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SUMMARY

Overlay networks have been the subject of significant research and practical interest

recently in addressing the inefficiency and ossification of the current Internet. In this thesis,

we cover various aspects of overlay network design, including overlay routing algorithms,

overlay network assignment and multihomed overlay networks. We also examine the be-

havior of overlay networks under a wide range of network settings and identify several key

factors that affect the performance of overlay networks. Based on these findings, practical

design guidelines are also given. Specifically, this thesis addresses the following problems:

• Dynamic overlay routing: We perform an extensive simulation study to inves-

tigate the performance of available bandwidth-based dynamic overlay routing from

three important aspects: efficiency, stability, and safety margin. Based on the find-

ings, we propose a hybrid routing scheme that achieves good performance in all three

aspects. We also examine the effects of several factors on overlay routing performance,

including network load, traffic variability, link-state staleness, number of overlay hops,

measurement errors, and native sharing effects.

• Virtual network assignment: We investigate the virtual network (VN) assignment

problem in the scenario of network virtualization. Specifically, we develop a basic VN

assignment scheme without reconfiguration and use it as the building block for all other

advanced algorithms. Subdividing heuristics and adaptive optimization strategies

are presented to further improve the performance. We also develop a selective VN

reconfiguration scheme that prioritizes the reconfiguration for the most critical VNs.

• Overlay network configuration tool for PlanetLab: We develop NetFinder,

an automatic overlay network configuration tool to efficiently allocate PlanetLab re-

sources to individual overlays. NetFinder continuously monitors the resource utiliza-

tion of PlanetLab and accepts a user-defined overlay topology as input and selects the

xiii



set of PlanetLab nodes and their interconnection for the user overlay.

• Multihomed overlay network: We examine the effectiveness of combining multi-

homing and overlay routing from the perspective of an overlay service provider (OSP).

We focus on the corresponding design problem and examine, with realistic network

performance and pricing data, whether the OSP can provide a network service that is

profitable, better (in terms of round-trip time), and less expensive than the competing

native ISPs.

xiv



CHAPTER I

INTRODUCTION

The Internet has been a great success in the past few decades and has provided a whole

new way to access and exchange information. The best-effort unicast service model of

the Internet has served well in the past for a variety of network services and applications,

including the Web, email, and instant messaging. Its success has stimulated enormous

growth and wide deployment of network technology and applications.

As the Internet becomes more popular, the need for enhanced services, such as more

bandwidth, better security, higher reliability, faster failure recovery, are growing. However,

due to the IP addressing scheme, BGP routing paradigm, and other historical reasons, the

current Internet is not efficient in addressing these increasing needs for enhanced services.

For example, it has been shown that native Internet routing can lead to poor availability

and performance [9]. The single route from the source network to a given destination

network/prefix may not be always available, while routing policies and traffic engineering

practices can (and often do) impose a heavy performance penalty on the resulting end-to-end

performance [6].

To achieve improved reliability and performance, multihoming has become the main-

stream service model for major content providers (see Figure 1). In the most common

multihoming scenario, a customer uses one ISP as its primary provider and another as

backup. Switching from the primary to the backup can be performed automatically by the

border router of the multihomed network when it detects loss of connectivity with the pri-

mary ISP. The use of multihoming has seen a dramatic increase in the last few years. It is

now estimated that more than 70% of the stub networks in the US are multihomed [24]. In

the more advanced form of this model, known as intelligent route control, the multihomed

source network selects the upstream ISP for every significant destination prefix based on

performance and cost considerations [1, 30].
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Figure 1: Multihoming architecture

A different approach to improve end-to-end availability and performance is to use overlay

routing (see Figure 2). Here the traffic between the source and destination is sent through

one or more intermediate overlay nodes that are connected through IP tunnels [9,48]. While

the IP layer simply provides basic connectivity between overlay nodes, overlay routing has

the flexibility to select path based on application specific objectives and current network

situation. This decoupling of path selection and data forwarding enables novel, on-demand

and evolving services through overlay networks:

First, to deal with the slow fault recovery and routing convergence of BGP [43], overlay

networks can bypass broken paths by rerouting traffic through intermediate overlay nodes.

The detection of broken paths by overlay nodes can be quickly performed through active

probing. Second, the IP routing model is basically a “one-size-fits-all” service, providing the

same route independent of performance requirements. Instead, overlay networks can offer

different routes to the same destination, depending on the performance metric (e.g., delay,

throughput, loss rate) that each application cares for [9]. Third, the fact that interdomain

IP routing is largely determined by ISP commercial policies often results in suboptimal

paths [72]. Overlay networks can provide better end-to-end performance by routing through

intermediate overlay nodes, essentially forcing the flow of traffic in end-to-end paths that

would otherwise not be allowed by ISP policies.

Another motivation for overlay networks is that they provide a feasible strategy to test

and deploy new network technologies and overcome the Internet ossification. The concept

of network virtualization was proposed to allow different virtual networks to co-exist within
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Figure 2: Overlay routing architecture

a shared substrate [57]. In such an approach, a substrate network provider (SNP) provides

a common substrate to support a number of diversified virtual networks (DVN). These

DVNs, which are essentially specialized overlay networks implemented by virtual routers

connected through virtual links, in turn would provide a range of different communication

services to applications, using a variety of protocols and packet formats. In doing so,

the burdens of providing an “everything-to-everybody” network architecture or requiring

universal agreements on architecture and protocol changes are released. Furthermore, the

diversified Internet would make it possible for an individual or organization to rapidly

deploy a DVN with potentially global scope, without making any direct investment in

physical infrastructure [84].

A common characteristics of all overlay networks is the existence of two or more layers

of networks and the separation of routing and packet forwarding between these two layers.

First, there is a substrate network composed of substrate nodes (e.g., end-hosts, IP routers),

and substrate links. There is also an associated routing functionality that provides the

native datagram delivery between substrate nodes. On the top layer is the overlay network

that is composed of overlay nodes and links. Specifically, several substrate nodes are selected

as the overlay nodes and they are interconnected through overlay links to form the overlay

network. Each overlay link is actually a tunnel over the substrate network. Furthermore,

the substrate network could be the either the native Internet, or another overlay network

built on top of some other substrate network. In all cases, the lowest layer is always the

native Internet. An important feature of this overlay architecture is the existence of multiple
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alternative overlay paths between a pair of source and destination. When a user flow arrives,

the ingress overlay node determines the best overlay path to the destination based on the

users objective and the current network states.

Figure 3 illustrates the process of constructing an overlay network on top of a substrate

network 1. The first step is the overlay topology design to determine the size of the overlay

network and how it is connected. This procedure is usually performed based on application

specific requirements, customer information and monetary considerations. For example,

full mesh overlay is desirable for small overlay network to provide maximum resilience to

network failures. Sparse or hierarchical topology is more desirable for large overlay networks.

Structured peer-to-peer overlay networks may require a special overlay topology. Once the

overlay topology is determined, an overlay network assignment process is performed to

map the user-defined overlay topology into subset of the underlying substrate network.

Given the overlay topology and the substrate network status, the assignment process will

select the substrate node and path for each individual overlay node and link respectively.

Again, different applications have different strategies in the overlay network assignment.

For example, a content delivery network (CDN) may deploy its replicas close to its users

to minimize the delay. A substrate provider supporting DVNs may want to achieve load

balancing to avoid hot spots in its network. Finally, an overlay routing mechanism needs

to be implemented to deliver the user traffic within the overlay network.

This thesis covers various aspects of overlay network design, including the overlay routing

algorithms, overlay network assignment and multihomed overlay networks. We also examine

the performance of overlay networks under a wide range of network settings and identify key

factors that affects the performance of overlay networks. Based on these findings, practical

design guidelines are also given. The following sections detail the specific problems we

consider.

1The virtual network in the scenario of network virtualization is essentially an overlay network constructed
on top of the substrate network, therefore, in the rest of this chapter, we will use the terms virtual network
and overlay network interchangeably.
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Figure 3: Overview of overlay and virtual networks

1.1 Dynamic overlay routing

It is clear that there is much to be learnt about overlay networks, and that the key debates on

the scalability, efficiency, and stability of overlay networks have to be addressed before their

wider-scale deployment. In this work, we focus on an aspect of dynamic overlay networks

that has been largely unexplored previously, namely, the use of available bandwidth (avail-

bw) measurements in the path selection process. Previous work on overlay routing assumed

that the only information that can be measured or inferred about the underlying native

network is related to delays, loss rate, and sometimes TCP throughput. The problem with

these metrics is that they are not direct indicators of the traffic load in a path: delays

can be dominated by propagation latencies (which do not depend on network load), losses

occur after congestion has already taken place, while measurements of TCP throughput

can be highly intrusive and they can be affected by a number of factors (such as flow size,

advertised window, or TCP stack). The avail-bw, on the other hand, directly represents

the additional traffic rate that a path can carry before it gets saturated. Consequently,

an overlay node can route a traffic flow (or an aggregation of many flows) to a path only

if the maximum throughput of that flow is lower than the avail-bw of the path. The use

of avail-bw in overlay routing has recently become possible, based on recent advances in

avail-bw measurement techniques and tools [8, 34, 38, 67, 78]. Obviously, if an application

has additional requirements on the end-to-end delay or loss rate, then those requirements
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can be jointly considered with avail-bw in the path selection process.

This thesis presents an extensive simulation study of dynamic overlay routing based

on avail-bw estimation. We first focus on two algorithms that represent two different and

general approaches: proactive and reactive routing. The former attempts to always route a

flow in the path that provides the maximum avail-bw, so that the flow can avoid transient

congestion due to cross traffic (and overlay traffic) fluctuations. The latter reroutes a flow

only when the flow cannot meet its throughput requirement in the current path, and there

is another path that can provide higher avail-bw. The routing algorithms are compared

in terms of efficiency, stability, and safety margin (or headroom). We show that reactive

routing has significant benefits in terms of throughput and stability, while proactive routing

is better in providing flows with a wider safety margin. We then propose a hybrid routing

scheme that combines the best features of the previous two algorithms. We also examine

the effect of several factors, including network load, traffic variability, link-state staleness,

number of overlay hops, measurement errors, and native sharing effects. Some of our results

are rather surprising. For example, we show that a significant measurement error, even up

to 100% of the actual avail-bw value, has a negligible impact on the efficiency of overlay

routing. Also, we show that a naive overlay routing algorithm that ignores native sharing

between overlay paths performs equally well with an algorithm that has a complete view of

the native topology and of the avail-bw in each native link.

1.2 Virtual network assignment

One of the important practical problems in developing a virtual network (VN) is to map

the user-defined virtual topology into the substrate network. This is an important issue to

both the substrate network provider and the VN users. From the provider’s point of view,

the mapping or assigning of substrate network resources to individual virtual network is

a fundamental functions to support network virtualization. Specifically, each virtual node

is assigned to one of the substrate nodes and each virtual link is assigned to a substrate

path that connects the corresponding end nodes. In our envisioned scenario, VN demands

would arrive at different time instances and request to set up virtual networks with different
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topologies and lifetimes. Allowing VNs to be assigned to the substrate network efficiently

and on-demand is desirable for the following reasons:

• Increasing efficiency in the substrate resource utilization would allow the substrate

network to accommodate more virtual networks with limited resources and reduce

hot spots or congestion.

• On-demand assignment means that the assignment for each virtual network is deter-

mined based on the current network situation as the demand arrives. Given that VN

demands can arrive at any moment and the substrate provider would not have infor-

mation regarding future arrivals, it is important for the substrate network provider to

be able to make the assignment decision in response to each individual demands as

they arrive.

The above function is also important from the VN user’s perspective since a good assign-

ment could fully deliver the performance enhancement of the overlay network while poor

VN assignments would limit the potential of an overlay network. For example, in designing

a resilient overlay network, if all overlay paths between the source and the destination are

configured to share a common native link, then the connection will fail when the common

link is broken. This is true even if all paths are disjoint at the overlay level.

In this thesis, we are motivated by the above considerations to study the following on-

demand VN assignment problem: Upon the arrival of a VN request, assign its topology to

the substrate network to achieve low and balanced load on both substrate nodes and links.

A special case of the VN assignment problem can be formulated as an unsplittable flow

problem which is NP-hard. Therefore, the VN assignment problem is intrinsically difficult

and heuristics will be used to solve the problem. We developed a basic scheme for VN

assignment without reconfiguration and use it as a building block for all other advanced

algorithms. Subdividing heuristics and adaptive optimization strategies are presented to

further improve the performance. We also developed a selective VN reconfiguration scheme

that prioritizes the reconfiguration for the most critical VNs. Extensive simulation exper-

iments demonstrate that the proposed algorithms can achieve good performance under a
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wide range of network conditions.

1.3 Automatic overlay network configuration in PlanetLab

PlanetLab has been widely used in the networking community to test and deploy new

network technologies [58]. It can serve as a testbed for overlay networks. Research groups

are able to request a PlanetLab slice in which they can experiment with a variety of wide-

area networks and services, such as file sharing, content distribution networks, routing and

multicast overlays, QoS overlays, and network measurement tools. One problem faced by

PlanetLab users is selecting a set of PlanetLab nodes and interconnecting them to form the

desired overlay network.

PlanetLab also serves as a meta testbed on which multiple, more narrowly-defined virtual

testbeds can be deployed. For example, the “Internet-in-a-Slice”(IIAS ) service aims at

recreating the Internet’s data plane and control plane in a PlanetLab slice [36]. Network

researchers can use this infrastructure to experiment with modifications and extensions

to the Internet’s protocol suite. Currently, IIAS does not provide resource discovery and

overlay assignment services and the overlay configuration has to be given explicitly.

Having an automated overlay network assignment service for PlanetLab is important

for two reasons. From the PlanetLab operator’s perspective, efficient assignments would

result in better resource utilization so that the PlanetLab could accommodate more user

overlays with limited resources and avoid hot spots or congestion. From the overlay user’s

perspective, having good assignment service would provide overlay users better choices

in building their overlays by avoiding congested links/nodes. A recent study reported

that available resources vary significantly in PlanetLab, suggesting that wise placement

of application instances can be beneficial [54].

Unfortunately, such a task is usually carried out manually by individual users and some-

times in an ad-hoc manner. Manual configuration is time consuming (especially for net-

works) and prone to human error. It is not efficient even for small overlay networks since

the underlying PlanetLab network has hundreds of nodes and its state fluctuates over time

due to failures, congestion and load variation. In this work, we are motivated by the above
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considerations and focus on the on-demand overlay network assignment problem: Upon

the arrival of a user-defined overlay topology and associated overlay resource requirements

(such as minimum available bandwidth, minimum available CPU), find the set of PlanetLab

nodes and their interconnections to satisfy the user request.

In this thesis, we develop NetFinder, an automatic overlay network configuration tool

in PlanetLab. This tool continuously collects information about the resource utilization of

PlanetLab and accepts a user-defined overlay topology as input. NetFinder then performs

overlay network assignment by selecting the set of PlanetLab nodes and their interconnec-

tion for the desired user overlay.

