methods. The bottom

row of Fig. 2 illustrates the global minimum obtained when using the multiscale technique

described in Chapter 3. In this thesis, we present various novel multiscale active contour

methods in computer vision to overcome local minima in various problems such as simulta-

neous Mumford-Shah segmentation and reconstruction of tomographic images, Mumford-

Shah segmentation of two-dimensional images, and rigid registration of two-dimensional

contours.

Variational active contour methods in computer vision, although they reduce the search

space by incorporating geometric properties of the object, pay a price for their robustness,

i.e., they typically require high computational cost. One way of reducing this computational

2A coupled gradient flow refers to the simultaneous evolution of a contour and a function on the image
domain, specifically where the evolution of the contour depends on the value of the function and the evolution
of the function depends on the location of the contour.
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Figure 2: Top row: Local minimum in segmentation of reconstructed tomography image of
a cube in three dimensions. Bottom row: Global minimum in segmentation of reconstructed
cube using multiscale method.

cost is to implement these techniques with multiscale methods that take advantage of the

specific nature of the solutions, such as smoothness. For example, the image segmenta-

tion model developed by Mumford and Shah has a regularization term that penalizes the

estimated image functions for deviating from smoothness. Also, optical flow functionals,

although not an active contour method, typically contain a regularization term to ensure

smoothness of the resulting vector field3. Multigrid methods are a class of multiscale so-

lution techniques that have been shown to improve the computational performance when

solving partial differential equations (PDE’s) whose solutions are spatially smooth [11, 12].

Multigrid methods have been used for the computation of optical flow [2, 8, 22], as well as in

other computer vision and image processing problems [1, 27, 68] including in tomographic

reconstruction [6, 54].

In this thesis we present various multiscale methods for the purpose of computational

3The purpose of this regularization term is to combat the well known aperture problem in which it is
impossible to uniquely determine the optical flow field in directions tangent to isobrightness contours when
using only the optical flow constraint.

4



speed improvement, such as in the computation of the image density functions in the pro-

posed Mumford-Shah based tomographic reconstruction technique, in multigrid computa-

tion of non-linear rotationally invariant optical flow, and in fast reduced basis image seg-

mentation. The specific advantages of using multiscale methods in each of these problems

are highlighted in the various simulations throughout the thesis, particularly their ability

to avoid sub-optimal local minima and their ability to solve the problems at a lower overall

computational cost.

In order of appearance, Chapter 2 presents the novel extension of the Mumford-Shah

framework for image segmentation to simultaneous segmentation and reconstruction of to-

mographic images. The high computational cost of solving for the image density functions

in Chapter 2 along with the smooth nature of the functions that is guaranteed by the model

call for a multiscale technique for their solution. Chapter 3 presents a novel multiscale tech-

nique for their solution and reports the computational improvement. An important part of

using an active contour model for segmentation is choosing an appropriate contour initializa-

tion. The appropriate contour initialization can greatly reduce both convergence time and

the presence of sub-optimal local minima in the segmentation. Chapter 4 presents a novel

variational technique to produce a fuzzy bimodal segmentation that yields an initial con-

tour. Chapter 5 shows validation of the techniques presented in the previous three chapters,

illustrating the power of the proposed tomographic reconstruction technique, the ability of

the multiscale technique for reducing computational cost and avoiding local minima, and

the improved accuracy of the reconstructions when initializing the contour appropriately.

Chapter 6 presents the multigrid computation of a non-linear rotationally invariant

edge-preserving optical flow. Chapter 7 presents a novel multiscale technique for rigid two

dimensional contour registration that avoids local minima by using scale space properties of

minimal surfaces. Chapter 8 presents a novel method for a fast approximation to Mumford-

Shah segmentation using a reduced image basis whose components are part of a scale space

of diffused images.
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1.2 Specific Contributions

1.2.1 Tomography Reconstruction

• Formulation of cost functional and coupled gradient flow for simultaneous segmenta-

tion and reconstruction of piecewise smooth 2D and 3D tomography images.

• Implementation of proposed tomography reconstruction technique in 2D and 3D.

• Analysis of sufficient convergent forward Euler step size to guaranteed numerical con-

vergence of function evolution for tomographic reconstruction technique.

• Development of a novel multiscale technique for solving partial differential equations

resulting from proposed cost functional.

• Implementation of multiscale tomography technique and performance shown on 2D

and 3D tomography reconstructions. The ability to avoid suboptimal local minima

and reduce computational cost are stressed.

• Development of novel variational method to obtain a binary segmentation and thus

an initial contour or surface for tomography reconstruction technique.

• Validation of proposed method by comparison with other reconstruction techniques

and by segmentation of simulated heart perfusion abnormalities.

1.2.2 Multigrid Computation of Non-linear Rotationally Invariant Optical Flow

• Formulation of a new optical flow regularizer that preserves edges in optical flow but

is also rotationally invariant.

• Analysis that the proposed optical flow is invariant to rotation.

• Multigrid implementation of the proposed optical flow and illustration of reduced

computational cost.

1.2.3 Rigid Contour Registration using Minimal Surfaces

• Development of a scale space technique for rigid registration of 2D contours using

minimal surfaces.
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• Analysis of sufficient condition for existence of a minimal surface using the proposed

technique.

• Implementation of this technique using level set surface evolution.

• Validation on contours that shows the ability of the technique to overcome local

minima present in set-symmetric difference registration.

1.2.4 Fast Mumford-Shah Segmentation using Reduced Basis

• Development of reduced basis Mumford-Shah segmentation.

• Implementation of proposed reduced basis method and illustration of reduced com-

putational cost while maintaining very similar performance.

• Implementation of a multi-region labeling scheme to enable more than two regions

with the proposed reduced basis Mumford-Shah segmentation method.
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CHAPTER II

VARIATIONAL TOMOGRAPHY FRAMEWORK

In transmission tomography, the goal is to reconstruct an image from its measured projec-

tions as modeled by the Radon transform. While it is possible to invert the Radon transform

in theory [30], in practice it requires a large amount of projection data to obtain a high-

quality reconstruction. For a review of tomographic reconstruction methods, we refer the

reader to [55]. Constraints in cost, scan time, and image accessibility limit the number and

quality of projections. Therefore, it is often not feasible in practice to obtain the amount of

projections necessary to reconstruct accurately. For this reason, several authors have con-

sidered solving the under-constrained or limited-angle tomographic reconstruction problem

[35, 63, 56, 54, 58].

Additional assumptions must be made about the image function to properly constrain

the possible solutions. Authors have attempted different constraints depending on the

assumptions they wish to make about the unknown images. Sezan and Stark use projection

onto convex sets (POCS) to incorporate priors [63]. Reeds and Shepp use a technique called

“squashing” to convert limited angle problems into problems where all of the projections

are known [56, 50]. Prince and Willsky introduce a technique for sinogram reconstruction

by ensuring that the finest-grain sinogram is smooth [54].

In [4] we proposed tomographic reconstruction using a class of image priors that were

addressed by Mumford and Shah’s pioneering work on region-based image segmentation

[48]. That is, we considered the class of piecewise constant or, more generally, piecewise

smooth images. Mumford and Shah considered segmenting images by assuming piecewise

smooth regions separated by deformable or “active” contours, across which smoothness is

not required. Chan and Vese [17] incorporated these ideas into the level set framework

introduced by Osher and Sethian [51], allowing the contours to naturally handle topology

changes. Active contour models are attractive because they are both well-principled and
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robust. Since Mumford and Shah’s work, several ideas have emerged to make use of active

contour models. [16, 39, 80].

In tomographic reconstruction, three major works have been presented that make use

of active contour models. Yu and Fessler presented an early discrete approach to solve this

problem [77]. They defined a discrete cost functional to model the reconstruction by an

image partitioned into two regions separated by a deformable discrete boundary analogous

to the contour proposed by Mumford and Shah. However, Yu’s method for maintaining a

smooth surface depends on the accuracy of the image estimate. This accuracy can not be

guaranteed upon the initialization of the algorithm. In fact, they ignore this term in their

implementation.

Bruandet et al. have proposed a surface evolution technique to model the reconstructed

image as two regions, one with density zero, and the other with an a priori known density,

µ [14]. Whitaker and Elangovan have proposed a similar, although slightly more general,

piecewise constant model where the two region densities are adaptive [72]. The models of

Bruandet and Whitaker are adequate when the regions being imaged are known to be ho-

mogeneous in density, but this may not be the case in practice. Images often have smoothly

varying densities, and often have three or more distinct regions. For this reason, it is de-

sirable to generalize the piecewise constant models of Bruandet and Whitaker. By allowing

the intensity of each pixel to vary independently, while enforcing that within regions, nearby

pixels have similar intensities, the reconstructed images are successfully constrained to be

piecewise smooth.

In this chapter, a deformable surface model is defined to constrain tomographic images

to be piecewise smooth. A cost functional is proposed that attains a high value when the

projections of the estimated reconstruction deviate from the measured projections, and

attains a high value when the reconstructed image deviates from piecewise smoothness. By

deforming the image model parameters to minimize this functional, the reconstructed image

matches the measured projections and is piecewise smooth.
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2.1 Two-Dimensional Tomography Model

Although easily generalized to higher dimensions, the reconstruction problem will be de-

scribed in two dimensions, i.e., with two-dimensional image functions and one-dimensional

projections. The reconstruction technique developed holds for the three-dimensional prob-

lem. Displaying the mathematical explanation and simulation results in two dimensions

allows for a clearer explanation of the technique. The three-dimensional method is then a

straightforward generalization of the two-dimensional method.

Unknown image density function, f : R2 → R, will, via the Radon transform, create

projections,

p(s, θ) =

∫

Ω
f(x, y)δ(Pθ(x, y)− s)dx̄ , (1)

where Pθ(x, y) = x cos θ+y sin θ, and dx̄ stands for integration in the spatial variables x and

y. Figure 3 illustrates the Radon transform of a two-dimensional density function, f , onto

one-dimensional projections p(s, θ1) and p(s, θ2). The dotted line show lines of constant s

for a specific function projection. The value of the point p(s, θ) can be interpreted as the

line integral of the density function through the line at angle θ and corresponding to value s.

The tomographic reconstruction problem is that of obtaining an estimate of f , which

we will denote f̂ , from P projections p(s, θ1), . . . , p(s, θP ).

2.2 Proposed Reconstruction Method

In order to determine the shape of the contour that separates the piecewise smooth regions,

is it possible to reconstruct f̂ by imposing a cost on the discrepancy between the projections

of the estimated image and the measured projections. However, since the problem is under-

constrained, imposing this cost is not enough. Many images that are not piecewise smooth

will also have projections that match the measured projections.

Therefore, a cost is imposed on the deviation of the reconstructed image from piecewise

smoothness. Properly enforcing piecewise smoothness requires penalizing two separate un-

desirable features of the model. Piecewise smoothness implies that large gradients in image

intensity within regions should be penalized. In addition, total contour length should also
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Figure 3: Illustration of two-dimensional Radon transform. Dotted lines illustrate several
lines of constant s, along which Radon transform integrates values of the density function,
f to produce projections, p(s, θi).

be penalized, for otherwise, the contour could converge to an irregular shape to match image

noise.

2.2.1 Piecewise Smooth Cost Functional

A cost functional is proposed that has three terms: the projection matching term, J1; the

function smoothness term, J2; and the contour length term J3. We combine these terms

11



with weighting parameters to obtain the overall cost functional J = αJ1 +βJ2 +γJ3, where,

J1 =
∑

θ∈Θ

∫ Lθ

0
(p(s, θ)− p̂(s, θ))2 ds , (2)

J2 =

∫

R1

‖∇f̂R1(x, y)‖2dx̄+

∫

R2

‖∇f̂R2(x, y)‖2dx̄ , (3)

J3 =

∫ L

0
d` . (4)

Note that Θ = {θ1, . . . , θP } is the set of projection angles, Lθ is the length of the

projection at angle θ. Also, p̂(s, θ) is the Radon transform of the image estimate f̂ . The

symbol ∇ is the standard gradient operator.

In J2, note that the function f̂ has been split into two open regions, R1 and R2, that are

subsets of the image domain. These are regions where f̂ is guaranteed to be differentiable.

Also, f̂Ri will denote the restriction of f̂ to region Ri. The reason for this function restriction

is that the piecewise smooth model can not guarantee differentiability on the contour,

∂R = ∂R1 = ∂R2, that separates the two regions. Thus, any attempt to differentiate on

the boundary, ∂R, would be poorly defined. Finally, L is the length of the contour and d`

is the arc length element of the contour.

Figure 4 illustrates two cases that highlight the effect of the projection matching term,

J1. The top illustration shows an estimated density function, f̂ and how its corresponding

projections, p̂ are not close to the measured projections p. The bottom illustration shows

an estimated density function whose projections more closely match the measured projec-

tions. Thus, the top illustration will produce a higher value of J1 and thus a less desirable

reconstruction than the bottom illustration. Note that this comparison must performed by

way of the projections of f and not directly f and f̂ since f is unknown a priori.

2.2.2 Evolution Equations

By introducing an evolution time parameter, t, into the image intensity functions and into

the contour, thus augmenting f̂Ri(x, y) to f̂(x, y, t) and ~C(s) to ~C(s, t), the cost functional

is dependent on t. Differentiating the three terms in the cost functional, J , with respect to
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t yields,

dJ1

dt
=

∫ L

0

〈
~Ct(`),

(
f̂R1( ~C(`))− f̂R2( ~C(`))

)
× (5)

∑

θ∈Θ

(p̂− p) (Pθ( ~C(`)), θ)~νR1(`)

〉
d`

+

∫

R1

f̂R1,t(x, y)
∑

θ∈Θ

(p̂− p) (Pθ(x, y), θ)dx̄

+

∫

R2

f̂R2,t(x, y)
∑

θ∈Θ

(p̂− p) (Pθ(x, y), θ)dx̄

dJ2

dt
=

∫ L

0

〈
~Ct(`),

(
‖∇f̂R1( ~C(`))‖2 − ‖∇f̂R2( ~C(`))‖2

)
~νR1(`)

〉
d` (6)

−
∫

R1

f̂R1,t(x, y)∆f̂R1(x, y)dx̄

−
∫

R2

f̂R2,t(x, y)∆f̂R2(x, y)dx̄ ,

dJ3

dt
= −

∫ L

0

〈
~Ct(`), κ(`)~νR1(`)

〉
d` (7)

where ~Ct is the partial derivative of the contour with respect to time, 〈·〉 denotes the

two-dimensional Euclidean dot product, ∆ represents the Laplacian operator, and κ is the

curvature of the contour. Also, f̂R1,t and f̂R2,t are partial derivative of the two image

functions with respect to time. The unit normal vector at each point in the contour that

points from region R1 to region R2 is denoted as ~νR1 . Also, note that (p̂− p)(Pθ(x, y), θ) is

shorthand for p̂(Pθ(x, y), θ)− p(Pθ(x, y), θ). Furthermore, note that f̂Ri and all its various

forms of spatial and temporal derivatives have the arguments (x, y) unless they appear in

an inner product with the term ~Ct, in which case they have the argument ( ~C(`)). This is

consistent with the variables of integration for each term.

The detailed derivations of Eqs. (5), (6), and (7) make use of the divergence theorem,

and are included in Appendix A. Note that a factor of two is left out because it appears

in all three equations. In the evolution implementation, this is equivalent to evolving the

contours and image functions at half the speed and has no effect on the solution.

By evolving the contour and image intensity functions to make Eqs. (5), (6), and (7)

negative, the cost functional, J , is guaranteed to be decreasing in evolution time, t. This

is achieved by evolving both the contour and image intensity functions in the directions
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opposite to the terms by which they are multiplied in Eqs. (5), (6), and (7). For instance,

Eq. (5) reveals that by setting evolution of the contour to,

~Ct(`) = −
(
f̂R1( ~C(`))− f̂R2( ~C(`))

)∑

θ∈Θ

(p̂− p) (Pθ( ~C(`)), θ)~νR1(`) , (8)

that it is guaranteed that the first term in Eq. (5) will be negative. Hence, this term in Eq.

(5) will then contribute to a decrease in total energy. In this manner, and by the linearity

of differentiation, the evolution equations that will minimize the proposed cost functional

are,

~Ct(`) = −α
(
f̂R1( ~C(`))− f̂R2( ~C(`))

)∑

θ∈Θ

(p̂− p) (Pθ( ~C(`)), θ)~νR1(`) (9)

−β
(
‖∇f̂R1( ~C(`))‖2 − ‖∇f̂R2( ~C(`))‖2

)
~νR1(`)

+ γκ( ~C(`)) ~νR1(`)

f̂R1,t(x, y) = −α
∑

θ∈Θ

(p̂− p) (Pθ(x, y), θ) (10)

+ β∆f̂R1(x, y)

f̂R2,t(x, y) = −α
∑

θ∈Θ

(p̂− p) (Pθ(x, y), θ) (11)

+ β∆f̂R2(x, y) .

2.2.3 Three-Dimensional Evolution

Although the presented results have been explicitly for two dimensions, the technique is

easily generalized to three-dimensional image functions. Much of the discussion remains

the same, however, in three dimensions, a surface represents the boundary between regions

instead of a contour. The resulting evolution equations for the three-dimensional problem

are obvious three-dimensional generalizations of the previously discussed two-dimensional

evolution equations. The main difference is that the curvature term in Eq. (7) for the

contour embedded in two dimensions becomes mean curvature for the surface in three

dimensions.

The three-dimension version of the tomography problem assumes image density func-

tion, f : R3 → R, that will, via the Radon transform, create projections with two spatial
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dimensions,

p(s, t, θ, φ) =

∫

Ω
f(x, y, z)δ(Pθ,φ(x, y, z)− s,Qθ,φ(x, y, z)− t)dx̄ , (12)

where Pθ,,φ(x, y, z) = cosφ(x cos θ + y sin θ)− z sinφ, Qθ,φ = y cos θ − x sin θ and dx̄ stands

for integration in the spatial variables x, y and z.

The three-dimensional cost functions are,

J1 =
P∑

i=1

∫

Ξi

(p(s, t, θi, φi)− p̂(s, t, θi, φi))2 ds̄ , (13)

J2 =

∫

R1

‖∇f̂R1(x, y)‖2dx̄+

∫

R2

‖∇f̂R2(x, y)‖2dx̄ , (14)

J3 = A , (15)

where R1 and R2 are now regions in R3 and are separated by a surface whose area is A. Also

note the region of integration for the integral in J1 is now Ξi, a two-dimensional integral

domain in projection variables s and t, whose area element is denoted ds̄.

