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SUMMARY

This work theoretically develops and experimentally verifies zero- and low-bias

control laws that globally asymptotically stabilize an active magnetic bearing (AMB).

In addition, the control laws are constructed with the largest domain of definition

possible while minimizing the AMB operating losses. AMB losses are minimized by

reducing the total square flux required for regulation [35]. This suggests operation

with zero-bias (ZB) or low-bias flux (LB). In service of these goals, a flux-based model

for a one-degree-of-freedom (1-DOF) AMB is derived using a generalized complemen-

tary flux condition (gcfc). This condition is imposed in both ZB and LB modes of

operation. A convenient model structure results, in which the ZB mode is a limiting

case of the more general LB mode of operation. Nonlinear ZB and LB control laws

are developed which stem from the theory of integrator backstepping, feedback lin-

earization, control Lyapunov functions (clf’s), and passivity. The standard nonlinear

techniques of feedback linearization and integrator backstepping suffer from a singu-

larity in ZB operation which manifests itself as an infinite voltage command. The clf

control law also has a singularity in ZB operation, but has a much larger domain of

definition than the standard nonlinear techniques. The passivity-based control law is

nonsingular. In addition to evaluating the performance of each control design through

numerical simulation, they are experimentally verified on a 6-DOF magnetically sus-

pended reaction wheel. Many practical issues such as velocity and flux estimation,

flux-bias implementation, gcfc implementation, passive magnetic bearing construc-

tion, coil resistance compensation, and signal conditioning have been addressed to

successfully implement the nonlinear control laws on the 6-DOF AMB. Theoretical
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analysis and experimental results furnish evidence that under typical operating cir-

cumstances, the gcfc bias strategy is more efficient in producing the forces required

for regulation than the standard constant-flux-sum (cfs) bias scheme. Furthermore,

the frequency content of the control signal is used to evaluate operation near the ZB

singularity. Large spikes are produced in the voltage control signal when the control

law becomes singular. Consequently, the control laws with the smallest domain of

definition produce control signals with the largest frequency content. In addition,

a trade-off exists between the bearing stiffness, the operating losses, and power con-

sumption as one varies the level of flux bias. Larger bias implies an increase in bearing

stiffness, but at the cost of higher operating losses. Interestingly, the power consump-

tion does not necessarily increase with bias. In fact, there are circumstances when

operation with large bias consumes less power than when operating with a small bias.

This thesis is organized as follows. Chapter 1 introduces the importance of AMB’s

in several applications, including the flywheel battery (FWB), the motivating appli-

cation for the study of low-loss AMB design. It also serves to summarize and criticize

the current literature as well as clearly define the goals and contributions of this

work. The place this research holds in the development of the multi-disciplinary

FWB technology is also outlined. Chapter 2 presents the modelling of the 1-DOF

AMB, conducts an AMB power analysis, and summarizes the AMB and FWB power

loss mechanisms. Chapter 3 introduces the generalized complementary flux condition

(gcfc) biasing scheme and compares it to the standard constant-flux-sum strategy.

Chapter 4 gives detailed derivations of several nonlinear ZB and LB control laws.

Chapter 5 gives an overview of the experimental apparatus used to verify the control

laws presented in Chapter 4. Chapter 6 presents a strategy for flux measurement and

verifies the implementation of a flux bias and the gcfc condition. Chapter 7 presents

the 6-DOF modelling and decentralized linear control of the magnetically suspended

reaction wheel. Chapter 8 presents the experimental verification of the control laws

xxv



developed in Chapter 4. Conclusions and future work is outlined in Chapter 9

Several appendices are included: properties of the function x[q], background elec-

tromagnetic theory, generation of electromagnetic force, magnetic circuit energy anal-

ysis, and filter construction.
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CHAPTER I

INTRODUCTION

Bearings are essential components of all rotating machinery. By definition, the bearing

is the static part of the machine (often called the stator) that supports the moving part

(often called the rotor). While air and fluid bearings may be found in multi-degree-of-

freedom ball and socket joint machines, ball bearings, which allow for pure rotation,

are by far the most popular. They are widely available, cheap, and can handle very

large static loads. However, the most common failures in rotating machinery are ball-

bearing failures. For example, such a failure may be due to over-stress from imbalance

loads, lubrication thermal breakdown, or lubrication contamination.

Magnetic bearings are an alternative to ball, air, or fluid bearings. Magnetic

bearings are constructed from permanent magnets (PM), electromagnets (EM), or

combinations of both. Active magnetic bearings (AMB) use stator mounted electro-

magnets and feedback control to generate forces on the rotor so that it spins without

touching the stator. That is, the magnetic bearing is frictionless! In addition, feed-

back control may actively adjust the system stiffness and damping characteristics to

reduce vibrations caused by rotor imbalance. The elimination of lubrication, oper-

ation in a vacuum, and the non-contacting nature allows for low-maintenance, long

life-span, high-speed bearings. Furthermore, advances in power electronics have re-

sulted in AMB’s constructed in compact packages with little external hardware. In

spite of the long list of benefits, magnetic bearings do have some limitations that

traditional bearings do not. The most fundamental limitations are the electromagnet

force saturation (resulting in limited load capacity) and the force slew-rate limits.

For further introductory material, see [38, 36, 35], for example.
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The next few figures show some examples of magnetic bearing systems. Magnetic

bearings typically support two different types of rotors: the elongated shaft type or

the flat “pancake” type. Figure 1.1 shows a shaft type rotor supported by two sets

of 4-poled1 AMBs. The most active areas of magnetic bearing research are currently

driven by high-speed operation, lower power loss, greater use of the bearing airgap,

and disturbance rejection due to rotor imbalance and flexibility [38]. The MBRotorTM

test stand is supplied by Revolve Magnetic Bearings Inc. and is useful for studying

and controlling the flexible modes of shafts. The motor can spin the rotor up to

15,000 rpm while the AMBs allow for frictionless operation. Each AMB has a backup

(“catcher”) ball bearing in the case of a failure. The position of the AMBs, the shaft

length, and balance disk location can be changed to study the flexible modes of the

shaft. This test stand could also be fitted with an additional “thrust” AMB to create

forces along the rotor axis.

Figure 1.2 illustrates a “pancake” configuration of a AMB flywheel. This particu-

lar AMB flywheel utilizes a conical bearing which provides thrust in the axial direction

as well as actuation in the radial direction. Also shown are the radial “catcher” bear-

ings, the vacuum housing, and a rotor made of composite materials. In high-speed

flywheel testing, rotors may burst creating an extremely dangerous situation, and

therefore require expensive containment systems. When a composite rotor bursts,

the energy is dissipated in the shredding of the composite fibers and a safer failure

results.

AMB’s have enjoyed successful application in many industrial and scientific set-

tings [17]. They have been considered for various applications such as vacuum pumps,

hard disk drives, high-speed centrifuges, high-speed turbines, machine tools, voltage

1Since electromagnets can only produce an attractive force on a ferromagnetic target, two electro-
magnets are required per control axis to generate positive and negative forces. Thus 4 electromagnets
are required to actuate the horizontal and vertical directions in each of the AMBs shown in Figure
1.1
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Figure 1.1: The MBRotorTM test stand from Revolve Magnetic Bearings Inc.

regulation, un-interruptible power supplies, magnetic catapults, and magnetically lev-

itated trains. In [79], the suspension of a steel tube is studied as a prototype for a

non-contacting industrial processes. For example, in industrial processes such as plas-

tic film production, paper production, coating and painting, it is advantageous to be

able to handle the product without directly touching it [79]. A similar application is

presented in [68] where magnetic levitation is used in the deployment of spacecraft

solar arrays to simulate the weightlessness of space. The use of AMBs in high speed

milling (cutting) machines shows great potential for reduction of drill bit chatter and

enables high-precision cutting [39, 70]. A heavy-weight industrial application is the

use of magnetic bearings in the reduction of propeller-induced vibrations in ship trans-

mission shafts [14]. The lack of lubrication makes magnetically levitated machines

especially suitable for “clean” environments. For example, a magnetically suspended

stepper motor and magnetic levitation linear motion Silicon wafer transporter have

been developed for use in clean-rooms and ultra-high vacuum environments [24, 61].
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Figure 1.2: This particular bearing utilizes a conical bearing which provides thrust
in the axial direction as well as actuation in the radial direction. This figure is courtesy
of Dr. Jerry Fausz, Flywheel Program Manager, Air Force Research Labs [19].

One application in particular, the flywheel battery (FWB), serves as the main

focus of this research. In the FWB application, kinetic energy is stored in the rotating

flywheel and converted back and forth to electrical energy via a motor/generator.

Since the axial moment of inertia of the pancake configuration is typically larger than

the shaft configuration for a given a rotor mass, the pancake rotor configuration is

typically better for energy storage2. Note however that the control of a pancake-type

rotor is more challenging as the angular velocity increases because the gyroscopic

effects are more dramatic [56, 54].

A good introduction to flywheel battery applications may be found in [5, 23]. In

2The energy, or “state-of-charge” in a flywheel is E = 1/2 Iω2 where I is the moment of inertia
and ω is the angular velocity.
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addition to having the ability to store energy, a FWB can also deliver high power.

That is, it can deliver its stored energy in a short period of time3. Figure 1 in refer-

ence [5] compares the energy density (Wh/kg) and power density (W/kg) for several

competing energy storage technologies. Energy storage technologies such as gasoline

and H2 fuel cells rank among the highest in energy density, but have limited power

density and peak power capabilities. On the other hand, super capacitors and AMB

flywheel batteries are the highest ranking peak power devices available. Note that

AMB FWB has a higher energy density than that of the super capacitor. Existing

electric utility companies have used FWB’s to augment their ability to meet peak

power demands and to improve power quality. In such a configuration, the overall

power supply system can be designed to meet lower average power specifications.

The energy stored in the FWB is delivered during peak demand hours. A similar use

of the FWB has been proposed for the hybrid electric vehicles and military combat

vehicles[62, 26]. Another peak power application, for instance, is the Incredible Hulk

Roller Coaster at Universal Studios Florida which uses a team electric motors (re-

quiring as much as 6000 amps) and a system of three flywheels (not AMB supported)

to launch its riders up the lift hill. This type of energy pulse generation has also been

suggested for military applications such as a magnetic rail gun used to replace the

steam catapult on aircraft carriers [23]. One of the most interesting applications is

use of FWBs on spacecraft: for a further discussion see Section 1.1.

Minimization of all AMB operating losses is essential for successful implemen-

tation of a flywheel battery. There are several energy dissipation mechanisms that

make the AMB enabled FWB application far from efficient. Due to the lack of con-

tact friction and operation in a vacuum, all AMB mechanical losses are eliminated.

3The electrical power that the flywheel can deliver is, assuming no loss, equal to the mechanical
power dE/dt = Iωω̇ = Iαω = τω. That is, the electrical power delivered by the flywheel depends on
the angular velocity and the deceleration torque. In other words, the power capacity of the flywheel
depends only on how fast one can change the rotor speed.
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Table 1.1: Summary of AMB power losses [35].
Loss Relation to flux

Ohmic power loss in coil ∝ Φ2, i2R
Eddy-Current Drag power loss ∝ Φ2, ω2

Alternating Hysteresis power loss in core ∝ Φ1.5−2.5
max

Rotational Hysteresis power loss in core ∝ Φ
Eddy-Current power loss in core ∝ Φ2

max

However, electromagnetic losses are still significant, especially at high operational

speeds. The loss mechanisms include resistive power dissipation, eddy-current core

loss, eddy-current drag, and hysteretic core loss. The adjective “eddy-current” is of-

ten used imprecisely in the literature. Eddy currents which appear in the EM core

are generated by the AC variation of the magnetic flux used for rotor control. Eddy

currents are also generated on the surface of a spinning rotor in the presence of a

magnetic field. These currents are generated in such a way as to produce a drag force

(i.e. proportional to speed) and consequently reduce the angular velocity [2, 89]. In

this report, eddy-current loss will refer to core loss and eddy-current drag will refer to

the motion induced drag force. Note that eddy-currents generated in the rotor lead

to rotor heating, and consequently, thermal expansion of the rotor and degeneration

of the nominal airgap. This can lead to a decrease in bearing stiffness complicate the

control design. Observe that even though the AMB eliminates all mechanical losses,

the eddy-current drag reduces the angular velocity of the rotor. Consequently, the

“charge” or energy stored in the mechanical FWB dissipates with time. As Table

1.1 shows, each4 of the electromagnetic power losses are proportional to the square

of the flux required by the bearings. Often a bias flux (or current) is introduced into

the electromagnets to increase the bearing stiffness, Φ = Φ0+ φ. Thus, minimization

of the flux bias Φ0 (or current bias) when used is imperative for designing efficient

AMB’s for flywheel batteries.

4Rotating hysteresis is not significant in the FWB problem.
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The control of an AMB with low-loss design in mind is not a trivial problem.

In a customary AMB control design, a large flux (current) bias is introduced into

the electromagnets to linearize the nonlinear force-flux (force-current) characteristic.

Instead of a standard Jacobian linearization approach, a biasing scheme called the

“normal” or “constant flux (current) sum” is typically used [46, 47, 48]. A global

linearization of the force nonlinearity is achieved by a novel input transformation: a

bias is introduced into both electromagnets and a net force is generated by adding

a control flux (current) to one electromagnet while subtracting the same control

flux (current) from the opposing electromagnet. Once the system is linearized, any

convenient classical or modern linear control technique may be used to provide closed-

loop stability. A large flux (current) bias – often one third to one half of the saturation

flux (current) of the electromagnets – is used to provide adequate bearing stiffness.

However, since electrical losses are directly proportional to the flux bias, operation

with very small or zero flux bias is imperative for efficiency. As will be seen in the

sequel, reduction of the flux bias to zero results in an uncontrollable linearization.

This is due to the fact that the AMB exhibits a dead-zone-like characteristic for zero-

bias (ZB) operation which results in a reduced force slew-rate capability [47, 53, 4].

Thus, ZB operation requires one to deviate from classical approaches and investigate

nonlinear control techniques.

ZB operation of the AMB is implemented with complementary strategies which

completely eliminate the flux (or current) bias. Since current and flux depend on

each other, either one may be used as the electrical state. When using current, this

strategy is called the complementary current condition (ccc). When using flux, it

is called the complementary flux condition (cfc). In these methods, a constraint is

imposed on the operation of the opposing electromagnets that constitute a control

axis of the AMB. Along a given control axis, only one electromagnet at any given

time is allowed to pull on the rotor. That is, one electromagnet is turned off while
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the other is active. In this way, power is saved because the opposing electromagnets

do not fight each others efforts to accelerate the rotor in a given direction.

Standard nonlinear control techniques, such as feedback linearization (FBL) and

integrator backstepping (IB), suffer from a singularity in ZB voltage-amplifier mode.

This singularity manifests itself as an infinite voltage command when the control flux

is zero [8, 7, 15, 45]. This singularity arises from the dead-zone-like characteristic

that the force-flux nonlinearity has when operated in ZB. As a means to alleviate the

force slew-rate limitations of the ZB designs, a new bias scheme called the generalized

complementary flux condition (gcfc) is introduced which allows for a flux bias while

at the same time keeps the power-saving switching strategy of the cfc bias scheme.

Note that this bias improves the bearing stiffness and removes the singularity but at

the cost of increased electrical system losses. Thus, it is typical that a low-bias (LB)

will be implemented.

Note that when the bias is reduced to zero, the gcfc bias scheme coincides with the

cfc bias scheme. Consequently, control laws developed for LB operation will realize

a ZB implementation when the flux-bias is reduced to zero. There are applications

where one may desire a time-varying bias level to meet changing system require-

ments or perhaps to optimize some performance index. While this thesis does lay the

groundwork for a time-varying bias implementation, the selection of an optimal bias

policy is deferred to future research. For these reasons, the ZB mode of operation is

revisited with the goal of removing the singularity from the control laws. To this end,

a new control algorithm based on the theory of control Lyapunov functions (clf) is

constructed that has a larger domain of definition than the standard nonlinear tech-

niques in ZB. Even better, a new passivity-based control design is developed that is

completely nonsingular in ZB.

The performance of the AMB depends on the flux bias. Performance is measured

in terms of bearing stiffness, power consumption and power losses. Bearing stiffness
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refers to the rate of change of the closed-loop actuator force with respect to a change

in position. It is closely related to the controller’s ability to regulate the rotor against

disturbances. The power consumption of the bearing is measured as the electrical

power supplied to the bearing VappIcoil where Vapp is the voltage applied across the

coil and Icoil is the current through the coil. This power supplied is consumed in

three ways: (1) it produces the control forces, (2) it implements the bias flux, or (3)

gets dissipated as heat in one of the previously mentioned loss mechanisms. As the

bias increases, bearing stiffness increases, the power required to implement the bias

increases, and the loss mechanisms dissipate more power. However, the corresponding

increase in bearing stiffness reduces the amount of power required to implement the

control forces. Thus, the total power consumption may actually decrease as the

bias increases. Therefore, a trade-off exists between the bearing stiffness, the power

consumption, and power losses.

The above control techniques are studied extensively through simulation and their

applicability to real-world AMBs is verified by experimental testing on a 6-DOF, mag-

netically suspended AMB flywheel. This apparatus is illustrated in Figure 1.3. It was

originally constructed by Precision Magnetic Bearings Systems, Inc. (PREMAG) [64]

for use by the Air Force Research Laboratories (AFRL) as a light-weight magnetically

suspended reaction wheel for a small satellite. It is passively supported in the vertical

z direction and a motor built into the hub of the rotor provides the z axis rotation.

Horizontal regulation of the rotor position away from the housing is achieved by two

sets of four electromagnets stacked on top of each other. The stacked electromagnet

configuration allows for regulation of the rotor tilt about the horizontal axes. For

simplicity, the rotor regulation is implemented with four independent SISO control

laws instead of one MIMO control law. Furthermore, three of the four horizontal

control axes are implemented with standard linear controllers with servo-amplifiers

operating in current-mode. The fourth axis operates in voltage-mode and serves as
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the test bed for the nonlinear control validation.

Rotor

Base Plate Housing

Electromagnets

Position
Sensors

Figure 1.3: Illustration of the PREMAG magnetically suspended reaction wheel
[64].

Experimental implementation of the control laws requires one to address several

practical issues. The control laws are synthesized using Matlab, Simulink, the Real

Time Workshop/Interface, and a dSPACE 1103 A/D control board. By selecting a

sampling rate in the range of 6−10kHz, the control laws are considered continuous and

explicit discretization of the equations of motion of the system is not required. In this

work, for reasons to be stated in the sequel, the flux is selected as the electrical state,

however measurement of flux in the magnetic bearing is a nontrivial problem. The

solution used here is to construct a flux-lookup table in terms of the measured current

and position. This lookup table is the key in the implementation of the voltage-

switching gcfc constraint and the generation of a flux bias via an auxiliary feedback

loop. Precise implementation is ensured by proper signal conditioning. Compensation

of the coil resistance is also employed. Finally, measurement of velocity is obtained

through a bandwidth-limited differentiation of the position signal.
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1.1 Connection to Larger Research Effort

The development of fundamental space component technology, such as the Active

Magnetic Bearing (AMB), plays an important role in support of the goals of the NASA

Mission plan. These goals include discovering the interactions of distant galaxies,

probing the structure of the universe, and understanding the evolution of the solar

system. However, the degree to which these questions can be answered depends

heavily on the capabilities of the available measurement technology. Thus, investment

in new technologies is essential for NASA’s progress. NASA also aims to transfer their

discoveries and the advanced technologies to the larger satellite communications and

aerospace community. To achieve these goals, the NASA Office of Space Science

(OSS) has devised a Strategic Plan [87] which identifies several key capability areas

where improvement is needed. These areas include Advanced Power and On-Board

Propulsion as well as Sensor and Instrument Component Development. Advanced

energy storage techniques are required to support more capable instrumentation and

longer missions. New multi-spectral sensors and improved precision instruments are

required to probe the mysteries of deep space. However, the measurement capabilities

of any sensors developed are limited by vibration noise transmitted to the sensor by

spacecraft.

The use of AMB’s in support of flywheel technology directly contributes to these

two key capability areas. AMB FWBs have been proposed to combine the functions

of the attitude control and energy storage subsystems of satellites. Such an Integrated

Power and Attitude Control System (IPACS) is projected to save 30% − 50% of

the satellite weight as well as double the mission lifespan [19, 67]. Furthermore,

the reduced subsystem weight makes room for larger instrument payloads (larger

telescopes, for instance). Moreover, the AMB’s can be used to reduce or eliminate

the vibration caused by spinning flywheels on the spacecraft, thus, achieving greater

pointing accuracy of the scientific instruments (i.e. telescope, spectrometer, antenna,
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etc.). For an introduction to flywheel batteries for space applications, see [12, 78, 65,

67, 66] and the references within.

In addition, FWBs store energy more efficiently than the current state-of-the-art

chemical batteries. Chemical batteries suffer from a limited number of charge/discharge

cycles and a limited discharge depth and discharge rate [5, 23]. In other words, chem-

ical batteries are better at energy storage than power storage. Also, the “state-of-

charge” of a chemical battery is not directly measurable. To compensate for these

drawbacks, the chemical batteries are typically oversized at the cost of added weight.

On the other hand, the high power density of AMB-enabled flywheel batteries and

recent advances in power electronics have resulted in construction of compact flywheel

batteries that have little external hardware, weigh less, and have less volume than the

conventional Nickel Hydrogen batteries. To be competitive with the energy densities

provided by chemical batteries, the flywheels must spin at very high speed (at the

order of 60-100K rpm ).

An additional impediment to the successful application of an IPACS system is

the fact that the stator of the AMB moves with the body of the satellite. This

complicates matters because the rotor tends to maintain its orientation due to its

gyroscopic dynamics. If the AMB lacks the sufficient stiffness in its design, then the

possibility exists for a collision of the rotor and the stator when the spacecraft changes

its attitude rapidly, i.e., during a slew maneuver. However, the disturbance rejection

capability and stiffness of the bearing depend on the level of the flux-bias used during

operation. A larger bias level produces better bearing stiffness but at the cost of

increased electrical losses in the AMB. Conceivably, the IPACS application is one

which may have changing control system design requirements. During station keeping

the bias should be low (maybe zero) to minimize energy losses. However during

a mission critical maneuver, the bias should be increased to produce the required

bearing stiffness.
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The NASA Flywheel Development Program is jointly led by offices at NASA Glenn

and NASA Goddard and has partners at the Air Force Research Labs (AFRL). This

research is expected to culminate in a combined energy storage and attitude control

ground demonstration on the ASTREX5 experimental platform at AFRL sometime

in 2004.

1.2 Current Literature on Zero- and Low-Bias

Control

This brief literature review is by no means an attempt to summarize all of the litera-

ture on AMB control and instead highlights the work on zero- and low-bias nonlinear

control designs. The following authors have realized the excessive power consumption

with large-bias classical linear designs and have concentrated on nonlinear zero-bias

designs. In particular, a comparison between linear and nonlinear functioning has

been investigated by Charara et al. [7, 8] and Smith and Weldon [73]. Charara re-

ports power consumption figures from an experimental apparatus acted on by linear

large-biased and nonlinear zero-biased controllers. Nonlinear control schemes show

dramatic power savings (on the order of 90%) over the linear control schemes. Zero-

bias input-output linearization has been studied by several authors [7, 8, 73, 55],

and [50]. Also, Lin and Knospe in [49] have studied nonlinear saturation designs

based on feedback linearization and using a high gain velocity observer. Sliding mode

controllers have been investigated in [8, 77] and [10]. Lévine et al. [45] developed

an alternative zero-bias control method by studying the system’s differential flatness

properties. Yang et al. in [90] and [91] studied optimal control designs for zero-bias

AMB’s.

These zero-bias control laws for the AMB share a common drawback. Specifically,

5ASTREX is the Advanced Space Structures Technology Research EXperiment at AFRL used
to investigate spacecraft dynamics.
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a singularity manifesting itself as an infinite voltage command appears when the flux

(or current) is zero [8], [50]. Many authors take an ad hoc approach to avoiding the

singularity. For example, in [8], a small constant is added to the denominator of the

control law so that a zero flux (or current) condition does not produce an infinite

control effort (a divide by zero in calculation of the control law). Dawson and de

Queiroz applied the integrator-backstepping method to a 2-DOF model in [15] and

to a 6-DOF model in [16]. In their efforts to obtain a smooth control law, which

is essentially the same as avoiding the zero-flux singularity, a small parameter was

added into the control law to guarantee smoothness. The introduction of this small

parameter inadvertently produced a low-bias control scheme. The smoothness of the

control law and the level of the bias-current is directly related to the value of this small

parameter. Using an approach based on backstepping and periodic learning control,

Costic et al. in [13] have attempted to address periodic disturbance rejection.

One of the first papers to intentionally introduce a small bias into a nonlinear

design to alleviate the force slew-rate limitations is [37]. In [37], Knospe and Yang

developed a gain-scheduled, H∞ control scheme by using a linear parameter varying

description of the plant. In addition, Tsiotras and Velenis studied similar low-bias

control of AMB’s subject to saturation constraints in [81].

1.3 Contributions of this Thesis

This thesis offers new theoretical and experimental results to the current body of

literature on low-loss AMB design. These contributions are summarized as follows:

• Flux Feedback: Flux-feedback in itself is not new [1], however its use in the

new gcfc condition is essential. There are several advantages to using flux as

the electrical state. Flux-based AMB models can accurately predict the ac-

tuator forces even when the electromagnets operate in saturation, as is often

the case with the AMB. Furthermore, force/flux-based actuator models are less
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susceptible to the eddy-current effects that may corrupt a force/current-based

model. Along with the decision to use flux as the electrical state comes the task

of measuring the flux. This thesis uses a straight forward actuator modelling

technique that does not require closed-loop control to construct a lookup table

that relates flux to the measured position and measured coil current. The re-

sulting lookup table models the actuators into their saturation region, captures

the effect of a changing inductance with rotor position, models the variation in

flux-saturation knee with airgap, and is able to reproduce the flux, including

its DC component. This enables the use of flux-feedback for control design, for

flux-bias realization, and for the switching implementation of the new gcfc bias

scheme.

• A New Bias Scheme: A flux-based model of an AMB is derived using the

new generalized complementary flux condition (gcfc) biasing strategy. The gcfc

scheme is constructed with the intent to take advantage of the power saving

switching strategy of the cfc scheme, while at the same time allowing for the in-

troduction of a flux bias into the electromagnets to increase the bearing stiffness

and remove the ZB singularity. An internal flux-feedback PI control loop using

voltage-mode amplifiers is employed to implement the flux bias. The practical-

ity of the new gcfc bias scheme is evaluated on the PREMAG reaction wheel.

The flux-dependent voltage switching rule which implements the gcfc condition

is experimentally verified in open- and closed-loop situations. This switching

rule requires relatively clean flux measurements. Consequently, significant filter-

ing of the current and position signals is needed. Most importantly, theoretical

analysis and experimental results furnish evidence that under typical operating

circumstances, namely low-bias, the gcfc bias strategy is more efficient in pro-

ducing the forces required for regulation than the standard constant-flux-sum

(cfs) bias scheme.
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• Zero-Bias Singularity Removal: ZB control is revisited with the goal of

mitigating the ZB singularity. A new class of control laws, based in the theory

of control Lyapunov functions and passivity, are proposed and are valid in both

ZB and LB modes of operation. These control laws, when operating in zero-

bias, are either singularity-free or have a region of singularity that is much

smaller than the one using standard methods. This is experimentally verified

by considering the frequency content of the control signals in ZB. It is found

that control laws with larger singularity spaces produce voltage control signals

with large bandwidths.

• Flux-Bias Studies: The trade-off between power consumption, power dissipa-

tion and bearing stiffness is experimentally illustrated for each control law as a

function of the control gains and the flux bias employed. A power flow analysis

illustrates the important difference between power dissipation and power con-

sumption. The power consumption refers the total power required to operate

the bearing while power dissipation is the portion of the power supplied that

gets wasted as heat. For each control law, the bearing stiffness, the total rms

square flux required for regulation, and consequently, the power dissipation in-

crease with flux bias. On the other hand, the rms control flux decreases with

increasing flux bias. Interestingly, there are instances in which the total power

consumption is reduced by increasing the flux bias.

• Groundwork for Time-Varying Flux-Bias Implementation: The flux

bias implementation employs flux-feedback and a simple PI control to regulate

the flux bias Φ0(t) to a desired setpoint Φ0des. However, nothing in this imple-

mentation precludes the use of a time-varying desired flux reference Φ0des(t).

Such a flux reference may be adjusted to meet changing performance objectives

as in the IPACS application or may be selected to optimize a given performance
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index. For example, since there exists a tradeoff between bearing stiffness, power

dissipation, and power consumption, an optimal flux bias value or trajectory

may be found minimize the power consumption. Determination of such an op-

timal flux bias trajectory is deferred to future research, but this work provides

the mechanisms for its implementation when it is found.

• Practical Issues Addressed: Every experiment requires the solution of sev-

eral practical issues. The PREMAG reaction wheel posed several technical

difficulties. The original configuration of the PREMAG reaction wheel em-

ployed NdFeB permanent magnets to implement a radial flux bias and energize

the airgap for passive vertical rotor support system based on a minimum reluc-

tance design. However, this obstructed the study of low-loss control algorithms

and removal of the permanent magnets was required. A new passive magnetic

bearing vertical support system was constructed. Other practical issues include

the use of a bandwidth-limited differentiation scheme for velocity estimation,

tuning of the IR compensation scheme to match amplifier responses, and signal

conditioning.

1.4 Thesis Overview

This thesis is organized as follows. Chapter 2 presents the modelling and power

analysis of the 1-DOF magnetic bearing. In particular, it is illustrated that the power

dissipation mechanisms of the AMB and FWB are proportional to the square of the

flux. Furthermore, the distinction between power dissipation and power consumption

is made.

Chapter 3 introduces the new gcfc biasing strategy and compares it with the

normal cfs biasing. A static analysis is conducted in which two AMB’s implementing

the gcfc and the cfs compete to produce a desired force. It is shown that under typical

operating conditions, the gcfc requires less flux to generate the required force than the
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cfs. That is, the gcfc is more efficient (i.e. it has less operating losses) in generating

the required force than the cfs in several instances. Also, a brief discussion shows

how the gcfc fits into the current family of biasing schemes used in the literature.

Chapter 4 discusses ZB and LB control designs for a 1-DOF AMB. A nondimen-

sionalized state-space equation is defined as a matter of convenience. The goal of

the control design is to find a control input u which renders the origin of the sys-

tem asymptotically stable on the largest domain of definition possible. The standard

techniques of feedback linearization and integrator backstepping are studied to illus-

trate the singularity in ZB. A control Lyapunov function (clf) based control law is

developed as an improvement on the standard backstepping technique. The clf con-

trol law has a singularity space that is much smaller than that of the backstepping

control law. Furthermore, several passivity-based control laws are developed which

are completely nonsingular. These control designs are evaluated through simulation.

Chapter 5 introduces the PREMAG 6-DOF reaction wheel and the hardware

required to operate it. The initial configuration of the PREMAG reaction wheel

was unsuitable for low-loss AMB control design. Permanent magnets provided a

constant radial flux bias and also provided the mmf to energize the passive vertical

support system which was based on a minimum reluctance design. The permanent

magnets were removed to allow for low-loss AMB studies, however, this eliminated the

passive vertical support. Therefore, a new passive magnetic bearing was constructed

to provide vertical support. Also discussed is the detailed operation of the Copley

412 power servo-amplifiers, the use of IR compensation, the sensor measurements,

and signal conditioning.

A discussion of the competing flux measurement techniques is found in Chapter

6. The flux-current-position lookup table method is selected for the PREMAG AMB

so that the DC component of the flux may be estimated. The construction of this
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lookup table is presented in detail. Given the ability to measure a DC flux, a flux-

feedback PI control loop is employed to implement the flux bias. The calculation of

the flux bias errors, eb = Φ0des − Φ0(t), is critical in this technique. Finally, it is

experimentally verified that a flux-dependent voltage switching rule implements the

gcfc condition even in the presence of sensor noise. Furthermore, it is shown that the

gcfc condition is sensitive to improper IR compensation tuning.

Chapter 7 presents the 4-DOF modelling and decentralized linear control of the

PREMAG reaction wheel. In actuality, the PREMAG bearing has 6-DOF, however,

the axial translation is passively controlled and the axial spin is controlled by a DC

motor constructed within the hub of the rotor. The other 4-DOF are the horizontal

translations and the tilting about the horizontal axes. The rotor is stabilized by

regulating the translations to the x = y = 0 and the tilting θx = θy = 0. Equivalently,

the airgaps on each side of the rotor may be regulated to the nominal airgap g0.

Two models, one based on rotor tilt and translation and the other based on rotor

airgaps, are presented to gain insight into the coupling of the degrees-of-freedom of

the rotor and the control axes. A decentralized control scheme is presented where

the MIMO coupled system is controlled with 4 independent SISO control axes. A

classical Lead+PI control scheme is employed on each axis. For time and simplicity,

three of the four control axes employ linear control with amplifiers acting in current

mode with a large current bias. The fourth control axis uses a voltage-mode amplifier

with IR compensation and is employed as a test bed for the low-loss control designs

derived in Chapter 4.

The experimental validation of the low-loss control laws is presented in Chapter 8.

Aside from the standard regulation, step response, and frequency response methods

used to evaluate controller performance, a “whirl” test is conducted. The “whirl”

test is a situation where the rotor is regulated to a setpoint while regulating against
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a persistent sinusoidal disturbance. This test allows one to measure the control per-

formance in terms of bearing stiffness, the magnitude of the rms control signal, the

rms value of the total flux, and the rms power consumption for several values of the

flux bias and controller gains. It is found by comparing the passivity-based control

law using the gcfc condition to a linear control law using the cfs constraint that the

gcfc condition outperforms the cfs condition under typical operating circumstances.

Finally, this work is summarized and directions for future work are posed in Chap-

ter 9. The gcfc condition implements a constant flux bias. However, the implementa-

tion of the flux bias via a flux-feedback loop allows for a time-varying reference bias.

Therefore, one may choose a time-varying flux bias to meet changing system perfor-

mance specifications or to optimize a performance index. For example, one may be

able to select an optimal bias to minimize the power consumption. Furthermore, is-

sues related to mutual inductance, adaptive IR compensation, nonlinear flux observer

designs, MIMO control designs, and several others may be addressed in the future.

This document assumes that the reader is familiar with the basic electromagnetic

definitions of inductance, reluctance, flux, etc. For readers with a limited background,

a comprehensive appendix presents the basic electromagnetic concepts that apply

to magnetic bearings. Furthermore, appendices on the Lorentz equation and energy

analysis of magnetic circuits provide the tools required to analyze the forces generated

by most magnetic actuators. Other appendices include properties of the function x[q]

and filter construction.
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CHAPTER II

1-DOF AMB MODELLING AND POWER

ANALYSIS

In this work, a 1-DOF AMB refers to an opposing pair of electromagnets that actuate

a rotor in a given direction. Typically, groups of 1-DOF AMBs are used to support

a rotating shaft or a wheel as in Figures 1.1 and 1.2. The PREMAG 6-DOF reaction

wheel shown in Figure 1.3, which is used for experimental validation, employs four

1-DOF AMBs for stabilization of the rotor horizontal translation and tilting1. The

full dynamic modelling of this 6-DOF apparatus is presented in Chapter 5. However,

the essence of the behavior is captured by the dynamics of the 1-DOF AMB. In

fact, the control designs detailed in the following chapters assume that the complex

MIMO, coupled behavior of the PREMAG reaction wheel may be modelled by four

independent SISO, 1-DOF models. Thus, the control of the AMB begins with the

study of 1-DOF AMB models.

Modelling of a 1-DOF AMB is discussed in the next section. The AMB dynamics

appear in a variety in forms in the literature. The representation of the electrical

dynamics, the constraints imposed on the operation of the electromagnets, and the

inclusion of rotor modes produces a variety of different AMBmodels. The AMBmodel

used in this work is clearly delineated. Section 2.2.1 illustrates the instantaneous

power flow in the AMB FWB application. The loss mechanisms are detailed in

Section 2.2.2. It is shown that the AMB power losses are minimized if the square of

the flux required for stabilization is minimized.

1The axial translation is passively controlled and the axial spin is controlled by a motor controller
amplifier.
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2.1 1-DOF AMB Dynamics

Figure 2.1 shows a simple schematic of a one-degree-of-freedom AMB. This simplified

�
�

�
�

�
�

�
�

Figure 2.1: A simplified schematic of a 1-DOF AMB with gravity neglected. To
regulate to x = 0, the electromagnet voltage inputs Vapp1 and Vapp2 or the currents i1
and i2 are adjusted to vary the forces f1 and f2 acting on the rotor. Φj is the total
flux through the jth electromagnet.

AMB model consists of two electromagnets used to move the rotor in one dimension.

It is assumed that all motion occurs in the x direction. To regulate the position of

the rotor to x = 0, the control designer adjusts the forces f1 and f2 acting on the

rotor via the electromagnets. In the most general form, the mechanical dynamics are

mẍ = ym (2.1a)

ẋm = Amxm +BmF (2.1b)

ym = Cmxm +DmF (2.1c)

F = [f1, f2, fdist]
T (2.1d)

where the xm subsystem is used to represent the flexible modes of the rotor. The input

to the flexible mode subsystem is the force vector which consists of the electromagnet

forces and a disturbance force fdist. The output of the flexible mode system is the
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scalar ym and is viewed as a filtered version of the force input. When the rotor is

considered rigid, as it is in this study, the mechanical dynamics simplify to

mẍ = f1 − f2 + fdist (2.2)

This equation coincides with equation (2.1) with Cm = 0 and Dm = [1, −1, 1].

The disturbance force may be constant, synchronous with the rotor angular veloc-

ity ω, or completely general. A constant disturbance force might arise from the rotor’s

own weight (fdist = mg), for example. Synchronous disturbances are due to rotor im-

balance, which is typically exacerbated by large angular velocity: fdist = f0ω
2sin(ωt).

A general disturbance force might arise from a load that changes with time, for in-

stance. In this work, gravity is perpendicular to the active control axes and is not

explicitly considered. Furthermore, since the low-loss control algorithms may be ver-

ified without spinning the rotor, imbalance disturbance is also ignored2.

The symbols Vcoil j , Rj, ij, and Φj in Figure 2.1 represent the coil voltage, the coil

resistance, the coil current, and the total flux of the j th electromagnet, respectively. N

is the number of turns in each coil. The applied voltage Vappj of the j
th electromagnet

is typically supplied by a power servo-amplifier. These amplifiers operate in voltage

mode or current mode. In voltage mode, feedback is used to ensure that Vapp(t)

tracks a reference voltage Vr(t). In current mode, the voltage Vapp(t) is adjusted so

that i(t) follows a reference current Ir(t). Thus, the input signal into the electrical

subsystem is arbitrary. Since more interesting control algorithms result from voltage-

mode operation, the following dynamics assume that a voltage-mode servo-amplifier

is employed.

The coil dynamics are derived from Faraday’s and Kirchhoff’s voltage laws (kvl).

Note that the physical coil is modelled by an ideal coil (no resistance) in series with

a resistor that represents the distributed coil resistance. Of course, this is a lumped

2The “whirl test”, as described in Chapter 8, approximates AMB operation with rotor imbalance.
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parameter model and one can not actually consider the coil without considering its

resistance as well. Moreover, there is always a voltage drop across the coil resistance

and consequently, the voltage Vcoil that appears across the ideal coil must be inferred

through knowledge of the applied terminal voltage Vapp and the IR drop or by other

means3. By kvl,

Vapp = IcoilR + Vcoil (2.3)

the ideal coil voltage is related to the rate of change of the flux by Faraday’s law,

Vcoil = NΦ̇. Thus, the coil dynamics are given by

Vapp = IcoilR +N Φ̇ (2.4)

Since there is a (generally nonlinear) relationship between the current through the

coil and the generated flux, one may choose the current or the flux as the electrical

state and eliminate the other variable in equation (2.4). This nonlinear relationship is

governed by a hysteresis curve and is discussed in detail in Appendix B.3. Note how-

ever, that in magnetic circuits with airgaps, the airgap reluctance often dominates the

reluctance of the core. Consequently, the hysteresis nonlinearity is less dramatic and

is well-approximated with a saturation-like, airgap-dependent function Φ = h(Ni, g):

see Figures B.13 and B.14. Furthermore, if the core is not excited into its saturation

region, an airgap-dependent inductance may be assumed and the linear relationship

between the current and the flux may hold NΦ = L(g)i. In this research, a lookup ta-

ble is constructed to model the flux-current-rotor position relationship Φ = h(Ni, x):

details of the construction of this lookup table are given in Chapter 6. It is important

to realize that for any description of the core nonlinearity, equation (2.4) always holds

true.

Since current is easily measurable, it is often used as the electrical state. However,

there are several advantages of using the electromagnet flux instead of the coil current

3Measurement of the AC portion of the ideal coil voltage is possible with the use of a search coil.
See the flux measurement discussion in Chapter 6.

24



to predict the forces produced by electromagnets. Example D.3 in the appendices

shows that the electromagnet force4 on a target is given by

f =
Φ2

µ0Ag

(2.5)

f = µ0AgN
2 i2

( `c
µr

+ 2g)2
(2.6)

where µ0 is the permeability of free space, µr is the relative permeability of the core,

Ag is the airgap cross-sectional area, `c is the length of the core, and g is the airgap

length. Equation (2.6) is considered standard in the literature and often the `c/µr

term in the denominator is neglected because µr is large. This equation is popular

because the current i and the airgap g are easy to measure. Note that if the core

nonlinearity is neglected by assuming Ni = R(x)Φ, these two equations are the same

for the reluctance R(x) given in the appendix Example D.3.

In reality, the electromagnet force saturates because the core has a finite saturation

flux density Bsat and a corresponding Φsat = BsatAc. Although equation (2.6) models

the force saturation with respect to g (i.e. the force is finite when g = 0), it does not

model force saturation with respect to current. Thus, the force is represented in a

more realistic manner by equation (2.5) and a description of the flux-current-position

relationship Φ = h(Ni, x). This representation is convenient because the force-flux

nonlinearity (Φ2) and the nonlinear relationship between the current, rotor position,

and flux h(Ni, x) may be considered separately. Alternatively, one could use direct

measurements of Φ in conjunction with equation (2.5), however, this often proves

difficult: See the discussion on flux measurement in Chapter 6.

Further advantages of using the flux to describe the force are presented in detail

by F. J. Keith in his Ph.D. thesis [32]. In that work, he maps the force-current and

force-flux relationships directly on several test electromagnets. This is accomplished

4The negative signs have been dropped because it is known that the electromagnets always have
attractive forces. Recall that magnetic force is always produced in the direction to reduce the
reluctance. In the case of an electromagnet, it always pulls in the direction to reduce the airgap.
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by measuring the the current directly, the force generated on a target beam by a

strain gauge, and the flux via an integrating search coil5. He demonstrates that the

force-flux relationship is unaffected by eddy currents in the EM core. In other words,

the force predicted from the force-flux relationship matches the actual (measured)

force when eddy currents are present, however, force-current relationship must be

altered. Furthermore, since the force-current relationship of equation (2.6) implicitly

assumes operation in the linear portion of the magnetization curve, it can not predict

the force properly when the EM operates in saturation. The force-flux relationship

can accurately model the behavior into saturation. In addition, Keith claims that the

slew-rate of the force-flux model is less sensitive to hysteresis effects than the force-

current model. Aside from the advantages claimed in [32], an additional advantage

is that dissipativity theory, used in the closed-loop stability analysis of the magnetic

bearing in Chapter 4, is directly applicable to the sector nonlinearity6 of the force-flux

equations.

In general, the saturation flux Φsat depends on the airgap as well as the material’s

properties: this relationship is discussed at length in Appendix B.3.3. The force-flux

relationship is sometimes modified to reflect the variation of Φsat with airgap. In this

case, the force is given by

f =
ϕ2a
µ0Ag

where ϕa is called the airgap flux and is related to the magnetic circuit flux ϕ by

ϕa = ρ(g)ϕ, ρ(g) =
1

(ρ1 + gρ2)

This phenomenon is sometimes called “flux-spreading”. The function ρ(g) typically

has values in the range ρ(g) ∈ [.5, .95] and the constants ρ1 and ρ2 are found empiri-

cally. In some cases, a drop in the saturation knee is modelled, but the dependence on

g is neglected. In this situation, a leakage constant βleak is used and ϕa = βleakϕ. This

5The use of an integrating search coil is described in Chapter 6
6For the pertinent sector nonlinearity definitions, see [34, 69], for example.
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constant typically has a value of about 0.75. Note that in this work, a flux-current-

position lookup table is constructed to represent h(Ni, x). Thus, the flux-saturation

knee “softening” is incorporated into the lookup table.

Chapter 5 details the operation of the power servo-amplifiers used in voltage and

current mode. In current-mode operation, the feedback present in the servo-amplifier

ensures that the coil current i(t) follows a reference current Ir(t). This is true for any

Ir within the bandwidth of the current-mode amplifier. This effectively eliminates the

dynamics of the coil and equation (2.4) is not needed. To generate a desired force fdes,

the corresponding required flux Φdes is generated by assigning the appropriate current.

This is calculated using the flux-current-position lookup table, Ir = h−1(Φdes, x) and

Φdes = (µ0Agfdes)
1/2.

When the coil is driven in voltage mode, the servo-amplifier constrains Vapp(t)

to follow a reference voltage Vr(t). This is true for any Vr within the bandwidth of

the voltage-mode amplifier. The desired force and the corresponding desired flux,

are generated by controlling the Φ̇ through Vapp in equation (2.4). However, Φ̇ is not

directly assignable because of the IR drop present. The coil voltage, Vcoil = Vapp−IR,

that appears across the ideal coil may be drastically different than the applied voltage

Vapp, even for a reasonably small resistance (i.e. R = 0.5Ω): See the illustrations of

the RI(t) drop in Figure B.8. To remedy this difficulty, one may let V ∗

r = IR̂ + Vr.

Using this IR compensation approach, the coil dynamics have the form

NΦ̇ = −IR + Vapp = −I(R− R̂) + Vr (2.7)

where R & R̂. The term I(R − R̂) is negligible when R̂ is properly selected. Note

that this approach requires a good estimate of R and that this estimate R̂ must not

be greater than R. If this was the case, then the flux could grow large even if the

voltage input is turned off (Vr = 0). Indeed, when R < R̂ and I is positive, then Φ̇ is

positive even when the voltage input is grounded. Thus, care must be taken not to

destabilize the voltage-mode amplifier by improper selection of R̂: See Chapter 5 for
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a detailed discussion.

In summary, the form of even a simple 1-DOF AMB model appears in great

variety in the literature. Different choices for the electrical state are made by different

authors. Researchers often choose the electromagnet coil current as the state in order

to obtain a model with easily measurable signals. On the other hand, if one selects

the electromagnet flux as the electrical state, as in this development, the structure

of the nonlinearities in the model are clearly visible and the overall state equations

are simpler. However, since flux is not readily measurable for AMB systems, one is

implicitly agreeing to solve a state-observation problem when using flux. The dynamic

equations for the 1-DOF AMB in this work are collected below:

mẍ = c(Φ2
1 − Φ2

2), c =
1

µ0Ag

(2.8a)

NΦ̇j = −Rjij + Vappj = −Ij(Rj − R̂j) + Vrj

≈ Vrj, j = 1, 2 (2.8b)

Note that equation (2.8b) assumes that IR compensation is properly implemented.

An additional source of variety in the AMB models in the literature is due to the

use of different flux-bias schemes. A different equation-of-motion results each time

the constraints of a particular flux-bias scheme are imposed on the electromagnet

actuators. Several bias schemes are discussed in Chapter 3, but first, the AMB

operating losses are studied.

2.2 AMB and FWB Power Analysis and Loss

Mechanisms

As stated in Chapter 1, the flywheel battery (FWB) application of the AMBmotivates

one to study low-loss AMB design. In the FWB application, the frictionless nature

of the AMB is exploited to levitate a spinning rotor. In such a device, the kinetic

energy stored in the rotor is W = 1
2
Iω2, where I is the rotational inertia and ω is
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the angular velocity. Note that angular velocity of the flywheel battery is equivalent

to the “state of charge” in a chemical battery7. A highly efficient motor-generator

is required to convert the kinetic energy to electrical energy. On first inspection,

since operation in a vacuum and the frictionless nature of the AMB eliminates the

mechanical losses, the state of charge of the FWB does not appear to decay. Thus,

the FWB seemingly has an efficiency equal to that of the motor-generator employed.

However, a loss known as an eddy-current drag (sometimes referred to as eddy-current

damping or eddy-current braking) is present and is exaggerated with strong magnetic

fields and at large angular velocities: recall that specifications for FWB in space

applications call for rotational speeds on the order of 60−100 krpm. Thus, the AMB

eliminates mechanical losses, but introduces electromagnetic losses. Furthermore, the

power analysis of the FWB device must consider the power required to implement

the control law in addition to the energy stored in the flywheel. Since the FWB is

proposed to be employed in situations where energy is limited, ( on spacecraft for

example) low-loss operation is vital. A full energy/power analysis of the AMB FWB

application is conducted in the next section and the power dissipation mechanisms

are detailed in Section 2.2.2.

2.2.1 AMB and FWB Power Analysis

Note that the power consumption and power loss (dissipation) of the AMB and the

FWB are distinct quantities. The power consumption refers to the total external

power supplied to the system. The power supplied to the system is converted to

useful work (i.e. creating the control forces), used to increase the energy stored in

the magnetic field (i.e. increases the bias), or is wasted as heat. Power loss or

power dissipation refers to the wasted energy. To further clarify these concepts, a full

energy/power analysis of the FWB application is warranted.

7Note that the state-of-charge in a chemical battery is not necessarily known because the internal
resistance of the battery may change with time.
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Energy analysis begins with identification of the lossless energy storage mecha-

nisms of the process under question. At first glance, this approach seems crippled

because real systems have losses. For example, a coil has a distributed coil resistance

that can not physically be removed from the coil. However, a coil is often modelled

by an ideal coil with a resistor connected at the ideal coil’s terminals. Thus, iden-

tification of lossless processes is not as limiting as it sounds8. The energy storage

elements of the FWB and AMB are the rotational inertia Ia of the rotor, the rotor

mass m, and the magnetic field.

The energy stored in the flywheel battery is purely kinetic and it is supplied by a

DC motor. The rotational dynamics of the FWB are

Iaω̇ = τm − pτdrag (2.9)

where τm is the supplied motor torque, τdrag is the eddy-current drag torque, and

p is the number of electromagnet poles9 interacting with the rotor. Multiply the

rotational dynamics by ω to find the power. Since

Iaω̇ω =
d

dt
(
Ia
2
ω2)

the left hand side of (2.9) (multiplied by ω) represents the rate of change of the kinetic

energy WR := 1/2Iω2 of the rotor. Thus, the power of the flywheel is governed by

ẆR = τmω − pτdragω (2.10)

The motor supplies external mechanical power to the flywheel τmω and the power

dissipated by the flywheel is due to the eddy-current drag τdragω.

The energy related to the rotor translation is found in a similar manner. The

8For a further discussion of the Energy/Power analysis method, see Appendix D.
9p = 8 for the PREMAG bearing.
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1-DOF equation-of-motion for the rotor is

mẍ = (f1 − f2)− fair (2.11a)

= (fc1 + fb1 − fc2 − fb2) = (fc1 − fc2) + (fb1 − fb2)− fair (2.11b)

= f(φ) + (fb1 − fb2)− µdragPair(v) (2.11c)

The electromagnets operate with a flux bias: Φ1 = Φ0 + φ1 and Φ2 = Φ0 + φ2 where

Φ0 is the flux bias and φj is a control flux. The air resistance fair = µdragPair(v) is

modelled as a drag coefficient µdrag times a polynomial in the rotor velocity Pair(v).

Each actuator force fj is decomposed into a bias term fbj and a control term fcj.

By using a biasing scheme introduced in the next chapter, the control forces may be

grouped into f(φ) = 2Φ0φ+φ|φ| where φ = φ1−φ2. To find the translational power,

multiply equation (2.11) by v. Since,

mẍẋ =
d

dt
(
1

2
mv2)

the left hand side of (2.11 c) (multiplied by v) represents the change in translational

kinetic energy of the rotor WT := 1
2
mv2. Thus, the translational power of the rotor

is governed by

ẆT = f(Φ0, φ)v + c(fb1 − fb2)v − µdragPair(v)v (2.12)

When the bias flux is implemented properly, fb1 = fb2, the mechanical power supplied

to the rotor by the bias vanishes. However, the bias does influence f(Φ0, φ) and

therefore, affects the mechanical power flow fv into the rotor’s translational kinetic

energy. By operating in a vacuum (µdrag = 0), there is no power loss due to air

damping.

The magnetic field of each electromagnet is assumed to be lossless. That is, assume

that the electromagnets are ideal and there are no core losses. The resistive coil loss

and the nonlinear magnetic core loss are accounted for by adding external “resistive”

components to the lossless magnetic field. The energy stored in each magnetic field
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is

Wm(x,Φ) =
1

2
R(x)Φ2

where R(x) is the reluctance10. The rate of change of the stored magnetic energy is

Ẇm(x,Φ) =
∂W

∂x
ẋ+

∂W

∂Φ
Φ̇ (2.13a)

= −fv +R(x)ΦΦ̇ (2.13b)

where the definition of the force in terms of the partial derivative of the stored energy

is used: see Table D.2. Equation (2.13 b) states that the mechanical power generated

by the electromagnet reduces the stored energy and the second term (to be analyzed

next) increases the stored energy. At this point, one may account for the core losses.