1.4 Multi-homed overlay networks

To avoid the inefficiencies and fragility of the native Internet routing, the concept of intel-

ligent routing (IR) has been proposed to utilize better alternative paths from the source

to the destination instead of sticking to the native IP path. Among various proposals are

two most dominant architectures: multihoming and routing overlays. In multihoming, a

stub network can dynamically choose among a number of upstream Internet providers. A

multihomed network can split its ingress traffic among different providers, and it can steer

its egress traffic to the provider with the best performance or least cost. Routing overlays,

on the other hand, require a distributed infrastructure of overlay routers. Packets can be

forwarded from their source to the destination through one or more intermediate overlay

routers, bypassing congested Internet links or networks with poor reliability. In comparison,

multihoming is a localized IR architecture that is already quite popular in stub networks,

while routing overlays can provide greater flexibility but they require a distributed infras-

tructure and a greater investment. A comparison study of multihoming and overlay routing

has been conducted in [7].

Given the previous two approaches, it is interesting to consider a scenario in which both

models are used. Specifically, we envision a new type of Internet provider referred to as

Overlay Service Provider (OSP) (to distinguish from an ISP) that attempts to offer its

customers the combined benefits of multihoming and overlay routing, in terms of improved
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performance and reduced cost. The OSP operates a Multihomed Overlay Network (MON),

with each MON node being a multihomed router (shown in Figure 4). MON nodes are

placed at “key” Internet locations, mostly Internet Exchange Points (IXPs), and the OSP

purchases Internet connectivity for each MON node from several locally present ISPs. An

OSP customer can connect directly to a MON node if that customer is collocated at the

same IXP with that MON node. Major content providers are usually collocated at major

IXPs to avoid the cost of leased lines. On the other hand, the OSP is responsible to route a

customer’s traffic with greater reliability and performance than the customer’s current ISP.

Note that this is similar to the Internap service model [1].

Further, we envision that the OSP can also provide overlay routing utilizing MON

nodes as intermediate overlay routers. Based on the findings of [92], we limit the number

of intermediate MON nodes in an overlay route to one. It is rarely the case that more

intermediate nodes are needed to improve performance significantly.
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Figure 4: MON architecture

It is interesting that an OSP is “an Internet provider that does not own a network”, in the

sense that the OSP does not operate any long-distance links or a backbone. Its infrastructure

is located at the network edges, and its long-distance communication is conducted from the

underlying native-layer ISPs. As a matter of fact, early ISPs were often built in the same

way, leasing long-distance links from telecommunication providers and placing IP routers

only at major aggregation points at the network edge.
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In this thesis, we focus on the MON design problem, i.e., , where to place MON nodes

and how to select the upstream ISPs for each node. We are interested to examine, with

realistic network performance and pricing data, whether an OSP can combine multihoming

and overlay routing to provide a network service that is, first, profitable, second, better in

terms of performance than the competing native ISPs, and third, less expensive than the

competing native ISPs. Perhaps surprisingly, we find out that the OSP can meet all three

previous objectives. We also observe, however, that the MON design process is crucial (e.g.,

operating more than 10 overlay nodes, or always routing traffic through the minimum-delay

indirect path, rarely leads to profitability in our simulations).

1.5 Outline

The rest of this thesis is organized as follows. Chapter 2 discusses the existing work re-

lated to this thesis. Chapter 3 presents our simulation study on dynamic overlay routing

based on available-bandwidth measurements. Chapter 4 investigates the problem of virtual

network assignment. In Chapter 5, we develop NetFinder, an automatic overlay network

configuration tool for PlanetLab. The multihomed overlay network architecture and the

corresponding network design is presented in Chapter 6. We finally summarize the thesis

and discuss the future work in Chapter 7.
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CHAPTER II

RELATED WORK

This chapter provides an overview of the related work on the topics of overlay networks,

virtual network assignment, and multihomed overlay network design.

2.1 Overlay networks

An important motivation of overlay networks comes from studies on the limitations of BGP

based Internet routing: Paxson finds that the likelihood of encountering a major routing

pathology more than doubled between the end of 1994 and the end of 1995, rising from

1.5% to 3.3% [56]. Labovitz et al. analyze the delayed behavior of the Internet routing

convergence [43]. They report that the delay in Internet interdomain path failovers average

three minutes, and some percentage of failovers triggers routing table oscillations lasting up

to fifteen minutes. Internet path inflation caused by BGP-policies is studied in [76,82].

Due to its flexibility to provide enhanced services, overlay networks have become an in-

creasingly active topic in recent years. Over the last few years much has been learnt about

overlay networks.The Detour project quantifies the Internet’s inefficiencies and argues that

Internet behavior can be improved by spreading intelligent routers at key access and inter-

change points to actively manage traffic [71]. Savage et al. conduct a measurement-based

study comparing the performance seen using the default Internet path with the potential

performance available using some alternate path, and find that in 30-80% of the cases, there

is an alternate path with significantly superior quality. Using RTT as the routing metric

and packet drop rate as the performance metric, Bauer et al. investigate the overlay routing

performance under different overlay sizes and traffic patterns [16]. Andersen et al. examine

the nature of loss and failure in the Internet and their implications on the overlay routing

schemes [11]. Rewaskar and Kaur characterize and evaluate the tradeoff between the effi-

ciencies of alternate path routing in improving end-to-end delay and loss, and the overheads
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introduced by alternate routing methodology [65]. The impact of the overlay topology on

the resulting routing performance and overhead is studied in [47], suggesting that knowl-

edge of the native network topology can significantly benefit the overlay construction. Qiu

et al. address the effects of selfishness to the overlay routing performance [60]. Tao et al.

examine the diversity among alternative paths and their implications to the overlay routing

performance [83].

Another research thread focuses on enhanced services that can be provided by overlay

networks. To name a few, the Resilient Overlay Network (RON) is the first wide-scale over-

lay implementation and testbed, over which several measurement studies are performed [9].

It relies on probing to monitor the quality of underlying Internet connection between over-

lay nodes and uses this information to route packet through one of the alternative paths

to achieve fast failure detection and recovery. The MBONE is an overlay network layered

on top of portions of the physical Internet to support routing of IP multicast packets [25].

Chu et al. use an end system overlay approach to efficiently support all multicast related

functionality including membership management and packet replication [35]. OverQos is an

architecture for providing Internet QoS using overlay networks [79]. Overlay path selection

algorithms, focusing on QoS-aware routing, is studied in [48]. The objective of QRON is to

find paths between source and destination that satisfy both bandwidth and computational

requirement. Keromytis et al. propose an Secure Overlay Services (SOS) architecture using

a combination of secure overlay tunneling, routing via consistent hashing, and filtering to

proactively prevents DoS attacks [39]. Byers et al. study how to optimize throughput of

large transfers across richly connected, adaptive overlay networks, focusing on the potential

of collaborative transfers between peers to supplement ongoing downloads [18].

Overlay networks rely heavily on active probing, raising questions about their scalability

and long-term viability. For instance, Nakao et al. argue that independent probing by

various overlay networks is untenable, and that a “routing underlay” service is needed that

will be shared by different overlays [52]. The high cost of overlay network probing is the

motivation for the tomography-based monitoring scheme reported in [22]. Furthermore,

an ongoing debate focuses on the “selfishness” of overlay routing, and on the potential
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performance inefficiency and instability that it can cause [5, 60,69,74,88].

2.2 Virtual network assignment

Network virtualization provides a promising way for addressing the ossification of the In-

ternet by allowing multiple virtual networks co-exist on top of a shared substrate [57].

Different virtual networks provide alternate end-to-end packet delivery systems and may

use different protocols and packet formats. One of the fundamental functions of network

virtualization is the virtual network assignment, i.e., the mapping or assigning of substrate

network resources to individual virtual network nodes and links.

The virtual network assignment problem shares similarities with the virtual circuit rout-

ing and virtual private network (VPN) design problems [27, 31, 33, 81]. All of them involve

finding paths for source/destination pairs. In both the routing and VPN design problems,

locations of source/destination pairs that need to be connected are given as input param-

eters. In network virtualization, however, the mapping between the VN and the substrate

network could be arbitrary, this extra degree of freedom increases the complexity of the

problem. Furthermore, in the VPN design as well as the static routing problem, only link

utilizations are considered while the VN assignment problem considers load balancing of

both substrate nodes and links.

Another unique feature of the VN assignment problem is that requests arrive in terms of

a graph, as opposed to a source/destination pair for the ordinary routing problem. There-

fore, the VN assignment problem has both online-routing and off-line routing features:

within the same VN request, multiple requests for virtual links arrive at the same time

(similar to off-line routing), while no information is available for future VN requests (simi-

lar to on-line routing). This batch-arrival process allows us to consider multiple concurrent

virtual link requests together to use the network resources more efficiently.

The load balancing problem on networks is a generalization of the load balancing prob-

lem on unrelated parallel machines [14]. A competitive strategy to minimize congestions in

online virtual circuit routing is developed by Aspnes et al. to achieve a competitive ratio of

O(log n) for permanent (i.e., infinite holding time) virtual circuits, where n is the number
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of nodes in the network [13]. It is extended to the case of finite holding time circuits in [15].

The node selection and placement problem is studied in the context of web server repli-

cation and access network design [17, 42, 73]. Shi et al. investigate the server placement

problem in overlay networks to ensure desired service quality to all its customers [75]. The

VN assignment problem considered in this thesis also includes selecting substrate nodes for

VN requests. However, the node selection is only a part of the problem and our goal is to

map the VN topology to the substrate topology to efficiently use network resources.

2.3 Automatic overlay network configuration in PlanetLab

Our overlay network configuration tool, NetFinder, is motivated by the findings in [54],

which examines PlanetLab resource utilization data from the perspective of the designer

of a resource discovery system. The authors find that, for some resources, the quantity

available at a fixed time differs significantly across nodes, suggesting a potential benefit to

using a resource discovery system to wisely place application instances.

NetFinder is based on two technical foundations: end-to-end bandwidth/throughput

measurement results and overlay network assignment algorithms. Lee et al. assess the ca-

pabilities of several existing bandwidth measurement tools and describe the difficulties in

choosing suitable tools as well as using them on PlanetLab [45]. Specifically, the authors re-

port that pathchar [37], pchar [50], pathChirp [66] do not work with the current PlanetLab.

bprobe, cprobe [20] and SProbe [70] can partially run on PlanetLab.

There are a number of existing tools for node selection in PlanetLab. SWORD is

a scalable resource discovery tool for wide-area distributed systems [80]. The particular

type of resource that SWORD is intended to discover is the set of nodes on which to

deploy a service. However, SWORD focuses on selecting the set of nodes that satisfy

user requirement without considering the effects of the selection on the overall PlanetLab

performance. Furthermore, SWORD has little support on the inter-node performance and

currently does not support available-bandwidth performance between nodes.

Our work is based a number of PlanetLab performance monitoring services. Specifi-

cally, CoMon provides a monitoring statistics for PlanetLab at both a node level and a slice
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level [23]. The data gathered by CoMon can be directly accessed through CoMon daemon

on port 3121 at each PlanetLab node. Our link performance results are currently obtained

from the S3 project [89], which periodically provides end-to-end latency, bottleneck band-

width capacity, and end-to-end available bandwidth between 400+ PlanetLab nodes. We

should note that the contribution of this work is the NetFinder tool that configures the

user-defined overlay network in a efficient and on-demand manner. Instead of developing

new measurement schemes for PlanetLab, we rely on existing services to collect measure-

ment data. Although its current version uses measurement results form CoMon and S3,

NetFinder is not restricted by these services and can easily adopt new monitoring services

and measurement results when they are available.

The overlay assignment problem is challenge since we are trying to optimize both the

node performance and link performance. The algorithm used in NetFinder is based on

results in Chapter 4, which provides theoretical algorithms for virtual network assignment

aiming at reducing the stress among substrate nodes and links. However, the abstract

definition of stress can not be easily mapped to realistic network performance metrics such

as the CPU usage and available bandwidth. Therefore, modifications and extensions need

to be made for the algorithm to work in our scenario.

The output of NetFinder could be used directly as IIAS inputs [36]. Which in turn

would start an overlay data plane in PlanetLab following the calculated results.

2.4 Multihomed overlay network

Multihoming has traditionally been employed by stub networks to enhance the reliabil-

ity of their network connectivity. With the advent of commercial intelligent route control

products [26,53,61], stubs now leverage multihoming to improve performance. The perfor-

mance of multihoming route control to improve end-to-end performance and resilience is

studied in [6]. The authors find that multihoming can improve performance significantly

and that not choosing the right set of providers could result in a performance penalty as

high as 40%. Wang et al. propose algorithms for selecting a set of upstream ISPs with a

monetary cost minimization objective [85]. Intelligent route control products use the idea
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of dynamic switching among upstream ISPs to select the best path for any prefix in real

time [29]. Dhamdhere and Dovrolis propose methodologies for the provisioning of egress

routing at a multihomed content provider, taking into account monetary cost, interdomain

level performance and path diversity [24].

Detour [71] and RON [9] demonstrate that using overlay routing to bypass BGPs policy-

driven routing enables quicker reaction to failures and improved end-to-end performance.

More recently, a comparison between overlay networks and multihoming in terms of round-

trip latency, TCP connection throughput, and path availability is reported in [6,7], suggest-

ing that multihoming may be capable to offer almost the same performance benefits with

overlay networks, but in a much simpler and more cost-effective way.

The overlay network design problem is the subject of several recent studies. Han et al.

propose algorithms for both ISP selection and overlay node selection within each ISP, aiming

at maximizing path independence without degrading performance [32]. Although multiple

ISPs are involved, the paper dose not consider the scenario where an overlay node is multi-

homed to several ISPs. An overlay network construction strategy based on a binning scheme

to partittion nodes based on network latency is presented in [64]. Lao et al. study the

overlay node placement and link selection for multicast service overlay network (MSON) [44].

Their node selection objective is to minimize the delay from all users to the proxies. More

recently, Cha et al. address the overlay node placement problem in a single domain to

minimize the overlaps between the default and overlay paths [21].

Other than overlay network design, the node selection problem is also studied in the

context of content delivery network (CDN), web proxy and cache, where a set of nodes in

the Internet need to be selected to replicate popular content or to serve the users. Qiu

et al. study the online problem of placing Web server replicas in CDNs to minimize the cost

for clients to access data [59]. Cahill and Sreenan propose replica placement algorithms

to minimize resource costs [19]. Li et al. investigate the optimal placement policy of web

proxies for a target web server in the Internet to minimize the overall latency [46].

Our work differs from all existing work in two major aspects. First, we consider a more

generalized model of overlay network where each overlay node is multi-homed to several
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ISPs. Therefore, the MON network design problem is more challenging since it covers both

node selection and ISP selection. Second, most existing work on overlay design/node selec-

tion focus on the performance issues such delay, resilience, path diversity. In contrast,while

improving the performance for OSP customers, we also take the business relationship be-

tween the OSP, customers and competing ISPs into consideration to maximize the OSP

profits.