Similarly combining these with weighting parameters yields the overall cost function

J = αJ1 + βJ2 + γJ3. The evolution equations function f̂ and for the surface S for the

three-dimensional problem are,

~St(v) = −α
(
f̂R1 − f̂R2

)
(~S(v)) (16)

×
P∑

i=1

(p̂− p) (Pθi,φi(
~S(v)), Qθi,φi(

~S(v)), θi, φi)~νR1(~S(v))

−β
(
‖∇f̂R1‖2 − ‖∇f̂R2‖2

)
(~S(v))~νR1(~S(v))

+ γH(~S(v))~νR1(~S(v))

f̂R1,t(x, y, z) = −α
P∑

i=1

(p̂− p) (Pθi,φi(x, y, z), Qθi,φi(x, y, z), θi, φi) (17)

+ β∆f̂R1(x, y, z)

f̂R2,t(x, y, z) = −α
P∑

i=1

(p̂− p) (Pθi,φi(x, y, z), Qθi,φi(x, y, z), θi, φi) (18)

+ β∆f̂R2(x, y, z) ,

where ~S(v) represents a point on the surface. Note that the three-dimensional evolution

equations are nearly identical to the two-dimensional evolution equations with a few small
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exceptions. Since the three-dimensional cost function contains surface area instead of con-

tour length, it is necessary to evolve in the direction of the unit normal with speed propor-

tional to the local mean curvature of the surface, H(~S(v)).

2.3 Implementation

The following discussion will refer to the evolution equations for the two-dimensional case

but also holds for the three-dimensional case. In the three-dimensional case, instances of

the word contour would be replaced by surface with no loss of generality.

Evolution Eqs. (9), (10), and (11) are implemented in a two-step iterative algorithm.

The first step of the algorithm is to evolve the image intensity functions by Eqs. (10) and

(11) until they are converged. This step is performed while holding the contour fixed. The

second step of the algorithm is to evolve the contour by one forward time step of Eq. (9).

We iterate these two steps until the contour no longer moves; at this point the algorithm is

considered to be converged.

Note that, although the evolution equations are continuous both spatially and tem-

porally (evolution being time), the algorithm has been implemented discretely. Thus, all

image derivatives have been approximated by appropriate finite differencing schemes to en-

sure stability of the algorithm. Likewise, the evolution steps have been approximated by

the standard forward Euler scheme.

In addition, it is important to note that, while image derivatives within regions are

well-defined, image derivatives do not exist on the boundaries of the image nor on the

contour separating the two regions. Neumann boundary conditions have been assumed to

handle these cases, i.e., at the boundaries, the directional derivatives of the functions in the

directions normal to the boundaries are assumed to be zero.

Note, that the choice of Neumann boundary conditions is not for the purpose of simpli-

fication. When solving a equation of the form of Eqs. (10) and (11), a choice of boundary

conditions is necessary. For each point on the boundary is it necessary to either specify

the value of the function (Dirichlet boundary conditions), or the value of the directional

16



derivative normal to the boundary (Neumann boundary conditions) [23]. Since it is desir-

able that the value of the function should be able to vary at each point on the boundary,

it is necessary to chose Neumann boundary conditions. Normal derivatives of zero are the

most natural choice since it is desired that the estimated density function, f̂ , is as smooth

as possible.

2.3.1 Image Intensity Evolution

Each of the evolution equations, Eqs. (10) and (11), are implemented by updating the

image intensity functions, f̂R1 and f̂R2 , by the forward Euler scheme, i.e.,

f̂n+1
R1

= f̂nR1
+ ∆tf̂nR1,t (19)

f̂n+1
R2

= f̂nR2
+ ∆tf̂nR2,t , (20)

where the superscript n denotes iteration number and ∆t is the iteration time step param-

eter. Note that the evolutions, f̂nR1,t
and f̂nR2,t

, depend on the reconstruction estimates, p̂,

and thus is it required to update the projections each time these updates are performed.

Thus, the update equations are guaranteed to minimize the cost functional, thereby ensur-

ing both smoothness of the reconstruction and that the reconstruction projections match

the measured projections.

A sufficient time step to ensure convergence of the iterative numerical scheme is,

∆t <
2

αNP + 4βD
, (21)

where N is the maximum length dimension of the image density function, including diagonal

lengths, P is the number of projections, and D is the dimensionality of the image function.

This result is proved in Appendix B.

2.3.2 Contour/Surface Evolution

Again, this section will include discussion of the contour for the two-dimensional model.

All statements hold for the surface in the three-dimensional model except when explicitly

noted otherwise.

The contour in this model is represented using level set techniques. That is, the contour

is the set of points in the image domain where some level set function, Ψ : Ω → R, equals
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a chosen constant. Level set techniques implicitly represent the contour and thus have the

ability to naturally handle topology changes while avoiding cumbersome and numerically

unstable parameterizations.

The level set function is evolved by,

dΨ

dt
= − ~Ct · ∇Ψ , (22)

with the Forward Euler method, where ~Ct is given by Eq. (9). This evolution guarantees

that the contour of interest moves according to the evolution given by Eq. (9). In fact,

for computational efficiency, the level set function, Ψ, is only evolved in a thin band near

the contour. After each explicit level set function evolution step, the level set function is

reinitialized to preserve distance. This reinitialization maintains a numerically well-behaved

level set function while maintaining the position of the contour or surface.

Curvature of the contour, κ, and mean curvature of the surface, H, are computed by

non-linear functions of derivatives of Ψ,

κ =
−Ψ2

xΨyy + 2ΨxΨyΨxy −Ψ2
yΨxx

(
Ψ2
x + Ψ2

y

)3/2 (23)

H =




Ψxx

(
Ψ2
y+Ψ2

z

)
+Ψyy

(
Ψ2
x+Ψ2

z

)
+Ψzz

(
Ψ2
x+Ψ2

y

)

−2ΨxyΨxΨy − 2ΨyzΨyΨz − 2ΨxzΨxΨz




2
(
Ψ2
x + Ψ2

y + Ψ2
z

)3/2 . (24)

Convergence of this algorithm is guaranteed since the evolution itself is derived from

the first variation of a non-negative Lagrangian originating from the cost functional. Thus,

the evolution of Eq. (9) with small enough time step ensures that each iteration decreases

the cost functional.

The evolution in Eq. (9) contains three terms. The terms containing α and β are essen-

tially a transport equation while the term containing γ is essentially a diffusion equation.

Numerical level set implementations for equations such as this is well understood and are

used in various works [16, 20]. This evolution is guaranteed to be stable as long the trans-

port terms are stable and the diffusion term is stable. In this implementation, the time step

is chosen so that the transport term obeys the Courant-Friedrichs-Lewy (CFL) condition
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and so that the diffusion term is also stable. A sufficient time step for these two conditions

is,

∆t <
1

|Γ|+ 2(D − 1)
, (25)

where D is the dimensionality of the image density function, and,

Γ = −α
(
f̂R1( ~C(`))− f̂R2( ~C(`))

)∑

θ∈Θ

(p̂− p) (Pθ( ~C(`)), θ) (26)

− β
(
‖∇f̂R1( ~C(`))‖2 − ‖∇f̂R2( ~C(`))‖2

)
.

2.3.3 Algorithmic Implementation

Note that the evolutions, f̂nR1,t
and f̂nR2,t

, depend on the reconstruction estimates, p̂, and

thus is it required to update the projections each time these updates are performed. In

the present implementation, repetitive recomputation of the estimated projections, p̂, is

avoided by updating a copy of the p̂ each time a pixel in the estimated density function,

f̂ , is changed. The estimated projections are completely recomputed from the estimated

density function after a fixed number of contour iterations to avoid numerical error. In

the present implementation, this number of iterations is 50 since it was found to produce a

reasonable tradeoff between speed and numerical accuracy, but the specific choice of when

to recompute the projections is not important.

Figure 5 offers a block diagram depiction of the algorithm for implementing these evo-

lution equations. First, the contour and image functions are initialized. We will discuss

this initialization more in Chapter 4. Next, the function evolution is shown in more detail

on the right. Note that the evolution of the function is computed completely before the

image pixels are updated. Next, the projections are updated in the same loop as the pixels

themselves, thereby avoiding the use of multiple loops and thus multiple lookups of the

same memory addresses. As mentioned above, every certain number of iterations of the

contour, the projections are recomputed.

2.3.4 Weighting Parameters

It should be noted that the weighting parameters α, β, and γ control the tradeoff between

data fidelity, function smoothness, and surface area penalty. Most of the simulation results
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in thesis have been obtained by only scaling these parameters to account for differences in

image size. Thus, the proposed method does not require significant fine tuning to achieve

reasonable results since the piecewise smooth nature of most natural images is similar. In

the validation section is it specifically noted that computing a segmentation with one set

of weights is often beneficial to obtain an accurate segmentation, and once the accurate

segmentation is obtained, then the weight of the function smoothness is lowered to produce

a more accurate reconstruction. This is denoted in Chapter 5 as the proposed modified

method. To obtain accurate reconstructions of data whose nature is very much less or

more piecewise smooth than most medical images, fine tuning of these parameters may be

necessary.

2.4 Summary

In this chapter, a technique has been presented for reconstruction of tomographic images

from Radon transform projections that explicitly deals with the under-constrained nature of

the limited-angle tomography problem by enforcing priors on the reconstructed image. The

technique, in addition to accurately reconstructing images, also separates the image into

regions, thereby segmenting the image. Segmenting the reconstructions of the methods that

have been compared against would produce inferior results to the segmentations obtained

directly from this model. In limited-angle tomography filtered back projection produces

reconstructions that are streaky and hence difficult to segment. Piecewise constant recon-

struction produces segmentations but they are inaccurate when the image is not piecewise

constant.

The computational requirements of this technique are much higher than that of filtered

back projection and significantly higher than that of piecewise constant reconstructions due

to the evolution of the image intensity functions. Chapter 3 specifically addresses this issue

by introducing a multiscale technique for computation of the estimated density functions.

In addition, little discussion has been made about the type of initial contour. This will be

discussed in Chapter 4.
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CHAPTER III

MULTISCALE TOMOGRAPHY COMPUTATION

3.1 Introduction

In Chapter 2, a model was developed for simultaneous segmentation and reconstruction of

piecewise smooth tomographic images. The reconstructed image was modeled as a disjoint

union of two regions that each have separate smooth density functions and whose bound-

ary is deformable. A cost was imposed on the deviation of the reconstructed image from

piecewise smoothness. Piecewise smoothness implies that large gradients in image inten-

sity within regions should be penalized. In addition, total contour length should also be

penalized, for otherwise, the contour could converge to an irregular shape to match image

noise.

Although the method is powerful and has the ability to perform excellent reconstructions

on tomography images with a limited number of projections, the tremendous power of

deformable surface models does not come without a cost. Typically, the computational

requirements of such algorithms are high and specific techniques must be developed to

make the algorithms computationally feasible. The elliptic partial differential equation

(PDE) that appears due to the smoothness constraint in our model lends itself well to using

multiscale techniques similar to multigrid relaxation techniques [11]. Multigrid relaxation

methods yield a significant speed improvement for the solution of such PDE’s. The authors

refer the reader to [12] for an introduction to multigrid relaxation methods. Multigrid

relaxation methods or related methods have had much success in addressing computational

problems in computer vision including anisotropic diffusion [1], optical flow [8, 22], and

image processing and analysis [27, 68].

In this chapter, the previously developed model is reviewed for the purpose of describing

a multiscale method for the solution of the PDE’s that define the image density functions.

The multiscale technique has the advantage of having lower overall computational cost than
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gradient based methods, and also avoids suboptimal local minima that occur in gradient

based methods where only a partial solution is attained. Finally, the computational speed

improvement is shown and the ability of the proposed multiscale technique to avoid local

minima with ideal and noisy simulated projection data is illustrated.

3.2 Evolution Equations

Recall from Chapter 2 that the two-dimensional evolution equations that will minimize the

proposed cost functional are,

~Ct(`) = −α
(
f̂R1( ~C(`))− f̂R2( ~C(`))

)∑

θ∈Θ

(p̂− p) (Pθ( ~C(`)), θ)~νR1(`) (27)

−β
(
‖∇f̂R1( ~C(`))‖2 − ‖∇f̂R2( ~C(`))‖2

)
~νR1(`)

+ γκ( ~C(`)) ~νR1(`)

f̂R1,t(x, y) = −α
∑

θ∈Θ

(p̂− p) (Pθ(x, y), θ) (28)

+ β∆f̂R1(x, y)

f̂R2,t(x, y) = −α
∑

θ∈Θ

(p̂− p) (Pθ(x, y), θ) (29)

+ β∆f̂R2(x, y) .

The three-dimensional evolution equations are,

~St(v) = −α
(
f̂R1 − f̂R2

)
(~S(v)) (30)

×
P∑

i=1

(p̂− p) (Pθi,φi(
~S(v)), Qθi,φi(

~S(v)), θi, φi)~νR1(~S(v))

−β
(
‖∇f̂R1‖2 − ‖∇f̂R2‖2

)
(~S(v))~νR1(~S(v))

+ γH(~S(v))~νR1(~S(v))

f̂R1,t(x, y, z) = −α
P∑

i=1

(p̂− p) (Pθi,φi(x, y, z), Qθi,φi(x, y, z), θi, φi) (31)

+ β∆f̂R1(x, y, z)

f̂R2,t(x, y, z) = −α
P∑

i=1

(p̂− p) (Pθi,φi(x, y, z), Qθi,φi(x, y, z), θi, φi) (32)

+ β∆f̂R2(x, y, z) ,
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3.2.1 Image Intensity Evolution

Equations (28) and (29) in the two-dimensional case, or Eqs. (31) and Eqs. (32) in the

three-dimensional case, represent a coupled evolution that will bring the estimated density

functions, f̂R1 and f̂R2 , to a state that represents, for a fixed contour, a minimum of the

cost functional, J . Implementing this coupled evolution with gradient descent is numeri-

cally stable but very computationally expensive, especially in the three-dimensional version

of the tomography problem. It is for this reason that the use of a multiscale technique

inspired by multigrid methods is proposed. The proposed multiscale method allows for

faster convergence of the algorithm and avoids local minima in the surface evolution. The

implementation of this coupled evolution with gradient descent is discussed first, followed

by the details of the proposed multiscale technique.

3.2.2 Gradient Descent

The evolution in Eqs. (28) and (29) can be implemented by updating image intensity

functions, f̂R1 and f̂R2 , by the forward Euler scheme in the direction of the negative gradient,

i.e.,

f̂n+1
R1

= f̂nR1
+ ∆tf̂nR1,t (33)

f̂n+1
R2

= f̂nR2
+ ∆tf̂nR2,t , (34)

where the superscript n denotes iteration number and ∆t is the iteration time step pa-

rameter. This time step parameter, ∆t, is chosen to ensure stability of the algorithm. A

sufficient condition for numerical stability of the algorithm is when,

∆t <
2

αNP + 4βD
, (35)

where D is the dimensionality of the image density function, N is the length of the longest

dimension of the image density function, and P is the number of projections. The proof of

this appears in Appendix B.

In this manner, the update equations minimize the cost functional, thereby ensuring

both smoothness of the reconstruction and that the reconstruction projections match the

measured projections.
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However, in the three-dimensional version of the tomography problem, this gradient

descent algorithm is slow to converge to the minimum of the cost function, J . Iterating

Eqs. (33) and (34) until convergence is very computationally costly. Since a two-step algo-

rithm is used, whereby the surface is held fixed while the estimated density functions are

being evolved, accuracy of the surface evolution depends on the accuracy obtained during

the density function evolution. To ensure fast convergence of the density functions and

thereby fast and accurate convergence of the surface, a multiscale method is proposed that

takes advantage of the smoothness property of the estimated density functions.

3.2.3 Multiscale Method

Convergence of Eqs. (33) and (34) necessarily happens when f̂R1,t = f̂R2,t = 0, which occurs

when,

− α
P∑

i=1

p(PΘi(x), QΘi(x),Θi) = −α
P∑

i=1

p̂(PΘi(x), QΘi(x),Θi) + β∆f̂Ri , (36)

for all x ∈ Ri for i = 1, 2. When discretely implemented, Equation (36) can be seen

as a linear equation, P = LF . The linear operator, L, acts on a pixel in the estimated

image density function, F , by summing all of the values of the projections at the points

on the projections to which that pixel projects. Thus, the projections can be seen as

an intermediate calculation step in the process of computing the linear operator. While

this process corresponds to a matrix multiplication, all of the elements of the matrix are

not explicitly computed since the matrix would require too much memory to store each

element1. Thus LF is not computed as a direct matrix multiplication. It is for this reason

that standard multigrid methods, i.e., operating on a downsampled image by a coarse scale

operator, would be difficult to apply.

A simpler way to use the general concepts behind multigrid methods is proposed to

create a multiscale technique for solving Eq. (36). The residual is computed in the projection

domain instead of in the image domain. This allows downsampling to occur purely in the

projection domain. Then the downsampled image that projects to the downsampled residual

1Even for a modest 2-D image, e.g., 100×100 pixels, and with the values of the matrices stored as 4-byte
floating point numbers, storing the matrix would require 373 Megabytes. A 3-D image of size 100×100×100
pixels would require 3.73 Gigabytes.
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is solved for and used as a coarse scale correction to the image density function. Finally,

gradient descent relaxation is used on the corrected image on the original grid to achieve

fine scale accuracy of the solution.

More formally, let f̂fine be the discrete version of the estimated image density function

on the original (fine scale) image grid and pfine be the discrete version of the true measured

projections on the original (fine scale) projection grid. Then by computing the projection

residual,

rfine ← pfine − Prfine{f̂fine} , (37)

on the finest grid, where Prfine is the fine grid projection operator, and downsampling the

projection residual by downsampling operator, D, the downsampled residual,

rcoarse ← Drfine , (38)

is obtained.

We then solve for the coarse scale correction, ccoarse by solving,

rcoarse = Prcoarse{ccoarse} , (39)

for ccoarse with the gradient descent techniques mentioned in Section 3.2.2. The coarse scale

computation incurs less computational cost than solving Eqs. (33) and (34) on the fine grid.

The coarse scale correction is then upsampled by cfine ← Uccoarse, and is added to the

fine scale estimated image density by,

f̂fine ← f̂fine + cfine . (40)

We have illustrated this process in Figure 6. The smooth nature of the image density

functions, which is due to the function smoothness regularizer, ensures that the update of

the image density function by the coarse scale correction will make the residual smaller,

thus bringing the image density function closer to convergence.

Note that while the above procedure describes the process for the two scale method, it

is possible to coarsify the projection residual multiple times and solve for the coarse scale

correction on an image grid corresponding to this coarse grid. That is, once the residual
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Figure 6: Illustration of two scale method for solving for image density functions.

is calculated on the finest grid, it is downsampled several times until a pre-selected coarse

grid size is reached. At this point, the correction is solved for on this coarse grid. Then,

it is upsampled in the image domain to the next finest grid level where the correction is

obtained more accurately before it is upsampled again. Eventually, it is used to correct

the original estimated density function. Figure 7 illustrates this multiscale solution for the

coarse grid.

3.3 Computational Cost

In Table 3 we have listed the number of surface evolution iterations that each algorithm

requires to converge and the total computation time for various images and algorithms.