The power losses in the electromagnetic core pcore will reduce the energy stored in the

magnetic field. Thus, the power in the magnetic field is governed by

Ẇm + fv + pcore = R(x)ΦΦ̇

Using “Ohm’s law” for magnetic circuits NI = R(x)Φ, the above becomes

Ẇm + fv + pcore = NIΦ̇ (2.14)

The power in the electrical dynamics is found by multiplying Equation (2.4) by I,

VappI = I2R +NIΦ̇

Finally, one obtains the energy dynamics of the magnetic field by plugging the above

into Equation (2.14)

Ẇm = VappI − I2R− pcore − fv (2.15)

The energy stored in the magnetic field produces the mechanical power fv and is

dissipated as heat in the coil resistance I2R and the core pcore. External power is

supplied to the magnetic field by VappI.

10All of the pertinent electromagnetic definitions and energy relations may be found in the
Appendix.
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The power flow of the flywheel battery is illustrated in Figure 2.2. Each energy

storage element is shown as a one-port or two-port network so that polarity of the

inputs may be indicated. The energy storage elements (the magnetic fields and the

inertia of the rotor) are shown in thick boxes. The function h(I, x) is used to convert

from current to flux. The power dissipation elements (resistance, core loss, and drag

force) are illustrated with rounded boxes. The power supplied to each element is

calculated by multiplying the variables at each terminal. For example, the power

supplied to the coil is VappI and the power supplied to rotor is fv (translational) and

τmω (rotational).
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Figure 2.2: Power flow diagram of Flywheel Battery system: Energy is stored in the
magnetic fields Wm = 1

2
R(x)Φ2, the rotor mass WT = 1

2
mv2, and the rotor inertia

WR = 1
2
Iaω

2. Power is dissipated in the resistance I2R, the core pcore(Φ), and by the
drag torque τd = cω2Φ2 (shown in rounded boxes). Power is supplied at the terminals
of each device VappI and τmω.

The Copley 412 amplifiers acting in voltage mode with IR compensation force the

applied voltage Vapp to track Vr. This is true at least for reference signals within the
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bandwidth of the voltage mode power servo-amplifiers (about 200Hz). The reference

voltage applied to the amplifier is

Vr = Vc + Vb + IR̂

where the terms Vc, Vb, and IR̂ are the control, bias, and IR compensation components

of the reference voltage. In this case, the power flow equation becomes

Ẇm = VcI + VbI − I2(R− R̂)− pcore − fv (2.16)

Thus, the reference voltage supplies the power required to implement the control and

the bias, VcI and VbI, respectively. Furthermore, the IR̂ term acts to replenish the

energy dissipated by the coil resistance.

In summary, the electrical power loss consists of the Ohmic power loss I2R and

the core loss pcore. The mechanical power loss is due to the eddy-current drag τdragω.

The external power required to operate the bearing (i.e. the power consumption) is

VappI. The next section takes a closer look at each power dissipation mechanism. It

is shown that each dissipation method is related to the square of the bearing flux

and that efficient operation of the AMB FWB is obtained by minimizing the bias

flux Φ0. Note however, that the value of Φ0 that minimizes the power loss does not

necessarily minimize the power consumption. These are slightly different issues. If one

aims to minimize power consumption, then the total power supplied to the bearing

is the quantity to be minimized by the proper choice of Φ0. Alternatively, the goal of

minimizing the power loss is to maximize the percentage of the supplied power that

is employed for useful work. The first problem aims to minimize the energy required

for operation while the second problem aims to increase the bearing efficiency.

2.2.2 AMB and FWB Loss Mechanisms

The AMB loss mechanisms are now discussed. As seen in Table 2.1, the AMB power

loss consists of ohmic losses, electromagnetic core losses and eddy-current drag losses.
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Table 2.1: Summary of AMB power losses [35].
Power Loss Relation to flux

Ohmic loss in coil ∝ Φ2, i2R
Eddy-Current loss in core ∝ Φ2

Alternating Hysteresis loss in core ∝ Φ1.5−2.5
max

Rotational Hysteresis loss in core ∝ Φ
Eddy-Current Drag loss ∝ Φ2

max, ω
2

Ohmic power loss refers to the resistive dissipation of currents flowing through the

coil. The power loss is I(t)2R. Since NI = R(x)ϕ(t), the resistive power dissipation

is also proportional to the square of the flux. The resistive power dissipation can be

significant, especially when a bias current or flux is introduced into the electromagnet

to increase the bearing stiffness.

The electromagnetic core loss, consisting of eddy-current and hysteresis loss, is

discussed in detail in Appendix B.3.2. As a consequence of Faraday’s law, eddy

currents are generated in the core by the AC variation of the core flux. Although

the eddy-current loss is combated by a laminated core construction, large bias fluxes

or currents can contribute significantly to eddy-current core loss. The eddy-current

power loss under sinusoidal current excitation is determined by equation (B.18) and

is repeated here

pe = Ke(fBmaxt`)
2 [W/m3]

where f is the excitation frequency, Bmax is the peak core flux density, and t` is the

thickness of the laminations used to construct the core. The constant Ke depends on

the conductivity of the material. The eddy-current power loss is proportional to the

square of the magnitude of the flux.

Alternating hysteresis core loss refers to the standard hysteresis core loss. It arises

from the fact that it takes energy to realign the magnetic domains in the core material.

Equation (B.21) describes the hysteresis power loss due to a sinusoidal excitation

ph = Khf(Bmax)
q [W/m3]
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where f is the excitation frequency, Bmax is the peak flux density, Kh is a material-

dependent constant, and q is an empirically determined constant usually in the range

of 1.5 − 2.5. Rotating hysteresis loss may not be significant in all types of electro-

magnetic machinery, but is mentioned here for completeness. This mode of hysteretic

core loss is similar to alternating hysteresis, but arises from a change in the orienta-

tion of the magnetic circuit as opposed to a change in the excitation mmf. Note that

manufacturers typically supply data about the total core loss pcore = pe + ph.

The eddy-current drag force arises from the motion of the rotor in the magnetic

field. The origin of this drag force is essentially the same as the drag force produced

in the linear generator of appendix Example C.3.

JA

t
v

Figure 2.3: Geometry of rotor for eddy-current drag calculation.

Consider the rotor of thickness t, radius r and angular velocity ω shown in Figure

2.3. An external magnetic field B is produced by an electromagnet which has a

footprint with cross-sectional area A. The B field is normal to the surface of the

rotor at every point in the electromagnet shadow A. By equation (C.1), the free
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charges in the rotor feel a Lorentz force upward Fe = qv×B which simplifies to qvB

because v and B are always perpendicular. At every point in A, the resulting current

density J points upwards. At the edges of A, the current flows downwards resulting

in a roughly circular, eddy-current pattern [2, 33, 89].

The current density of the rotor is

J = σE

where σ is the conductivity and E is the induced electric field. The electric field is

related to the motional emf ξ by

E =
dξ

dz

where z represents the axial direction. To find the motional emf, proceed as in

appendix Example C.3. Since voltage is the work per unit charge ξ = W/q, and the

work required to move an electron upwards by the Lorentz force is W = Fez, the

differential induced emf is

dξ =
dW

q
=
Fedz

q
=
qvB

q
dz

Consequently, the induced electric field is E = vB and the resulting current density

is

J = σvB

The drag force is produced from the interaction of the upward induced current

density and the external magnetic field. By the right hand rule, the drag force opposes

the motion of the rotor. Equation (C.6) gives the volumetric force density felt by the

part of the rotor under the shadow A. Thus, the total drag force felt by the rotor is

fdrag = Volume(J ×B) = tAJB = tAσB2v =
tσ

A
Φ2v (2.17)

and the drag torque is τdrag = rfdrag. Since power is τω, the power loss due to

eddy-current drag is

pdrag = τdragω = tAσB2ω2 =
tσ

A
Φ2ω2 (2.18)
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Thus, the drag force and power loss are proportional to the square of the electro-

magnet flux ϕ2 = A2B2. Furthermore, the drag force and power loss increase with

angular velocity. Recall from Len’s law that the induced eddy currents will produce

their own magnetic field Be and this field will always oppose the applied external field

B. For low-speed operation, the eddy-current produced Be field is small. However,

as the speed increases, Be significantly counteracts the applied B field. This results

in a reduced drag force as the speed increases beyond a certain critical speed ωc. The

eddy-current drag force vs. speed curve may look similar to the one shown in Figure

2.4.

Figure 2.4: Eddy-Current drag force vs. angular velocity.

Remark 1. ( Tradeoff between bearing stiffness and efficient AMB (and FWB) operation)

In a standard AMB control design, a flux bias Φ0 is introduced into the electromag-

nets to increase the bearing stiffness. Several biasing schemes are described in detail

in the next chapter and the relationship between Φ0 and the rate of change of the

electromagnet force with respect to the flux (i.e. the actuator gain df
dΦ
) is outlined.

A large bias design allows one to use classical linear control techniques and may lead

to acceptable regulation performance and disturbance rejection properties. However,

since each power loss mechanism described above is proportional to the magnitude

of the flux, an efficient AMB must operate with the minimal amount of flux required
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to stabilize the bearing. This implies that zero-bias techniques are desirable. How-

ever, the actuator gain df
dΦ

is small for small Φ0 and results in a limited slew-rate or

dead-zone-like characteristic. In fact, for Φ0 = 0 the actuator gain df
dΦ

= 0, and con-

sequently, the AMB is linearly uncontrollable in zero-bias. Thus, zero-bias (Φ0 = 0)

techniques - and as a compromise between AMB stiffness and power consumption,

low-bias (Φ0 small) techniques - require nonlinear control designs. In summary, there

are conflicting AMB performance objectives: large flux-bias improves bearing stiffness

but at the cost of increased operating losses.
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CHAPTER III

AMB FLUX-BIAS SCHEMES

In this chapter, the role of the flux bias in the AMB design is discussed, and the

new generalized complementary flux condition (gcfc) bias scheme [82] is proposed. It

is a natural extension of the zero-bias complementary flux condition (cfc) approach

[83, 82]. It is shown that the gcfc technique keeps the power saving approach of the cfc

technique, but allows one to introduce a bias flux to improve the bearing stiffness and

slew-rate. The flux-bias level is a design parameter and does not constrain the system

states, as in other biasing schemes1. In principle, the bias level can be time-varying

to optimize some performance objectives like bearing stiffness or power dissipation.

Although an evaluation of the power consumed and the total square flux required for

stabilization is conducted for several bias levels in Chapter 8, optimal bias selection is

beyond the scope of this thesis and is left for future investigations. The gcfc scheme

is compared to the typical bias scheme used in linear control, the so-called normal or

constant flux sum (cfs) bias scheme. The gcfc is shown to be more flexible than the

normal bias scheme and incurs less operating losses under typical circumstances.

The basic equations of motion in (2.8) are now reconsidered under the constraints

imposed by these different flux-bias schemes. This chapter assumes that a constant

flux bias can be implemented. Note that the use of a constant flux bias is a bit

more challenging that the use of a constant current bias because the flux depends

on the airgap as well as the current. The details of the flux-bias implementation are

presented in Chapters 5 and 6.

1For example, in the constant flux sum (cfs) scheme, the control flux φ is bounded by the flux
bias |φ| < Φ0.
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3.1 Operation with the Constant-Flux-Sum (CFS)

Bias Scheme

The constant flux sum bias scheme is introduced as a benchmark so that the benefits

of the gcfc approach may be appreciated better. Consider the situation shown in

Figure 2.1 where electromagnets 1 and 2 lie opposite each other on a given control

axis. When using a constant flux bias, the electromagnet flux has the form

Φj = Φ0 + φj, j = 1, 2 (3.1)

where Φj is the total flux, Φ0 is the flux-bias, and φj is the control flux. Such a bias

is typically used to setup linear control designs. The standard way of using a flux-

bias for an AMB system is to impose the so-called normal biasing or constant sum 2

scheme: see [46]. In this mode of operation, an exact linearization of the mechanical

dynamics (2.8a) is possible by enacting the additional constraint

φ1 = −φ2 = φ (3.2)

so that

Φ1 = Φ0 + φ, and Φ2 = Φ0 − φ

This is convenient because the two control inputs are reduced to one. In this scheme,

the control flux adds to the bias-flux in one electromagnet and subtracts from the

bias-flux in the opposite electromagnet to produce a net force for control. In this

manner, the total flux 2Φ0 is constant at all times, hence the name constant flux sum

scheme. Since the electromagnets always produce an attractive force, the total flux

Φi must be non-negative for proper operation. Therefore, an additional saturation

constraint must be imposed on the control flux, i.e. φ must satisfy

|φ| < Φ0 (3.3)

2In this case, it is called the constant flux sum scheme because the total flux during operation
is 2Φ0. If current is used as the electrical state, it is referred to as a constant current sum scheme.
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The input transformation of the cfs scheme defined by equations (3.1) and (3.2)

combined with equation (2.8) gives the following linear equation of motion

mẍ =
1

µ0Ag

[Φ2
1 − Φ2

2]

=
1

µ0Ag

[

(Φ0 + φ)2 − (Φ0 − φ)2
]

=
4Φ0

µ0Ag

φ (3.4)

Obviously, a linear equation of motion greatly simplifies the design allowing the con-

trol engineer to select from a wide range of classical control techniques. Observe that

the flux-bias level Φ0 directly affects the actuator gain df
dφ
. Note that in closed-loop

operation when φ = φ(x), the actuator gain df
dφ

directly affects the AMB stiffness df
dx

where f is the net electromagnet force. Note that as Φ0 tends towards zero, from

equations (3.3) and (3.4), the size of the admissible control flux and the actuator gain

become zero. Thus, the system becomes uncontrollable for zero flux bias. This is

problematic because, as stated in Chapter 2, it is desirable to reduce the flux-bias to

zero to minimize AMB losses.

3.2 Operation with the CFC and GCFC Constraints

The complementary flux condition (cfc) and the generalized complementary flux con-

dition (gcfc) impose constraints on the operation of the electromagnet pair on a given

control axis. Both of these schemes allow only one electromagnet at a time to ac-

celerate the rotor along the given control axis. The main difference is that cfc is a

zero-bias technique and the gcfc technique is a low-bias technique. Also, the gcfc

and cfc constraints coincide as the value of the flux bias tends to zero. The cfc and

gcfc conditions are introduced in Section 3.2.1 and their merits are qualitatively dis-

cussed. These constraints are physically implemented with a voltage-switching rule

which requires a rigorous mathematical justification. To clarify the presentation, the

mathematical derivation is presented separately in Section 3.2.2.
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3.2.1 Qualitative Discussion of the CFC and GCFC Constraints

Ideally, one would like to eliminate the flux bias completely to minimize AMB losses.

This is the standard approach for zero-bias designs in practice ( see [83, 8, 45], for

example ) and is achieved by implementing the cfc3.

To this end, define the generalized flux Φ := Φ1 − Φ2 and introduce the following

flux-dependent, voltage switching rule

Vr1 = v, Vr2 = 0 when Φ ≥ 0

Vr1 = 0, Vr2 = −v when Φ < 0
(3.5)

where v is the generalized control voltage such that the electrical dynamics of equation

(2.8b) reduce to

Φ̇ =
v

N
(3.6)

It is shown in the sequel that this voltage switching rule is well defined and implements

the following complementary flux constraint

Φ1 = Φ, Φ2 = 0 when Φ ≥ 0

Φ1 = 0, Φ2 = −Φ when Φ < 0
(3.7)

The fluxes Φj are complementary in the sense that only one flux is non-zero at any

given time. This means that the electromagnets take turns applying force on the

rotor during cfc operation. Note that the sign of the generalized flux Φ is recorded as

a means of activating the appropriate electromagnet. Recall that the electromagnet

force depends on the square of the flux, thus the sign of total fluxes Φj is inconse-

quential. However, for consistency, the actual fluxes Φj are implemented so that they

are always non-negative.

The power saving property of the cfc constraint is illustrated by the following

argument. Suppose, at some instant in time, that one wishes to apply a given net force

3This constraint is often implemented with the current as the electrical state. In that case, it is
called the complementary current condition (ccc).
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on the rotor, fdes. The net force on the rotor is fnet = f1− f2. To achieve the desired

force, let f1 = fdes + f2. Then, the net force is fnet = f1 − f2 = fdes + f2 − f2 = fdes.

Thus, to achieve the net force, f1 must be large enough to cancel the force from f2

and produce the desired force. The cfc saves power because it guarantees that f2 is

zero when f1 is non-zero, and vice versa. Therefore, the cfc scheme eliminates the

unnecessary cancellation of forces.

Applying the cfc constraint (3.7) to the mechanical dynamics (2.8a) one obtains

mẍ =
1

µ0Ag

[Φ2
1 − Φ2

2]

=
1

µ0Ag

Φ|Φ| (3.8)

Note that the force-flux characteristic, Φ|Φ|, has a slope of zero for Φ = 0. Therefore,

the rate of change of the force with respect to flux, that is, the force-flux slew-rate is

severely limited for small values of flux. This force-flux characteristic is similar to a

dead-zone, except the dead-zone consists of one point, Φ = 0, instead of an interval

in Φ.

The gcfc scheme is constructed with the intent to take advantage of the power

saving switching strategy of the cfc scheme, while at the same time allowing for the

introduction of a flux-bias into the electromagnets to alleviate the limited force slew-

rate problem. To achieve this goal, one does not impose complementarity on the total

fluxes as in the cfc approach, but only on the control (or perturbation) fluxes. That

is, a flux bias is introduced into the electromagnets with the same form as in equation

(3.1): Φi = Φ0 + φi for i = 1, 2 where Φi is the total flux, Φ0 is the flux-bias and φi

is the control flux. However, the following generalized complementary flux condition

is imposed on the control flux φi (as opposed to the total flux Φi). The gcfc and cfc

schemes are implemented in a similar manner.

Define the generalized control flux φ := φ1 − φ2 and introduce the following
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flux-dependent, voltage-switching rule

Vr1 = v, Vr2 = 0 when φ ≥ 0

Vr1 = 0, Vr2 = −v when φ < 0
(3.9)

where v is again the generalized control voltage such that the electrical dynamics of

equation (2.8b) reduce to

φ̇ =
v

N
(3.10)

It is shown in the sequel that this voltage switching rule is well defined and implements

the following generalized complementary flux constraint

φ1 = φ, φ2 = 0 when φ ≥ 0

φ1 = 0, φ2 = −φ when φ < 0
(3.11)

This constraint dictates that the control flux φ is generated by only one electromag-

net at a time, depending on the direction of the force that is required. That is, the

electromagnets take turns applying a net force on the rotor during gcfc operation.

As in the cfc technique, the sign of φ is recorded as a means to trigger the voltage

switching and the control fluxes φj are non-negative. Note that at all times, both elec-

tromagnets are excited with the flux bias Φ0 and consequently, both electromagnets

always produce a bias force of Fmin = Φ2
0/µ0Ag. When the generalized control flux φ

is positive, extra flux is commanded from electromagnet 1, and when φ is negative,

extra flux is commanded from electromagnet 2. Thus, one may view the control flux

φ as the “excess” flux that needs to be commanded in order to obtain a given desired

net force.

Imposing this constraint on the mechanical dynamics, (2.8a) one obtains

mẍ =
1

µ0Ag

(Φ2
1 − Φ2

2)

=
1

κ
[φ21 − φ22 + 2Φ0(φ1 − φ2)]

=
1

µ0Ag

(2Φ0φ+ φ|φ|) (3.12)
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Note that the equation of motion for the gcfc scheme (3.12) reduces to that of cfc

scheme (3.8) as Φ0 reduces to zero. This is due to the fact that the gcfc constraint

coincides with the cfc constraint as Φ0 → 0.

The gcfc scheme is markedly different than the constant flux sum and cfc control

schemes. Contrary to what is customary in practice, it is not assumed that the bias

Φ0 is large. That is, |Φ0| ¿ |φi| is allowed. This is possible because the magnitude of

the bias flux Φ0 in the gcfc scheme does not impose a constraint on the control flux φ

as it does in the normal bias scheme (as in equation (3.3)). Since it is assumed that

the flux bias is small, perhaps on the order of the control flux, the quadratic term

in equation (3.12) is significant. Furthermore, the cfc condition imposes constraints

on the total flux whereas the gcfc is imposed only on the “extra” control flux. In

addition, the gcfc approach has the ability to partially alleviate the force slew-rate

limit problem of the zero-bias cfc model. The available force slew-rate is controlled

by

df

dt
=

df

dΦ

dΦ

dt
(3.13)

where the ability to change f is determined by df
dΦ

4. The force as a function of the

control flux is shown in Figure 3.1 in zero- and low-bias modes. Observe that the cfc

(Φ0 = 0) slew-rate is zero at the origin while the slew-rate for the gcfc (Φ0 > 0) at

the origin is non-zero. In fact, at the origin dF
dΦ

= 2Φ0. One expects that such an

improvement will lead to greater bearing stiffness and disturbance rejection capability.

Note however, that AMB losses increase as the slew-rate is compensated by a larger

flux bias.

4It is assumed that the ability to change the flux Φ is independent of the flux biasing scheme.
This is a realistic assumption if the same amplifiers are used to drive the coils of the AMB in each
case.
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Figure 3.1: The electromagnet force vs. control flux in ZB and LB. For ZB (Φ0 = 0),
the force-flux function is flat at the origin. This is the source of the slew-rate limitation
in ZB mode. Note df

dφ
|φ=0 = 2Φ0.

3.2.2 Mathematical Justification for the GCFC Bias Scheme

Since the gcfc incorporates the cfc scheme, one only needs to show that the gcfc

voltage-switching scheme in equation (3.9) with φ̇ = v
N

and φ = φ1 − φ2 implements

the gcfc condition in equation (3.11). Furthermore, the control flux φj(t) ≥ 0 for all

t > 0 given any positive initial conditions φj(0) ≥ 0.

Figure 3.2 illustrates the argument. The total flux is Φj(t) = Φ0+φj(t). Suppose

without loss of generality, that φ1(0) ≥ φ2(0) ≥ 0. In this case, φ ≥ 0 and the control

voltage v is distributed to electromagnet 1. Thus, φ̇1 = v
N
, φ̇2 = 0, and φ2 remains

constant at φ2(0). This mode of operation continues until φ < 0 at time t1 when

φ1(t1) = φ2(0). At this point, φ̇1 = 0 and φ̇2 = −v
N
. Consequently, φ1(t) = φ2(0) for

t > t1 until another switching occurs at t2. Thus, given initial control fluxes φj(0) ≥ 0,

the gcfc condition holds with the caveat that the implemented bias flux is slightly
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Figure 3.2: Implementation of the voltage-switching rule (3.9) and the gcfc con-
straint with time.

perturbed Φ0 = Φ0+min{φ1(0), φ2(0)}. Consequences of this minor complication are

discussed below.

Using the above argument, the mechanical dynamics in equation (2.8a) may be

manipulated as follows.

ẍ =
1

κ
(Φ2

1 − Φ2
2)

=
1

κ
((Φ0 + φ1)

2 − (Φ0 + φ2)
2)

=
1

κ
(2Φ0(φ1 − φ2) + φ21 − φ22)

=
1

κ
(2Φ0 + φ1 + φ2)φ (3.14)

where κ = mµ0Ag. Assume without loss of generality that φ1(0) ≥ φ2(0). Then

φ(0) ≥ 0 and by (3.9) and (3.10), it follows that for t ≥ 0, φ2 = φ2(0), and φ1 =
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φ+ φ2(0). Subsequently, (3.14) can be written as

ẍ =
1

κ
(2Φ0 + 2φ2(0) + φ)φ, (φ ≥ 0)

If at some point t1 > 0 a switching occurs, then φ1(t1) = φ2(t1) = φ2(0). Moreover,

from (3.5) and (3.10) and for t ≥ t1 one concludes that φ1 = φ2(0) and φ2 = φ2(0)−φ.

Subsequently, (3.14) can be written in this case as

ẍ =
1

κ
(2Φ0 + 2φ2(0)− φ)φ, (φ < 0) (3.15)

The same arguments can be used if another switching occurs and so on.

From the previous analysis it follows that the equation of motion (3.14) under the

switching strategy (3.9) and (3.10) takes the form

ẍ =
1

κ
(2Φ̄0φ+ φ|φ|) (3.16)

where Φ̄0 := Φ0+min{φ1(0), φ2(0)}. As previously mentioned, physical considerations

allow one to restrict the set of all realizable trajectories of system (3.14) inside the

set S := {(x, ẋ, φ1, φ2) ∈ R
4 : φi ≥ 0, i = 1, 2}. The following proposition states that

the switching scheme (3.9) is well-defined.

Proposition 1. The set S is invariant under the switching scheme (3.9).

Proof. Let c(t) := min{φ1(t), φ2(t)}. Now notice that if φ1 ≥ φ2 then c = φ2 and

(3.9) and (3.10) imply φ̇2 = ċ = 0. Similarly, if φ2 ≥ φ1 then c = φ1 and (3.9) and

(3.10) imply that φ̇1 = ċ = 0. Therefore ċ ≡ 0. It follows that if c(0) ≥ 0 then

c(t) ≥ 0 for all t ≥ 0.

An immediate consequence of the previous result is that the flux for each electro-

magnet is never reduced below Φ̄0 and hence the minimum force generated by each

electromagnet is Fmin = Φ̄2
0/µ0Ag.

The introduction of the switching scheme in (3.9) is motivated from the desire

to minimize the control fluxes φ1 and φ2 to minimize AMB losses. It was previously
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stated that the electromagnets under the gcfc constraint take turns applying a net

force to the rotor. However, proposition 1 shows that it is possible for the control

fluxes φj to have a nonzero constant component, c = min{φ1(0), φ2(0)}. This fact

seems to imply that the control fluxes φ1 and φ2 are in actuality not complementary

when c is non-zero. However, as seen in equation (3.16) and as illustrated in Figure

3.2, this constant c can be grouped into the bias flux Φ̄0. As a result, the value of the

actual flux bias Φ̄0 differs from the value of the desired flux bias Φ0 by the amount

c. This means that complementarity may in fact be imposed on φ1 and φ2, but the

implementation of the flux bias Φ0 will be perturbed by c = min{φ1(0), φ2(0)}.

In particular, if at the initial time at least one of the control fluxes is zero, i.e.,

φ1(0)φ2(0) = 0 (as will be typically the case in practice when operation starts from

rest), then at every instant of time at least one of the electromagnets is inactive (its

control flux φj is zero). In other words, if either one of the initial control fluxes is zero,

then the gcfc condition may be implemented with perfect implementation of the bias

flux: Φ̄0 = Φ0. The following result as an immediate consequence of Proposition 1.

Proposition 2. The set S0 := {(x, ẋ, φ1, φ2) ∈ S : φ1φ2 = 0} is invariant under the

switching scheme (3.10)-(3.9).

Proof. If (x(0), ẋ(0), φ1(0), φ2(0)) ∈ S0 then min{φ1(0), φ2(0)} = 0. The claim follows

from the fact that min{φ1(0), φ2(0)} = min{φ1(t), φ2(t)} for all t ≥ 0.

It is evident from Proposition 2 that for all initial conditions in S0 the voltage-

switching logic (3.10)-(3.9) reduces to the gcfc condition of equation (3.11).

In this work, the primarily interest lies in the stabilization of the AMB mechanical

states (x, ẋ) under low-bias (LB) operation, i.e., when Φ̄0 is small. As a special case,

one obtains a zero-bias (ZB) model by setting Φ̄0 = 0 in (3.16). For the subsequent

control derivations presented in Chapter 4, model (3.10)-(3.16) is used for designing

the control law v. Once v is constructed, the voltage is distributed to the actual
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control inputs Vr1 and Vr2 by activating each electromagnet according to (3.9). Note

that since operation at some non-zero bias is acceptable in this context, typically

only asymptotic stability is required with respect to the states x and ẋ of the system

(2.8)5.

The following result clarifies the relation between equations (3.10)-(3.16) and the

original AMB model, given by equation (2.8) .

Theorem 1. Any control law that renders the system (3.10)-(3.16) globally asymp-

totically stable, ensures that:

(i) For all initial conditions in S the system (2.8) is stable.

(ii) For all initial conditions in S, the system (2.8) is asymptotically stable with

respect to the states (x, ẋ). Moreover, the fluxes φ1 and φ2 remain bounded and,

in addition, limt→∞ φ1(t) = limt→∞ φ2(t) = min{φ1(0), φ2(0)}.

(iii) For all initial conditions in S0 the system (2.8) is asymptotically stable.

Proof. (i) Choose ε > 0. From the stability of the system (3.10) and (3.16), it

follows that there exists δ̄ = δ̄(ε) > 0 such that if |(x(0), ẋ(0))| + |φ(0)| < δ̄ then

|(x(t), ẋ(t))| + |φ(t)| < ε/2 for all t ≥ 0. Consider now all initial conditions in S

such that |(x(0), ẋ(0))| + |φ(0)| < δ̄ and 2min{φ1(0), φ2(0)} < ε/2. Choose δ(ε) :=

min{δ̄(ε), ε/2} and notice that the switching scheme (3.10)-(3.9) implies that φ1 =

max{φ, 0}+ c̄ and φ2 = −min{φ, 0}+ c̄ where c̄ := min{φ1(0), φ2(0)}. Hence, for all

initial conditions such that |(x(0), ẋ(0))|+ |φ1(0)|+ |φ2(0)| = |(x(0), ẋ(0))|+ |φ(0)|+

2min{φ1(0), φ2(0)} < δ, then |(x(t), ẋ(t))|+|φ(t)| < ε/2 holds and thus, |(x(t), ẋ(t))|+

|φ1(t)| + |φ2(t)| = |(x(t), ẋ(t))| + |φ(t)| + 2min{φ1(0), φ2(0)} < ε/2 + ε/2 = ε for all

t ≥ 0. Hence (i) follows.

5This type of stability is also known as partial stability. For the relevant definitions and major
results see, for example, [9, 86].
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(ii) For all initial conditions in S asymptotic stability with respect to (x, ẋ) follows

directly from Proposition 1 and the fact that (x, ẋ) → 0. Using the fact that φ1 =

max{φ, 0}+ c̄ and φ2 = −min{φ, 0}+ c̄ and since φ is bounded, it follows that both φ1

and φ2 remain bounded. Moreover, since φ→ 0, then limt→∞ φi(t) = c̄, for i = 1, 2.

(iii) First, recall from Proposition 2 that the set S0 is invariant. Moreover, for

all initial conditions in S0, c̄ = 0 and the states φ1 and φ2 are related to φ via

φ1 = max{φ, 0} and φ2 = −min{φ, 0}. Since φ→ 0 it follows that limt→∞ φi(t) = 0,

for i = 1, 2.

3.3 CFS vs. GCFC: Total Square Flux Compar-

ison

Recall that the motivation of using the gcfc scheme is to minimize the power losses

of the AMB while allowing for some minimal amount of bearing stiffness. On the

other hand, the normal biasing scheme typically provides plenty of stiffness but has

excessive losses. Since the losses of an AMB are in direct relation to the total amount

of squared flux required (see Table 2.1 ), the total square flux, and thus the flux bias,

should be minimized during operation.

To compare the normal and gcfc biasing schemes, consider two bearings, one

operated using the gcfc constraint with a flux bias Φ0g and control flux φg, and the

other AMB operated using normal biasing with a bias flux of Φ0n and a control flux

of φn. Furthermore, to make a “fair” comparison, suppose that a certain level of

positive force F0des is required by both bearings, i.e., Fg = Fn = F0des where

Fn =
1

κ
4Φ0nφn, and Fg =

1

κ
(2Φ0gφg + φ2g) (3.17)

The total square flux for normal biasing is

Tn = (Φ0n + φn)
2 + (Φ0n − φn)2 (3.18)
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whereas the total square flux for the gcfc is

Tg = (Φ0g + φg)
2 + Φ2

0g (3.19)

Now, one may compare the ratio of Tn/Tg subject to the constraint Fn = Fg. To this

end, note that (3.17) implies that

φn =
2Φ0gφg + φ2g

4Φ0n

(3.20)

Furthermore, let α = Φ0n/Φ0g and β = φg/Φ0g. Forming the total flux ratio, one

obtains

Tn
Tg

=
4α2 + β2(1 + β/2)2

2α2(2 + β2 + 2β)
(3.21)

The plot of this ratio as a function of β for several values of α are shown in Figure

3.3. From this Figure 3.3, one may investigate the relative flux (or force) production

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10−1

100

101

102
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T n/T
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α=0.5 

α=1

α=1.5

α=2

Figure 3.3: Total square flux ratio Tn/Tg. Note logarithmic scale on vertical axis.

capability of the above schemes. The parameter α = Φ0n/Φ0g measures the relative

size of the bias fluxes used in either scheme. Larger α is typical of the gcfc scheme.

The parameter β = φg/Φ0g measures only the relative size of the control flux to the
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bias flux of the gcfc scheme. First, if both bearings are biased with the same flux

(α = 1), then the normal biasing scheme is better than the gcfc scheme, Tn/Tg < 1

(i.e. less flux is required to produce the desired force), if β < 2. For low-bias designs,

it is typical that β > 2. Any line segment that lies above 100 in Figure 3.3 indicates

where the gcfc scheme has a smaller total square flux requirement than the normal

scheme. In these instances, the AMB requires less flux to generate the required force

and consequently, should have less operating losses using the gcfc scheme. Thus, in

low-bias with (β > 2), the gcfc is preferable over normal biasing. By reducing the

flux bias level Φ0g as compared to Φ0n (α > 1), the gcfc performs increasingly better

(Tn/Tg > 1) over a wide range of control fluxes. Note that using the gcfc scheme,

the bias may be reduced to zero, however, controllability is lost in the normal scheme

when Φ0n = 0. Note that even in the case of the normal bias Φ0n smaller than that of

the gcfc (α < 1), the gcfc scheme performs better for large perturbation flux (β > 1).

Since α and β are not defined in zero-bias, one may re-parameterize the Tn/Tg

ratio. The total square flux for the cfs constraint is

Tn = 2Φ2
0n + 2φ2n

The total square flux for the gcfc condition is Tg = φ2g. Let β = φg
Φn

. Using the force

constraint,

φn =
φ2g
4Φn

the total square flux ratio in terms of β is

Tn
Tg

=
2

β
2 +

β
2

8
(3.22)

Note that for the cfs to be implemented properly |φn| < Φn. This constraint translates

into β < 2. The flux ratio is plotted in Figure 3.4. In zero bias, the gcfc always

operates with less loss than the cfs because Tn/Tg > 1 for β < 2. (For β > 2, the

cfs is not properly defined. ) In summary, this analysis shows that the gcfc has the
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Figure 3.4: Total square flux ratio Tn/Tg for zero bias. β = φg/Φn. The cfs condition
is not defined for β > 2.

ability to produce force more efficiently than the cfs in a several instances.

Note that the analysis in this section is limited by the fact that it is conducted

in a static sense. It asks the question, “For a given constant desired force F0des,

which bias scheme requires the least amount of flux to deliver F0des and under what

conditions?” The square of the flux relates to the instantaneous power loss, however,

the total energy loss of the system may depend on the state history. In Chapter 8,

the total square flux and rms power consumption of the bearing are measured under

a testing scenario in which the rotor is regulated to a setpoint in the presence of a

persistent sinusoidal disturbance. The above analysis and the results in Chapter 8

show that the gcfc scheme can outperform the cfs scheme in several situations.
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3.4 Contribution of the GCFC Bias Scheme to

the-State-of-the-Art

The constraints of a given bias scheme are often plotted in the Φ1−Φ2 plane. Figure

3.5 clearly illustrates the differences between the constant flux sum (cfs), constant

flux product (cfp) [1], the cfc and the gcfc bias schemes. The cfs scheme is shown

cfs 

cfp 

cfc 

gcfc 

cfc 
gcfc 

Figure 3.5: The cfc, gcfc, cfs, and cfp [1] bias constraints shown in the Φ1 − Φ2

plane.

as a straight line with axis intercepts at 2Φ0. Recall that the control flux is limited

by |φ| < Φ0. This was an implementation constraint so that the flux would remain

positive. However, it a also limits the load capacity (i.e. the maximum force) that

can be generated by the bearing. An approximation to the cfs piecewise continuous

constraint is the constant flux product (cfp) constraint Φ1Φ2 = Φ2
0. The cfp does

not allow for negative flux but also does not artificially limit the load capacity. That

is, the maximum force is not determined by the bias flux, only by the limits of the

actuator (Bsat and Imax). The cfp scheme has the rather complex flux dynamics

Φ̇1 = Φ2

Φ2
Φ̇2. Compare this to the flux dynamics of the cfs, Φ̇1 = −Φ̇2. The cfp
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scheme is posed in conjunction with the feedback linearization scheme in [1]. It is

conveniently implemented by defining an additional output h2 = Φ1Φ2 and regulating

this output to the constant h2 = Φ2
0. It can also implement the cfs scheme by letting

the auxiliary output h2 = Φ1 + Φ2 and regulating to the constant h2 = 2Φ0.

The cfc and gcfc schemes operate only on the positive Φ1 and Φ2 axis. Note that

the gcfc scheme operates on the subsets of the Φ1 and Φ2 axis where Φj ≥ Φ0. The cfc

and gcfc scheme may be thought of as a cfp scheme. Specifically, the cfc is equivalent

to the cfp scheme with Φ1Φ2 = 0 and the gcfc scheme is similar to the cfp scheme

with φ1φ2 = 0.

The gcfc scheme has several advantages over the conventional cfs and cfc bias

schemes. When using the gcfc scheme, the selection of the value of the bias flux Φ0

does not impact the magnitude of the control flux φ in any way. Recall that proper

implementation of the cfs scheme requires that |φ| < Φ0 and typically, |φ| << Φ0.

The gcfc scheme, on the other hand, allows for small flux bias levels. In conventional

low-bias operation, Φ0 << |φ|. In fact, Φ0 can be reduced all the way to zero to save

power. In this case, the gcfc scheme coincides with the cfc scheme and the term φ|φ|

provides nonlinear controllability in zero-bias operation. However, the cfs scheme

looses controllability as Φ0 goes to zero.

The cfc scheme saves power losses as compared to the gcfc scheme, but at the cost

of a limited slew-rate capacity in for small levels of flux. The gcfc scheme is capable

of mitigating the slew-rate limitation by introducing a bias flux and imposing the

complementarity condition on the control fluxes as opposed to the total electromagnet

fluxes. This is achieved at the cost of decreased AMB efficiency, but the gcfc scheme

shows potential for greater efficiency than the cfs biasing mode in low-bias operation.

These advantages make the gcfc scheme one worth of study.
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CHAPTER IV

ZERO- AND LOW-BIAS CONTROL DESIGN

FOR THE 1-DOF AMB

Recall that the 4-DOF PREMAG reaction wheel is controlled by 4 independent 1-

DOF control algorithms. To save time, three of the control axes are implemented

with standard, large-bias, classical control techniques while the fourth axis is used as

the nonlinear zero-bias (ZB) and low-bias (LB) control law test bed. This chapter

presents several control designs for the 1-DOF AMB. Since this thesis is primarily

concerned with low-loss AMB control design, the focus is on ZB and LB control

algorithms1. However, to better appreciate the contributions of the new ZB and LB

control laws, they are compared to standard nonlinear techniques.

In the sequel, the control laws are developed on a state model that is operating

under the gcfc constraint with voltage-mode amplifiers. Thus, the resulting con-

trol laws contain a ZB implementation as a limiting case of the more general LB

implementation as the bias flux Φ0 is reduced to zero. Section 4.1 presents a non-

dimensionalized state model for a 1-DOF AMB using the gcfc condition and clearly

states the control objectives. Section 4.2 presents a brief discussion of the standard

feedback linearization (FBL) and integrator backstepping (IB) nonlinear control tech-

niques. These control laws suffer from a singularity in ZB when the control flux is

zero which manifests itself as an infinite voltage command. Section 4.3 introduces a

new control law based on the theory of control Lyapunov functions (clf). This control

law also suffers from a singularity in ZB mode, however its domain of definition is

1These control algorithms were first reported by Tsiotras and Wilson in [83, 82].
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much larger than that of the standard nonlinear FBL and IB approaches. Section

4.4 presents an additional new passivity-based control law which is completely non-

singular in ZB. Note that each of the above control laws are nonsingular in LB. This

chapter restricts itself to a control law performance comparison through simulation:

Chapter 8 completes the evaluation with experimental testing on the PREMAG re-

action wheel. Finally, Section 4.5 closes the chapter with numerical simulations to

illustrate the characteristics of each control law.

4.1 Nondimensionalized State Equations and Con-

trol Objectives

The low-loss 1-DOF AMB control designs in this work assume that the system is

using voltage-mode amplifiers and the switching rule of equation (3.9) to implement

the gcfc constraint in equation (3.11). This assumption results in the mechanical

and electrical dynamics of equations (3.12) and (3.10). To minimize the number

of system parameters, a non-dimensionalized state-space version of the equations of

motion is used. This results in a normalization of several of the state variables and

conveniently avoids problematic simulation issues such as “stiffness”. Furthermore,

conclusions made about the control law performance based on non-dimensionalized

simulation results apply to AMBs in general and are not restricted to a particular

AMB defined by a specific choice of system parameters.

To this end, define the non-dimensionalized state and control variables

x1 =
x

g0
, x2 =

ẋ

Φsat

√

g0/κ
, x3 =

φ

Φsat

, u =
v
√
g0κ

NΦ2
sat

(4.1)

along with the non-dimensionalized time

τ = t
Φsat√
g0κ

(4.2)

where g0 is the nominal air-gap and Φsat is the value of the saturation (maximum)

flux which is calculated from the electromagnet cross-sectional area and the saturation
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flux density Bsat. The resulting non-dimensionalized state-space equations are

x′1 = x2 (4.3a)

x′2 = εx3 + x3|x3| := f2(x3) (4.3b)

x′3 = u (4.3c)

where ε = 2Φ0/Φsat and where the prime denotes differentiation with respect to τ .

Notice that ε ≥ 0 for all initial conditions in S (defined in Section 3.2.2). LB operation

in this context therefore implies that ε¿ 1, while ZB implies that ε = 0.

With a slight abuse of notation, redefine the use of dot in (4.3) to denote differenti-

ation with respect to the non-dimensionalized time. Also, re-write the state equation

(4.3) and define the output λ equation with the following control-affine form

ẋ = f(x) + g(x)u (4.4a)

λ = h(x) (4.4b)

with vector fields f : R
3 → R

3, g : R
3 → R

3, and output function h : R
3 → R given

by

f(x) :=













x2

εx3 + x
[2]
3

0













, g(x) :=













0

0

1













, h(x) = x1 (4.5)

and where the notation x
[2]
3 := sgn(x3)x

2
3 = x3|x3| has been adopted2.

The control objective may be stated as follows: find a control law u : D ⊆ R
3 → R

such that

(i) the closed-loop system ẋ = f̃(x) := f(x)+ g(x)u(x) has an isolated equilibrium

at the origin

(ii) the origin is asymptotically stable for all x(0) ∈ D

2The properties of this function are listed in Appendix A.

60



(iii) the domain of definition D ⊆ R
3 of the control law u(x) is as large as possible

According to the discussion in the previous chapter, in order to reduce the power

losses one would like, ideally, to set ε = 0. However, this approach introduces several

difficulties. First, from (4.3) it is seen that for ε = 0 the system is linearly uncon-

trollable. Second, for zero-bias, the AMB has no force-slew rate capability when the

flux is zero [46, 47, 53, 4, 71]. The force vs. flux curve has a zero slope at φ = 0

and the AMB cannot respond fast enough to force commands. As a result, most con-

trol design techniques for zero-bias AMBs will command a very high (even infinite)

voltage when the flux is zero. The ZB control design for a voltage-controlled AMB

is therefore far from trivial. The following discussion revisits the ZB control design

for a 1-DOF AMB with the purpose of mitigating the ZB singularity and proposes a

new class of control laws which are valid both for LB and ZB operation.

4.2 Standard Nonlinear Techniques: Feedback Lin-

earization and Integrator Backstepping

The techniques of feedback linearization (FBL) and integrator-backstepping (IB) have

grown into maturity in the mid 1980’s and early 1990’s. Feedback linearization em-

ploys the theory of differential geometry to construct a feedback transformation to

make the controllable and observable part of a nonlinear system behave with linear

dynamics. A full exposition of this theory may be found in the well-known texts by

Isidori [28, 29] and Vidyasagar [57], however, it is only briefly introduced in Section

4.2.1. IB is applicable to systems which have a strict-feedback or cascaded form [43].

It is an iterative design process which defines intermediate control variables and con-

trol laws for subsystems to construct a composite control law for the entire system.

This type of design approach is introduced in section 4.2.2 and is well documented,

for example, in [43, 34, 69].
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4.2.1 Feedback Linearization Design

The feedback linearization technique employs a nonlinear coordinate transformation

and preliminary feedback law to decompose the n-dimensional nonlinear system in

equation (4.4) into a controllable linear subsystem of dimension r(≤ n) and an uncon-

trollable, unobservable nonlinear subsystem of dimension n− r. The FBL technique

is limited to systems where the decomposition results in a nonlinear subsystem that

is stable under certain conditions stated below. The integer r is called the relative

degree and gives information about the controllability of the output λ with respect to

the input u.

The Lie (directional) derivative is used frequently to formulate the feedback lin-

earization technique. If given a vector field f and a scalar function h as defined above,

then the Lie derivative of h with respect to f at x is the scalar function

Lfh(x) =< ∇xh(x), f(x) >

Furthermore, the higher-order or iterated Lie derivative is defined as

Lkfh(x) =< ∇xL
k−1
f h(x), f(x) >

By virtue of the dot product, the Lie derivative of h calculates the projection of the

gradient of h in the direction of the vector f . When the vector field f defines the

flow of the state x, ẋ = f(x), then the Lie derivative calculates the change in h as x

evolves along the state-trajectory: ḣ(x) = ∇xh(x)ẋ := Lfh(x).

In the controlled system of equation (4.4), the trajectory of x flows in the direction

determined by the drift vector field f(x) and the control input channel g(x). In this

case, the Lie derivative can give information about the controllability of the output

λ with respect to u. The dynamics of the output are governed by

λ̇ = ḣ(x) = ∇xh(x)ẋ = ∇xh(x)f(x) +∇xh(x)g(x)u = Lfh(x) + Lgh(x)u
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Thus, the velocity of λ is considered controllable if the function Lgh(x) is nonzero for

all x ∈ D. Suppose however that Lgh(x) was identically zero for all x ∈ D. That is,

the control input channel g(x) does not directly affect the velocity of λ. Then, one

may investigate the acceleration of λ.

λ̈ =
d

dt
(Lfh(x) + 0u) =< ∇xLfh(x), ẋ >

=< ∇xLfh(x), f(x) > + < ∇xLfh(x), g(x) > u = L2
fh(x) + LgLfh(x)u

If LgLfh(x) is not identically zero on D, then one concludes that u directly influences

the acceleration of λ. Every time the function multiplying the control input u is

found to be identically zero, the next higher-order derivative of λ is computed. The

qth order derivative is given by

λ(q) = Lqfh(x) + LgL
q−1
f h(x)u (4.6)

The relative degree r is defined as the value of the integer q in equation (4.6) such

that LgL
q−1
f h(x) is not identically zero on D. In this sense, the relative degree is the

number of times one must differentiate the output to obtain an explicit dependence on

the control input u. This concept of relative degree coincides with the linear system

interpretation that r = P − Z, where P is the number of system poles and Z the

number of system zeros. The formal definition of the relative degree is given below.

Definition 1. (Relative Degree)

The SISO system given in equation (4.4), is said to have relative degree r on the set

D if

1. LgL
k
fh(x) = 0 ∀x ∈ D, ∀k < r − 1

2. LgL
r−1
f h(x) 6= 0 ∀x ∈ D

The computations needed for the relative degree calculation for system (4.5) are

given below.

h(x) = x1, Lgh(x) = 0, Lfh(x) = x2, LgLfh(x) = 0

63



L2
fh(x) = x3|x3|+ εx3, LgL

2
fh(x) = 2|x3|+ ε, L3

fh(x) = 0

From the above calculations, in low-bias mode ε 6= 0, the relative degree is r = 3 for

all x ∈ R
3. However, in zero-bias mode ε = 0, the relative degree is 3 away from the

plane x3 = 0. Thus, the set of definition for the control law is D1 = {x ∈ R
3|x3 6= 0}.

Consequences of this are discussed below.

Since the relative degree is equal to the dimension of the system r = 3, the

nonlinear state equation defined by (4.5) may be transformed into a third order linear

system3. This is fortunate because if r was less than three, say r = 2 for example,

then the system could only be decomposed into a second-order linear subsystem and a

first-order unobservable and uncontrollable nonlinear subsystem. Furthermore, even

if the control objective is met, that is, λ is regulated to zero, the nonlinear subsystem

may still be unstable. Thus, the dynamics of the remaining nonlinear subsystem when

the output is held at zero, i.e. the zero dynamics , must be proven stable. Systems

that are known to have stable zero dynamics are said to be minimum phase.

To see the underlying linear structure of this system, one defines the following

nonlinear change of variables. The new state variable ξ is a smooth function of the

old state variable x. Specifically,

ξ := Ψ(x) =













h(x)

Lfh(x)

L2
fh(x)













(4.7)

Differentiating ξ to find the new dynamics,

ξ̇1 = ξ2

ξ̇2 = ξ3 (4.8)

ξ̇3 = L3
fh(x)|x=Ψ−1(ξ) + LgL

2
fh(x)|x=Ψ−1(ξ)u

3This system does not have zero dynamics.
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Select the control input u

u =
1

LgL2
fh(x)

(ν − L3
fh(x)), (4.9)

to linearize (4.8) in the ξ coordinates.

ξ̇1 = ξ2 (4.10a)

ξ̇2 = ξ3 (4.10b)

ξ̇3 = ν := −k0ξ1 − k1ξ2 − k2ξ3 (4.10c)

The auxiliary control input ν is used to place the poles of this new linearized system

with the appropriate choice of k0, k1 and k2. Equation (4.10c), if written in terms of

the output λ,
...
λ + k2λ̈+ k1λ̇+ k0λ = 0 (4.11)

asserts that the λ dynamics may be assigned by the designer to follow any desired

linear behavior. This is possible as long as the feedback linearizing control u in

equation (4.9) is well defined, that is, if the relative degree is well defined.

Pole Placement Loop

Nonlinear Cancellation Loop

--

Figure 4.1: Schematic of feedback linearization technique.

In summary, the feedback linearization technique uses an inner feedback loop

(4.9) to cancel the nonlinear dynamics and replaces them with the linear dynamics

implemented by an outer pole-placement loop in equation (4.10c): see Figure 4.1.

Using f , g and h in equation (4.5), the control law given in (4.9) and (4.10c) is

u =
−k0x1 − k1x2 − k2(x3|x3|+ εx3)

2|x3|+ ε
(4.12)
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This control is singular in ZB (ε = 0) on the plane x3 = 0. This is precisely where the

relative degree is undefined. As a result, an infinite voltage command is requested in

ZB mode when the flux passes through x3 = 0.

4.2.2 Integrator Backstepping Design

Notice that the system of equations (4.4)-(4.5) has the simple cascaded structure

below

ż = f0(z, y) (4.13a)

ẏ = u (4.13b)

where the state variables x1, x2, and x3 are partitioned into the mechanical subsystem

variables z = [z1, z2]
T := [x1, x2]

T and the electrical subsystem variables y = x3. With

these definitions, f0(z, y) := [z2, f2(y)]
T and f2(y) = εy + y[2]. In the backstepping

approach, one views the state-variable y as the “virtual” control input to the f0(z, y)

subsystem and assigns the y dynamics via the integrator (4.13b). To this end, first

note that if one chooses y such that

f2(y) = σ(z) := −k1z1 − k2z2 (4.14)

the z-subsystem is feedback linearized and asymptotically stable for k1 > 0 and

k2 > 0. In this case, the z-subsystem is given by ż = Az where

A :=







0 1

−k1 −k2






(4.15)

For k1 > 0 and k2 > 0 the matrix A is Hurwitz. The function σ is often called the

stabilizing function. Now, introduce the function u0 : R
2 → R such that f2(u0(z)) =

σ(z) for all z ∈ R
2. It can be easily verified that

u0(z) := −1
2
sgn(σ(z))(ε−

√

ε2 + 4|σ(z)|) (4.16)
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For ε = 0 this function reduces to

u0(z) = sgn(σ)|σ|
1
2 (4.17)

If one now tries to implement the virtual control law u0(z) via (4.13b) one immediately

faces the problem of the non-Lipschitz continuity of the inverse of the function f2(y)

at the origin when ε = 0. If, for instance, the typical error variable η = f2(y)− σ(z)

is defined, one obtains the backstepping control law

u(z, y) =
(∂f2
∂y

)−1[∂σ

∂z
(Az + bη)− 2bTPz − γη

]

, γ > 0 (4.18)

where bT = [0, 1] and P > 0 satisfies the matrix inequality (such a P always exists

since A is Hurwitz)

ATP + PA < 0 (4.19)

Using the Lyapunov function

V (z, y) = zTPz + 1
2
η2 (4.20)

it can be shown easily that the control law in equation (4.18) globally asymptotically

stabilizes (GAS) the complete, cascaded system of equation (4.13). However, the

control law (4.18) is singular at y = 0 for ε = 0. Indeed, since

(

∂f2
∂y

)−1

=
1

2|y|+ ε
(4.21)

the control law (4.18) is not defined at x3 = y = 0 for the case of zero-bias flux. This

is the same singularity space as in the feedback linearization design and consequently,

an infinite voltage is requested in ZB when x3 = 0. The domain of definition for the

control law (4.18) is D1 = {x ∈ R
3|x3 6= 0}.