Recently, Andersen et al. propose the MONET (Multi-homed Overlay Network) system

to use a combination of link multi-homing and a cooperative overlay network of peer proxies

to obtain a diverse collection of paths between clients and Web sites [10]. Our MON network

shares the similarities with the MONET (Multi-homed Overlay Network) system such that

both are exploring the combinational advantage of multi-homing and overlay network to

provide better services. However, they assume the existence of overlay nodes and the multi-

home connectivity.
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CHAPTER III

DYNAMIC OVERLAY ROUTING BASED ON

AVAILABLE BANDWIDTH ESTIMATION

Dynamic overlay routing has been proposed as a way to enhance the reliability and perfor-

mance of IP networks. The major premise is that overlay routing can bypass congestion,

transient outages, or suboptimal paths, by forwarding traffic through one or more interme-

diate overlay nodes. In this chapter, we perform an extensive simulation study the perfor-

mance of dynamic overlay routing and investigate the applicability of available bandwidth

(avail-bw) estimation in dynamic overlay routing.

In particular, we leverage recent work on avail-bw estimation, and focus on overlay

routing that selects paths based on avail-bw measurements between adjacent overlay nodes.

First, we compare two overlay routing algorithms, reactive and proactive, with shortest-path

native routing. We show that reactive routing has significant benefits in terms of throughput

and path stability, while proactive routing is better in providing flows with a larger safety

margin (“headroom”), and propose a hybrid routing scheme that combines the best features

of the previous two algorithms. We then examine the effect of several factors, including

network load, traffic variability, link-state staleness, number of overlay hops, measurement

errors, and native sharing effects. Some of our results are rather surprising. For instance,

we show that a significant measurement error, even up to 100% of the actual avail-bw value,

has a negligible impact on the efficiency of overlay routing.

3.1 Dynamic overlay routing

3.1.1 Overlay routing model

We consider two layers of network infrastructure: the native network and a virtual over-

lay network. The native network includes end-systems, routers, links, and the associated

routing functionality, and it provides best-effort datagram delivery between its nodes. The
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overlay network is formed by a subset of the native layer nodes (routers and/or end-systems)

interconnected through overlay links to provide enhanced services. Overlay links are vir-

tual in the sense that they are IP tunnels over the native network, i.e., overlay packets

are encapsulated in IP datagrams and sent from one overlay node to another through the

native network. Figure 5 shows an example of an overlay network constructed over a native

network. Note that since overlay links are virtual, the overlay network topology can be a

full mesh allowing maximum flexibility in choosing overlay routes.1
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Figure 5: Overlay and native network layers.

An important service that overlay networks provide is dynamic path selection based on

specified performance objectives. The performance of a path can be a function of the delay,

loss rate, and/or avail-bw in the path, among other metrics. Additionally, different traffic

classes can be associated with a different path performance metric. An overlay flow arrives

at an ingress node, destined to a certain egress node. Upon the flow’s arrival, the ingress

node determines the best overlay path to the egress node based, ideally, on the current state

and performance of the overlay links (referred to as overlay link-state). The chosen overlay

path information is then included in the header of each packet (source routing), and the

packet is forwarded to the corresponding sequence of overlay nodes. To provide resilience

1Overlay networks with hundreds of nodes may require a sparser connectivity, or some form of hierarchical
routing, to deal with scalability problems in the link-state measurement and dissemination process.
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to network failures and load variations, the ingress node of an active overlay flow checks for

a better path at the end of every path update period Pu, during the lifetime of the flow. If

a better path is found, the flow can be switched to that path. The previous path update

events and the corresponding time scales are illustrated in Figure 6.
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Figure 6: Overlay flow events and the related time scales. A, U and D are the flow arrival,
path update, and flow departure events, respectively. d is the flow duration and Pu is the
path update period.

To perform dynamic path selection, the overlay nodes need to perform link-state mea-

surement and link-state dissemination. The overlay link-state is the input to the overlay

routing algorithm. The state of an overlay link can be represented by a collection of per-

formance metrics, such as delay, loss rate, availability, or capacity. In this work, we focus

exclusively on avail-bw, leveraging recent advances in relate [8, 34, 38, 67, 78]. Of course it

is possible to further limit the path selection algorithms with additional constraints on the

path delay or loss rate, for example.

The avail-bw, also known as residual capacity, of a native link is defined as the capacity

of the link minus its average traffic load. The avail-bw of an overlay link (or native path), on

the other hand, is the minimum avail-bw among all native links that comprise that overlay

link (or native path). Unlike the avail-bw of a native link, which can be easily measured

passively by the corresponding router, the avail-bw of overlay links cannot be estimated

passively by overlay nodes. Instead, the avail-bw of an overlay link has to be measured

through active end-to-end probing techniques performed by the overlay nodes. Recent

developments in end-to-end avail-bw estimation provided us with tools and techniques that

can estimate the avail-bw of a network path. These techniques are based on special probing

packet streams that can identify in a non-intrusive way the maximum rate that will not

cause congestion in a path. The latency of the existing measurement techniques varies
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from a few tens of milliseconds to tens of seconds, depending on whether the tools run

continuously in the background or whether they run in a “measure-once-and-terminate”

mode. Their accuracy depends on the traffic burstiness and the number of bottleneck links

in the path, and relative measurement errors in the range of 10-30% should be expected [38].

Each overlay node measures the avail-bw of the paths to its adjacent overlay nodes.

Periodically, the link-state information that is generated from these measurements is dis-

seminated to all other overlay nodes. The link-state database of an overlay node is refreshed

upon receiving new link-state information. Note that the link-state measurement and dis-

semination are performed independent of any flow-related events. There are three important

time scales involved in the avail-bw measurement and dissemination process: the measure-

ment delay (Dm), the link-state refresh period (Pr) and the dissemination delay (Dd). The

measurement delay Dm is the time needed to generate a new avail-bw estimate. The link-

state refresh period Pr (or simply, refresh period) is the time interval between consecutive

updates of the local avail-bw link state. Note that Pr cannot be less than Dm, but it could

be larger to reduce the link-state dissemination overhead. The end of a link-state refresh

interval is determined by the end of the last measurement period. The dissemination delay

Dij
d refers to the time needed for the new link-state generated by the i’th overlay node to

reach the j’th overlay node. We assume that Dm and Pr are constant, while Dij
d varies

randomly for each pair (i, j) of overlay nodes. The overlay link-state measurement and

dissemination events and time scales are shown in Figure 7.
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Figure 7: Time scales for the measurement and dissemination of overlay link-state at the
i’th overlay node. M i represents the start of an avail-bw measurement for all the egress
overlay links of the i’th overlay node. Ri is a link-state refresh event, and it takes place at
the end of the last avail-bw measurement. Ri,j

a represents the arrival of the new link-state
from overlay node i to node j.
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3.1.2 Overlay routing algorithms

We model the overlay topology as a directed graph G = (V,L) whose vertices and links

represent the set of overlay nodes and overlay links, respectively. The avail-bw of each

overlay link l = (u, v) ∈ L is denoted by b(l). An overlay path p is a sequence of one or

more overlay links and its avail-bw b(p) is defined as b(p) = minl∈p b(l).

We use the overlay flow as the basic traffic unit for overlay routing, meaning that all

packets of a flow are sent via the same path determined for that flow. Each overlay flow is

modeled by four parameters f = (vi, ve, d, r); vi, ve ∈ V are the ingress and egress overlay

nodes of the flow, and d is the flow duration. The last parameter r is the flow’s maximum

throughput limit (max-rate limit), and it represents the maximum throughput that the flow

can achieve. For instance, the throughput of a flow may be limited by its ingress or egress

access capacity, the throughput of a streaming flow may be limited by the rate of the best-

quality encoder, and the throughput of a TCP flow may be limited by the size of end-host

socket buffers. Due to limited network resources, a flow’s actual throughput can be lower

than its max-rate-limit r. We therefore use the symbol a to represent the current value of

the achieved throughput of a flow (a ≤ r).

When we compare the path that a flow is currently routed on with another path we

need to take into account the load that the flow already imposes on the former. To do so,

we introduce another metric referred to as headroom. For a flow f , the headroom h(f, l) at

an overlay link l is defined as

h(f, l) =

 b(l) + a if f is routed on l

b(l) otherwise
(1)

Similar to avail-bw, the headroom of a path can be defined as the minimum headroom

among all links along that path, i.e., for an overlay path p,

h(f, p) = min
l∈p

h(f, l) (2)

Note that the headroom h(f, p) of path p is equal to the avail-bw b(p) if flow f is not routed

on p; otherwise, the headroom is larger than the avail-bw by the flow’s achieved throughput

a.
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In this work, we first consider two overlay path selection schemes: proactive overlay

routing and reactive overlay routing. In both schemes, a flow will be initially routed on

the path that provides the maximum headroom. With the proactive algorithm, the flow

is switched to the path that appears to have the maximum headroom at the end of each

path update period (see Figure 2). Note that due to potential staleness in the link-state

information, that path may not actually be the best choice. With the reactive algorithm,

on the other hand, the flow stays at its current path if it has achieved its max-rate limit r

(“satisfied flow”). Otherwise, the flow is “unsatisfied” and it is routed on the path with the

maximum headroom; that path may be the same with the previously used path.

The intuition behind proactive routing is that the maximum headroom path can provide

a flow with a wider safety margin to avoid transient congestion due to traffic load variations,

measurement errors, and stale link-state. The intuition behind reactive routing is that a

flow should stay at its current path if it is already satisfied, leading to fewer path changes

and more stable overlay routing.

The path selection algorithm for the proactive and reactive schemes is based on the

shortest-widest routing algorithm of [86]. The pseudo-code for both reactive and proactive

overlay routing is given in Algorithm 1. Even though the algorithmic difference between

the two routing schemes is minor, Section 4 shows that it can result in very different

performance.

Algorithm 1 Proactive overlay routing
INPUTS:

f = (vi, ve, d, r): overlay flow under consideration;
P = {pi}: set of alternative paths from vi to ve;
a: achieved throughput of f (zero for new flow);

OUTPUTS:
Selected path p′;

if ((Proactive-Routing) OR (Reactive-Routing AND a < r)) then
Update headroom h(f, p) for all p ∈ P ;
p′ = argmaxpi∈P h(f, pi);
Route f on path p′;

end if
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3.2 Simulation model and performance metrics

3.2.1 Simulation model

We have implemented a flow-level discrete-event simulator for dynamic overlay routing.

The native network topology is based on the core US topology of four large ISPs (Sprint,

ATT, Level3 and Verio), estimated from the measurements of the Rocketfuel project [77]

(see Figure 8). These four ISPs are tier-1 providers and so they are interconnected in a full

mesh, with three inter-ISP connections per ISP pair. The inter-ISP links connect routers

that are located in the same city. We assume that the native-layer routes are based on the

shortest path algorithm, and that they do not change with time (at least for the time scales

of overlay routing that we are interested in).

The overlay network consists of 18 overlay nodes located in major US cities. Each overlay

node is connected with an overlay access link to one of the four ISPs at the corresponding

router that is located in the same city. The overlay nodes are interconnected in a full-mesh

topology.

There are three types of native links: intra-ISP links, inter-ISP links and overlay access

links. In our simulation, the capacity of these three link types is uniformly distributed

in the range of [500, 1500], [400, 600] and [8000, 12000], respectively. Note that the most

likely bottlenecks are the inter-ISP links, while the overlay access links are the least likely

bottlenecks.

Overlay flows are generated according to a Poisson process with average arrival rate Fa.2

The flow duration is exponentially distributed with mean Fd. The selection of the source

and destination nodes for the overlay flows follows a randomly generated (non-uniform)

traffic matrix. The flow max-rate limit follows an exponential distribution with mean Fr.

The simulator does not capture bandwidth sharing in saturated links or congestion control

by overlay flows. Consequently, if a new flow arrives at a saturated link, then the new flow

will obtain zero throughput while the existing flows will maintain their previous throughput.

The subtle interactions between congestion control and dynamic overlay routing are outside

2The Poisson flow arrival model is reasonable, as long as there are no correlations on bursts in the overlay
flow arrival process. The Poisson model has been previously validated for application session arrivals [55].
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 Figure 8: A sketch of the native network topology (also showing the location of the overlay
nodes).

the scope of this work.

We also simulate some non-overlay traffic, referred to as cross traffic. The cross traffic

causes random load fluctuations in the native network. Specifically, the cross traffic at

each native link is modeled as a fluid process with variable rate. The rate change events

take place based on a Poisson process, independent of the rate changes at other links. The

average time period between rate variations is Fc. The rate of the cross traffic after a rate

change event is chosen randomly as min(b, x · C), where b is the avail-bw of the link, x is

uniformly distributed in [0, 1], and C is the link capacity. Since the cross traffic rate is at

most b, this traffic can cause load variations but not congestion.

Table 1 shows the set of important parameters and their default values in our simulation

study.

Each simulation result is obtained by running the simulator until 30,000 overlay flows

have been serviced. Furthermore, to avoid the effect of transient simulation effects, we start

to collect data after the first 10,000 overlay flows.
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Table 1: Major simulation parameters and their default values
Overlay flow and cross traffic parameters

Flow arrival rate Fa 10.0 flows/sec (average)
Flow duration Fd 50sec (average)
Max-rate limit Fr 20Mbps (average)
Cross traffic rate change period Fc 20sec (average)

Native network parameters
Number of native nodes 275
Number of native links 1164
Intra-ISP link capacity [500, 1500]Mbps
Inter-ISP link capacity [400, 600]Mbps
Overlay access link capacity [8000, 12000]Mbps

Overlay routing parameters
Link-state measurement delay Dm 0.1sec
Link-state refresh period Pr 0.5sec
Link-state dissemination delay Dd [0, 0.2]sec
Path update period Pu 1.0sec

3.2.2 Performance metrics

We evaluate overlay routing based on three important aspects: efficiency, stability, and

safety margin. Efficiency refers to the ability of overlay routing to achieve higher throughput

than native routing, by avoiding saturated links. Stability refers to the frequency with which

overlay flows switch between different paths. The safety margin represents the robustness

of overlay routing in the presence of cross traffic fluctuations, measurement errors, and stale

link-state information.

Specifically, to quantify the efficiency of a routing scheme we use the normalized average

throughput T . This is defined as the total amount of data sent by completed overlay flows,

normalized by the amount of data that would have been sent if each of these flows had

achieved its max-rate limit,

T =
∑k

i=1

∫
ai(t)dt∑k

i=1 ri · di

≤ 1 (3)

where k is the number of completed flows, ai and ri are the achieved throughput and the

max-rate limit of the i’th flow, respectively, and di is the duration of the i’th flow. Notice

that, given the limited network capacity resources, it may be infeasible to have T=100%

for a given overlay load. Consequently, under the same offered load, a higher value of T

reflects a more efficient overlay routing scheme.
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To quantify the stability of a routing scheme we use the path switching ratio S. Suppose

that an overlay flow i experienced ui path update events during its lifetime, and that ci

among these updates were path changes. The ratio ci
ui
∈ [0, 1] reflects the relative frequency

with which flow i switched between paths: if it is one the flow switched paths with every

path update, while if it is zero the flow never switched paths. The path switching ratio S is

the weighted average of the previous ratio across all completed overlay flows, with weights

proportional to the flow durations,

S =
k∑

i=1

(
ui∑k

j=1 uj

· ci

ui
) =

∑k
i=1 ci∑k
i=1 ui

(4)

A higher value of S indicates that flows switch paths more frequently and so the network

is less stable.