The number of image iterations on the fine grid is a parameter of each algorithm and is

shown in the third column of the table. The multiscale algorithm requires less iterations on

the fine grid to solve for the image function accurately. Note that the multiscale algorithm
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Figure 7: Illustration of multiscale method for solving image density functions.

requires less surface iterations to converge. This is because a more accurate solution of

the image function enables faster convergence of the surface. The simulated cube image is

51× 51× 51 pixels and uses 15 simulated projections evenly spaced within a half-circle on

the x − y plane. The heart phantom image is 64 × 47 × 31 pixels and uses 40 simulated

noisy projections evenly spaced within a half-circle on the x − y plane. All computation

times reported are processor times on a 1.7 GHz workstation.

Table 1: Computational performance of algorithms for various images.

Image Iterations Surface Iterations Computation
Image Technique on Fine Grid until Convergence Time

Simulated Cube Grad. Desc. 1 4100 60.2 minutes
Simulated Cube Grad. Desc. 3 1800 48.8 minutes
Simulated Cube Multiscale 1 600 21.5 minutes

Heart Phantom Grad. Desc. 1 3100 87.1 minutes
Heart Phantom Multiscale 1 500 60.4 minutes
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CHAPTER IV

VARIATIONAL REGION INITIALIZATION

4.1 Introduction

The effect of allowing piecewise smooth images is a greatly increased number of free param-

eters in the image model. As the number of free parameters increase, it becomes more likely

to reach a local minimum that is not the global energy minimum, and thus the dependence

on algorithm initialization becomes more important. This dependence on initialization is

particularly prevalent in surface evolution methods due to their local nature. However, in

the above mentioned surface evolution papers, little attention is given to the surface ini-

tialization. Bruandet et. al. use thresholded filtered back projection (FBP) [14]. Whitaker

and Elangovan briefly compare thresholded minimum norm reconstruction (MNR) with

thresholded FBP [72]. Yu and Fessler do not explicitly mention the technique they used for

surface initialization.

Thresholded FBP is a reasonable surface initialization since FBP is used in many com-

mercial applications and since properties of filtered back projection are well-studied. How-

ever, FBP does not work well when the number of projections is low. A detailed description

of filtered back projection can be found in [31]. Thresholded MNR seems natural math-

ematically, but minimizing the norm of the image pixel intensities has no justification for

natural images. Another disadvantage that both thresholded FBP and MNR share is the

choice of an arbitrary threshold.

Dividing the image domain into several small regions that span the entire image works

well in theory. However, this is an extremely inefficient initialization, since computation

time for level set implementations scales with total surface area.

In this paper we present a novel method for surface initialization of tomographic images.

The proposed method does not depend on the choice of an arbitrary threshold or the geom-

etry of the imaged object. For proof of concept, we use surfaces obtained with this method
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as initializations for a piecewise smooth tomographic reconstruction model. We compare

the segmentations obtained from the proposed method with other used segmentations from

thresholded MNR.

4.2 Tomography Problem Statement

A D-dimensional tomographic image is a function, f : Ω→ <, where Ω, the image domain,

is a compactly supported subset of <D. This function is often called the image density. The

projections or sinograms of this image are N , (D − 1)-dimensional functions given by,

p(θi, s) =

∫

Ω
f(x) δ(Rθi(x)− s)dx , (41)

for i = 1, . . . , N , where θ represents the angles at which the projection is taken, and Rθ

is a function that maps a point in the image domain to its corresponding point, s, on the

projection at angle θ.

The tomographic reconstruction problem is that of determining an estimate, f̂ , of the

unknown image function, f , from the N projections. Given a sufficient amount of pro-

jections, this problem is invertible. In practice however, obtaining this much data is not

practical. Therefore, authors have attempted to put constraints on the class of admissible

image functions to reduce degrees of freedom apparent in the under constrained problem.

The method proposed by Bruandet et. al. assumes the image function is binary and

piecewise constant, one image region having density 0 and the other region having an a

priori known density, µ. This restrictive image constraint is reasonable when imaging a

homogeneous object. The image regions are separated by a surface, Γ, that is a level set

of a function Φ. The authors derive a partial differential equation (PDE) describing the

evolution of Φ. The evolution of Φ is chosen to minimize the back projection of the difference

between the projections of the image and the measured projections.

The technique proposed by Whitaker and Elangovan also assumes piecewise constant

image regions separated by a deformable surface. Whitaker does not assume prior knowledge

of the image densities; The image densities, β0 and β1, are updated iteratively so that the

measured projections match the projections of the current image estimate. Whitaker’s

formulation is a generalized version of Bruandet’s.
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Yu and Fessler presented a discrete cost functional to model the reconstruction by an

image domain partitioned into two functions under a local image smoothness constraint. In

their method, the two functions are separated by a deformable discrete boundary analogous

to the surfaces presented by Bruandet and Whitaker.

These authors have all added constraints to the under determined tomographic recon-

struction problem. All three models have a common free parameter, i.e., the surface that

borders image regions, but each model parameterizes the image function with an increasing

number of free parameters. For a discrete image, Bruandet, Whitaker, and Yu respectively

allow zero, two, and p parameters to model the image function’s intensity, where p is the

number of pixels in the image. Each of these authors have formulated a surface evolution to

move the boundary of the image regions. The local nature of surface evolution algorithms

can introduce local minima in the cost functionals. This is especially true with an increasing

number of free image function parameters.

4.3 Proposed Initial Segmentation

4.3.1 Image Model and Functional

To obtain an initial segmentation, and a corresponding surface separating the foreground

and background, we propose the following model. We model the reconstructed image as a

function,

f̂(x) = (1− u(x))α0 + u(x)α1 , (42)

where u(x) : Ω→ < represents whether a given point is in the foreground or the background,

and α0 and α1 are two scalar constants. It is desired to obtain a segmentation of the

tomographic image, f , with only knowledge of its projections, p(θ, s), as given by Eq. (41).

The cost functional,

F (u, α0, α1) =
∑

θ∈Θ

∫

P (θ)
(p(θ, s)− p̂(θ, s))2 ds + λ

∫

Ω
(u(x)− 1)2u2(x)dx , (43)

where p̂ are the projections of the estimated image f̂ , and Θ is the set of angles at which

projections were measured. Note also that P (θ) is the domain of the projection at angle

θ. We can adjust the tradeoff between the two terms with the scalar constant λ. High
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values of λ more strongly enforces the bimodality of the image. The first term ensures that

the projections of the model image match the measured projections and the second term

penalizes pixels for deviating from 0 or 1, i.e., background or foreground respectively. The

integrand of the second term is shown as a function of u(x) in Figure 8.
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Figure 8: Integrand of the second term in Eq. (43) as a function of u(x). This term penalizes
u(x) for deviating from 0 or 1.

4.3.2 Evolution of Reconstruction Parameters

The gradient of the cost functional with respect to the function u(x) is obtained from

the from its first variation. By allowing the function u(x) to change with time, the cost

functional also changes with time. Differentiating the cost functional with respect to time

yields,

F ′ =
d

dt

∑

θ∈Θ

∫

P (θ)
((p− p̂) (θ, s, t))2 ds + λ

d

dt

∫

Ω
(u(x, t)− 1)2u2(x, t)dx (44)

= −2
∑

θ∈Θ

∫

P (θ)
(p− p̂) (θ, s, t)

dp̂

dt
ds + 2λ

∫

Ω

(
(u− 1)u2 + (u− 1)2u

)
utdx , (45)
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where ut is the partial derivative of u with respect to t. The term dp̂
dt is,

dp̂

dt
(θ, s, t) =

d

dt

∫

Ω
((1− u(x, t))α0 + u(x, t)α1) δ(Rθi(x)− s)dx (46)

= (α1 − α0)

∫

Ω
ut(x, t)δ(Rθi(x)− s)dx . (47)

Substituting dp̂
dt into Eq. (45), and using the sifting property of the δ function in the variable

s, we obtain,

F ′ = 2

∫

Ω
ut

[
(α0 − α1)

∑

θ∈Θ

(p− p̂)(θ,Rθ(x)) + λ
(
2u3 − 3u2 + u

)
]
dx . (48)

It follows that the direction of evolution of u that will most quickly minimize the cost

functional is by setting,

ut(x, t) = (α1 − α0)
∑

θ∈Θ

(p− p̂)(θ,Rθ(x))− λ
(
2u3 − 3u2 + u

)
, (49)

that is, we have obtained an evolution of u(x, t) that will minimize our cost functional.

To solve for the optimal α0 and α1 at each evolution step, we minimize the cost functional

with respect to these constants. That is by setting,

∂F

∂α0
=

∂F

∂α1
= 0 , (50)

we obtain a system of equations given by,


a11 a12

a21 a22






α0

α1


 =



b1

b2


 , (51)

where,

a11 =
∑

θ

∫

P (θ)

(∫

Ω
(1− u)δdx

)2

ds (52)

a12 = a21 =
∑

θ

∫

P (θ)

(∫

Ω
uδdx

)(∫

Ω
(1− u)δdx

)
ds (53)

a22 =
∑

θ

∫

P (θ)

(∫

Ω
uδdx

)2

ds , (54)

and

b1 =
∑

θ

∫

P (θ)
p(θ, s)

(∫

Ω
(1− u)δdx

)
ds (55)

b2 =
∑

θ

∫

P (θ)
p(θ, s)

(∫

Ω
uδdx

)
ds . (56)
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Note that δ is shorthand for δ(Rθ(x)− s).

The proposed technique is to evolve the function u(x, t) according to Eq. (43), while at

each evolution step to update α0 and α1. Note that no explicit constraints are made that

relate values of u(x, t) that are spatially close. Any such constraints would create a seg-

mentation that would not be suitable for the initialization of a surface evolution technique.

4.3.3 Thresholding

An advantage of this technique is that we have a natural image threshold and therefore a

natural way to determine the region boundary. As λ gets larger, the image points are closer

to 0 or 1. Therefore, we propose to classify image points into two regions, R1 and R2, based

on the criterion: x ∈ R1 if u(x) ≥ 0.5 and x ∈ R2 if u(x) < 0.5. We have thus specified a

segmentation of foreground and background. The boundary of the two image regions, R1

and R2, is a surface. Thus, the segmentation and surface are obtained by thresholding our

proposed reconstruction.

The surface separating the two image regions is suitable as an initial surface for existing

variational tomographic reconstruction methods [14, 72]. An accurate initial surface is also

necessary for the generalization of Whitaker’s work to piecewise smooth images. In the

next section, we will show the performance of the proposed initial surface when used as an

initialization for the piecewise smooth generalization of Whitaker’s work.

As a remark, we will briefly compare the proposed technique with minimum norm re-

construction (MNR), in which the solution is the image that satisfies the projection data

constraints and has the minimum norm. That is, the minimum norm reconstruction would

be the f̂ that minimizes,

F (f̂) =
∑

θ∈Θ

∫

P (θ)
(p(θ, s)− p̂(θ, s))2 ds + λ

∫

Ω
|f̂(x)|2dx , (57)

MNR will produce reconstructed images whose grayscale point tend to be close to each

other in intensity. That is, the formulation in Eq. (57) will not enforce a reconstructed

image where pixel values tend to be close to one constant or another. In addition, the

chosen threshold in MNR is arbitrary since the image is not inherently bimodal. It is for
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this reason that the cost functional we propose is more motivated than minimizing the norm

of the reconstructed function.

4.4 Implementation

We initialize the constants, α0 = 0 and α1 = 2c, where,

c =

∫
Ω f(x)dx∫

Ω dx
=

∫
P (θ) p(θ, s)ds
∫

Ω dx
. (58)

is the average pixel intensity in the image. Although we do not know f(x) directly, it is

known that
∫

Ω f(x)dx =
∫
P (θ) p(θ, s)ds for any of the projection angles, θ, since the projec-

tions conserve the total image intensity. We initialize the function u(x) = 0.5. Therefore,

the initial image function is f̂(x) = 0.5α1 = c, i.e., all image values are initially the same.

Then we update the current value of u(x) using an forward Euler scheme with the

evolution ut given by Eq. (49). The update equation is of the form,

un+1(x) = un(x) + γunt (x, t) , (59)

where the superscript denotes the iteration number and γ is the algorithm time step which

must be kept sufficiently small to ensure stability. After each update of u(x), the optimal

values of α0 and α1 are solved by the system of equations in Eq. (51).

The algorithm is considered converged when the norm of unt (x, t) decreases below a

certain, predetermined threshold. Upon convergence of the algorithm, we threshold the

function u(x) to obtain the segmentations.

For ease of display, the results of the proposed method will be shown in two dimensions,

i.e., with a two dimensional image function and with one dimensional projections. We

computed on a discrete grid of pixels which represents the image function. The projections

are computed using linear interpolation. The integrals in Eq. (49) and Eqs. (52) through

(56) are sums in the discrete implementation.

4.5 Simulations

4.5.1 Example Segmentation

In Fig. 9 we show a synthetic piecewise smooth image that is typical of the types of images

we wish to reconstruct. The figure also shows the vertical and horizontal projections of this
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image. The image is 200 by 200 pixel and contains three ellipses, one is homogeneous and

of high intensity and two smoothly blend into the black background. In Fig. 10 we show

four instances of the proposed segmentation algorithm. Each column shows the outcome

of the algorithm for a different number of projections, N . The values of N are, from left

to right, 2, 5, 9, and 15. The top row contains the final values of u(x). The bottom row

contains the thresholded values of u(x); These are the proposed segmentations of the image

functions.

Fig. 11 shows the reconstruction of the tomographic image using the initial segmentation

proposed in this paper assuming a piecewise smooth image model that is a generalization of

the method proposed by Whitaker [72]. From left to right, the figure shows different stages

of the piecewise smooth algorithm, i.e., at 200, 500, 700, and 1000 iterations respectively.

This reconstruction uses only 9 projections and obtains a nearly perfect reconstruction.

The only slight inaccuracy in the reconstructed image is the rounding off of the two upper

ellipses. This rounding off occurs due to the unclear boundary of where the ellipses end and

the black background begins.

Figure 9: True synthetic piecewise smooth image of three ellipses (left). Vertical and
horizontal projections of image (center and right, respectively).

4.5.2 Comparison with Minimum Norm

We will present a comparison with thresholded minimum norm reconstruction (MNR). Fig.

12 shows another piecewise smooth, 100 by 100 pixel, lung CT image and its two projections.

Fig. 13 shows two rows of initial segmentations. The top row contains segmentations
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Figure 10: Proposed u(x) function (top row) and segmentations (bottom row) of image
shown in Fig. 9. From left to right, the columns represent 2, 5, 9 and 15 equally spaced
projections respectively.

Figure 11: Reconstruction of image in Fig. 9 using piecewise smooth image model when
initialized with proposed initial segmentation. From left to right is shown the piecewise
smooth algorithm at 200, 500, 700, and 1000 iterations respectively. This reconstruction
uses 9 equally spaced projections.

using the proposed method. The bottom row contains segmentations using thresholded

MNR. From left to right, the columns in the top row represent segmentations for different

thresholds using the proposed method with 15 equally spaces projections. From left to

right, the columns in the bottom row represent segmentations for different thresholds with

15 equally spaces projections. We note how the proposed initial segmentation is more robust

to choice of threshold.

It is important to notice that the proposed method (top row) more consistently finds

the delineations between shapes whereas the thresholded MNR method (bottom row) tends

to blend shapes with each other and with the sides of the image. This blending can cause

local minima when the segmentation is used as an initialization for deformable surface
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models for tomographic reconstruction. The blending is more likely to occur in thresh-

olded MNR since minimizing the norm of the image function does not penalize the image

from smoothly changing from foreground to background. The proposed functional penal-

izes image grayscale values for being between foreground and background. In this way it

creates clearer, more accurate boundaries for binary or almost binary images. These accu-

rate boundaries are desired in the segmentation problem and are a useful initialization for

variational tomographic reconstruction methods.

In Fig. 14 we see the evolution of the tomographic reconstruction algorithm using 15

projections on the lung CT image. Notice how the algorithm captures much of the fine

scale structure. This is made possible due to the accurate initial segmentation proposed in

this paper.

Figure 12: True lung CT image (left). Vertical and horizontal projections of image (center
and right, respectively). Image size is 100 by 100 pixels.
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Figure 13: Comparison of segmentations of the image in Fig. 12. Comparison is between
proposed method (top row) with segmentations from thresholded minimum norm recon-
struction (bottom row). From left to right, the columns represent different segmentation
thresholds.

Figure 14: Evolution of tomographic reconstruction algorithm when initialized with the
proposed method. From left to right: initial image, image after 50 reconstruction iterations,
after 100 iterations, and after 200 iterations.
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CHAPTER V

EXPERIMENTAL VALIDATION

5.1 Two-Dimensional Reconstructions

5.1.1 Bone Reconstruction

In Fig. 15 we show a 71 × 71-pixel grayscale image that is a cross-section of a piece of

bone. This image is nearly piecewise constant. However, unlike the technique presented by

Whitaker that models only two image regions, this bone image has three distinct intensity

regions. For this reason, it is desirable to consider the three regions separately.

Figure 15: True 71×71-pixel bone image.

In Fig. 16 we show several stages of evolution of the proposed method. The top left

image shows the initialization of the algorithm, where the image domain is subdivided into

a large number of densely-spaced separate regions. The evolution of the algorithm proceeds

from left to right in the top row and then is continued on the bottom row where it again

proceeds left to right. The final reconstruction is show on the bottom right. Note how the

three distinct homogeneous regions are accurately captured by the proposed model.

We compare the proposed method with the reconstruction from other techniques in
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Figure 16: Several stages of bone reconstruction from 9 equally-spaced projections using
proposed method. Algorithm initialization in top left image. Evolution proceeds from left
to right and is continued in the second row. Final reconstruction on bottom right.

Fig. 17. All reconstructions in this figure have used 9 equally-spaced projections. In the top

left, we show the true image for comparison. On the top right, we show the reconstruction

using filtered back projection (FBP). On the bottom left, we display the reconstruction

using the piecewise constant method proposed by Whitaker. On the bottom right, we show

the reconstruction obtained from the proposed method.

Note that the proposed method most accurately represents the delineation between

foreground and background. The reconstruction from FBP contains significant streak noise,

as typically occurs with under-constrained FBP. The reconstruction from the piecewise

constant model does not accurately represent the bone marrow region that lies inside of the

bone. This occurs because the piecewise constant model is unable to represent more than

two grayscale intensities.

5.1.2 Brain Reconstruction

In Fig. 18 we show a 145 × 145-pixel grayscale image that is a cross-section of a human

skull and brain. This image has significant piecewise smooth structure, the boundaries

between the bone and the gray matter have large intensity variation, but within the bone

gray matter regions, the image has significant smoothness.
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Figure 17: Comparison of bone reconstruction methods from 9 equally-spaced projections.
True image (top left), filtered back projection reconstruction (FBP) (top right), piecewise
constant reconstruction (bottom left), and proposed piecewise smooth reconstruction (bot-
tom right).

We show, in Fig. 19, several stages of the brain reconstruction using the proposed

method. In this reconstruction we used 25 equally-spaced projections. Again, in the top

left, we show the initialization of the algorithm with densely-spaced separate square regions.