It should come as no surprise that the singularity is still present even if one

introduces an alternative definition for the error. For example, let η = y − u0(z).

Then, the z-subsystem can be written as

ż = Az + b(z, y)η (4.22)
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where b(z, y) = [0, π(z, y)]T , and where π(z, y) ∈ C0 satisfies f2(y) = f2(u0(z)) +

π(z, y)η. For example, one may choose4

π(z, y) :=
f2(y)− f2(u0(z))

y − u0(z)
(4.23)

Using the same Lyapunov function candidate as in (4.20) it can be shown that the

choice of the control law

u(z, y) =
1

√

ε2 + 4|σ(z)|

(

∂σ

∂z

)

(

Az + b(z, y)η
)

− 2bT (z, y)Pz − γη, γ > 0

(4.24)

results in a GAS closed-loop system for all ε ≥ 0. The control law (4.24) is bounded

for all ε > 0. For ε = 0 this control law exhibits a singularity when σ(z) = 0. The

singularity space consists of a plane in R
3. An infinite voltage is requested on this

plane when operating in ZB. The domain of definition for the control law (4.24) is

D2 = {x ∈ R
3|k1x1 + k2x2 6= 0}.

The issue of singularity with the standard FBL and IB control design approaches

are well-known in the literature. Several ad hoc methods to remedy this situation

have been proposed. In [8] and [50]5, for instance, for the ZB case the authors replace

1/2|y| with 1/(2|y|+ δ) where δ > 0 is a very small number in the calculation of the

denominator of (4.12). A similar small bias term has been added when calculating

(∂f2/∂y)
−1 in the backstepping designs of [15] and [16] to avoid this singularity.

4.3 CLF’s for Cascaded Systems

In the sequel, ideas from the theory of control Lyapunov functions (clf’s) and the

extended integrator backstepping techniques of [63] are used to design a stabilizing

control law for (4.3). The clf is defined below.

4Notice that π(z, y) ∈ C0 for all ε ≥ 0 since f2 ∈ C1.
5In these references the current is used instead of the flux as a state variable. However, the

approach is essentially the same.
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Definition 2. (Control Lyapunov Function)

A function V : R
n → R+ is a control Lyapunov function (clf) for the system

ẋ = f(x) + g(x)u if it satisfies the following properties:

(i) V is positive definite

(ii) V ∈ C1

(iii) V is radially unbounded, and

(iv) LfV (x) < 0 for all x 6= 0 such that LgV (x) = 0

The stability proof of the control-affine system is obtained by showing that

V̇ (x) = ∇xẋ = LfV (x) + LgV (x)u < 0 (4.25)

The control input u is selected to dominate LfV (x) so that V̇ < 0, however, this is

not possible when LgV (x) = 0 because the controllability is lost. Property (iv) of

definition 2 guarantees that V̇ < 0 in equation (4.25) even when LgV (x) = 0.

Control Lyapunov functions have been instrumental for global stabilization of

nonlinear systems (see, for instance, [43] and [69]). Generally speaking, if a system has

a clf, then there exists a control law (with certain smoothness properties) that renders

the system asymptotically stable. Sontag [74] has proposed an explicit expression for

such a control law that stabilizes a system using its clf. Sontag’s formula is

u =















0, LgV (x) = 0

− LfV +
√

LfV 2 + LgV 4

LgV
, otherwise

(4.26)

This control law is smooth in R
n\{0} and it is continuous at the origin if and only if

the clf satisfies the small control property [43, 74, 83].

The main drawback of the clf approach is that, generally, it is difficult to determine

if a system possesses a clf. However, for systems that have a cascaded structure, there

exist constructive algorithms to find clf’s. To this end, consider a cascade system of
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the form as in (4.13) with z ∈ R
n−1 and y ∈ R. Assume that there exists a control law

u0(z) with corresponding Lyapunov function V0(z), so that z = 0 is a GAS equilibrium

of the closed-loop system ż = f0(z, u0(z)). Under some mild hypotheses, the function

V (z, y) = 1
2
(y − u0(z))2 + V0(z) (4.27)

is then a clf for the cascade system [43]. This construction may not work if the

stabilizing control law u0(z) for the z-dynamics is not smooth enough, since in this

case the function V may not be C1; see property (ii) of Definition 2. Notice that this

is precisely the situation with the control u0(z) in (4.17) for the case of an AMB in

ZB operation.

To remedy this difficulty, the results of extended backstepping design of Praly et

al [63] are employed. According to [63], one introduces a “desingularizing” function

ψ(z, y) ∈ C0 so that V has the required smoothness properties. The function ψ(z, y)

is chosen such that ψ(z, y) = 0 implies y = u0(z). Related to the function ψ(z, y) is

the function Ψ ∈ C1 defined by

Ψ(z, y) :=

∫ y

0

ψ(z, q)dq (4.28)

where, for all z ∈ R
n−1,Ψ(z, y) → ∞ as |y| → ∞. The form of the clf is then given

by

V (z, y) = Ψ(z, y)−Ψ(z, u0(z)) + βV0(z)
α, β > 0 (4.29)

where α is such that V0(z)
α ∈ C1.

Assuming a Lyapunov function V0(z) for the z-subsystem in (4.13a) is known,

the problem of finding a clf for (4.13) is reduced to one of finding a desingularizing

function ψ. Once the clf is known, one may use Sontag’s formula (4.26) to construct

a controller. Alternatively, one may use the control law in the following lemma.

Lemma 1. (Control of Cascade System (4.13) given clf in (4.29) [63])

Given a system as in (4.13), assume that u0(z) is a control law that asymptotically
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stabilizes (4.13a) and V0(z) is the corresponding Lyapunov function. Consider the

positive definite function V (z, y) given in (4.29). This function is a proper clf for

(4.13) and the following choice of the control law will globally asymptotically stabilize

(4.13)

u(z, y) =

(

∂Ψ

∂y
(z, y)

)−1
{

(

∂Ψ

∂z
(z, uo(z))−

∂Ψ

∂z
(z, y)

)

f0(z, y)

+ αβV0(z)
α−1
(

Lf0(z,u0(z))V0(z)− Lf0(z,y)V0(z)
)}

−Θ(z, y) (4.30)

where Θ(z, y) ∈ C0 and has the same sign as ψ(z, y).

4.3.1 CLF Design for the 1-DOF AMB

Next, Lemma 1 is applied in order to find a stabilizing control law for (4.3). The

first step is to find a stabilizing controller u0 and a Lyapunov function V0 for the z-

dynamics. Select u0 as in (4.16) and V0 = zTPz with P as in (4.19). With u0(z) and

V0(z) in hand, one needs to determine the desingularizing function. Since u0(z)
[2p] ∈

C1 for p ≥ 1 and for all ε ≥ 0, the following desingularizing function is proposed

ψ(z, y) = ε (y − u0(z)) + y[2p] − u0(z)[2p], p ≥ 1 (4.31)

It can be shown that ψ is continuous and that ψ(z, y) = 0 implies that y = u0(z).

The function ψ(z, y) is integrated with respect to y to obtain Ψ(z, y) and Ψ(z, u0(z)).

A simple calculation shows that

Ψ(z, y) =

∫ y

0

ψ(z, q) dq =
ε

2
y2 − εyu0(z) +

y[2p+1]

2p+ 1
− yu0(z)[2p] (4.32)

and

Ψ(z, u0(z)) = −
ε

2
u0(z)

2 − 2p

2p+ 1
u0(z)

[2p+1] (4.33)

Inserting equations (4.32) and (4.33) into (4.29), one obtains the clf

V (z, y) =
ε

2
(y − u0(z))2 +

y[2p+1]

2p+ 1
− yu0(z)[2p]

+
2p

2p+ 1
u0(z)

[2p+1] + βV0(z)
α

(4.34)
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with p ≥ 1, β > 0, and α > 1
2
, is an appropriate clf for the system (4.3). The value

of α > 1
2
ensures that V0(z)

α ∈ C1. Given the clf in (4.34), one applies Lemma 1 to

obtain the following control law for (4.3).

Proposition 3. (Application of Lemma 1)

Let k1 > 0 and k2 > 0 and let P be a positive definite matrix such that ATP+PA < 0.

Let V0 = zTPz and consider the control law

u =
(

εx3 + x
[2p]
3 − εu0 − u[2p]0

)−1

×
{p (ε−

√

ε2 + 4|σ|)2p−1 − 22p−2ε

22p−2
√

ε2 + 4|σ|

× (x3 − u0)
(

k1x2 + k2f2(x3)
)

+ αβV α−1
0

∂V0
∂x2

(

f2(u0(z))− f2(x3)
)}

−Θ(x) (4.35)

where p ≥ 1, β > 0, α > 1
2
, and where Θ(x) has the same sign as ε(x3−u0)+x[2p]3 −u

[2p]
0

with u0(σ(z)) and σ(z) defined in (4.16) and (4.14), respectively. This control law

globally asymptotically stabilizes system (4.3).

Proof. The proposition follows from Lemma 1 by noticing that

∂Ψ(z, y)

∂z
= −y∂u0(z)

[2p]

∂z
− εy∂u0(z)

∂z
∂Ψ(z, u0(z))

∂z
= − 2p

2p+ 1

∂u0(z)
[2p+1]

∂z
− εu0

∂u0(z)

∂z

A straightforward calculation shows that

∂u0
∂z

=
1

√

ε2 + 4|σ|
∂σ

∂z

Moreover, since

∂

∂z
u
[2p]
0 = −p (ε−

√

ε2 + 4|σ|)2p−1

22p−2
√

ε2 + 4|σ|
∂σ

∂z

∂

∂z
u
[2p+1]
0 =

2p+ 1

2
sgn(σ)

(ε−
√

ε2 + 4|σ|)2p

22p−1
√

ε2 + 4|σ|
∂σ

∂z
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one obtains,

∂Ψ(z, u0(z))

∂z
− ∂Ψ(z, y)

∂z
=

(

−p (ε−
√

ε2 + 4|σ|)2p−1

22p−2
√

ε2 + 4|σ|
+

ε
√

ε2 + 4|σ|

)

(y − u0)
∂σ

∂z

Furthermore, the difference between the Lie derivative terms in (4.30) can be written

as

Lf0(z,u0(z))V0(z)− Lf0(z,y)V0(z) =
∂V0(z)

∂z2
(f2(u0(σ))− f2(y))

Inserting the last two equations into (4.30) one obtains (4.35).

Since the function x[2p] is odd and one-to-one, a simple choice for Θ that satisfies

the requirements of the previous proposition is

Θ(x) = γ(x3 − u0(z)), γ > 0 (4.36)

The control law in (4.35) simplifies to the one reported in [83] for zero-bias mode.

Setting ε = 0 in (4.35) one obtains

u =− (u
[2p]
0 − x[2p]3 )−1

{

p u2p−20 (u0 − x3)(k1x2 + k2x
[2]
3 )

+ αβV α−1
0

∂V0
∂x2

(u
[2]
0 − x

[2]
3 )
}

−Θ(x)
(4.37)

with u0 as in (4.17). Recall that once the clf (4.34) is known, one can also use (4.26)

to construct a stabilizing control law. The added benefit of using (4.37) instead, is

that one can ensure that the closed-loop system is homogeneous of degree zero with

respect to the dilation6 ∆λ(x) = (λ2x1, λ
2x2, λx3) when α = (2p + 1)/4 and for all

p ≥ 1. Moreover, the larger the p, the smoother the control law on R
n\{0}. Thus, p

can be used as a “tuning” parameter to smooth the control law away from the origin.

Remark 2. (Singularity Spaces of Control Laws)

The control law in (4.37) is defined on the setD3 := {x ∈ R
3| x3 6= 0 & u0(z) 6= 0}. By

6For the relevant definitions on homogeneous vector fields and dilation operators, as well as their
properties, see [83] and the references therein.
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comparison, the standard feedback linearization (4.12) and backstepping controllers

(4.18) and (4.24) are defined on the sets D1 := {x ∈ R
3| x3 6= 0} and D2 := {x ∈

R
3| u0(z) 6= 0}, respectively. Thus, the domain of definition of the proposed control

(4.37) is much larger than that of a typical backstepping and feedback linearization

designs. In fact, the singularity7 sets D1 and D2 are planes in R
3 while D3 = D1∩D2

is a line in R
3. Note, however, that in LB mode the control law in (4.35) is always

well-defined and D = R
3.

The next section shows that one may use passivity arguments to design ZB control

laws that are nonsingular everywhere.

4.4 Passivity-Based Control Design

In this section it is shown that the simple virtual control law

u0(z) = −k1z1 − k2z2 (4.38)

where k1 > 0, k2 > 0, globally asymptotically stabilizes (4.13a) via the virtual input

y. Since the control law in (4.38) is linear, it can be implemented directly via (4.13b)

using standard backstepping. In order to show that (4.38) is a stabilizing control law

for (4.13b), ideas from the theory of dissipative/passive systems [69, 60, 51] are used.

The basic concepts are now briefly introduced.

Given a system as in (4.4) with input u ∈ R
m and output λ ∈ R

m, define a locally

integrable8 function w : R
m × R

m → R called the supply rate. For system (4.5),

m = 1. The supply rate is customarily defined for square systems (dim(u) = dim(λ)).

Physically, this function measures the net power supplied to the system by the input

and output channels. The system is called dissipative if there exist a function S(x)

7The singularity set is the complement of the set of definition.
8Locally integrable means that

∫ t1

t0
|w(u(t), λ(t))|dt <∞ for all t0 < t1.
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which satisfies S(0) = 0, S(x) ≥ 0, and

S(x(T ))− S(x(0)) ≤
∫ T

0

w(u(t), λ(t))dt (4.39)

for all bounded u and all T ≥ 0. If the above dissipation inequality holds, then S is

called a storage function. Intuition hints that the storage function is similar to the

stored energy. The dissipation inequality is interpreted as follows. The change in

energy stored in a system (LHS of (4.39)) is less than the net energy supplied. Since

the energy stored is less than the supplied energy, some of the supplied energy must

have been dissipated by the “resistive” elements of the system. When (4.39) holds

with equality, the system is called lossless. When the supply rate has the particular

form w(u, λ) = uTλ, the system is called passive. Note that if S is differentiable, it is

typically easier to evaluate the following differential dissipation inequality

Ṡ(x) ≤ w(u, λ)

The usefulness of the passivity techniques stems from the fact that the passivity

properties of dissipative systems are preserved under certain cascade and feedback

interconnections. This allows for the study of dissipative subsystems and the con-

struction of composite storage functions as summations of the individual subsystem

storage functions. Furthermore, a large class of passive systems may be asymptoti-

cally stabilized by output feedback. For example, suppose that λ = 0 implies that

x = 0. Then, the storage function S(x) may be used as a Lyapunov function to

prove stability. Indeed, Ṡ(x) ≤ uTλ = −λTλ < 0 with negative output feedback. Via

LaSalle, x = 0 is asymptotically stable because λ = 0 implies that x = 0. These ideas

are at the heart of the passivity-based control law constructions below.
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4.4.1 Stabilization of the Mechanical Subsystem

First, the stabilization of the mechanical subsystem dynamics of the AMB, which is

described by the equations,

ż1 = z2 (4.40a)

ż2 = f2(y) = εy + y[2] (4.40b)

is obtained. Then stabilization of the full cascaded system of (4.13) is undertaken in

Section 4.4.2.

Lemma 2. (Dissipativity of f2(y) nonlinearity)

Consider the z2-equation of the mechanical subsystem dynamics (4.40b) with

y = −k2z2 + r1, k2 > 0 (4.41)

This system is dissipative with input r1 and output z2 with respect to the supply rate

w1(r1, z2) = z2f2(r1). Equivalently, it is passive from input f2(r1) to output z2.

Proof. Consider the storage function S1(z2) = 1
2
z22 . Calculating its time derivative

one obtains Ṡ1 = z2ż2 = z2f2(r1 − k2z2). If z2 = 0 then Ṡ1 = 0 and the system is

trivially dissipative. If z2 6= 0 (assume without loss of generality that z2 < 0), by the

Mean Value Theorem [3] there exists ξ ∈ (r1, r1 − k2z2) such that f2(r1 − k2z2) =

f2(r1) − k2f
′

2(ξ)z2. Let δ(ξ) := f ′2(ξ) = ε + 2|ξ|. If ε > 0 then δ(ξ) ≥ ε > 0 for

all ξ ∈ R. For the zero-bias case, ε = 0 and δ(ξ) = 2|ξ| ≥ 0. Moreover, if z2 6= 0

then necessarily ξ 6= 0 and hence δ(ξ) > 0. To see this, assume instead that ξ = 0.

Then f2(r1 − k2z2) = f2(r1) and since the function f2 is one-to-one, this implies that

r1 − k2z2 = r1 or that z2 = 0, a contradiction.

Hence, the above arguments have shown that

Ṡ1 = z2(f2(r1)− k2δ(ξ)z2)

= z2f2(r1)− k2δ(ξ)z22 ≤ z2f2(r1)
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for all r1 and z2. Therefore the system (4.40b)-(4.41) is dissipative from input r1 to

output z2 or passive from input f2(r1) to output z2.

The integrator (4.40a) is clearly dissipative (in fact, lossless) from z2 to z1 with

respect to the supply rate w(z1, z2) = z1z2 and the storage function S = 1
2
z21 . The next

lemma shows that dissipativity still holds if one chooses a slightly different supply

rate.

Lemma 3. (Dissipativity of Integrator)

The system (4.40a) from input z2 to output z1 is dissipative (lossless) with respect

to the supply rate w(z1, z2) = f2(k1z1)z2. Equivalently, it is passive from input z2 to

output f2(k1z1).

Proof. Let the storage function

S2(z1) =
1

k1

∫ k1z1

0

f2(τ) dτ

This is positive definite since f2 is an odd function. Calculating its derivative yields

Ṡ2 = f2(k1z1)ż1 = f2(k1z1)z2

which gives the desired result.

Lemmas 2 and 3 motivate one to choose the following expression for the input r1

in (4.41)

r1 = −k1z1, k1 > 0 (4.42)

The previous choice for r1 results in a negative feedback interconnection of a dissi-

pative system with a lossless one. The overall feedback interconnection is shown in

Fig. 4.2. Under some mild assumptions, it is expected that this interconnection will

be GAS. This is indeed true as shown in the next proposition.
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dissipative lossless

Figure 4.2: Overall feedback interconnection.

Proposition 4. (Mechanical Subsystem Stabilization )

The system (4.40) with the control law

y = u0(z) = −k1z1 − k2z2 (4.43)

where k1 > 0 and k2 > 0 is GAS.

Proof. Consider the Lyapunov function candidate

V1 = S1(z2) + S2(z1) =
1

2
z22 +

1

k1

∫ k1z1

0

f2(τ) dτ (4.44)

Clearly, this is a positive definite function. Calculating the time derivative of V1 along

the trajectories of (4.40) and following similar arguments as in the proof of Lemma 2,

one obtains,

V̇1 = −z2f2(k1z1 + k2z2) +
1

k1
f2(k1z1)k1z2

= −z2f2(k1z1)− δ(ξ)k2z22 + z2f2(k1z1)

= −δ(ξ)k2z22 ≤ 0

Recall that δ(ξ) ≥ 0 and δ(ξ) = 0 if and only if ε = 0 and z2 = 0. If z2 = 0 identically

then ż2 = 0. It follows that f2(k1z1) = 0 and hence z1 = 0. Thus, the only invariant

set of the system (4.40)-(4.43) is z1 = z2 = 0. Since V1 is radially unbounded and

V̇1 ≤ 0, all system trajectories are bounded. Using LaSalle’s Theorem [34], it follows

that the system is GAS.
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Energy considerations lead to the following alternative proof of stability of the

system (4.40) with control law (4.43).

Proposition 5. (Mechanical Subsystem Stabilization (Alternate Lyapunov function))

The following positive-definite, radially unbounded function

V2 =
k1
2
z22 +

∫ u0(z)

0

f2(τ) dτ (4.45)

with u0(z) as in (4.43) is a Lyapunov function9 for system (4.40). The first term is

similar to the kinetic energy ( 1
2
mv2) of the rotor and the second term is a kin to the

work done on the rotor by the electromagnet force.

Proof. Calculating the time derivative of V2 along the trajectories of (4.40) one ob-

tains,

V̇2 = k1z2f2(u0(z)) + f2(u0(z))(−k1z2 − k2f2(u0(z)))

= −k2f 22 (u0(z)) ≤ 0

Since V2 is radially unbounded all solutions are bounded. If u0(z) = 0 identically,

then u̇0(z) = 0. The last condition implies that u̇0(z) = −k1ż1 − k2ż2 = −k1z2 −

k2f2(u0(z)) = 0 which together with u0(z) = 0 implies that z2 = 0. Hence also z1 = 0

and the origin is the only invariant subset inside the set {z ∈ R
2 : V̇2 = 0 }. Global

asymptotic stability follows immediately from LaSalle’s Theorem.

4.4.2 Stabilization of the Cascade

To complete the stabilization of the overall system it suffices to implement the flux

command (4.43) via the integrator (4.13b). To this end, let the new state variable

9This Lyapunov function was suggested by A. Teel and M. Arcak [75].
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η = y − u0(z) and rewrite the system dynamics as follows

ż1 = z2 (4.46a)

ż2 = f2(η + u0(z)) (4.46b)

η̇ = u+ k1z2 + k2f2(y) (4.46c)

Proposition 6. (Local Asymptotic Stability via Input to State Stability)

Consider the system (4.46) and let the control law

u = −k1z2 − k2f2(y)− γη (4.47)

where k1, k2 and γ are some positive constants. Then the closed-loop system is locally

asymptotically stable.

Proof. Using (4.47) the closed-loop system takes the form

ż1 = z2 (4.48a)

ż2 = f2(u0(z)) + π̃(z, η)η (4.48b)

η̇ = −γ η (4.48c)

where π̃(z, η) = π(z, η + u0(z)) and π(z, y) as in (4.23). The result follows directly

by linearizing the closed-loop system (4.46)-(4.47) and showing that the linearized

system matrix is Hurwitz.

Global asymptotic stability cannot be ensured with the control law (4.47) with-

out extra conditions. For example, if one could show that the system (4.48a)-(4.48b)

is (Globally) Input-to-State Stable10 (ISS) from input η to the state z then global

asymptotic stability would follow as a result of a cascade interconnection of the glob-

ally exponentially stable system η̇ = −γ η with an ISS system [69].

10One may easily show that system (4.48a)-(4.48b) from input η to state z is Locally ISS. Thus,
only local asymptotic stability of the local ISS system cascaded with the exponentially stable η
subsystem may be concluded at this time. For the pertinent definitions, see [69], [34].
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Global asymptotic stability can still be ensured if one chooses a slightly different

control law and uses the Lyapunov function from Proposition 4.

Proposition 7. (GAS via Prop. 4)

The system (4.46) with the control law

u = −k1z2 − k2f2(y)− z2π(z, y)− γη (4.49)

where k1, k2, γ are positive constants, is GAS.

Proof. Consider the Lyapunov function V = V1+
1
2
η2 where V1 as in equation (4.44).

The derivative of V is

V̇ = z2f2(y) + f2(k1z1)z2 + ηη̇

= z2f2(u0(z)) + z2π(z, y)η + f2(k1z1)z2

+η(u+ k1z2 + k2f2(y))

= −δ(ξ)k2z22 + η(u+ k1z2 + k2f2(y) + z2π(z, y))

where ξ ∈ (−k1z1,−k1z1−k2z2). Using the control law (4.49) the last equality yields,

V̇ = −δ(ξ)k2z22 − γη2 (4.50)

Recall that δ(ξ) = f ′2(ξ) ≥ 0 and that δ(ξ) > 0 for all ξ ∈ R if ε > 0. In case

ε = 0 then δ(ξ) = 0 if and only if z2 = 0. In either case, (4.50) implies that the

origin is a stable equilibrium point and that all trajectories are bounded. To show

asymptotic stability, assume that η = 0 and that z2 = 0 over a non-trivial interval of

time. Then ż2 = 0 as well, and from (4.46b) it follows that u0(z) = 0. This, along

with z2 = 0 implies that z1 = 0. Therefore, the only invariant subset inside the set

{(z1, z2, η) ∈ R
3 : V̇ = 0 } is the origin. From LaSalle, it follows that the origin is

asymptotically stable. GAS follows from the radial unboundedness of V .

Alternatively, global asymptotic stability is ensured via the Lyapunov function

from Proposition 5.
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Proposition 8. (GAS via Prop. 5)

The system (4.46) with the control law

u = −k1z2 − k2f2(y)− π(z, y)(k1z2 − k2f2(u0(z)))− γη (4.51)

where k1, k2, γ are positive constants, is GAS.

Proof. Let V = V2+
1
2
η2 where V2 as in (4.45). Calculating the derivative of V , yields

V̇ = k1z2f2(y)− f2(u0(z))(k1z2 + k2f2(y)) + ηη̇

= k1z2(f2(u0(z)) + ηπ(z, y))− k1z2f2(u0(z))

−k2f2(u0(z))(f2(u0(z)) + ηπ(z, y)) + ηη̇

= −k2f 22 (u0(z)) + η
(

u+ k1z2 + k2f2(y)

+π(z, y)(k1z2 − k2f2(u0(z)))
)

Letting u as in (4.51) yields V̇ = −k2f 22 (u0(z)) − γη2 ≤ 0. It follows that the

origin is stable in the sense of Lyapunov and that all trajectories are bounded. Global

asymptotic stability follows using a standard LaSalle argument.

In summary, two control laws, (4.49) and (4.51), were derived from Lyapunov

functions based on energy considerations and a third (4.47) was constructed from

input to state stability arguments. Each of these control laws are nonsingular in

ZB. The virtual control law u0 of (4.38) is implemented through the integrator in

equation (4.13b). In contrast to the FBL and IB designs of Section 4.2, the mechanical

subsystem (4.40) is not linearized by the passivity-based virtual control law u0 of

(4.38). This is advantageous because linearization of (4.40) requires the inverse of

the f2 nonlinearity which is non-Lipschitz continuous and is the source of the infinite

voltage commands in the standard ZB nonlinear techniques. In fact, the passivity

arguments take advantage of the sector nonlinearity form of the f2 nonlinearity to

prove stability of the mechanical subsystem. A sector nonlinearity is one which exists
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in the first and third quadrants: see [34] and [69], for example, for the appropriate

definitions. Furthermore, since the f2 nonlinearity retains its sector properties for

any ε ≥ 0, the passivity based control design gracefully incorporates both the ZB and

LB modes of operation.

4.5 Numerical Examples

This section serves several purposes. First, the numerical simulations (via Simulink)

allow one to illustrate the performance of the above control laws on the voltage-mode

gcfc model of (4.3) with respect to their control parameters. Second, the simulations

illustrate the implementation of the gcfc (and cfc) constraint of (3.11) via the state-

dependent voltage switching rule (3.9). Assumed in the gcfc condition is the use of

a flux bias, however the implementation of this bias has not been addressed. These

simulations show that a flux bias may be established in the coils in accordance with

the gcfc condition with voltage-mode amplifiers by using a extra feedback loop. This

feedback loop has flux measurements available during simulation. For application of

this technique on the PREMAG AMB, flux measurements are provided via a static

lookup table: see Chapter 6 for a further discussion on flux measurements.

In addition to the simple simulations above, a high fidelity 1-DOF AMB Simulink

model is available from Knospe [35]. This model is highly tuned from an experimen-

tal apparatus and incorporates several nonlinear dynamics such as flux-spreading (see

Section B.3.3), a flux-current-position lookup table for each electromagnet, coil resis-

tance, voltage saturation, and some flexible modes of a rotor. This model was used

to test the control laws for robustness to unmodelled dynamics before the PREMAG

experimental apparatus was available.

4.5.1 Control Law Verification

This section illustrates the performance of the above control laws when applied to

a specific AMB as modelled in (4.3). The specifications for this AMB are shown in
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Table 4.1. The constant g0 is the distance from each electromagnet to the rotor when

the rotor is centered at x = 0: see Fig. 2.1. These specifications were taken from [35].

Table 4.1: AMB specifications for the numerical examples [35].
Symbols Meaning
N = 321 ] of turns in coil
m = 4.5 kg effective mass of rotor

Φsat = 200 µWb saturation flux
Ag = 137 mm2 electromagnet pole area

g0 = 0.33 mm (13 mils) nominal width of airgap (when x = 0)
xmax = 0.254mm (10 mils) maximum displacement

Numerical simulations were conducted for various combinations of the control

parameters. The initial conditions for all the simulations are (x(0), ẋ(0), φ(0)) =

(xmax, 0, 0). In all simulations it was assumed that both electromagnets start from

rest and thus φ1(0) = φ2(0) = 0. This allows for testing the performance of the

control laws in zero bias mode by setting Φ̄0 = Φ0 = 0.

Figure 4.3 shows the results for the ZB control law in equation (4.37) for several

values of γ. In addition to γ, the control law depends on the parameters p and the

gains k1, k2, β. The gains k1 and k2 were selected as k1 = 1 and k2 = 2. This choice

places both poles of the mechanical subsystem (the eigenvalues of the matrix A) at

−1. The parameter p in the control law (4.37) governs the degree of smoothness of the

function u0(z)
[2p], hence also of the Lyapunov function itself. The states and control

histories become smoother with increasing p. The parameter p can thus be used to

control the smoothness and “aggressiveness” of the control law. The value of α in

all simulations was chosen as α = (2p + 1)/4 in order to make the clf homogenous11

(of degree 2p + 1) with respect to the dilation ∆λ(x) = (λ2x1, λ
2x2, λx3). In all

simulations, the parameter p was chosen as p = 1. From the figures, one concludes

11Homogeneity properties of the zero-bias control law (4.37) are discussed in [83] and the references
therein.
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that larger values of γ lead to smaller settling times. Similarly, although not explicitly

shown, if the gains k1 and k2 are selected so that the poles of the matrix A in (4.15)

become more negative, the settling time also decreases.
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Figure 4.3: ZB operation with control law (4.37) for β = 1, p = 1, k1 = 1, k2 = 2,
and γ = 0.5, 1, 5.

Figure 4.4 compares zero- and low-bias regulation using (4.35) for several values

of the bias flux. Specifically, simulations for Φ0 = 0, 20 and 100 µWb are shown.

The gains for the first two cases were chosen as k1 = 1 and k2 = 2, whereas in the

third case they were chosen as k1 = 1.69 and k2 = 2.6. This ensures that controllers

use approximately the same energy (same area under control voltage signals). The

results show that a larger bias results in smaller voltages and shorter settling times,

as expected. The effect of the parameters γ, p, k1, and k2 in low-bias mode were

similar to those for the zero-bias mode and hence the results of these simulations are

omitted.
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Figure 4.4: ZB and LB operation with control law (4.35) for β = 1, γ = 5 and p = 1.
Φ0 = 0, 20, and 100 µWb. Gains k1 and k2 are chosen so that each case has similar
control.

For Comparison, Figure 4.5 shows the simulation results for the ZB backstepping

control law in equation (4.18). The results are shown for several values of γ with

k1 = 1 and k2 = 2. Note the presence of the large control spikes as the control flux

φ passes through zero despite the fact that this simulation was implemented with a

nonzero value for ε = 10−3 in (4.18).

Several simulations with the passivity-based controllers (4.47), (4.49), and (4.51)

were also performed. Since the responses with control laws (4.47), (4.49), and (4.51)

were similar, only the results with the control law (4.47) are shown here for illus-

tration. Figure 4.6 shows the dependence of the system trajectories and the control

input on the control gain γ for ZB operation. The control gains are chosen as k1 = 1

and k2 = 2. As observed in Fig. 4.6, and similarly to Fig. 4.3, the settling time
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Figure 4.5: ZB operation with backstepping control law (4.18) for γ = 0.5, 1, 5,
k1 = 1, and k2 = 2, and γ = 0.5, 1, 5. Note the presence of the large control spikes as
φ passes through zero.

decreases as γ increases. This is achieved at the expense of higher voltage commands.

Although not explicitly shown, larger values of k1 result in faster state convergence

rates and larger values of k2 result in more damped responses.

4.5.2 GCFC Implementation Issues

To implement the gcfc condition in simulation, one must apply the voltage switching

rule of (3.9) and implement a flux bias. These are tasks discussed below.

4.5.2.1 The gcfc voltage-switching rule

Care should be taken in interpreting the equation φ̇ = v/N between the generalized

control flux and the generalized control voltage. It is reminded that the generalized

control voltage v is a fictitious control variable used to simplify the control design.
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Figure 4.6: ZB operation with control law (4.47) for k1 = k2 = 5 and γ =
0.3, 0.6, 0.9.

The actual voltages applied to each electromagnet Vi should be commanded according

to the state-dependent switching (3.9). As shown in Theorem 1, at steady-state the

bearing will operate at a bias level which is determined by the sum of the actual bias

Φ0 and the minimum of the initial values of the control fluxes. Although typically

the latter term will be very small (at least when starting the AMB operation from

rest) spurious fluxes may still persist. Normally, these remaining spurious control

fluxes will help improve the bearing force-slew rate characteristics. In cases where

the elimination of these spurious steady-state fluxes is imperative one has several

options:

(i) apply any control law to reduce the control flux in at least one of the elec-

tromagnets to zero and thus bring the state into the set S0. For, example,
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using

V1 = v − λφ2, V2 = −λφ2 when φ ≥ 0

V2 = −v − λφ1, V1 = −λφ1 when φ < 0

with λ > 0 instead of (3.9) one obtains system (3.16) with Φ̄0(t) := Φ0 +

e−λtmin{φ1(0), φ2(0)}. A deadbeat controller may also be used to drive the

trajectories to the set S0 in finite time.

(ii) Do nothing. In this case, as shown in Theorem 1 the states (x, ẋ) → 0 while

φi(t)→ min{φ1(0), φ2(0)}. So, stability of the mechanical states of AMB is still

ensured, albeit the AMB will operate at a small additional bias. Nonetheless,

in practice due to the coil resistance and the resulting dissipation of fluxes even

at zero voltage, the AMB states will drift to the set S0. In that respect, the

proposed gcfc switching scheme is forgiving in the presence of nonzero spurious

fluxes. Furthermore, in a real AMB system, measurement noise will corrupt the

flux measurement. It is quite possible that the spurious initial flux is smaller

than the precision in which the flux can be measured. Thus, it seems as if

elimination of the spurious flux is more of a theoretical than practical concern.

For the numerical simulations of the previous section, the switching strategy (3.9)

was implemented using SIMULINK without any difficulty. Figure 4.7 shows the

control voltages and fluxes for the simulation shown in Figure 4.3. It illustrates how

the switching of the generalized control input v according to (3.9) implements the cfc

on the total fluxes Φ2 and Φ1 (recall that the gcfc strategy (3.9) and the cfc strategy

(3.5) coincide in this case). In Figure 4.7 the flux Φ1 and the negative of Φ2 are

shown for clarity. For comparison, Figure 4.9 shows a simulation with a nonzero bias

Φ0 = 20µWb (ε = 0.2) using the high-fidelity model previously mentioned (more on

this later). Figure 4.9 shows the total fluxes and the corresponding control voltages. It

demonstrates how switching of the control input v in accordance with (3.9) imposes
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the gcfc constraints on the control fluxes φ1 and φ2. One may verify that both

electromagnets are biased, however, only one electromagnet is used at a time to

produce a net control force on the rotor.
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Figure 4.7: ZB operation with control law (4.37) for p = 1, k1 = 1, k2 = 2, and
γ = 5, 10, 15. Illustration of how the voltage switching rule (3.5) imposes the cfc
constraint on the total fluxes.

4.5.2.2 Flux-Bias Implementation

The gcfc condition of equation (3.11) assumes voltage-mode amplifiers and the use

of a flux bias, however, the realization of the flux bias has not yet been addressed.

With the power amplifiers operating in voltage mode a flux-feedback inner loop can

be used to regulate the bias flux at Φ0. That is, one may modify the voltage reference

Vr as follows.

Vrj = Vbj + Vcj j = 1, 2
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where Vr is the voltage reference signal applied to the amplifiers, Vb is the flux bias

control signal and Vc is the control signal generated by any of the control laws in

Sections 4.2, 4.3 and 4.4 above.

In Figures 4.8 and 4.9 use a flux-feedback PI inner loop to generate the bias

flux control signal Vb. Figure 4.8, in particular, shows the results of the simulations

using the high-fidelity AMB model of [35] (voltage saturation level set to Vsat = 10

V). In the figures, the dashed line is the simulation results when the control law of

(4.35) acts on the ideal model, i.e., when the plant’s flexible modes, coil resistance,

flux leakage and voltage saturation are neglected. The solid line is the response of

controller (4.35) with p = 1, ε = 0.2 (Φ0 = 20 µWb) using the high-fidelity AMB

model. This simulation presents a situation where the control is acting on a system

with additional un-modelled dynamics. The “ripples” in the voltage input are due

to the rotor flexible modes. Despite the additional effects of the high-fidelity model,

the qualitative behavior of the system is similar as in the ideal model case. The

discrepancy (mainly delay) in the state trajectories of the actual system in Figure 4.8

can be traced to the voltage saturation through simulation. The effects of voltage

saturation during LB operation are dealt with in [80]. From Figure 4.9, one also sees

that the implementation of the flux bias via a PI flux-feedback inner loop works well.

Observe that a bias of 20µWb is quickly established in both electromagnets. The

voltage v is the voltage generated from the control law (4.35). This voltage command

is distributed to the two electromagnets as Vc1 and Vc2 where it is added to the flux

bias voltage commands Vb1 and Vb2. The voltages V1 and V2 shown represent the total

voltage request, that is, Vrj = Vbj + Vcj for j = 1, 2.

4.6 Chapter Summary

This chapter presents the designs of several ZB and LB control laws for a 1-DOF AMB

that is working with voltage-mode amplifiers and constrained by the gcfc condition.
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Figure 4.8: Comparison of response between ideal and high-fidelity AMB models
with control law (4.35).

The assumed plant model is given in equation (4.3) and is parameterized by the

bias constant ε ≥ 0. ZB is implemented when ε = 0 and LB operation occurs with

ε > 0. These new control laws stem from the theory of control Lyapunov functions

and dissipativity and are valid for both ZB and LB operation. Due to the form of the

plant model, each LB control law contains a ZB control implementation as ε→ 0. The

control laws developed in Sections 4.3 and 4.4 are better behaved than the standard

feedback linearization and integrator backstepping control laws described in Section

4.2. In particular, as the bias reduces to zero, the FBL and IB laws are singular on

a plane in R
3, the clf control law is singular on a line in R

3 and the passivity-based

control laws are nonsingular on R
3.

The feasibility of the gcfc constraint was shown through simulation. The state-

dependent voltage switching law of (3.9) imposes the complementarity condition on
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Figure 4.9: Illustration of gcfc scheme for the high-fidelity AMB model with control
law (4.35). The total fluxes Φ1 and Φ2, the control flux φ, and the corresponding
control voltages are shown. The bias flux is set to Φ0 = 20µWb by an extra flux-bias
feedback loop. The signals v1 and v2 include the voltages used to set this bias.

the control fluxes φ1 and φ2: See Figure 4.9. Furthermore, a voltage-mode flux-bias

feedback-control loop may be used to set up a flux bias in the electromagnets. In the

simulation, flux measurements are assumed to be available. In addition, simulations

with a high-fidelity AMB model show that the control laws have some degree of

robustness to un-modelled dynamics.
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CHAPTER V

EXPERIMENTAL SETUP

5.1 Overview of Experimental Investigations

Although the simulation results in the previous chapter suggest that the gcfc tech-

nique and the new control laws of Sections 4.3 and 4.4 are valid, several practical and

theoretical questions must be posed. There are practical concerns about the imple-

mentation of the flux bias, the gcfc technique, and the control laws because each one

depends on flux measurements. However, measurement of the flux is not trivial. Fur-

thermore, since the voltage-switching rule is triggered when the flux passes through

zero, it is unclear if flux measurement noise will interfere with the realization of the

gcfc condition. Also, it has been assumed that IR compensation is possible on a real

system. However, this may be a challenging proposition because the resistance may

change with coil temperature. In addition, each control law uses the rotor velocity as

a state. In general, velocity estimation in the presence of measurement noise can be

problematic.

The simulations and control laws from the previous chapter also pose several

theoretical questions. The reduction of the singularity space for the control laws

operating in ZB in the previous chapter was of great concern. The control designs

progressed from the backstepping controller, singular on a plane in R
3, to the clf-based

controller, singular on a line in R
3, to the completely non-singular passivity-based

control laws. At this point, it is unclear whether the effort to reduce the singularity

space is of practical value or if it is just a theoretical exercise. Also, it is suggested

that there is a trade-off between the AMB stiffness, power consumption, and FWB

efficiency as the flux bias changes. How large should the bias be before any significant
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change in the stiffness is seen? How small can the bias become before the singularities

of the ZB control laws produce large voltage spikes? Will the limited bandwidth and

voltage saturation of the voltage mode amplifiers lead to instability in ZB or just to

a reduction in performance? These questions can only be answered by verifying the

above control laws and gcfc conditions on a real AMB system such as the PREMAG

reaction wheel.

This and the next several chapters describe the experimental setup for testing

of the nonlinear control laws on the PREMAG reaction wheel and the experimental

results. This chapter focuses on the setup of the experimental hardware and its

operation. Chapter 6 continues to answer the practical questions concerning flux

measurement, the implementation of the flux bias and the gcfc condition. Chapter 7

derives the 4 degree-of-freedom state space model of the PREMAG reaction wheel and

the approach to its control. As a preliminary step to the investigation of the nonlinear

control laws, the reaction wheel is first stabilized with 4 independent, SISO, Lead+PI

linear control laws with the amplifiers using a large bias while acting in current mode.

Once the reaction wheel is stabilized, one of the control axes is converted to a test bed

for the nonlinear low-loss controllers by using the amplifier in voltage mode with IR

compensation. Chapter 8 presents the experimental results for the low-loss nonlinear

controllers. In particular, the modifications to the control laws so that they can

eliminate steady state errors due to disturbances is presented. Also, their regulation

performance as a function of the flux bias is investigated in several testing situations.

The trade-off between stiffness, power consumption, total square flux requirements,

and operation near ZB singularities is presented.

5.2 Experimental Hardware and Configuration

This chapter describes geometry and operation of the 6-DOF reaction wheel illus-

trated in Figure 1.3 and the supporting control hardware. The reaction wheel was
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provided to the author by the Air Force Research Labs (AFRL) for experimental

testing of the low-loss control algorithms designed in Chapter 4. AFRL originally

commissioned Precision Magnetic Bearing Systems, Inc. (PREMAG) to construct

the lightweight, magnetically-suspended reaction wheel for use on a small satellite.

Figure 5.1: Dynamics & Control Systems Laboratory (DCSL) at Georgia Tech
Aerospace Engineering Department.

Figure 5.1 presents a photo of the Dynamics and Control Systems Laboratory

(DCSL) of the Aerospace Engineering department at Georgia Tech. The reaction

wheel assembly occupies about one cubic foot in volume and is mounted on a stan-

dard optics bench. Since the low-loss control algorithms may be verified with the

rotor spinning at low (or even zero) angular velocity, a cost-prohibitive containment
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system is not deemed necessary1. Standard laboratory equipment including a spec-

trum analyzer, several oscilloscopes, a multimeter, and a bench power supply are

shown.

Host Computer and DS1103
Running Matlab, Simulink, 

RTW, and ControlDesk

(voltage or current mode operation)

Position Sensor Amplifier 

Copley 412 Servo Amp (8x) 

Copley 5121 Brushless 
DC Motor Controller

Reference 
Signals

Reference 
Signals

Monitor 
Signals
Monitor 
Signals

Differential
Position 
Signals

Differential
Position 
Signals

Control 
Signals
Control 
Signals

Hall 
Signals

Hall 
Signals

Control 
Signals
Control 
Signals

Position 
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Position 
Signals (8x)(8x)

(4x)(4x)

I/O Board 

Figure 5.2: Hardware feedback loop.

Figure 5.2 shows a graphic of the hardware feedback loop. The components are

listed below. Each component is described in detail in the following sections.

• PREMAG Reaction Wheel: The PREMAG reaction wheel assembly con-

sists of a highly-balanced rotor, eight electromagnets, brushless 3-phase DC

motor mounted in rotor hub and necessary hall position sensors, and eight

eddy-current proximity sensors. Neodymium-Iron-Boron (Neo) radially poled

permanent magnets provide a flux bias for bearing stiffness and passive vertical

rotor levitation.

1At this time, reaction wheel spin tests are not conducted because the reaction wheel spin motor
is in need of repair. Since the control laws may be verified without spinning, repair of the reaction
wheel motor was deemed low priority.

97



• Position Sensor Amplifier: The Kaman Instrumentation Measurement Sys-

tems Inc. eight-channel preamplifier provides the driver electronics for the

eddy-current proximity sensors and produces eight voltage signals (and four

differential voltage signals) that are proportional to the airgaps on each side of

the rotor.

• Eight Power Servo-Amplifiers: [84, 85] Eight Copley Controls Inc. model

412 power servo-amplifiers are selected to drive the eight electromagnet coils.

The amplifier uses a high-power H-Bridge PWM output stage and employs

internal feedback to operate in current mode, voltage mode or voltage mode

with IR compensation. Note that the Copley Controls model 5121 Brushless

DC motor controller is available for driving the DC motor constructed within

rotor hub. However, since the spin motor was not used in this investigation, the

presentation of this hardware is omitted.

• Anti-Aliasing and Signal Conditioning Filters: Several active and passive

low-pass and notch filters are implemented for anti-aliasing and PWM noise

rejection on each A/D and D/A channel.

• dSPACE 1103 Data Acquisition System: The dSPACE Inc. model 1103

data acquisition system is selected for digital implementation of the control al-

gorithms. The hardware has 20 analog inputs, 8 analog outputs, multiple digital

I/O channels. The system is designed around a Motorola 400MHz power PC

processor and has a convenient I/O interface board. The dSPACE board seam-

lessly interfaces with Matlab and Simulink and makes control implementation

a one mouse-click procedure.
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5.3 PREMAG AMB Geometry and Operation

The geometry of the AMB is now described. Figure 5.3 shows an exploded view of

the AMB. Eight electromagnets and eddy-current proximity sensors are mounted into

the housing which is bolted to the base plate. The rotor shaft fits through the center

hole of the base plate and is held securely in place by a nut. A nominal airgap g0

of about 20 mils exists between the electromagnets and the rotor. Define an inertial

coordinate frame centered at the geometric center of the housing with the X and Y

axes aligned with the axes of the position sensors: see Figure 5.3. The inertial Z axis

lies along the rotor shaft.

Figure 5.3: Exploded view of PREMAG reaction wheel. Note that some position
sensors are hidden for clarity.

The rotor is composed of the hub, the spokes, the laminated ferromagnetic rim,

the two circular Aluminium sensor targets, and the rotor shaft. Most of the mass

of the rotor is concentrated in the rim to increase the rotational inertia. This rotor
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has been spin balance tested by PREMAG up to 28, 000 rpm. As illustrated in

Figure 5.4, a brushless DC permanent magnet motor constructed within the rotor

hub provides the spin about the Z axis. Note that the stator windings of this DC

motor are mounted on the stationary rotor shaft and the motor permanent magnets

are mounted on the interior of the rotor hub. This motor is driven by the Copley 5121

Motor controller. The rotor is only loosely connected to the stationary rotor shaft.

A horizontal and vertical clearance between the rotor hub and the rotor shaft allows

for 6-DOF of movement of the rotor. The backup or catcher ball-bearings limit the

range of motion to ±18 mil horizontally and ±5 mil vertically. The axial motion is

passively stabilized.

Figure 5.4: Detail of the brushless DC permanent magnet motor.

Four degrees-of-freedom of the rotor are actively stabilized via feedback control.

The proximity sensors measure the airgap between the sensor face and the sensor

targets. The rotor position and orientation is determined from these measurements.

The goal of the control law is to regulate the rotor position and orientation to X =
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Y = 0 and θX = θY = 0, respectively. Equivalently, one may regulate each of the

eight airgap lengths to g0. In this case, the four degrees-of-freedom are the horizontal

positions of the center of the top and bottom of the rotor. These control axes are

represented by Xt, Yt, Xb, and Yb. In this work, strict performance specifications on

the rotor regulation are not stated. This work serves only as a control law feasibility

study, and a control law will be deemed successful if the rotor avoids contact with the

electromagnets and the rotor shaft in the presence of disturbances. Stabilization of

the rotor is of primary concern. The 4-DOF modelling and stabilization of the rotor

by 4 independent SISO linear control laws is presented in Chapter 7. Once the rotor

is stabilized, the Xb control axis is used as the test bed for the nonlinear low-loss

control techniques of Chapter 4.

5.3.1 Passive Axial Stabilization

Figure 5.5 shows a closeup of the AMB airgap and a cross-section of the rotor, the

housing, and the electromagnet (EM) cores (the electromagnets that fit around them

have been suppressed for clarity). In the original configuration of the PREMAG

bearing, a radial flux bias was established with radially poled Neodymium-Iron-Boron

(Neo) magnets. They were oriented so that flux would flow through the top EM

core, down through the rotor, into the bottom EM core and complete the loop in

the housing. This flux bias served two purposes. First, the radial bearing stiffness

is increased: recall that the bearing stiffness depends directly on the bias flux, see

equation 3.4. This is an inexpensive way to provide a constant bias flux and has

the added benefit of requiring no electrical power. Second, the flux bias is required

energize the airgap for the passive stabilization of the rotor in the axial Z direction.

Table D.2 in Appendix D.2 states that the force generated by a magnetic field always

acts in the direction to minimize the reluctance of the airgap. The clever tooth-like

design of the rotor and EM faces results in an airgap reluctance that is minimum when
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Figure 5.5: Original permanent magnet flux bias and passive Z magnetic bearing .

the teeth are aligned. When the rotor moves in the axial Z direction, the reluctance

increases and consequently the force generated by the magnetic field reacts to reduce

the reluctance. This results in a passive axial magnetic bearing. The alignment of

the rotor and electromagnets shown in Figure 5.5 is the minimum reluctance Z = 0

equilibrium point.

This approach to passive vertical stabilization of the rotor is advantageous for low

angular velocity, linearly controlled AMBs. The constant flux bias is provided with

no electrical power and it only requires proper shaping of the bearing components and

some inexpensive Neo magnets. However, this configuration presents a problem for

low-loss AMB studies. The problems of a large flux bias for low-loss bearing design are

stated in Section 2.2.2. Operation with low or zero flux bias is desired. In principle,

one could bias the electromagnet coils to lower or even remove the flux bias, however

this is a tricky proposition. The extraordinarily strong field and very high coercivity

of Neo magnets may require large bias currents leading to coil heating, changing

coil resistances, core heating, etc. Furthermore, if one is successful in eliminating
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the radial flux bias for ZB control studies, then one has also eliminated the vertical

support for the rotor. A new vertical support system must be constructed that is

independent of the radial bias flux.

To solve this problem, the radially poled permanent magnets are removed and a

new passive magnetic bearing is constructed. As shown in Figure 5.6, twelve axi-

ally poled Neo magnets are attached to the bottom of the lower sensor target with

industrial strength epoxy. No analysis has been done to calculate the maximum an-

gular rotor velocity that will stress the epoxy to failure. This presents a potentially

hazardous situation and high-speed rotor testing with this configuration is not recom-

mended. Fortunately, the low-loss AMB control feasibility studies may be conducted

with the rotor at low (even zero) angular velocities. The twelve magnets mounted on

Sensor Targets Laminated
Ferromagnetic
Rotor Rim

Neodymium
Iron Boron
Magnets

Rotor Hub:
•DC motor
•Catcher Bearings

Clearance Between 
Rotor and shaft

Rotor Shaft:
•Stator of DC motor
•Mounts to base plate

Figure 5.6: Bottom view of rotor.

the rotor repel the three Neo magnets mounted on the base magnet platform shown

in Figure 5.3. Thus, the rotor floats on a magnetic cushion and is passively supported

against its own weight in the Z direction.
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Figure 5.7: Rotor axial support system.

The design of this passive magnetic bearing (PMB) was conducted by trial and

error. To make the mechanical design flexible, the stator mounting platform’s axial

position is adjustable. As seen in Figure 5.7, the mounting platform is connected to

the threaded rotor shaft by a two nuts and the platform struts fit through holes bored

into the base plate. Adjustment of the nuts allows one to precisely set the PMB airgap.

To tune the PMB, use the following procedure. First, regulate the rotor position with

feedback control so that the rotor is not touching the electromagnets or the catcher

bearings in the radial direction. Next, check to see if the rotor is rubbing against

the catcher bearings in the Z direction by spinning the rotor. The rotor comes to a

stop within a few revolutions when there is contact with the catcher bearings. Now

adjust the nuts to eliminate any contact between the rotor and the catcher bearings

and continue with the radial control design testing.