To quantify the safety margin of a routing scheme we use the normalized average head-

room H. As we did for normalized throughput, we normalize the headroom of each flow by

its max-rate limit. Instead of measuring the headroom of a flow as a continuous function

of time however, we use Poisson sampling to estimate the time-average of the normalized

per-flow headroom. Consider the j’th overlay flow at a sampling instant i, and let hij and

rij be the headroom and max-rate limit of that flow, respectively. The flow’s relative head-

room is hij/rij . The weighted average of the relative headroom of all active flows at the

i’th sampling instant, weighted by the max-rate limit of each flow, is

Hi =
∑

j

rij∑
j′ rij′

· hij

rij
=

∑
j hij∑
j rij

Taking the corresponding weighted average across all sampling instants i, we get that the

normalized average headroom is

H =
∑

i

∑
j rij∑

i′
∑

j′ ri′j′
·Hi =

∑
i

∑
j hij∑

i

∑
j rij

(5)

Note that H, as opposed to T , can be larger than 100%. In the simulations of Section 4,

the average sampling period for the calculation of H is 0.5 seconds.

3.3 Simulation study

In this section, we first evaluate and compare the efficiency, stability, and safety margin

of proactive and reactive overlay routing under various network conditions. Based on the
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results of this comparison, we propose a hybrid algorithm that combines the best features of

reactive and proactive routing. Finally, we examine the effect of several important factors

on the performance of the hybrid algorithm.

3.3.1 Maximum overlay hop count

A major advantage of overlay routing is its ability to utilize several alternate paths instead

of the single path that is provided by IP routing. The number of such alternate paths

increases with the number of overlay nodes an end-to-end path can traverse. We refer to

the overlay hop count as the number of hops (or overlay links) that an end-to-end path

traverses. In practice, the overlay hop count would be bounded by a maximum value Hmax.

The practical necessity for this limit is related to source routing: the intermediate overlay

nodes need to be encoded in the header of each packet, and there is a limited number of

bits for doing so. Hmax=1 means that the overlay path is the same with the native-layer

path, while Hmax=2 means that the overlay path can traverse at most one intermediate

overlay node.

In this simulation, we increase the maximum overlay hop count Hmax from 1 to 13, and

compare the performance of reactive and proactive overlay routing. The performance of

native routing is also shown, as Hmax = 1. Figure 9(a) shows that the average throughput T

of reactive routing improves significantly when we increase Hmax from one to two hops. The

increase for larger values of Hmax is negligible, meaning that longer overlay paths are rarely

needed to avoid congestion. This shows that using a single intermediate overlay node with

reactive routing is sufficient to obtain most throughput gain compared to native routing,

and that this gain can be substantial. On the other hand, proactive routing performs worse

as we increase Hmax. One reason for this behavior is shown in Figure 9(d), which shows

the average native hop count as a function of Hmax.3 As we would expect, the chosen paths

in the native network tend to be longer as we increase Hmax. Also, the paths used by

proactive routing are significantly longer than the paths used by reactive routing, because

the former always attempts to choose the path with the maximum headroom. As a result,

3Another major reason is given in Section 4.2.
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Figure 9: Effect of maximum overlay hop count Hmax.

the proactive algorithm uses more network resources than the reactive algorithm, decreasing

the network’s avail-bw and causing a lower value of T .

In terms of stability, increasing Hmax causes the following two effects: 1) more alternate

paths are considered by each flow and so there is a higher frequency of path switching, and 2)

more native links are affected by the previous path changes, causing further variations in the

avail-bw distribution and triggering even more path switching. Indeed, as Figure 9(b) shows,

a higher value of Hmax causes more frequent path switching. Note that proactive routing

experiences significant instability, while reactive routing maintains a low path switching

ratio across the range of of Hmax.
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Although proactive routing performs worse than reactive in terms of efficiency and sta-

bility, it does have the advantage of providing overlay flows with a higher average headroom,

as shown in Figure 9(c). The increased headroom can act as a wider safety margin in the

presence of traffic fluctuations and measurement errors. Note that the maximum head-

room is obtained (by both algorithms) when Hmax=2; longer overlay paths can cause larger

consumption of network capacity.

The previous results show that with at most one intermediate overlay node, reactive

overlay routing can achieve significantly improved efficiency and headroom over native rout-

ing and maintain good stability. For proactive routing, limiting the maximum overlay hop

count to two is even more critical in terms of efficiency and stability. Consequently, in the

rest of this chapter we will set Hmax=2 for both algorithms. The practical implication of

this limit is that a single node identifier in the packet header would be enough to encode

the overlay route.

3.3.2 Link-state refresh period

Recall that the link-state refresh period Pr is the time length between successive updates

of the overlay avail-bw link-state. A higher value of Pr increases the staleness of overlay

routing information, but also decreases the link-state dissemination overhead.

Figure 10 shows the performance of proactive, reactive, and native routing as we vary

Pr from 100msec to 100sec. Note that Pr cannot be lower than the measurement delay Dm,

which is set to 100msec in our simulations. Even though Pr would not be more than a few

seconds in practice, we simulate a wider range for illustration purposes.

In terms of average throughput, Figure 10(a) shows that, as we would expect, the effi-

ciency of both reactive and proactive routing drops as Pr increases. Interestingly, however,

the reactive algorithm is much more robust to stale link-state than the proactive algorithm.

The former can achieve better throughput than native routing as long as Pr is less than

about 10 seconds, while the latter does worse than native routing if Pr exceeds 400msec.

The reason for this major difference between reactive and proactive routing is that the

latter relies much more heavily on avail-bw information, because it considers switching
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Figure 10: Effect of link-state refresh period Pr.

even the satisfied flows. Consequently, a higher value of Pr, with its increased link-state

staleness, causes a much more dramatic throughput loss for the proactive algorithm. The

corresponding throughput loss for the reactive algorithm is negligible when Pr is between

100ms-1000ms, which is probably a reasonable range for Pr in terms of dissemination over-

head.

In terms of stability, Figure 10(b) shows that the path switching ratio curves can be split

into two regions. S increases as Pr approaches one second, which is the flow update period

Pu. Then, for longer values of Pr, S decreases. The reason for this behavior is as follows.

As Pr increases from 100ms to 1sec, the link-state becomes increasingly more stale. This

increasing staleness means that a higher fraction of the path switching decisions were based
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on inaccurate information and they were incorrect (meaning that the flow did not move

to the maximum headroom path or it did not avoid congestion). Consequently, further

path switching is then required to correct the previous routing decisions. On the other

hand, when Pr becomes larger than Pu (one second) the link-state information changes

less often than the frequency with which overlay flows examine whether to switch paths.

Consequently, many of the path update events see the same link-state information, and

so the corresponding flows decide that they should stay at the same path. This tends to

decrease the metric S as Pr increases.

3.3.3 Hybrid routing and probability of proactive switching

The previous simulation results showed that the proactive algorithm performs worse than

the reactive algorithm in terms of throughput and stability. Furthermore, those results

showed two major reasons for the difference between the two algorithms: first, proactive

routing tends to use longer native paths and thus consumes more network resources (es-

pecially when Hmax > 2), and second, proactive routing is much more sensitive to stale

link-state information. On the other hand, proactive routing performs better than reactive

in terms of average headroom (when Pr is less than Pu), providing overlay flows with a

wider safety margin.

Given the previous trade-off, we propose a simple heuristic that combines the previous

two algorithms in a probabilistic manner. We refer to this algorithm as hybrid routing. At

each path update event, the hybrid algorithm performs proactive path switching with a

probability pp (referred to as probability of proactive switching); otherwise, the algorithm

performs reactive path switching. The intuition behind this algorithm is to maintain the

good throughput and stability properties of reactive routing (i.e., to use a low pp), but at

the same time to occasionally switch the flow at a path with higher headroom, even if it is

satisfied, in order to improve its safety margin.

Figure 11 shows the performance of hybrid routing for different values of pp. The three

curves in each graph represent cases of low (Fa=3.0), medium (Fa=9.0), and high (Fa=15.0)

overlay traffic load. Note that pp=0 corresponds to reactive routing and pp=1 corresponds
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Figure 11: Effect of probability of proactive switching pp.

to proactive routing. In terms of efficiency, pp=0.1 is almost as good as pure reactive

routing. In terms of stability, the smaller pp the lower S will be. The difference between

pp=0.1 and pp=1 is substantial, however, and so the former value gives a major stability

gain compared to proactive routing. In terms of headroom, on the other hand, the choice

of pp makes a significant difference only in low load conditions; in heavy load conditions

the headroom is quite limited even with the proactive algorithm. In low load conditions,

pp=0.1 gives us most of the headroom gain of proactive routing.

To summarize, the simulation results indicate that the probability of proactive switching

pp can be close to 10%, resulting in almost the same efficiency and stability with the reactive

algorithm, but also increased headroom especially in lower load conditions. In the rest of
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this chapter, we set pp=0.1.

3.3.4 Traffic load and flow arrival rate

The overlay traffic load is determined by the flow arrival rate, flow duration and max-

rate limit. Increasing one of these parameters while keeping the others fixed increases the

offered traffic load. In this experiment, we vary the flow arrival rate Fa and compare the

performance of proactive, reactive, and hybrid overlay routing, as well as native shortest-

path routing, under increasing load. These simulations provide further evidence that the

hybrid algorithm combines the best features of reactive and proactive routing.
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Figure 12: Effect of overlay traffic load Fa.

Figure 12(a) shows the normalized throughput for the four routing algorithms. Under

very light load, where native links are rarely saturated, both native routing and overlay
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routing satisfy almost all flows. In higher loads, reactive routing manages to avoid saturated

paths, as long as there is at least one non-congested path. Under heavy-load conditions, it

still performs much better than native routing. The hybrid algorithm offers essentially the

same throughput as reactive routing. Proactive routing, on the other hand, performs even

worse than native routing, mostly due to its high sensitivity on stale link-state information.

In terms of stability, Figure 12(b) shows that the path switching ratio of reactive routing

remains almost zero at low traffic loads and increases slowly as more flows become unsatisfied

in heavy loads. Proactive routing, on the other hand, introduces significant instability, with

about 70% of the flow update events causing path switching, even before the network

becomes congested. The path switching ratio with hybrid routing is slightly higher than

with reactive routing, but still much lower than proactive routing.

In terms of average headroom, Figure 12(c) shows that proactive routing achieves con-

sistently higher average headroom than both reactive routing and native routing. The

hybrid algorithm provides almost the same headroom with proactive routing in lower load

conditions, when there is still significant headroom.

3.3.5 Effect of traffic variability

The performance of overlay routing depends on the variability of the underlying traffic,

because the best path for the next update period is predicted based on the load of each

path at the end of the last update period. Under the same aggregate load, we would expect

that higher traffic variability will lead to worse overlay routing performance in terms of all

three performance metrics. In this section, we examine two factors that affect the variability

of the underlying traffic: the overlay flow duration Fd and the cross traffic variation period

Fc.

Let us first focus on the average overlay flow duration Fd. In this simulation, we increase

Fd from 1 to 20 seconds and reduce the flow arrival rate Fa proportionally so that the

aggregate offered load remains constant. We also remove the non-overlay cross traffic, so

that we focus exclusively on the variability introduced by overlay traffic. Figure 13(a) shows

the throughput of hybrid routing under two refreshing periods: Pr=0.5sec and Pr=5.0sec;
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the latter represents a rather extreme case of stale link-state. For reference, we also show

the results with native shortest-path routing.
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Figure 13: Effect of overlay flow duration Fd.

Since the offered load remains constant, the native routing can achieve the same through-

put independent of the flow duration. In contrast, the throughput of hybrid routing in-

creases with Fd. For short flows, more flow arrival/departure events take place within each

measurement period, making the overlay traffic more variable and causing greater staleness

in the link-state routing information. As flows become longer, the throughput increases be-

cause the resulting traffic variability decreases, and so even outdated link-state information

is reasonably accurate. To further illustrate this point, Figure 13(b) shows the cumulative

distribution functions (CDF) of the avail-bw variations across successive 0.5 second intervals

for three different flow durations. Notice that shorter flows cause more significant traffic

variability than longer flows.

Another observation from Figure 13(a) is that when the flow duration decreases, hybrid

overlay routing needs a shorter refresh period Pr to maintain the same throughput. More

generally, a shorter refresh period is required when the traffic variability increases. In

selecting Pr, the objective should be that the refresh period is short enough so that the avail-

bw does not change significantly during successive link-state updates. Similar observations

hold for the path switching ratio and the average headroom (not shown here).

Let us now focus on the variability of the non-overlay cross traffic. As mentioned in
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Section 3, the cross traffic has an average rate variation period Fc=20sec. In this simulation

experiment, we vary Fc from 0.01sec to 100sec. Obviously a higher value of Fc would

make the cross traffic less variable. Figure 14 shows the average throughput with hybrid
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Figure 14: Effect of cross traffic rate variation period Fc.

overlay routing under three load conditions. Note that the average throughput is not so

sensitive to Fc, as long as the latter is larger than the flow update period Pu (one second).

This is because when Pu < Fc, the avail-bw of overlay paths does not change significantly

between successive path update events. With more frequent cross traffic variations, there is

a reduction in the average throughput. The reduction is not major with the hybrid (or the

reactive) algorithm however, because the latter is quite robust to stale link-state. Similar

observations hold for the path switching ratio and the average headroom (not shown here).

3.3.6 Measurement errors

The literature on avail-bw measurement techniques reports estimation errors that vary from

±10% to ±30% [8, 34, 38, 67, 78]. It seems unlikely at this point that these measurement

techniques can be improved so dramatically that the estimation error will become almost

zero. Since the overlay routing algorithms that we study rely on avail-bw estimation, we

need to examine the effect of avail-bw measurement errors on the performance of overlay

routing.

Let us denote the real avail-bw value at an overlay link by v, the measured value by m,
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and the error factor by e ∈ [0, 1]. We consider the following three error models:

Relative error: The measurement m is symmetrically and uniformly distributed in a range

around v, with the error being proportional to v. That is, m ∈ [(1− e) · v, (1 + e) · v]

Absolute error: The measurement m is symmetrically and uniformly distributed in a

range around v, with the error being proportional to the overlay link capacity C.

That is, m ∈ [max(0, v − e · C), v + e · C].

Random estimate: The measurement m varies randomly anywhere between zero and the

overlay link capacity C. C represents here an upper bound on the avail-bw of that link.

In other words, instead of actually measuring avail-bw, the routing algorithms use a

random estimate of the avail-bw in each overlay link, limited by the corresponding

link capacity.

We note that the avail-bw estimation literature reports that the measurement errors typi-

cally follow the relative error model. The reason we examine the absolute error and random

estimate models is to show that different error models can affect overlay routing in very

different ways.