The algorithm proceeds from left to right. Notice how accurately the edges of the skull

region are segmented by the contour in the proposed model.

In Fig. 20, we compare the brain reconstruction with the reconstruction from other

methods. All methods in this comparison used 25 equally-spaced projections. In the top

left we show the true brain CT image. In the top right we show the reconstruction using

filtered back projection (FBP). In the bottom left, we show the reconstruction using the

piecewise constant model and in the bottom right we show the reconstruction using the

proposed piecewise smooth model.

Again note the accuracy with which the proposed model segments some of the small

scale features of the skull and brain. The piecewise constant model attempts to represent

the medium-intensity gray matter inside the skull region by considering part of the region

to be foreground and part of the region to be background. The segmentation produced by
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Figure 18: True 145×145-pixel brain CT image (courtesy of the Department of Medical
Imaging and Radiation Sciences at Monash University.)

the proposed model more accurately represents the physical boundaries between anatomical

regions.

5.1.3 Method Comparison

We compared numerically and subjectively with two other methods, filtered back projection

and the sinogram restoration algorithm proposed by Prince and Willsky [54]. The sinogram

restoration algorithm of Prince and Willsky is a multistage algorithm that first normalizes

the projections by shifting the center of mass and scaling so that each projection has unit

mass. Then, the range of positions in each projection where the object could have projected

to are estimated using statistical methods. These are called support values. Next, the finest-

grain sinogram is restored by solving the PDE that minimizes a given cost functional.

The cost functional simultaneously penalizes deviation from known projections, rewards

smoothness of the reconstruction sinogram, and penalizes energy in the sinogram outside

of the support values. In addition, that the mass of each projection is one and that the

center of mass is at the image origin is enforced throughout the evolution. Finally, this

reconstructed sinogram is shifted back to its original center of mass and its original mass

and then it is used to reconstruct the image using filtered back projection.

In our implementation of this method, we used a simple thresholding technique to

estimate the range of possible projection energy within the projection domain. However,
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Figure 19: Several stages of brain reconstruction from 25 equally-spaced projections using
proposed method. Algorithm initialization in top left image. Evolution proceeds from left
to right and is continued in the second row. Final reconstruction on bottom right.

we did this in the case of noiseless projections and obtained very accurate values for the

range of possible projection energy. Thus, our implementation represents a best possible

case sinogram restoration with this technique.

Table 2 shows the mean squared error between the original image and the reconstructed

image for different reconstructions techniques and for varying number of projections. The

reconstruction techniques shown are filtered back projection, algebraic reconstruction tech-

nique (ART), the sinogram restoration of Prince and Willsky [54] and the reconstruction

technique proposed in this thesis, initialized with the densely spaced contours as shown

in Fig. 19, and using the multiscale function computation as describe in Chapter 3. The

last column shows the result of a modified version of the proposed method that starts out

with the segmentation and reconstruction in the fourth row, but where the weight of the

function smoothness term in the cost functional is deemphasized. This produces a more ac-

curate image where smoothness isn’t enforced too much, but also maintains a very accurate

segmentation. The mean squared error reported is given by,

MSE =

√∑
p∈Ω (I(p)− Ir(p))

2

|Ω| , (60)

where Ω is the set of pixels in the image domain, |Ω| the number of pixels in the image

45



Figure 20: Comparison of brain reconstruction methods from 25 equally-spaced projections.
True image (top left), filtered back projection reconstruction (FBP) (top right), piecewise
constant reconstruction (bottom left), and proposed piecewise smooth reconstruction (bot-
tom right).

domain, I(p) is the value of the original image at pixel p, and Ir(p) is the value of the

reconstructed image at pixel p.

Note how, as the number of projections becomes large, the error of filtered back pro-

jection and especially ART becomes lower than the sinogram restoration and the proposed

method. The reasons for this are because the projections are noiseless and because the

sinogram restoration method and the proposed method assume a strong prior that modifies

the image in favor of a more likely image. Filtered back projection does not modify the

image or the projections as strongly. However, when the number of projections are low,

the sinogram restoration method and the proposed method outperform filtered back projec-

tion and ART since both of these methods each succesfully incorporate a more valid prior.

Unlike the sinogram restoration method of Prince and Willsky, which enforces smoothness

of the sinogram, the proposed method incorporate a more realistic prior, i.e., piecewise

smoothness within the image domain.

A significant improvement to the proposed method is given by the proposed modified

method mentioned above where the weight of the function smoothness term is lowered after
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an initial segmentation and reconstruction are obtained. The results of this method also

look qualitatively the best as can be seen below.

Table 2: Mean squared error comparison of various 2D reconstruction algorithms.

# Proj. FBP ART Sino. Rest. Prop. Method Prop. Method Mod.

10 0.420 0.260 0.244 0.248 0.226
20 0.250 0.190 0.191 0.173 0.171
25 0.209 0.164 0.180 0.167 0.157
30 0.172 0.147 0.171 0.162 0.146
40 0.144 0.115 0.161 0.161 0.133

Figure 21 shows the comparison of the reconstructed brain using three different recon-

struction methods. The top row shows filtered back projection reconstruction for 10, 20,

30, and 40 projections starting from the leftmost image and going towards the rightmost

image. The second row from the top shows the reconstruction using algebraic reconstruc-

tion technique (ART) by producing the image with the minimum norm that matches the

given projections. The third row shows the reconstruction results using Prince’s sinogram

restoration for the same number or projections. The fourth row shows the results of the

reconstruction method proposed in this thesis. Note how the important edges in the image

are preserved well when using the proposed method as opposed to where they are blurred

in the sinogram restoration method. The fifth and final row shows the proposed method

that starts out with the segmentation and reconstruction in the fourth row, but where the

weight of the function smoothness term in the cost functional is deemphasized. This pro-

duces a more accurate image where smoothness isn’t enforced too much, but also maintains

a very accurate segmentation. Note how a significant portion of the fine scale details are

incorporated into the reconstruction.
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5.2 Three-Dimensional Reconstructions

5.2.1 Modified Cardiac Torso Phantom

For validation, we reconstructed three-dimensional images, i.e., single three-dimensional

time frames from a sequence of three-dimensional images, that were taken from modifica-

tions of the 4-D NURBs-based CArdiac Torso (NCAT) phantom from the University of

North Carolina [18, 61, 67]. The NCAT phantom software creates “gold standard” activity

and attenuation maps. This NCAT phantom includes a model of the heart with many

options for varying the simulation, including addition of cardiac and respiratory motions,

inclusion of perfusion abnormalities, variations in radioactivity concentration in non-cardiac

structures. The modification of the NCAT phantom was make allowances for the use of left

ventricular (LV) boundaries and perfusion defect size and location obtained from actual

SPECT perfusion studies [24].

Figure 22 shows four slices of the modified NCAT phantom. Figure 23 shows three view

angles of a segmentation of the known phantom image using a binary segmentation method

[76]. Note that segmentations such as this are essentially ground truth segmentations and

rely on accurate knowledge of the image density function. Segmentations of this high quality

are not attainable from limited projection data.

From each of the resulting 72 NCAT-created activity and attenuation maps, was cre-

ated simulated projections using a projector that modeled all major degradation factors

in SPECT. The projector included a low-energy high resolution collimator model that in-

corporated geometric detector response, simulated photon scatter using the Klein-Nishina

formula, and added standard Poisson-distributed noise according to image count levels.

More details regarding this projector are discussed in Chen, et al. [18].

5.2.2 Multiscale Reconstructions

Figures 24 and 25 illustrate the ability of the multiscale technique to avoid local minima in

the surface evolution. Figure 24 shows the evolution of the surface for a simulated three-

dimensional cube with the gradient descent technique where the function evolution is not

solved to convergence. The final surface contains an inversion of the surface around the
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ideal cube. Since the inversion around the top and sides of the cube would have to pass a

state of higher cost in order to invert and model the cube accurately the surface evolution

has reached a local minimum. Figure 25 illustrates the evolution of the cube when using

the multiscale technique presented in Chapter 3. The density function is solved efficiently

and the surface is able to reach the global energy minimum. This is shown by the accurate

reconstruction of the cube.

Most of the benefits of the using multiscale tomographic reconstruction however, are in

the computational improvement as shown in Chapter 3.

5.2.3 Variational Surface Initialization

The surface initialization method presented in Chapter 4 is an effective way of initializing

the surface for the proposed tomographic reconstruction technique. Figure 26 illustrates

the segmentation of the three-dimensional cube when initialzed with the variational surface

technique presented in Chapter 4. On the left of the figure is the initialization produced

by this technique. Note that the initialization is extremely close to the cube in shape. The

evolution therefore does not require many iterations to reach the final configuration. In this

instance only 40 surface evolution steps are required whereas approximately 600 are need

when started with the dense initialization shown in Figs. 24 and 25.

Figure 27 illustrates the reconstruction obtained when using the bimodal surface initial-

ization method presented in Chapter 4. The left column of this figure shows a slice of the

density function and of the surface initialization. Notice how the initial surface captures the

boundaries of the simulate heart wall very accurately. The figure then shows the evolution

of the surface and density function when initializing the surface as shown on the left. The

final reconstruction and its corresponding surface are shown on the right.

5.2.4 Heart Perfusion Detection

Figure 28 shows the ability of the proposed reconstruction technique to detect a simulated

heart perfusion abnormality. The left image is the ground truth phantom showing the heart

perfusion, which is on the bottom of the larger ventricle and is a region of faded image

intensity. The right image shows the reconstruction using the proposed reconstruction
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method with 40 equally spaced projections. Note how the perfusion abnormality is clearly

visible and is able to be detected easily by inspection.

Figure 29 shows the surface resulting from a segmentation of the NCAT phantom when

using 64 projections for which noise, attenuation and scatter were added. The top left image

is the overhead view of the surface. The top right image is the side view. The bottom left

image a back view and the bottom right image is a close up of the heart, showing a hole in

the active surface at the location of the heart perfusion. The location of the hole is circled.

Figure 30 shows the ability of the proposed technique to model the edges in an image

and to detect the heart perfusion abnormality. In in this example, 64 projection were

used where noise, attenuation and scatter were added. The leftmost image is the original

phantom. The second image is the filtered back projection reconstruction of the image. The

third image is the reconstruction using the proposed method. Notice the clear thinning of

the heart wall at the location of the perfusion abnormality. The final image shows a close

up of the surface with the perfusion circled.
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Figure 21: Comparison of reconstructed brain image for different reconstruction methods
for varying number of projections. First row: Filtered back projection reconstruction.
Second row: Algebraic reconstruction technique. Third row: Sinogram restoration. Fourth
row: proposed method with fixed weighting parameters. Fifth row: modified proposed
method with function smoothness deemphasized once an accurate segmentation is obtained.
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Figure 22: Several slices of modified NCAT phantom showing cross sections of heart and
other simulated organs.
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Figure 23: Three view angles of a segmentation surface of the known phantom image using
a binary segmentation method. Top image: overhead view of segmentation surface. Middle
image: side view. Bottom image: underside view.
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Figure 24: Evolution of surface for simulated three-dimensional cube with gradient descent
technique. The top left image shows the initialization of the surface. The evolution of the
surface progresses from left to right and from left to right in the second row. Note the
suboptimal local minimum on the top and around the sides of the cube.
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Figure 25: Evolution of surface for simulated three-dimensional cube with proposed mul-
tiscale method. The top left image shows the initialization of the surface. The middle and
right images in the top row show the surface after 50 and 100 iterations, respectively. The
left, middle, and right images in the bottom row show the surface after 200, 300, and 600
iterations respectively. Note the lack of local minima on the surface of the cube.

Figure 26: Evolution of the surface starting from bimodal surface initialization method.
The left image is the initialization, the middle and right images are the surface after 10 and
40 iterations respectively.
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Figure 27: Left column: slice of initial three-dimensional density function using bimodal
surface initialization and the corresponding initial surface below it. Middle column: slice of
density function during the evolution. Right column: slice of reconstructed density function
and its corresponding surface.

Figure 28: Detection of simulated heart perfusion in a different location using 64 noiseless
projections with the proposed reconstruction technique.
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Figure 29: Surface resulting from segmentation produced by the proposed technique when
using 64 projections for which noise, attentuation and scatter were added. Bottom right
image shows heart perfusion as a hole in the surface.
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Figure 30: Reconstruction using proposed multiscale method and projections with simu-
lated noise. Left image: slice of the true phantom. Second image: filtered back projection
reconstruction. Third image: reconstruction using proposed method. Fourth image: close-
up of 3D surface showing heart defect.
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CHAPTER VI

MULTIGRID COMPUTATION OF NON-LINEAR

OPTICAL FLOW

6.1 Introduction

Optical flow is used to extract motion information from a sequence of images. Optical

flow offers a valuable quantification for motion such as for object tracking, time-to-impact

calculation, or for determining fluid flow in an image. Optical flow fields representing large

scale motion, i.e., those that vary smoothly over an image, are well captured by the optical

flow method proposed by Horn and Schunck [34]. Horn and Schunck proposed a regularizer

that heavily penalizes changes in the optical flow field. The result is that the optical flow

functional presented by Horn and Schunck does not preserve the occluding edges of moving

objects well because the functional globally enforces a smoothly varying flow field.

Authors have proposed different regularizers in order to capture certain desirable prop-

erties of optical flow fields. Hildreth presented a method to ensure smoothness along pre-

specified contours [32]. Nagel proposed an oriented smoothness constraint that constrains

the optical flow field in directions along which optical flow cannot be determined from gray

value changes [49].

Kumar et. al. recommend the use of regularizer whose calculation requires solving a

non-linear PDE for the purpose of preserving edges [42]. The functional presented in [42]

is not invariant to rotations in the image. A regularization functional that is not invariant

to rotation will produce optical flow fields that are dependent on orientation of the image

with respect to the x- and y-axis. Unlike the linear partial differential equations (PDEs)

resulting from Horn and Schunck’s functional, the partial differential equations resulting in

[42] are non-linear, and difficult to compute with traditional gradient descent methods.

Gradient descent methods, while simple to implement, are slow to approximate the
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coarse scale features of a function. Multigrid relaxation methods, which address this issue,

have been of wide interest in the mathematical and image processing communities [11, 12,

68, 1]. Multigrid relaxation methods take advantage of the coarse scale structure of the

solution function by solving on a refined, coarser grid, where the computational cost is low

[12]. Multigrid techniques therefore compute a coarse scale approximation to the solution

quickly. Optical flow fields typically have significant coarse scale structure and thus are well

suited to multigrid computation. Glazer applied multigrid techniques to Horn and Schunck’s

optical flow functional [27]. Battiti et. al. have introduced an adaptive multiscale approach

in the flavor of multigrid for computing Horn and Schunck optical flow [8]. Enkelmann

applied multigrid techniques to the optical flow constraint presented by Nagel [22].

In this chapter, an altered functional is presented that is similar to that presented in

[42], but is rotationally invariant. We present proof of the rotational invariance of this new

functional along with experimental evidence of the improved computational performance.

We also compute an optical flow fields that minimize this functional are computed with

non-linear multigrid techniques. The increase in computational speed is significant.

6.2 Optical Flow Functional

Let I : R3 → R represent a time varying image, i.e., I(x, y, t) is the intensity value at

spatial location (x, y) and at time t. Let u(x, y) and v(x, y) be the horizontal and vertical

components of the optical flow, respectively. Under the assumptions of brightness constancy

and smoothly varying intensity patterns, Horn and Schunck [34] motivate the use of an

optical flow constraint,

Ixu+ Iyv + It = 0 , (61)

where Ix, Iy, and It denote the partial derivatives of the image function with respect the

subscripted variable. Optical flow functions u and v which solve Eq. (61) capture motion

in image intensity in directions orthogonal to isobrightness contours.

However, as is well known in the optical flow literature [34, 9, 32], the solution to Eq. (61)

is not well-posed since optical flow can not be determined along isobrightness contours. To

resolve this ambiguity, authors have presented a regularization in the form of a term that
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penalizes the departure from smoothness of the optical flow functions, u and v. [34, 42].

Horn and Schunck defined departure from smoothness as,

eHS(u, v) =

∫∫

Image
u2
x + u2

y + v2
x + v2

y dx dy , (62)

where subscripted spatial variables again denote partial derivatives. More compactly, we

can denote eHS(u, v) as eHS(u), where u =




u(x, y)

v(x, y)


.

By casting the optical flow constraint in Eq. (61) in terms of a functional,

ec(u, v) =

∫∫

Image
(Ixu+ Iyv + It)

2 dx dy , (63)

the problem of solving for optical flow becomes well-posed and we are able to find the u and

v that minimize the combined functional, λec + eHS. Note that λ is a constant parameter

that controls the penalty tradeoff between the optical flow term and the smoothness term.

The smoothness term, eHS, presented by Horn and Schunck has the advantage of being

well-behaved numerically since the Euler-Lagrange equations for the functional λec + eHS

produce the coupled pair of second-order elliptic partial differential equations (PDEs) given

by,

∆u = λ(Ixu+ Iyv + It)Ix , (64)

∆v = λ(Ixu+ Iyv + It)Iy , (65)

where ∆ = ∂2

∂x2 + ∂2

∂y2 denotes the Laplacian operator.

However, a disadvantage of Horn and Schunck’s smoothness term is that is does not

allow for the sharp changes in optical flow that occur near edges of moving objects. Thus,

while Horn and Schunck’s method is useful for optical flow fields which vary smoothly over

the entire image, it also has the undesirable effect of smoothing the optical flow over the

boundaries of moving objects.

To combat this problem, Kumar et. al. [42] present an edge-preserving smoothness

term, defined as,

eK(u, v) =

∫∫

Image

√
u2
x + u2

y +
√
v2
x + v2

y dx dy , (66)
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as a replacement for Horn and Schunck’s smoothness term.

We present an optical flow smoothness term that has similar edge-preservation properties

while maintaining the rotational invariance of Horn and Schunck’s smoothness term. We

propose the use of,

eRI(u, v) =

∫∫

Image

√
u2
x + u2

y + v2
x + v2

y dx dy , (67)

In the following discussion, we will define the function, L =
√
u2
x + u2

y + v2
x + v2

y , i.e., L is

the integrand of Eq. (67). As a result from the calculus of variations, the proposed error

functional, λec + eRI, is minimized by the solution to the non-linear partial differential

equations given by,

− ∂

∂x

ux
L
− ∂

∂y

uy
L

+ λ(Ixu+ Iyv + It)Ix = 0 , (68)

− ∂

∂x

vx
L
− ∂

∂y

vy
L

+ λ(Ixu+ Iyv + It)Iy = 0 . (69)

The computation of Horn and Schunck’s optical flow is very fast in comparison to the com-

putation of the optical flow resulting from regularizer in (67). This is due to the parabolic

nature of the error surface resulting from Horn and Schunck’s regularizer as compared to the

cone-like error surface resulting from the regularizer in (67). Thus, the need for increased

computational speed is greater when using the regularizer in (67). We suggest the use of

non-linear multigrid methods to solve these partial differential equations.