Note that the PMB does not have the best damping characteristics and some minor

oscillation along the Z axis during a quick rotor transient is possible. Also, proper
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design of the shape of the PMB field is required to avoid some “bouncing” of the rotor

along the Z direction when the rotor spins. To have a perfectly symmetric PMB field,

one would ideally construct a continuous, axially poled Neo ring and mount it to the

sensor target in place of the 12 Neo magnets. However, this would most likely require

the services of a subcontractor to construct. The cheaper 12 discrete Neo magnet

solution is an approximation to this ideal situation. The magnetic flux density of the

Neo magnet is strongest at the center of the magnet and degrades quickly near the

edges. Thus, there is a variation in the B field in the Z direction as one traverses the

discrete 12 magnet ring. If this variation in the axial B field is too dramatic, the net

axial magnetic force created by the interaction of the PMB rotor and stator magnets

may be a function of the rotor spin angle. As a result, the rotor may “bounce” in the

Z direction when the rotor spins if the axial B field variation is extreme.

Figure 5.8: Magnetic field of the 12 Neodymium-Iron-Boron PMB rotor magnets
as a function of axial Z direction. The ferromagnetic celluloid sheet reveals a slice of
the magnetic field. Note that the fields tend to blend together as the axial distance
from the surface of the rotor increases.
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To reveal the shape of the magnetic field without resorting to finite element com-

puter simulations, a cellulose sheet coated with a ferromagnetic colloidal substance

is used. When in the presence of a magnetic field, the iron particles suspended in

the celluloid sheet change their orientation and consequently change the luminos-

ity/reflectivity of the sheet. When used near a magnet, the sheet reveals a slice of

the magnetic field. Figure 5.8 shows several slices of the magnetic flux density of the

12 Neo magnet ring at increasing distances from the face of the rotor. As illustrated,

the variation of the B field is dramatic close to the surface of the rotor. However,

as the PMB airgap increases, the fields of the individual magnets blend together and

lead to a relatively smooth and symmetric B field. At an airgap of about 1 cm, the

bounce of the rotor in the Z direction is minimal.

5.3.2 Electromagnet Core Design

Figure 5.9 shows the housing with the upper and lower electromagnet ring cores

installed. The 60-turn 22-gage wire electromagnets are painted with a red insulating

enamel to avoid short circuits between coils and the rotor. Eight coils fit into the two

ring-shaped electromagnet cores. The cores are built up from 4 mil thick laminations

of SuperPerm49 (49% Nickel non-oriented electrical steel) to reduce eddy-current

losses in the core. The core has a saturation flux density of Bsat = 1.2T and a

cross-sectional area of 10.7cm2.

For ease of construction and installation, four electromagnets share one ring-

shaped core. In general, when several coils share a common core a transformer results.

That is, the flux passing through one coil is shared by all of the coils. The flux in one

coil is highly dependent on the currents in the other coils. This concept of mutual

inductance is introduced in Appendix D.3. This makes for a terrible actuator since

current through one coil will excite all the coils and produce forces on the rotor in

several directions. The laminated ring-shaped cores used in the PREMAG bearing

106



Figure 5.9: Geometry of the electromagnets and electromagnet cores.

have a special shape which reduces the coupling between the coils to an acceptable

level. Looking closely at Figure 5.9, one notes that each ring-shaped core has four

notches. The flux produced by one electromagnet tends to flow through the core

in the radial direction to produce a force and also around the core to be shared by

the other electromagnets. These notches increase the reluctance of the core along

its perimeter so that most of the flux of the electromagnet will flow in the radial

direction. That is, the mutual inductance between the coils is reduced to a small

level by the notches. The resulting structure is a set of four essentially decoupled

electromagnets that have a mechanically firm base.

5.4 Sensor Measurements

The proper placement and choice of sensors in a system can often be a critical issue

in control design. For example, as shown in Chapter 7, the natural choice of variables
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for derivation of the dynamics of the rotor is the horizontal position of the rotor in

the XY plane and the tilt θX and θY about the X and Y axes. With these states,

one may regulate the rotor to (X,Y, θX , θY ) = (0, 0, 0, 0). However, the positioning

of the sensors allows for direct measurement of the airgaps. One obtains an easier

control design by independently regulating each airgap length to g0.

The eddy-current based proximity sensors are mounted on the AMB housing along

each control axis: See Figure 1.3. Note that there are two sensors per control axis,

giving a total of eight. The sensor produces a voltage that is a nonlinear function

of the distance between the face of the sensor and the circular aluminium targets

mounted on the rotor. This nonlinear function has a roughly sigmoidal shape, perhaps

V = a arctan(bx)+c, for a, b, c ∈ R. Thus, over a small range in x, the output voltage

is approximately linear with an offset bias. These eight voltages are amplified and

reproduced by the Kaman Instrumentation Measurement Systems preamplifier/sensor

driver.

Notice that the airgaps on opposite sides of the rotor are not independent. If

the length of the airgaps are g0 when the rotor is centered, then for any given rotor

position, the airgaps on opposite sides of the rotor will always add to 2g0. Thus, four

of the eight airgap sensor measurements are redundant. However, the Kaman Instru-

mentation Systems preamplifier puts these redundant signals to use by producing a

differential voltage output. The differential voltage Vd is the difference between the

airgap voltages on opposite sides of the rotor. For example, if g1 and g3 are the gap

lengths on opposite sides of the rotor, and the sensors measure V1(g1) and V3(g3),

respectively, then Vd(g3 − g1) = V3(g3) − V1(g1) := VYtop. It is shown in the sequel

that g3 − g1 gives the position of the center of the top of the rotor in the Y direction

and is zero when the rotor is centered. The voltage VYtop is also sigmoidal, but has

greater position sensitivity and a larger linear range. The greater position sensitivity

is achieved by a sensitive circuit design and matching of the sensor characteristics on
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each control axis. For simplicity of the feedback law, a linear characteristic is fit to

this nonlinear voltage/airgap signal and compensation for any voltage offset bias is

implemented with software. This results in direct measurement of the center of the

top and bottom of the rotor. The linearized position sensor maps are shown in Figure

5.10.
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Figure 5.10: Voltage-Position sensor maps.

In addition to measurement of airgap lengths, the coil currents, and the applied

coil voltage measurements are available for feedback control. Note that direct mea-

surement of the ideal coil voltage via a search coil2 is used to construct a flux-current-

position lookup table, but the search coil measurements are not used for feedback con-

trol. The coil current and applied voltage measurements are outputs of the Copley

Controls, model 412 power servo-amplifiers. In this work, the coil current is measured

in current-mode operation and both the applied voltage and coil current are measured

2See Chapter 6.
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in voltage-mode operation.

5.5 Copley 412 Power Servo-Amplifiers

The electromagnet coils are driven by the Copley Controls model 412 Power Servo-

Amplifiers. These amplifiers are capable of providing 10 Amps continuous and 20

Amps peak current when operating from a 24-90 Volt DC power supply. Note that an

internal component header allows for adjustment of the peak and continuous current

levels. To simulate a spacecraft bus, a 28 volt, 1200 watt (46 A max @40◦C-31 A

max @70◦C ) regulated DC power supply is used.

Note that these amplifiers are servo amplifiers as opposed to power amplifiers. A

power amplifier only boosts the signal level of the control signal to one that can drive

the coils. A servo amplifier utilizes internal feedback as well as power amplification.

The Copley 412 amplifiers use a PWM output stage for efficient power amplification.

There are two modes of operation: voltage mode and current mode. Recall that the

coil dynamics have the form

Vapp = IcR +NL(x)
dIc
dt

+ Ic
dL(x)

dx
ẋ (5.1a)

= IcR +Nϕ̇ (5.1b)

When operating in current mode, current feedback is used to drive the error between

the coil current Ic and a reference current Ir to zero. That is, the actual coil current

is regulated to the desired current, even in the presence of a changing inductance.

In this way, the electrical dynamics of equation (5.1a) are effectively eliminated (at

least for reference signals within the bandwidth of the current loop). Depending on

the choice of components, the bandwidth of this control loop is approximately 1− 3

kHz.

When operating in voltage mode, the applied voltage Vapp is regulated to Vr. This

essentially gives the coil dynamics as Nφ̇ = Vr − IR. That is, the reference voltage
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assigns the derivative of the flux, minus the IR voltage drop. As discussed in Section

2.1, IR compensation may also be used at this point so that the reference voltage can

directly assign the rate of change of the coil flux. The reported control bandwidth of

the voltage loop in the Copley data sheet is approximately 200Hz.
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Figure 5.11: A functional schematic diagram of the Copley Controls 412 Servo
Amplifier.

To better understand the operation of the amplifiers, a functional schematic is

shown in Figure 5.11. The load and 28 V power supply are connected to the PWM

output stage. This subcircuit monitors the voltage applied across the coil Vapp and

the current through the coil Ic. These signals are provided at output terminals for

user access.

To setup the amplifier in current mode, the resistor Rv is removed and the switch

S2 is closed. A unity-gain differential opamp is used as the input stage of the Copley

412. This produces a voltage Vr = Vr+−Vr−. One has the option of using the voltage

summing amplifier as an input filter stage with the proper selection of components

for Z1 and Z2. The opamp integrator stage simplifies into a voltage buffer when S2 is
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closed. If desired, one may select header resistors to set current limits. In this work,

the current limits are left at the default values of 10 A continuous and 20 A peak. The

resulting current reference Ir is a possibly scaled version of the externally applied Vr.

The current reference is also available for monitoring. The current summing opamp

forms the feedback loop and uses a compensation network to boost the bandwidth of

the coil. One can monitor the performance of the current loop by comparing Ir and

Ic.

When the amplifier is used in voltage mode, S2 is opened so that the integrator is

active. Instead of implementing a true integrator, the integral is approximated by a

low-pass filter with a very low break frequency. The break frequency can be adjusted

by tuning RI . To form the voltage feedback loop, the resistor RV is inserted into

the component header. The voltage loop basically wraps an outer PI control loop

around the inner current feedback loop. These control loops are better illustrated in

the block diagram form shown in Figure 5.12.

LPF 
LoadLead/PIFilter

Current Loop

Voltage Loop

S2 closed = current mode
S2 open = voltage mode

Figure 5.12: Feedback loops used in the Copley 412 amplifier.

5.5.1 Amplifier PWM Output Stage

The output stage employs a power MOSFET H-Bridge configuration to produce pos-

itive and negative coil currents from the single polarity 28V power supply. Figure

5.13 shows a simplified3 schematic of a typical PWM output stage. The n-channel

3A well designed H-bridge circuit has several extra features such as over-voltage and short circuit
protection for the transistors.
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Figure 5.13: A typical configuration of a PWM amplifier.

enhancement MOSFET transistors shown are operated as normally-open switches.

When the gate voltage is zero, the transistor is off (an open circuit). When the gate

voltage is above a certain threshold voltage, the transistors are fully on (basically

a short circuit). To illustrate the operation of the H-Bridge, assume that transistor

Tc is on. The digital logic and connection of the transistor gates ensures that the

transistors marked TA are on and TB are off when Vin > 0. In this case, current flows

from the power supply, through the top TA transistor, through the coil, through the

bottom TA transistor and finally to ground through Tc. The full 28V is allowed to

drop across the coil. Likewise, when Vin < 0, the transistors marked TA are off and

TB are on. A negative −28V is applied across the coil and the current flows in the

opposite direction. When Tc is turned off, no current flows.

A variable duty-cycle or pulse width modulated (PWM) digital signal is applied

to the gate of Tc. This PWM signal is a periodic 25 kHz square wave with duty cycle

proportional to Vin. As a result, a 0 to 28 V or 0 to −28 V (depending on the sign of
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Vin) PWM voltage is applied across the coil. The resulting coil current Ic is a filtered

version of the PWM voltage signal. This is due to the inductive, low-pass nature of

the coil. To see this, model the load as a series winding resistance Rs and a series

inductance L(x). The load is governed by

Vapp = RsIc + L(x)
dIc
dt

The transfer function from the voltage applied across the coil to the current through

the coil is

Ic(s)

Vc(s)
=

1

Rs + Ls
=

1

Rs

1

1 + s
ωc

:= P (s)

where ωc = Rs/L(x). Since this transfer function is a low-pass filter, the current

passing through the coil has a DC value with some ripple noise at multiples of the

25kHz switching frequency. The DC value is roughly the average value of the square

wave over one period and varies with the duty cycle of the PWM signal.

The switching noise, or ripple, can often be a significant source of noise in PWM

systems. The amount of ripple noise that appears in the coil current depends on the

closed loop bandwidth of the current loop. Also, this noise tends to bleed into other

electronic subsystems and can be problematic. Additional filtering of the measured

signals is often required: see Section 5.6 for further discussion.

5.5.2 Inner Current-Loop Inductance Compensation

The following numerical example of the Lead/PI compensation in the inner current

loop illustrates tradeoffs between a large closed-loop current bandwidth and ripple

noise rejection.

When used in open-loop, the amount of ripple is determined by the inductance of

the coil. Since the corner-frequency ωc decreases with increasing inductance, larger

inductances produce more filtering of the 25kHz noise. The series resistances are in

the range of 0.5Ω. The average value of the coil inductance is about 4mH and changes

by about 20% with the rotor position.
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Using these values, a typical transfer function of the load may look like that in

Figure 5.14. The beak frequency is at 53Hz and the noise attenuation at 25kHz is

about 55dB. This is very good noise attenuation, but the corner frequency is quite

low. This low corner-frequency leads to relatively clean coil currents, but makes for

a pretty terrible servo-amplifier.
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Figure 5.14: Copley Lead/PI inner current-loop bode design: (a) Coil Ic
Vapp

, (b)

Lead/PI Compensator C(s), (c) Closed-Loop TF Ic
Ir
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Nr

One can determine that the current error summing amplifier implements a Lead/PI

compensator with the following transfer function

C(s) = k
1 + s

ω1

s(1 + s
ω2
)

where

k =
1

Rf (C2 + C1)
, ω1 =

1

RfC2

, ω2 =
1

RfC2

+
1

RfC1

The Copley 412 data sheet [84] has suggested values for the header components C2
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and Rf given the 4mH coil inductance. This gives

C2 = 4.7nF, Rf = 220kΩ, R = 10kΩ, C1 = 470pF

Using Figure 5.12 as a guide, the closed-loop Ic/Ir and Ic/Nr transfer function is

Ic(s) =
P (s)C(s)

1 + P (s)C(s)
Ir(s) +

P (s)

1 + P (s)C(s)
Nr(s)

The resulting compensator and closed loop frequency response is shown in Figure
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Figure 5.15: Closed-loop Ic/Ir Frequency response of top coils.

5.14. For the above component values, the compensator pushes the closed-loop band-

width out to about 1.3kHz. Potentiometers which determine the system gains may

be adjusted to tune the current-loop step response. The noise rejection at 25kHz is

about 55dB, however it is seen from the experiments that there is still a significant

amount of noise in the coil current.
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Bode Diagram Coil 5
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Figure 5.16: Closed-loop Ic/Ir Frequency response of bottom coils.

The above design is used in each of the current-mode amplifier channels. Figures

5.15 and 5.16 show the closed-loop Ic/Ir frequency response as measured on a spec-

trum analyzer for the top set and bottom set of coils. Each closed-loop bandwidth is

about 1kHz.

5.5.3 Voltage-Mode Operation with IR Compensation

The setup procedure for voltage mode operation is similar to current mode operation.

Recall that an outer-PI voltage loop is wrapped around the inner current-loop. This

is similarly tuned by varying the gain potentiometers while inspecting the voltage

step response. The balance potentiometer is used to trim the output current to zero

when the voltage input is zero. The closed-loop voltage mode frequency response of

the coils on the bottom x-axis are shown in Figure 5.17. Recall that only this axis is
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used for nonlinear control verification. The −3dB bandwidth is about 200Hz.
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Figure 5.17: Closed-loop Vapp/Vr frequency response of bottom coils.

Figure 5.18 illustrates the voltage mode operation. Note that the applied coil

voltage Vapp6 equals reference voltage Vr6. The applied voltage Vapp6, the coil current

Ic6 and the ideal coil voltage Vc6 are related to each other by equation (5.1). The ideal

coil voltage and flux are related by Faraday’s law, N Φ̇6 = Vc6. Flux measurement

techniques are discussed in Chapter 6.

IR compensation was introduced in Section 2.1. With this approach, the reference

voltage is increased by the amount IR̂ so that the coil dynamics (5.1b) simplify to

Vr = Ic(R− R̂) +Nϕ̇

where the term R− R̂ is small and R̂ is an estimate of the coil resistance. When this

term is small, the reference voltage controls the rate of change of the coil flux. The

Copley 412 Amplifier has the ability to implement IR compensation in hardware,
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Figure 5.18: Voltage-mode operation without IR compensation. The applied volt-
age Vapp6 matches square wave reference signal Vr6. The ideal coil voltage Vcoil is
spike-like for the square wave reference signal.

however, one has more flexibility when implementing it in software. Note that a

good estimate of the resistance must be known for R − R̂ to be small. This can be

challenging because the coil resistance may change significantly with temperature.

Equation (5.1) may be solved for R to obtain an online estimate.

R =
Vapp − Vcoil

Ic

Observe however that this estimate is infinite whenever the coil current passes through

zero. A heavily low-pass filtered version of this signal is shown in Figures 5.18 through

5.20. On average the resistance is about 0.5Ω for coil 6 and 0.6Ω for coil 8 (not

shown). Although this online resistance estimate is useful for these simple tests, it

proves unreliable for online, closed-loop control with automatic IR compensation. In

this work, a constant value of the resistance estimate is used. The IR compensation

tuning procedure is outlined in Chapter 6. Figure 5.19 shows the amplifier operating
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in voltage mode with IR compensation (R̂ = 0.5Ω). In this case, Vcoil as opposed

to Vapp tracks the reference signal. Although there is quite a bit of overshoot in the

Vcoil signal, the performance is deemed adequate because a square reference voltage

is producing a roughly triangular flux signal.
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Figure 5.19: Voltage-mode operation with IR compensation (R̂ = 0.5Ω). Vcoil tracks
the reference signal with significant overshoot. Nφ̇ = Vcoil and φ is approximately
triangular.

When using IR compensation, R̂ must be less than R. If R̂ > R, then (R − R̂)

is negative and may cause the flux to increase even when the voltage input is zero.

Figure 5.20 shows the amplifier working in voltage mode with IR compensation. The

ideal coil voltage tracks the sinusoidal reference voltage until 3 seconds, at which time

the coil estimate R̂ is increased from 0.5Ω to 0.55Ω. This results in an uncontrolled

increase in the coil current and flux.
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Figure 5.20: Voltage-mode operation with IR compensation (R̂ = 0.5Ω). At 3
seconds, R̂ changes from 0.5Ω to 0.55Ω

5.5.4 Mutual Inductance

Section 5.3.2 states that the core has been designed so that the mutual inductance

between the coils is reduced to an acceptably small level, however, it isn’t completely

eliminated. Figure 5.21 illustrates the mutual inductance by exciting coil 6 with a

large sinusoidal current and keeping the current in coil 8 zero. The coil 6 is excited to

about 400µWb and the mutual inductance also excites coil 8 to about 50µWb. Note

that the flux is saturated indicating that this is a worst case scenario.

In general, the inductance is modelled by a matrix






Nϕ6

Nϕ8






=







L6(x) M(x)

M(x) L8(x)













I6

I8






(5.2)

The inductance is related to the slope of flux vs. current curve: see Chapter 6 and

Appendix B.3 for details. Figure 5.22 shows a matrix of flux vs. current curves with

sinusoidal excitation currents for the rotor held at a particular position. The entries
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Figure 5.21: Flux excitation of coils 6 and 8 by the current excitation of coil 6.

in this matrix further illustrate the magnitude of the flux created by the mutual

inductance terms. Note that this graph is generated in two steps: first I6 = 8sin(ωt)

is sinusoidal while I8 = 0 and then vice versa.

The magnitude of the flux generated by the mutual inductance shown in Figures

5.21 and 5.22 suggests that the mutual inductance may, in fact, be significant. How-

ever, in this study, it is ignored. Efforts may be undertaken in the future to address

this issue: see Chapter 9. Nonetheless, the presence of this mutual inductance does

not seem to significantly interfere with the ability to assign the rate of change of the

coil flux. Figure 5.23 shows the amplifiers working in voltage mode with IR compen-

sation (R̂6 = 0.5Ω and R̂8 = 0.63Ω ) while applying a square wave reference to both

amplifiers. The ideal coil voltage from each amplifier follows its square wave reference

and the resulting flux is roughly triangular in both amplifiers, in spite of the mutual

inductance.
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Figure 5.22: Flux vs. current curves for sinusoidal current excitations.

5.6 Amplifier Noise and Signal Conditioning

In any practical electronics application, the noise in the system must be managed by

proper filtering. However, the classification of noise in a system is somewhat subjec-

tive. The main source of noise in this experiment is the PWM 25kHz switching or

ripple noise. This noise is often neglected in systems that employ PWM amplifiers

because the 25kHz (and higher harmonic) noise is typically much larger than the

bandwidth of the system being designed. For example, the linear control design pre-

sented in Chapter 7, which uses the amplifiers in current mode, has a bandwidth on

the order of 20−50Hz. Thus, the switching noise present in the current control signal

which actuates the rotor does not significantly affect the performance of the position-

ing control system. In fact, there is no detectable difference in the performance of

the linear control designs conducted in this work when current filtering is employed.

The only effect of the ripple noise is to make the currents “messy” when viewing.
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Figure 5.23: Voltage-mode amplifier operation for coils 6 and 8 with IR compen-
sation (R̂6 = 0.5Ω and R̂8 = 0.63Ω ). Vrj is the reference signal, Vcj is the ideal
coil voltage, and Φj is the resulting coil flux for j = 6, 8. Note that both fluxes are
roughly triangular even in the presence of the mutual inductance.

Thus, filtering of the coil current does not seem necessary. However, as discussed in

Chapter 6, the measurement of the flux depends on the coil current and the position.

To obtain clean flux measurements, filtering of the coil current and rotor position

is necessary. Furthermore, to properly implement the data acquisition, anti-aliasing

low-pass filters are required.

Figure 5.24 illustrates the noise sources and the noise reduction components

(shown in gray). One source of noise is the quantization noise from the D/A con-

verter. This is easily eliminated with the use of low-pass reconstruction filters. A

passive, first-order RC filter with a break frequency of 1kHz is utilized. Note that the

Lead+PI filter in the current error amplifier is shown as a noise reduction component

because some of the PWM noise is filtered in this control loop. However, the design of

the current control loop prioritizes closed-loop bandwidth over PWM noise rejection.
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Figure 5.24: Illustration of noise reduction components.

The PWM signal is modelled by a DC signal with additive ripple noise Nr. Be-

sides appearing in the Copley 412 amplifier shown, the ripple noise can feed into

the other amplifiers and position sensors through two channels. One way is through

the power and ground connections and the other way is by noise radiated through

the coils themselves (a coil is basically a crude antenna). To protect against ampli-

fiers coupling through the power supply, 680µF bypass capacitors are employed at

each power connection terminal. A bypass capacitor acts as a high frequency short

to ground. Also, the amplifiers are connected in a “star-point” ground to minimize

ground currents. Twisted-shielded cables are used to connect the amplifiers to each

coil to combat the radiated noise. As is standard in shielding practice, the end of the

shield closest to the amplifier is grounded and the other end near the coils is floating.

The tweleve filters monitoring the coil current and position sensor voltages have

125



two purposes. The first is to act as anti-aliasing filters for the A/D conversion pro-

cess. Ideal Nyquist theory says that the anti-aliasing low-pass filter corner frequency

should be at least half of the sampling frequency. In practice however, it a more

practical value is closer to 1/10th the sampling rate. The sampling rate in this work

is determined somewhat arbitrarily. The sampling rate depends on the complexity

of each control law, however, rates in the range of 6.8kHz to 8kHz are used. Thus,

the bandwidth of the anti-aliasing filters are placed at about 750Hz. The second is

to eliminate the PWM noise from the measurements. One could use extra low-pass

filtering to eliminate the 25kHz noise, however, since it has a specific frequency, a

notch filter is employed.

�������
� � !"�#$� �&% �'"(�)+*-, �.0/�1

�������

�'"��

�'"2��3"��

�'"��

�����(�
�������

�$����� �����(�405 6

78" 78"

78"�9 :;"�<;�$= 70"

> "

>0"

�'"��7?� 7@�

7?�'9 :2�3<;��= 7?�

>+�

>?�

7-! 7&!

"A7&!

"�>-!>@! >@!

B�C&4EDGFAH8IAJ KAL M�N

O 6AP IAL Q+ISR R FSN

TUI�L P IAL Q+ISR R FAN

4&M�J L KAH FVU5 W(5 XSFAN Y IAZ[Z\5 68H]�Z^P Y KAJ J FA60_ `+F�abSced Y L KAH8FfB

Y KAJ J F�60_g`?F�ab�c+d Y L K�H0F[C

hUM�L i2j�d05 J L FAN
k _k _

k _
_kk _

4&M8IAL

l�m?n o'p q l$r(sut�v q l'r(s3t�v

q l'r(s3t�vq lur(s3t2v

Figure 5.25: Filter Implementation.

The circuit design is shown in Figure 5.25. To implement the filter with a single

polarity power supply, the opamps are powered by a 12 V regulator and the input

voltage is biased. The maximum voltage swing of the position sensors is ±4V . A
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simple voltage divider is used to bias the input signal at 6V so that the output voltage

is with in the ±10 V range expected by the A/D converter. The input signal is added

to the bias with a simple unity-gain summing amplifier. A two stage anti-aliasing

filter with a Fourth-Order Chebyshev response is designed for 0.5dB ripple in the

pass-band and a break frequency of fc = 1.3kHz 4. This is implemented with a

Sallen-Key filter configuration. The RC constants are determined by RC = 1
2πfnfc

where fc is the desired break frequency and fn is a normalization factor for each stage.

The normalization factors and gains k1 and k2 for each stage are shown in Table 5.6.

One may find the transfer functions and Chebyshev designs in any standard filter

handbook [25, 88].

Table 5.1: Chebyshev LPF fourth order (0.5dB ripple) filter parameters.
Parameter Value

fn1 0.597
k1 1.582
fn2 1.031
k2 2.66

The notch filter is implemented with the Twin-T configuration. The RC ratio is

set by RC = 1
2πf0

where f0 is the desired notch frequency. The output of the notch

filter is buffered to avoid loading any problems. The filter component values are listed

in Table 5.6. Appendix E gives an overview of the filter construction.

Table 5.2: Filter component values.
Component Value Component Value

R1 1kΩ C1 100nF
R2 1.2kΩ C2 100nF

R1(k1 − 1) 1.2kΩ R2(k2 − 1) 2.7kΩ
Rn 6.2kΩ Cn 1nF

Figure 5.26 shows the frequency response of the filter as measured on a spectrum

analyzer. The magnitude roll off is acceptable and has a steep notch at 25kHz. The

4Typically, the break frequency tends to be lower than the designed frequency fc. This choice of
fc results in an implemented 3dB bandwidth of 750Hz.
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corner frequency is at 750Hz as desired. The phase shift is less than 10◦ for frequencies

less than about 100Hz. Since the closed-loop position bandwidth is in the 20− 50Hz

range, this amount of phase shift should not significantly degrade the designed phase

margins.
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Figure 5.26: Bode Plot of LPF as measured by spectrum analyzer.

5.7 Control Implementation Hardware and Soft-

ware

Control of the reaction wheel is implemented with the dSPACE Inc. DS1103 PPC

controller board. This hardware uses the Motorola Power PC 604e processor running

at 400MHz for real-time simulation. Integrated onto the controller board are sev-

eral A/D and D/A converter channels. Four ADC units with four 16-bit multiplexed

channels each (16 channels total) operate with a 4µs sampling time. In addition,
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there are an additional 4 ADC 12-bit channels that operate with an 800ns sampling

time. Note that these sampling times correspond to 250kHz and 1.25MHz sampling

rates, respectively. However, these sampling rates consider only the hardware capa-

bilities and do not include the calculation time required to implement the control

algorithms. The actual maximum sampling rate attainable for control synthesis de-

pends on the complexity of the control algorithm, however, sampling rates on the

order of 6−10kHz are attainable for the control algorithms used in this work. In this

assumes that the sampling rate is fast enough so that the digital implementation of

the control algorithm approximates the continuous-time control law. Thus, explicit

discreteization of the control laws and dynamics is not considered. Eight 14-bit D/A

channels with 5µs settling time are available for interfacing with the eight Copley

412 controls amplifiers. In addition, the DS1103 has four 8-bit programmable digital

I/O channels. There are also several PWM generators, incremental encoders, a se-

rial interface and a slave DSP board on the DS1103, but these are not used in this

experiment.

The DS1103 works with MATLABr, Simulinkr and the Real-Time Workshopr

from The Mathworks Inc. to make a easy to use control synthesis procedure. First,

a controller model is created in Simulinkr. A Simulinkr block library allows one

to access each feature of the DS1103. After selecting a fixed sampling time in the

Simulinkr solver parameters window and one click of the build button on the Real-

Time Workshopr parameters page, the Real-Time Interfacer converts the Simulinkr

model to C code, complies it, downloads it to the DS1103, and automatically starts

the real-time simulation. The dSPACE ControlDeskr software lets the user create

virtual instruments for data collection and experiment management. Furthermore,

one has the ability to change any of the controller parameters in real-time and au-

tomatically run parameter studies. Figure 5.27 shows an example of the virtual

instruments used in this experiment.
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Figure 5.27: Use of Simulink and ControlDesk to take data and control the real-
time simulation with virtual instruments. The virtual instrument shows a real-time
readout of the voltage, currents, and φ− I curve of an electromagnet coil.
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CHAPTER VI

FLUX MEASUREMENT AND

IMPLEMENTATION OF THE GCFC

CONSTRAINT

In this work, the magnetic flux is used to represent the electrical state as opposed to

the typical choice of the easily-measurable coil current. Chapter 2 outlines some of the

advantages of using the flux as opposed to the current to predict the electromagnet

force. The assumption that flux is measurable was implicit in the development of

the gcfc in Chapter 3 and the control laws in Chapter 4, however, this problem is

not trivial. Section 6.1 compares several different techniques for measuring the flux.

The pros and cons of each technique depends on the particular application. For the

PREMAG AMB, a lookup table relating the flux, current, and position is constructed

in Section 6.2.

The implementation of the gcfc condition depends not only on the measurement

of flux, but also on the ability to introduce a flux bias into the electromagnets. This

requires the use of a feedback loop to automatically adjust for the change in induc-

tance as the airgap changes. The implementation of the flux bias on the PREMAG

AMB is illustrated in Section 6.3. Furthermore, the flux-dependent voltage-switching

rule of equation (3.9) that implements the gcfc condition is experimentally verified in

Section 6.4.
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6.1 Flux Measurement Techniques

Several methods of flux measurement are now discussed. The method of choice de-

pends on the specific application.

- +

+

-

Figure 6.1: Hall-effect sensor. The magnetic field B is perpendicular to the face of
the semiconductor.

Direct, real-time measurement of flux is possible via a Hall-effect sensor shown

in Figure 6.1. A thin current-carrying semiconductor is inserted into the path of

the magnetic field with flux density B. A downward current is established in the

semiconductor by an external circuit. Via the Lorentz equation (Appendix C), the

magnetic field deflects the downward current to the right inducing a voltage across

the semiconductor. The voltage VB generated is proportional to the magnetic flux

density B. Flux is calculated by multiplying by the cross-sectional area. Although

direct flux measurement is an attractive feature, these sensors are usually too large

to be inserted into the airgap of a magnetic bearing. The nominal airgap for the

PREMAG bearing is curved and about the thickness of 5 sheets paper, g0 = 20 mils.

This airgap is much too small for most of the available sensors. Furthermore, they
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are often expensive and fragile.

Another technique uses a closed-loop position control law, for example, a PI con-

troller with servo-amplifier acting in current mode, to create a force-current-position

lookup table. Since the force is f = cϕ2, the flux can be calculated from the measured

force. This technique as been successfully applied in [35]. The apparatus used in [35]

is illustrated in Figure 6.2. In this technique, the beam is regulated to a setpoint

Figure 6.2: Illustration of Knospe’s apparatus of [35]. The dynamics J θ̈ = r(f1 − f2)
implement a physical simulation of the 1-DOF AMB dynamics mẍ = f1 − f2.

using feedback control while a known weight is applied to one end of the beam. Since

the rotor is regulated to a constant position, f1 must be equal and opposite to the

known applied force. The current required for regulation is measured. From these

quantities, a lookup table between the flux (ϕ =
√
mg/c), current, and position may

be constructed. However, this technique depends on the ability to consistently apply

a known force. In a multi-degree of freedom apparatus like the PREMAG bearing, it

is quite difficult to apply an external force in a given direction.

It is possible, but typically difficult, to reconstruct the velocity and flux from the

measured signals (position and current) with the use of a nonlinear observer. Since the

Separation Principle [34] does not hold for nonlinear systems, the closed-loop stability

depends on the observer dynamics as well as the system dynamics. Consequently, each
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of the previously obtained stabilizing control laws discussed in Chapter 4 must be re-

designed with the observer in the loop. While this is a worthwhile task1, it is deferred

to future research while a simpler solution is pursued.

A classic technique for measuring the flux is to use a search coil. In this method,

an additional coil of very thin magnet wire is wrapped around the actuator coil so

that the coils share the same flux. If the terminals of the search coil are connected

to an opamp differential amplifier (so that the amplifier has a magnificently large

input impedance), no search coil current will flow and the open-circuit voltage is

successfully monitored. Using Faraday’s law, Vs = Nsϕ̇, the open-circuit voltage Vs

generated across the search coil is integrated to obtain the flux. Since the coils are

bound to pick up noise and have a small DC offset voltage from the opamp, true

integration of the coil voltage is impractical. A DC-gain limited integration scheme

must be used. Furthermore, the search coil can not detect a constant flux bias,

because in this situation, the voltage generated across the search coil is zero. Thus,

search coils are a good way to reconstruct AC portion the flux. This is insufficient

for the PREMAG bearing because measurement of the DC flux bias is required.

Each of the above methods for flux measurement are deficient in terms of their

practicality or their ability to measure a DC flux. A straightforward method for

constructing a flux-current-position lookup table is selected for the PREMAG AMB.

It is created with the use of a search coil and curve fitting, can measure the DC flux

component, and is calculated off-line without the use of closed-loop control. This

method is described next.

1Some progress has been made in this area. Acrak and Tsiotras have developed a reduced order
nonlinear flux observer for the gcfc operated magnetic bearing that uses only velocity measurements
[80].
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6.2 Construction of the Flux-Current-Position

Lookup Table

From the available flux measurement techniques previously discussed, the flux-current-

position lookup table approach is selected. With the use of an integrating search coil

and a sinusoidal excitation current, a family of ϕ − I curves for several fixed rotor

positions is generated: see Appendix B.3.1. Approximating these curves with their

corresponding DC magnetization curves, a set of curves similar to those shown in

Figure B.14 is obtained and a lookup table is constructed. The lookup table is able

to detect the flux, including its DC component, from measurements of the current

and position. Since the nonlinear-control test bed is implemented on only one control

axis, only two lookup tables are required.

The DC magnetization curve is desirable because one may correlate a DC flux

bias with the corresponding current bias and rotor position. One may be tempted to

think that the following procedure is used to construct a DC magnetization curve:

(1) fix the rotor position (2) set a DC current (3) measure the resulting DC flux.

However, a search coil can only sense a changing flux. Thus, the DC magnetization

curve is obtained by first generating a ϕ − I curve and then fitting a curve to this

AC data.

Controller/
PWM

A
Current 

mode

Voltage 
mode

+

-

+

-
-

Copley 412 Coil & Nonlinear Core

-

+

Figure 6.3: Configuration of Copley 412 amplifier, electromagnet, search coil, and
differential amplifier.
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The lookup table for each electromagnet is constructed from several ϕ− I curves.

The extra equipment required for the ϕ − I curve generation is a search coil, a

differential amplifier, and a Copley 412 servo-power amplifier. The Copley 412 is set

to operate in current mode with a sinusoidal current reference. The search coil is

used to obtain the flux and the ϕ − I curve is generated as described in Appendix

B.3.1. The measured ϕ− I curves have the shape similar to those in Figure B.9. The

configuration for one half of a control axis is shown in Figure 6.3.

The search coil is made from 36 gage copper magnet wire and has 10 turns (Ns =

10). It is wrapped tightly around the 60 turn actuator coil (Nc = 60) so that the

search coil and the actuator coil share approximately the same flux. Since Vcoil = Ncϕ̇

and Vs = Nsϕ̇,

Vcoil =
Nc

Ns

Vs (6.1)

The unity-gain, high-input impedance, differential opamp does not allow current to

flow in the search coil. Consequently, the open-circuit voltage Vs is is produced at

the output of the opamp. This allows direct measurement of the coil voltage without

knowledge of the coil resistance. Since the Copley 412 monitors Vapp and Icoil, one

could calculate Vcoil = Vapp − IR if a good estimate of the resistance is known.

However, this method is very sensitive to the estimate of the coil resistance. This

is further complicated by the fact that large operating currents may result in coil

heating and changing resistance.

The search coil voltage is sampled and integrated in software to obtain the flux.

ϕ =
Nc

Ns

∫

Vsdt

or in the frequency domain,

ϕ(s) =
Nc

Ns

Vs(s)

s

The output of the differential amplifier is bound to have some small DC offset voltage.

Since the DC gain of the ideal integrator is infinite, this small offset voltage will cause
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Linear Simulation Results
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Figure 6.4: Comparison of the integrators Q2(s), Q1(s) (a = 2π(50mHz)) and 1/s:
(a) time response of 1/s, Q1(s) and Q2(s) to input Vs = .5sin(2πt)+ .2 (b) frequency
response of 1/s, Q1(s) and Q2(s)

the output of a true integrator to become unbounded. A limited, but high DC-gain

low-pass filter can approximate the transfer function of the integrator down to a low

frequency. For example,

Q1(s) =
1 + a

s+ a
, ϕ(s) =

Nc

Ns

Q1(s)Vs(s)

The low-frequency pole is set to a = 2π(50×10−3) so thatQ1(s) emulates an integrator

down to 50mHz and has a finite DC-gain: see Figure 6.4. At the output of the

approximate integrator, one observes the integrated version of the periodic signal Vs

superimposed on the step response of Q1(s) to the small DC offset. The steady-state

value of this signal may be easily subtracted out after the settling time is reached.
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Alternatively, Q1 may be modified so that the DC gain is zero. For example, let

Q2(s) =
s

(s+ a)
Q1(s) =

(1 + a)s

(s+ a)2

This transfer function has zero gain at DC and approximates the integral down to

50mHz. After the transient response of Q2(s), the integral of the periodic component

of Vs is available. A comparison of Q2(s), Q1(s) and 1/s is shown in Figure 6.4. The

input signal for the simulation is Vs = .5sin(2πt) + .2.

Since nonlinear control is used only on the bottom x axis of the PREMAG bearing,

only two ϕ−I−x lookup tables (one for the positive and negative x axis) are required.

Several experiments are conducted to model the electromagnets. An experiment con-

sists of fixing the rotor position with shims, setting a sinusoidal electromagnet current

of a given frequency and amplitude and then recoding the coil current Ic, coil voltage

Vs, applied voltage Vapp, the rotor position x, and the flux in each electromagnet Φ1

and Φ2. The flux and current are plotted against each other to obtain the ϕ−I curve.

The entire set of collected data is summarized by the following piece of pseudo-code.

for x=[-16:2:16] % Step through the entire range of rotor positions

for f=[5 10 20] % use 3 excitation frequencies

for A=[1 3 8] % use 3 excitation amplitudes

set I1 = Asin(2πft), I2 = 0;

measure x, Ic, Vs, Vapp and ϕ for both electromagnets;

set I1 = 0, I2 = Asin(2πft);

measure x, Ic, Vs, Vapp and ϕ for both electromagnets;

end

end

end

In the above experimental test procedure, about 80% of the range of motion is

traversed in two mil steps. This allows one map the variation of the inductance with
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position. At each position, three excitation frequencies are used to investigate the

effects of eddy-currents. Recall that eddy-current effects increase with frequency: see

Appendix B.3.2. Three excitation amplitudes are used: one that keeps the core well

below saturation (1 Amp), one that is just beginning to saturate the core (3 Amps),

and one that is well into saturation (8 Amps). For each position, frequency, and

amplitude, one electromagnet is excited while the other is open-circuited. However,

the voltage signals are recorded in both electromagnets to check for mutual inductance

between the coils. The above test procedure creates 288 data sets.

Figure 6.5 shows the signals collected for an excitation frequency of 5Hz, and

an amplitude of 1 Amp. This amplitude and frequency avoids driving the core into

saturation and has minor eddy-current effects. Observe that the coil current Icoil,

the applied voltage Vapp, and the flux ϕ are roughly sinusoidal. The coil voltage Vcoil

(shown in tens of millivolts) is very noisy but is still approximately sinusoidal.
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Figure 6.5: Electromagnet signals for I1 = sin(10πt) (A): Top: coil current Ic (A)
Middle: applied voltage Vapp (V ) and coil voltage 10Vcoil (mV ) Bottom: electro-
magnet flux ϕ =

∫

Vcoil (µWb).
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Figure 6.6 shows the electromagnet signals for I1 = 8sin(10πt) Amps. This exci-

tation frequency avoids major eddy-current effects and the large amplitude drives the

core into saturation. Observe the current Icoil and applied voltage Vapp are sinusoidal.

As expected, the flux is slightly distorted and coil voltage Vcoil (shown in tens of

millivolts) is very noisy and is highly distorted.
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Figure 6.6: Electromagnet signals for I1 = 8sin(10πt) (A): Top: coil current Ic
Middle: applied voltage Vapp (V ) and coil voltage 10Vcoil (mV ) Bottom: electro-
magnet flux ϕ =

∫

Vcoil (µWb).

Figure 6.7 shows the ϕ− I curve for each set of data in Figure 6.5 and 6.6. The

first data set is clearly unsaturated while the second data set operates the core well

into saturation. Note that the saturation is not as dramatic as in Figure B.9. The

unsaturated curve is easily approximated by a straight line2.

There is some “thickness” to this ϕ − I curve in Figure 6.7, but it difficult to

2The slope of this line is N
R(x) . If ϕ vs NI was plotted, the slope would be the inverse of the

reluctance.
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determine if this is due to hysteresis or eddy-current effects. In any case, this hys-

teresis effect is relatively minor. Recall that the main problem posed by hysteresis

when trying to estimate the flux from current measurements is that the flux and the

current are not necessarily in phase: see Section B.3.1. In general, the current and

flux peak together but do not share common zero-crossings. However, one may inves-

tigate Figure 6.5 and 6.6 to find that the zero-crossings of the flux and current are so

close that they may be considered equal. For example, checking the data set in Figure

6.6, the current has a zero crossing at t = .0857s and the flux has a zero crossing

at t = .0871s. Since the position controller bandwidth will only be on the order of

100Hz, this slight difference in zero crossings should pose no serious problems.
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Figure 6.7: Two ϕ− I curves for the data in Figures 6.5 and 6.6. For this position
(x = 16.2 mil), the electromagnet starts to saturate for currents larger than about 1.5
Amps. The unsaturated portion of the curve (Icoil < 1.5 Amp) is well-approximated
by a straight line.

Figure 6.8 shows the effect of eddy-currents. Recall that eddy-current core losses

increase with frequency. The figure shows the ϕ − I curves for an excitation signal
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that saturates the core and has excitation frequencies of 5Hz, 10Hz, and 20Hz. As

expected, the area enclosed by the ϕ− I curve increases with frequency.
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Figure 6.8: Electromagnet signals for I1 = 8sin(2πft) (A). f = 5, 10, 20 Hz.
Eddy-current distortion is worse as f increases.

Note that sinusoidal currents of “low” frequency are used to construct the sample

ϕ−I curves shown in Figure 6.7. However, the DC magnetization curve is desired: see

Appendix B.3.1. One may consider the ϕ − I curves as “perturbed” or “corrupted”

away from the DC magnetization curve by eddy-current effects and hysteresis. A

polynomial fit to this data serves as a good approximation to the DC magnetization

curve. From the slope of the unsaturated data in Figure 6.7, the inductance is found

4.3mH3. A ninth-order polynomial (not shown in Figure 6.7) is fit to the saturated

data.

A family of the above polynomial approximations to the DC magnetization curve

3The slope, which corresponds to N/R(x), on the ϕ − I curve is 71 µH/turn. To calculate the
inductance, L(x) = N × slope× 1e− 6.
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parameterized by the rotor position is used to construct the ϕ− I − x lookup table.

The lookup table for the bottom negative x axis (XB−) is shown in Figure 6.9 (only

shown for Ic ≥ 0). The lookup table for XB+ is similar. The airgap for XB− is

g = g0 + x. As the rotor position increases, the airgap for the XB− electromagnet

increases. From the graph, observe that as the airgap increases, the inductance

(slope) decreases. This is consistent with the discussion in Appendix B.3.3. A 3D

visualization of this lookup tables is shown in Figure 6.10.
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Figure 6.9: 2D ϕ − I − x lookup table for the xb− axis constructed from ninth-
order polynomial approximations to the DC magnetization curves for several rotor
positions.

To illustrate the fit of the xB− lookup table, the measured search coil flux is

compared to the output of the lookup table which is driven by the measured coil data

for the position xB− = 0.137 mils. The comparison is shown in Figure 6.11. The

lookup table successfully reproduces the flux as measured by the search coils. Also

shown is the flux as calculated by
∫

Vapp − IcR̂ where R̂ is a resistance estimate. In
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the figure, R̂ = 0.45Ω is used, however, the true resistance value of the coil is about

0.5Ω. Although the difference R − R̂ is very small, the estimation of the flux with
∫

Vapp − IcR̂ is poor. Thus, use of the coil resistance for reconstruction of the flux is

probably too sensitive with respect to R̂ to be of any practical use.

6.3 Flux-Bias Implementation

In the gcfc method, a flux bias is introduced into the electromagnet to increase the

bearing stiffness. While this subject has been discussed previously, the implementa-

tion of a bias has not.

A current bias is typically easy to implement. It is a trivial matter with a

servo-amplifier acting in current-mode (add a constant to the reference signal). The

implementation of a flux bias requires a little more work. If one has a lookup
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Vapp− IcR̂). Note R̂ = 0.45Ω, R = 0.5Ω, and xB− = 0.137 mils.

table relating flux, current, and position ϕ = h(I, x) and a servo-amplifier oper-

ating in current mode, then the setting of a flux bias only requires the calcula-

tion of the inverse of the lookup table. By selecting Iref = h−1(Φ0des, x) so that

Φ = h(Iref , x) = h(h−1(Φ0des, x), x) = Φ0des the desired bias is implemented.

When operating in voltage mode, as in the case of the nonlinear control axes in the

PREMAG bearing, a feedback loop is required. The coil dynamics in voltage-mode

are

NΦ̇ = −RI + Vapp = −Rh−1(Φ, x) + Vapp

≈ − R

NL(x)
Φ + Vapp

where Vapp is regulated to Vr by the servo-amplifier and the ≈ sign is used with the

approximation Nϕ = L(x)I . Rewriting,

Φ̇ = − R

N2L(x)
Φ + Vr = −RR(x)Φ + Vr
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When the inputs into the coil dynamics are viewed as the voltage Vapp and x with Φ

as the state, the system is nonlinear due to the product of R(x) and Φ. However, for

constant x, the system is completely linear. This allows one to use a superposition-like

approach to implement Φj(t) = Φj0(t) + φj(t) by setting

Vjr = Vjb + Vjc, j = 1, 2 (6.2)

Vjc is generated from one of the control laws of Chapter 4 and the voltage switching

rule of (3.9) to implement φj. Vjb is produced from a simple PI controller used to

regulate Φj0(t) to the constant Φ0des. Specifically, Vjb = (kp +
ki
s
)ejb where the bias

error is defined as ejb(t) := Φ0des − Φj0(t).

Section 3.2.2 shows that the voltage switching rule (3.9) implements the gcfc.

Repeated here for convenience, the voltage switching rule

Vc1 = v, Vc2 = 0 when φ ≥ 0

Vc1 = 0, Vc2 = −v when φ < 0

implements the gcfc condition

φ1 = φ, φ2 = 0 when φ ≥ 0

φ1 = 0, φ2 = −φ when φ < 0

Under this condition, the control fluxes may be written as

φ1(t) = φ+(t) := max(φ(t), 0) (6.3a)

φ2(t) = φ−(t) := max(−φ(t), 0) (6.3b)

where

φ(t) := Φ1(t)− Φ2(t) (6.4)

Consequently,

Φ1(t) = Φ10(t) + φ+(t) (6.5a)

Φ2(t) = Φ20(t) + φ−(t) (6.5b)
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Using (6.5), the bias errors ejb = Φ0des − Φj0 may be calculated as

eb1 = Φ0des − Φ1(t) + φ+(t) (6.6a)

eb2 = Φ0des − Φ2(t) + φ−(t) (6.6b)

The signals Φj are the total fluxes of each electromagnet and are calculated from

Φj = hj(Ij, x) where Ij is the measured electromagnet current. The signals φ±(t) are

calculated from (6.3) and (6.4).

Figure 6.12 shows the performance of the PI control as it regulates the flux bias

on the XB axis to Φ0 = 50µWb in the presence of rotor motion (due to an external

force). The control voltage Vc = 0 so that φ = 0. The bias errors ebj, the bias control

voltages Vbj, and the total fluxes Φj for j = 6, 8 are shown. For clarity, the error

signals and bias voltages have been low-pass filtered to remove some of the PWM

switching noise. Specifically, the bias control voltages are Vbj = (1× 10−3)(30+ 1
s
)ejb

for j = 6, 8. Observe that the bias voltages automatically adjust for changes in the

rotor position so that the flux bias is regulated to 50µWb in both electromagnets.

6.4 Open-Loop Verification of the GCFC

This section presents the experimental results which verify that implementation of

the flux bias via an extra PI control loop as discussed in Section 6.3 and the voltage-

switching rule of (3.9) impose the gcfc on the coil dynamics. This is shown in a simple

test that does not require a closed-loop position controller. The gcfc implementation

is further demonstrated in Chapter 8 where the experimental validation of the control

laws in Chapter 4 is presented.

To clarify the implementation of the gcfc condition, Figure 8.1 shows the block

diagram of the plant and required feedback to implement the gcfc. The Copley 412

amplifiers regulate the voltage applied to coils Vapp to the reference voltage Vr. When

IR compensation is employed, the amplifiers regulate the ideal coil voltage Vcoil to
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Figure 6.12: Regulation of flux bias on the xb axis to Φ0 = 50µWb against rotor
motion: kp = 30× 10−3, ki = 1× 10−3.

Vr so that NcΦ̇j = Vrj. The measured current I6, I8 and the measured rotor position

x in conjunction with the flux lookup tables are used to produce flux measurements

Φ6 and Φ8 and the generalized flux φ. The flux bias control block uses these signals

to generate voltage commands Vbj to regulate the flux bias. The gcfc block uses

the generalized flux φ to distribute the control voltage Vc according to the voltage

switching rule. The control voltage Vc is typically generated by a control law from

Chapter 4, however, it is set to a reference signal in this open-loop actuator test. The

total reference voltage Vrj is the sum of a bias component Vbj and a control component

Vcj.

Recall that when the flux bias is set to zero, the gcfc corresponds with the cfc.

Figure 6.14 shows the experimental data for the XB control axis. The sinusoidal

control voltage Vc is used as a reference in this open-loop actuator test. Depending

on the sign of the generalized flux Φ, the control voltage Vc is distributed to the
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Figure 6.13: Block diagram of gcfc implementation for the xb actuator axis. Copley
412 amplifiers working in voltage mode with software IR compensation.

appropriate coils Vc6 and Vc8. Note that Vcj may be positive and negative while the

total fluxes Φj ≥ 0 (and total currents Icj ≥ 0) for j = 6, 8. The rotor position

xB is fixed in this test. The resulting flux Φ6 and Φ8 are complementary and the

generalized control flux Φ = Φ6 − Φ8.

Figure 6.15 shows a similar test, however a 100µWb flux bias is implemented and

the rotor is free to move. The total coil currents Icj and total fluxes Φj for j = 6, 8

are shown. The bias control voltages VjB are not shown, but regulate the flux bias

to 100µWb even in the presence of the time varying rotor position. One may verify

that Φ6 = Φ0 + φ+(t), Φ8 = Φ0 + φ−(t), and φ = Φ6 − Φ8 = φ6 − φ8.

Figure 6.16 shows a similar gcfc test, however a square wave voltage reference is

used. Again one may verify that gcfc condition and the 100µWb flux bias are properly

implemented. Furthermore, the IR compensation with R̂6 = 0.5Ω and R̂8 = 0.63Ω
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Figure 6.14: Open-loop ZB cfc test using IR compensation (R̂6 = 0.5Ω, R̂8 = 0.63Ω
).

is illustrated. Since the IR compensation roughly implements Ncφ̇ = Vcr, a square

wave voltage reference generates a roughly triangular generalized flux φ signal.

Note that the current measurements are significantly filtered to remove much of

the ripple noise generated by the PWM amplifiers: see Chapter 5 for details. Any

noise in the current measurement appears in the flux signal. The magnitude of the

flux noise is on the order of ±3µWb. According to the gcfc switching rule, Vc1 is

active when φ ≥ 0 and Vc2 is active when φ < 0. Thus, a noisy φ may result in

several undesirable switchings or chattering. To prevent this, one may introduce a

switching boundary layer of ±B into the voltage switching rule. In this way, if Vc1

is active, then it does not deactivate until φ < −B, at which point, Vc2 activates.

When Vc2 is active, it does not deactivate until φ > B, at which point Vc1 reactivates.