Figure 15(a) compares the throughput of hybrid overlay routing with no error, 100%

relative error (e = 1), 100% absolute error, and random estimate. Surprisingly, we observe

that relative avail-bw estimation errors, even up to 100%, have very small impact on the

performance of overlay routing. On the other hand, absolute errors or random estimates

cause a significant drop in the resulting average throughput. Similar trends appear in the

stability and headroom results (see Figures 15(b) and 15(c)).

What is the reason that even large relative errors have no significant impact on the

efficiency of overlay routing? The answer is actually simple if we consider that overlay

routing decisions do not depend on the actual (absolute) avail-bw, but on the ranking of

different paths in terms of avail-bw. After analyzing several simulations, we found that an

overlay flow can be found in one of two main conditions. First, one of the paths that the

flow can choose from has significantly higher avail-bw than the rest. Second, several of the

paths that the flow can choose from have similar avail-bw. In the former, a relative error
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Figure 15: Effect of measurement error.

would affect all candidate paths, but the path with the maximum avail-bw would still be

reported as the best with high probability. For example, if two paths have avail-bw 1000

and 100, a relative error of ±100% would result in a uniformly distributed value within

[0,2000] and [0,200], respectively; the probability that the first path would be reported as

better than the second is 95%. In the latter, the measurement error can affect the selection

of the best path, but because the flow chooses among paths with similar avail-bw values

the path selection does not matter significantly. Note that the previous reasoning would

not hold true in the case of absolute errors or random estimate.

In summary, the previous experiments showed that relative errors in the avail-bw estima-

tion process (which are common and probably unavoidable) will not have significant impact
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on the performance of hybrid and reactive overlay routing. This implies that even relatively

simple measurement techniques, which produce a “ballpark” estimate of the avail-bw, may

be useful in overlay routing applications.

3.3.7 Native layer link sharing

Two overlay links (or paths) may share one or more native links. Such “native sharing”

effects may not be visible to the overlay network, which typically has information only for

the overlay links and their avail-bw. Furthermore, as will be shown next, native sharing

can cause errors in the selection of the maximum headroom path.

To see the effect of native sharing on overlay routing, we compare the following two

different models, in terms of the amount of knowledge the overlay network has about the

native network:

• No-information: The overlay network has absolutely no knowledge about the native

topology or about the avail-bw of native links. This implies that when native sharing

occurs, the overlay nodes may judge incorrectly which path provides the maximum

headroom. On the other hand, this mode of operation would be the simplest to im-

plement, as it does not require any sophisticated probing techniques for the detection

of native sharing.

• Complete-information: This is an ideal case, in which the overlay nodes have accurate

information about both the native layer topology and the avail-bw of each native link.

This information would enable an overlay node to correctly determine the maximum

headroom path even when native sharing takes place. Note that, at least so far, there

are no measurement techniques that can estimate the avail-bw of each native link in

a network path.

Figure 16 shows the performance of hybrid overlay routing, as a function of the offered

load, with the previous two modes of operation. Perhaps surprisingly, notice that the “no-

information” mode performs almost identically to the “complete-information” mode. This

means that overlay routing can be equally effective even if it ignores the subtle effects of

native sharing. What is the reason for this counter-intuitive effect?
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Figure 16: Hybrid routing performance with and without information about the native
network.
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Figure 17: Native sharing between two overlay paths.
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To explain, we will use the following model. Suppose that we have two overlay paths

p1 and p2, as shown in Figure 17(a). The flow under consideration f is currently routed on

p1, and its throughput is a. The avail-bw in the two paths is b1 and b2, respectively.

Ignoring any potential native sharing (“no-information” model), the overlay routing

algorithm will estimate the headroom of the two paths as follows:

h′(f, p1) = b1 + a h′(f, p2) = b2

In the “complete-information” model, the headroom of the two paths will be denoted by

h′′(f, p1) and h′′(f, p2), respectively. Based on the type of native sharing between p1 and

p2, we have the following three cases:

1. The paths p1 and p2 do not share any native link: In this case, h′′(f, p1) = b1 + a,

and h′′(f, p2) = b2. Therefore, the complete-information model provides the same

headroom estimates as the no-information model, and so there is no difference in the

performance of overlay routing between the two models.

2. The paths p1 and p2 share a native link x, but x is not the bottleneck of p2, i.e., the

avail-bw in p2 is limited by a native link y and it is not affected by flow f . In this

case, we still have that h′′(f, p1) = b1 + a, and h′′(f, p2) = b2. Again, the two native

information models would lead to the same routing decision.

3. The paths p1 and p2 share a native link x, and x is the bottleneck of path p2 (shown

in Figure 17(b)). This case can be further analyzed as two different sub-cases.

(a) x is also the bottleneck of p1. Then, h′′(f, p1) = bx+a and h′′(f, p2) = min(by, bx+

a), where y is the native link with the second lowest available bandwidth along

path p2, and bx and by is the avail-bw in links x and y respectively. Therefore,

h′′(f, p1) ≥ h′′(f, p2). In this case, the complete-information model would report

that the maximum headroom path is p1. Notice however that this is also what the

no-information model would report, because h′(f, p1) = bx + a > h′(f, p2) = bx.

Therefore, the overlay routing algorithm would choose the same path with both

native information models.
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(b) x is not the bottleneck of p1. Then, h′′(f, p1) = bz+a and h′′(f, p2) = min(by, bx+

a), where z is the bottleneck of p1. In the no-information model, the headroom

of each path would be estimated as: h′(f, p1) = bz + a and h′(f, p2) = bx. In

this case, it is easy to verify that the no-information and complete-information

models would disagree in their path selection only if the following inequality

holds:

by > bz + a > bx > bz (6)

In this case, the complete-information model would cause a path change, while

the no-information model would not.

The previous analysis shows that a naive overlay routing algorithm that ignores any native

sharing effects would incorrectly choose the current path over another path with larger

avail-bw only in a very specific scenario of native sharing. In that scenario, the two paths

share at least one link x which is the bottleneck of p2 but not of p1, and the avail-bw of

the three involved links x, y, and z satisfy (6). Apparently, this scenario does not happen

often in our simulations, which explains why the simulation results for the no-information

and complete-information models are so close. Note that the slightly higher path switching

ratio of the complete-information model in in Figure 16(b) is due to the few cases which

(6) is true.

In summary, native sharing effects can affect, in principle, the performance of overlay

routing. Fortunately, however, an overlay routing algorithm that ignores native sharing

would rarely choose a different path even if it had complete information about the native

topology and the avail-bw of each native link.

3.4 Summary

This chapter presented a simulation study of dynamic overlay routing. Given that most

previous work focused on delay-driven path selection, we focused instead on avail-bw based

overlay routing algorithms leveraging the recently developed measurements techniques for

end-to-end avail-bw. We considered two main approaches on overlay routing, proactive and
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reactive, as well as a number of factors that can affect the performance of these routing

algorithms.

The main conclusions of this study follow:

• Reactive overlay routing performs better in terms of efficiency than native or proactive

overlay routing. The efficiency gain compared to native routing can be substantial,

especially if the network is not very lightly loaded. Also, reactive routing is much

much stable than proactive routing.

• Proactive overlay routing performs better in terms of headroom (safety margin) than

native and reactive overlay routing.

• A single intermediate overlay node is sufficient for reactive routing to achieve its

throughput and headroom gain over native routing. For proactive routing, limiting

the maximum overlay hop count Hmax to two is even more critical in terms of efficiency

and stability.

• The reactive algorithm is quite robust to stale link-state information, and it performs

better than native routing even when the link-state refresh period Pr is a few seconds.

The proactive algorithm, on the other hand, is very sensitive to link-state staleness,

and Pr should be as short as possible.

• A hybrid algorithm that acts reactively in about 90% of the time and proactively in

about 10% of the time, can achieve a good compromise between high throughput,

stability and safety margin, combining the best features of reactive and proactive

routing.

• Overlay routing performs better with longer overlay flows, because the latter create

lower traffic variability. Cross traffic variations can also decrease the performance of

overlay routing, especially when these variations are significant in lower time scales

than the path update period Pu.

• Relative errors in the avail-bw estimation process (which are common and probably
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unavoidable) will have negligible impact on the efficiency of hybrid overlay routing.

Absolute or random errors, on the other hand, can have a significant impact.

• Even though native sharing effects can affect the performance of hybrid overlay rout-

ing, ignoring native sharing performs almost equally well with having complete infor-

mation about the native network.
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CHAPTER IV

VIRTUAL NETWORK ASSIGNMENT

Recent proposals for network virtualization provide a promising way to overcome the In-

ternet ossification. The key idea of network virtualization is to build a diversified Internet

to support a variety of network services and architectures through a shared substrate. A

major challenge in network virtualization is to assign substrate resources to virtual networks

(VN) efficiently and on-demand. This chapter focuses on two versions of the VN assign-

ment problem: VN assignment without reconfiguration (VNA-I ) and VN assignment with

reconfiguration (VNA-II ). For the VNA-I problem, we develop a basic scheme as a building

block for all other advanced algorithms. Subdividing heuristics and adaptive optimization

strategies are then presented to further improve the performance. For the VNA-II problem,

we develop a selective VN reconfiguration scheme that prioritizes the reconfiguration of

the most critical VNs. Extensive simulation experiments demonstrate that the proposed

algorithms can achieve good performance under a wide range of network conditions.

4.1 Network virtualization

Network virtualization provides a promising way to address the ossification of the Inter-

net [57]. In such an approach, a substrate network provider (SNP) provides a common

substrate to support a number of diversified virtual networks (DVN). These DVNs, imple-

mented by virtual routers connected through virtual links, in turn would provide a range

of different communication services to applications, using a variety of protocols (shown in

Figure 18). In doing so, the burdens of providing an “everything-to-everybody” network

architecture or requiring universal agreements on architecture and protocol changes are re-

leased. Furthermore, the diversified Internet would make it possible for an individual or

organization to rapidly deploy a DVN with potentially global scope, without making any

direct investment in physical infrastructure [84].
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Figure 18: Network virtualization: Building a diversified Internet

One of the fundamental functions of network virtualization is the vna mapping or assign-

ing of substrate network resources to individual virtual nodes and links. Specifically, each

virtual node is assigned to a substrate node and each virtual link is assigned to a substrate

path that connects the corresponding end nodes. In our envisioned scenario, DVN demands

would arrive at different time instances and request to set up virtual networks (VNs) with

different topologies and lifetimes. Allowing VNs to be assigned to the substrate network

efficiently and on-demand is desirable for the following reasons:

• Increasing efficiency in the substrate resource utilization would allow the substrate

network to accommodate more VNs with limited resources and reduce hot spots or

congestion.

• On-demand assignment means that the assignment for each VN is determined based

on the current network situation as the demand arrives. Given that DVN demands

can arrive at any moment and the SNP would not have information regarding future

arrivals, it is important for the SNP to be able to make the assignment decision in

response to each individual demand as they arrive.

In this work, we are motivated by the above considerations to study the following on-

demand VN assignment problem: Upon the arrival of a VN request, assign its topology to
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the substrate network to achieve low and balanced load on both substrate nodes and links.

A special case of this problem can be formulated as an unsplittable flow problem which is

NP-hard. Therefore, the VN assignment problem is intrinsically difficult and heuristics will

be used to solve the problem.

This chapter focuses on the algorithm design for two versions of the VN assignment

problem: VN assignment without reconfiguration (VNA-I ) and VN assignment with recon-

figuration (VNA-II ). For the VNA-I problem, where the VN assignment is fixed through-

out the VN lifetime, we develop a basic scheme to achieve near optimal substrate node

performance and use it as a building block for all other advanced algorithms. Subdividing

heuristics and adaptive optimization strategies are then presented to further improve the

performance. For the VNA-II problem, we develop a selective VN reconfiguration scheme

that prioritizes the reconfiguration for the most critical VNs. In doing so, we can achieve

most performance benefits of the reconfiguration without excessively high cost.

4.2 Network Model and Problem Description

4.2.1 Network model

We model the topology of the substrate network as a graph GS = (VS , ES), where VS is

the set of substrate nodes and ES is the set of substrate links. The i’th VN arrives at time

ai and lasts for a certain lifetime. Its topology is modelled as a graph Gi
V = (V i

V , Ei
V ) with

the set of virtual nodes V i
V and the set of virtual links Ei

V respectively 1. The assignment

of the i’th VN includes following two components:

• Node assignment: Each virtual node is assigned to a different substrate node. It is

formalized as a mapping f i
N : V i

V → VS from virtual nodes to substrate nodes such

1More generally, a set of vna mapping constraints (such as the substrate capacity of the substrate
nodes/links, locations of access routers) may be attached to the VN assignment problem. In this the-
sis, we focus on the basic scenario, where there are no constraints attached. The solution of the basic
problem can be easily extended to the constrained version by checking the constraints and considering only
feasible assignments.
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that

f i
N (v̂) ∈ VS ,∀v̂ ∈ V i

V

f i
N (û) = f i

N (v̂), iff û = v̂

• Link assignment: Each virtual link is assigned to a substrate path between the corre-

sponding substrate nodes. It is formalized as a mapping f i
L : Ei

V → PS from virtual

links to substrate paths such that

f i
L(ûv̂) ∈ PS(f i

N (û), f i
N (v̂)),∀ûv̂ ∈ Ei

V

where PS is the set of all substrate paths, PS(s, t) is the set of substrate paths from

node s to node t. ûv̂ is the virtual link from virtual node û to v̂.

When a VN arrives, the substrate network determines the above assignments and allocates

resources on the selected substrate nodes and paths accordingly. The allocated substrate

resources are released when the VN departs. Furthermore, if an existing VN changes its

assignment, the substrate network will release previously allocated resources by the old

assignment and allocate new resources based on the new assignment.

To quantify the resource usage of the substrate network, we use the notion of stress.

The substrate node stress at time t, SN (t, v), is defined as the number of virtual nodes that

are assigned to the substrate node v ∈ VS . Similarly, the substrate link stress at time t,

SL(t, e), is defined as the number of virtual links whose substrate path passes through the

substrate link e ∈ ES . Therefore, the arrival, departure and reconfiguration of the i’th VN

determines the network state transition as follows:

• The i’th VN’s arrival:

SN (t, v) = SN (t−, v) + 1,∀v ∈ {f i
N (v̂)|v̂ ∈ V i

V }

SL(t, e) = SL(t−, e) + C(e),∀e ∈ {f i
L(ê)|ê ∈ Ei

V }

• The i’th VN’s departure:

SN (t, v) = SN (t−, v)− 1,∀v ∈ {f i
N (v̂)|v̂ ∈ V i

V }
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SL(t, e) = SL(t−, e)− C(e),∀e ∈ {f i
L(ê)|ê ∈ Ei

V }

• The i’th VN’s reconfiguration:

SN (t, v) = SN (t−, v)− 1,∀v ∈ {f i
N (v̂)|v̂ ∈ V i

V }

SN (t, v′) = SN (t−, v′) + 1,∀v′ ∈ {f̂ i
N (v̂)|v̂ ∈ V i

V }

SL(t, e) = SL(t−, e)− C(e),∀e ∈ {f i
L(ê)|ê ∈ Ei

V }

SL(t, e) = SL(t−, e′) + C(e′),∀e′ ∈ {f̂ i
L(ê)|ê ∈ Ei

V }

where t− and t are the time instances immediately before and after the arrival, departure

or reconfiguration event. C(e) is the number of times that the substrate link e appears in

all selected substrate paths for the i’th VN. (f i
N , f i

L) and (f̂ i
N , f̂ i

L) are the original and the

reconfigured assignments for the i’th VN respectively.