6.2.1 Rotational Invariance

Consider an optical flow field, u, and a rotation by θ, Ru, where,

R =




cos θ − sin θ

sin θ cos θ


 , (70)

is a two dimensional rotation matrix. Then the rotated optical flow field is given by ur =

Ru.

We claim that the functional in Eq. (66) is not invariant to rotation and the functional

in Eq. (67) is invariant to rotation. To show that the cost functional in Eq. (67) is invariant
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to rotation, we substitute the rotated optical flow into the cost functional. We will denote

this as eRI(ur). This substitution yields that the integrand of eRI(ur) is,

√√√√√√
(ux cos θ − vx sin θ)2 + (uy cos θ − vy sin θ)2

+(ux sin θ + vx cos θ)2 + (uy sin θ + vy cos θ)2
(71)

=

√√√√√√
u2
x cos2 θ + v2

x sin2 θ + u2
y cos2 θ + v2

y sin2 θ

+u2
x sin2 θ + v2

x cos2 θ + u2
y sin2 θ + v2

y cos2 θ
(72)

=
√
u2
x + u2

y + v2
x + v2

y , (73)

which is identical to the integrand of the functional without rotation of the optical flow. A

similar computation with the function from Eq. (66) results in the integrand,

√√√√√√

(
u2
x cos2 θ + v2

x sin2 θ − 2uxvx cos θ sin θ
)

+
(
u2
y cos2 θ + v2

y sin2 θ − 2uyvy cos θ sin θ
) (74)

+

√√√√√√

(
u2
x sin2 θ + v2

x cos2 θ + 2uxvx cos θ sin θ
)

+
(
u2
y sin2 θ + v2

y cos2 θ + 2uyvy cos θ sin θ
) ,

which is only necessarily equal to the original functional when θ is an integer multiple of 90

degrees.

6.3 Computation

6.3.1 Gradient Descent

As a result from the calculus of variations, the left hand side of Eqs. (68) and (69), act

as infinite dimensional gradients for the functions u and v. That is by augmenting the

functions u and v with an artificial evolution parameter, s, we obtain the evolutions,

∂u

∂s
= − ∂

∂x

ux
L
− ∂

∂y

uy
L

+ λ(Ixu+ Iy + It)Ix , (75)

∂v

∂s
= − ∂

∂x

vx
L
− ∂

∂y

vy
L

+ λ(Ixu+ Iy + It)Iy . (76)
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We numerically implement this gradient descent using the forward Euler scheme, i.e., at

each iteration, by replacing u and v by corrected versions as follows,

un+1 = un − γ ∂̂u
n

∂s
, (77)

vn+1 = vn − γ ∂̂v
n

∂s
. (78)

Note that the superscript denotes the iteration, γ is a time step parameter, and ∂̂un

∂s and

∂̂vn

∂s denote numerical approximations to the gradient at step n. We compute these with

central difference approximations in the center of the image and use Neumann boundary

conditions, i.e., that normal derivatives at the image boundaries are zero.

6.3.2 Multigrid

We solve for the optical flow components u and v using multigrid relaxations methods.

Since Eqs. (68) and (69) are nonlinear partial differential equations, it is necessary to use

an algorithm that handles non-linear operators, known as the Full Approximation Storage

(FAS) algorithm [53].

We recast Eqs. (68) and (69) in the following fashion,

− ∂

∂x

ux
L
− ∂

∂y

uy
L

+ λ(Ixu+ Iyv)Ix = −λItIx , (79)

− ∂

∂x

vx
L
− ∂

∂y

vy
L

+ λ(Ixu+ Iyv)Iy = −λItIy , (80)

which we can write compactly as L(u, v) = f , whereby the left hand side of the equation

is a non-linear operator on the optical flow functions u and v. It is nonlinear due to the

appearance of the L in the denominator.

The algorithm originates with an initial guess of the optical flow functions, ũ and ṽ.

The multigrid method then seeks corrections, û and v̂, to the initial guess functions such

that,

L(ũ+ û, ṽ + v̂) = f . (81)

In order to find û and v̂, we write,

L(ũ+ û, ṽ + v̂)− L(ũ, ṽ) = f − L(ũ, ṽ) = −r . (82)
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where r is known as the residual. By decimating r, ũ, and ṽ to a coarser grid, thus obtaining

rc, ũc, and ṽc, and by also identifying a coarse grid version of the operator L as Lc, we can

solve for coarse grid versions of the corrections û and v̂ by solving,

Lc(ûc, v̂c) = Lc(ũc, ṽc)− r , (83)

for ûc and v̂c.

Eq. (83) is solved for ûc and v̂c on the coarsified grid, where the computational cost

is lower than on the original grid, using the gradient descent technique described in Sec-

tion 6.3.1. Once ûc and v̂c are obtained, the corrections û and v̂ are computed by,

û = U(ûc − ũc) (84)

v̂ = U(v̂c − ṽc) (85)

where U denotes an upsampling operator. The initial guess functions are then updated by,

ũ ← ũ + û and ṽ ← ũ + v̂, and finally, gradient descent is used on the resulting functions,

ũ and ṽ, in order to obtain the fine scale features of the solution.

The above mentioned algorithm is, in fact, a two grid solution method. However, note

that while Eq. (83) can be solved using gradient descent or a similar relaxation technique, it

is also in a form similar to Eq. (81) and thus can be solved by the same coarse grid correction

process on an even coarser grid where the computational cost is even lower. This process

can be carried out until the computational cost of solving with gradient descent on the

coarsest grid is negligible. More details about the implementation of multigrid algorithms

can be found in [53].

6.4 Simulations

The left side of Fig. (31) shows a frame from the well-known Hamburg Taxi sequence in

which two cars, one with high intensity and one with low intensity, are moving in the image,

while the rest of the scene remains stationary. The circular window was introduced to show

the edge preserving nature of the proposed regularizer.

The right side of Fig. (31) shows the proposed optical flow field on a circular window

of the Hamburg Taxi sequence. This image was the result of the FAS multigrid algorithm
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explained above using 5 different grids. The original image was 189 pixels by 189 pixels and

each successively coarser grid was downsampled by a factor of 2. Thus, the final grid was

5 pixels by 5 pixels. Note the edge preserving nature of the optical flow field around the

circular window and the properly captured lack of motion between the two cars.

Figure (32) shows the value of the proposed functional, λec + eRI, for the gradient

descent algorithm versus time and the value of the same functional for the FAS multigrid

algorithm versus time for this frame of the Hamburg Taxi sequence. Note that the FAS

multigrid algorithm nears complete convergence within 200 seconds. All computations were

performed on a 1.8 GHz computer. The gradient descent algorithm requires several hours

(not shown) to approach convergence under the same conditions due to the cone-like error

surface mentioned above.

Figure 31: Left: frame from Hamburg Taxi sequence. Right: proposed optical of Hamburg
Taxi sequence.
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Figure 32: Functional cost versus computation time for the gradient descent and FAS
multigrid algorithms.
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CHAPTER VII

MINIMAL SURFACES FOR CONTOUR

REGISTRATION

7.1 Introduction

7.1.1 Proposed Work

Contour registration has been established as a fundamental problem in computer vision and

medical imaging; the literature is rich in techniques for registration [13, 43]. In a previously

submitted paper, we have introduced a method for registration of contours using minimal

surfaces, that arises from developing a natural geometric generalization of the set symmetric

difference between the interiors of two sets. In this paper, we will elaborate more of the

scale space properties of the proposed method.

We develop a novel method for rigid registration of two dimensional contours that relies

on connecting two contours, separated in three dimensional, by a minimal surface. The

novel contribution of this paper is not the computation of the minimal surfaces, but rather

in the evolution of the registration as prescribed by the family of minimal surfaces. The

problem of computing minimal surfaces we performed in a way described in [20]. Once the

minimal surface is computed between the two contours, the registration of the top contour

is evolved rigidly in an attempt to minimize the surface area of the connecting surface.

We will explain the method and its implementation as well as stating its connection to set

symmetric difference. We show an example that presents the method as a scale space, with

the separation distance between the two contours the scale space parameter.

7.1.2 Past Work in Registration

A significant amount of work has been done in image registration. Reviews of registration

methods can be found in [13, 43]. Point based techniques, such as those used by West et.

al. and by Zhang [71, 79] attempt to match feature points by finding optimal registrations.
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Sebastian, Klein and Kimia have developed a method based on shape outlines, that aligns

based on a measure of similarity between the intrinsic properties of the curve such as

curvature and length [60]. Feldmar and Ayache discuss rigid and affine registration of free-

form surfaces [25]. Hansen and Morse develop a method for multiscale registration using

scale trace correlation [29].

The technique proposed in this chapter can be considered a transformation technique,

where a one contour is gradually transformed to match the second via a connecting minimal

surface.

7.2 Method

7.2.1 Initialization

In the initialization, we will embed two, two dimensional contours into three dimensional

space and create a surface between them. We will also define some terminology in this

section that will be used throughout the paper.

Let vector functions C : [0, 1]→ R2 and Ĉ : [0, 1]→ R2 explicitly represent two simple

closed contours which we wish to register. We represent these contours implicitly as the 0

level sets of the functions I : R2 → R and Î : R2 → R, such that I(C(s)) = Î(Ĉ(s)) = 0 for

s ∈ [0, 1]. We will construct the level set functions such that I < 0 and Î < 0 in the interior

of the contours and I > 0 and Î > 0 in the exterior of the contours.

We then embed the functions I and Î into three dimensional space, and thus embed the

contours. Let Φ0 : R2× [0, zM]→ R be the three dimensional level set function in which the

contours will be embedded. The embedding is represented by setting Φ0(x, y, 0) = I(x, y)

and Φ0(x, y, zM) = Î(x, y). The variable zM > 0 has special significance, representing the

distance between the embedded contours, will be called the separation distance.

To create a surface between the two contours, with the contours as its boundary, we will

interpolate between the contours, initializing the function so that,

Φ0(x, y, z) = (1− z)I(x, y) + zÎ(x, y) , (86)

for z ∈ (0, zM). The surface, S, is now said to exist at the zero level set of this function Φ0,

that is, S = Φ−1
0 (0).
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We will call the planes in which the contours are embedded the top and bottom contour

planes at z = zM and at z = 0 respectively. Similarly, the middle contour plane will refer

to the slice of the function Φ0 when z = zM/2 and the middle contour will refer to the zero

level set of Φ0 when z = zM/2.

7.2.2 Evolution to Minimal Surface

Finding the minimal surface between these two contours is equivalent to finding the surface

with constant zero mean curvature that has the contours as its boundary. The minimal

surface that connects the two contours exists when zM is sufficiently small. A more detailed

discussion of the sufficient condition for existence is discussed in the appendix of this paper.

The initial surfaces described in Section 7.2.1 will not, except in certain degenerate cases,

have the property of being minimal surfaces. Throughout this paper it will be necessary to

obtain the surface of minimal area that connects the two fixed contours. For this purpose

we have chosen to employ an evolution technique explained in [20]. The idea is that by

evolving the surface in the direction of the surface normal with speed proportional to the

mean curvature, H, we ensure the fastest possible decrease in surface area. Therefore, we

wish to evolve the level sets of the function that represents the surface in this fashion.

Consider the function Φ : R2 × [0, zM] × [0,∞) → R, whose first three arguments are

the spatial variables x, y, and z and whose last argument is the temporal variable t. The

temporal variable t will be used to state the surface area minimization evolution as a partial

differential equation. The initial value of Φ is set to the initialization in Section 7.2.1, that

is, Φ(x, y, z, 0) = Φ0(x, y, z).

When we evolve Φ(x, y, z, t) according to the non-linear partial differential equation,

∂Φ

∂t
= H‖∇Φ‖ , (87)

to guarantee that the surface area of each level set is decreasing as quickly as possible. In

order to not keep the contours fixed throughout this evolution, we do not evolve the function

Φ at z = 0 or at z = zM, but we do evolve at every value of z in between.
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The mean curvature, H, of the surface is given by a function of derivatives of Φ,

H =




Φxx

(
Φ2
y+Φ2

z

)
+Φyy

(
Φ2
x+Φ2

z

)
+Φzz

(
Φ2
x+Φ2

y

)

−2ΦxyΦxΦy − 2ΦyzΦyΦz − 2ΦxzΦxΦz




2
(
Φ2
x + Φ2

y + Φ2
z

)3/2 , (88)

as explained in [20].

Evolving the function Φ by Eq. 87 ensures that the zero level set approaches the minimal

surface that connects the two contours. Fig. 33 shows the surface connecting two stationary

circular contours at various stages of this area minimizing evolution.

Figure 33: Oblique view of three different stages of surface minimizing evolution for sta-
tionary shifted circular contours. Surface created from initialization (left), surface after 125
seconds of surface evolution (center), and final minimal surface (right).

7.2.3 Gradient Evolution for Rigid Registration

The previous two sections described the initialization of a minimal surface evolution between

two contours. This section describes how we rigidly register the top contour using the

minimal surface. Since we wish to obtain a two dimensional rigid registration, we evolve

the top contour rigidly within the top contour plane to ensure the most rapid decrease in

area of the minimal surface, while holding the bottom contour fixed. This will be done

using two projections.

7.2.3.1 Unconstrained Top Contour Evolution

Assume, temporarily, that the top contour were not constrained to remain within the top

contour plane. If the goal of the evolution was to minimize surface area, the contour at a
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given point would move in a direction downward along the surface, orthogonal to both the

tangent vector to the contour, T, and the surface normal, N.

More explicitly, the outward unit normal to the surface is N = (Nx, Ny, Nz) = ∇Φ. The

normal vector to the contour n is the projection of N onto the plane of the top contour. It is

given by n = (Nx, Ny)/
√
N2
x +N2

y . The tangent vector to the contour is in the plane of the

top contour and is a 90 degree rotation of n, i.e., T = (Ny,−Nx)/
√
N2
x +N2

y . The vector,

V, that is orthogonal to both T and N, and points along the direction of the surface, can

be found by computing the vector cross-product of T with N,

V =

(
−NxNz,−NyNz, N

2
x +N2

y

)
√
N2
x +N2

y

. (89)

7.2.3.2 Projection to Top Contour Plane

The vector V shows the direction in which the contour would move in 3D space to minimize

surface area most rapidly. Constraining the contour to remain in the top contour plane yields

the explicit contour evolution, (V · n)n = −Nzn.

7.2.3.3 Projection to Rigid Registration

By projecting the explicit contour evolution −Nzn, onto the group of rigid motions, we

ensure that the top contour’s shape and size do not change.

Define a rigid motion, g : R2 → R2, by,

g(Ĉ) = R(Ĉ−m) + T + m , (90)

where R is the rotation matrix that characterizes rotation around the point m. R is pa-

rameterized by rotation angle θ. T is the translation vector parameterized by T x and T y,

the x and y components of the translation.

We can convert the explicit evolution of the contour, Ct, into an evolution of the rigid

motion parameters, θ, T x, and T y. This is done by evolving the rigid group parameters to

maximize the inner product

J =

∫ L

0
(−Nzn · n) (g · n) ds , (91)
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where ds is the arc length element and L is the length of the contour.

In this fashion we obtain a gradient evolution for the rigid group parameters that ensures

motion of the contour in the direction that minimizes surface area. They are,

θt = Jθ =
∫ L

0 (−Nzn · n) (gθ · n) ds = −
∫ L

0
Nz (gθ · n) ds (92)

(T x)t = JTx =
∫ L

0 (−Nzn · n) (gTx · n) ds = −
∫ L

0
Nz

Nx√
N2
x +N2

y

ds (93)

(T y)t = JT y =
∫ L

0 (−Nzn · n) (gTy · n) ds = −
∫ L

0
Nz

Ny√
N2
x +N2

y

ds , (94)

where,

(gθ · n) =
1√

N2
x +N2

y



− sin θ(x−mx)− cos θ(y −my)

cos θ(x−mx)− sin θ(y −my)


 ·



Nx

Ny


 . (95)

Evolution of the rigid registration parameters in this fashion will change the top con-

tour. In the proposed registration method, we evolve the registration of the top contour

by equations (92), (93), and (94) while ensuring that the surface continues to stay minimal

by equation (87). Continued evolution of the top contour in this fashion, while ensuring

that the connecting surface remains minimal, produces a rigid registration of the contour

Ĉ, summarizing our proposed method.

In Fig. 34 we show an example of the alignment of two misaligned rectangles while

constraining the registration to consist of only rotations and translations, as described in

this section. The correct registration of these two shapes is a 30 degree rotation followed

by a 10 pixel translation in the x direction and a 20 pixel translation in the y direction.

The proposed minimal surface method produces a registration of 29.3 degrees followed by

an x translation of 9.8 pixels and a y translation of 19.6 pixels, accurate to within half of a

pixel.

7.2.4 Motivation

In this section we will motivate the proposed method by explaining its connection to set

symmetric difference registration. In fact, we will show that set symmetric difference reg-

istration is a special case of the proposed method. The cost functional in set symmetric
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Figure 34: An example of rigid registration. Initial surface between two unregistered
rectangles (left), minimal surface between unregistered rectangles (second from left), surface
during rigid registration (second from right), and surface after rigid registration (right).

difference registration is, as the name suggests, the mismatch between the interiors of the

two contours. We will explain how this mismatch generalizes to surface area, thus motivat-

ing surface area as the new cost functional. In addition, we will explain how the proposed

method eliminates local minima that occur when registering by minimizing SSD, thus justi-

fying the proposed method as a useful generalization. We show an example of the proposed

method avoiding a registration local minimum.

7.2.4.1 Set Symmetric Difference

Let A and B be sets that are the interiors of two contours. The SSD of A and B is,

A ∪ B − A ∩ B, that is, all points in the union that are not in the intersection. The area

of the SSD gives a measure for how poorly two contours are aligned. Perfect alignment of

two contours yields an area of 0. Very poorly aligned contours yield very high SSD areas.

These properties make it a natural cost functional to measure the alignment between two

contours.

The minimal surface method proposed in this paper is a generalization of SSD registra-

tion. This can be seen by imagining the set symmetric difference to comprise the area of a

surface as the two contours are pulled apart in space.

Therefore, SSD registration can be viewed as a special case of the proposed method,

when the separation distance, zM = 0, in which the area of the connecting surface simplifies

to the area of the SSD.
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7.2.4.2 Elimination of Local Minima

Evolving to minimize the area of the SSD will produce usable results when the interiors

of the contours are convex. However, certain contours with non-convex interiors develop

local minima when set symmetric difference registration is used. This happens when the

registration must pass through a region of higher SSD area in order to reach the minimum

SSD area. Since the evolution method will not pass through this region of higher SSD area,

the resulting registration is a suboptimal solution where SSD area is locally minimized but

not globally minimized. We will refer to this as a local minimum.

Minimal surfaces, having constant zero mean curvature, are smooth. In addition, as the

separation distance zM increases, the intermediate contours between z = 0 and z = zM, i.e.,

cross sections of the surface in planes parallel to the contour planes, become smoother. The

surface thus acts as an interface between the two contours that eliminates some of the fine

scale structure of the original contours. Fig. 35 shows this smoothing effect. On the left is

the original contour that has six protrusions of varying length surrounding a circular center.