This switching technique is equivalent to an electronic comparator with hysteresis or

a relay. It is easily implemented in Simulink with the relay block from the nonlinear

block library.
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Figure 6.15: Open-loop LB gcfc test using IR compensation (R̂6 = 0.5Ω, R̂8 =
0.63Ω ) with flux bias set to 100µWb.

The gcfc condition assumes that the coils and amplifiers used on opposing ends

of a control axis are identical. Of course, the coils in practice are not identical.

The resistances are unequal. When using IR compensation, the coil resistance is

effectively changed to R − R̂ in each coil. This new effective resistance is made

small by selecting R̂ so that the ideal coil voltage Vcoil tracks the reference voltage.

However, efforts must also be made to make sure the R6 − R̂6 ≈ R8 − R̂8 so that

the amplifiers are “matched”. To match the amplifiers, one adjusts the R̂ estimates

while monitoring Vcoil in each amplifier. For example, when applying a square wave

reference to each amplifier, the Vcoil response in both amplifiers will be very similar

when the IR compensation is tuned properly. Figure 5.23 shows an example of IR

compensation where the amplifiers are matched. Figure 6.17 shows a open-loop gcfc

test with IR compensation R̂6 = 0.5Ω and R̂8 = 0.52Ω. In this case, the amplifiers are

unmatched because the ideal coil voltages do not have a similar shape. As a result, the

reconstructed generalized flux in an open-loop gcfc test will be asymmetric. Observe
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Figure 6.16: Open-loop LB gcfc test using IR compensation (R̂6 = 0.5Ω, R̂8 =
0.63Ω ) with flux bias set to 100µWb. Square wave reference signal.

in Figure 6.18 that the reconstructed generalized flux has a positive amplitude of

about 175µWb and a negative amplitude of about 125µWb.
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Figure 6.17: IR compensation test: R̂6 = 0.5Ω, R̂8 = 0.52Ω. Amplifiers are
“unmatched”.
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Figure 6.18: Open-Loop gcfc test using IR compensation (R̂6 = 0.5Ω, R̂8 = 0.52Ω
) with “unmatched” amplifiers. The resulting generalized flux φ is asymmetric.
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CHAPTER VII

4-DOF PREMAG BEARING MODELLING AND

LINEAR CONTROL

This chapter presents the 4-DOF modelling and linear control of the PREMAG re-

action wheel. Although 4 independent SISO current-mode control laws are used in a

decentralized control approach to stabilize the reaction wheel, modelling of the full

4-DOF AMB dynamics gives insight into the coupling of the input channels and how

the current biasing effects the open-loop stiffness for each degree-of-freedom. In Sec-

tion 7.1, the dynamics are naturally derived by modelling the horizontal translation of

the rotor’s center of gravity and the tilt of the rotor about the horizontal axes. How-

ever, since airgap measurements are available and regulation of each airgap to g0 is

equivalent to regulation of the rotor tilt and translation, the dynamics in terms of the

measured airgaps are also presented. Note that the rotor’s axial spin and translation

are considered constant in this derivation. The linearization of each model, presented

in Section 7.2, gives slightly different insights into the open-loop characteristics.

A decentralized control approach is used to stabilize the reaction wheel. In this

technique, it is assumed that the four DOF of the reaction wheel may be controlled

independently. The linear control design used on each degree-of-freedom is presented

in Section 7.3. Since a decentralized PID-like control ignores the coupling between

the degrees-of-freedom, it is not guaranteed in general that this approach will stabilize

a MIMO system. However, local asymptotic stability of the MIMO coupled system

using decentralized control is verified by checking the eigenvalues of a closed-loop

system matrix. This is analysis presented in Section 7.4. Global asymptotic stability
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is predicted by simulation of the decentralized linear control scheme on the nonlin-

ear model in Section 7.5, however, only local asymptotic stability is verified by the

experimental results presented in Section 8.6.

Recall that in the interests of time and simplicity, the verification of the low-loss

nonlinear control laws developed in Chapter 4 is only conducted on one degree-of-

freedom of the AMB: see Chapter 8. The linear control presented in this chapter is

used on the remaining three axes.

7.1 AMB Dynamic Modelling
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Figure 7.1: Schematics and free-body diagram of rotor. Forces in the XZ plane are
hidden for clarity.

Figure 7.1a shows a top-view of the AMB illustrating the numbering scheme for

the electromagnets, sensor blocks, and airgaps. The labels EMj and gj indicate the

position of the jth electromagnet, sensor, and airgap. The variables corresponding to

the top stack of actuators and sensors have subscripts j = 1, ..., 4, while the lower

stack is denoted with subscripts j = 5, ..., 8. Note that the even and odd subscripts

correspond to the inertial horizontal X and Y directions, respectively. Note that the
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rotor is said to be “centered” when all of the airgaps gj have the same length, g0.

The rotor has radius r0.

Figure 7.1b shows the free-body diagram of the rotor. First, note that the rotor

center of mass G is located directly below the rotor geometric center C. That is, the

rotor is modelled as initially being perfectly balanced and the addition of the PMB

magnets acts only to shift the center of gravity downward. Actual rotor imbalance

may cause the rotor to whirl during high speed operation, however, this is considered

a disturbance effect instead of modelling it directly. Since the translation of the rotor

along its axial direction is neglected, assume that the rotor center of mass G translates

only in the inertial XY plane. The inertial frame is denoted XY Z (with unit vectors

Î , Ĵ , K̂ ) and is fixed in space at G when the rotor is centered. A body-fixed frame xyz

(with unit vectors î, ĵ, k̂ ) is also defined to describe rotations of the rotor about the x

and y axes. Positive rotations θx and θy are taken in accordance with the right hand

rule. The angular velocity ωz along the body-fixed z axis is assumed to be constant.

The electromagnet forces, acting at moment arms `1 and `2 measured along the z

axis, produce torques on the rotor1. A sample moment arm r3/G of the force f3 as

measured from G is also shown. Note that the electromagnet forces always point in

the same direction in inertial space.

7.1.1 Modelling Assumptions

The assumptions used in the derivation of the dynamics are now stated. The transla-

tion about Z axis is neglected. It is implicit that the PMB supplies a positive Z force

to just cancel the weight of the rotor. In actuality, the PMB magnets also supply

reaction torques that help to compensate for the rotor tilt. These reaction forces are

neglected in the analysis. In addition, the angular velocity about the z axis is con-

sidered constant. Furthermore, since the amplifiers are operating in current-mode for

1Forces in the XZ plane in Figure 7.1 have been hidden for clarity.
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the linear control, the electrical dynamics are neglected. This is a realistic assump-

tion because the current-loop bandwidth of the Copley 412 is is much faster than the

bandwidth of the position control loop.

It is sensible to presume that the small airgap assumption holds for the PREMAG

AMB. When the radius of the rotor r0 is much larger than the nominal airgap g0,

the small airgap assumption is valid. In this machine, the ratio of r0/g0 = 150. The

small airgap restricts the rotations, θx and θy, and translations, X and Y , to be very

small. This has significant consequences on the derivation of the dynamics.

Assume that the X and Y electromagnet forces act only to accelerate the rotor in

X and Y directions, respectively2. Furthermore, the forces in the XZ and Y Z planes

only produce rotations about the Y and X axes, respectively. In addition, many

authors have shown that the expression of an airgap in the XZ plane predominately

depends on the translation of G along theX axis and the rotation θy [54, 56, 72]. That

is, a gap in the XZ plane is a very weak function of θx and Y 3. Similar statements

can be made about the airgaps in the Y Z plane.

The gap lengths under the small-airgap assumption are

g1 = g0 − Y + θx`1, g3 = g0 + Y − θx`1 (7.1a)

g5 = g0 − Y − θx`2, g7 = g0 + Y + θx`2 (7.1b)

g2 = g0 −X − θy`1, g4 = g0 +X + θy`1 (7.1c)

g6 = g0 −X + θy`2, g8 = g0 +X − θy`2 (7.1d)

where g0 is the nominal airgap length. Note that only four of the airgaps are inde-

pendent because gaps on opposite sides of the rotor add to 2g0.

The expression for the torque on the rotor is also significantly simplified due to

2This is not necessarily true in a large airgap machine.
3Since the radius of the rotor is so much larger than the airgap, the curvature of the rotor does

not contribute significantly to a change in the airgap on a given vertical plane when you rotate or
translate in a direction perpendicular to that plane.
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the small airgap assumption. Consider Figure 7.1b and the torque produced on the

rotor about G by f3. In general, the torque is given by τ = r×f , where the vectors r

and f are expressed in the same frame. The force is known in the inertial (I) frame,

(F3)I = −f3Ĵ , and the moment arm (r3/G)B = −r0ĵ+ `1k̂ in the body (B) frame. To

calculate the torque in the body frame, one rotates the inertial force into the body

frame, (F3)B = Rx(θx)(F3)I , where Rx(θx) is the standard rotation matrix. Thus, the

torque in the body frame τ = r3/G × (F3)B generally depends on the rotation angle

θx. However, since θx is small, one approximates the torque magnitude by using the

perpendicular moment arm, |τ3| = `1f3, and the direction via the right hand rule.

7.1.2 Dynamics

The motion of any rigid body can be described by independently considering transla-

tion of the center of gravity and the rotation about the center of gravity. The motion

of the center of mass G is given by Newton’s law and the rotation about G is given

by Euler’s equation

Σj
−→
F j = m−→a G (7.2)

Σj
−→
M j,G =

−̇→
HG (7.3)

where the subscript G means “of G” or “with respect to G”. Equation (7.2) states

that the acceleration of the center of mass G is equal to the sum of the external forces.

Equation (7.3) states that the sum of the external moments (torque)
−→
M j,G computed

about G is equal to the rate of change of angular momentum HG calculated about G.

Equation (7.3) is well known and is most often considered in its scalar component

form. When the body-frame coincides with the principle axes of inertia, equation
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(7.3) has a particularly simple form.

Mx = Ixω̇x + (Iz − Iy)ωyωz (7.4a)

My = Iyω̇y + (Ix − Iz)ωxωz (7.4b)

Mz = Izω̇z + (Ix − Iy)ωyωx (7.4c)

where Ix,Iy, and Iz are the principle moments of inertia, ωx, ωy and ωz are the

components of the angular velocity in the body frame, and the moments Mx, My,

and Mz are the net moments about the body-fixed axes.

The symmetry of the rotor implies that Ix = Iy = Ir and Iz = Ia where Ir and

Ia are the radial and axial moments of inertial, respectively. Thus, the last term in

equation (7.4c) drops out. This equation states that the torque from the DC motor

in the rotor hub controls the angular velocity ωz. However, in these considerations,

it is assumed that ω̇z = 0 and ωz given.

The translational dynamics are given by

mẌ = f2 − f4 + f6 − f8 (7.5a)

mŸ = f1 − f3 + f5 − f7 (7.5b)

With θ̈y = ω̇y and θ̈x = ω̇x, the rotational dynamics become

θ̈x = (1− Ia/Ir)ωyωz + ΣMx/Ir (7.6a)

θ̈y = −(1− Ia/Ir)ωxωz + ΣMy/Ir (7.6b)

The total moments on the rotor are

Mx = −`1(f1 − f3) + `2(f5 − f7) (7.7a)

My = `1(f2 − f4)− `2(f6 − f8) (7.7b)

and the magnitude of magnetic force in terms of the current as derived in Appendix

B is given by

fj = c
i2j
g2j

(7.8)
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where ij are the current inputs and gj are given in equation (7.1). The electromagnet

constant c is

c =
βleakµ0ApN

2

4

where βleak ∈ (0, 1] is a flux-leakage derating factor4, Ap is the cross-sectional area of

a pole face, N is the number of turns of a coil, and µ0 is the permeability. Note that

µ0, Ap, and N are known with good precision, however, βleak is only roughly known.

7.1.3 State Equation based on Rotor Translation and Tilt

The derivation of the dynamics of the system is naturally carried out on the physical

variables that are related by Newton’s and Euler’s differential equations. However,

the sensor output variables often motivate the selection of state variables. In this

section, the states are selected as the two translation and tilting degrees of freedom

(as well as their velocities). In Section 7.1.4, the position sensor outputs (and their

derivatives) are taken as the states. Each model gives slightly different insights into

the coupling of the AMB and the stiffness properties.

Let the states be x = [x1, x2, · · · , x8] where

x1 = Y, x2 = X, x3 = θx, x4 = θy (7.9a)

x5 = Ẏ , x6 = Ẋ, x7 = θ̇x, x8 = θ̇y (7.9b)

4There is a significant amount of flux leakage in the PREMAG AMB. This is apparent during
operation because a nearby computer monitor flickers with variation in the coil currents. The
PREMAG final report [64] gives figures of βleak = 0.3− 0.5, but these figures have not been verified.
This is a source of parameter uncertainty. It is shown below that the open-loop pole positions of
the AMB depend on this parameter.
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Then the state equation for the system, neglecting the electrical dynamics, is

ẋ1 = x5 (7.10a)

ẋ2 = x6 (7.10b)

ẋ3 = x7 (7.10c)

ẋ4 = x8 (7.10d)

ẋ5 = (f1 − f3 + f5 − f7)/m (7.10e)

ẋ6 = (f2 − f4 + f6 − f8)/m (7.10f)

ẋ7 = (1− Ia/Ir)x8ωz − `1
Ir
(f1 − f3) + `2

Ir
(f5 − f7) (7.10g)

ẋ8 = −(1− Ia/Ir)x7ωz + `1
Ir
(f2 − f4)− `2

Ir
(f6 − f8) (7.10h)

The inputs to the system are taken as the eight coil currents. Using equation (7.1),

a vector of the airgaps is calculated from the state by

Ygap = g018×1 + Cgx

with

Cg =

[

Cg1 08×4

]

, Cg1 =















































−1 0 `1 0

0 −1 0 −`1
1 0 −`1 0

0 1 0 `1

−1 0 −`2 0

0 −1 0 `2

1 0 `2 0

0 1 0 −`2















































The description of the system is incomplete without the output equation. The

differential output voltages of the Kaman preamplifier are used to determine the

position and orientation of the rotor. Recall that the differential outputs are a function

of the difference of the airgaps on opposite sides of the rotor. The system outputs are
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thus defined as (gj+2 − gj)/2 for j = 1, 2, 5, 6. More explicitly, using equation (7.1),

the outputs are

Y1 = Y − θx`1 := Yt (7.11a)

Y2 = X + θy`1 := Xt (7.11b)

Y3 = Y + θx`2 := Yb (7.11c)

Y4 = X − θy`2 := Xb (7.11d)

The output vector is the horizontal displacement of center of the top and bottom of

the rotor. Note that this output is zero if and only if the state is zero. Defining

Cy =
1

2



















−1 0 1 0 0 0 0 0

0 −1 0 1 0 0 0 0

0 0 0 0 −1 0 1 0

0 0 0 0 0 −1 0 1



















the system output equation is

Y = CyYgap = Cyg018×1 + CyCgx = CyCgx (7.12)

7.1.4 State Equation Based on Airgap Dynamics

Since the position sensors give the outputs in equation (7.11), the dynamics may be

explicitly written in terms of the center positions of the top and bottom of the rotor.

From equation (7.11), the angles θx and θy in terms of the sensor variables are

θx =
Yb − Yt
`1 + `2

, θy =
Xt −Xb

`1 + `2
(7.13)

Using equation (7.11a),

Ÿt = Ÿ − `1θ̈x

=
1

m
(f1 − f3 + f5 − f7)−

`1
Ir
(−`1(f1 − f3) + `2(f5 − f7))− `1ωz(1−

Ia
Ir
)θ̇y

=
[ 1

m
+
`21
Ir

]

(f1 − f3) +
[ 1

m
− `1`2

Ir

]

(f5 − f7)− `1ωz(1−
Ia
Ir
)
Ẋt − Ẋb

`1 + `2
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Likewise,

Ẍt =
[ 1

m
+
`21
Ir

]

(f2 − f4) +
[ 1

m
− `1`2

Ir

]

(f6 − f8)−
`1

`1 + `2
ωz(1−

Ia
Ir
)(Ẏb − Ẏt)

Ÿb =
[ 1

m
− `1`2

Ir

]

(f1 − f3) +
[ 1

m
+
`22
Ir

]

(f5 − f7) +
`2

`1 + `2
ωz(1−

Ia
Ir
)(Ẋt − Ẋb)

Ẍb =
[ 1

m
− `1`2

Ir

]

(f2 − f4) +
[ 1

m
+
`22
Ir

]

(f6 − f8) +
`2

`1 + `2
ωz(1−

Ia
Ir
)(Ẏb − Ẏt)

For convenience, let

m1 =
(

1
m
+

`21
Ir

)−1

, m2 =
(

1
m
+

`22
Ir

)−1

m3 =
(

1
m
− `1`2

Ir

)−1

, λ = ωz
`1+`2

(1− Ia
Ir
)

(7.14)

Fyt = (f1 − f3), Fxt = (f2 − f4)

Fyb = (f5 − f7), Fxb = (f6 − f8)
(7.15)

Using the above,

Ÿt = −`1λ(Ẋt − Ẋb) +
Fyt
m1

+
Fyb
m3

(7.16a)

Ẍt = −`1λ(Ẏb − Ẏt) + Fxt
m1

+ Fxb
m3

(7.16b)

Ÿb = `2λ(Ẋt − Ẋb) +
Fyt
m3

+
Fyb
m2

(7.16c)

Ẍb = `2λ(Ẏb − Ẏt) + Fxt
m3

+ Fxb
m2

(7.16d)

Defining the state as x = [x1, x2, · · · , x8] where

x1 = Yt, x2 = Xt, x3 = Yb, x4 = Xb (7.17a)

ẋ5 = Ẏt, ẋ6 = Ẋt, ẋ7 = Ẏb, ẋ8 = Ẋb (7.17b)

and F = [Fyt, Fxt, Fyb, Fxb]
T , the state equation has the form

ẋ = A1x+ [04×4, B1]
TF (x, i) (7.18)
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with

A1 =







04×4 I4

04×4 Aω






, Aω = λ



















0 −`1 0 `1

`1 0 −`1 0

0 `2 0 −`2
−`2 0 `2 0



















, B1 =



















1
m1

0 1
m3

0

0 1
m1

0 1
m3

1
m3

0 1
m2

0

0 1
m3

0 1
m2



















(7.19)

and the force in terms of the state is

F (x, i) = c



















i21
(g0−x1)2

− i23
(g0+x1)2

i22
(g0−x2)2

− i24
(g0+x2)2

i25
(g0−x3)2

− i27
(g0+x3)2

i26
(g0−x4)2

− i28
(g0+x4)2



















(7.20)

Since F depends nonlinearly on the current and the airgaps, the state equation is not

linear. Observe that the Aw angular velocity coupling matrix vanishes when ωz = 0.

The B matrix illustrates the redundancy (or over-actuation) in the control forces.

The output equation for our system is Y = [I4,04×4]x.

7.2 Linearized AMB Dynamics

In this section the two MIMO state space models from the previous section are lin-

earized for the purposes of linear control. The coefficients of these linear models are

interpreted in terms of their effect on the open-loop AMB stiffness and the coupling

between the control inputs. The two different state space models give slightly different

interpretations of how these parameters are effected by the selection of the bias cur-

rents. For comparison, the linearization of a 1-DOF AMB for use in the decentralized

Lead+PI control scheme is first presented.

7.2.1 1-DOF Linearized AMB Dynamics

Recall that in the interest of time and simplicity, only one of the four control axes on

the PREMAG bearing is used as a nonlinear voltage-mode test bed. The other three
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control axes are implemented with a standard, large-bias linear current-mode control

design. The constant-current-sum (ccs) biasing scheme introduced in Chapter 3 is

easily implemented in software. Recall that in this scheme, the two current inputs i1

and i2 are reduced to one control input by the following input transformation.

i1 = Ib + ic, i2 = Ib − ic

where Ib is the current bias and ic is the new control current. This results in the

following dynamic equation for the 1-DOF AMB in current-mode with ccs biasing.

mẍ = c
(Ib + ic)

2

(g0 − x)2
− c(Ib − ic)

2

(g0 + x)2
(7.21)

with c = βleakµ0AgN
2/4 and βleak is a flux-leakage factor. Linearizing (7.21) about

x = ic = 0 gives

mẍ = Kxx+Kiic

where

Kx =
4cI2b
g30

, Ki =
4cIb
g20

(7.22)

The transfer function from current input to position output is

X(s)

Ic(s)
=

Ki/m

s2 −Kx/m
:= P (s) (7.23)

which has two real poles symmetric about the jω axis. Clearly, this is unstable and

the pole magnitude depends on the position stiffness. Furthermore, the DC gain

of the transfer function depends on the ratio of current to position stiffness. From

equation (7.22), the pole positions also depend directly on the bias Ib and leakage

coefficient βleak.

7.2.2 MIMO Linear Model 1

The nonlinear state-space model of Section 7.1.3 is now linearized about an operat-

ing point for application of linear control. The constant-current-sum bias is easily
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implemented with software

i1 = Ib13 + ic13, i3 = Ib13 − ic13 (7.24a)

i2 = Ib24 + ic24, i4 = Ib24 − ic24 (7.24b)

i5 = Ib57 + ic57, i7 = Ib57 − ic57 (7.24c)

i6 = Ib68 + ic68, i8 = Ib68 − ic68 (7.24d)

where Ibj is the current bias and icj is the new input control current. This effectively

reduces the eight current inputs to four. Let u = [ic13, ic24, ic57, ic68]
T . The state

equation (7.10) modified by (7.24) is linearized about x = u = 0 to give a model of

the form ẋ = Ax+Bu. The output equation for the linearized system is the same as

that in equation (7.12), Y = CyCgx. The A and B matrices are given below in terms

of their corresponding stiffness and input gain matrices.

A =













04×4 I4×4

AF 02×4

Aτ Aω













, B =













04×4

β

Γ













(7.25)

The force stiffness matrix AF and torque stiffness matrix Aτ are

AF =
1

m







a1 0 a3 0

0 a2 0 a4






, Aτ =

1

Ir







a3 0 a5 0

0 a4 0 a6






(7.26)

with

a1 =
4c

g30
(I2b13 + I2b57), a2 =

4c
g30
(I2b24 + I2b68) (7.27a)

a3 =
4c

g30
(I2b57`2 − I2b13`1), a4 =

4c
g30
(I2b24`1 − I2b68`2) (7.27b)

a5 =
4c

g30
(I2b57`

2
2 + I2b13`

2
1), a6 =

4c
g30
(I2b68`

2
2 + I2b24`

2
1) (7.27c)

The terms equation (7.27a) represent the sensitivity of the translational forces acting

on the center of gravity G with respect to the rotor translation. The translational

stiffness terms in equation (7.27a) are similar to the stiffness term in the 1-DOF case,
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equation (7.22). Observe that the translational stiffness is the sum of the individual

translational stiffness terms from the bottom and top bearing.

The stiffness terms, ∂F/∂θ, in equation (7.27b) represent a coupling between the

translation of G and tilt of the rotor about G. In a perfectly balanced rotor (`1 = `2),

this coupling is introduced when the top and bottom bias levels are unequal. In

the case of the modified PERMAG AMB where the rotor’s center of gravity does

not coincide with the geometric center, this coupling term depends on the difference

between the top and bottom bias levels, weighted by the imbalance lengths. Equation

(7.27b) suggests that one may adjust the top and bottom bias levels to eliminate the

coupling. Indeed, if I2btop`1 = I2bbottom`2, the coupling stiffness terms a3 and a4 vanish
5.

To achieve this, the ratio of the top bias to the bottom bias level should be set to

Ib57
Ib13

=

√

`2
`1

(7.28)

The ratio for the PREMAG AMB is about 1/2. Thus, to avoid coupling between the

translational and rotational motion, the bottom bias level should set to about twice

the top bias level. This agrees with the intuition in that the bottom bearing must

be stiffer to compensate for the “bottom-heaviness” of the rotor. Although this is

theoretically possible, it may be impractical. For example, the region of convergence

of the closed-loop locally asymptotically stable nonlinear system acted on by the

linear controller depends on the current bias. To have a reasonably large region of

attraction, the bias in the top bearing may be set at 2-3 amps, for example. Thus, the

bottom bearing would require a bias of 4-6 amps which is prohibitively large. Such a

large bias dissipates much power and leads to overheating of the coils and rotor.

The torque stiffness matrix Aτ is defined by the terms in equations (7.27b) and

(7.27c). The rotational torque stiffness terms in equation (7.27c) represent the change

in torque τ about G with respect to the rotor tilt about G. Observe that the rotational

5Note that all coupling is not eliminated. There is still coupling between the input channels via
the B matrix.
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stiffness is a sum of the top and bottom translational stiffness terms weighted by the

imbalance lengths. Again the a3 and a4 coupling stiffness terms appear. In this

equation, they represent the sensitivity of the torque about G produced by the EM

forces to a translation of G. As seen previously, proper selection of the ratio of the

biases in the top and bottom axes can eliminate the dependence of the torque on

rotor translation.

The Aω damping matrix is

Aω = ωz(1−
Ia
Iz
)







0 0 0 1

0 0 −1 0






(7.29)

and represents the coupling between the angular acceleration θ̈x and θ̈y. This coupling

disappears when ωz = 0.

The matrices of the input gain matrix are

β =
4c

g20m







Ib13 0 Ib57 0

0 Ib24 0 Ib68






(7.30)

and

Γ =
4c

g20Ir







−`1Ib13 0 `2Ib57 0

0 `1Ib24 0 −`2Ib68






(7.31)

β and Γ represent the input current gains of the force and torque, respectively.

7.2.3 MIMO Linear Model 2

The MIMO nonlinear model of Section 7.1.4 is now linearized for application of linear

control. Using the previous ccc bias scheme and control input, (7.18) is linearized

about x = u = 0 to obtain ẋ = Ax+Bu. Starting with

ẋ = A1x+ [04×4 B1]
TF (x, u)

the A and B matrices are

A =







04×4 I4

B1
∂F
∂x

∣

∣

∣

(0,0)
Aω






, B =







04×4

B1
∂F
∂Ic

∣

∣

∣

(0,0)






(7.32)
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Specifically,

∂F
∂x

∣

∣

∣

(0,0)
= 4c

g30
[diag(I2b13, I

2
b24, I

2
b57, I

2
b68),04×4] (7.33a)

∂F
∂Ic

∣

∣

∣

(0,0)
= 4c

g20
diag(Ib13, Ib24, Ib57, Ib68) (7.33b)

B1
∂F
∂x

∣

∣

∣

(0,0)
= 4c

g30



















I2
b13

m1
0

I2
b57

m3
0

0
I2
b24

m1
0

I2
b68

m3

I2
b13

m3
0

I2
b57

m2
0

0
I2
b24

m3
0

I2
b68

m2



















(7.33c)

B1
∂F
∂Ic

∣

∣

∣

(0,0)
= 4c

g20



















Ib13
m1

0 Ib57
m3

0

0 Ib24
m1

0 Ib68
m3

Ib13
m3

0 Ib57
m2

0

0 Ib24
m3

0 Ib68
m2



















(7.33d)

As in the previous model, Aω → 0 as ω → 0: see equation (7.19). It is clear that

the coupling between the input channels is introduced by the B1 matrix. The effect

of the axial imbalance is a little less clear in this model. No interpretation about a

bias level ratio here is obvious. The stiffness terms and current gains only depend on

the local bias current. That is, ∂F
∂x

and ∂F
∂Ic

are diagonal.

7.3 1-DOF Lead+PI Linear Control

A Lead+PI linear control design is applied to the 1-DOF AMB model of Section 7.2.1.

Data collected from the PREMAG final report [64] suggests that βleak ≈ 0.5, but is

not known exactly. For preliminary design purposes, let βleak = 0.5 and Ib = 3A: the

resulting open-loop pole positions are at ±350. These values are used to illustrate the

design, however, since the real open-loop pole positions are not known, some trial and

error is required when implementing this Lead+PI design on the PREMAG bearing.

The root locus of the open-loop system results in a locus that converges along the

real axis to the origin and then breaks away along the jω axis: See top row of Figure
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7.2. This indicates that one can only hope to achieve marginal stability with pure

gain feedback. Due to the symmetry of the poles, the transfer function is purely real.

The phase is −180◦ (PM = 0) over the entire frequency range.

A lead controller pulls the root locus into the left half plane, while at the same

time, contributes positive phase to increase the phase margin to a non-zero value. To

fully specify a lead controller with transfer function as in equation (7.34),

L(s) = Kp
(s+ z)

(s+ γz)
(7.34)

one needs to select the zero, pole, and gain values. There are a multitude of zero/pole/gain

selections that will make the root locus pass through a particular set of desired closed-

loop pole locations. However, Bode design asserts that to achieve a decent phase con-

tribution from the lead, one should place the pole of the lead 6-10 times further in the

LHP than the zero. That is, choose γ ∈ [6, 10] in equation (7.34). With this design

choice, one selects the zero position and gain to achieve a reasonable phase margin.

The second row of Figure 7.2 analyzes the loop gain of the plant and lead controller.

Let γ = 10, z = 150, and kp = 8× 104. This choice of γ places the lead pole 10 times

further out in the LHP than the zero. The lead controller forces most of the root

locus is into the LHP. For increasing values of gain Kp, the open-loop unstable RHP

pole moves towards the zero of the lead6. A phase margin of PM = 50◦ is achieved

for the above values of z and kp.

While this design may lead to a good transient response and relative stability,

the steady state error to a step input is large because the DC gain is only about

4dB. There are two ways to compensate for this. The simplest way is to re-scale

the reference input to so that the DC gain of the closed-loop plant/lead controller

is unity. Note that the proper scaling value is easily determined by experiment and

6Note that this value of kp assumes that x is in meters. If the position is expressed in mils,
kpmils = kp × 2.54× 10−5 m

mil
= 2.03
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Figure 7.2: Root locus and Bode design of Lead+PI controller. The parameters are
Kp = 8× 104 (Kp = 2.03 for x in mils), Ki = 0.3, z = 150, and γ = 10.

measurement of the steady-state error. Although this roughly eliminates the steady-

state error to a step input from the reference to the output, a PI controller is a more

robust solution. The PI controller (s+Ki)/s has pole at origin and zero close to origin
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so that the magnitude and angular contribution to the root locus is minimal. The

third row of Figure 7.2 shows that the PI does not change the root locus (or the PM)

significantly for ki = 0.3. However, the pole at the origin introduces infinite DC gain

and consequently achieves zero steady-state error to step inputs and disturbances.

In summary, a controller of the form

U(s)

e(s)
= Kp

(s+ z)(s+Ki)

(s+ γz)s
(7.35)

is required. This has the basic Lead+PI form, however this is implemented in a

slightly nonstandard way. It turns out to be difficult to achieve any desired transient

response to a step input and simultaneously achieve zero steady-state error with the

typical cascade compensation designs7. The control is implemented with the feedback

structure of Figure 7.3. In this implementation, cascade lead compensation and unity

feedback is employed to stabilize the plant. The feed-forward gain K0 is selected to

be the inverse of the DC gain of Lead/plant closed-loop from r0(s) to Y (s). Since the

plant is not exactly known, K0 is determined from experiment. This ensures roughly

zero steady-state error to a step input. An additional outer PI loop for perfect

tracking of a step reference and rejection of constant disturbances is added. Note

that the gain K0 takes most of the work load off of the PI controller when following

steps references. The PI control also ensures perfect regulation to zero error.

7For example, it can be difficult to achieve a desired overshoot, settling time and zero steady
state error for a step input. Zero error may be achieved in steady state, but steady state may take
a long time to achieve using a pole at the origin. Further discussion about alternative PID control
implementations can be found in [59, 58, 21].
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Figure 7.3: Feedback configuration for the Lead+PI control law.

The feedback structure in Figure 7.3 essentially implements the Lead+PI con-

troller of equation (7.35).

U(s) = Kp
s+ z

s+ γz
e0(s)

= Kp
s+ z

s+ γz
(r0(s)− Y (s))

= Kp
s+ z

s+ γz

(

(R(s)K0 − Y (s)) +
Ki

s
e(s)

)

= Kp
s+ z

s+ γz
(ẽ(s) +

Ki

s
e(s))

≈ Kp
s+ z

s+ γz

s+Ki

s
e(s)

Since K0 is typically close to one, the signal ẽ ≈ e and the Lead+PI compensator is

implemented. For values of K0 6= 1, the zero location of the PI controller is slightly

perturbed, however this has minimal effect on the performance.

7.4 MIMO Local Asymptotic Stability

The SISO control design is illustrated in Section 7.3. This approach has the benefit

of easy design, however, it does not guarantee stability of the MIMO closed-loop sys-

tem. The coupling evident in the Aω matrix or the B matrices of the state equations

may lead to instability. Indeed, the interconnection of stable systems is not neces-

sarily stable. However, the closed-loop local asymptotic stability is easily checked

after deriving the closed loop system matrices of the linearized equations. In Section

7.5, global asymptotic stability is suggested via simulation of the decentralized linear
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control law on the nonlinear plant, however, only local asymptotic stability is achiev-

able in the experiments. The experimental results of Section 8.6 further illustrate the

decentralized control approach.

The dynamics of the Lead+PI control laws are first represented in state variable

form and then the augmented plant state xp and controller state xc is shown to have

an asymptotically stable equilibrium point at ξ = [xp, xc] = [0, 0].

A lead controller has the transfer function

u(s)

e0(s)
= kp

s+ z

s+ γz

where u is the plant input and e is an error signal. The zero is specified by z and γ is

a constant to place the pole about 6-10 times further out in the left half plane than

the zero. The differential equation for the lead transfer function is

u̇+ γzu = kpė0 + kpze0

Since the derivative of the input appears, let xc = u − kpe0 represent the controller

state.

u̇− kpė0 = −γzu+ kpze0

xc =

∫ t

0

d

dτ
(u(τ)− kpe0(τ))dτ =

∫ t

0

γzu(τ) + kpze0(τ) dτ

Thus, the state equation of a single Lead controller is given by

ẋc = −γzxc + z(1− γ)kpe0 (7.36a)

u = xc + kpe0 (7.36b)

To compactly represent the four parallel lead controllers, let the controller states,

control inputs, and tracking error be xc = [xc1, ..., xc4]
T , u = [u1, ..., u4]

T , E0 =

[e01, ..., e04]
T , respectively. Let the zero locations, the pole scaling factors and the

loop gains be z = diag(z1, ..., z4), Γ = diag(γ1, ..., γ4), and Kp = diag(kp1, ..., kp4),
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respectively. Then the controller state equation has the form

ẋc = −Fxc +KpGE0 (7.37a)

u = I4xc +KpE0 (7.37b)

with F = zΓ and G = z(I − Γ).

The plant representation is

ẋp = Axp +Bu

Y = Cpxp

First calculate the inner-loop state equation from R0 to Y in Figure 7.3, where

R0 = [r01, ..., r04]. Let the stacked controller plant state be Σ = [xp, xc]
T . Then using

the feedback constraint E0 = R0−Y , it is easy to verify that the inner-loop of satisfies

the state equation

Σ̇ =







A−BKpCp B

−KpGCp −F






Σ +







BKp

KpG






R0 (7.38)

Thus, the MIMO AMB is locally asymptotically stabilized with four parallel lead

controllers if the system matrix of equation 7.38 is Hurwitz.

The integral portion of the control law is represented with by the simple state

equation, v̇ = e with v ∈ R
4. The feedback constraint from Figure 7.3 is R0 :=

Kiv +K0R where Ki = diag(ki1, ..., ki4) and K0 = diag(k01, ..., k04). Augmenting the

state once again gives the closed loop state equation from R to [Σ, v]T ,







Σ̇

v̇






=













A−BKpCp B BKpKi

−KpGCp −F KpGKi

−Cp 04×4 04×4



















Σ

v






+













BKpK0

KpGK0

I













R (7.39)

Thus, the MIMO AMB is locally asymptotically stabilized with the decentralized

control scheme of Figure 7.3, can follow step inputs with zero steady state error, and

reject constant disturbances, if the system matrix of equation (7.39) is Hurwitz.
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In summary, decentralized control allows one to proceed as if the plant was repre-

sented by four decoupled SISO systems. This approach is motivated by the available

sensor measurements and the ease of design. Once four stabilizing Lead+PI con-

trollers are designed for the nominal SISO system, one uses equation (7.39) to check

the local asymptotic stability of the closed loop MIMO system. Note that it is not

shown that the four Lead+PI controllers that stabilize their respective nominal SISO

models will also stabilize the 4-DOF MIMO AMB. There are definitely situations

where MIMO system is unstable when this decentralized approach is used. For exam-

ple, given a large ωz, the coupling can destabilize the closed loop MIMO system, even

when stable Lead+PI controllers have been designed for each SISO system. This is

a shortcoming of the decentralized approach. However, simulation and experimental

results furnish evidence of its practicality.

7.5 Simulations

This section presents simulation results of the nonlinear MIMO plant acted on by the

decentralized control scheme of Figure 7.3 and Section 7.4. The state is represented

by the state space model of equation (7.18).

The plant parameters used for the following simulations are summarized in Table

7.5. Most of these parameters are well-known. The terms marked with an asterisk

(*) are calculated from the IronCAD 3D modelling software (from IronCAD LLC.)

and are considered to be reasonably accurate. The βleak variable is a guess. All other

parameters are measured directly or calculated. The same Lead+PI controller that

is used on the real plant is used in the simulations,

Lead(s) = kp
(s+ 150)

(s+ 1500)

(s+ 0.3)

s
(7.40)

and are implemented with the scheme shown in Figure 7.3.
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Table 7.1: Plant parameters used in simulations.
Parameter Meaning Value

g0 Nominal Airgap length .508mm (20 mils)
r0 Radius of rotor 78.74 mm
µ0 permeability of free space 4π × 10−7 H/m
Ap Area of pole face .001428 m2

N Number of coil turns 60
` distance along z axis from C to pole face 7.747 mm
ρ∗g distance along z axis from C to G 4.51 mm

`1 = `+ ρg Upper moment arm along z axis from G 12.257 mm
`2 = `− ρg Lower moment arm along z axis from G 3.237 mm

m∗ Mass of rotor 1.807 kg

I∗a Axial moment of Inertia 44.317 kg
cm2

I∗r Radial moment of Inertia 72.878 kg
cm2

βleak Flux-leakage coefficient 0.5

The next few figures illustrate the effects of the control gains on the perfor-

mance. Each simulation shows the response of the system as the controllers reg-

ulate the rotor to (yT , xT , yB, xb) = (0, 0, 0, 0) from an initially at rest position of

(yT (0), xT (0), yB(0), xb(0)) = g0(0.9,−0.9, 0.5, 0.5).

The simulation is conducted with the same loop-gain Kp on each control axis.

Figure 7.4 shows the effect of increasing Kp = 2 to Kp = 4. Note that these gains

assume the position is measured in mils. As expected, larger loop gains imply shorter

settling times.

Figure 7.5 shows a similar initial condition response however, the xb axis is tracking

a 2.5 mil, 0.5Hz square wave. Two simulations are conducted for the feed-forward

gain K0 = 1 and K0 = 0.6. When K0 = 1, the transient response may be decomposed

into two parts. The first part of the transient is due the lead controller and lasts for

about the first 0.1s after the step occurs. After this quick transient, the tracking error

is almost 2 mils. At this point, the integrator action drives the tracking error towards

zero, however the rate of decay of the tracking error is slow. Perhaps the rate of

decay of the steady-state tracking error could be improved with a lag instead of a PI

controller, however, it is easier to reduce the initial large steady-state error that occurs
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Figure 7.4: Initial condition response with ωz = 0, and Kp = 2 and Kp = 4 for each
control axis. Position measured in mils.

after the first transient. This is done by changing the feed-forward gain. When K0 =

0.6, the system tracks the square wave with about 20% overshoot and a settling time

of about 0.1 seconds with zero steady-state error. This technique takes most of the

work load off of the PI controller as far as reference tracking is concerned. However,

the PI controller is essential because it is required for eliminating disturbances and

for perfect regulation.

One may also observe the coupling of the system in Figure 7.5. The B1
∂F
∂x

and

B1
∂F
∂Ic

matrices in equation (7.33) predict coupling between the top and bottom control

axes. They also predict that the x and y control axes are independent. This is verified

in Figure 7.5.

Figure 7.6 shows the effects of a spinning rotor. In these simulations, Kp = 4 and

K0 = 1 for each axis. In the first simulation ω
2π

= 20Hz. This makes the Aω term in

equation (7.32) non-zero and coupling between each of the four control axes results.
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Figure 7.5: Initial condition response and xb tracking a 2.5 mil square wave with
ωz = 0, Kp = 2, and K0 = {1, 0.6}.

This manifests itself as an oscillation that decays to zero. Note that the rotor is

assumed to be balanced except for the fact that its center of gravity has been shifted

in the axial z direction. If the center of gravity had a non-zero x or y component, the

rotor imbalance would cause a persistent sinusoidal disturbance. Recall that with the

proper selection of gains, the decentralized control approach ensures local asymptotic

stability even though it neglects the coupling between the control axes. Keeping the

control gains fixed, one sees that increasing the angular velocity to ω
2π

= 33Hz results

in coupling between the control axes that is significant enough to destabilize the

system. This illustrates the situation where each Lead+PI controller should stabilize

each SISO channel, however, the coupled closed-loop MIMO system is unstable.

179



0 0.1 0.2 0.3 0.4 0.5
−20

−10

0

10

20

X
to

p 
(m

ils
)

ω=20 Hz
ω=33 Hz

0 0.1 0.2 0.3 0.4 0.5
−20

−10

0

10

20

Y
to

p 
(m

ils
)

0 0.1 0.2 0.3 0.4 0.5
−20

−10

0

10

20

X
bo

t (
m

ils
)

Time (s)
0 0.1 0.2 0.3 0.4 0.5

−20

−10

0

10

20

Y
bo

t (
m

ils
)

Time (s)

Figure 7.6: Initial condition response with ωz = {20, 33}Hz, Ki = 1 and Kp = 4 for
each control axis.
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CHAPTER VIII

EXPERIMENTAL CONTROL LAW

VERIFICATION

8.1 Overview of Experimental Results

This chapter presents the experimental validation of the low-loss nonlinear control

laws presented in Chapter 4. The PREMAG reaction wheel is stabilized with the

decentralized control scheme established in Chapter 7. Current mode amplifiers are

used on the xt, yt, and yb axes for linear control and voltage mode amplifiers are

employed on the xb control axis for verification of the low-loss nonlinear control laws.

The backstepping, control Lyapunov function, and passivity control laws are inves-

tigated with particular attention paid to the power consumption, the total square

flux required for regulation, the bearing stiffness, and the control law singularity as

a function of the flux bias and the control gains. The linear controller is similarly

scrutinized.

There are several practical issues that arise when implementing the control laws

on a real magnetic bearing that do not arise in simulation. In the development of the

AMB model, it was assumed that when the rotor is centered at x = y = 0, the airgap

on both sides of the rotor is equal to g0. In this situation, the zero-force-point (the

point at which the bias forces exactly cancel) is at x = 0. However, the electromagnet

coils do not fit perfectly into the housing and the airgap on one side of the rotor when

x = y = 0 may not equal the airgap on the other side. Consequently, the zero-force-

point is shifted to a new position. Note that amount of shift in the zero-force-point

depends on the bias. Thus, in several of the following results, the rotor is often
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regulated to a constant position other than x = y = 0. Note that when regulating to

the zero-force-point, the control currents are approximately zero. Furthermore, it is

found that the control laws must be augmented with integral action to regulate to a

setpoint with zero steady-state error. The details are presented in Section 8.2.

gcfc

AMB

Copley 
412

Copley 
412

Flux Bias
Control

Control
Law

Velocity
Observer

Flux 
Measurement

IR
Comp

Figure 8.1: Block diagram of the closed-loop control and gcfc implementation for
the xb actuator axis.

Figure 8.1 illustrates the control loop for the nonlinear xb control axis. The am-

plifiers operate in voltage mode with software implemented IR compensation. The

voltage inputs Vrj are composed of a bias component Vbj and a control component Vcj

for j = 1, 2. The gcfc switching condition distributes the calculated control voltage

Vc to the appropriate electromagnets by monitoring the sign of the generalized flux

φ. Each nonlinear control law requires the position, the velocity, and the generalized

control flux.

182



Velocity measurements are obtained by filtering the position signal. Since dif-

ferentiation amplifies noise at high frequency, direct differentiation of the position

signal is avoided. A limited differentiation scheme is used. Since the bandwidth of

the position control loops are on the order of 20−50Hz, a filter that roughly matches

the derivative up to 200Hz is used. Figure 8.2 shows the transfer function of the

derivative and the velocity estimation filter

V (s)

X(s)
=

(1 + b)2s

s2 + 2bs+ b2

where b = 2π200. The filter does introduce some extra phase shift in low frequency

but does not affect the control performance significantly.
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Figure 8.2: Bode plot of approximate derivative filter used for velocity estimation.

Figure 8.3 shows a test of the velocity estimation filter for a sinusoidal and step

position signal. The velocity is shown in mils/s and the position is scaled for easy

viewing. The estimator successfully reproduces the velocity from the position.

Stability proofs in Chapter 4 assume continuous-time systems, thus, a fast sam-

pling rate is required. The dSPACE board monitors the time required to calculate

the control law, referred to as the ‘turn-around time”. The controller complexity
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Figure 8.3: Velocity estimation test data.

and the number of signals to be recorded determines the turn-around time. The clf

control law is the most complex while the passivity control law is the least complex.

The dSPACE board produces an overrun fault if the sampling period is shorter than

the turn-around time and execution is halted. In practice, the sampling period is

decreased until a fault occurs. A sampling period of Ts = 165µs is used for each

control law. This corresponds to a sampling rate of 6.06kHz. No attempts have been

made to simplify the the control law implementations to minimize their turn-around

times.

The power consumption and total square flux required for stabilization are of main

concern in low-loss magnetic bearing design. Recall that the electromagnetic losses

are proportional to the square of the flux: see Section 2.2.2. The power and flux

required for stabilization are calculated from the state trajectories. Given any two

control laws, it may be difficult to “match” their transient responses, and as a result,

it is difficult to obtain fair power and flux consumption figures. Therefore, power
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consumption and flux requirements must be calculated based on some steady-state

behavior of the system. One such steady-state mode of operation is what this author

refers to as the “whirl test”. In this test scenario, the bottom of the rotor is regulated

to a set point while the top of the rotor is uncontrolled. The xb axis is implemented

with a nonlinear low-loss control law and the yb axis uses a linear controller. With

a tap of the hand, the top of the rotor will whirl about in a roughly circular orbit.

This presents a persistent sinusoidal disturbance to the bottom control axes. Figure
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Figure 8.4: Example whirl test. ZB passivity-based control on xb axis and linear
control with 2A bias used on yb axis.

8.4 illustrates a whirl test. The rotor position is illustrated with time and the rotor

orbits are seen in the right-hand column. The rms regulation error erms is used as a

performance measure. In this example, the nonlinear passivity controller regulates the

xb position to zero with a rms error of 1.61 mils and the linear controller regulates the
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yb position to zero with a rms error of 1.17 mils. The rms error depends on the control

gains and the value of the bias used. Recall that larger bias implies larger actuator

gain df
dφ
, and therefore affects the closed-loop bearing stiffness. A comparison of the

power consumption and flux requirements between different control laws is considered

“fair” when the control laws share the same rms regulation error erms. The whirl test

is conducted for each control law for several bias levels and control gains so that the

power, flux, and stiffness may be investigated over a range of erms performance values.

Figure 8.5 shows an example of the gcfc implementation during a whirl test. The

control voltages, the currents, the fluxes calculated from the flux-lookup tables, the

control flux and the tracking error are shown. The rms values of the tracking error,

control flux, and total fluxes are calculated for later use.
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Figure 8.5: Example whirl test using passivity controller Φ0 = 0: Illustration of
gcfc condition during closed-loop control. The rms values of the control flux φ and
the total fluxes Φ6 and Φ8 are calculated for later use.
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The instantaneous power analysis of the AMB and FWB was conducted in Section

2.2. Although the instantaneous power is useful for illustrating the power flow of the

system, the average (real) or rms power is a more useful tool in determining the power

required for operation. Recall the rms value of a signal is calculated with

xrms(t) =

√

1

t

∫ t

0

x2(t)dt

This is sometimes referred to as the running or online rms value of a signal. Since

the rms value of a signal is basically equivalent to the L2 norm, the rms value will

settle to a constant value for signals with finite energy1. The running rms value of

the control flux and total fluxes is shown in Figure 8.5. The steady-state value of the

running rms value is also displayed.

The instantaneous power supplied to each electromagnet by the control law is

Psupp = VappI = VcI + VbI + I2R̂

where VcI, VbI, and I
2R̂ are the power required for control, biasing, and replenishment

of the Ohmic loss. However, the rms power supplied satisfies

|Psupp|2 ≤ |VcI|2 + |VbI|2 + |I2R̂|2

where | · |2 has been used to indicate the rms value. Therefore, it is difficult to study

the rms power supplied to the system in terms of its constituents. Thus,

|Psupp|2 = |VappI|2 (8.1)

is used as a measure of the power consumption in each electromagnet. The total

power consumption is the sum of the power consumption in each electromagnet. No

rotational mechanical power is supplied to the rotor because the angular velocity used

in whirl testing is zero.

1For periodic signals, the integral is calculated over one period and evaluates to a scalar: xrms =
√

1
T

∫ T

0
x2(t)dt.
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The instantaneous power loss in the AMB and FWB is proportional to the square

of the flux: see Section 2.2.2. However, the rms power loss is a more useful measure.

Thus, to gauge the resulting AMB efficiency if it was to use the particular control

law in question, the rms value of the total square flux is calculated. Specifically, the

rms value of the total square flux refers to the quantity

(Φ2
6(t))rms + (Φ2

8(t))rms (8.2)

where Φ6 and Φ8 refer to the total flux in each electromagnet on the xb axis.

The experimental data for the linear, backstepping, clf, and passivity control laws

is presented in each section below. Conclusions about the bearing stiffness, power

consumption, and flux requirements are drawn from whirl testing and controller reg-

ulation data. Step response tracking is shown where appropriate to further illus-

trate the performance. Although the frequency response of a nonlinear system is not

necessarily defined, the response of the PREMAG AMB with any of the nonlinear

controllers designed in Chapter 4 to a sinusoidal reference is roughly sinusoidal. The

frequency response for each control law is measured to give a rough indication of the

bandwidth of the control loop.

There are several interesting trends found in the data. It is evident that the

bearing stiffness increases as the flux bias increases. Also, the total flux required

for regulation and the total square flux increases with the flux bias. Therefore, the

AMB power dissipation increases with flux bias. Interestingly, the power supplied to

the bearing for regulation does not necessarily increase with the flux bias. Loosely

speaking, the power supplied by the controller is composed mainly of the power

required to generate the control flux and the power required to generate the bias flux.

In zero-bias (ZB), the control flux may be large. As the bias increases, the power

required to implement the flux bias increases. On the other hand, the power required

to realize the control flux decreases because of the increase in bearing stiffness. Thus,
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there exists2 a value of the flux bias Φ0 that minimizes the total power supplied to

the bearing. Furthermore, as predicted by simulation, the backstepping control law

produces large voltage spikes when operating near the controller singularity (small

Φ0). The clf control law performs better than the backstepping controller in zero

bias and the passivity-based control law performs the best. The frequency spectrum

of the control signal is used to characterize the performance of the controller when

operating near singularity.

8.2 Control Law Modification for Zero Steady-

State Error

It is found in the experiments that each of the nonlinear control laws is not able to

regulate the rotor to zero with zero steady-state error. The shift in the zero-force-

point, as mentioned earlier, will produce a disturbance force on the rotor. Other

disturbance forces may arise from the interaction of the other control laws through

the coupling between the top and bottom of the rotor control axes. In any case,

integral action may be added into the control laws to eliminate the steady-state error.

The modifications to each control law are very similar and will only be illustrated in

detail for the backstepping controller.

Recall that the open-loop dynamics have the form

ẋ1 = x2 (8.3a)

ẋ2 = f2(y) (8.3b)

ẏ = u (8.3c)

If f2(y) is equal to the stabilizing function σ(x1, x2), the resulting x dynamics are

ẍ1 = σ(x1, x2) where the designer has the freedom to assign any asymptotically

stable dynamics with the choice of σ. Rewriting the open loop dynamics in terms of

2This optimal value is yet to be determined.
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the backstepping error η := f2(y)− σ(x1, x2),

ẍ1 = f2(y)− σ(x1, x2) + σ(x1, x2) = σ(x1, x2) + η

η̇ =
df2(y)

dy
u− σ̇(x1, x2)

Selecting the preliminary feedback

u =
(df2(y)

dy

)−1

(σ̇(x1, x2) + ν)

the backstepping error dynamics are η̇ = ν. The auxiliary input ν is selected to make

the η dynamics asymptotically stable.

For regulation to x1 = x2 = 0, choose the stabilizing function as

σr(x1, x2) = −k1x1 − k2x2

and the auxiliary input as

νr = −γη

where k1, k2 and γ are positive control gains. In experiment, it is found that even

when regulating to zero, there may be some steady-state error in η when using νr.