4.2.2 Virtual network assignment problem description

Given a substrate topology Gs with the current stress level on each substrate link and node,

upon the arrival of a VN request Gi
v, our goal is to assign substrate nodes and links to realize

the requested virtual topology (as shown in Figure 19).

There are various ways to map a VN to the substrate network. The key issue is how to

efficiently use substrate resources. Due to limitations on processing power, each substrate

node could only be virtualized into a certain number of virtual nodes. Therefore, main-

taining low stress across all substrate nodes is important for the efficient use of network

resources.

Maintaining low link stress is also important in both provisioned substrate links (i.e.,

substrate links with performance guarantees for its carried virtual links) and unprovisioned

substrate links (i.e., substrate links without performance guarantees). 1) For provisioned

links, there is a provisioned capacity that could be allocated to virtual links. Reducing

the stress will reduce the total bandwidth needed along that link. Furthermore, to provide

guaranteed performance, special efforts are needed to isolate different virtual links within the

same provisioned substrate link. Therefore, reducing the substrate link stress would reduce
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the above isolation efforts. 2) For unprovisioned links, reducing the stress will reduce the

effects of cross traffic interferences since less virtual links are sharing the substrate link.

Furthermore, having a balanced stress across the substrate network is essential to avoid

hot spots and reduce congestion. Therefore, the objective of the VN assignment problem is

to maintain low and balanced stress among all substrate links and substrate nodes.

To evaluate the stress balancing performance, we define the node stress ratio (RN ) as

the ratio of the maximum node stress and the average node stress across the whole substrate

network. Similarly, the link stress ratio (RL) is the ratio of the maximum link stress and

the average link stress, i.e.,

RN (t) =
max
v∈VS

SN (t, v)[ ∑
v∈VS

SN (t, v)
]
/|VS |

(7)

RL(t) =
max
e∈ES

SL(t, e)[ ∑
e∈ES

SL(t, e)
]
/|ES |

(8)

The stress ratio is a proper metric to evaluate the load balancing performance since a

smaller stress ratio indicates that the stress is more balanced. If the node (or link) stress

ratio is 1, the network achieves optimal load balancing since all substrate nodes (or links)

have the same stress.

Although the link stress ratio reflects the load balancing performance, it may not be

sufficient to reveal the true efficiency of the VN assignment. Figure 20 illustrates the

problem of the stress ratio. The substrate network has a 3-node 2-link topology (shown

as shadowed circles and thick links). There are 6 single-link VNs (represented by ellipses

and links connecting them) that are needed to be assigned to the substrate network. Both

Figure 20(a) and 20(b) achieve perfect link stress balancing since their RL = 1. However,

the latter is not efficient in using the link resources, since its links have higher stress. This

indicates that assignments with different efficiency could have the same RL. The key factor

here is the maximum link stress. Therefore, instead of using the stress ratio, we use the

maximum link/node stress as the performance metrics, i.e., we want to minimize both the

maximum node stress and maximum link stress.
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Figure 19: VN assignment: Allocate substrate resources to VN nodes and links.

 

 
 
 

 
 

 
 
 
 

 

(a) Optimal link stress

 

 

(b) Optimal node stress

Figure 20: Different virtual network assignments: (a) achieves the optimal link stress and
(b) achieves the optimal node stress
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Due to the heterogeneity of the substrate topology, it may not be possible to achieve

optimal stress for both substrate nodes and links. Again, using Figure 20 as an example, it

is easy to verify that the assignment in Figure 20(a) minimizes the maximum link stress and

its maximum link stress and maximum node stress are 3 and 6 respectively. Figure 20(b),

on the other hand, minimizes the maximum node stress and the corresponding maximum

link stress and maximum node stress are both 4. In fact, there is no such an assignment

for these VNs that could achieve both the optimal node stress and optimal link stress.

Therefore, instead of having a single term, the objective function of the VN assignment

problem should be defined as the combination of the two:

α ·max
v∈VS

SN (ai, v) + β · max
e∈ES

SL(ai, e) (9)

where ai is the time instance immediately after the i’th VN arrival, α, β > 0 are weights

for the node stress objective and link stress objective respectively and are determined by

the specific application scenario.

To summarize, the VN assignment problem for the i’th VN can be formalized as the

following snapshot optimization problem upon the VN’s arrival:

• Inputs:

1. Substrate network information: The substrate topology GS , snapshot of the cur-

rent substrate node stresses {SN (ai
−, v)|∀v ∈ VS} and link stresses {SL(ai

−, e)|∀e ∈

ES}, where ai
− is the time instant immediately before the i’th VN arrival.

2. The requested VN topology Gi
V

• Find the vna mappings from the the i’th VN topology to the substrate topology: f i
N

and f i
L

• Minimizing

α ·max
v∈VS

SN (ai, v) + β · max
e∈ES

SL(ai, e)

In this thesis, we consider two versions of the VN assignment problem: VN assignment

without reconfiguration (VNA-I) and VN assignment with reconfiguration (VNA-II). The
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former refers to the case where the VN assignment is fixed for the whole VN lifetime and

the latter refers to case where the VN assignment is allowed to changed during the VN

lifetime. In the next two sections, we will present algorithms for both versions of the

problem respectively.

4.3 VNA-I: VN Assignment without Reconfiguration

For each VN request, if the vna mappings of the virtual nodes are given, then the VN

assignment problem becomes an off-line load balancing routing problem where the source

and destination are the ingress and egress nodes of each virtual link and each flow has a unit

demand. This can be formulated as a well-known NP-hard unsplittable flow problem where

the objective is to minimize the maximum link load [40,41,62]. The general VN assignment

problem is even harder since the node vna mapping could be arbitrary and we want to

optimize both node stress and link stress. Therefore, heuristic approaches are used to solve

the problem. In this section, we will first describe a basic VN assignment scheme that acts as

a building block for all other advanced algorithms. An improved VN assignment algorithm

that subdivides the VN topology is then presented. Adaptive optimization strategies that

achieve desirable tradeoffs between the node stress and link stress optimization objectives

are also discussed.

4.3.1 A basic VN assignment algorithm

A naive way to perform VN assignment is to treat the node stress optimization and link

stress optimization as two independent sub-problems and solve them sequentially. However,

we will see from the simulation results presented later that this approach usually results

in high link stress since the selected substrate nodes may be far away from each other. In

this subsection, we propose a VN assignment algorithm that considers both node and link

stresses throughout the VN assignment process.

The key idea of our algorithm is to select a cluster of substrate nodes that are not only

lightly loaded but also likely to result in low substrate link stresses when they are connected.

This is achieved through a coarse-to-fine approach: First, a cluster center in the substrate

network is identified based on the stress level in its neighborhood. Substrate nodes are then
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Figure 21: Neighborhood resource availability, numbers represent the stress

selected sequentially based on their distances from the previously assigned virtual nodes.

4.3.1.1 Cluster center localization

Since any directly connected virtual link of a virtual node will go through one of the di-

rectly connected substrate links of the corresponding substrate node, substrate nodes with

high link stresses on all their directly connected links should be avoided. To quantify the

stress level of a substrate node and its connected substrate links, we define the following

neighborhood resource availability (NR):

NR(t, v) = [Snmax(t)− SN (t, v)] ·
∑

e∈L(v)

[Slmax(t)− SL(t, e)] (10)

where Snmax(t) = maxv∈VS
SN (t, v) and Slmax(t) = maxe∈ES

SL(t, e) are the maximum

node stress and maximum link stress of the substrate network respectively. L(v) is the set

of substrate links directly connected to substrate node v.

The above definition of NR captures both the node stress and neighboring link stresses

in the sense that a substrate node with a high NR means that both the node itself and

some of its directly connected links are lightly loaded. The cluster center, which is the

first selected substrate node, is therefore identified as the substrate node with the highest

NR value. In the example shown in Figure 21, assume Snmax(t) = 5 and Slmax(t) = 8,
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then the NR for the substrate node in Figure 21(a) and 21(a) are 16 and 12 respectively.

Therefore, the former substrate node is preferred even though it has a lower node degree.

4.3.1.2 Substrate node selection

After identifying the cluster center, the next step is to select the rest of the substrate nodes

for the VN request. Rather than simply selecting nodes with minimum stresses, our node

selection algorithm also considers the link stress by weighting the node stress based on its

distances to other selected substrate nodes. We adopt the definition of distance from the

shortest-distance path algorithm [49], which can effectively balance the network load among

links and efficiently utilize network resources. Based on this notion, the distance of a single

substrate path p at time t is defined as:

d(t, p) =
∑
e∈p

1
Slmax(t) + δL − SL(t, e)

(11)

where δL � Slmax(t) is a small positive constant to avoid dividing by zero in computing the

distance. And the distance between two substrate nodes u and v is defined as the minimum

distance of all paths between them, i.e.,

D(t, (u, v)) = min
p∈PS(u,v)

d(t, p) (12)

Since the VN topology could be arbitrary, there could be a virtual link between any pair of

virtual nodes. Therefore, to minimize the overall distance, the weight a virtual node is set

to be the summation of distances to all previously assigned virtual nodes. Combining the

distance and node stress, we use the following node potential as the criteria for substrate

node selection:

π(t, v) =

∑
u∈VA

D(t, (v, u))

Snmax(t) + δN − SN (t, v)
(13)

where VA is the set of selected substrate nodes for the same VN and δN � Snmax(t) is a

small positive constant to avoid dividing by zero. We choose δL = δN = 1 as the default

value. The set of substrate nodes with the minimum potential are then selected.
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After all substrate nodes are determined, we need to map the virtual nodes into the

selected substrate nodes such that virtual nodes with higher degree are mapped to substrate

nodes with higher NR. The intuition behind this is that virtual nodes with higher degree will

setup more virtual links. All of these virtual links will go through some of the substrate link

in the neighborhood of the corresponding substrate node. Therefore,the above matching

tends to reduce the congestion and balance the link stress.

4.3.1.3 Substrate path selection

The last step of the basic VN assignment scheme is to connect the selected substrate nodes

based on the virtual topology. This is a standard routing problem and we use the shortest-

distance path algorithm [49] again to select the path with minimum distance (defined in

Eq. (11)) between corresponding substrate nodes. Therefore, it is consistent with Eq. (12)

in our node selection process. The detailed basic VN assignment algorithm is given in

Algorithm 2. The basic VN assignment algorithm presented above can be used directly to

Algorithm 2 Basic VN assignment algorithm (Upon the i’th VN arrival)
INPUTS:

Gs = (VS , ES): substrate topology;
S(a−i , v),∀v ∈ VS : current link stress;
S(a−i , e),∀e ∈ ES : current node stress;
Gi

v = (V i
V , Ei

V ): VN topology;
OUTPUTS:

f i
N (v̂),∀v̂ ∈ V i

V and f i
L(ê),∀ê ∈ Ei

V

VA = ∅ {Note: VA is the set of selected substrate nodes}
VA = VA ∪ {arg maxv∈VS

NR(a−i , v)}
for i = 2, . . . , |V i

V | do
VA = VA ∪ {arg minv∈VS−VA

π(a−i , v)}
end for
Assign nodes in VA to virtual nodes such that
NR(f i

n(û)) ≥ NR(f i
n(v̂)), iff Degree(û) ≥ Degree(v̂)

Find the shortest-distance path for all virtual links

allocate substrate resources for VN requests. However, since its node selection process does

not take the VN topology into consideration, the basic algorithm may become inefficient

when the VN has a sparse topology. Furthermore, the basic algorithm always compromises

the node stress performance with the link stress performance regardless of the current
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network situation. More intelligent approaches are discussed next to address these issues.

4.3.2 Subdividing the virtual network

In the basic VN assignment algorithm, the requested VN is mapped to the substrate network

as a whole unit. Small VNs have smaller footprints on the substrate network and are

therefore easier to fit into isolated low stressed subregions in the substrate network. As

an extreme case, if every VN contains only a single virtual link, then we have the most

flexibility to allocate substrate network resources and can always achieve optimal link stress

performance. As the VN topology becomes larger, it is more difficult to balance the load

if we consider the whole VN at once. To utilize the flexibility of the small topology, we

break up the VN into a number of connected sub-virtual networks (subVN ). Each subVN

is of a simple star topology and the connections between subVNs define the constraints in

substrate node selection. Another advantage of subdividing is that by breaking down the

big network into a number of small subVNs, computational requirements are reduced since

less virtual nodes and links are considered in each subVN assignment process. Furthermore,

since all subVNs have star topologies, the only possible links in the subVN are to/from the

subVN center. Therefore, we can be more accurate in calculating the node potential in

Eq. (13), since D(t, (u, v)) can be summed over exact virtual links instead of assuming

virtual links to every previously assigned virtual nodes.

The subdividing algorithm works in a recursive way: starting from the original VN

topology GV = (VV , EV ), the algorithm finds the virtual node with the highest degree as

the center of the subVN. All virtual nodes directly connected to the selected center and

the corresponding virtual links form a subVN and are removed from the original VN. This

process continues on the residual topology GR = (VR, ER) until all the virtual links have

been assigned to a certain subVN. The detailed algorithm is given in Algorithm 3. Figure 22

shows an example of the subdividing process. For the original VN shown in Figure 22(a),

the subdividing algorithm sequentially generates three subVNs as shown in Figure 22(b),

22(c) and 22(d) respectively.
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Algorithm 3 Subdividing algorithm
INPUTS: GV = (VV , EV )
OUTPUTS: GV (i) = (VV (i), EV (i)), i = 1, 2, · · ·

GR = GV , i = 0, GV (i) = ∅
while GR 6= ∅ do

v̂ = arg maxv̂′∈VR
Degree(v̂′)}

VV (i) = VV (i)

⋃
{v̂}

for ∀û ∈ VR do
if v̂û ∈ ER then

VV (i) = VV (i)

⋃
{û}, EV (i) = EV (i)

⋃
{v̂û}

end if
end for
GR = GR −GV (i), i = i + 1

end while

 

 

(a) VN topology

 

 

(b) Sub-VN 1

 

 

(c) Sub-VN 2

 

 (d) Sub-VN 3

Figure 22: Subdividing the virtual network, constrained nodes are marked in black.
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The above process divides a VN topology into a number of subVNs with some inter-

subVN constraints. Each subVN is then assigned to the substrate network based on the

basic algorithm described in Section 4.3.1 and the attached inter-subVN constraints are

handled as follows:

• Unconstrained subVN: In this case, there is no constraint on the subVN assignment

so the subVN can be assigned to any location in the substrate network. Assume

the requested VN topology is connected, then the only unconstrained subVN is the

first one generated by the subdividing algorithm. The basic scheme can therefore be

directly applied to this subVN. An unconstrained subVN is shown in Figure 22(b).