In the middle is the minimal surface connecting this contour with an identical replica of

itself, each of the two contours embedded in their respective contour planes. The right

contour is the middle contour for this surface, that is, the zero level set of Φ(x, y, zM/2).

Notice that, in the middle contour, much of the fine scale structure was eliminated by the

smoothing of the mean curvature flow.

Figure 35: An illustration of the smoothing effect of minimal surface on the intermediate
contours. Original contour (left), minimal surface connecting this contour with replica of
itself (center), middle contour of minimal surface (right).
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As the separation distance, zM, is increased, the middle contour of the surface becomes

more circular and the interface between the two contours becomes more coarse, i.e., the fine

scale structure that can produce local minima is eliminated. As a result, the registration

evolution may pass through regions in the registration space that would have produced

higher surface area for low values of the separation distance. Figs. 36 and 37 illustrate this

concept. Fig. 36 shows an “E”-shaped contour which is of dimension 140 voxels by 90 voxels.

In the center, it shows the minimal surface connecting this contour with a translated replica

of itself, when the separation distance is zM = 12 voxels. Note that the surface connects

the legs of the “E”. On the right is the final registration of this contour, which results in

an incorrect alignment. The contour does not get to the correct misaligning the legs of the

“E” would produce a surface with much higher area, thus making the incorrect alignment

on the right a local minimum. Note that SSD registration behaves in a similar fashion,

reaching a local minimum in the registration space.

Figure 36: Contour and registration local minimum. “E”-shaped contour (left), minimal
surface connecting contour and translated replica of itself (center), and registration local
minimum (right).

Fig. 37 shows the proposed method when the separation between the two contours

is zM = 25. On the left is the minimal surface between the contour and its translated

replica. Notice in this case how the minimal surface does not directly connect the legs of

the “E”, but instead smoothly connects by curving inward, removing the fine scale legs for

contours in between the top and bottom. This smooth, inward curving connection allows

the registration to pass through the position that was unattainable when the separation

distance was too low due to the existence of the fine scale features. The registration passing

through this intermediate region is shown in the center of Fig. 37. On the right is the final
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correct registration, showing how the method overcame the local minimum.

Figure 37: Registration overcoming local minimum by increasing separation distance to 25.
Minimal surface connecting contour and translated replica (left), registration overcoming
local minimum (center), and final correct registration of top contour (right).

7.3 Scale Space

7.3.1 Scale Space Parameter

The natural scale space parameter for this registration method is the separation distance

between the two contour planes. As this height becomes smaller, the proposed method

behaves more like set symmetric difference registration, and thus the finest scale information

in the contour is represented. As this height becomes larger, less fine scale information about

the contour is considered. This method acts as a viable scale space because the connection

between the contours, namely the surface, becomes smoother as the distance between the

contour planes increases.

7.3.2 Extreme Cases

The two extreme cases of the scale parameter help us understand this method more clearly.

As the separation distance approaches zero, this method behaves more closely to set-

symmetric difference registration. When the separation distance is too small, the mini-

mal surface closely resembles the shape of the original contours, and the method behaves

similarly to SSD registration.

When the separation distance is very large1, the minimal surface that connects the

two contours will fail to exist. Each pair of contours has a critical distance at which the

connecting surface exists but won’t exist for higher separation distances. This critical

distance is the coarsest possible scale at which registration using the proposed method can

1larger than 1.325 times the circle exscribing the contour
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be performed. When the scale parameter is at its critical value, we expect a low number

of registration local minima. In the next section we experimentally support these claims

using an example with structure at varying scales. When the separation distance, zM is

greater than 1.325rex, where rex is the radius of the exscribed circle, the minimal surface

will not exist for any contours. When the separation distance is less than 1.325rin, where

rin is the radius of the inscribed circle, a connecting minimal surface is guaranteed to exist

by the maximum principle of minimal surfaces. This will be proved and further discussed

in Appendix C. Thus the region of interest for the separation distance is in the range from

0 to 1.325rin; in this range, registration can be performed with the proposed method.

7.3.3 Local Minima Decreasing

In this section we will show an example that has multiple local minima at different scale

levels that will serve as experimental support that this method is a scale space in the

separation distance parameter.

Fig. 38 shows the example contour, that has a multiscale structure. The finest scale

features of the contours are the 8 long extended thin protrusions. These thin protrusions

create local minima while registering with set symmetric difference or when the separation

distance is very low. The intermediate scale features of the contour are the four stems from

which the thin protrusions extend. They will create local minima in the presented method

when the separation distance is small or medium, but not always when the separation

distance is large. The coarsest scale feature of the contour is the circular middle that would

remain after several iterations of curvature flow on the contour. A few example of the local

minima produced by this method are displayed in Fig. 39.

Fig. 40 shows a plot of the number of local minima as a function of the separation

distance between the two contours for selected separation distances. At the highest sepa-

ration distances, there are the fewest number of local minima and at the lowest separation

distances there are the highest number of local minima. Thus is it experimentally verified

that the presented method is a reasonable scale space method.
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Figure 38: Contour with features at multiple scales (left) and minimal surface resulting
from correct registration of contour with a separation distance of 10 (right).

Figure 39: Two local minima for contour with multiple scale features. The method can not
correct for incorrect initial alignment due to local minima. The separation distances for the
surfaces 5 and 10 for the left and right surfaces respectively.

7.4 Implementation

In this section we explain appropriate implementation details of the proposed method.

First, we will discuss the level set representation of the surface and its details. The level

set representation and mean curvature flow of the surface is nearly identical to the method

of Chopp in [20], with noted exceptions. Then we will discuss the implementation of the

partial differential equations. Finally, we will explain the simultaneous evolution of the

registration and minimal surface.
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Figure 40: Number of local minima as a function of the separation distance between the
two contours for the contour in Fig. 38. On the right is shown the pinch-off distance, i.e.,
the separation distance at which the minimal surface fails to exist.

7.4.1 Level Set Representation of Surface

As explained in Section 7.2, we implicitly represent the contours and the surface that

connects the contours as the level set of the function Φ(x, y, z, t). To create the minimal

surface, we evolve the Φ function with mean curvature flow as stated in Equation (87).

Using level sets to represent the curve and surface implicitly allows us to handle natural

topology changes of the surface that occur during mean curvature flow [20].

We represent the interior of the surface as negative level set values and the exterior of

the surface as positive level set values. This enables us to get the outward surface normal

vector when we compute the gradient, ∇Φ, at any point on the surface.

Numerical problems can develop if we simply evolve the function Φ. The reason for these

numerical problems is that surrounding level sets to the surface can bunch up or spread out.
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We are primarily interested in what happens to the surface, i.e, the zero level set. Therefore,

after each evolution step of the function Φ, in order to avoid these numerical problems, we

recalculate the values surrounding the surface in order to maintain equidistant level sets.

To do this, we replace the values of the function at points that surround the surface by a

value representing the distance to the nearest surface point. This keeps the level sets equally

spaced and ensures a numerically well-behaved flow. We then multiply all points interior

to the surface by -1, so that the sign convention of the level set function is preserved. This

technique, as seen in [20], is known as the signed distance transform.

Although we use the function Φ to represent the surface, we do not store Φ on the entire

grid. Since we are only interested in the evolution of the surface and not of the entire Φ

function, we only store the values of Φ on a narrow band near the zero level set. Only

storing values on this narrow band reduces computational cost significantly [62].

7.4.2 Freezing of Top and Bottom Contours

When we evolve the surface with Equation (87) in order to minimize surface area, we want

to keep the top and bottom contours constant. Unlike the method proposed in [20], we

freeze the top and bottom contours by simply not evolving the Φ function when z = 0 or

when z = zM. We still recompute the level set functions on the top and bottom contours

with the signed distance transform, as mentioned above, to keep the level sets regularly

spaced. Although Chopp’s method, enforcing chains where the fixed contours lie, is more

general, we do not need such generality since the contours are always in the top and bottom

planes.

7.4.3 PDE Implementation

7.4.3.1 Spatial Derivatives

Implementation of this work relies on calculation of spatial derivatives on the discrete grids.

On the interior of the three dimensional region, we estimate spatial derivatives using the

central difference approximation. On the boundaries of the three dimensional region we use

the one-sided difference approximation.
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7.4.3.2 Mean Curvature Flow

The temporal derivatives in Equation (87) is implemented with Euler’s method. Euler’s

method is equivalent to estimating the time derivative by its one-sided finite difference

approximation, that is,

Φt = (Φ(x, y, z, t+ ∆t)− Φ(x, y, z, t)) /∆t . (96)

Substituting Φt with the evolution in Equation (87) and rearranging, we obtain the update

equation for Φ,

Φ(x, y, z, t+ ∆t) = Φ(x, y, z, t) + ∆tH(x, y, z, t)‖∇Φ(x, y, z, t)‖ . (97)

Note that the ∆t parameter is known as the time step, and is chosen as large as possible,

as long as the flow will remain stable and well behaved. Also note that the implementation

of Equation (97) is spatially discrete, that is, the mean curvature is computed with discrete

spatial derivatives as mentioned above.

We evolve the surface with mean curvature flow, i.e., the flow that minimizes surface

area, until the surface area decreases slowly enough to be considered nearly minimal. We

stop the mean curvature flow when the difference in surface area between two successive

time steps of Equation (97) is less than 0.01. In this manner, we ensure that the surface

connecting the two contours is nearly minimal.

7.4.3.3 Registration Flow

The proposed rigid registration method relies on the surface already being minimal. Once

the surface is minimal, as described in the previous section, we evolve the registration

parameters by Equations (92), (93), and (94). We evolve these parameters with the forward

Euler method, obtaining,

θ(n+ 1) = θ(n) + ηJθ (98)

T x(n+ 1) = T x(n) + ηJTx (99)

T y(n+ 1) = T y(n) + ηJT y . (100)
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Each time we update the rigid registration parameters, we are moving the top contour to

reflect this movement. If we move the top contour too much, the contour will no longer be

connected to the surface. This is undesirable in our proposed method. Therefore, η is often

scaled to prevent the contour becoming disconnected from the surface.

Note that here we use the letter n to denote the time step and not t as in Equation (97).

This is because of the nesting of the algorithm as will be described in the next section.

7.4.3.4 Simultaneous Evolution Algorithm

The algorithm we used in our proposed method is, to first initialize by embedding the con-

tours within their respective contour planes, then to initialize and minimize the connecting

surface, then to modify the registration parameters while ensuring that the surface remains

minimal. The structure of this algorithm is,

1. Embed contours in respective contour planes

2. Initialize surface

3. Evolve surface with mean curvature flow until minimized

4. Evolve registration parameters once

5. Go to step 3 if registration is not converged.

Step 3 of this algorithm involves evolving with mean curvature flow as per Equation (97).

This evolutions happens separately from the evolutions of the registration parameters, and

thus they are denoted with time variable t. Each instance of step 3 requires multiple

iterations of Equation (97). Step 4 of the algorithm happens when the surface is minimal

and only occurs once per surface minimization. By nesting the surface minimization within

the evolution of the registration parameters, we achieve the desired effect of always having

a minimal surface guiding the motion of the registration parameters.

7.5 Conclusion

We have presented a novel method for registration of two dimensional images that not only

a geometric extension of set symmetric difference registration, but is also a scale space.

The method rigidly registers contours by evolving both the registration of a contour and
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the surface that connects them by minimizing a unified energy functional, i.e., surface area.

We have explained the method in theory and its implementation and shown a number of

examples. One particular example showed how the number of local minima decreased with

increasing scale parameter. We have also identified a sufficient condition for existence of

the minimal surface that connects two contours.
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CHAPTER VIII

FAST MUMFORD-SHAH SEGMENTATION USING

IMAGE SCALE SPACE BASES

8.1 Introduction

Image segmentation involves extracting the boundaries of one or more objects in an image.

Several active contour methods for image segmentation have been proposed beginning with

the seminal work of Kass et al. [39]. Many works have appeared based on geometric models

for active contours [15, 16, 44, 73] including edge-based models [39, 44] and region-based

models.

Mumford and Shah presented the variational problem for piecewise smooth segmentation

[47, 48]. Several implementations of Mumford-Shah segmentation have been presented

[17, 70]. Tsai et al. report applications of solving the Mumford-Shah functional for image

denoising, interpolation and magnification [70]. The robustness of the Mumford-Shah model

is well-known. However, so is its high computational cost.

In this chapter we present a fast method for approximate Mumford-Shah segmentation

that relies on representing the image regions via a reduced image basis. The idea of using

a reduced image basis is that it can capture most of the accuracy of a full Mumford-Shah

segmentation, at a fraction of the computational cost. In the implementation we compare

between two different bases that both come from scale spaces of smoothed version of the

image. One scale space is the space of images smoothed by the linear heat equation. One

scale space is the space of anisotropic diffusions presented by Perona and Malik [52].

This method can also be used as a very effective method of finding the initial contours for

full basis Mumford-Shah segmentation, thus yielding an algorithm that converges quickly

and very accurately obtains the piecewise smooth image functions.
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8.2 Theory

In this section, we will first discuss the image segmentation model proposed by Mumford

and Shah [48]. We will discuss how this model has typically been implemented assuming a

basis whose dimension is equal to the number of pixels in the image. We will then discuss

the proposed fast approximation to computing Mumford-Shah segmentation using a reduced

basis. Finally we will discuss the generalization of the proposed method to arbitrary multiple

regions.

8.2.1 Mumford-Shah Model

The variational segmentation model proposed by Mumford and Shah assumes that the

image is a piecewise smooth function, i.e., a function that is smooth within regions but

not necessarily across the boundaries of these regions. The proposed cost functional si-

multaneously penalizes the function for deviating from the image, penalizes the function

for deviating from smoothness, and penalizes the length of the boundary contour. The

appropriate energy functional is,

E =

N∑

i=1

∫

Ri

(fRi − I)2 dx̄ (101)

+ α
N∑

i=1

∫

Ri

‖∇fRi‖2dx̄

+ βL ,

where I is the image, Ri is the ith open subset of the image domain, N is the total number

of such regions, fRi is the restriction of the model function, f , to the region Ri, dx̄ is the

image domain area element, and ‖∇g‖ is the Euclidean norm of the gradient of the function

g. Note that the opens regions, Ri, are always such that the Ri’s are disjoint from one

another, i.e., Ri ∩ Rj = ∅ for i 6= j, and the set formed by the boundaries of these regions

is a contour, C with total length, L. Finally, α and β are weighting parameters designed to

control the penalty tradeoff between the three terms.

Note that the first two terms in this functional involve both the function, f , and, implic-

itly, the contour, C. Proper derivation of the first variation for these two terms produces
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terms that depend on the evolution of the contour since the regions, and hence the bound-

ary contour, are allowed to deform. The third term does not depend on the function, f ,

but only the contour, C.

Evolution in the direction opposite to the gradient ensures that the cost functional is

decreasing as quickly as possible. The evolution that does this involves the image functions

and the contour as follows,

∂fRi
∂t

= −2 (fRi − I) + ∆fRi (102)

∂C

∂t
=

(
(I − fRa)2 − (I − fRb)2

)
~N (103)

+ α
(
‖∇fRa‖2 − ‖∇fRb‖2

)
~N

+ βκ ~N

where t is an artificial evolution time parameter, Ra is locally the region on one side of the

contour and Rb the local region on the other side of the contour, ~N is the local unit normal

vector to the contour, and κ is the local curvature of the contour.

In theory, evolution in this manner that is continuous both spatially and in evolution

time, would reach a local minimum that depends on the initialization of the contour. In

practice however, some finite basis must be chosen to represent the image functions, fR1

through fRN . Most implementations of this technique allow each image pixel to assume its

own value, i.e., they assume that the function basis has dimension equal to the number of

pixels in the image and that the basis itself consists of functions,

δ(u,v)(x, y) =





1 if x = u and y = v

0 otherwise
, (104)

for all image points, (x, y). In this manner, the function f can been seen as,

fRi(x, y) =
∑

(u,v)∈Ri
c(u,v)δ(u,v)(x, y) , (105)

and evolution of the function fRi corresponds to evolution of each of the basis weights,

c(u, v), for each region.

Unfortunately, implementation of these evolution functions is very computationally ex-

pensive, even when the functions, fRi for 1 ≤ i ≤ N are only evolved partially before each
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contour evolution step. This technique is similar to the implementation technique used in

[70]. However, it is typically superfluous to allow each pixel to vary independently since the

image regions typically have a certain smooth structure.

8.2.2 Proposed Function Model

The proposed technique is to choose a basis for the functions, fRi , that is significantly

smaller than the pixel-by-pixel basis mentioned in the previous section but also contains

enough resemblance to the functions fRi that are obtained when the pixel-by-pixel basis

is used and the evolution of the function reaches its final solution. The intention is that

the evolution of the contour will precede much in the same fashion as when the pixel-by-

pixel basis is used but the problem of finding a local minimizer of the cost functional when

the contour remains fixed will become much less computationally expensive. The choice of

which basis to use is not obvious since the image regions are changing during the evolution.

We will defer discussion of the specific choice of basis and will now discuss computation of

the basis weights for arbitrary bases.

In general, let the image basis be Φb for integer 1 ≤ b ≤ B. Then the function f has a

restriction to region Ri given by,

fRi =
B∑

b=1

cb,iΦb , (106)

where cb,i ∈ R is the weight for basis vector Φb and for region Ri. Thus, the portion of the

cost functional that involves the function fRi is,

E(c1,i, . . . , cB,i) =

∫

Ri

(
B∑

b=1

cb,iΦb − I
)2

(107)

+ α

∥∥∥∥∥∇
(

B∑

b=1

cb,iΦb

)∥∥∥∥∥

2

dx̄ .

For each region, Ri, a necessary condition for the cj,i’s to be a minimizer of E is that

for all j,

∂E

∂cj,i
=

∫

Ri

2

(
B∑

b=1

cb,iΦb − I
)

Φj (108)

+ 2α

〈
∇Φj ,

B∑

b=1

cb,i∇Φb

〉
dx̄ = 0 ,
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which can be rearranged into the linear system,

{Γi + αΛi} ci = Ξi , (109)

where,

Γi =




∫
Ri

Φ1Φ1 · · ·
∫
Ri

ΦBΦ1

∫
Ri

Φ1Φ2 . . .
∫
Ri

ΦBΦ2

...
...

∫
Ri

Φ1ΦB . . .
∫
Ri

ΦBΦB



, (110)

and,

Λi =




∫
Ri
〈∇Φ1,∇Φ1〉 · · ·

∫
Ri
〈∇ΦB,∇Φ1〉

∫
Ri
〈∇Φ1,∇Φ2〉 . . .

∫
Ri
〈∇ΦB,∇Φ2〉

...
...

∫
Ri
〈∇Φ1,∇ΦB〉 . . .

∫
Ri
〈∇ΦB,∇ΦB〉



, (111)

are each B ×B matrices that must be computed for each region. Also,

ci =




c1,i

c2,i

...

cB,i



, and Ξi =




∫
Ri

Φ1I

...