To remedy this, let

ν := −γη − γi
∫ t

0

ηdt (8.4)

with γi > 0 so that the backstepping error dynamics have the form

η̈ + γη̇ + γiη = 0 (8.5)

The added integral action ensures that the steady-state error in η is removed. To

regulate to a setpoint other than zero with zero steady-state error, let e = r−x1 and

let

σ(x1, x2) := k1e− k2x2 + ki

∫ t

0

edt (8.6)

where k1, k2 and ki are positive control gains3. The resulting dynamics are

ẍ2 = k1ė− k2ẋ2 + kie+ η̇ (8.7)

3Note that k1, k2, and ki behave roughly like the proportional, derivative, and integral gains of
a PID control law.
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Given that ė = ṙ − x2, ë = r̈ − ẋ2, and
...
e =

...
r − ẍ2, the above dynamics in equation

(8.7) may be written in terms of the tracking error,

...
e + k2ë+ k1ė+ kie =

...
r + k2r̈ − η̇ (8.8)

The closed-loop system consisting of the tracking error dynamics of (8.8) and the

backstepping error dynamics (8.5) is globally asymptotically stable for constant r.

The cascade of two GAS systems with a linear interconnection term is GAS [69].

Thus, tracking to any constant setpoint is possible. In fact, the position will track

any reference signal with r̈ = 0.

By substituting (8.4) and (8.6) for νr and σr in the clf and passivity based designs,

similar tracking error stability proofs may be constructed.

In the backstepping and clf design, the positive definite matrix P which is the

solution to the equation ATP + PA < 0 where

A =







0 1

−k1 −k2







is used explicitly in the feedback. To implement the controller so that the control

gains k1 and k2 can be changed online, the matrix P must be solved analytically in

terms of k1 and k2. Solving A
TP + PA = −I analytically for P gives

P =
1

2







k2
1+k1+k2

2

k1k2
k1

k1
1+k1

k1k2






(8.9)

8.3 Backstepping Control Results

This section presents the experimental results of the backstepping controller of equa-

tion (4.18) which has been modified as described in the previous section. Recall that,

when operating with zero flux bias, the backstepping control law is singular on the set

D1 = {x ∈ R
3|x3 = 0}. Consequently, infinite voltage signals are commanded when

crossing the plane of singularity. In experiment, it is found that large voltage signals
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may be commanded even with small, but non-zero flux bias. In terms of regulation

performance, the backstepping control law is competitive with the other nonlinear

control laws presented in Chapter 4 for large flux bias, however, its ability to regulate

the rotor to a setpoint quickly degrades for flux-bias levels less than about 50µWb.
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Figure 8.6: Backstepping Whirl Test Φ0 = 0: xb axis regulated to 4 mils with a
rms regulation error erms = 4 mils. The poor performance of the ZB Backstepping
controller is typical during whirl testing, no matter the value of k1.

The whirl tests for the backstepping controller are conducted for Φ0 = 0, 50, 100,

and 150µWb. However, the results for ZB operation are not comparable to those of

the LB operation. The following figures show that, during whirl testing, the rotor

may be consistently regulated to a given setpoint with any desired rms tracking error

in the range of about erms ∈ [.8, 1.5] mils by proper selection of the k1 gain when the

flux bias is greater than about 50µWb. However, for ZB operation, the rms tracking

error is about erms = 4 mils for any reasonable choice of k1 gain. Thus, the ZB data

is omitted. Note that for any of the control laws implemented, one can not pick the
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control gains too large or the controller may respond to the measurement noise.

Figure 8.6 illustrates this deficiency of the backstepping controller in ZB. The

xb axis is regulated to 4 mils, however, the rms regulation error is about 4 mils.

This performance is not improved by increasing the k1 control gain (roughly the

proportional gain).
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Figure 8.7: Backstepping Whirl Test Φ0 = 50, 100, 150µWb: The rms regulation
error erms is a linear function of the proportional gain k1. The proportional gain
required to achieve a given erms decreases as the flux bias increases.

When the bias is increased to values greater than about 50µWb, the whirl test

looks similar to that shown in Figure 8.4 and erms is a linear function of the k1 control

gain. Figure 8.7 illustrates the linear dependence of erms on the proportional gain

for several values of flux bias. The proportional gain required to achieve a given erms

decreases as the flux bias increases. This is due to the fact that the actuator gain

df
dφ
, where f is the total electromagnet force and φ is the control flux, increases with

bias. The above may also be interpreted as an increase in bearing stiffness because
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df
dx

= df
dφ

dφ
dx
.
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Figure 8.8: Backstepping Whirl Test Φ0 = 50, 100, 150µWb: The rms value of the
control flux φrms vs. rms regulation error erms. For a given erms, φrms decreases as Φ0

increases.

Figure 8.8 shows the linear dependence of the rms control flux φrms on the rms

tracking error erms. For a given flux bias, φrms increases as erms decreases. This is

consistent with the intuition that more control effort is required to regulate the rotor

to a tighter position tolerance. The increase in bearing stiffness is also supported by

the fact that for a given erms, φrms decreases as the flux bias Φ0 increases. Loosely

speaking, the bearing becomes more “responsive” as the flux bias increases. Conse-

quently, to perform the same amount of work while regulating the rotor, the required

control effort φrms becomes smaller as the flux bias increases.

Figure 8.9 shows the total rms flux Φ6rms + Φ8rms vs. rms regulation error erms.

Since the total flux is the combination of the control flux and the flux bias in both

electromagnets, one expects each curve in Figure 8.8 to be shifted up by 2Φ0. (There

is an extra Φ0 contributed from both of the electromagnets.) For example, φrms =

194



0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
160

180

200

220

240

260

280

300

320

340

 Φ
6r

m
s +

Φ
8r

m
s (µ

 W
b)

RMS regulation error (mils)

LB50
LB100
LB150

Figure 8.9: Backstepping Whirl Test Φ0 = 50, 100, 150µWb: The total rms flux
Φ6rms + Φ8rms vs. rms regulation error erms for several flux bias values.

90µWb for erms = 1.4 using Φ0 = 50µWb. Thus, the total flux should be about

90µWb + 2(50)µWb = 190µWb. One finds the total flux for erms = 1.4 and Φ0 =

50µWb in Figure 8.9 to be 180µWb.

Figure 8.10 shows the total square rms flux (Φ2
6)rms + (Φ2

8)rms vs. rms regulation

error erms. Note that (Φ2)rms 6= (Φrms)
2. Recall that the rms power dissipation is

proportional to the square of the flux. As expected, the total square flux increases

with increasing flux bias. Thus, one should operate with the smallest flux bias possible

to minimize the power loss.

Figure 8.11 shows the total rms power supplied (P6supp)rms + (P8supp)rms vs. rms

regulation error erms. Recall that the power supplied is calculated from equation 8.1.

The first trend to note is that tighter regulation tolerance requires more power. The

trade-off between power consumption and flux bias is also illustrated in this figure.

One might expect that the power supplied to the bearing increases as the flux bias

195



0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
2

2.5

3

3.5

4

4.5

5

5.5

6
x 104

 (Φ
62 ) rm

s +
(Φ

82 ) rm
s (µ

 W
b)

RMS regulation error (mils)

LB50
LB100
LB150

Figure 8.10: Backstepping Whirl Test Φ0 = 50, 100, 150µWb: The total square rms
flux (Φ2

6)rms + (Φ2
8)rms vs. rms regulation error erms for several flux bias values.

increases. However, as the flux bias increases, so does the bearing stiffness. Conse-

quently, the rms control flux (a measure of the control effort) decreases. This suggests

that there are instances where the reduction in the power required to implement the

control flux is greater than the increase in the power required to implement the flux

bias. Therefore, one may actually save power by increasing the bias flux. For exam-

ple, inspecting Figure 8.11, one observes that for erms < 1.4, less power is required by

implementing the 100µWb flux bias than when implementing the 50µWb flux bias.

Similar statements may be made wherever the different flux bias lines cross. Note

also that the slope (Psupp)rms/erms decreases as the flux bias increases.

With significant bias levels, the controller performance is acceptable. Figure 8.12

demonstrates the controller tracking a square and a sawtooth wave for Φ0 = 50µWb

with zero steady-state error and acceptable transient performance. The control gains
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Figure 8.11: Backstepping Whirl Test Φ0 = 50, 100, 150µWb: The total rms power
supplied (P6supp)rms + (P8supp)rms vs. rms regulation error erms.

selected for these figures are k1 = 4, k2 = 2, ki = .2, γ = .5, γi = .1, and the feed-

forward gain k0 = 0.83. Similar results are obtained for larger flux bias levels. Note

that the x and y axes are clearly decoupled. However, the reference tracking on the

xb axis presents a disturbance to the xt axis.

Figure 8.13 shows the measured magnitude frequency response for the backstep-

ping controller using the above gains and several values of the flux bias. The control

bandwidth is in the range of 10 − 30Hz. As the flux bias increases, the bandwidth

increases.

Figure 8.14 shows the rotor being regulated to (xt, yt, xb, yb) = (4, 0, 4, 0) mils with

Φ0 = 50µWb. At t = 0.2s, the rotor is spun by hand to present a disturbance. Recall

that when the rotor is spinning, there is coupling between each of the control axes.

The controllers on each axis successfully reject the disturbance. Although omitted

from this presentation, the disturbance is better rejected for larger bias. In fact
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Figure 8.12: Backstepping Controller 1 mil Reference Tracking Φ0 = 50µWb:
Tracking of a 1 mil square and sawtooth reference with 3 mil offset. Note that the
data for the sawtooth has been shifted by −6 mils for easy viewing. The following
control gains result in zero steady-state error: k1 = 4, k2 = 2, ki = .2, γ = .5, γi = .1,
k0 = 0.83.

for Φ0 = 150µWb, it is difficult to deflect the rotor’s xb position with an impulse

disturbance (a sharp tap with a hard object) or spin disturbance. Although not

illustrated, the commanded control voltages are at most 20− 30V.

The general trend with the backstepping controller is that the performance de-

grades significantly as the flux bias decreases to zero. Figure 8.15 shows the back-

stepping controller with Φ0 = 10µWb regulating to (xt, yt, xb, yb) = (4, 0, 4, 0) mils

with a spin disturbance introduced before t = 0s. The rotor behaves erratically, but

briefly recovers between 1.5 − 4s. Although not explicitly shown, the commanded

voltage signal may spike into the hundreds of volts during the erratic behavior. At

about 4s, the spin disturbance again causes large spikes in the control law and the

rotor vibrates violently. Since the rotor is spinning, coupling exists between all axes.

The spasmatic control on the xb axis injects a large disturbance into the other control
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Figure 8.13: Backstepping magnitude frequency response for Φ0 = 50, 100, 150
µWb: k1 = 4, k2 = 2, ki = .2, γ = .5, γi = .1. Note bandwidth increases as flux bias
increases.

axes. Note that when using zero bias, the controller typically fails to recover from a

spin disturbance and the requested control voltage may have spikes on the order of

106 volts.

The frequency spectrum is used to obtain an appreciation for the erratic control

voltages that the backstepping controller requests when operating in zero bias. Figure

8.16 shows the requested control voltages Vr6 and Vr8 produced by the backstepping

controller during a sample whirl test with Φ0 = 0. Note the large control spikes and

that these spikes are typically even larger when conducting a regulation test as in

Figure 8.15. The frequency spectrum for each requested control voltage is shown.

Notice the control signal energy is spread over a very large bandwidth. The Copley

412 amplifiers acting in voltage mode try to make Vapp6 and Vapp8 track Vr6 and Vr8,

respectively. However, the bandwidth of the amplifiers in voltage mode is only about

200 − 300Hz. Only a very small portion of the frequency spectrum of Vr6 and Vr8
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Figure 8.14: Backstepping spin regulation for Φ0 = 50µWb: Rotor is regulated to
(xt, yt, xb, yb) = (4, 0, 4, 0) mils and spin disturbance introduced at t = 0.2s. Control
Gains: k1 = 4, k2 = 2, ki = .2, γ = .5, γi = .1. Each axis is successful at regulating
against the spin disturbance.

make it through the amplifier to appear at Vapp6 and Vapp8. Note that the resulting

applied voltages are well within the ±28V voltage saturation range. Note that as the

bias increases, the bandwidth of the requested frequency spectrum is much smaller.

8.4 CLF Control Results

This section presents the experimental results of the clf controller of equation (4.35)

for p = 1. The experimental results for p > 1 are similar. The modifications to this

control law so that it can regulate to any setpoint with zero steady-state error are

similar to those presented in Section 8.2. The stabilizing control law σ in equation

(4.14) is replaced by equation (8.6). Defining η = x3 − u0(z), the function Θ in

equation (4.36) is written

Θ(z, x3) = γη
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Figure 8.15: Backstepping spin regulation for Φ0 = 10µWb: Rotor is regulated to
(xt, yt, xb, yb) = (4, 0, 4, 0) mils and spin disturbance introduced before t = 0s. Control
Gains: k1 = 4, k2 = 2, ki = .2, γ = .5, γi = .1. Each axis is successful at regulating
against the spin disturbance, but often with violent rotor vibrations.

This function is modified to

Θ(z, x3) = γη + γi

∫ t

0

ηdt

Recall that, when operating with zero flux bias, the clf control law is singular on the

set D3 := {x ∈ R
3| x3 = u0(z) = 0} where u0 is defined in equation (4.16). This

corresponds to a line in R
3. In experiment, it is found that this singularity is rarely

encountered. Note that operation near this singularity does produce some peaks in

the requested control voltage, however, the magnitude of these peaks are typically

reasonable in amplitude. Note that in zero bias, the clf controller performs much

better than the backstepping controller.

The whirl tests for the clf controller are conducted for Φ0 = 0, 50, 100, and
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Figure 8.16: Backstepping Whirl Regulation Control Spectrum: Φ0 = 0. Requested
control voltages Vr6 and Vr8 and their frequency spectra. The voltage mode amplifiers
only have bandwidth of about 200− 300Hz. The applied voltage Vapp6 and Vapp8 and
their frequency spectra. Compare to Figures 8.24 and 8.34.

150µWb. In contrast to the backstepping controller, the performance of the clf con-

troller in zero bias is comparable to the results in low bias. During whirl testing, the

rotor may be consistently regulated to a given setpoint with any desired rms tracking

error in the range of about erms ∈ [.9, 1.5] mils by proper selection of the k1 gain.

There is an upper limit to the proportional gain in experiment. When k1 is too large,

the controller seems to respond to the measurement noise and instability results. Fig-

ure 8.17 shows the linear dependence of erms on the proportional gain k1. To regulate

with given erms, the proportional gain k1 decreases as the flux bias increases due to

the increase in bearing stiffness. Note that the magnitude of the slope of erms/k1 also
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increases with bias.
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Figure 8.17: Clf Whirl Test Φ0 = 50, 100, 150µWb: Linear dependence of erms on
proportional gain k1. To regulate to a given erms, the proportional gain k1 decreases
with increasing flux bias. This is due to the increase in bearing stiffness with increas-
ing flux bias.

Figure 8.18 shows the linear dependence of the control flux φrms on the tracking

error erms. More control effort is required to regulate the rotor with tighter position

tolerance. Note that for a given erms, less control flux is required to regulate the rotor

as the flux bias increases. This is due to the increase in actuator gain df
dφ

and the

resulting increase in bearing stiffness df
dx

= df
dφ

dφ
dx
.

Figure 8.19 shows the total rms flux Φ6rms + Φ8rms vs. rms regulation error erms.

Since the total flux is the combination of the control flux and the flux bias in both

electromagnets, one expects each curve in Figure 8.18 to be shifted up by 2Φ0. For

example, φrms = 100µWb for erms = 1.4 mils using Φ0 = 50µWb. The total flux

should be about 100µWb + 2(50)µWb = 200µWb. The resulting total flux found in
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Figure 8.18: Clf Whirl Test Φ0 = 50, 100, 150µWb: Linear dependence of φrms on
proportional gain erms. Less control flux is required for regulation to a given erms as
the flux bias increases. This is due to the increase in bearing stiffness with increasing
flux bias.

Figure 8.19 for erms = 1.4 mils and Φ0 = 50µWb is 190µWb. Thus, the total rms

flux in each electromagnet is about 45µWb larger than its rms control flux. Similar

comparisons may be made for the other flux bias lines.

Interestingly, the zero bias total flux line is also shifted in Figure 8.19 even though

zero bias is implemented. The control flux for erms = 1.5 mils is φrms = 145µWb.

The total flux for erms = 1.5 mils is Φ6rms + Φ8rms = 200µWb. Thus, the total

rms flux in each electromagnet is about 27.5µWb larger than expected. Recall that

when the voltage mode amplifier operates properly, the coil dynamics are governed by

NΦ̇ = −I(R− R̂)+Vb+Vc. Thus the total flux is composed of the flux generated by

the control signal vc, the flux generated by the bias signal vb and the flux generated

by the imperfect IR compensation. Since vb ≡ 0 when implementing zero bias, this

extra flux must be due to the imperfect IR compensation.
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Figure 8.19: Clf Whirl Test Φ0 = 50, 100, 150µWb: The total rms flux Φ6rms+Φ8rms

vs. rms regulation error erms for several flux bias values.

Figure 8.20 shows the total rms square flux (Φ2
6)rms + (Φ2

8)rms vs. rms regulation

error erms. The total rms square flux increases with increasing flux bias. Recall that

the total rms square flux is proportional to the rms power dissipation due to eddy-

current drag losses in the FWB application. Therefore, to operate with minimal

losses, one must operate with the smallest flux bias possible.

Figure 8.21 illustrates the total rms power supplied to the bearing (Φ6supp)rms +

(Φ8supp)rms vs. the rms regulation error erms for several flux bias values. For any value

of the flux bias, more power is required to regulate the rotor to a tighter position

tolerance. Most interesting about these results is that zero bias takes the most rms

power to implement. Furthermore, when regulating the rotor with a position tolerance

less than erms = 1.2 mils, less power is required when implementing the 100µWb flux

bias than the 50µWb flux bias. Similar observations may be made wherever the flux

bias lines cross. The power savings can be traced to the increase in bearing stiffness
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Figure 8.20: Clf Whirl Test Φ0 = 50, 100, 150µWb: The total rms square flux
(Φ2

6)rms + (Φ2
8)rms vs. rms regulation error erms for several flux bias values.

as the flux bias increases. Note also that the magnitude of the slope (Psupp)rms/erms

decreases as the flux bias increases.

Like the backstepping controller, the clf controller has the ability to track square

and sawtooth reference signals for Φ0 ≥ 50µWb. These results are similar to those

shown in Figure 8.12 and are omitted. Note, however, the clf controller has much bet-

ter performance when regulating against the spin disturbance than the backstepping

controller. Consider Figure 8.22. The rotor is regulated to (xt, yt, xb, yb) = (4, 0, 0, 4)

mils. A very large spin disturbance (rotor is spun by hand) is introduced at t = 0.5s.

The spin disturbance is applied for 0.5 < t < 1.2 seconds. Afterwards, the xb axis

position quickly recovers. One observes that the clf regulation performance in zero

bias is much better than the backstepping performance with Φ0 = 10µWb: compare

Figure 8.22 to Figure 8.15.

The closed-loop magnitude frequency response of the clf controller is illustrated
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Figure 8.21: Clf Whirl Test Φ0 = 50, 100, 150µWb: The total rms power supplied
(Φ6supp)rms + (Φ8supp)rms vs rms regulation error erms for several flux bias values.

in Figure 8.23 for several values of the flux bias. Note that the closed-loop controller

bandwidth is on the order of 20− 30Hz for each value of the bias.

Figure 8.24 illustrates the requested control voltages Vr6 and Vr8 during zero bias

operation of the clf control law. Note that the control law may operate close to the

singularity at D3 := {x ∈ R
3| x3 = u0(z) = 0}, but rarely encounters it. Observe that

the requested control voltages Vr6 and Vr8 often have peaks, however, the magnitude

of these peaks are typically less than 10V . The frequency spectra of Vr6 and Vr8 is

also shown. The bandwidth of these signals is dramatically less than the bandwidth

of the requested control signals generated by the backstepping controller: see Figure

8.16. Since the bandwidth is so small, the Copley 412 voltage-mode amplifiers are

successful in making Vapp6 and Vapp8 track Vr6 and Vr8, respectively. Practically the

entire requested control voltage signal appears at the coil terminals.
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Figure 8.22: Clf spin regulation for Φ0 = 0µWb: Rotor is regulated to
(xt, yt, xb, yb) = (4, 0, 0, 4) mils and spin disturbance introduced for 0.5 < t < 1.2sec.
Control Gains: k1 = 4, k2 = 2, ki = .2, γ = .5, γi = .1. Each axis is successful at
regulating against the spin disturbance.

8.5 Passivity Control Results

This section presents the experimental results for the passivity-based control law of

proposition 6. The modifications to this control law so that it can regulate to any

desired setpoint with zero steady-state error are very similar to the modifications

presented in Section 8.2. Recall that for the passivity based control law, u0(x1, x2) :=

σ(x1, x2) := −k1x1− k2x2. The stabilizing function σ is replaced with equation (8.6).

Also the −γη term in equation (4.47) of Proposition 6 is replaced by equation (8.4).

The stability proof with these modifications is similar to that of Proposition 6.

Recall that the passivity-based control law is completely nonsingular. The perfor-

mance of this controller is much better than that of the backstepping and clf controller

in zero bias. During whirl testing, the rotor may be consistently regulated to a given
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Figure 8.23: Clf magnitude frequency response for Φ0 = 50, 100, 150 µWb: k1 = 4,
k2 = 2, ki = .2, γ = .5, γi = .1. The bandwidth for each response is on the order of
20− 30Hz.

setpoint with any desired rms tracking error in the range of about erms ∈ [0.9, 1.5]

mils by proper selection of the k1 gain. There is an upper limit to the proportional

gain in experiment. When k1 is too large, the controller seems to respond to the

measurement noise and instability results. Figure 8.25 shows the linear dependence

of erms on the proportional gain k1. To regulate with given erms, the proportional gain

k1 decreases as the flux bias increases due to the increase in bearing stiffness. Note

that the magnitude of the slope of erms/k1 also increases with bias.

Figure 8.26 shows the linear dependence of the control flux φrms on the tracking

error erms. More control effort is required to regulate the rotor with tighter position

tolerance. Note that for a given erms, less control flux is required to regulate the rotor

as the flux bias increases. This is due to the increase in actuator gain df
dφ

and the

resulting increase in bearing stiffness df
dx

= df
dφ

dφ
dx
.

Figure 8.27 shows the total rms flux Φ6rms + Φ8rms vs. rms regulation error erms.
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Figure 8.24: Clf Whirl Regulation Control Spectrum: Φ0 = 0. Requested control
voltages Vr6 and Vr8 and their frequency spectra. The voltage mode amplifiers have
bandwidth of about 200 − 300Hz. The applied voltage Vapp6 and Vapp8 and their
frequency spectra. Compare to Figure 8.16 and 8.34.

Since the total flux is the combination of the control flux and the flux bias in both

electromagnets, one expects each curve in Figure 8.26 to be shifted up by 2Φ0. For

example, φrms = 105µWb for erms = 1.5 mils using Φ0 = 50µWb. The total flux

should be about 105µWb + 2(50)µWb = 205µWb. The resulting total flux found in

Figure 8.27 for erms = 1.5 mils and Φ0 = 50µWB is 220µWb. Thus, the total rms

flux in each electromagnet is about 57µWb larger than its rms control flux. Similar

comparisons may be made for the other flux bias lines.

As presented in the clf data, the zero bias total flux line for the passivity data

is also shifted in Figure 8.27 even though zero bias is implemented. The control
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Figure 8.25: Passivity Whirl Test Φ0 = 50, 100, 150µWb: Linear dependence of
erms on proportional gain k1. To regulate to a given erms, the proportional gain k1
decreases with increasing flux bias. This is due to the increase in bearing stiffness
with increasing flux bias.

flux for erms = 1.3 mils is φrms = 135µWb. The total flux for erms = 1.3 mils is

Φ6rms + Φ8rms = 185µWb. Thus, the total rms flux in each electromagnet is about

25µWb larger than expected. As explained in Section 8.4, this extra flux is due to

the imperfect IR compensation. Note that the magnitude of the extra flux from the

imperfect IR compensation in the clf and passivity-based control are about the same.

Figure 8.28 shows the total rms square flux (Φ2
6)rms + (Φ2

8)rms vs. rms regulation

error erms. The total rms square flux increases with increasing flux bias. Since the total

rms square flux is proportional to the rms power dissipation due to eddy-current drag

losses in the FWB application, one must operate with the smallest flux bias possible

to minimize losses.
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Figure 8.26: Passivity Whirl Test Φ0 = 50, 100, 150µWb: Linear dependence of φrms
on proportional gain erms. To regulate to a given erms, the required control flux φrms
decreases with increasing flux bias. This is due to the increase in bearing stiffness
with increasing flux bias.

Figure 8.29 illustrates the total rms power supplied to the bearing (Φ6supp)rms +

(Φ8supp)rms vs. the rms regulation error erms for several flux bias values. For any value

of the flux bias, more power is required to regulate the rotor to a tighter position

tolerance. Note that for erms > 1.1 mils, the zero bias controller requires the least

amount of power to implement. This is in contrast to the clf controller which required

the most amount of power to implement in zero bias: see Figure 8.21. As seen

in the previous rms power analyses for the backstepping and clf controller, there

are instances when the supplied power may be reduced by increasing the flux bias.

Recall that as the flux bias increases, so does the bearing stiffness. Consequently,

the power required to implement the control flux decreases. Observe that when lines

corresponding to different flux biases cross, one should change the bias to save power.

Note that for the data presented, it takes less power to implement the 100µWb flux
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Figure 8.27: Passivity Whirl Test Φ0 = 50, 100, 150µWb: The total rms flux Φ6rms+
Φ8rms vs. rms regulation error erms for several flux bias values.

bias than the 50µWb flux bias. However, from looking at the slopes of these two

lines, the 50µWb line may require less power for some value of erms < .9 mils. Also,

when erms < 1.1 mils, the 100µWb flux bias implementation requires less than the

zero bias implementation.

Figure 8.30 shows the response of the passivity based controller to a 1 mil square

wave reference. The damping of step response increases as the bias increases. In zero

bias, the rotor is regulated to (xt, yt, xb, yb) = (2, 0, 1.5, 1). The controller gains are

k1 = 3, k2 = 0.5, γ = 0.5, γi = 0.1, ki = 0.3. For k0 = .68, the step response on

the xb axis is highly under-damped, but rises from 0.5 mil to 2.5 mil as desired. As

expected, the x and y axes are decoupled, but the xb axis presents a disturbance to

the xt axis. The data for Φ0 = 150µWb has been shifted down by 7 mils for easy

viewing. In this case, the rotor is regulated to (xt, yt, xb, yb) = (4, 0, 4, 1) and the step

response for k0 = 0.9 on the xb control axis is over-damped and has zero steady-state
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Figure 8.28: Passivity Whirl Test Φ0 = 50, 100, 150µWb: The total rms square flux
(Φ2

6)rms + (Φ2
8)rms vs. rms regulation error erms for several flux bias values.

error.

Figures 8.31 and 8.32 illustrate the passivity-based controller’s ability to regulate

the rotor against disturbances. Specifically, figure 8.31 shows the rotor being regulated

to (xt, yt, xb, yb) = (6, 0,−3, 0) while the rotor is spinning and Figure 8.32 shows the

rejection of a large impulse disturbance for Φ0 = 150µWb. In both situations, the

controller is able to keep the rotor stable.

The closed-loop magnitude frequency response of the passivity controller is il-

lustrated in Figure 8.33 for Φ0 = 0 and Φ0 = 150µWb. Note that the closed-loop

controller bandwidth is on the order of 20− 30Hz for each value of the bias.

Figure 8.34 illustrates the requested control voltages Vr6 and Vr8 during zero bias

operation of the passivity control law. Contrary to the clf and backstepping con-

trollers, the passivity-based control law is completely nonsingular. Observe that the

requested control voltages Vr6 and Vr8 are less than 10V . The bandwidth of these
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Figure 8.29: Passivity Whirl Test Φ0 = 50, 100, 150µWb: The total rms power
supplied (Φ6supp)rms + (Φ8supp)rms vs rms regulation error erms for several flux bias
values.

signals is dramatically less than the bandwidth of the requested control signals gen-

erated by the backstepping controller and the clf controller: compare to Figures 8.16

and 8.24. Since the bandwidth is so small, the Copley 412 voltage-mode amplifiers

are successful in making Vapp6 and Vapp8 track Vr6 and Vr8, respectively. The entire

requested control voltage signal appears at the coil terminals.

8.6 Linear Control Results

Each axis, except for the xb control axis, employs a linear controller using the normal

biasing scheme and amplifiers acting in current mode with a current bias in the

range of 1.5 − 3.0 A. The Lead+PI controllers are implemented with the feedback

structure shown in Figure 7.3. In all of the results to be presented below, the integral

gain is ki = 0.3, the lead zero position is z = 150, and the lead pole position is
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Figure 8.30: Passivity Step Responses for Φ0 = 0, 150µWb, k1 = 3, k2 = 0.5,
γ = 0.5, γi = 0.1, ki = 0.3: Zero bias results in a highly under-damped step response
(k0 = .68). When Φ0 = 150µWb, the step response is over-damped (k0 = .9).

γz = 1500. The controller is illustrated in several situations for various values of

kp. Step responses and frequency response data are used to illustrate the controller

behavior. Also, the data illustrates the coupling between the axes and the differences

between the inertia of the top and bottom of the rotor. Whirl tests are also conducted

for several values of the bias current.

Note that the region of attraction of the AMB using linear control depends on the

value of the current bias and this region does not cover the entire operating space.

Stated differently, the rotor is only locally asymptotically stable on the linear control

axes. (Note that the nonlinear control axis xb is globally asymptotically stable.) Also,

integrator windup can be problematic. For the above reasons, the following steps are

taken when initiating the linear controllers. First, the integral gains are initially set

to zero and the current bias is turned on. The rotor is pulled towards the closest

electromagnet and comes in contact with the catcher bearings at some point. After
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Figure 8.31: Passivity Based Controller for Φ0 = 0: Regulation of the rotor to a
setpoint while the rotor is spinning.

the control is enabled, the linear controller is assisted by giving a slight tap of the

hand on the rotor. The rotor is then “caught” by the controllers and held away from

the catcher bearings by the lead controller. Tracking to a desired setpoint occurs

when the integral gains are turned on.

Note that when using a current bias smaller than about 3 A, the rotor may have

difficulty being “caught”. To conduct whirl tests with a smaller bias, the rotor is first

stabilized with the 3 A bias. The bias is then reduced after the tracking transient.

Since the amplifiers work in current mode, a flux-current-position map similar to

the ones constructed in Chapter 6 are used off-line to convert the current and position

measurements into flux measurements. This enables comparisons with the nonlinear

controllers of the previous sections. Figure 8.35 shows the lookup table for coil 5.

The lookup table for coil 7 is similar.

Whirl tests for the linear controller were conducted using a current bias of I0 =
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Figure 8.32: Passivity Based Controller for Φ0 = 150µWb: Rejection of an impulse
disturbance while regulating the rotor to (xt, yt, xb, yb) = (6, 0,−3, 0).

1.5, 2.0, 2.5 A. Using Figure 8.35, the flux bias corresponding to the current bias

is shown in Table 8.6. Since the inductance changes with position, a current bias

produces a range of flux biases depending on the position.

Table 8.1: Correspondence of current and flux bias for linear control.
I0 minimum Φ0 maximum Φ0

1.5A 118µWb 135µWb
2.0A 148µWb 168µWb
2.5A 172µWb 192µWb

Figure 8.36 shows the linear dependence of rms regulation error erms on the loop-

gain kp. As expected, the regulation error decreases with increasing loop-gain. Fur-

thermore, the value of kp required to regulate to a given erms increases as the current

bias increases. This is consistent with the linear control analysis of Section 7.3. Recall

that the open-loop pole positions of the linearized SISO AMB with normal biasing
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k2 = 2, ki = .2, γ = .5, γi = .1, k0 = 1. The bandwidth for each response is on the
order of 20− 30Hz.

depend directly on the current bias: see Section 7.2.1. The poles are real and sym-

metric about the jω axis and their values increase with bias. When adding the lead

controller, increasing the value of kp moves the open-loop pole in the right half plane

along the root locus into the left half plane: see Figure 7.2. Therefore, to achieve

the same performance (equivalent to closed loop pole location), a larger loop-gain

is required when the current bias increases because the open-loop pole locations are

larger.

Figure 8.37 shows the linear dependence of rms control flux φrms on the rms

regulation error erms. As expected, more control effort is required to regulate the

rotor with a tighter position tolerance. To regulate the rotor to a given erms, less

control flux is required as the bias current increases. This can be interpreted as an

increase in the bearing stiffness.

Figure 8.38 shows the total rms flux Φ5rms + Φ7rms vs. the regulation error erms.
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Figure 8.34: Passivity Whirl Regulation Control Spectrum: Φ0 = 0. Requested
control voltages Vr6 and Vr8 and their frequency spectra. The voltage mode amplifiers
have bandwidth of about 200− 300Hz. The applied voltage Vapp6 and Vapp8 and their
frequency spectra. Compare to Figure 8.16 and 8.24.

Since the control flux in the normal biasing scheme is perturbed symmetrically, the

total flux is independent of the regulation error. Recall that under normal biasing

scheme, Φ5 + Φ7 = 2Φ0. Thus, the total flux value shown in Figure 8.38 divided by

two corresponds to the flux bias. Indeed, for I0 = 1.5 A, 255/2 = 127.5µWb is within

the range of flux biases recorded in Table 8.6. Similarly, the measured flux bias for

I0 = 2.0 A and I0 = 2.5 A are 160µWb and 182µWb, respectively. These are also in

the range predicted by Table 8.6.

The total rms square flux (Φ2
5)rms + (Φ2

7)rms is shown in Figure 8.39. The total

rms square flux increases with increasing flux bias. Since the total rms square flux

is proportional to the rms power dissipation due to eddy-current drag losses in the

FWB application, one must operate with the smallest flux bias possible to minimize

losses. However, recall that the normal biasing scheme becomes uncontrollable as the
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flux bias reduces to zero.

Figure 8.40 shows the total rms power supplied (Φ5supp)rms + (Φ7supp)rms vs. the

rms regulation error erms for several values of current bias. As expected, the more

power is required to regulate the rotor to a tighter position tolerance. Contrary to

the power curves of the nonlinear controllers using the gcfc condition, the total rms

power curves for the linear controller using normal biasing are parallel. Thus, there

are no instances when an increase of the current bias results in a reduction in power.

The next few figures illustrate the step responses of the system. Figure 8.41

illustrates the regulation of the rotor position to (xt, yt, xb, yb) = (4, 0, 0, 0) mils. A 1

mil step reference is injected into yb control axis. For the loop gain set to kp = 5, the

system responds with zero steady-state error, minimal overshoot and a rise time of

about Tr = 0.02 s. The feed-forward gain is set to K0 = 0.88. Note that the x axis is
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Figure 8.36: Linear Whirl Test for I0 = 1.5, 2.0, 2.5 A: Linear dependence of rms
regulation error erms on the loop-gain kp.

decoupled from the y axis and step response on the yb axis presents about a 0.5 mil

square wave disturbance on the yt axis.

For comparison, Figure 8.42 shows the regulation of the rotor to (xt, yt, xb, yb) =

(4, 0, 0, 0) mils, however, a 1 mil step response is superimposed on the yt control axis.

With the loop-gain set to kp = 2.5, the system has zero steady-state error and a rise

time of Ts = 0.02 s. The feed-forward gain is k0 = .75. Observe that the yt step

response introduces about a 0.1 mil square wave disturbance into the yb control axis.

The magnitude of the disturbance seen in Figure 8.41 due to the 1 mil square

wave tracking is much larger than the magnitude of the disturbance seen in Figure

8.42. This can be explained by the fact that the rotor is “bottom-heavy” and the

translational inertia of the bottom of the rotor is heaver than the translational inertia

of the top of the rotor.

Figure 8.43 shows the closed-loop magnitude frequency responses of the yb control
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Figure 8.37: Linear Whirl Test for I0 = 1.5, 2.0, 2.5 A: Linear dependence of rms
flux φrms on the rms regulation error erms.

axis for loop-gains kp = 2, 5. For kp = 5 and kp = 2, the bandwidth is about 40Hz

and 10Hz, respectively. For kp = 2, the bandwidth is a little harder to define due to

the large hump in the frequency response.

Figure 8.44 shows the closed-loop magnitude frequency responses of the yt control

axis for loop-gains kp = 1, 1.5, 2.5. For kp = 2.5 and kp = 1.5, the bandwidth is about

55Hz and 40 Hz, respectively. For kp = 1, the bandwidth is a little harder to define

due to the large hump in the frequency response. However, the overall trend is that

the bandwidth increases with loop-gain. Note that the bandwidth in the yt control

axis tends to be larger than the bandwidth in the yb control axis. Again, this can be

traced to the “bottom-heaviness” of the rotor.
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Figure 8.38: Linear Whirl Test for I0 = 1.5, 2.0, 2.5 A: The total rms flux Φ5rms +
Φ7rms vs. the rms regulation error erms. Since the normal bias scheme is used, the
total flux is always constant: Φ5 + Φ7 = 2Φ0.

8.7 CFS vs. GCFC: Total RMS Square Flux Com-

parison

Section 2.2.2 and, in particular, Table 2.1 claim that the losses in the AMB FWB

application are minimized if the total square flux required for regulation is minimized.

It is desirable to know which bias scheme, the cfs or the gcfc, is more efficient in

producing the required flux for rotor regulation and under what conditions this is

true. Section 3.3 performs a static force analysis to address this question. That

is, a constant force is produced from both bearings Fn and Fg, and a comparison

between the gcfc and cfs schemes is considered “fair” when Fn = Fg: see Section 3.3

for details. Since the gcfc condition is intended to be used in low-bias mode (and

sometimes zero-bias mode), it is likely that the flux bias used in the cfs scheme will

be greater than that of the gcfc scheme. As defined in Section 3.3, α = Φ0n/Φ0g
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Figure 8.39: Linear Whirl Test for I0 = 1.5, 2.0, 2.5 A: The total rms square flux
(Φ2

5)rms + (Φ2
7)rms vs. the rms regulation error erms.

is used to parameterize the comparison by measuring the ratio of the flux biases.

Furthermore, since it is likely that the flux bias will be small in the gcfc scheme, the

parameter β = φg/Φ0g is used to measure the size of the control flux in relation to

the size of the bias. It is anticipated that the gcfc mode in low-bias will operate with

α > 1 and β > 1. Figure 3.3 predicts that as α and β increase, or equivalently, as the

flux bias Φ0g decreases, that the ratio Tn/Tg becomes greater than unity. This means

that the gcfc scheme is more efficient in producing the required flux for operation

than the cfs scheme as the flux bias Φ0g is reduced.

The above analysis is might be considered somewhat artificial because it only

considers how much flux is required to produce a desired force at a given time and

does not consider the dynamics of the system. To have a more realistic comparison,

the total rms square flux required to regulate the rotor during whirl testing using the

constant flux sum (cfs) bias scheme is compared to that of the gcfc bias scheme. In this
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Figure 8.40: Linear Whirl Test for I0 = 1.5, 2.0, 2.5 A: The total rms power supplied
(Φ5supp)rms + (Φ7supp)rms vs. the rms regulation error erms.

chapter, comparisons are made between the different controllers under whirl testing

conditions. Since the disturbance is roughly periodic, the force required to regulate

the rotor is also roughly periodic. The magnitude of the periodic force compensation

signal produced by the actuator determines the amplitude of the roughly periodic

regulation error e. Thus, a measure of the “size” of the regulation error is also

a measure of the actuator force. The rms measure for size of a signal is convenient

because it averages out the time dependence of the signal and it is easy to calculate for

the system operating under the steady-state whirl conditions. The comparisons made

between controllers are considered “fair” if the they have the same rms regulation error

erms. Thus, the constraint Fn = Fg used in the static analysis is roughly equivalent

to different control laws sharing the same erms.

Since the passivity-based control law has the best performance of the nonlinear
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Figure 8.41: Rotor regulated to (xt, yt, xb, yb) = (4, 0, 0, 0) mils. A 1 mil step
response is superimposed on the yb control axis with kp = 5, ki = 0.3, k0 = 0.88.

controllers (which use the gcfc bias scheme) studied, its results will be compared to

those of the linear control which uses the cfs scheme. The parameter α = Φ0n/Φ0g

has the same interpretation in this comparison as it does in the static analysis. The

parameter β in this comparison is defined using the rms control flux βrms = φrms/Φ0g.

However, the range of achievable βrms in experiment is limited by the dynamics of

the system. One can not vary βrms continuously as in the static analysis. Figure 8.26

shows the dependence of φrms, and hence βrms, on erms. Furthermore, the increase in

bearing stiffness as Φ0 is increased means that the φrms (and βrms) required to achieve

a desired force is smaller with increasing bias. In addition, Figure 8.25 illustrates the

relationship between the regulation error erms and the proportional gain k1. Recall

that in experiment, the k1 gain is selected to produce a particular erms. It is found in

experiment that the controller starts responding to measurement noise and instability

results when k1 is too large. Of course, k1 can not be set to zero and the performance

227



0 0.2 0.4 0.6 0.8
−10

−5

0

5

10

x T (m
ils

)

0 0.2 0.4 0.6 0.8
−2

−1

0

1

2

y T (m
ils

)
0 0.2 0.4 0.6 0.8

−10

−5

0

5

10

x B
 (m

ils
)

0 0.2 0.4 0.6 0.8
−0.5

0

0.5

y B
 (m

ils
)

Figure 8.42: Rotor regulated to (xt, yt, xb, yb) = (4, 0, 0, 0) mils. A 1 mil step
response is superimposed on the yt control axis with kp = 2.5, ki = 0.3, k0 = 0.75.

will most likely degrade to the point where the rotor bumps into the catcher bearings

if k1 is too small4. Thus, the βrms parameter is more precisely written as βrms =

φrms(erms(k1),Φ0g)/Φ0g.

Figures 8.28 and 8.39 show the total rms square flux vs. erms for the passivity

and linear controllers, respectively. These quantities are the whirl test version of the

total square flux for normal biasing Tn and the total square flux for gcfc biasing Tg of

the static analysis. That is, Figures 8.28 and 8.39 plot (Tg)rms and (Tn)rms vs. erms,

respectively. Since βrms depends linearly on erms ( see Figures 8.26 and 8.37 ) (Tg)rms,

(Tn)rms, and hence, (Tn)rms/(Tg)rms may be plotted vs. βrms. This is conducted for

many values of α since several Φ0g and Φ0n are used. The gcfc and cfc modes of

operation require less flux, and are therefore more efficient than the cfs mode in

regulating the rotor to a given erms when (Tn)rms/(Tg)rms > 1.

4No tests have been conducted to exactly determine what this lower limit might be.
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Bode Magnitude Diagram:YB Control Axis
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Figure 8.43: Measured closed-loop magnitude frequency response of yb control axis
for loop-gains kp = 2, 5. For each data set, ki = .3, k0 = 1, γ = 10, and z = 150.

Figure 8.45 plots (Tn)rms/(Tg)rms vs. βrms for several values of α. Recall that

the dynamics limit the achievable range of βrms and data taken only defines βrms on

several short intervals. βrms increases with increasing φrms because βrms =
φrms

Φ0g
. Also,

βrms increases as Φ0g decreases. Three different values of α are used for each value of

Φ0g. This data, illustrated with dark lines, is overlayed the theoretical predictions.

The dotted lines represent Tn/Tg in equation (3.21) for several values of α. The

data fits the overall trend predicted by the theoretical model, however, there is some

discrepancy between the rms analysis and the static analysis.

Figure 8.46 shows a close up of each set of data for different values of Φ0g. Note

that for Φ0g = 0, α and β are not defined. β as defined in Section 3.3 is used to

parameterize the ratio. Recall that the cfs condition is not defined for β > 2. Since

the rms values of the flux are being employed, the cfs condition is not defined for

βrms >
√
2. As expected, in zero bias, the cfc is more efficient than the cfs scheme

for every value of Φ0n. Note that the experimental data matches the theoretical

229



Bode Magnitude Diagram: YT Control Axis
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Figure 8.44: Measured closed-loop magnitude frequency response of yt control axis
for loop-gains kp = 1, 1.5, 2.5. For each data set, ki = .3, k0 = 1, γ = 10, and z = 150.

prediction very closely.

To reiterate and clarify the above analysis, efficiency ratio compares the total

square flux required to regulate the rotor to a given erms value. When this ratio is

greater than one, the gcfc mode is more efficient at producing the required flux for

regulation than the cfs mode. When this ratio is less than one, the converse is true.

The efficiency ratio is used as a tool to distinguish between which mode of biasing

incurs less operating losses as outlined in Table 2.1. Note that this ratio does not

draw any conclusions about the electrical power supplied. In fact, from the data in

Figure 8.29, the minimum rms power supplied using the passivity controller is about

4W . Figure 8.40 shows that the rms power supplied is less than 4W for most of

the cfs operation using I0 = 1.5A. Thus, there are instances where the gcfc mode

may be more efficient in producing the required flux, however, the cfs mode may

require less electrical power. For instance, in zero bias, the cfc mode for erms = 1.3 is

more efficient in producing the flux required for regulation. However, the rms power
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Figure 8.45: Total Square Flux Comparison cfs vs. gcfc: total square flux ratio
(Tn)rms/(Tg)rms plotted against the control flux ratio β = φrms

Φ0g
for several values of the

competing flux bias ratio α = Φ0n

Φ0g
. The gcfc bias mode is more efficient than the cfs

bias mode at regulating to a given erms when (Tn)rms/(Tg)rms > 1.

required for the cfs mode is 3.5W whereas the rms power required for the cfc mode

is 4.5W .
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

9.1 Summary and Conclusions

This dissertation offers new theoretical and experimental results to the current body of

literature on low-loss AMB design. Flux measurement is a central issue in this thesis.

The construction of a flux-current-position lookup table facilitates the measurement

of the flux at low frequency, including DC. Since control design is primarily con-

cerned with low-frequency phenomena (i.e. regulation, transient design, disturbance

rejection), low-frequency flux reconstruction is important. In fact, reconstruction

all the way down to DC is vital for flux-bias implementation. Furthermore, there

are several advantages to using the flux (as opposed to the current) to model the

electromagnetic actuators. Some of these advantages include a simplification of the

equations-of-motion and prediction of the AMB forces even when the electromagnets

operation in saturation, as is often the case in AMB operation.

Assuming that precise flux measurements are available, the newly developed gen-

eralized complementary flux condition (gcfc) may be imposed on the electromagnets of

a given actuator axis. This bias technique was developed to support low-loss control

designs for AMBs and the FWB application in particular. To minimize AMB and

FWB operating losses (that is, power supplied the bearing and reaction wheel that

is wasted), one must minimize the total square flux required for operation. This im-

plies operation with zero flux bias (ZB). Linear control using the constant-flux-sum

(cfs) bias technique becomes uncontrollable as the flux bias Φ0 is reduced to zero.

Thus, nonlinear control is required. The standard method for ZB operation is the

complementary flux condition (cfc) where the product of the total flux in opposing
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electromagnets is held at zero: Φ1(t)Φ2(t) = 0 ∀t. However, this mode of operation

has physical limitations, namely, a limited force-slew rate limit for small flux levels.

Furthermore, several of the standard nonlinear control design techniques have a sin-

gularity in the control law in ZB. The gcfc condition allows the introduction of a

small flux bias to pacify the flux slew-rate limit while at the same time, keeps the

power-saving switching strategy of the cfc. The total flux has the form Φj = Φ0 + φj

for j = 1, 2 and the complementarity is imposed on the control fluxes φ1φ2 = 0. In

this work, the flux bias is implemented with voltage mode amplifiers and an addi-

tional flux-feedback PI control-loop. Theoretical analysis and experimental results

show that under typical operating conditions (i.e. Φ0 small), the gcfc bias scheme

is more efficient at producing the required force than the standard cfs bias scheme.

Stated differently, the gcfc often produces a given required force with less total square

flux than the cfs scheme. Consequently, the gcfc scheme will have less operating losses

than the cfs scheme under typical operating circumstances. This is illustrated in Fig-

ures 8.45 and ?? where the passivity-based controller implementing gcfc is compared

to a linear controller implementing the cfs.

Since the operating losses are proportional to the bias flux, operation with low-

flux bias (LB) is typical in the gcfc scheme. However, the question enviably arises,

“How small can the bias be before LB operation effectively becomes ZB operation?”

Also, since several of the standard nonlinear control designs have a singularity in ZB,

how small may Φ0 become before the effects of operating near the singularity are

apparent? Recall that the singularity manifests itself as an infinite voltage command.

The answers posed to these questions in the literature sometimes employ an ad-hoc

solution. For example, the requested control voltage may be artificially saturated

[8, 50, 15]. Other authors have tried to live with the singularity by cranking up

the bias when voltage saturation is detected [30, 31, 22]. This thesis is different

in that instead of trying to live with the ZB singularity, it removes it altogether.
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Consequently, ZB and very small LB operation is greatly improved. The clf-based

control law of Section 4.3 has a singularity space that is a line in R
3 as opposed to the

typical plane of singularity in R
3 for the standard nonlinear controllers. Even better,

the passivity-based controllers of Section 4.4 are completely nonsingular.

Some readers may question the practical value of the improvements to ZB opera-

tion. For example, if an infinite voltage is commanded it will never actually be im-

plemented because of the voltage saturation inherent in the voltage-mode amplifiers.

Furthermore, there is nothing fundamentally wrong with operating the amplifiers in

saturation. In addition, the simulation results of Figure 4.8 show that the introduc-

tion of voltage saturation (with a reasonable choice of Vsat) into the dynamics only

seems to introduce a minor time delay or increase in the settling time. However,

experimental results suggest that amplifier bandwidth is the performance limiting

factor in ZB operation as opposed to voltage saturation. Figures 8.16, 8.24, and 8.34

show the voltage references Vr, the voltages realized by the Copley 412 amplifiers Vapp,

their frequency content, and the magnitude response of the voltage-mode amplifiers.

Although the backstepping control law requests voltages on the order of 103 in Figure

8.16, the realized applied voltage Vapp never actually saturates (Vsat = 28V ). The

performance of the backstepping controller is limited because it requests a voltage

signal Vr that has its energy spread out over a wide range in the frequency spectrum.

Only a very small percentage of the requested control voltage makes it through the

200Hz bandwidth of the Copley 412 voltage-mode amplifiers. In contrast, most of the

clf-based Vr and all of the passivity-based Vr make it through the limited bandwidth

of the amplifiers. That is, the control laws with the smallest singularity spaces require

the least amount of amplifier bandwidth to implement.

The gcfc is intended to be operated in LB to alleviate the ZB singularity, but

how large of a bias is required before an increase in bearing stiffness is observed? To

address this question, whirl tests were conducted for several control gains and bias
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levels. It is seen that the bearing stiffness increases with the bias. Indeed, since the

bearing is more responsive for a larger bias, the rms control flux required to regulate

the rotor to a given rms regulation error erms decreases with bias. This is illustrated in

Figures 8.8, 8.18, and 8.26. In addition to studying the stiffness properties, the total

rms flux and total rms square flux increases with bias. This implies that operating

losses increase with bias (as expected).

Several practical issues are addressed in this work. Resistance compensation is

implemented in software with the voltage mode amplifiers. Recall that the power I 2R̂

is supplied to the bearing to replenish the Ohmic power loss I2R. It is found that

a good resistance estimate R̂ is critical to have the ability to directly assign Φ̇ with

Vr. Moreover, the value of R̂ must be less than the true resistance R or the voltage-

mode amplifiers may be destabilized. Furthermore, the IR compensation in opposing

electromagnets must be properly tuned so that the responsiveness of each opposing

electromagnet is “matched”. Unmatched IR compensation results in asymmetric

generalized flux reconstruction. In addition, bandwidth-limited differentiation scheme

is employed to estimate the velocity from position measurements and the measured

position and currents are heavily filtered to ensure clean flux measurements. Also,

the control laws are augmented with integral action to guarantee tracking to any

setpoint with zero steady-state error. Additionally, a passive magnetic bearing was

constructed for vertical rotor support based on a trial and error design.

9.2 Future Work

Although this work presents a comprehensive treatment of low-loss AMB design and

implementation, several issues may be revisited in the future to achieve better results

or extend upon those presented here. Several suggestions for future work are listed

below:
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• GCFC Bias Strategy Evaluation: In this work, theoretical and experimen-

tal comparisons of the total square flux are made between the gcfc and the stan-

dard cfs flux bias scheme. The comparisons are parameterized by α = Φ0n/Φ0g

and β = φ/Φ0g where α measures the relative size of the flux bias used in ei-

ther scheme and β measures the ratio of the control flux to the bias flux. This

comparison characterizes only one facet of the AMB’s performance, namely, the

efficiency with respect to power dissipation. The practical limits to the perfor-

mance of magnetic bearings include the peak load capability, the slew rate, the

gain bandwidth product, and the dynamic load capabilities. These character-

izations are described in [53, 4, 1, 71, 70, 18, 93, 92, 44], for example. Such

measures have become the standards of AMB performance. To promote the

gcfc to the greater AMB control community, the above performance limitations

of the gcfc should be evaluated and compared to the cfs and cfp bias schemes.

• Flux Measurement: Flux measurements in this work are obtained by using

a standard integrating search coil technique using low-frequency sinusoidal ex-

citations to construct Φ − I curves for a range of x values. Search coils are

limited in that they can not sense a constant flux. To recover the DC portion

of the flux, DC magnetization curves are fit to the low-frequency excitation

Φ − I curves. The lookup tables consist of the DC magnetization curves for

several rotor positions. Thus, the flux-current-position lookup tables have a

limited flux-measurement bandwidth. Since the positioning feedback loops in

this work also have a limited bandwidth (i.e. less than 100Hz), the limited

flux-measurement bandwidth did not pose any serious problems. Investiga-

tions should be conducted in which the measurement bandwidth of the flux

lookup table is determined. This bandwidth will help determine the achievable

closed-loop positioning system bandwidth. Furthermore, work by Keith [32]

and Maslen [52] suggest that the bandwidth can be improved by combining the

237



measurements of a flux lookup table and a search coil. Essentially, the wide-

band flux is constructed from a weighted sum of the DC measurements (from

a lookup table) and the AC measurements (from an online search coil). Note

that search coils are easily integrated into the design of the magnetic actuator

if it thought to do so from the start.