• Constrained subVN: In this case, the vna mappings of some virtual nodes in the subVN

have already been determined by the previous assigned subVNs. Therefore, only nodes

that are not constrained need to be assigned. Assume there are m unconstrained VN

nodes, based on whether the subVN center is constrained or not, it can be further

divided into the following two cases:

– Center constrained: If the subVN center is constrained, then the node selection

is based on the relative distance to the center. Specifically, the algorithm selects

m substrate nodes with the least potential. A center constrained subVN is shown

in Figure 22(c).

– Center unconstrained: In this case, we need to determine the subVN center first

by selecting the substrate node with the maximum NR. After that, we can use

the same scheme as the center constrained case. A center unconstrained subVN

is shown with Figure 22(d).

Note that since all subVNs have star topologies, the only possible virtual links are those

connecting to the subVN center. Therefore, when calculating the potential in Eq. (13), VA

should be modified to contain only the subVN center.
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4.3.3 Adaptive optimization strategies

We have shown in Section 4.2.2 that there are inherent tradeoffs between optimization

objectives of node stress and link stress. To optimize the node stress, a simple way is to

select substrate nodes with the least stress. However, this naive approach totally ignores the

link stress in node selection and may result in poor link stress performance. This is because

the selected nodes may be scattered far away from each other in the substrate network

and choosing these nodes may result in excessively long substrate paths. The basic VN

assignment scheme described in Section 4.3.1 also aims at minimizing the maximum node

stress and could achieve near optimal node stress and much better link stress performance,

as will be shown later in the simulation results. Therefore, it can be viewed as a node

optimization strategy (node-opt). On the other hand, if the objective is to optimize link

stress only, then the node selection and link vna mapping should be solely based on the

substrate link stress. Specifically, we use the same algorithm in Algorithm 2 but with a

modified definition of the NR and the node potential as follows:

N̂R(t, v) =
∑

e∈L(v)

[Slmax(t)− S(t, e)] (14)

π̂(t, v) =
∑

u∈VA

D(t, (v, u)) (15)

This modified algorithm aims to optimize link stress performance and therefore is called

the link optimization strategy (link-opt).

Based on the application context, either the node-opt or link-opt strategy can be used

to perform VN assignment. As we discussed earlier, due to the heterogeneity of substrate

topology, it may not be possible to achieve both the optimal node performance and optimal

link performance. Therefore, instead of using either the node-opt or link-opt for all VN

assignments, we use an adaptive strategy that chooses between the node-opt and link-opt

for any given VN request adaptively.

The node stress ratio and link stress ratio defined in Eq. (7) and (8) provide a straightfor-

ward way to identify the relative performance of link and node stress balancing. Specifically,

if RL(t) > RN (t), the substrate link stress is more unbalanced. Otherwise, the substrate
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Figure 23: Effects of different reconfiguration orders

node stress is more unbalanced. Upon the arrival of a new VN request, the adaptive scheme

determines if the node stress or link stress is more unbalanced and performs the node-opt or

link-opt strategy accordingly. More generally, we can set an adaptive threshold η ∈ [0,+∞),

and use the adaptive scheme shown in Algorithm 4. The adaptive strategy is especially ef-

fective if the objective of the VN assignment is in the form of Eq. (9). In that case, the value

of η could be determined based on values of α and β. For example, we can set η = α/β.

Algorithm 4 Adaptive optimization strategy (Upon the i’th VN arrival)
if RL(a−i ) > η ·RN (a−i ) then

Perform link-opt
else

Perform node-opt
end if

4.4 VNA-II: VN Assignment with Reconfiguration

In the dynamic process of VN assignment, network conditions change over time due to the

arrival and departure of VNs. As a result, VN assignment without reconfiguration may

lead to inefficient resource utilization where some part of the substrate network can become

excessively loaded while others are under-utilized. Similar to the case of rerouting [87],

reconfiguring existing VNs can help to improve performance under dynamic situations.
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However, periodically reconfiguring all existing VNs is not desirable for a number of reasons.

First, VN reconfiguration is much more expensive than rerouting. The cost of reconfigu-

ration includes both the computational cost and the service disruption cost. Computational

cost refers to the expenses involved in recomputing the VN assignment and therefore is pro-

portional to the frequency of VN reconfiguration. Service disruption cost is incurred because

the normal operation of a VN is affected when it is switched from one assignment to another.

Unlike flow rerouting where at most one path change happens per rerouting event, the re-

configuration of a single VN may result in more substantial changes involving both node

switching and multiple path switching. Node switching happens when the assignment of a

virtual node is changed from one substrate node to another. Path switching happens when

the assignment of a virtual link is changed from one substrate path to another. The disrup-

tion of the reconfiguration is therefore significant if all VNs are reconfigured periodically.

Based on the above discussion, we quantify the reconfiguration cost as follows:

C = w1 ·Rrecfg + w2 ·Rnode + w3 ·Rpath (16)

where Rrecfg is the reconfiguration rate, defined as the number of reconfiguration events

per time unit. Rnode and Rpath are the node and path switching rates, defined as the

number of substrate node and path switches per time unit respectively. w1, w2, w3 > 0 are

weights of each cost component and are determined by the specific application scenario.

Furthermore, the reconfiguration order of different VNs will affect the VN assignment

performance. If there is a limit on the number of reconfigurations, reconfiguring VNs

that are on maximum stressed links/nodes will be more likely to reduce the maximum

stress than reconfiguring other VNs. Therefore, VNs that are on the maximum stressed

links/nodes are critical to the performance. Even if there is no limit on the number of

reconfigurations, reconfiguring non-critical VNs before critical ones may take up resources

that could otherwise be used by critical VNs to improve the performance.

Figure 23 illustrates the effects of reconfiguring different VNs. Assume that the network

is originally in a state shown in Figure 23(a), where there are 4 VNs on the substrate

network (three 2-node VNs and one 3-node VN). The 2-node diamond VN is non-critical
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since it is not carried by any maximum stressed link. In contrast, the other two 2-node

VNs and the 3-node VN are all critical since they use the maximum stressed link. If the

3-node VN reconfigures first, then the network enters the state shown in Figure 23(b). The

maximum link stress is reduced from 3 to 2. On the other hand, if the 2-node diamond VN

reconfigures first, then the network state is shown in Figure 23(c) and the maximum link

stress is unchanged. Obviously, the former reconfiguration is more desirable.

Based on this notion of criticality, we developed a selective reconfiguration scheme to

perform efficient reconfiguration by giving higher priority to critical VNs. The key idea is to

reconfigure only a subset of the existing VNs that are most critical in reducing the maximum

stress instead of reconfiguring all existing VNs. The selective reconfiguration algorithm has

two components: a global marking process and per VN reconfiguration processes.

4.4.0.1 Global marking

The marking process periodically (with the marking period τM ) compares the node stress

ratio RN and link stress ratio RL (Eq. (7) and (8)) to determine which one is more unbal-

anced. The algorithm then identifies a set of critical substrate nodes (or links) accordingly

as follows:

VC(tM ) = {v|S(tM , v) ≥ (1− θ) · Snmax(tM ), v ∈ VS}

EC(tM ) = {e|S(tM , e) ≥ (1− θ) · Slmax(tM ), e ∈ ES}

where tM is the time instance of the marking event. θ ∈ [0, 1] is the reconfiguration threshold

that controls the stress level to be considered as critical. For example, θ = 0 means that

only the maximum stressed nodes/links are considered critical and θ = 1 means that all

links/nodes are considered critical. Next, all VNs that are currently using the critical nodes

(or links) are marked for reconfiguration until the next marking event. The detailed marking

algorithm is given in Algorithm 5.
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Algorithm 5 Global marking algorithm
if RL(tM ) > RN (tM ) then

Identify critical substrate links EC(tM )
Mark all VNs on critical links: {i|∃e ∈ Ei

V , f i
L(e)

⋂
EC(tM ) 6= ∅}

else
Identify critical substrate nodes Vc(tM )
Mark all VNs on critical nodes: {i|∃v ∈ V i

V , f i
N (v) ∈ VC(tM )}

end if
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Figure 24: Global marking and per VN reconfiguration events with related time scales. A,
M and R are VN arrival, marking and reconfiguration events respectively. Numbers besides
A, R and τR index the VN. Numbers besides M show the indexes of marked VNs. τM and
τR are the marking period and reconfiguration period respectively.

4.4.0.2 Per VN reconfiguration

The above global marking process only determines which VNs are allowed to reconfigure.

The actual reconfiguration process happens at each individual VN. Upon the VN arrival,

the VN assignment algorithm presented in Section 4.3 is performed to allocate substrate

resources. Furthermore, each existing VN also periodically checks (with reconfiguration

period τ i
R for the i’th VN) if it is selected by the marking process. If it is the case, then the

VN reapplies the VN assignment algorithm to compute the new assignment. Otherwise,

the VN keeps its current assignment. The previous marking and reconfiguration events and

the corresponding time scales are illustrated in Figure 24.

The above algorithm reduces the reconfiguration cost by selecting only a subset of VNs

for reconfiguration. By allowing only critical VNs to reconfigure, it also optimizes the recon-

figuration order since non-critical VNs are less likely to be reconfigured. Furthermore, since

the marking process happens periodically, the algorithm can adapt to dynamic situations

by selecting different sets of critical VNs accordingly.
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4.5 Performance Evaluation

In this section, we first evaluate the performance of VN assignment algorithms without

reconfiguration. Next, we investigate the performance of our selective VN reconfiguration

algorithm under different parameter settings. Finally, we examine the VN assignment per-

formance over a wide range of network settings.

4.5.1 Simulation settings and performance metrics

We have implemented a discrete event simulator for VN assignment. The substrate network

is a 100-node 316-link random topology generated by the GT-ITM tool [90]. We assume

that VN requests arrive in a Poisson process with an average rate λ VNs per time unit,

and the lifetime of VNs follows an exponential distribution with an average of µ = 275

time units. Unless otherwise specified, the VN topologies are random and the VN size is

uniformly distributed from 2 to 10. The average VN connectivity (i.e., probability that

there is a virtual link between a pair of virtual nodes) is fixed to be 50%. To evaluate the

performance of a VN assignment algorithm, we use Poisson sampling, with an average inter-

arrival time of 1 time unit, to estimate the time-averaged maximum node stress (Nmax) and

maximum link stress (Lmax) as follows:

Nmax =

∑
i

max
v∈VS

S(t(i), v)

M

Lmax =

∑
i

max
e∈ES

S(t(i), e)

M

where t(i) is the time instance of the i’th sample and M is the total number of samples.

Each data point in the simulation results is obtained by running the simulation until

80,000 VN requests have been serviced. Furthermore, to reduce the effects of transient

simulation results, we start to collect data after the first 40,000 VN requests. The results

in this section are shown with their 95% confidence intervals. Note that the confidence

intervals are very small, sometimes hardly visible on the plots due to the relatively large
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Figure 25: VN assignment performance under increasing offered load

number of samples.

4.5.2 VN assignment performance without reconfiguration

4.5.2.1 Effects of the offered load

In the first experiment, we increase the VN arrival rate λ while fixing the average VN

lifetime and show the performance of the following static VN assignment algorithms:

• Basic: The basic VN assignment algorithm presented in Section 4.3.1

• SubVN : The basic VN assignment with the enhancement of subdividing the VN topol-

ogy

• Adaptive: The SubVN based scheme with the adaptive optimization strategy where
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the adaptive threshold η = 1

For comparison purposes, we also show results of the least-loaded algorithm (least-load)

that treats link stress optimization and node stress optimization separately by selecting the

least loaded substrate nodes as the virtual nodes and connecting them using the shortest

distance path algorithm.

Since there is no blocking in the system (i.e., VN requests are never rejected for service),

both Lmax and Nmax grow linearly with λ (as shown in Figure 25). Note that under a fixed

λ, the arrival rate of VN nodes is fixed. Therefore, the average substrate node stress is

the same for any VN assignment algorithm. Figure 25(a) shows that the least-load, basic

and subVN based schemes can all achieve similar Nmax which is very close to the average

node stress (shown in dashed line in Figure 25(a)). Since Nmax could not be lower than the

average node stress, this result indicates that all of the above three algorithms achieve near

optimal node stress performance. The adaptive scheme has higher Nmax since it trades off

node stress performance for link stress performance.

The link stress performance in Figure 25(b) shows that the least-load scheme performs

poorly in terms of Lmax. The basic VN assignment scheme effectively reduces Lmax by

more than 30%. The subVN based scheme further reduces Lmax by subdividing the VN

topology. The adaptive scheme has the best link stress performance and its Lmax is about

65% lower than the least-load scheme.

Results of the average link stress and average substrate hop count for virtual links

are given in Figure 25(c) and Figure 25(d) respectively. They clearly show that our VN

assignment algorithms reduce the resources usage by using shorter substrate paths. The

least-load scheme, in contrast, does not consider the link stress in node selection so the

selected substrate nodes could be far away from each other. Therefore, the least-load

algorithm has much higher average link stress and average substrate hop count. We also

observe in Figure 25(d) that the average substrate hop count is fixed under different VN

arrival rate. The reason is that all of our VN assignment schemes are based on the relative

orders of node/link stress, NR, or node potential, and these relative orders do not change

with the offered load.
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From this experiment, we can see that the basic VN assignment algorithm is consistently

better than the least-load algorithm such that it can achieve near optimal node stress

performance with much lower and more balanced link stresses. The adaptive VN assignment

algorithm effectively balances the link/node stress objectives and significantly reduces the

maximum link stress from the basic VN assignment algorithm. Furthermore, the virtual

network built by our VN assignment algorithms has better quality than the least-load

algorithm since the average virtual link length in substrate hop counts is significantly lower.

4.5.2.2 Benefits of the subVN scheme

The next experiment focuses on the subVN based scheme. Figure 26 compares Lmax of both

the basic scheme and the subVN scheme when the average VN connectivity is increased from

0.2 to 1.0 and the VN arrival rate is fixed at 10 per time unit. Both curves appear to be

linear to the average VN connectivity since the latter linearly determines the arrival rate of

virtual links. The subVN scheme achieves consistently lower Lmax than the basic scheme

but the differences between these two reduces from about 33% to almost zero as the VN

connectivity increases from 0.2 to 1. Recall that the key improvement of the subVN scheme

over the basic scheme is to perform node selection based on actual VN topology instead of

assuming full VN connectivity. Obviously, the above difference becomes less significant as

the actual VN connectivity increases. This experiment indicates that the subVN algorithm

is more effective for VNs with sparse connectivity. For the densely connected VNs, the basic

scheme could be used instead to simplify the VN assignment process without losing much

performance. For the rest of the chapter, we use the subVN scheme by default.