∫
Ri

ΦBI



, (112)

are each B × 1 vectors. Note that Ξi must be computed for each region. Note that all

integrals in Eqs. (110)-(112) are with respect to dx̄.

Thus, by solving the linear system in Eq. (109), we obtain, for each region, Ri, a vector

of coefficients, ci, that yields the function fRi that minimizes Eq. (107) for a fixed region.

8.2.3 Choice of Basis

It is important to choose a basis that yields a desirable tradeoff between computational cost

and segmentation performance. For this reason, we note that when during evolution via

the Mumford-Shah evolution using the pixel-by-pixel basis, that the image regions resemble

linear heat equation blurred version of the original image. For this reason, it makes sense

to choose a basis that consists of various levels of linear heat equation (LHE) blurring.

However, when the contour reaches the edges of the objects within an image, the regions,
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fRi , resemble regions that are smoothed via the geometric heat equation, since the geometric

heat equation (GHE) smooths more within the edges of an object than across the edges

[52].

Thus, in this chapter, we will illustrate examples of this proposed method using two

different bases. The first is a basis that consists of a various scales from the LHE-based

scale space on the image. This is the well known Gaussian scale space. The second is a basis

that consists of various scales from the GHE-based scale space on the image. Using too

many scale levels in the basis has the effect of making the matrix to be inverted, Γi + αΛi,

ill-conditioned. It also increases computational cost of the algorithm.

8.3 Implementation

In this section, we discuss various implementations of Mumford-Shah segmentation that we

will compare against the proposed method for computational performance. In each of these

implementations, Mumford-Shah evolution is set up as a two-step iterative algorithm. The

first step is one in which the function evolution is performed while holding the contour,

and thus the regions Ri, fixed. This evolution is performed by some predetermined amount

until some stopping criterion is met. Typically, it is not iterated until full convergence since

this would be extremely time consuming. The second step is where the contour evolution

is performed. The more accurate the function evolution that occurs during the first step,

the faster the evolution of the contour will be during the second step [70]. It is in this step

that the regions Ri change, thereby rendering the information obtained during the function

evolution step inaccurate. This necessitates then going back to the first step again and

repeating again until the contour ceases to move.

There are various choices of how to evolve for the functions, fRi during the first step of

the algorithm. We will describe some of the methods below. Note that the first two, Jacobi

Mumford-Shah and Multigrid Mumford-Shah both use the full pixel-by-pixel basis shown

in Eq. (104).
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8.3.1 Jacobi Mumford-Shah

We will denote solving for the functions fRi by way of Jacobi relaxation iterations as Jacobi

Mumford-Shah. Jacobi iterations are a relaxation technique for solving discrete boundary

value problems. More detail about the Jacobi relaxation methods can be found in [53].

The two most natural stopping criteria for Jacobi iterations are either to iterate some

fixed amount of iterations, K, or to iterate until convergence, i.e., iterate until the error

is below some predetermined threshold. As we will see, iterating until convergence is too

computationally expensive to be practical. Thus, we shall report Jacobi Mumford-Shah for

various fixed iteration amounts, denoted by K.

8.3.2 Multigrid Mumford-Shah

We will denote solving for the function fRi by way of Multigrid relaxation technique as

Multigrid Mumford-Shah. Multigrid techniques solve for the solution of boundary value

problems by computing the residual error on the original grid, coarsifying this residual

error and solving for the coarse grid correction to the original function on the coarse grid

where the computational cost is low, and then upsampling the correction to the original grid

and correcting the function. Multigrid methods are known to be particularly efficient at

solving elliptic or elliptic-like partial differential equations. For more detail about Multigrid

relaxation methods, we refer the reader to [12, 53].

We specifically use a single Multigrid V-cycle for each function evolution, solving exactly

for the coarsest scale correction. In addition, and use zeros steps of Jacobi pre-relaxation

and one step of Jacobi post relaxation per grid level. According to the notation in [53] this

corresponds to the parameters, ν1 = 0 and ν2 = 1.

8.3.3 Reduced Basis Implementation

We will denote representing the functions fRi by way of the reduced basis shown in Eq. (106)

as Proposed LHE or Proposed GHE depending on whether the basis is obtained from the

linear heat equation or the geometric heat equation.

The specific basis used for each evolution method always included the image itself, I
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and the unit image 1 that has value 1 at each pixel. In addition, some levels of smoothing

in between I and 1 are also included. Will we denote the number of basis images used in

this method as B ≥ 2 which will always imply Φ1 = I, ΦB = 1 and Φ2 through ΦB−1 will

be images within the scale space for increasing levels of smoothing.

8.3.4 Contour Evolution

In order to present a fair comparison, the same contour evolution was used for every method

in this chapter. Therefore, the speed of the contour evolution was determined primarily by

the function accuracy. Specifically, we use level set methods in order to allow for topological

changes [51]. We compute the level set function only on a narrow band of pixels around the

contour for speed. The contour evolves by,

∂C

∂t
=

(
(I − fRa)2 − (I − fRb)2

)
~N (113)

+ α
(
‖∇fRa‖2 − ‖∇fRb‖2

)
~N

+ βκ ~N ,

which corresponds to evolving the level set function, Ψ, by

Ψt = −∂C
∂t
· ∇Ψ (114)

We used the fastest possible stable time step for contour evolution that ensures stability

of the level set function when updating it with an explicit Forward Euler update scheme.

Note that level set methods naturally define a foreground and background region by

the sign of the level set function. That is, the foreground region can be considered all

regions in which the level set function, Ψ is positive and the background region is that

in which Ψ is negative. Thus, this method naturally lends itself to a two-region method

where the foreground function is defined by one coefficient vector, c1 and the background is

defined by another coefficient vector, c2. We will call this method the two region method.

Unfortunately, disconnected foreground regions should not necessarily have the same coef-

ficient vector, c1. In the next section, we generalize this method by labeling disconnected

foreground and background regions separately.
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8.3.5 Multiregion Labeling

It is important to note that since the first two methods use the pixel-by-pixel basis, that it is

not necessary to keep track of which other pixels are within the same region at a given time.

This is because the pixel itself is its own basis function and therefore the pixel’s intensity

value is the value of the coefficient corresponding to that basis function. Therefore, it is

possible to determine the value of a given pixel by only using information of the pixel itself

and neighboring pixels that are within the same region. It is trivial to determine whether a

neighboring pixel is in the same region when using signed distance level set functions for the

representation of the contour. If the sign of the level set function is the same at the point

of interest as it is at the neighboring point, then the two points are in the same region.

However, this is where the proposed method differs. Since each basis function involves

all of the pixels within the image and the computation of Γi, Λi, and Ξi require knowledge

of all of the pixels that are in the specific region and not just the neighboring pixels, it is

necessary to label each pixel as belonging to a certain region. Unfortunately, two different

non-neighboring pixels on the level set function having the same sign does not guarantee

that the pixels are in the same region.

Thus, it is necessary to compute which pixels are in which regions. While this may seem

prohibitive at first, this is handled by a very efficient two queue flood-fill labeling scheme

that we will summarize in the Appendix. The output of this algorithm is a labeling that

tells us which pixels are in which regions and allows us to compute Γi, Λi, and Ξi for each

region. In this manner, we are able to label each pixel as belonging to a certain region,

and thus, assign a different coefficient vector, ci to region i. We will call this method the

multiregion method.

8.4 Experiments

In this section, we present experimental results for the proposed method as compared with

various other segmentation techniques. In addition we stress the computational improve-

ment of this technique over Mumford-Shah segmentations using Jacobi Mumford-Shah and

Multigrid Mumford-Shah.
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8.4.1 LHE vs. GHE Comparison

Figure 41 shows an example segmentation of a peregrine falcon image. While this image is

nearly trivial to segment, we include it for the purpose of reporting computational perfor-

mance, and to display a specific property of the Proposed LHE method as compared with

the Proposed GHE method.

The top row in this image shows the evolution of Multigrid Mumford-Shah segmentation.

The leftmost image is the original image and the initialization of the contour. The three

images to the right show the evolution of the algorithm to convergence. The middle row

shows the segmentation result of the Proposed LHE method using a basis of dimension

B = 3, where Φ1 = I, Φ2 = l(I, 10.0), and Φ3 = 1. Note that l(I, τ) denotes τ time units

of Gaussian blurring on image I. Note the similar looking function regions when compared

with Multigrid Mumford-Shah, especially around the boundary of the peregrine falcon. The

exact evolution of the contour is slightly different but produces a nearly identical resulting

segmentation. The bottom row illustrates the segmentation result of the Proposed GHE

method using a basis of dimension B = 3, where Φ1 = I, Φ2 = g(I, 10.0), and Φ3 = 1.

Again, g(I, τ) denotes τ time units of geometric heat equation blurring on image I. Note

that there is more accurate edge information on the wing of the peregrine falcon in the

second image from the left.

8.4.2 Two Region vs. Multi-Region Results

Figure 42 compares Multigrid Mumford-Shah with the Proposed GHE method assuming two

regions and the Proposed GHE method allowing for multiple regions. The top row shows

the evolution of Multigrid Mumford-Shah on an image containing various types of fruit

having different intensity levels. Since the Multigrid Method uses the pixel-by-pixel basis,

each piece of fruit assumes its own intensity. The middle row shows the evolution of the two

region Proposed GHE method. The two region Proposed GHE method has a limitation in

that it only uses two sets of coefficients to represent the image, i.e., one for the foreground

and one for the background. Therefore, this method is not able to represent the different

fruit intensities. The bottom row shows the evolution of the multiregion Proposed GHE
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Figure 41: Peregrine falcon segmentation: For each row, progression from left to right shows
segmentation evolution from initial contour to final segmentation. (Top row) Multigrid
Mumford-Shah segmentation with pixel-by-pixel basis. (Middle row) Proposed LHE has
very similar function regions when using drastically reduced basis. (Bottom row) Proposed
GHE produces similar segmentation but function regions preserve image edges better than
in top two rows.

method. Note that in the third image from the left, when the strawberry on the bottom

right of the image becomes disconnected from the remaining foreground region, it becomes

darker since this region then obtains its own coefficient vector, ci. The final segmentation

image on the right has seven distinct regions, each with its own coefficient vector. The result

matches very closely with the pixel-by-pixel basis Mumford-Shah segmentation technique

but at a fraction of the computational cost.
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Figure 42: Fruits image: (Top row) Segmented using full pixel-by-pixel basis Mumford-Shah
segmentation. (Middle row) Segmented using Proposed GHE method using two distinct
regions, foreground and background. Note the lack of accuracy in mean intensity for each
function region. (Bottom row) Segmented using Proposed GHE method using multiple
regions. Note the ability to represent each different fruit as a separate region with distinct
basis weight coefficients.

8.4.3 Segmentation in Noise

Figure 43 shows an example of a segmentation of the fruit image in noise. The top row

shows Multigrid Mumford-Shah segmentation, the left of which is the initialization and the

right of which is the final segmentation. The middle row shows the initial contour and

final segmentation using the two-region proposed GHE method. The bottom row shows the

initial contour and final segmentation using the multiregion proposed GHE method.

8.4.4 Computational Improvement

Table 3 shows the computational speed improvement of the proposed algorithms. In this

table, “Proposed 2R LHE” represents the two region reduced basis technique proposed in

this chapter where there are only two different coefficient vectors, one for the foreground

and one for the background. As stated before, LHE represents linear heat equation basis.
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Figure 43: Noisy fruit image: (Top row) Initial contour overlayed on noisy image along with
final Multigrid Mumford-Shah segmentation of image. (Middle row) Initial contour and final
segmentation using two-region proposed GHE method. (Bottom row) Initial contour and
final segmentation using multiregion proposed GHE method.

“Proposed MR LHE” represents the multiregion version of the proposed method. The

parameter K/B shows the number of Jacobi iterations, K for the Jacobi Mumford-Shah

method or then number of basis vectors, B for the proposed techniques.

The peregrine image is of size 250× 300 pixels and the fruits image is of size 275× 221

pixels. The main reason for the much increased computational cost of the fruits image is

that initial contour was chosen further from the final segmentation in the fruits image than

in the peregrine image.

Note that the proposed method is substantially faster than Multigrid Mumford-Shah.

Among the variants of the proposed segmentation method, the multiregion (MR) methods

are the slowest because they are required to label each pixel as being in a specific region

every iteration. While this algorithm is not slow, it brings with it some computational cost.

The Jacobi Mumford-Shah method is the slowest of all.
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Table 3: Computational performance of proposed method compared with Multigrid Mum-
ford Shah (MG Mum-Shah), Jacobi Mumford Shah with various number of function evolu-
tion iterations, K, per contour evolution, and proposed technique.

image method K/B iterations time

peregrine MG Mum-Shah 450 59s

peregrine Jacobi Mum-Shah 1 3400 243s
peregrine Jacobi Mum-Shah 2 2000 232s
peregrine Jacobi Mum-Shah 5 1200 300s

peregrine Proposed 2R LHE 3 200 6s
peregrine Proposed 2R GHE 3 250 5s
peregrine Proposed MR LHE 3 250 9s
peregrine Proposed MR GHE 3 250 8s

fruits MG Mum-Shah 3350 385s

fruits Jacobi Mum-Shah 1 10800 670s
fruits Jacobi Mum-Shah 2 6400 641s
fruits Jacobi Mum-Shah 5 3800 810s

fruits Proposed 2R LHE 3 600 15s
fruits Proposed 2R GHE 3 400 9s
fruits Proposed MR LHE 3 1100 47s
fruits Proposed MR GHE 3 550 23s

8.4.5 Brain CT Segmentation

Figure 44 shows a multigregion segmentation of a 145×145 pixel brain CT image using the

Proposed GHE method with a three-image basis. Note that the method is able to segment

a majority of the important features in this image including the white objects in the center

of the brain as well as the ears.

Figure 44: Segmentation of brain CT image using Multiregion Proposed GHE method.
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8.5 Conclusion

In this chapter, we have presented a reduced basis method for fast robust approximation

to Mumford-Shah segmentation. We explain how the specific choice of basis allows for ac-

curate approximation to the full, standard “pixel-by-pixel” basis Mumford-Shah evolution,

while reducing computational cost significantly. We presented a method for labelling like

regions, thus enabling the use of regions with indepedent coefficient vectors. We showed

the performance of this method for real images that were both noiseless and noisy. Future

work includes determining optimal bases for Mumford-Shah segmentation.
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CHAPTER IX

CONCLUSION

The central application in this thesis has been in reconstruction of tomography images using

a cost functional inspired by the Mumford-Shah functional. This tomography reconstruction

technique relies on implementing a coupled gradient flow, i.e., the simultaneous evolution

of a contour and an image function. In this implementation, the contour evolution relies on

the value of the function and the function evolution relies on the accuracy of the contour.

The most accurate contour evolutions are typically obtained when the function is solved as

accurately as possible.

However, unlike in traditional Mumford-Shah segmentation, the image function is not

known a priori. In tomography, the image function must be obtained from the projec-

tions. For this reason, the function evolution is exceedingly slow when compared with

Mumford-Shah segmentation. In this thesis, we have presented a novel multiscale computa-

tion technique, inspired by multigrid methods, for the estimation of these image functions.

We have shown that the multiscale computation technique lowers the overall computational

cost of the algorithm by quickly obtaining accurate functions values, thereby allowing an

accurate contour evolution.

In addition, we have proposed a novel method to obtain the initial contour for the

proposed tomography reconstruction techinque. This method produces a fuzzy binary seg-

mentation of the image density function and thereby yields a class of initial surfaces. These

initial contours are shown to reduce the number of iterations that it takes for the surface

to evolve. In addition, these contours are more robust and produce less local minima that

contours produced by thresholding minimum norm segmentation obtained by algebraic re-

construction technique (ART) or of those obtained by thresholding filtered back projection.

In addition, the choice of threshold is no longer arbitrary.

For validation of the proposed technique, we compared the proposed technique with
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various other reconstruction algorithms. In addition we also illustrated the ability of the

proposed technique to accurately reconstruct phantom images of heart perfusion abnormal-

ities using the modified NCAT phantom.

The remaining chapters, while all being novel contributions to computer vision inde-

pendently, support the claims and implementation made in the tomography chapters. The

chapter involving rigid contour registration using minimal surfaces contains a novel scale

space for contour registration that, while not computationally feasible, highlights the abil-

ity of multiscale techniques to avoid registration local minima. This chapter also expounds

some of the details of level set surface evolution techniques. In supplement, we have shown

a sufficient condition for existence of these minimal surfaces using the maximum principle

of minimal surfaces.

We have presented results on multigrid computation for optical flow of non-linear partial

differential equations (PDE’s). This chapter highlights the computational power of using

multigrid techniques for solving PDE’s whose solution functions are spatially smooth. In

addition, we have shown that a previously proposed cost functional for optical flow is not

rotationally invariant, and we have proposed a slight modification to make this optical flow

rotationally invariant, while still preserving the edges of objects in the optical flow.

Finally, we have presented a multiscale method for computational of Mumford-Shah

segmentation on images where the image function basis is reduced. This method has ex-

tremely fast convergence and produces very similar segmentations to the Mumford-Shah

functional where each pixel is allowed to vary independently. We have presented a labeling

scheme and method where an arbitrary number of regions can be modeled by this reduced

basis technique.
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APPENDIX A

EVOLUTION EQUATION DERIVATION

A.1 Evolution derivation

In order to determine the evolution equations, i.e., Eq. (5), (6) and (7), of the image

function and the contour connecting the two image regions, we use calculus of variations.

Taking the derivative of the functional J1 with respect to time we obtain,

∂J1

∂t
= −2

∑

θ∈Θ

∫ Lθ

0
(p(s, θ)− p̂(s, θ)) ∂p̂

∂t
ds .

Note, that while p is not a function of time, p̂, which depends on the image function and

the contour, is a function of time. Therefore, where ~νRi is the unit outward normal vector

with respect to region Ri, we see that,

∂p̂

∂t
=

∂

∂t

∫

Ω
f̂(x, y)δ(x cos θ + y sin θ − s)dx̄ , (115)

=
∂

∂t

∫

R1

f̂R1(x, y)δ(Pθ(x, y)− s)dx̄ (116)

+
∂

∂t

∫

R2

f̂R2(x, y)δ(Pθ(x, y)− s)dx̄

=

∫ L

0

〈
~Ct, f̂R1(x, y)δ(Pθ(x, y)− s)~νR1

〉
d` (117)

+

∫

R1

f̂R1,tδ(Pθ(x, y)− s)dx̄

+

∫ L

0

〈
~Ct, f̂R2(x, y)δ(Pθ(x, y)− s)~νR2

〉
d`

+

∫

R2

f̂R2,tδ(Pθ(x, y)− s)dx̄

=

∫ L

0

〈
~Ct,
(
f̂R1(x, y)− f̂R2(x, y)

)
δ(Pθ(x, y)− s)~νR1

〉
d` (118)

+

∫

R1

f̂R1,tδ(Pθ(x, y)− s)dx̄

+

∫

R2

f̂R2,tδ(Pθ(x, y)− s)dx̄ .