An observer may also be used to reconstruct the flux from the measured sig-

nals (typically position and the electromagnet currents). Tsiotras and Arcak

construct a reduced order flux observer which uses only velocity measurements

in [80]. Although this design is successful in simulation, its practicality has not

been evaluated in a realistic setting. For example, velocity is typically estimated

instead of directly measured. The flux estimator performance may be degraded

with respect to improper velocity measurement and measurement noise. Baloh

in [1] also proposes a flux estimation scheme which measures only the applied

voltage and the measured current. The airgap is considered as time-varying

parameter and an observer for the resulting time-varying linear system is con-

structed. The typical unsaturated reluctance model is assumed to related flux

to current: NI = R(x)ϕ. The error between the measured current i and the

current estimate î(x, ϕ̂) is used to correct the flux estimate ϕ̂. The performance

of these methods in a realistic setting is yet to be determined.

• Adaptive IR Compensation: It was seen in Section 5.5.3 that the IR com-

pensation technique requires a good estimate R̂ of R so that R − R̂ is small.

The coil resistance is measured to be about 0.5Ω, however, this value may

change with large current levels due to core heating. Furthermore, since the

IR compensation is conducted in an open-loop fashion, the amplifier may be

destabilized when R̂ > R. In addition, the online estimate

R̂(t) = LPF (s)
Vapp(t)− Vcoil(t)

I(t)
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in which the calculated resistance is heavily low-pass filtered is shown to be

unreliable in all but the simplest test situations. This is due to the fact that the

estimate is infinite when I(t) = 0. However, it should be possible to construct

an online resistance estimate via standard parameter estimation methods [27].

• Mutual Inductance and Actuator Modelling:

It was seen in Section 5.5.4 that mutual inductance exists between the opposing

electromagnets on a given control axis. This has consequences on the implemen-

tation of the complementary flux condition (cfc). Although one may implement

the complementary current condition (ccc), the mutual inductance prevents one

from implementing the cfc precisely. A small flux may exist in the coil which

is assumed to be at rest. In this work, experiments showed that one could

satisfactorily assign the flux in both electromagnets simultaneously. Hence, the

effects of mutual inductance were neglected.

More precise control of the actuator flux may be obtained if the mutual induc-

tance is considered explicitly. In general, the coupling between the actuators is

modelled with an inductance matrix.
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Let Λ = [Nϕ6, Nϕ8]
T , I = [I6, I8]

T , R = [R6, R8]
T , VA = [Vapp1, Vapp2]

T , andM

be the inductance matrix. Then, Λ =MI. The flux lookup tables constructed

in Chapter 6 model the diagonal terms in the inductance matrix as a function

of x. Similar lookup tables may be constructed for the mutual inductance (off-

diagonal) terms. M for any system is invertible: see Proposition 9. Thus, the

coupled actuator dynamics have the form

Λ̇ = −RI + VA = −RM−1Λ + VA
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The complementary flux condition (cfc) could be obtained by designing VA as

tracking controller so that Λ tracks Λdes. One then assigns Λdes according to

the cfc. In this case, the cfc would be obtained “asymptotically fast” due to the

tracking transient.

In the PREMAG magnetic bearing, there may be significant coupling between

all eight electromagnet coils. The above coupled actuator framework could

accommodate such a situation. However, before one proceeds with such an

undertaking, better studies of the core modelling and coupling via finite element

analysis is warranted. No such studies have been conducted.

• System Identification: A better model of the open-loop system will elicit

more precise control performance. Recall that the 1-DOF linearized model of

the AMB operating with the constant-current-sum (ccs) bias scheme presented

in Section 7.2.1 is

P (s) =
Ki

ms2 −Kx

and

c =
βleakµ0AgN

2

4
, Kx =

4cI20
g30

, Ki =
4cI0
g20

The constant βleak ∈ (0, 1) is unknown and directly affects the open-loop pole

positions. Furthermore, the massm of the rotor is not exactly known. Its weight

could be measured directly, but this requires disassembly of the rotor hub and

removal of the rotor shaft. Concerns about damaging the DC motor contained

in the rotor hub prevented this task. Thus, the value of m in Table 7.5 is an es-

timate. Furthermore, the state equation based on airgap dynamics which allows

for a decentralized control approach has several effective mass variables, m1, m2,

and m3 defined in equation (7.14). Recall that these parameters capture the

“bottom-heaviness” of the rotor. The predicted closed-loop frequency response

behavior may be matched to the measured closed-loop frequency response data
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by tuning the model parameters.

• Additional Control Algorithms: The PREMAG reaction wheel may be used

as a test bed for whole range of AMB control design algorithms. For example,

the low-loss control algorithms developed in [80] which are based on feedback

passivation, the nonlinear small-gain theorem, and nested saturation designs

may be experimentally evaluated in the future.

Currently, the rotor is stabilized by a decentralized control scheme where three

control axes are linearly controlled (with amplifiers in current mode) and the

fourth is the low-loss nonlinear test bed (with amplifiers in voltage mode). It was

found that the regulation along the nonlinear axis was easier to implement than

along a linear axis because the nonlinear control laws under test are globally

asymptotically stable (GAS). The local asymptotic stability of the linear control

axes is sometimes troublesome on system startup. That is, the initial conditions

of rotor may not lie within the region of attraction of the linear controllers

and the rotor may require some help (i.e. a tap of the hand on the rotor) at

system initialization before the regulation kicks in. To remedy this, nonlinear

GAS control algorithms could be implemented on each axis. Recall that the

decentralized control presented in Chapter 7 neglects the coupling between the

control axes. It is likely that better performance is attainable by using a MIMO

control scheme, especially when rotor gyroscopic effects become significant at

large ω.

Several control implementation issues could be further investigated. The study

of the nonlinear control designs in this thesis are more interesting when using

amplifiers in voltage mode. However, the equivalent low-loss control designs us-

ing current mode are much easier to implement. It is unclear at this point what

the practical trade-offs are between current-mode and voltage-mode operation.
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For example, there may exist hardware limitations that determine the operat-

ing mode of choice. Future work could focus on determining these trade-offs by

comparison of both modes. In addition, studies could be conducted to minimize

control law calculation time to obtain faster sampling rates.

Recall that the DC motor mounted in the rotor hub used for spinning the

rotor is in need of some minor repair. This work deemed these repairs low-

priority because the low-loss control algorithms may be verified without spinning

the rotor. However, several interesting studies may be conducted once these

repairs are made. First, disturbance rejection of the rotor imbalance, which is

synchronous with ω, may be studied. Several methods based on generalized

notch filters, repetitive control, and estimation of the fourier components of

the rotor imbalance exist in the current literature: see [42, 40, 41, 13, 76], for

example. Also, spin down tests of the rotor may be conducted to investigate

the eddy-current drag phenomena. Recall that this rotor has been spin tested

up to 28krmp. However, high-speed spin testing requires the investment in a

containment system and vacuum chamber. Furthermore, the epoxy used to

glue the NdFeB magnets to the bottom of the rotor in the construction of the

vertical support passive magnetic bearing may fail for large ω. Further safety

studies must be conducted before high-speed rotor spin tests are implemented.

Perhaps more structurally sound method exists to attach the NdFeB magnets

to the bottom of the rotor.

• Optimal Flux Bias Selection

The most interesting problem for future study is the selection of an optimal flux

bias for power consumption, power loss, and bearing stiffness trade-offs. Recall

that minimization of the power loss and minimization of the power consump-

tion are different problems. Power dissipation (loss) is minimized in zero bias
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operation however the bearing stiffness and force slew-rate are compromised.

Furthermore, the results in Chapter 8 show that the rms power supplied to the

bearing (i.e. the power consumption) may actually decrease when the bias is

increased. This tends to be the case for tighter rotor regulation tolerances (for

smaller values of erms).

Recall that the power supplied is Psupp = VappI = VbI + VcI + I2R̂ where VbI,

VcI, and I
2R̂ are the power required to implement the bias flux Φ0, the control

flux φ, and the IR compensation. Experiments suggest that the power required

for IR compensation is smaller than that required for bias and control flux

implementation. It is sensible to presume that the power required to implement

the bias Pb is proportional to Φ0 and is independent of the control parameters.

In addition, experimental evidence illustrates that for a given erms, the rms

value of the control flux decreases with an increasing bias. Moreover, the rms

value of the control flux increases as erms decreases (i.e. as the rotor is regulated

to tighter position tolerances). Thus, it is sensible to presume that the power

required to implement the control flux Pφ is inversely proportional to Φ0 and

erms. Figure 9.1 speculates the dependence of Pb, Pφ and Psupp on the bias flux

Φ0 for several values of erms. If this is indeed the case, then an optimal value of

Φ∗

0 exists for each value of erms. Note that the bearing could consume very low

power and be highly efficient by operating with Φ0 = 0 and accepting a larger

regulation error tolerance.
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Figure 9.1: Hypothesized dependence of Pb, Pφ and Psupp on the bias flux Φ0 for
several values of erms.
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APPENDIX A

PROPERTIES OF THE FUNCTION X [q]

This short appendix introduces an operator for convenient notation. Let the function

sgn(x)xq = x[q] (A.1)

It is easy to verify that the above function has the following properties.

1. x[q]x[p] = xp+q, x[q]xp = x[p+q]

2. x[p]

x[q] = xp−q, x[p]

xq
= x[p−q]

3. dx[p]

dx
= px[p−1],

∫

x[p] = x[p+1]

p+1

4. If a scalar function f(x) ∈ Hp then f(x)[q] ∈ Hpq.

5. x[q] ∈ C0 for q > 0.

6. x[q] ∈ C1 for q ≥ 2.

7. If q is an odd integer, then x[q] is an even function.

8. If q is an even integer, then x[q] is an odd function.

245



APPENDIX B

BACKGROUND ELECTROMAGNETIC

THEORY

This appendix presents a comprehensive treatment of the basic analysis tools re-

quired to derive the dynamics of and the force generated by simple electromechanical

machinery. Most of this material is adapted from [11, 20, 6]. All electromagnetic

phenomena are governed by Maxwell’s1 laws. Maxwell built upon the observations of

Ampère, Gauss, and Faraday to construct a concise theory of electromagnetic waves.

These laws are very general and describe such diverse topics as wave propagation,

light polarization, light refraction and total internal reflection, transmission lines,

antennas, and radar, just to name a few. They are

∮

C

−→
E · −→d` = − d

dt

∫

S

−→
B · d−→S (B.1a)

∮

C

−→
H · −→d` =

∫

S

−→
J · d−→S +

d

dt

∫

S

−→
D · d−→S (B.1b)

∮

S

−→
D · d−→S =

∫

V

ρ dv (B.1c)
∮

S

−→
B · d−→S = 0 (B.1d)

where
−→
E is the electric field strength,

−→
H is the magnetic field strength,

−→
B is the

magnetic flux density,
−→
D is the electric flux density,

−→
J is the current density, and ρ

is the electric charge density. In addition, the flux densities are typically related to

1James Clerk Maxwell (1831-1879): British physicist and mathematician. He is best known for
discovering the connection between light and electromagnetic waves, but also contributed to the
kinetic theory of gasses, described the composition of the rings of Saturn and demonstrated how the
human eye sees color.
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the field strengths by

−→
B = µ

−→
H,

−→
D = ε

−→
E

where µ is called the magnetic permeability and ε is called the electric permittivity.

The units of the quantities in Maxwell’s Laws are listed in Table B.1.

Table B.1: Quantities in Maxwell’s Laws
Symbol Quantity Units
−→
E Electric Field N

C−→
H Magnetic Field A

m−→
D Electric Flux Density A

m−→
B Magnetic Flux Density T = N

Am−→
J Current Density A

m2

ρ Charge Density C
m

ε0 permittivity of vacuum 8.85× 10−12 F
m

µ0 permeability of vacuum 4π × 10−7 H
m

Maxwell’s Law’s are far too general for the purposes of this chapter and the next

few sections simplify their application to the study of electromechanical machinery

and electromagnets. Equation (B.1c) is Gauss’s statement of the conservation of

electric charge. In typical electromechanical machines, the electric charge density

ρ and the electric flux density
−→
D are zero. Thus, equation (B.1c) is disregarded.

Section B.1 presents the tools of magnetostatics, the study of steady-state magnetic

fields. These tools are credited to Ampère2 and Gauss3. Ampère’s Law (equation

(B.1b) is Maxwell’s generalization of Ampère’s Law ) establishes that currents create

magnetic fields and Gauss’s Law for magnetism (equation (B.1d)) is concerned with

the conservation of magnetic flux. Under certain conditions, the application of these

2André Marie Ampère (1775-1836): French physicist, mathematician and natural philoso-
pher. His findings on electricity and magnetism were published in Recueil d’observations
électrodynamiques (Collection of Observations on Electrodynamics, 1822) and in Théorie des
phénomènes électrodynamiques (Theory of Electrodynamic Phenomena, 1826).

3Johann Carl Friedrich Gauss (1777-1855): German mathematician. One of the most prolific
mathematicians ever, he produced over 500 documents on subjects including the fundamental theo-
rem of algebra, number theory, probability, differential geometry, geodesy, magnetism, electrostatics,
astronomy and optics.
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laws to the analysis of magnetic structures is analogous to circuit analysis. Section B.2

introduces magnetodynamics, the study of changing magnetic fields. Faraday’s4 Law

(equation (B.1a)) dominates this topic and is the basis for electromagnet dynamic

modelling. It relates the rate of change of magnetic flux through a coil of wire to the

voltage induced at the coil terminals. Since most practical electromagnets employ a

magnetic core, a discussion of the core loss and nonlinearity is included in Section

B.3. The relationship between coil current, magnetic flux and bearing airgap is of

major importance to the practical application of the techniques in this thesis and is

clearly delineated.

Finally, the generation of force in magnetic circuits is discussed. There are two

schools of thought when studying magnetic forces. One paradigm is to take a close

look at the physical mechanisms that produce the magnetic forces. Electromagnetic

forces arise when magnetic fields interact with the dipoles of magnetic materials or

when an electron is moving through a magnetic field. Through the application of

Maxwell’s laws and material physics, an extraordinarily detailed and complex pic-

ture of the microscopic dynamics involved to create the magnetic forces may arise.

The other school of thought is to study the energy stored in the magnetic field of

the electromechanical machine and realize that forces are created when electrical en-

ergy is converted to mechanical energy through the medium of the magnetic field.

Both of these approaches have advantages. One produces a detailed picture of the

physical mechanisms involved, but can be very cumbersome. The other produces

a macroscopic view of the net force generated in terms of the change in the stored

magnetic energy. This energy method is very general and applies to practically all

electromechanical machinery.

4Michael Faraday (1791-1867): British physicist and chemist. He is known for his laws of elec-
trolysis, the isolation of Benzene in 1825, introducing the concepts of magnetic lines of force or flux,
and his Law of Induction. His contributions are documented in the volumes entitled Experimental
Researches in Electricity (1839, 1844, 1855) and Experimental Researches in Chemistry and Physics
(1858). He is considered by many to be one of the greatest experimental physicists.
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Section C presents the Lorentz equation- which describes the forces felt by moving

charges in magnetic fields- and how it is used in the analysis of simple machines. The

complex physical mechanisms that govern the force created by interactions between

magnetic fields and magnetic materials will not be covered in this discussion. Section

D gives an introduction to the energy method.

B.1 Magnetostatics: Ampère’s Law, Guass’s Law

for Magnetism, and Magnetic Circuits

Maxwell’s laws are very general and have too complex to be used in simple situations.

Fortunately, they may be simplified when appropriate and even boil down to circuit-

like analysis laws. Magnetostatics is the study of steady-state or constant magnetic

fields. It is assumed that the current densities and the magnetic or electric field

strengths involved in the field analysis are constant. Magnetostatics is governed by

equations (B.1b) and (B.1d) of Maxwell’s Laws. Equation B.1b is a generalization of

the law that was first stated by Ampère. The term d/dt
∫

S

−→
D · d−→S establishes how

magnetic fields are created by changing electric fields and is of primary interest in

the study of electromagnetic radiation. However, since the electric field strength is

constant in magnetostatics, the term d/dt
∫

S

−→
D · d−→S in equation (B.1b) is zero. In

this case, equation (B.1b) reduces to Ampère’s Law.

∮

C

−→
H · −→d` =

∫

S

−→
J · d−→S , ∇×−→H =

−→
J (B.2)

For completeness, the integral form and differential form have been stated5 .

5Recall that conversion between the integral and differential forms of Maxwell’s equations is
conducted by applying the Divergence Theorem and Stokes Theorem for vector fields.

Divergence Theorem: For a vector field
−→
V and a closed surface S, the flux integral of

−→
V through

a closed surface equals the integral (or the sum total) of the divergence throughout the volume that

the surface encloses.
∮

S

−→
V · d−→S =

∫

∇ · −→V dv.

Stokes Theorem: For a vector field
−→
V and a closed curve C, the circulation integral of

−→
V equals the

integral (or the sum total) of the curl of
−→
V over any surface that has the contour C as its boundary.

∮

C

−→
V · −→d` =

∫

(∇×−→V ) · d−→S .
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Ampère’s law establishes the connection between the current carried in a wire and

the magnetic field generated by that current. Mathematically, it states that the line

integral around any closed path C of the magnetic field strength
−→
H is equal surface

integral of the current density
−→
J over any surface S which has C as its boundary.

Ampère’s may be restated as the circulation integral of the magnetic field strength

about a closed curve is the flux integral of the current density
−→
J through a surface

bounded by that curve. The differential form of Ampère’s law states that the curl

of the magnetic field is equal to the current density. That is, a current density (or

a current) causes the magnetic field to curl (locally rotate). Note that the magnetic

field curls in the direction to coincide with the right hand rule. If one grasps a current

carrying wire with their right hand and thumb pointing in the direction of the current,

the field curls in the direction of the fingers. This leads to the well known fact that

the magnetic field about a current carrying wire forms in concentric circles.

The following example illustrates the application of Ampère’s law on a toroidal

magnetic core with a rectangular cross-section. The example will be revisited several

times to facilitate understanding of magnetic circuits.

Example B.1. (Application of Ampère’s Law [6])

The application of Ampère’s law is demonstrated by studying a toroidal core with

rectangular cross-section with a coil tightly wrapped around it. Calculate the mag-

netic field strength as a function of the radius from the center of the core. See Figure

B.1.

Solution: For simplicity, assume that the coil is tightly wrapped around the core

and there are enough turns to completely cover the core. In this case, one assumes

two thin layers of uniform current density
−→
J into (

⊗

) and out of the page (
⊙

) in

Figure B.1b. The radii of the layers of the core are marked ra, ..., rd.

Symmetry is employed to analyze this problem. Obviously, choose cylindrical co-

ordinates with unit vectors r̂, θ̂, and ẑ for the radial, angular and axial directions. The
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r ra
rb
rc
rd

Figure B.1: (a) Toroidal core with coil wrapped around it. (b) Cross section of
core.

uniform current density assumption leads to a symmetrical magnetic field strength

H with respect to θ.

To evaluate Ampère’s Law, a circular contour of radius r is selected to make the

integration easy. The dotted circular contour shown in Figure B.1b has a tangent

vector that is perpendicular to two of the three cylindrical unit vectors.

∮

C

−→
H
−→
d` =

∮

(Hrr̂ +Hθθ̂ +Hz ẑ) · (rθ̂dθ) (B.3)

=

∫ 2π

0

Hθrdθ = 2πrHθ

The evaluation of the RHS of Ampère’s Law inside the core reduces to the total

current piercing the surface defined by the circular contour C.
∫

S

−→
J · d−→S = Ni (B.4)

Thus, the magnetic field strength is

−→
H =

Ni

2πr
θ̂ (B.5)

Note that direction of the field is in the θ̂ direction, but the polarity (clockwise or

counter-clockwise) has not been specified. It it determined by the right-hand-rule for

coils, a generalization of the right-hand-rule for wires. If one wraps their fingers in

the direction that the current encircles the core, then the field direction in the core is
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in the direction of the thumb. Thus, in this example, the field direction is clockwise.

The magnetic field as a function of the radius is

H = 0 r ≤ ra

H =
Ni

2πr

r2 − r2a
r2b − r2a

ra ≤ r ≤ rb

H =
Ni

2πr
rb ≤ r ≤ rc (B.6)

H =
Ni

2πr

(

1− r2 − r2c
r2d − r2c

)

rc ≤ r ≤ rd

H = 0 r ≥ rd

This function is illustrated in Figure B.2. Note that the analysis excludes consid-

eration of the end-turns of the coil. The magnetic field strength increases as more

current is enclosed in the C contour and decreases with radius.

Figure B.2: Variation of the H and B field (it is symmetric wrt θ) as a function of
the radius. Note that the B field is discontinuous because of the change in material.

The magnetic flux density
−→
B , measured Tesla (T := Wb

m2 ), is a function of the

magnetic field strength
−→
H and medium that the field passes through. Ferromagnetic
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materials (ones that include iron, or are alloys of iron and cobalt, tungsten, nickel, or

aluminum, for example) have a strong magnetic flux-focusing effect. For an isotropic

material (magnetic properties independent of direction), the flux density
−→
B measures

how the magnetic field has been magnified inside the material and is often defined by

the permeability µ.

−→
B = µ0µr

−→
H

[

T =
Wb

m2

]

(B.7)

where µ0 is the permeability of free space (µ0 = 4π×10−7H/m) and µr is the relative

permeability, which is cataloged for several materials6. Note that in Example B.1,

the B field shown in Figure B.2 is discontinuous because of the abrupt change of

material.

The other workhorse of magnetostatics is Guass’s law for magnetism. It is a

statement about the conservation of magnetic flux ϕ, a quantity closely related to

the magnetic flux density
−→
B . The magnetic flux is obtained by integrating the flux

density over some surface area. It is often represented schematically with magnetic

flux lines. One can visualize these lines by scatting some iron filings near a strong

permanent magnet. The magnetic flux density measures how closely packed these

flux lines are in a given cross-sectional area. Note that
−→
B is a vector and ϕ is a

scalar.

ϕ =

∫

S

−→
B · d−→S [Wb] (B.8)

Gauss’s Law for magnetism in integral and differential form is

∮

S

−→
B · d−→S = 0, ∇ · −→B = 0 (B.9)

Since the surface integral of
−→
B is the flux, Gauss’s law states that the total flux

passing through a closed surface is zero. That is, no net flux enters or leaves a closed

surface. In differential form, it states the the divergence of the magnetic field is zero.

6Typical values of the relative permeability for ferromagnetic materials is in the range of 103−105.
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In other words, there are no point sources of flux for magnetic fields. This is in

contrast to Gauss’s law for electricity which states that the divergence of the electric

flux density is equal to the electric charge density, ∇ · −→D = ρ.

Example B.2 illustrates the relationship between flux and flux density and moti-

vates the magnetic circuit approach to analysis of magnetic structures.

Example B.2. ( Flux in Toroidal Core [6])

Obtain the flux density and the flux in the core of Example B.1.

Solution: Integrate the flux density over the rectangular cross-sectional area.

Since H is a function of r (see equation (B.5) in Example B.1), the magnetic field

strength varies across the cross-sectional area. To simplify matters, evaluate B(r) =

µH(r) at r = (rb + rc)/2 and assume that B has this constant value over the entire

cross sectional area. When neglecting the variation of B with respect to r in this

way, little error is incurred in the calculation of the flux. Inspecting Figure B.2, one

observes that, in a core with a large permeability µ, the percent change of B as a

function of radius is very small: see Figure B.2. B is roughly constant in the core

due to the large permeability. Let Hc be

Hc =
Ni

2π((r0 +Ri)/2)
=
Ni

`c
(B.10)

where `c is length along the mean flux-path. The flux density is given by

Bc = µHc =
µNi

`c

and the flux is

ϕ =

∫

S

−→
B · d−→S = BcAc =

µNiAc

`c
=

Ni

`c/µAc

(B.11)

where Ac is the cross-sectional area of the core.

Looking closely at equation (B.11), one notes that the flux in the core is related

to the current in the coil by a constant that depends only on the physical geometry
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of the core and the core material. It makes sense to group these constants into one

quantity called the reluctance R.

R =
Ni

ϕ
,

[ A

Wb

]

(B.12)

The product of the current and the number of turns of the coil is called the magneto-

motive force (mmf:= Ni). It has units of AmpèreA or Ampère-turns A− t depending

if N is considered a dimensionless quantity. In this work, mmf will have units of

Ampère. From Example B.2, the reluctance of the core is given by

R =
`

µA
=

length in direction of flux

µ(Area ⊥ to flux)

This expression is similar to the resistance of a wire in terms of its geometry.

R =
ρ`

A
=

`

σA

with ρ and σ the resistivity and conductivity, respectively.

Equation B.12 motivates the analysis of magnetic structures via circuit analysis

techniques. In this analogy, equation (B.12) plays the role of Ohm’s law where R

is the resistance, ϕ is the current and the mmf is the voltage. In fact, the name

magnetomotive force is dubbed after the electromotive force (emf), a quantity which

is defined as a voltage source. Carrying this analogy further, Kirchhoff’s current

law (kcl) states that the total current entering a node (or more generally, any closed

surface ) is zero. This is the expression of Gauss’s law for magnetism if flux substituted

for current. Kirchhoff’s voltage law (kvl) says that the sum of the voltage drops

around a loop must balance the sum of the voltage increases. Referring to equation

(B.10), one may think of Ni as a mmf increase and Hc`c as a mmf drop. Thus,

Ampère’s law may be interpreted as the sum of the mmf drops around a loop equals

the mmf supplied to the magnetic circuit.

∮

C

−→
H · −→d` =

∑

k

Hk`k = Ni
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In summary, the definition of reluctance, Gauss law for magnetism, and amperes law

are analogous to ohms law, kcl and kvl, respectively.

Remark 3. (Large Permeability and the Magnetic Circuit Assumption )

The simplified analysis of the magnetic circuit approach is possible because the value

of µr is typically very large, 103 − 105 for ferromagnetic materials. Thus, the flux

density outside of the highly permeable material may be neglected. That is, assume

that there is no leakage flux and that all of the important flux is concentrated in

“the circuit”. For example, in Figure B.1b, the magnetic circuit approach assumes

that the leakage flux density in the range r < ra and r > rd is negligible. In general,

ferromagnetic materials exhibit nonlinear behavior and the value of µr depends on the

value of H and its past values (the hysteresis phenomenon). However, the relatively

high value of µr enables one to linearity approximate B with respect to H (and thus

pick a constant µr). This hysteresis-masking effect is discussed at length in Section

B.3.

Example B.3. (Application of Magnetic Circuit Concept [20])

Find the mmf required to produce a flux density of 0.5Wb/m2 in the airgap of the

magnetic circuit shown in Figure B.3. The constants are g = 0.1cm, `c = 6cm,

Ac = 1cm2, and µr = 104. Since the permeability of the core is large, assume that

there is no leakage-flux. That is, the magnetizing flux occupies only the core and

the airgap. Solve this problem using Maxwell’s equations and the magnetic circuit

approach.

Preliminary Comments: Obviously, this example is different than Example

B.2 in that it has an airgap. Simplifying assumptions are typically made about the

behavior of the flux density in the airgap. Before doing so, one can study the situation

with Gauss’s law. To apply Gauss, a closed surface is required. Consider two cross-

sectional areas of the core defined at any two points p1 and p2 along the mean-flux

path `c. Let the closed surface be bounded by the core and the two cross-sectional
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µr

p
p

Figure B.3: Toroidal core with airgap.

areas: See Figure B.3.

∮

S

−→
B · d−→S =

∫

p1

−→
B · d−→S 1 +

∫

p2

−→
B · d−→S 2 +

∫

core

−→
B · d−→S core = 0

where the subscripts p1, p2 and core of the surface integrals refer to the cross-sectional

areas at p1 and p2 and the surface of the core. The no-leakage flux assumption implies

that the flux inside the core is parallel the the mean flux path, thus,
−→
B · d−→S core = 0.

Let n̂1 and n̂2 be the normal vectors to the cross-sectional areas.

∮

S

−→
B · d−→S =

∫

p1

−→
B · d−→S 1 +

∫

p2

−→
B · d−→S 2

=

∫

p1

−→
B · n̂1dS1 +

∫

p2

−→
B · n̂2dS2

=

∫

p1

−→
B · n̂1dS1 −

∫

p2

−→
B · n̂1dS2

= ϕ1 − ϕ2 = 0

This means that the flux at any two points in the magnetic circuit is the same. This

means that flux is constant throughout the magnetic circuit.

Now consider the airgap. Recall that a highly permeable material tends to focus

the flux. When the flux passes from a highly permeable region to a lowly permeable

region, the flux spreads out. This fringing effect, a decrease in the flux density, appears

as a bulge in the magnetic field in the vicinity of the airgap. Note, the flux density

varies continuously as it crosses the gap: See Figure B.4. One observes that the
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S

Figure B.4: Fringing in the airgap occurs because flux and flux density are contin-
uous and the airgap cross-sectional area is effectively changing. A constant airgap
assumption implies a flux-density discontinuity at the transition.

number of flux lines crossing a given cross-sectional area is much less in the airgap as

it is in the core. Now, applying the above analysis to a surface with p1 in the core and

p2 in the airgap, one finds ϕcore = ϕgap and BcAc = BgAg. The fringing in the airgap

could be captured, for example, by allowing the effective cross-sectional area of the

airgap to vary continuously, Bg = BcAc/Ag(x) with x ∈ [0, g]. However, the fringing is

typically neglected and only roughly approximated by a constant airgap cross-section

which is slightly larger than that of the core. This cross-section is assumed to apply

for the entire length of the airgap. For example, let Ag = 1.1Ac. This captures the

reduction in flux density but artificially introduces a discontinuity in B. To see this,
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apply Gauss to find

φc = φg

BcAc = BgAg

BcAc = Bg1.1Ac

Bc = 1.1Bg

Because the approximate airgap cross-sectional area applies for the entire length of

the airgap, a discontinuity in the B field must occur at the transition from iron to

air. This discontinuity is an artifact of the assumption. In reality, the fringing in the

B field preserves its continuity. It is important not to let the conclusions drawn from

simplifying assumptions cloud the understanding of the underlying physics.

Solution: Apply Ampère’s Law.

Ni =

∮ −→
H · −→d`

= Hc`c +Hgg

=
Bc

µ0µr
`c +

Bg

µ0
g

=
BgAg

µ0µrAc

`c +
Bg

µ0
g

=
(0.5Wb)(1.1)

(104)(4π × 10−7H/m)
(.06m) +

(0.5Wb)

4π × 10−7H/m
(.001m)

= 2.63 + 398 = 401A

Thus, a 100 turn coil with 4.01 A could be used to set the required flux density.

Resolve the problem using magnetic circuit assumptions. The equivalent magnetic

circuit for this magnetic structure is simple. Since the permeability of the core is large,

the reluctance of the core is negligible. This is analogous to neglecting the resistance

of the wires in circuit analysis. Thus, the magnetic circuit is just the reluctance of

the airgap in parallel with the mmf source. Thus,

Ni = ϕgRg = BgAgRg = BgAg
g

µ0Ag

= (0.5Wb)
.001m

4π × 10−7H/m
= 398A
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This approach says that a 100 turn coil with 3.98 A could be used to set the required

flux density. This approach requires much less work and a gives very close approxi-

mation to the answer given by applying Ampère. It is typically the case in magnetic

circuits that the airgap reluctance dominates the core reluctance and the magnetic

circuit approach is well justified. Indeed, the reluctances are

Rg =
g

µ0Ag

= 7.2343× 106
A

Wb
, Rc =

`c
µ0µrAc

= 4.7746× 104
A

Wb

and the gap reluctance dominates by a factor of 100. This is due the presence of µr

in the denominator of Rc. Consequently, only a mmf of Hc`c = ϕRc = 2.63 A is

required to excite the core, however, a mmf of Hgg = ϕRg = 398 A is required to

energize the airgap.

Remark 4. (Magnetic Circuit Approach vs. Maxwell’s laws)

It should be apparent from the previous example that the magnetic circuit approach

is only an approximate technique and depends heavily on the relative magnitudes

of the permeabilities (or equivalently, the reluctances). Note that if the core was

made out of a non-ferromagnetic material, the magnetic circuit approach would be

totally inappropriate. Furthermore, it often depends on using rule of thumb factors to

accommodate for factors such as fringing. The power of the magnetic circuit approach

is in its ability to quickly produce good approximations and to allow the user to draw

conclusions based on familiar circuit analysis ideas. However, in many cases, one

must resort to directly applying Ampère’s Law and the continuity of the magnetic

flux.

The following example illustrates circuit analysis techniques on a multi-flux-path

magnetic structure.

Example B.4. (A Multi-Path Magnetic Circuit [20])

The magnetic circuit in Figure B.5 has two parallel airgaps. Find the inductance, the

total flux, the individual fluxes and the flux densities in the airgaps.
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µ→∞

A A

Figure B.5: Magnetic structure and equivalent magnetic circuit.

Solution: The equivalent magnetic circuit is shown in Figure B.5. The flux

generated by the mmf splits and feeds into the two airgaps. Each reluctance is given

by

R1 =
g1
µ0A1

, R2 =
g2
µ0A2

To find the total flux ϕ, calculate the total reluctance. R is given by the parallel

combination of R1 and R2.

R =
R1R2

R1 +R2

Thus, the total flux is

ϕ =
Ni

R =
N(R1 +R2)

R1R2

i

Since the reluctances are in parallel, the flux-divider rule, which is equivalent to the

well known current-divider rule from circuit theory, can be used to find the individual

fluxes ϕ1 and ϕ2 from ϕ. Applying the flux-divider rule

ϕ1 = ϕ
R2

R1 +R2

ϕ2 = ϕ
R1

R1 +R2

= Ni
(R1 +R2)

R1R2

R2

R1 +R2

= Ni
(R1 +R2)

R1R2

R1

R1 +R2

=
Ni

R1

=
Ni

R2

Note that fluxes could have also been directly obtained with Ohm’s law if one realizes

that the mmf across both reluctances is the same. The individual flux densities are
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given by

B1 =
ϕ1
A1

=
µ0Ni

g1
, B2 =

ϕ2
A2

=
µ0Ni

g2

The inductance, which is defined in Section B.2, for the magnetic circuit is

L :=
N2

R = µ0N
2(
A1

g1
+
A2

g2
) = L1 + L2

B.2 Magnetodynamics: Faraday’s Law

Ampère’s law and Gauss’s law for magnetism describe steady-state phenomena (i.e.

magnetostatics). Faraday’s law governs magnetodynamics. Consider again the basic

example of a coil and the circular core with rectangular cross-section. Faraday’s law

relates the rate of change of flux inside the core to the voltage induced at the terminals

of an ideal coil. If the core is highly permeable, magnetic circuit assumptions are valid

and one considers only the flux inside the core. Previously stated in equation (B.1a)

of Maxwell’s laws, Faraday’s law is restated and interpreted here.

∮ −→
E · −→d` = − d

dt

∫

S

−→
B · −→ds

To apply Faraday to a coil, select the contour of integration C for the circulation

integral to coincide with one turn of the coil. The surface of integration for the flux

integral is the cross-sectional area of the coil.

Recall that the electric field
−→
E has units of N/C. The integral the electric field

with respect to position results in units of Nm/C = J/C := V = volts. The voltage

is a potential energy density per unit charge. Each winding on the coil constitutes a

loop in which a voltage will be induced.

vturn = − d

dt

∫ −→
B · −→ds = −dϕ

dt

The total coil voltage is then given by

vcoil = −N
dϕ

dt
(B.13)
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where the flux ϕ is assumed to link all of the N turns. Equation (B.13) is similar to

the form in which it was stated by Faraday. Note that a coil may be used in to modes.

When used as an electromagnet, the coil voltage is the input and the resulting flux

is the output. When the coil is used as the secondary of a transformer, the changing

flux is assumed as the input and the induced voltage is the output.

The negative sign, which governs the voltage polarity, makes equation (B.13)

consistent with Len’s law. It says that if the terminals a and b in Figure B.6 are

shorted so that current can flow, then the changing flux induces a current in the

direction to oppose the change of flux. To illustrate, suppose that in the Figure B.6,

the flux is increasing ( dϕ
dt
> 0) in the direction shown. Then, if the terminals are

shorted, current must be induced so that it generates flux to oppose the changing

flux. Using the right-hand-rule, downward flux is generated by current flowing from

a

b

Figure B.6: A single coil in presence of magnetic field.

terminal b, through the coil, and then to terminal a. In this case, one views the input

as the changing flux and the output as the induced voltage at ab. When the coil is

viewed from an external perspective as in the secondary of a transformer, terminal a

should be marked as positive and terminal b should be marked as negative because

current flows out of terminal a and into b as viewed from the outside. When viewed

as an electromagnet, flux is produced upward in accordance with the right-hand-rule

when current flows from terminal a to b. Again, terminal a is marked positive and b
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negative.

Using flux-linkage, defined as λ = Nϕ, Faraday’s law becomes

λ̇ = vcoil

The inductance is defined as the ratio of flux-linkages to current,

L =
λ

i
(B.14)

Assumption 1. In general, when using permeability or inductance, a linearized model

for the core is implicitly assumed and the nonlinear characteristics are neglected.

Using the inductance in Faraday’s law,

vcoil =
dλ

dt
= L

di

dt
+
dL

dt
i

Of course, if L is constant, one obtains the law for the inductor. Inductance is related

to the reluctance by

L =
λ

i
=
Nϕ

i
=
N

i

Ni

R =
N2

R
Also, expressing the inductance in terms of geometry of the magnetic circuit,

L =
N2µ0Ag

`c
(B.15)

Equation (B.15) is used as a basic inductor design equation for toroidal inductors.

B.3 Electromagnet Core Nonlinearity

In Section B.1, the flux density B was defined with the simple relation

−→
B = µ0µr

−→
H

This linear relationship is quite often very useful. When the permeability of the

magnetic material is large and the levels of current in the coil are small, a linear

relationship between B and H may be appropriate. Also, in a gapped magnetic
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circuit, the airgap reluctance often dominates the core reluctance. A perfectly good

engineering approximation may be to neglect the core reluctance. However, there

are situations when the core nonlinearity is significant. When the magnetic circuit

is excited with large current or flux levels, the magnetic core may saturate. Also,

in magnetic circuits with moveable parts, like a magnetic bearing for instance, the

reluctance of the airgap may reduce to a level comparable to that of the core when the

airgap is small. In this case, it may be inappropriate to neglect the core reluctance.

The following sections illustrate the complexity of the core nonlinearity and outline

when it may be appropriate to neglect it.

B.3.1 Magnetic Materials and Hysteresis

In ferromagnetic materials, the
−→
B field is related to the

−→
H field by a hysteresis func-

tion. A typical BH curve is shown in Figure B.7a. Starting at the origin, an increase

in H produces an increase in B until saturation Bsat at a value of Hmax, typically

somewhere between 1.0-2.0 T (determined by material). The B field increases be-

cause the applied magnetic field is realigning the magnetic domains in the material

so that they generally point in the same direction. The B field saturates when all of

the domains are aligned. As H is decreased, a different path is followed. At H = 0,

there is some residual flux density. This is known as the remanence or residual flux

density.

When the excitation field/current is turned off, the magnetic domains do not

get randomized. The magnetic moments naturally align themselves along certain

directions related to the crystal structure of the material. These directions are known

as the axes of easy magnetization. When the magnetizing field is cut off, the domains

choose the axis closest to the direction of the magnetizing field. A net magnetization

results. This is the cause of the remanent flux density and the hysteresis effect. The

magnetic field must be reduced a negative value called the coercive force to eliminate
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µ µr

magnetization
curve

remanence

coercive
force

Figure B.7: Hysteresis curves: (a) Illustration of one hysteresis curve, the def-
initions of remanent flux and coercive force (b) a family of hysteresis curves, the
magnetization curve, and the permeability approximation

the remanence. By further reducing H = −Hmax and then to H = Hmax, a full

hysteresis loop is traversed. Hysteresis exists because it takes energy to realign these

magnetic domains. The amount of energy expended per cycle is determined by the

area enclosed by the Hysteresis curve7.

Materials with large coercivities, hard materials, make good permanent magnets

while materials with small coercivities, soft materials, make good temporary magnets.

Electromagnet cores are made from soft materials so that the electromagnet has a

smaller coercivity to overcome when trying to produce a desired force. Because soft

cores have smaller coercivities, they should also have smaller energy loss per cycle.

Note, however, the hysteresis behavior is more complex. If the direction of H

is reversed (when H 6= Hmax) a new hysteresis curve is started. The commonality

between the family of curves generated by different values of Hmax is the line that

7Actually, the area enclosed by the BH curve is the volumetric energy density loss per cycle.
Energy analysis is discussed at length in Section D.
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connects the end points of the curves. This curve, shown dotted in Figure B.7b, is

called the (DC) magnetization curve and is a function of only the material. Also shown

is a linear approximation to this curve. This line has a slope that corresponds to the

permeability µ. The permeability is a good estimate to the DC magnetization curve

for values of H in which the core is not in saturation. It is a poor estimate when the

core saturates or when the area enclosed by the BH curve is large. As will be shown

in Section B.3.2, eddy-current generation within the core causes the area enclosed by

the BH curve to increase. The increase in enclosed area is directly proportional to

the excitation frequency. Thus, when constructing the DC magnetization curve from

experimental data, the frequency of sinusoidal excitation should be small8 to avoid

corruption of the BH curve from eddy currents: see further discussion on BH curve

generation in Chapter 6.

To construct a BH curve for a core, one may use an amplifier in current mode

or voltage mode. In voltage mode, the amplifier is used to set Vcoil to be sinusoidal.

Faraday’s law dictates that the flux will also be sinusoidal. In general, the resulting

current is nonlinear. Note that for small peak values of the magnetizing flux, the

resulting current may look like an amplitude scaled, phase-shifted sinusoid, and thus,

a linear model for the BH curve may be a good approximation. However, as the

peak magnetizing flux increases, the saturation and the larger enclosed area of the

hysteresis curve severely distort the current. Illustrated in Figure B.8, the voltage

Vcoil and flux ϕ are sinusoidal and always 90◦ out of phase. However, the current and

the flux relationship is quite complex. The ϕ − I curve9 is shown to the right. The

flux and current rise and fall together, however, to say that they are in phase would be

incorrect. The flux and current peak together but do not share zero crossings. This

fact is very important when trying to determine the flux from current and airgap

8Note that the “DC” in DC magnetization curve means low frequency.
9This curve is equivalent to the BH curve because B and H can be calculated from the Ampère’s

law and the definition of flux density (see Section B.1).
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measurements as described in Chapter 6. To illustrate this fact, several key times

have been identified in Figure B.8. At time t1, the the flux and current peak together.

As the sinusoidal flux decreases, the current passes through zero for a non-zero value

of the flux ( t2 on the figure). As the flux decreases to zero, the current becomes

positive.

Figure B.8: Example of AC nonlinear core excitation in voltage mode with cor-
responding ϕ − I curve. Note that the signals have been scaled to make viewing
easier. Use a voltage mode amplifier to set a 1Hz (ω = 2π) sinusoidal excitation
vcoil = −ω400cos(ωt) mV: v is displayed in volts above. By Faraday, the flux is
ϕ =

∫

vcoildt = −400sin(ωt) µWb: ϕ
100

is plotted above. The current, shown in Amps,
is related to the flux by the ϕ− I curve.

One may also use an amplifier in current mode to construct a BH or ϕ − I

curve. In this mode, the current is commanded to be sinusoidal. As in voltage mode,

the current and the flux peak together, but have different zero crossings. For small

excitation currents, each signal may be sinusoidal and a linear model for the BH

relationship may be appropriate. However, as the current level increases the flux in

the core saturates and the voltage signal is highly distorted.

Observe that the quantities of permeability, inductance and reluctance are all

tools used to estimate the DC magnetization curve. The nonlinear behavior is grossly

approximated with a straight line. Depending on what is plotted, this straight line is

given one of the following names: reluctance, inductance, or permeability. Consider
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Figure B.9: Example of AC nonlinear core excitation in current mode with corre-
sponding ϕ− I curve. Note that the signals have been scaled to make viewing easier.
The current is set to a 1Hz (ω = 2π) sinusoidal excitation I = 5sin(ωt) A: 100I is
shown above. ϕ in µWb is shown unscaled. Faraday relates the voltage to the flux
v = ϕ̇: 10v, with v in mV, is plotted above.

Figure B.10 where plots of the BH curve, the ϕ−NI curve, and the λ− I curve are

shown. These plots model the same phenomenon, but with the axis re-scaled. See

Table B.2 for a summary.

Table B.2: Permeability, reluctance and inductance comparison
Permeability scale by Reluctance scale by Inductance

vertical axis B Ac ϕ N λ
horizontal axis H `c Ni 1/N i

B.3.2 Magnetic Core Losses

The losses in the magnetic material are due to two factors. The eddy-current losses

and hysteresis losses. Eddy-current losses are ohmic in nature. Hysteresis losses are

due the the fact that it takes energy to realign the magnetic domains in the core

material.

Eddy currents are a direct consequence of Faraday’s law. A laminated magnetic

core and cross-section are shown in Figure B.11. For the direction of the current

shown, the
−→
B field is increasing into the page. Note that the eddy currents themselves

produce an additional flux! Moreover, this additional flux is always directed to oppose

269



Figure B.10: Comparison of Reluctance, Inductance and Permeability. They are
all the same thing, just plotted on re-scaled axes. See Table B.2.

the changing flux. This fact, as stated in Section B.2, is a consequence of Len’s law

and is the source of the minus sign in Faraday’s law. Since the eddy currents are

induced to oppose the direction of the increasing magnetic field, the eddy currents

produce a field that is out of the page. Using the right hand rule, the eddy currents

are shown counterclockwise in the Figure B.11.

Figure B.11: Laminated magnetic core and cross-section. The flux is increasing
into the page. Eddy-currents are induced in the direction shown.

Lamination of the iron core reduces eddy-currents. The core is constructed of thin

sheets of magnetic material that are separated with thin coatings of highly resistive
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material. Such a coating may consist of a thin layer of oxidation and a sealant or

varnish. A typical lamination in a power application ranges from 0.5 − 5 mm. The

ratio of the actual magnetic material to the actual cross sectional area is called the

stacking factor. The stacking factor increases as the lamination thickness decreases.

Faraday is now evaluated on a lamination to determine the eddy-current power

dissipation. Let the path of integration for

∮ −→
E · −→d` = −

∫

d
−→
B

dt
· −→ds

be the perimeter of a lamination. The minus sign is accounted for by taking E in the

direction of eddy-current flow. Assume thin laminations: a >> b/n where Ac = ab

and n is the number of laminations. The circulation integral under the thin lamination

assumption becomes
∮ −→

E · −→d` ≈ 2aE

where the value of the electric field is assumed constant along the perimeter. Assum-

ing a uniform flux density over the lamination cross section,

∫

d
−→
B

dt
· −→ds = dB

dt
a
b

n

Thus,

E =
dB

dt

b

2n
(B.16)

Note that the value of E depends linearly on the lamination thickness t` ≡ b/n. The

power loss per unit volume of the lamination is σE(t)2, where σ is the conductivity:

Recall the DC power loss in resistors is V 2

R
. The average value of σE(t)2 over the

lamination relates to the real power loss.

(E2)ave =

∫ b/2n

0

(

dB
dt

)2

y2dy

b
2n

=
2n

b

(dB

dt

)2y3

3

∣

∣

∣

b/2n

0

=
1

3

(dB

dt

)2( b

2n

)2

(B.17)
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Now consider the special case of sinusoidal time variation of the flux density.

B = Bmaxsin(ωt+ ψ),
dB

dt
= ωBmaxcos(ωt+ ψ)

(dB

dt

)2

=
4π2f 2B2

max

2
[1 + cos(2ωt+ 2ψ)]

Using the above in equation (B.16), and taking the time average over one period, the

power loss per unit volume in Watts per cubic meter is

pe =
σ

6
π2f 2B2

maxt
2
` [W/m3]

Typically, the above is written as

pe = Ke(fBmaxt`)
2 [W/m3] (B.18)

which shows how the eddy-current loss depends on the excitation frequency, the

lamination thickness, and the amplitude of the excitation flux density. The constant

Ke depends on the conductivity.

The energy loss per unit volume per cycle is also important.

we =
pe
f

= Kef(Bmaxt`)
2 [J/m3] (B.19)

Since the energy loss in each cycle is proportional to the area enclosed by the BH

curve, equation (B.19) suggests that the area inside of the hysteresis curve increases

with frequency. This is illustrated in Figure B.12.

Losses due to hysteresis are more difficult to deal with analytically and empirical

relationships are customarily used. It is determined – typically at low frequency to

avoid interference from eddy-current effects – that the area inside the BH curve is

proportional to Bq
max where q is empirically determined. The energy dissipated due

to hysteresis loss per cycle per unit volume is

wh = Kh(Bmax)
q [J/m3] (B.20)
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Figure B.12: Effects of eddy-current losses on the BH curve with frequency.

and the power loss per unit volume is then

ph = fwh = Khf(Bmax)
q [W/m3] (B.21)

The constant q ranges from 1.5− 2.5 and is cataloged for materials. Thus, the total

power losses per unit volume is the sum of the hysteresis and eddy-current losses.

p = ph + pe [W/m3]

Manufacturers publish core loss charts with their product. The total core loss is

usually given per unit volume or per unit weight. Charts are plotted as total power

loss as a function of Bmax (with f as a parameter) or plotted vs f (with Bmax as a

parameter).

B.3.3 Effect of Airgap on Hysteresis Nonlinearity

The introduction of an airgap into a magnetic circuit affects the nonlinear behavior

of an electromagnet in several interesting ways. With a closed core as in Example

B.1, hysteresis dominates the AC behavior of the magnetic circuit. When an airgap
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is introduced as in Example B.3 and Figure B.3, the hysteresis effect is masked by the

airgap reluctance [32]. To see this, again consider the magnetic circuit of Figure B.3

where Ac = Ag = 1cm2, `c = 6cm, µr = 104. The relationship between the excitation

mmf and the resulting flux is studied for several values of g.

Using Ampère’s law to analyze the circuit, one obtains

NI = Hc`c +Hgg

= Hc(Bc)`c +
Bg

µ0
g

where Hc and Hg are the core and gap magnetic field strength, respectively. In the

second equation, the function Hc(Bc) represents the nonlinear hysteretic relationship

between H and B in the core. Also, the air presents no nonlinearity and the linear

relation, characterized by the permeability of free space, Bg = µ0Hg holds. Since the

core has a large relative permeability and the airgap is small compared to `c, it is

temporarily assumed that all the flux passes through the core and the airgap (i.e. no

leakage-flux), ϕg = ϕc = ϕ. In this case, conservation of flux dictates

ϕ = BgAg = BcAc

Plugging into Ampère’s Law, the following nonlinear equation relating ϕ and I is

found

NI = Hc(
ϕ

Ac

)`c +
ϕg

µ0Ag

= Hc(
ϕ

Ac

)`c + ϕRg (B.22)

In words, equation (B.22) states that the mmf NI supplied by the coil drops across

the airgap and the core. As in magnetic circuit analysis, the airgap drop in terms of

reluctance is ϕRg. The mmf drop across the core is calculated from the core nonlinear

BH curve: such data can be obtained from manufacturer’s specifications. Thus, given

the manufacturers data, equation (B.22) estimates the effect of adding an airgap into

the magnetic circuit on the ϕ− I curve.
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To illustrate the effect of adding an airgap into a magnetic circuit, the following

equation is used to represent the BH curve nonlinearity in place of manufacturer’s

specifications

B(H) = 2Bsat

( 1

1 + e−α(H+hc)
− 1

2

)

(B.23)

where Bsat = 2T is the saturation flux density, hc = ±500A/m is the coercive force,

and α = .004 relates to the slope of the BH curve at B = 0. Recall that the core

nonlinearity is represented by a family of BH curves where each loop depends on

the amplitude of the excitation. The largest BH loop (one which encloses the most

area) is generated by an excitation that drives the core into saturation. Consider a

magnetic field excitation Hmaxcos(ωt) that drives the core just into saturation with

Hmax = 2000A/m. When H is increasing, hc = −500A/m. When H is decreasing,

hc = 500A/m. This BH loop is shown in Figure B.13a.

The core nonlinearity can also be examined via the flux and the mmf. Rescaling

the axes (ϕ = BAc and mmf= Hc`c) in Figure B.13a, this map is shown in Figure

B.13b. This particular ϕ−NI curve saturates at Φsat = 200µWb when NI = 150A.

Note that the mmf that corresponds to the coercive force is mmfc = hc`c = 30A.

The effect of adding an airgap is illustrated in Figure B.13c where equation (B.22)

has been evaluated for g = 0, 5, 10, 20, 30, and 40 mils. The total reluctance of the

circuit increases when an airgap is present, thus, more mmf is required to generate the

same level of flux. Since Rg = g/µ0Ag, the magnetic circuit reluctance will increase

with airgap. Also, since ϕ/NI = 1/R, the slope (for instance the slope at ϕ = 0) of

the ϕ−NI curve will decrease as the airgap and reluctance increase. This is observed

in Figure B.13c.