Note, that Eq. (117) follows from Eq. (116) is a result of the divergence theorem.
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Substituting Eq. (118) into Eq. (A.1), and abbreviating δ(Pθ(x, y)− s) as δ, we obtain,

∂J1

∂t
= −2

∑

θ∈Θ

∫ Lθ

0
(p− p̂) (s, θ)

∫ L

0

〈
~Ct,
(
f̂R1 − f̂R2

)
δ~νR1

〉
d`ds (119)

−2
∑

θ∈Θ

∫ Lθ

0
(p− p̂) (s, θ)

∫

R1

f̂R1,tδdx̄ ds

−2
∑

θ∈Θ

∫ Lθ

0
(p− p̂) (s, θ)

∫

R2

f̂R2,tδdx̄ ds

= −2

∫ L

0

∑

θ∈Θ

(p− p̂) (Pθ(x, y), θ)
〈
~Ct,
(
f̂R1 − f̂R2

)
~νR1

〉
d` (120)

−2

∫

R1

∑

θ∈Θ

(p− p̂) (Pθ(x, y), θ)f̂R1,tdx̄

−2

∫

R2

∑

θ∈Θ

(p− p̂) (Pθ(x, y), θ)f̂R2,tdx̄

=

∫ L

0

〈
~Ct, 2

∑

θ∈Θ

(p̂− p) (Pθ(x, y), θ)
(
f̂R1 − f̂R2

)
~νR1

〉
d` (121)

+

∫

R1

f̂R1,t2
∑

θ∈Θ

(p̂− p) (Pθ(x, y), θ)dx̄

+

∫

R2

f̂R2,t2
∑

θ∈Θ

(p̂− p) (Pθ(x, y), θ)dx̄ .

Taking the derivative of the functional J2 with respect to time similarly yields,

∂J2

∂t
=

∫

R1

∂

∂t
‖∇f̂R1(x, y)‖2dx̄+

∫

R2

∂

∂t
‖∇f̂R2(x, y)‖2dx̄ (122)

= 2

∫

R1

f̂R1,xf̂R1,xt + f̂R1,yf̂R1,ytdx̄ (123)

+2

∫

R2

f̂R2,xf̂R2,xt + f̂R2,yf̂R2,ytdx̄

+2

∫ L

0

〈
~Ct,
(
‖∇f̂R1(x, y)‖2 − ‖∇f̂R2(x, y)‖2

)
~νR1

〉
d`

= 2

∫

R1

f̂R1,t∆f̂R1dx̄ (124)

+2

∫

R2

f̂R2,t∆f̂R2dx̄

+2

∫ L

0

〈
~Ct,
(
‖∇f̂R1(x, y)‖2 − ‖∇f̂R2(x, y)‖2

)
~νR1

〉
d` .

Finally, taking the derivate with respect to time of the functional J3, which corresponds

to the arc length of the contour is,

∂J3

∂t
=

∂

∂t

∫ L

0
d` , (125)
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however the partial derivative operator can not be interchanged with the integral because

the contour length, L, is a function of the contour that is changing in time. Thus, the

contour must be written in terms of a specific parameterization. Therefore, writing the

contour as a function ~C ′ : [0, 1]→ R2, it follows that,

∂J3

∂t
=

∂

∂t

∫ L

0
d` =

∂

∂t

∫ 1

0
‖ ~C ′p(p, t)‖dp (126)

=

∫ 1

0

∂

∂t

√〈
~C ′p, ~C ′p

〉
dp (127)

=

∫ 1

0

〈
~C ′pt, ~C

′
p

〉

√〈
~C ′p, ~C ′p

〉dp =

∫ 1

0

〈
~C ′pt,

~C ′p
‖ ~C ′p‖

〉
dp (128)

=

∫ 1

0

〈
~C ′pt, ~T

〉
dp (129)

=

∫ 1

0

〈
~C ′tp, ~T

〉
dp (130)

= −
∫ 1

0

〈
~C ′t, ~Tp

〉
dp+

〈
~C ′t, ~T

〉 ∣∣∣∣∣

1

0

(131)

= −
∫ 1

0

〈
~C ′t, ~Tp

〉
dp (132)

= −
∫ 1

0

〈
~C ′t, ~T`

d`

dp

〉
dp (133)

= −
∫ 1

0

〈
~C ′t, ~T`

〉
‖ ~C ′p‖dp (134)

= −
∫ L

0

〈
~Ct, ~T`

〉
d` , (135)

where ~T is the unit tangent vector at a point on the contour, Eq. 130 follows from Eq. 129

when the second order partial derivatives of the contour are continuous, Eq. 131 follows

from Eq. 130 by integration by parts, and Eq. 132 follows from Eq. 131 since values p = 0

and p = 1 correspond to the same points on the contour. Also note that equation Eq. 133

follows from Eq. 132 by the chain rule. By definition, the derivative of the unit tangent

vector with respect to arclength is curvature, κ, times the unit normal, and thus,

∂J3

∂t
=

∫ 〈
~Ct, κ ~νR1

〉
d` . (136)

In the three dimensional case, i.e., when taking the derivative with respect to surface area,

the term κ is replaced by the local mean curvature, H.
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APPENDIX B

SUFFICIENCY PROOF OF CONVERGENT TIME STEP

B.1 Existence of Convergent Time Step

The discrete implementation of the forward Euler iterations on the estimated density func-

tions as in Chapter 2 can be seen as matrix multiplication,

fn+1 = (I + ∆t (−αP + βS)) fn + g , (137)

where fn is a vector representing the image function at iteration n, I is the identity matrix,

∆t is the time step, and α and β are the weighting factors for the projection and smoothness

terms respectively as in Chapter 2. Also, note that P is the projection matrix that operates

on an image, producing, for each pixel, an image that contains the sum of all projections

at the points on the projections to which that pixel projects. The matrix S represents the

discrete Laplacian operator on the image function with Neumann boundaries conditions

enforcing that the normal derivative on the image boundary is zero. The vector g is a

constant vector that does not affect whether the iterative system converges.

The null space of S is the set of vectors corresponding to constant images. This follows

naturally since the only solutions of the Laplace equation with zero normal derivative on

the boundary are constant images.

According to the above description, P is a mapping that, for each pixel on the image,

sums all of the image pixels that project to the same projection locations as the pixel itself.

Formally, we can see that P is of the form,

P = UTU , (138)

where U is the matrix that corresponds to projecting the image pixels onto the projection

pixels, and UT corresponds to mapping the projection pixels back onto the image pixels

that projected to it. The matrix U depends on the number and angles of the projections

and the selected interpolation scheme used in projection.
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Note that U is not a square matrix. It is a matrix with number of columns corresponding

to the number of image pixels and number of rows corresponding to the number of projection

pixels. Also note that U only contains real values. Also, we will assume that the sum of

all the elements of P is strictly positive. This is true for any set of projection angles and

interpolation scheme due to the additive nature of tomography as modeled by the Radon

transform.

Lemma 1 The matrix, P = UTU , corresponding to the projection matrix described above

is positive semidefinite.

For x 6= 0,

xTPx = xTUTUx = (Ux)T (Ux) = ‖Ux‖2 ≥ 0 , (139)

where (Ux)T (Ux) = ‖Ux‖2 is true since Ux is real. 2

Lemma 2 The matrix, S, corresponding to the discrete Laplacian operator with Neumann

boundary conditions where the normal derivative is zero along the boundary, is negative

semidefinite.

The structure of the matrix S is that it is a real matrix whose diagonal elements, sjj ,

are negative and the off-diagonal elements are all positive values who sum for each row, j,

is such that,

sjj = −
∑

k 6=j
sjk . (140)

Then, this lemma follows naturally from Gerschgorin’s theorem [41], from which we have

that if λ is an eigenvalue of S, then for some integer, 1 ≤ j ≤ n, that,

|ajj − λ| ≤ |aj1|+ · · ·+ |aj,j−1|+ |aj,j+1|+ · · · |ajn| . (141)

But, from Eq. (140), and since sjk > 0 for j 6= k and sjj < 0 for all 1 ≤ j ≤ n, we have

that,

|sjj − λ| ≤ |sj1|+ · · ·+ |sj,j−1|+ |sj,j+1|+ · · · |sjn| =
∑

k 6=j
sjk = −sjj = |sjj | . (142)
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Thus, all eigenvalues must be, for some 1 ≤ j ≤ n, within |sjj | of sjj , a strictly negative

number. In addition, since S is a real, symmetric matrix, all eigenvalues are real. Therefore,

all of the eigenvalues of S are non-positive real numbers, thus proving the lemma. 2

This is shown in Fig. 45 which illustrates the eigenvalues of S lying withing the Ger-

schgorin disks centered at the negative real values, sjj .
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Figure 45: Gerschgorin disks showing location of eigenvalues of Laplacian operator matrix,
S.

From these lemmas, it is trivially true that −αP + βS is negative semidefinite since α

and β are positive constants. However, it is also true that the matrix −αP + βS is, in fact,

negative definite. This occurs due to the structure of the null space of matrix S. This is

proven below.

Lemma 3 The matrix, −αP + βS, is negative definite.

The null space of S is the space of constant image functions. Thus, x = a 6= 0 is in the
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null space of S. Then,

xT (−αP + βS)x = −αxTPx = −a2
∑

i,j

Pij < 0 , (143)

since a is real, and the sum of all the components of P is strictly positive.

If x 6= 0 is not a constant vector, and thus not in the null space of S, then

xT (−αP + βS)x ≤ xTSx < 0 , (144)

where the first inequality is true since P is positive semidefinite and the second is clear by

spectral decomposition of x with respect to the eigenvectors of S. 2

Theorem 1 There exists a ∆t > 0 such that (I+∆t (−αP + βS)) has all of its eigenvalues

in the interval (−1, 1).

Since (−αP + βS) is negative definite, all of its eigenvalues are strictly less than zero.

Choose ∆t < 2
|λ∗| where λ∗ is the most negative eigenvalue of (−αP + βS). Therefore,

∆t (−αP + βS) has all of its eigenvalues in the interval (−2, 0). The theorem follows from

the spectral shift theorem [41]. 2

From this this theorem, it follows that repeated multiplication by the matrix (I +

∆t (−αP + βS)) with the properly chosen ∆t converges.

B.2 Sufficient Time Step for Convergence

In order to sketch a proof for a time step sufficient for convergence, we need to look at

the structure of the matrices S and P . We will show a sufficient time step for arbitrary

dimension of the image density function, D. The matrix S has a very specific structure for

most of its rows. Most rows have the value −2D along its diagonal and have 2D 1’s in the

off diagonals, and the rest of the terms in each row are 0. The only rows that do not have

this structure are rows that correspond to image pixels that are on the boundary. These

rows, that correspond to boundaries of the image, have negative integer values, q, in the

diagonal with magnitude less than 2D and q 1’s along the off diagonal. The rest of the

terms are 0.
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The structure of P is such that the value along each diagonal has value equal to the

number of projections, p. The remaining entries in each row are positive and sum to a

number less than or equal to (L− 1)p where L is the length of the longest dimension of the

image.

Therefore, by application of the Gerschgorin theorem, the matrix −αP + βS will have

its most negative eigenvalue λ∗ such that,

|λ∗ − (−αp− β2D)| ≤ α(L− 1)p+ β2D . (145)

Therefore, it follows that,

− α(L− 1)p− β2D ≤ λ∗ − (−αp− β2D) ≤ α(L− 1)p+ β2D (146)

−αLp− β4D ≤ λ∗ ≤ α(L− 2)p . (147)

But since we proved above that −αP + βS is negative definite, we know that,

− α(L)p− β4D ≤ λ∗ < 0 . (148)

Therefore, as shown in the proof of Theorem 1, a sufficient time step for convergence of

the iterative equation is,

∆t <
2

αLp+ β4D
. (149)
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APPENDIX C

EXISTENCE CRITERIA FOR MINIMAL SURFACES

We will explain a sufficient condition for existence of the minimal surface that connects two

contours. The first section will describe the condition for existence of the catenoid. The

second section will explain the condition for existence of the minimal surface connecting

two contours using the maximum principle of minimal surfaces.

C.1 Existence of Catenoid

C.1.1 Parameterization

The catenoid is the only surface of revolution with the topology of a cylinder that is a

minimal surface [33]. The parametric equation of the catenoid is,

(x(u, v), y(u, v), z(u, v)) = (p cosh(v/p) cos(u), p cosh(v/p) sin(u), v) , (150)

where u ∈ [0, 2π) and v ∈ [−zH/2, zH/2] are the surfaces parameters and p is the radius of

the middle contour. Note that in the appendix we use the convention that the top contour

of the catenoid is at z = zH/2 and the bottom contour of the catenoid is at z = −zH/2.

Although this does not follow the convention of the paper, it will prove useful in the analysis.

It can be shown that this surface has constant zero mean curvature, although we will not

show it here.

By setting u = 0 and v = zH/2, which represents the top of the catenoid, we get that,

(r, 0, 0) = (p cosh(z/2p), 0, 0), where r is the radius of the circular contour and the top and

bottom of the catenoid. This shows that r = p cosh(z/2p), giving a relation between the

radius of the top and bottom circular contours, r, the height of the catenoid, z, and the

inner radius of the catenoid which occurs at z = 0, p.

Solving this function for positive z results in, z = 2p ln

(
r+
√
r2−p2

p

)
.
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C.1.2 When does it collapse?

By finding out, for what value of z the current catenoid with top radius r fails to exist, we

are essentially answering our title question. The exact z where the catenoids fail to exist

are when ∂r(p,z)
∂p = 0 for a given r, for this is where the bottom of the constant z curves

intersect with the horizontal fixed r lines. This analysis proceeds as follows,

r(p, z) = p cosh

(
z

2p

)
and

∂r

∂p
= cosh

(
z

2p

)
− z

2p
sinh

(
z

2p

)
. (151)

Setting this partial derivative equal to zero will give us the appropriate value of p where

z is maximum and the catenoid still exists. I will call these critical values p′ and z′.

Substituting for z and r
p′ for cosh(z′/2p′) yields,

0 = r − ln

(
r +

√
r2 − p′2
p′

)
√
r2 − p′2 . (152)

By finding, for a given r, the p′ that satisfies Eq. (152), we will have found the critical

p′ below which catenoids fail to exist. That p′ will produce the largest possible catenoid

height, z′.

An explicit function to get p′ from r is, p′(r) = αr, where α is the zero of the function,

f(x) = 1− ln

(
1 +
√

1− x2

x

)√
1− x2 . (153)

It can be seen that p′(r) satisfies Eq. (152). by substitution into Equation (152) if α is

a zero of f(x). The zero of f(x) is found numerically to be, α ≈ 0.5524.

It follows that, z′(p′(r), r) = 2α ln
(

1+
√

1−α2

α

)
r = βr where,

β = 2α ln

(
1 +
√

1− α2

α

)
≈ 1.325 . (154)

These results show that the critical p′ and z′ for a given r are given by, p′ = αr and

z′ = βr. That is, the critical inner radius, p′, and critical height, z′, of a catenoid of fixed

top radius are each directly proportional to the fixed top radius. Therefore, a catenoid with

radius r will exist for heights less than or equal to z = 1.325r
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C.2 Existence of Minimal Surface for Arbitrary
Closed Contours

Arbitrary contours that are not concentric circles yield surfaces that are not catenoids and

typically have no closed form parameterization. Consider an arbitrary closed contour, C,

and its identical, aligned replica, C ′, lying directly below in, separated in respective contour

planes by a distance zM. In each plane, the contour lies between its inscribed circle and its

exscribed circle with radii rin and rex respectively. If we choose the separation distance so

that zM < 1.325rin, a catenoid exists that connects the inscribed circles, as proven in Section

C.1. Since rin ≤ rex, and thus, zM < 1.325rin ≤ 1.325rex. It follows that the catenoid of

radius rex exists for this chosen zM. It then follows from the maximum principle of minimal

surfaces, that the minimal surface with contours C and C ′ as its boundary will exist and

will completely contain the catenoid connecting the inscribed circles, that is, the minimal

surface will exist for the chosen separation distance zM < 1.325rin.

This argument can be extended to show existence for the minimal surface connecting

the top contour, D, and bottom contour E. Consider the inscribed circle lying within the

intersection of the interior of the two contours. A catenoid with this radius, rb, will be

completely contained in the minimal surface connecting D and E and therefore by a similar

argument as above, the minimal surface connecting D and E will exist when the separation

distance is less than 1.325rb.
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APPENDIX D

FLOOD FILL LABELING ALGORITHM

Here we explain the algorithm for two queue flood-fill labeling. This algorithm gives each

pixel in the region a label to identify it only with points that are within the same region.

Even though this algorithm is run every iteration, it is a manageable part of the computa-

tional cost of the proposed technique. The proposed multigrid technique still outperforms

other comparable methods with respect to computational cost.

The algorithm operates on the discretized image domain and assumes that the region

also contains a level set function, Ψ, that exists on each pixel of the domain. The algorithm

takes in a signed level set function, Ψ, and after completion, has labeled each pixel in the

grid with a unique label identifying which connected region it is in. Figure 46 shows an

example of a labeling given a 6× 6 pixel grid.

The two queue flood fill labelling algorithm is as follows:

1. L← 1

2. Enqueue upper leftmost pixel into queue #1

3. While queue #1 is not empty:

(a) Dequeue pixel p from queue #1 and label p to be in region L

(b) For all neighbors, q, of p that have not been labeled

i. If the sign of Ψ is the same at q and p, and q has never been in queue #1,

enqueue q into queue #1

ii. If the sign of Ψ is different at q and p, and q has never been in queue #2,

enqueue q into queue #2

4. If queue #2 is not empty, continue to dequeue from queue #2 until an unlabeled pixel

is found or until queue #2 is empty. If an unlabeled pixel, r, is found, enqueue it into
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Figure 46: Example labeling for 6× 6 pixel grid. Only input to the algorithm is the level
set function, Ψ, at each pixel. Output of algorithm is a labeling, L, for each pixel into its
appropriate connected region.

queue #1.

5. Increment L.

6. If queue #1 is empty terminate algorithm, otherwise go to step 3.

It is clear that the algorithm eventually terminates since points are only enqueued when

they have not been already queued into a specific queue, and since eventually both queues

will be emptied by the iterated dequeuing operations. It is also clear that the algorithm

will eventually label all points since every point is the neighbor of the upper leftmost pixel

through zero or more other pixels, and since every neighboring point is eventually either
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labeled, placed into queue #1, or placed into queue #2 to be later transferred to queue #1.

That the labels identify connected regions is not trivial, but can be seen from the fact that

eventually, for a given label, L, all points that are neighbors and have the same sign of the

level set function, will eventually be placed into queue #1, only to be dequeued and labeled

before L is incremented. Thus, queue #1 is only emptied when a region is fully labeled. At

this point, a single point is transferred from queue #2 into queue #1, seeding a new region.

Then L is incremented and the procedure begins again, eventually labelling all points in

this newly seeded region with the new value of L.
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