Note that the remanent flux ϕr = AcBr reduces as the airgap increases. Recall

that this is the residual magnetization of the core when the excitation field is turned

off. On the other hand, the coercive force (and mmfc) is independent of the airgap.

As a result, the area enclosed by the ϕ − NI curve appears to be independent of
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Figure B.13: (a) BH curve generated by equation (B.23). (b) The corresponding
ϕ−NI curve. (c) Several ϕ−NI curves for airgap values g = 0, 5, 10, 20, 30, 40 mils.

the airgap. This is consistent with the fact that core loss (directly proportional to

the enclosed area) depends only on loss mechanisms related to the core material and

structure, not on the airgap.

Note that for a material with a small coercive force, the hysteresis curve would

appear very “thin” (i.e., it would not enclose much area) in Figure B.13c. The DC

magnetization curves for each value of g may be a good estimate of the hysteresis

nonlinearity in this case. In such a situation, the complex hysteresis nonlinearity

reduces to a saturation nonlinearity. Moreover, as the airgap increases, the mmf

required to excite the core is a very small percentage of that required to magnetize the

airgap. This is further motivation to neglect the multi-valued nature of the hysteresis
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nonlinearity and estimate the nonlinear behavior with the DC magnetization curves10.

To make this clear, consider equation (B.22) again, however, approximate the BH

curve with Bc = µ0µrHc for values of Hc that do not saturate the core.

NI = ϕ
`c

µ0µrAc

+ ϕ
g

µ0Ag

= ϕ(Rg +Rc)

Since µr = 104, the core reluctance is much smaller than the gap reluctance, leading

to nearly a linear relationship between ϕ and I. The airgap reluctance dominates the

RHS of equation (B.22) in practically all instances, except when the airgap is very

small. As a consequence of the airgap dominance, the percentage of the supplied mmf

Ni that drops across the airgap is much larger than that required to excite the core

since

ϕRg

Ni
>>

ϕRc

Ni

It is this airgap dominance that enables one to apply magnetic circuit analysis rules

to magnetic circuits that are not in saturation.

In realistic situations, the assumption of zero leakage-flux is not always valid.

Figure B.14a illustrates the difference between the measured airgap flux, the leakage

flux, and the fringing flux. The main flux leaves the face of the electromagnet and

reaches the target to create the electromagnet force. A flux sensor is typically placed

in the airgap or as close a possible to the face of the electromagnet pole to measure

this flux. Fringing flux leaves the electromagnet, not necessarily through the pole

face, spreads out resulting in reduced flux density, and also reaches the target to

contribute to the EM force. However, since this flux spreads out, it may not be

detected by the flux sensor when the fringing is significant. Leakage flux leaves the

EM through surfaces other than the pole face and does not interact with the target.

This flux is not detected by the flux sensor.

10In such a situation when it is appropriate to neglect the hysteresis, the flux and the mmf
practically share the same zero crossings. This fact becomes important when trying to measure the
flux from current and position measurements: see Chapter 6
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In Figure B.13c, the saturation flux level is constant for each airgap length. How-

ever, as the airgap increases, the flux fringing and leakage increase. Since less flux

crosses the sensor path, the saturation knee appears to be lower for increasing airgap.

This is illustrated in Figure B.14b. Note that this variation of the flux-saturation

Figure B.14: (a) Illustration of main flux, fringing flux, and leakage flux. (b) Due
to increased flux leakage and fringing, the saturation knee gradually gets lower as the
airgap increases.

knee with position may be modelled by

ϕa = ρ(g)ϕ (B.24)

where ϕ is the magnetic circuit flux, ϕa, called the airgap flux, is the flux that crosses

the airgap to interact with the target, and ρ(g) is an airgap-dependent flux-spreading

or flux-leakage function. It has the form

ρ(g) =
1

ρ1 + ρ2g
(B.25)

where the constants ρ1 and ρ2 are determined from experiment.
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APPENDIX C

THE LORENTZ EQUATION

The force on an electric charge is governed by the Lorentz equation

−→
F = q(

−→
E +−→v ×−→B ) (C.1)

The electric force is in the direction of the electric field and the magnetic force is

perpendicular to the v − B plane. For a positive charge q, the right hand rule for

cross products indicates the direction of the magnetic force. Recall that the thumb,

index finger and middle finger point in the direction of −→v , −→B , and
−→
F , respectively.

On the other hand, if q is a negative charge, the force will be in the opposite direction

(or one could employ the left hand).

In machines, free charges are rarely encountered and one is more concerned about

the net force a current-carrying wire feels in the presence of a magnetic field. Recall

that the total charge in a volume of wire is neutral: the fixed positive charge of the

metal lattice is countered by the “free”, gas-like electrons. Forces on the moving

electrons are transmitted to the lattice structure by Coulomb forces. The convention

of positive current flow (holes) is assumed in the following discussion. Recall that the

current in terms of the charge density % and charge drift velocity vd is

i = %vd (C.2)

Note that a positive charge density has the same magnitude but opposite drift velocity

of a negative charge density. The drift velocity of the electrons for typical current

levels is relatively slow, 10−4m/s. However, the current flow in a wire can increase

very rapidly because of the extraordinarily high charge density in metals. The number
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of electrons in the valance band of copper is on the order of 1029e/m3 resulting in a

charge density of about 1010C/m3. Thus, you can flip a switch and have a lamp turn

on almost instantly, but walk across the room to the lamp itself before the actual

electrons at the switch get there.

To find the net force on the wire due to the forces on the electrons, consider a

differential length of wire with linear charge density %. The charge in this differential

element of a thin conductor is thus given by q = %d`. The differential force due to

this differential current element is

d
−→
F = q(−→vd ×

−→
B )

= %d`(−→vd ×
−→
B )

= id`(
−→vd
vd
×−→B )

= i
−→
d` ×−→B [N] (C.3)

With the simple situation of the B field at right angles to the conductor, the familiar

equation for the force felt by a conductor in the presence of an external uniform field

is obtained.

F = BiL [N] (C.4)

If the conductor cross-sectional area is not negligible, a more general approach

with any medium having a current density
−→
J is used. Defining a volumetric charge

density ς, the current density is

−→
J = ς−→v d [A/m2]

The differential force generated by a differential volume dV with charge q = ςdV is

d
−→
F = q(−→vd ×

−→
B )

= ςdV (−→vd ×
−→
B )

= dV (ς−→vd ×
−→
B )

= dV (
−→
J ×−→B ) [N] (C.5)
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Thus the volumetric force density is given by

−→
f =

d
−→
F

dV
=
−→
J ×−→B [N/m3] (C.6)

When using (C.3), (C.5), or (C.6), the total force on the conductor is found by

integrating the differential force over some line segment or volume. The following

examples illustrate the application of this equation and introduce two fundamental

DC machines: the DC motor and the DC (linear) generator.

Example C.1. (Force between two thin wires )

Two thin wires are carrying current i and are separated by a distance d. The are

relatively long and are parallel to each other. Find the force on one due to the

other. Figure C.1 shows two wires carrying current in opposite directions and the

corresponding B fields generated.

Figure C.1: Two current-carrying wires separated by distance d. The B field from
i1 and i2 are represented by

⊗

and
⊕

, respectively.

The B field around a wire is
−→
B = µ0

−→
H where H determined by Ampère’s law.

−→
B 1 = µ0

−→
H =

µ0i1
2πd

θ̂
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Thus, the magnitude of the force per unit length of wire on wire 2 due to wire 1 is

f2 =
F2
L

= Bi2 =
µ0i1i2
2πd

Applying the right hand rule to the wires, the force is attractive for currents in

opposite directions and repulsive for currents in the same directions. This is very

similar to Coulomb’s Law for charges.

Example C.2. (Fundamental Example of DC Machine [6])

This example illustrates the basics of all DC machines. It is a 4 pole DC motor. Find

the torque generated on the rotor per pole. Figure C.2 shows the geometry.

N

N

SS

Figure C.2: Geometry of a 4 pole DC motor. The field is generated by coils in this
example, but may be generated by permanent magnets. Also, only one set of commu-
tation brushes is shown. Brushless DC motors commute the currents electronically.

Solution: The field circuit on the stator generates a stationary (not changing

with time) B field. The radial component of the B field, evaluated at a given radius

282



r, is a periodic function of θ. An example B field at a given radius is shown in

Figure C.3. Note that the B field is relatively constant under a pole. If the B field is

evaluated at a a larger radius, the value of Bmax will increase, but the shape of the

wave form will not change much.

Figure C.3: B(θ) for the DC machine of Example C.2.

Note that the B field has half wave symmetry. That is,

B(θ) = B(θ ± 4π

P
) = −B(θ ± 2π

P
) (C.7)

where P is the number of poles of the machine.

The armature winding of the machine is the winding that has the major voltage

induced in it (if used as a generator). In the case of a DC machine, the armature

winding is on the rotor. It is on the stator for most ac machines. The rotor winding on

a DC machine is typically distributed in slots on the rotor periphery. The stationary

brushes (only one set is shown ) supply armature current ia to the moving conductors

in such a way so that the current distribution (into and out of the page in Figure

C.2) stays fixed in space, regardless of the position of the rotor. This is the essence

of the conventional DC machine.

Assume that the axial length of the machine is long enough to implement a 2D

analysis (to neglect end-effects). Note that the armature current ia produces a field

to distort the stator field, however, good design practices minimize this effect and
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it is neglected here. The effect of the slots in the rotor to hold the armature wires

are also neglected. The winding is regarded as a belt of armature conductors with a

uniform thickness t around the periphery of a perfectly round rotor.

By assuming that t is small compared to r, the torque is developed using F = BiL.

If the total number of uniformly distributed armature conductors is Q, then the

number of conductors in an incremental arc length is dQ = Qrdθ/2πr = (Q/2π)dθ.

If each conductor carries ic, the contribution to the total torque by a differential arc

length at position θ is

dT = rBiL = rB(θ)ic
Q

2π
dθL [Nm]

where L is the axial length of the winding. (By neglecting the end effects, one assumes

that B(θ) is constant along the length of the machine. ) The total torque is found

by integrating from θ = −π/P to θ = π/P where P is the number of poles of the

machine. Thus, the torque per pole is given by,

Tp =
Q

2π
ic

∫ π/P

−π/P

B(θ)Lrdθ [Nm]

Note that the integral in the expression is the total flux per pole.

Φp =

∫ π/P

−π/P

B(θ)Lrdθ [Wb]

Thus the total torque is

T = PTp =
PQ

2π
icΦp

Note that the armature winding is typically constructed with many parallel paths.

Thus, ic = ia/a where ia is the armature terminal current. Then the torque becomes

T =
PQ

2πa
iaΦp [Nm]

This says that the torque is directly proportional to the armature current and the

pole flux.
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Figure C.4: Geometry for the linear generator.

Example C.3. (Linear Generator [6] )

Figure C.4 shows a metal bar of length L being pushed along two metal rails by

an external force Fapp so that linear velocity v is constant. This apparatus is in the

presence of a B field pointing into the page. Find the voltage e induced at the rail

terminals. This voltage is sometimes called the motional emf. Also, what is the

external force applied so that the velocity v is constant.

Solution: F = qvB may be used to find the answer. By the right hand rule, if the

terminals were short circuited, the current would flow upwards. Here the bar is seen

as a power source that delivers voltage or current to whatever device is connected to

the rail terminals. Thus, the top of the bar should be marked as + and the bottom of

the bar marked as −. This is the essence of a generator: mechanical energy (1/2mv2)

produces electrical power ei through the medium of the magnetic field.
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The energy or work1 it takes to move the electron up is

W = F · s = (qvB)(L) [J]

Thus, the voltage induced, also known as the potential energy or work per unit charge,

is

e =
W

q
= LBv [V] (C.8)

One could also use Faraday to derive the motional emf. Faraday relates the voltage

across coils to the changing flux through the coil. In Figure C.4, the rails and the bar

form the 1 turn coil which has a cross-sectional area that is increasing with time.

The the area of the coil is Lx. Applying Faraday,

e = ϕ̇ = BȦ = BLẋ = vBL

By Len’s law, the current induced if the coil was short circuited is always in the

direction to oppose the change in flux. If the current flows counterclockwise through

the coil when the terminals are shorted, then the B field induced is out of the page

( directly opposite to the external B field.) For this reason, the induced emf is

sometimes called a back emf.

When current flows in the bar and the bar moves through the magnetic field, the

bar will experience a force according to Finduced = Li × B. By the right hand rule,

this force points in the −x direction. Thus, the external force that must be applied

to the bar to produce the constant velocity v must cancel the induced force. Thus,

Fapp = −Finduced =
e

R
LB =

L2B2v

R

where R is the resistance of the bar plus the resistance of the load that is connected

to the terminals. Since the force is proportional to the velocity, it is called an elec-

tromagnetic drag force.

1Note that no work is done by the magnetic field moving the charge along the rails because the

force and displacement are perpendicular.
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An analysis very similar to the one in Example C.3 is used to find the power loss

in a flywheel battery due the electromagnetic drag: See Chapter 2.
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APPENDIX D

ENERGY ANALYSIS OF MAGNETIC

CIRCUITS

To quickly facilitate understanding of the energy method fundamentals, Example

B.1 of the toroidal coil is revisited. This is good starting point for investigating

energy storage because it is unencumbered by an airgap or moving magnetic circuit

components. Afterwards, the energy analysis concepts of general electromechanical

machines are presented.

Example D.1. (Energy Stored in Toroidal Inductor [20])

Again consider the pedagogic example of the rectangular cross section toroidal core

with a winding as in Example B.1. Find the energy stored in the magnetic field of

this inductor.

Solution: Consider the instantaneous power delivered to (i.e. the supply rate)

the circuit.

p(t) = i(t)v(t)

where i and v are the terminal current and voltage. Using Faraday’s law,

p(t) = i(t)
dλ

dt

By expressing current as a function of λ ( consider the third graph in Figure B.10),

one can separate variables and integrate to get the energy W supplied to the circuit.

dW = p(t)dt = i(λ)dλ

W =

∫ t2

t1

p(t)dt =

∫ λ2

λ1

i(λ)dλ
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See Figure D.1a for a graphical representation of this integral. The shaded area in

this figure corresponds to the energy delivered W12 to the circuit in time t ∈ [t1, t2].

d

W �+�W � �

Figure D.1: (a) The energyW12 supplied to the magnetic circuit for t ∈ [t1, t2]. (b)
The energy extracted W23 and energy dissipated d for t ∈ [t2, t3].

As the current is reduced back to zero in time t ∈ [t2, t3], the flux-linkage follows

the hysteresis curve. To calculate the energy supplied to the circuit in time t ∈ [t1, t3]

the following integrals are used.

W supplied
t1,t2 =

∫ λ(t2)

λ(t1)

i(λ)dλ, t ∈ [t1, t2]

W supplied
t2,t3 =

∫ λ(t3)

λ(t2)

i(λ)dλ = −
∫ λ(t2)

λ(t3)

i(λ)dλ, t ∈ [t2, t3]

The negative sign is introduced to make the interval of integration increasing. Nega-

tive supplied energy may be thought of as energy extracted. Thus, the energy supplied

to the circuit during t ∈ [t1, t3] is the energy supplied minus the energy extracted.

W =W supplied
t1,t2 −W extracted

t2,t3
=

∫ λ(t2)

λ(t1)

i(λ)dλ−
∫ λ(t2)

λ(t3)

i(λ)dλ

Since more energy is supplied than extracted, there must be some energy dissipated

in the magnetic circuit: See d in Figure D.1b. It turns out that this excess energy is
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converted to heat in the core (via eddy-current losses or the energy it takes to realign

the magnetic domains). Thus, the area enclosed by the curve is the energy dissipated

in the core. During steady-state cyclic operation, the area inside the hysteresis loop

corresponds to the energy loss per cycle. The energy that can be extracted is the

energy that has been stored in the magnetic field: See W23 in Figure D.1b.

Since the hysteresis phenomenon may be represented with different variables (see

Figure B.10), the energy stored may be expressed in different variables. Changing

variables of integration λ = Nϕ,

W =

∫ λf

λ0

i(λ)dλ =

∫ Nϕf

Nϕ0

Ni(ϕ)dϕ

This relates the stored energy to the magnetic circuit variables. Revisiting the rect-

angular toroid and assuming the H and B are uniform over the cross section, the

energy stored is

dϕ = AcdB, Ni = H`c

W =

∫ Bf

B0

H(B)`cAcdB = `cAc

∫ Bf

B0

H(B)dB

These concepts are summarized in Figure D.2. Note that the integral of H(B) gives

energy density w per unit volume, not energy W .

Example D.1 serves to quickly illustrate the application of the energy method to a

toroidal inductor. This method integrates the power supplied to the magnetic circuit-

a quantity which is typically known- to find the energy stored in the magnetic field. It

also shows how the energy stored in the inductor is related to the area under the λ− i

(ϕ−Ni, or BH) curve and how hysteresis represents an energy loss. Note that for a

lossy inductor, one with hysteresis or eddy-current loss, that the energy stored in the

inductor depends on how the core is excited. In Example D.1, the current is increased

from zero to Imax and then back to zero, as in Figure D.1b. Suppose, for example,

that the current was excited as follows: i(t1) = 0, i(t2) = Imax/2, i(t3) = Imax/4,

i(t4) = Imax, and finally i(t5) = 0. Then a different hysteresis curve would be traversed
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W W w

Figure D.2: Comparison of energy supplied to circuit for different magnetic circuit
variables. Note that part (c) shows the energy density per unit volume.

resulting in a different amount of core loss than in Figure D.1b: the energy stored is

different for the two paths followed through the λ− i plane. However, if the inductor

is considered lossless and an inductance is assigned (λ = Li), then only one (linear)

path in the λ− i can be traversed and the energy stored in the inductor only depends

on the final value of the current. This issue of path-dependence in energy analysis is

of central concern and is discussed in the sequel.

D.1 Determining the Energy Stored in the Mag-

netic field

Recall from basic physics that energy is considered a positive scalar quantity and is

a measure of the system’s ability to do work (work and energy have units of Joules,

J). The first law of thermodynamics says that energy in a system is conserved, that

is, energy is transformed from one form into another. Note that the definition of the

“system” is an important concept. For example, the energy (or heat) stored in a

hot cup of coffee dissipates with time. This simple system seemingly contradicts the

first law of thermodynamics. Of course, if one broadens the definition of the system

to be the coffee cup and the surrounding air, then the energy in the coffee cup is
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transferred to the air and the energy of the coffee-air system is conserved. Thus, the

identification of systems where energy is conserved is paramount in energy analysis.

When electromechanical systems are used as motors, electrical energy is converted

to mechanical energy and vice versa when they are used as generators. The medium in

which the energy is converted is the magnetic field. Thus, energy analysis applied to

electromechanical systems is concerned with the energy stored in the magnetic field.

Figure D.3 schematically shows the energy conversion relationship. Observe that f

and x are the magnetic force applied to and the position of the moving members of

the magnetic circuit, respectively. Note that the multi-input, multi-output (MIMO)

systems can be represented by considering the quantities shown as vectors.

Magnetic
E ner gy  S to r age 

S y s tem
+

-

+

-

Figure D.3: Energy conversion schematic. The electrical terminals are on the left
and the mechanical terminals are on the right. The magnetic field is the medium in
which electrical power ei is converted to mechanical power fv.

The first law of thermodynamics states that the electrical energy supplied to the

system during a period of length T is converted to mechanical work, the increase in

energy stored in the magnetic field and heat.

Wsupplied = Wmechanical +∆Wfield +Wheat

Since the energy is a scalar quantity, the change in energy stored in the magnetic

field during the time T is the difference between the final and initial energy. Thus,

the energy stored in the magnetic field is

∆Wfld =Wfld(T )−Wfld(0) = Wsupplied −Wmechanical −Wheat (D.1)

where the energy supplied increases the energy stored in the magnetic field. The

mechanical work is done by the magnetic circuit and thus decreases the energy stored
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in the magnetic field. The energy converted to heat also reduces the energy stored in

the magnetic field. In magnetic circuits, core loss and coil resistance tend to heat up

the core and coil.

In general, the thermal energy loss is difficult to quantify. For example, the

resistance of the coil depends on the temperature. As the coil heats up, the resistance

changes and consequently, the rate of coil heating changes. Furthermore, Example

D.1 showed that the core loss in a nonlinear inductor depends on the excitation.

These issues make equation (D.1) difficult to work with in a quantifiable way. In

general, the following inequality is true.

Wfld(T )−Wfld(0) ≤ Wsupplied −Wmechanical (D.2)

This equation is called the Dissipation Inequality and is fundamental in energy anal-

ysis. It says that energy stored in the system is less than the net the energy supplied.

Therefore, there must be some energy that has been dissipated. If this relationship

holds with equality (an “=” instead of “≤” in equation (D.2)), then the system is

called lossless. This concept is very general and practical. In fact, it is implemented

in Chapter 4 to derive stabilizing control laws for the 1-DOF AMB.

Typically the electrical power and the mechanical power are measurable quantities.

Recall that the electrical power is ei and the mechanical power is fv. Thus, it is more

convenient to work with power instead of energy as in equation (D.2). Since power

is the time rate of change of energy, one may be tempted to differentiate equation

(D.2) to obtain an equation in terms of power. However, one can not differentiate an

inequality!

To address this challenge, energy analysis strives to identify systems where the

energy storage is lossless. This seemingly cripples this approach because realistic

systems have losses. However, lossy processes can often be modelled so that the loss

mechanism is separated from the energy storage mechanism. Of course, one can not

physically remove the coil resistance from the coil or eliminate the magnetic hysteresis
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from a realistic core. Nevertheless, coils are often modelled as ideal cores with external

winding resistances and transformer cores are modelled as ideal cores in cascade with

filters to estimate the core loss or leakage flux. In summary, energy analysis often

narrows its definition of a physical system to one that is lossless, represents it as

a 2-port network as in Figure D.3, and then connects external components to the

network to represent the losses of the process.

Since the magnetic energy storage system considered is lossless, one may differen-

tiate equation (D.2) because it actually holds with equality. Rewriting the dissipation

inequality in terms of power,

Wfld(T )−Wfld(0) =

∫ T

0

dWfld

dt
dt =

∫ T

0

(ei− fv)dt (D.3a)

=

∫ W (T )

W (0)

dWfld =

∫ T

0

( dλ
dt
i(λ,x)−f(λ,x) dx

dt
)dt(D.3b)

Wfld(λ(T ),x(T ))−Wfld(λ(0),x(0)) =

∫ λ(T )

λ(0)

i(λ, x)dλ−
∫ x(T )

x(0)

f(λ, x)dx (D.3c)

In equation (D.3b), Faraday has been used to express the voltage in terms of the

flux-linkage. Also, λ and x have been assumed as the independent variables. Note

that equation (D.3c) states that the change in energy stored in the magnetic field is

equal to the line integrals on the RHS for some path through the λ− x plane. Since

our system is lossless, the line integrals are independent of the path chosen and the

stored energy only depends on the initial and final values of λ and x. This observation

is the essence of the practicality and versatility of the energy method. It allows one

to choose the simplest path to evaluate the integrals on the RHS of equation (D.3c).

With out loss of generality, let λ(0) = 0 and Wfld(0, x) = 0. Furthermore, since

the magnetic field is necessary to generate a magnetic force, f(λ, x)|λ=0 = 0. To find

the energy stored in the magnetic field as one increases (λ, x) from zero to their final

values (λT , xT ): consider Figure D.4. The integral over path c is the same as the

integral over path ab.
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Figure D.4: Path independence of the line integral.

Wfld(λT , xT ) =

∫

c

dWfld =

∫

a

dWfld +

∫

b

dWfld

The integral is simpler to calculate on path ab.

Wfld(λT , xT ) =

∫

a

i(λ, x)dλ−
∫

a

f(λ, x)dx+

∫

b

i(λ, x)dλ−
∫

b

f(λ, x)dx

= 0−
∫

a

0dx+

∫

b

i(λ, x)dλ+ 0

Along path a, dλ = 0 and λ(0) = 0. If the flux-linkage is zero, the magnetic field is

null and f(0, x) = 0. Along path b, dx = 0. The integral simplifies to

Wfld(λT , xT ) =

∫ λT

0

i(λ, xT )dλ (D.4)

Thus, the energy stored in the magnetic field for any position x, can be calculated

from knowledge of only the current as a function of λ and x. The path independence

allows one to calculate the stored energy without a priori knowledge of the force.

In equation D.3c, the electrical differential input power could be represented as

NI(ϕ)dϕ or the electrical input power density as H(
−→
B )dB. These are equivalent de-

scriptions of the energy and they are selected as a matter of preference or convenience.
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The equivalent forms of the stored magnetic energy are

Wfld(ϕ0) =

∫ ϕ0

0

Ni(ϕ)dϕ (D.5)

and

Wfld(B0) =

∫

V

(

∫ B0

0

−→
H (
−→
B ) · −→dB

)

dV (D.6)

Note that the energy density equation is the most general in the sense that is it

integrating vector quantities. Also note the presence of the dot product because one

is interested in the magnetic field intensity and flux density that are in the same

direction. (In an extremely complex magnetic circuit situation, the permeability can

be a function of the position and may make the H and B fields linearly independent.)

Now, consider the simple case when hysteresis, saturation, and eddy current losses

are neglected. That is, let λ = L(x)i. Additional results are obtained by recalling

that L(x) = N 2/R(x) and that λ = Nϕ.

Wfld(λ, x) =

∫ λ

0

i(ξ, x0)dξ =

∫ λ

0

ξ

L(x)
dξ

=
1

2

λ2

L(x)
=

1

2
R(x)ϕ2 (D.7)

If a homogeneous permeability is assumed, B = µH,

Wfld(B) =

∫

V

(

∫ B

0

−→
H (
−→
β ) · −→dβ

)

dV =

∫

V

1

2

B2

µ
dV (D.8)

D.2 Relationship Between Magnetic Force and

Stored Energy

To find the relationship between the force and the stored energy, re-examine the

virtual work or the infinitesimal stored magnetic energy.

dWfld(λ, x) = idλ− fflddx

By the chain rule,

dWfld(λ, x) =
∂dWfld

dλ
dλ+

dWfld

dx
dx
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Since λ and x are independent variables, one compares like terms in the above equa-

tions to discover that

i =
∂Wfld(λ, x)

dλ
(D.9)

and

ffld = −
∂Wfld(λ, x)

dx
(D.10)

Equation (D.9) states that for a fixed x, the current sets the rate of increase in the

stored energy for a change in the flux-linkage. Likewise, equation (D.10) states that

the force is the rate of decrease of the stored energy with respect to an increase in

the position. Stated differently, the force acts in the direction x to decrease the stored

energy.

Equations (D.4), (D.9) and (D.10) form the basis of the energy method. This

technique is quite powerful in its ability to calculate the forces and torques acting

in a very complex system. Given the current in terms of the flux, one uses equation

(D.4) to find the stored energy. With the stored energy in hand, the force is found by

calculating the partial derivative with respect to the position. However, one should

realize that a detailed description of the force producing mechanisms is not given

by this method. It only calculates the force that corresponds to the change in the

system energy. It is a macroscopic viewpoint of the microscopic phenomena that are

taking place. The forces themselves are produced by the well-known Lorentz forces

on current carrying elements or by the interaction of the magnetic fields with the of

the dipoles in the magnetic material.

The differential stored energy may be expressed in terms of i instead of λ as the

independent variable. This is possible because i and λ depend on each other and one

can arbitrarily select one as the independent variable. The current is often selected

as the independent variable because current measurements are readily available. The

stored energy that is calculated from the selection of i as the independent variable is

called the co-energy. The co-energy W fld(i, x) is related to the energy Wfld(λ, x) by
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the following relationship1.

Wfld(λ, x) +W fld(i, x) = iλ (D.11)

Using this transformation, the differential co-energy is

dW fld(i, x) = d(iλ)− dWfld(λ, x)

= λdi+ idλ− idλ−−fdx

= λdi+ fdx

Via chain rule

dW fld(i, x) =
∂W fld(i, x)

∂i
di+

∂W fld(i, x)

∂x
dx

By comparison of the above equations,

λ =
∂W fld(i, x)

∂i
(D.12)

and

f =
∂W fld(i, x)

∂x
(D.13)

Equation (D.12) states that the flux-linkage sets the rate at which the co-energy

increases with increasing current. Equation (D.13) states that the force acts in the

direction to increase the stored co-energy.

Integrating the differential stored co-energy, one finds the total co-energy stored

in the magnetic field. Without loss of generality, let i(0) = 0 and W fld(0, x) = 0.

Furthermore, since the magnetic force acts through the medium of the magnetic field

and the current generates the magnetic field, the magnetic force must be zero when

the current is zero, f(i, x)|i=0 = 0. Again, using the principle of path independence

in the i − x plane, first integrate dW (i, x) along i(0) = 0 from x = 0 to x = xT and

then integrate along x = xT from i = 0 to iT . Along the i(0) = 0 path, di = 0 and

1Recall that [iλ] = AWb = ATm2 = A N
Amm2 = Nm = Joules
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no force can be generated because the magnetic field is null. Along x = xT , dx = 0.

Thus,

W fld(iT , xT ) =

∫ iT

0

λ(i, xT )di (D.14)

Similarly, in terms of the energy density HB,

W fld(H0) =

∫

V

(

∫ H0

0

−→
B (
−→
H ) · −→dH

)

dV (D.15)

Assuming linear behavior and neglecting hysteresis and saturation, λ = L(x)i,

L = N 2/R(x) and λ = Nϕ.

W fld(i, x) =

∫ i

0

λ(ξ, x0)dξ =

∫ i

0

L(x)ξdξ

=
1

2
L(x)i2 =

1

2

(Ni)2

R(x) (D.16)

Assuming a homogeneous permeability B = µH,

W fld(H0) =

∫

V

(

∫ H0

0

−→
B (
−→
H ) · −→dH

)

dV =

∫

V

1

2
µH2

0dV (D.17)

Table D.2 summarizes the actions of the force on the movable magnetic elements

and the effects that are induced. Observe that the forces always act to decrease the

Table D.1: Action of the forces on stored energies in terms of L(x) and R(x).
Wfld(λ, x) W fld(i, x) f = −∂W

∂x
f = ∂W

∂x

L(x) 1
2

λ2

L(x)
1
2
L(x)i2 increases inductance increases inductance

R(x) 1
2
R(x)ϕ2 1

2
(Ni)2

R(x)
decreases reluctance decreases reluctance

stored energy and increase the stored co-energy. Consequently, the force is generated

in the direction that increases the inductance and decreases the reluctance. Thus,

the force arranges the movable members of the magnetic circuit to maximize the

inductance and minimize reluctance. Moreover, if the movable member is has several

degrees of freedom in motion, the force is generally

f = −∇xW (λ, x) = ∇xW (i, x)

where ∇x is the gradient.
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Remark 5. (Comments on the Energy/Co-energy Relationship [20])

Recall that the energy and co-energy are related by

W (λ, x) +W (i, x) = iλ

For a linearly assumed relationship between λ and i, λ = L(x)i, the numerical values

of the energy and co-energy are identical. Indeed,

1

2

λ2

L(x)
+

1

2
L(x)i2 = L(x)i2 = λi

However, for a current-flux relationship that is nonlinear, the energy and cos-energy

are not equal. From equations (D.4) and (D.14) one constructs the graph in Figure

5. Observe that W =
∫

i(λ, x)dλ is the area to the left of the curve. Likewise, since

the co-energy is W =
∫

λ(i, x)di, the co-energy is the area under the curve.

W
W

Figure D.5: (a) Relationship between energy and co-energy, (b) change in energy
with respect to x, (c) change in co-energy with respect to x

To double check that the force is unique, whether determined form the energy

or co-energy, inspect Figure 5, parts (b) and (c). A change in the energy −∆W

due to a change in x is shown in (b) while holding the flux-linkage constant. This

is represented by the area between the two curves. Note that since λ ≈ L(x)i, the

300



change in L(x) induces a change in i since λ is held constant. Likewise, a change

in the co-energy ∆W with x while holding the current constant is illustrated in part

(c). Again, since the current is a function of the position and the flux-linkage, the

flux-linkage experiences a change corresponding to the change in x. The difference in

these two areas is a small triangle with sides ∆i and ∆λ. Since ∆λ and ∆i go to zero

as ∆x → 0, these two areas match. Thus, lim∆x→0 − ∆W/∆x = lim∆x→0∆W/∆x

and the force is unique.

The following examples demonstrate the practical application of the energy method

to find the force in common magnetic circuits. Note that the forces generated in the

following examples arise from the complex interaction of the magnetic field and the

dipoles of the ferromagnetic material. The calculation of the force from the energy

method is direct and avoids complex field and magnetic material theory.

Example D.2. (Basic Solenoid [20])

The diagram in Figure D.6 shows a simple Solenoid. Calculate the force using the

energy and co-energy. Assume that the permeability of the target and the core are

very large. The cross-sectional area is A = wd where w is shown and d is the depth

of the core. Consider h to be much larger than g.

Solution: Since the core and target permeability is large, the magnetic field in-

tensity in the core is minimal H = B/µ and the magnetic field of the airgap is

comparatively large. Thus, a magnetic circuit approach is justified.

The energy and co-energy are

W (λ, x) =
1

2

λ2

L(x)
=

1

2
R(x)ϕ2, W (i, x) =

1

2
L(x)i2 =

1

2

N2i2

R(x)

where the R(x) and L(x) refer to the reluctance and inductance of the airgap. Recall

the reluctance is

R =
length in direction of flux

µ0 area ⊥ to flux
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x

h

w

µ→∞

Figure D.6: A simple solenoid with constant airgap length 2g. The cross-sectional
area is A = wd.

The airgap has 3 parts, the 2 gaps of length g and the gap of length h + 2g. The 2

airgaps between the core and the plunger are important and the gap of length h + 2g

is neglected because it is considered fringe field.

The reluctance is

R(x) = 2g

µ0dw(1− x
w
)
, x ∈ [0, w)

Plugging into the energy equations

W (λ, x) =
gϕ2

µ0dw(1− x
w
)
=

gλ2

N2µ0dw(1− x
w
)
, x ∈ [0, w)

and

W (i, x) =
N2i2µ0dw(1− x

w
)

4g
x ∈ [0, w)

The force calculated from the energy is

f = −∂W
∂x

= −ϕ
2

2

dR(x)
dx

= − gϕ2

µ0dw2(1− x
w
)2
, x ∈ [0, w)

f =
∂W

∂x
= −N

2i2µ0d

4g

Note the very interesting result. The force when expressed in terms of the current does

not depend on the displacement x. Thus, could linearize the actuator here if
√
i is
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commanded instead of i. When expressing the force as a function of the flux or flux-

linkage, the force explicitly depends on x and the actuator force is more challenging

to control precisely. Also, since the force always reduces the reluctance, the force is

generated to pull the plunger towards x = 0.

Remark 6. (Using f = ∂W
∂x

)

Note that it is very important to express the energy as a function of the flux-linkage

and position before taking the derivative. If λ = L(x)i is substituted into W and

then the derivative with respect to x is calculated, one would be differentiating the

expression for L(x) also. The product L(x)i = λ would not be held constant when

calculating the derivative wrt x. Similar remarks could be made about expressing the

co-energy in terms of the current and position before taking derivatives wrt x.

Example D.3. (Electromagnet Force on Target [6])

Figure D.3 shows a simple electromagnet pulling on a target. Find the force from

the energy and co-energy. Do not neglect the reluctance of the core and discuss the

consequences.

Figure D.7: A simple electromagnet pulling on a ferromagnetic target.
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Solution: The energy W (λ, x) and the force are

W (λ, x) =
1

2

λ2

L(x)
=

1

2

λ2R(x)
N2

, f = − λ2

2N2

dR(x)
dx

where the reluctance where R(x) refers to the total reluctance of the circuit. This is

R(x) = Rcore +
2x

µ0Ag

Here, Rcore is the reluctance of the core when x = 0. If the pieces have a mean length

of `c/2 then the reluctance of the core is

Rcore =
`c

µ0µrA

The reluctance of the core is very small because the core is highly permeable, however,

when x is very small, the reluctance of the gap and the core are comparable. Evaluating

the energy and force,

W (λ, x) =
λ2

2N2

(

Rcore +
2x

µ0A

)

and

f = − λ2

N2µ0A
= − ϕ2

µ0A
(D.18)

Note here that the stored energy depends on the reluctance of the core, but the force

does not (Rcore is constant wrt x).

Re-calculating the solution using the co-energy,

W (i, x) =
1

2
L(x)i2 =

1

2

N2i2

R(x)

=
N2i2

2

1

Rcore +
2x
µ0A

The force is

f =
∂W (i, x)

∂x
=
N2i2

2

d

dx

(

Rcore +
2x

µ0A

)−1

= −N
2i2

µ0A

1
(

Rcore +
2x
µ0A

)2 = −N
2i2

µ0A

1

R(x)2
(D.19)
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Note that here, the force is expressed as a function of x and the reluctance of the

core. Note that as x → 0, the force would be infinite if the core reluctance term was

neglected. Thus, including the core reluctance will saturate the force as a function of

position.

Remark 7. (Electromagnet Force Saturation)

Using magnetic co-energy, the saturation of the force with respect to position x in

equation (D.19) is explicitly accounted for by the presence of the core reluctance.

When x = 0, the force is finite for a given current. If one neglected the reluctance,

the force in equation (D.19) is unbounded for x = 0. Using magnetic energy, the force

does not depend on position and equation (D.18) does not make any prediction about

the saturation with respect to x. Thus, it appears as if the electromagnet behaves dif-

ferently depending on how one models the energy storage. One must appreciate that

in reality, the force will saturate irrespective to the manner in which it is modelled,

because the electromagnet core will eventually saturate for a large enough flux or cur-

rent excitation. Since the energy and co-energy relationships used to derive the forces

above implicitly assume that the core is not in saturation, the forces that are predicted

will not saturate. To obtain a more precise model of the force for an electromagnet

driven into saturation, one may use equation (D.18) in terms of the flux. However,

the flux-based model of the force needs to include a description of the flux saturation

with respect to current and position.

Typically, the saturation flux density Bsat of a material is known. One considers

cross-sectional area of the magnetic circuit to see how much flux it can hold given a

saturation flux density. Note that if the cross-sectional area of the magnetic circuit

varies, the minimum area determines the maximum flux: Φsat = BsatAmin.
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D.3 Energy Analysis of Multiply Excited Systems:

Mutual Inductance

Consider systems with several sets of electrical input and mechanical output ter-

minals. A two input system is easily generalized to an n input one. Assume that

x ∈ R
3 for generality. The energy method is generalized in a straight-forward way

for application to multiply excited systems. Stored energy is expressed in terms of

the flux-linkages or the currents (co-energy) and the mechanical output x ∈ R
3. The

differential stored energy for this two input system is

dW (λ1, λ1, x) = i1(λ1, λ2, x)dλ1 + i2(λ1, λ2, x)dλ2 − fdx

Generally, the currents and force are

i1 =
∂W (λ1, λ2, x)

∂λ1

i2 =
∂W (λ1, λ2, x)

∂λ2

f = −∇xW (λ1, λ2, x)

Path independence is the key to making the calculation of the stored energy

manageable. The best approach is to use a path so that the force term drops out of

the integrals. This conveniently occurs when λ1 = λ2 = 0 because there is no field.

So first, hold these at zero and integrate with respect to the position along a path in

R
3 . Then hold the position constant (dx = 0) and integrate over the fluxes. This

composite path is sketched in Figure D.3.

The stored energy is

W (λ10, λ20, x0) =

∫ λ20

0

i2(λ1 = 0, λ2, x0)dλ2 +

∫ λ10

0

i1(λ1, λ2 = λ20, x0)dλ1

If the relationships between the inductances and currents are assumed linear,

λ1 = L11i1 + L12i2

λ2 = L21i1 + L22i2
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Figure D.8: The path for the line integral evaluation of the stored magnetic energy
in multiply excited systems.

with L12 = L21 = M and M is called the mutual inductance. To collect this into

matrix form, let Λ, I ∈ R
2 and L ∈ R

2×2. Then the linear relationship between the

current and flux-linkage is Λ = LI. Calculating the current I = L−1Λ or

i1 =
L22λ1 − L12λ2

det(L)
, i2 =

−L21λ1 − L11λ2
det(L)

Using these equations, the energy is

W (λ10, λ20, x0) =

∫ λ20

0

L11λ2
det(L)

dλ2 +

∫ λ10

0

L22λ1 − L12λ20
det(L)

λ1

=
L11λ

2
20

2det(L)
− L12λ10λ20

det(L)
+

L22λ
2
10

2det(L)

=
1

2
λTL−1λ

The differential co-energy is

dW (i1, i2, x) = λ1di1 + λ2di2 + fdx
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λ1 =
∂W (i1, i2, x)

∂i1

λ2 =
∂W (i1, i2, x)

∂i2

f = ∇xW (i1, i2, x)

By the same line of reasoning, path independence is used find the co-energy.

W (i10, i20, x0) =

∫ i20

0

λ2(i0 = 0, i2, x0)di2 +

∫ i1

0

λ1(i1, i2 = i20, x0)di1

Using the linear relations for the flux linkage and current,

W (i1, i2, x) =
1

2
L11i

2
1 + L12i1i2 +

1

2
L22i

2
2

=
1

2
iTLi

As in the scalar case, the energy and co-energy are related by

W (λ, x) +W (ı, x) =
1

2
λTL−1λ+

1

2
ITLI

=
1

2
ITLTL−1LI +

1

2
ITLI

=
1

2
ITLT I +

1

2
ITLI = ITLI

= (LI)T I = λT I

In multiply excited systems, the energy and force equations are the multidimen-

sional versions of the scalar equations previously found. The fundamental difference

in MIMO systems is that one input terminal may affect several output terminals.

This is modelled by the mutual inductance. The following proposition and examples

serve to familiarize the reader with mutual inductance.

Proposition 9. (Symmetric Inductance Matrix [6])

The inductance matrix for a coupled, multi-coil system is always symmetric.

Proof. Suppose a system has two coupled coils. A system with more coils is easily
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generalized. It is governed by the linear system

λ1 = L11i1 + L12i2

λ2 = L21i1 + L22i2

Let Λ = [λ1, λ2]
T and let I = [i1, i2]

T . The stored co-energy is W = 1
2
ITLI. Suppose

that I is increased from zero to I = [i1, i2] and measure the stored energy. Since the

integral is path independent, calculate the energy stored for two different paths and

set them equal. First, follow path 1: I = [0, 0]→ [i1, 0]→ [i1, i2].

Sp1 =
1

2
L11i

2
1 + L12i1i2 +

1

2
L22i

2
2

Then follow path 2: I = [0, 0]→ [0, i2]→ [i1, i2].

Sp2 = L21i2i1 +
1

2
L22i

2
2 +

1

2
L11i

2
1

Setting these equal gives

L12 = L21 :=M

Example D.4. (Finding the Mutual Inductance [20])

The magnetic circuit of Figure D.9 has two windings and two airgaps. The core can

be assumed of infinite permeability. The core dimensions are shown in the figure.

(a) Let i1 = I1 and i2 = 0. Calculate B1 and B2 of the airgaps, λ1 and λ2 of the

coils.

(b) Repeat part (a) however, let i2 = I2 and i1 = 0.

(c) Repeat part (a) however, let i1 = I1 and i2 = I2.

(d) Find the self- and mutual-inductances of the windings.

Solution:
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Figure D.9: Problem 1-12 in [20].

(a) Using the equivalent circuit, zero-out the N2i2 mmf source and observe that the

mmf N1i1 is applied directly across R1 and R2. Thus,

ϕ1 =
N1I1
R1

, ϕ2 =
N1I1
R2

The flux densities are

B1 =
φ1
A1

=
µ0N1I1
g1

, B2 =
φ2
A2

=
µ0N1I1
g2

The flux-linkage is

λ1 = N1ϕ = N1(ϕ1 + ϕ2) λ2 = N2ϕ2

= N2
1

I1
R1

+N2
1

I1
R2

= N2N1
I1
R2

(b) With the N1i1 voltage source shorted, no flux may flow through R1 and all of

the flux flows through R2. Thus,

ϕ1 = 0, ϕ = ϕ2 =
N2I2
R2

The flux densities are

B1 = 0, B2 =
µ0N2I2
g2
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Finally, the flux linkage is

λ1 = N1ϕ = N1ϕ2 =
N1N2I2
R2

λ2 = N2ϕ2 =
N2
2 I2
R2

(c) The flux-linkages are easily found by superposition

λ1 = N2
1 I1(R1||R2) +

N1N2I2
R2

λ2 =
N1N2I1
R2

+
N2
2 I2
R2

(d) Define λ = [λ1, λ2]
T and i = [i1, i2]

T . Then λ = Li where L is

L =







L1 M

M L2






, L1 = N2

1R1||R2, L2 =
N2
2

R2

, M =
N1N2

R2

Problem 1. (P1-14 [20]: Solenoid 1 example used as a generator)

Consider the solenoid of Example D.2, except that it is used as a generator instead

of a motor. To do this, excite the airgap field by using a constant current I0 through

the coil. Wrap another coil of N2 turns around the core in the same direction. The

voltage v2 induced at the terminals of this new coil as the plunger is moved is the

output of the generator. Assume that the g airgaps are constant and both the yoke

and the plunger are considered infinite permeability. Note that x(t) ∈ [0, w].

(a) find the mutual inductance of the coils as a function of the plunger position.

(b) find the voltage v2(t) if x(t) =
w
2
(1 + εsin(ωt)) for some ε ∈ (0, 1).

To find the inductances, express the flux-linkages in terms of the currents. Using

amperes law,

ϕ =
N1i1 +N2i2
R(x)

Since λ1 = N1ϕ and λ2 = N2ϕ, then

λ1 =
N2
1 i1 +N1N2i2
R(x)

λ2 =
N1N2i1 +N2

2 i2
R(x)
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Thus, the mutual inductance is M = N1N2/R(x). Find the open-circuit voltage v2

when i1 = I0.

λ2(t) =Mi1 =
N2N1I0
R(x(t))

where

R(x) = 2g

µ0dw(1− x
w
)

was calculated in Example D.2. Faraday gives the voltage as

v2 =
dλ2
dt

= −µ0 dw N2N1I0
4g

ωε cos(ωt)
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APPENDIX E

FILTER CONSTRUCTION

The design of the filters used for signal conditioning is carried out in two programs:

Electronics Workbench Multisim 2001 and Ultiboard 2001 (student versions). Mul-

tisim is a schematic capture circuit simulation program. This program is very much

like Simulink in usage except instead of a block library there is a database of manufac-

turers parts (thousands of them). Associated with each part is a schematic diagram,

a detailed SPICE (a circuit simulation language) model, a footprint of the physical

dimensions of the part, and several other parameters. Once the schematic diagram

is wired up, one can connect the multimeter (DC measurements), the spectrum ana-

lyzer (for frequency response simulation), the function generator, and the oscilloscope

virtual instruments just like one uses the scope block in Simulink.

When simulation studies are complete, the design is automatically imported to

printed circuit board (PCB) layout program Ultiboard. The footprints from the

manufacturer’s data is also passed to Ultiboard. The user manually organizes the

layout of the components on PCB and then an automatic trace routing program

takes over and designs the trace layout. The filters constructed in this work are

simple one-sided (one copper side) PCB with through-hole components. However,

Ultiboard may has the ability to route up to 32 layer PCBs and use surface mount

components. For hobby/workshop use, only boards as complex as a two-sided PCB

are practical.

To make the PCB, the copper trace layout is printed with a standard laser printer

using a special paper from Pulsar (www.pulsar.gs). The toner transfer paper allows
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one to transfer the image directly onto the copper of a raw1 printed circuit board using

a household iron. Pulsar also offers a special applicator machine for high quality image

transfers. The plastic in the toner is an etch resistant material. After the toner trace

image is transferred to the board, the board is immersed in Ferric Chloride to eat

away the exposed copper. The etching time is about 20 minutes with gentle rubbing

using a sponge and plastic gloves. The PCB traces are made from the copper that is

protected under the toner mask. Once the board is etched, the toner is removed with

acetone, the component holes are drilled with a Dremel Drill Press, and the board

is sprayed with a green enamel as a protective coating. Finally the components are

soldered in place.

The figures below illustrate the process.

1This is just a fiberglass board that is completely coated with copper on one or two sides.
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Figure E.1: Multisim is used for the filter design and simulation. The component
data base is shown on the left, the instrument selector on the right, the schematic in
the background and the oscilloscope readout in the small display.
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Figure E.2: Ultiboard uses the footprint data from the Multisim component data
base to make a Printed Circuit Board Layout. The copper traces are shown in green
and the components in white.
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Figure E.3: Using an ordinary household iron, the toner image is transferred from
the special Toner Transfer Paper to mask the traces on the raw, copper-clad circuit
board. The toner appears in black. On top of the toner is an additional protective
green layer to prevent “pitted” traces. Also used are direct rub-on transfer decals to
repair any toner traces that have been damaged or did not transfer. This board is
now ready to be immersed into the Ferric Chloride etchant.

Figure E.4: The etched printed circuit board. This board is now ready for drilling.
Five large drill holes will be added to accommodate the PCB standoff posts used
when mounting the board.
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Figure E.5: After drilling the component holes, the board is sprayed with a green
enamel. This acts as an insulator and also as a solder mask. It also gives the board a
professional look. At this point, one could apply another toner transfer to the board,
called the silkscreen layer. This outlines the locations of the parts and acts as a
placement guide.

Figure E.6: This is the finished board. All that needs to be done is mount it in the
amplifier box and wire the power, ground, input and output. These signals come into
the terminal block on the left of the board. The bias reference voltage is set by the
LM358 amplifier on the left. Each LF347 chip (the longer chips) holds 4 opamps and
implements, along with the components above and below it, one filter. Eight filter
circuits are implemented on one board.
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[43] Krstić, M., Kanellakopoulos, I., and Kokotović, P., Nonlinear and
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[63] Praly, L., d’Andréa-Novel, B., and Coron, J. M., “Lyapunov design of
stabilizing controllers for cascaded systems,” IEEE Transactions on Automatic
Control, vol. 36, no. 10, pp. 1177–1181, 1991.

[64] Rao, D., “Precision magnetic bearing systems final report for contract no.
f29601-97-c-0044,” tech. rep., Precision Magnetic Bearing Systems, 36 Green
Mountain Drive, Cohoes, NY 12047, 2000.

[65] Richie, D., Tsiotras, P., and Fausz, J., “Flywheel simultaneous attitude
control and energy storage using a vscmg configuration,” in Proceedings of the
2000 IEEE International Conference on Control Applications, pp. 991 –995, Sept.
2000. Ancorage, Alaska, USA.

[66] Richie, D., Tsiotras, P., and Fausz, J., “Simultaneous attitude control
and energy storage using vscmgs: Theory and simulation,” in Proceedings of the
American Control Conference, vol. 5, pp. 3973 –3979, 2001.

[67] Richie, D., Tsiotras, P., and Fausz, J., “Variable speed control moment
gyroscope workbench: a new simulation tool for tomorrow’s spacecraft,” in 20th
Digital Avionics Systems Conference, vol. 2, pp. 497–508, Oct. 2001.

[68] Scherpen, J. M. A., van der Kerk, B., Klaassens, J. B., Lazeroms,
M., and Kan, S., “Nonlinear control for magnetic bearings in deployment test
rigs: Simulation and experimental results,” in Proceedings of the 37th IEEE
Conference on Decision and Control, pp. 2613–2618, 1998. Tampa, FL.
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1988.

325



[87] Weiler, E. J., “Nasa space sciences stragetic plan,” tech. rep., NASA Space
Science Enterprise, 2000.

[88] Williams, A. B. and Taylor, F. J., Electronic Filter Design Handbook. New
York, NY: McGraw-Hill, Inc., third ed., 1995.

[89] Wouterse, J. H., “Critical torque and speed of eddy current brake with widely
separated soft iron poles,” in IEE Proceedings B (Electric Power Applications),
vol. 138, pp. 153–158, July 1991.

[90] Yang, C. and Knospe, C., “Optimal control of a magnetic bearing without
bias flux,” in Proceedings of the American Control Conference, pp. 1534–1538,
June 1997. Albuquerque, NM.

[91] Yang, C., Knospe, C., and Tsiotras, P., “Optimal control of a magnetic
bearing without bias flux using finite voltage,” Optimal Control Applications and
Methods, vol. 19, pp. 227–246, 1998.

[92] Yea, T. J. and Youcef-Toumi, K., “Achievable performance of magnetically
levitated rotating machines,” in 13th Triennial IFAC World Congress, pp. 451–
456, 1996. San Francisco, CA.

[93] Youcef-Toumi, K. and Reddy, S., “Dynamic analysis and control of high
speed and high precision active magnetic bearings,” ASME Journal of Dynamic
Systems, Measurement, and Control, vol. 114, pp. 623–632, 1992.

326



VITA

Brian Christopher David Wilson was born in Buffalo, NY, 1973. He received a B.S.

degree in electrical engineering from SUNY Buffalo in 1996 and a Masters degree in

electrical engineering for the Georgia Institute of Technology (Georgia Tech), Atlanta,

in 1998.

In the summer of 2001, he participated in the Air Force Research Labs Space

Scholars Program at Kirtland AFB, NM. He is currently a Ph.D. candidate with the

School of Electrical and Computer Engineering at Georgia Tech. His current research

interests include analytical dynamics, nonlinear control theory, electromechanical ma-

chines, active magnetic bearings, and electronic instrumentation.

327