4.5.2.3 Effectiveness of adaptive optimization strategies

To demonstrate the effectiveness of adaptive optimization strategies in VN assignment, we

use an RN vs. RL graph: During each sampling instance in the simulation, we plot a point

in the RN vs. RL graph using the corresponding values of (RN , RL) as the coordinates.

Therefore the location of the (RN , RL) point indicates its relative performance of node

stress balancing and link stress balancing. Specifically, all points located above the line

of RL = RN achieve better node stress balancing than link stress balancing, while points
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Figure 26: Effects of VN connectivity
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Figure 27: Tradeoffs between link stress and node stress performances

located below the line of RL = RN have better link stress balancing performance. In this

experiment, we fix the VN arrival rate at 15 per time unit and vary the adaptive threshold

η to be 0, 0.667, 1, 1.5,∞ respectively and plot (RN , RL) points obtained from all sampling

instances in Figure 27. Note that η = 0 and η = ∞ represent the pure link optimization

(link-opt) and pure node optimization (node-opt) strategy respectively.

Figure 27 shows that VN assignment algorithms with different values of η form distinc-

tive clusters in the RN vs. RL graph. Points of the node-opt strategy (η = ∞) are all

located near the line of RN = 1, indicating that the node-opt strategy achieves the optimal

node stress balancing. However, it has very unbalanced link stress than all other cases since

its points have the highest RL values. In contrast, the link-opt strategy (η = 0) has the
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Figure 28: Performance vs. reconfiguration threshold
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lowest RL values and therefore has the best link stress balancing performance. All inter-

mediate values of adaptive threshold η result in different tradeoffs between node and link

stress performance: As η increases from 0 to ∞, the VN assignment algorithm puts more

emphasis on node stress optimization and less on link stress optimization.

Furthermore, points of η = 0.667, 1, 1.5 are closely located along their corresponding

reference lines of RL = 0.667RN , RL = RN and RL = 1.5RN respectively, except for

a small number of outlying points that occur during the transients. This indicates that

the adaptive threshold η is able to effectively control the exact tradeoff between node and

link stress balancing. For the rest of this section, we will only show the results of three

representative optimization strategies: link-opt (η = 0), node-opt(η = ∞) and adaptive

(η = 1).

4.5.3 VN assignment performance with reconfiguration

Experiments in this subsection examine the performance of the selective VN reconfigura-

tion algorithm. We choose the same value for both the marking period τM and per VN

reconfiguration period τ i
R so that critical VNs could have a chance to reconfigure promptly.

Note that although their periods are the same, the marking and reconfiguring events are

not synchronized since the latter is determined by the arrival time of each individual VN.

4.5.3.1 Effects of reconfiguration threshold

We first examine the effects of the reconfiguration threshold θ. Figure 28(a) and 28(b)

show the performance the VN reconfiguration with node-opt, adaptive strategies as θ is

increased from 0 to 1. Note that θ = 0 means only VNs using the highest stressed substrate

nodes/links are allowed to reconfigure while θ = 1 means all VNs are allowed to reconfigure.

Results for the corresponding non-reconfiguration schemes are also shown in dotted lines.

Our first observation is that VN reconfiguration generally achieves better Lmax and Nmax

performance than the corresponding non-reconfiguration schemes. Figure 28(a) shows that

Nmax of the link-opt reconfiguration scheme is significantly lower than its non-reconfiguration

counterpart when θ is small. When θ increases from 0 to 0.1, Nmax of the link-opt scheme
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Figure 29: Performance vs. reconfiguration period

decreases slightly since more critical VNs are allowed to reconfigure. When θ is further in-

creased, more non-critical VNs are reconfigured and take up substrate resources that could

otherwise be used by critical VNs to reduce Nmax. Therefore, Nmax eventually increases as

θ increase. The adaptive strategy demonstrates similar patterns but with a much smaller

fluctuation magnitude since its node stresses are more balanced. Reconfiguration of the

node-opt scheme has little effects on Nmax performance since the node-opt scheme always

achieves near optimal node stress performance.

In terms of the Lmax, Figure 28(b) shows a more complicated picture for the node-opt

scheme. Its Lmax increases with θ when θ ≤ 0.4 since more non-critical VNs are competing

with critical VNs. However, Lmax has a sudden drop as θ increase from 0.4 to 0.5. To
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understand this phenomena, Figure 28(c) gives the average ratio of VNs that perform the

reconfiguration in the node-opt strategy. It shows that the percentage increases from 45%

to more than 90% when θ increase from 0.4 to 0.5. This indicates that there are about 50%

of the VNs that are only located on most lightly loaded substrate links and reconfiguring

them would make more room to accommodate critical VNs to reduce Lmax. Therefore,

when θ ≥ 0.5, almost all VNs are allowed to reconfigure and Lmax is reduced.

Figure 28(d) shows three reconfiguration cost components (defined in Eq (16)) and all

of them increase with the reconfiguration threshold θ. The changes are especially dramatic

for small θ values. Therefore, a small θ should be used to keep reconfiguration cost low.

Fortunately, as we have seen in both Figure 28(a) and and 28(b), having a small θ could

achieve most of the benefits of dynamic reconfiguration as long as we only critical VNs to

reconfigure. The appropriate value of θ should be determined by the substrate topology

and the resulting stress distribution. We set θ = 0 in the rest of the chapter since it gives

the best overall performance for our simulation topology.

4.5.3.2 Effects of reconfiguration period

Another important parameter of the VN reconfiguration algorithm is the reconfiguration

period τR, which determines the frequency of reconfiguration. Figure 29 gives the per-

formance of the reconfiguration algorithm when τR is increased from 5 to 640 time units.

Figure 29(a) shows that Nmax of both the link-opt and adaptive strategies increases with

τR. The node-opt strategy is not sensitive to τR since it can always achieve near optimal

node stress performance. Figure 29(b) shows that Lmax of both the node-opt and adaptive

strategies increases with τR. Therefore, having a small τR will achieve better overall perfor-

mances. In terms of reconfiguration cost, however, having very small reconfiguration period

is not desirable since it would result in excessively high costs as indicated by Figure 29(c),

which shows the reconfiguration cost components for the adaptive strategy. The cost curves

of the other two optimization strategies are similar. Considering the performance and cost

together, τR = 10 is a good choice since it can achieve most of the benefits of reconfiguration

without excessively high cost.
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4.5.4 Effects of different network settings

The final set of the experiments examines the performance of VN assignment algorithms

under a wide range of network settings. Due to space limitation, we only show results for

VN assignment without reconfiguration.

4.5.4.1 Effects of substrate network connectivity

Figure 30 shows the VN assignment performance when the average substrate node degree

is increased from 3 to 19. We observe that both Nmax and Lmax decrease as the substrate

network connectivity increases and the changes in Lmax are more dramatic. Furthermore,

the absolute performance differences among different VN assignment schemes are reduced

as the substrate network becomes more densely connected.
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Figure 30: Performance vs. substrate connectivity

In terms of Nmax, increasing the substrate connectivity means more substrate nodes

become close to each other and, therefore, the node selection scheme will not concentrate

only on a small number of substrate nodes. As a result, the node stress becomes more bal-

anced. In terms of Lmax, when the substrate network is more connected, shorter paths can

be found between substrate nodes and the effects of node selection on link stress balancing

become less significant. Therefore, when the substrate network is densely connected, even

the naive least-load algorithm achieves acceptable link stress performance. As a summary,

this experiment indicates that the proposed VN assignment scheme is more effective when
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Figure 31: Performance vs. VN size

the substrate network has sparse connectivity.

4.5.4.2 Effects of VN size

This experiment studies the performance of VN assignment algorithms under different VN

sizes. Figure 31 shows the results when the maximum VN size increases from 2 to 50.

Note that the substrate network is fixed at 100 nodes, increasing VN sizes makes the node

stress balancing easier since larger VNs are less sensitive to their node selection. As an

extreme example, if the VN size is the same as the total number of substrate nodes, then all

algorithms achieve perfect node stress balancing. This explains the reduced Nmax increasing

rate for both the link-opt and adaptive strategies at large VN sizes in Figure 31(a).

In terms of Lmax, both the adaptive and link-opt strategies have significantly better

performance than the least-load scheme. The node-opt strategy also performs better than

the least-load scheme, but the differences are small especially for larger VNs. Again, this is

because for larger VNs, the effects of node selection are less important, and therefore the

node-opt strategy is more similar to the least-load scheme.

4.5.4.3 Multi-domain substrate network topology

To see the performance of the VN assignment algorithms under multi-domain substrate

topology, we used a 124-node 510-link transit-stub substrate topology generated by the

GT-ITM tool instead of the random topology. The substrate topology has a single 4-node
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transit domain and each transit node is attached by three 10-node stub domains. Figure 32

shows that Lmax of the least-load scheme in this scenario is almost 8 times higher than

the basic VN assignment algorithm. The differences are significant as compared to the

corresponding results on random substrate topology (Figure 25(b)). This is because the

substrate nodes with the lowest stress may be scattered in different domains and the least-

load algorithm would select them for a single VN request. As a result, the transit-stub links

become highly loaded because they are the only links that connect different domains. The

proposed VN assignment scheme, in contrast, avoids hot spots by allocating resources for

a single VN within the same domain.
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4.6 Summary

Network virtualization is a promising way to de-ossify the current Internet by providing a

shared platform for a variety of new network services and architectures. A major challenge

in building the diversified Internet is to perform efficient and on-demand VN assignment.

In this chapter, we developed a basic scheme for VN assignment without reconfiguration

and use it as a building block for all other advanced algorithms. Subdividing heuristics and

adaptive optimization strategies are presented to further improve the performance. We also

developed a selective VN reconfiguration scheme that prioritizes the reconfiguration for the

most critical VNs.
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We evaluate the performance of the proposed VN assignment algorithms through ex-

tensive experiments and our findings are summarized as follows:

• The basic VN assignment algorithm performs consistently better than the least-load

algorithm.

• The benefits of subdividing the VN topology are more significant when the VN topol-

ogy is sparse.

• The advantage of proposed VN assignment algorithms is more prominent when the

substrate network is sparsely connected.

• The proposed VN assignment algorithms can effectively avoid hot spots or congestion

in the substrate network (such as the transit-stub links).

• For VN reconfiguration, reconfiguring only a subset of the existing VNs that are most

critical achieves most of the benefits of dynamic reconfiguration while keeping a low

cost. Small reconfiguration threshold and reconfiguration period should be used but

their exact values should be determined by the specific substrate topology to achieve

the desired tradeoff between performance and cost.
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CHAPTER V

AUTOMATIC OVERLAY NETWORK CONFIGURATION

IN PLANETLAB WITH NETFINDER

PlanetLab has been widely used in the networking community to test and deploy user-

defined overlays. Serving as a meta testbed to support multiple overlay networks, Planet-

Lab has significantly lowered the barriers to build new overlays. However, PlanetLab users

always face the problem of selecting a set of nodes and interconnecting them to form the

desired overlay network. Unfortunately, such a task is usually carried out manually by indi-

vidual users and sometimes in an ad-hoc manner. In this chapter, we develop NetFinder, an

automatic overlay network configuration tool to efficiently allocate PlanetLab resources to

individual overlays. NetFinder continuously monitors the resource utilization of PlanetLab

and accepts a user-defined overlay topology as input and selects the set of PlanetLab nodes

and their interconnection for the user overlay. Experimental results indicate that overlay

networks constructed by NetFinder have more stable and significantly higher bandwidth

than alternative schemes and near optimal available CPU.

5.1 Overview

PlanetLab has been widely used in the networking community to test and deploy new

network technologies [58]. It can serve as a testbed for overlay networks. Research groups

are able to request a PlanetLab slice in which they can experiment with a variety of wide-

area networks and services, such as file sharing, content distribution networks, routing and

multicast overlays, QoS overlays, and network measurement tools. One problem faced by

PlanetLab users is selecting a set of PlanetLab nodes and interconnecting them to form the

desired overlay network.

PlanetLab also serves as a meta testbed on which multiple, more narrowly-defined virtual

testbeds can be deployed. For example, the “Internet-in-a-Slice”(IIAS ) service aims at
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recreating the Internet’s data plane and control plane in a PlanetLab slice [36]. Network

researchers can use this infrastructure to experiment with modifications and extensions

to the Internet’s protocol suite. Currently, IIAS does not provide resource discovery and

overlay assignment services and the overlay configuration has to be given explicitly.

Having an automated overlay network assignment service for PlanetLab is important

for two reasons. From the PlanetLab operator’s perspective, efficient assignments would

result in better resource utilization so that the PlanetLab could accommodate more user

overlays with limited resources and avoid hot spots or congestion. From the overlay user’s

perspective, having good assignment service would provide overlay users better choices in

building their overlays by avoiding congested links/nodes.

Unfortunately, such a task is usually carried out manually by individual users and some-

times in an ad-hoc manner. Manual configuration is time consuming (especially for net-

works) and prone to human error. It is not efficient even for small overlay networks since

the underlying PlanetLab network has hundreds of nodes and its state fluctuates over time

due to failures, congestion and load variation. In this work, we are motivated by the above

considerations and focus on the on-demand overlay network assignment problem: Upon the

arrival of a user-defined overlay topology and associated overlay resource requirements, find

the set of PlanetLab nodes and their interconnections to satisfy the user request.

The set of physical resources provided by PlanetLab to support multiple overlays can

be divided into two categories: node resources and link/path resources. Node resources

such as memory, disk space, number of active slices, and available CPU are all related to a

particular PlanetLab node. They enable individual overlays to compute, modify and store

their data. In contrast, link/path resources enable an overlay network to send data from

one node to another. Common metrics for link/path resources include available bandwidth,

delay and loss rate, which indicate how well the user can send data within its overlay.

A recent study reported that available resources vary significantly in PlanetLab, sug-

gesting that wise placement of application instances can be beneficial [54]. Among different

node resource metrics, available CPU is the most important one since most users will suffer

if the CPU resources are poorly utilized. Unlike the link performance metrics such as delay,
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loss rate or TCP throughput, available bandwidth directly indicates the extra amount of

traffic that can be carried by the link before it becomes congested. Based on these consid-

erations, we focus on the CPU usage and available bandwidth. However, our service model

can be easily extended to support other metrics.

There are two challenges in providing an automatic overlay network assignment service:

the lack of PlanetLab bandwidth monitoring services and the difficulties in developing

a good overlay network assignment algorithm. Despite the growing literature and tools

for end-to-end bandwidth measurement, many tools have practical limitations and do not

work well in PlanetLab. Even for tools that work within PlanetLab such as Pathload [38]

and Iperf [3], running pair-wise measurements between hundreds of Planetlab nodes is a

challenging task. Another challenge comes from the dual objective of the overlay assignment.

Specifically, upon the arrival of a overlay request, we want to achieve load balancing on

both PlanetLab nodes and links. A special case of the this problem can be formulated as

an unsplittable flow problem which is NP-hard. Therefore, the overlay assignment problem

is intrinsically difficult and heuristics will be used to solve the problem.

In this chapter, we develop NetFinder, an automatic overlay network configuration tool

in PlanetLab. This tool continuously collects information about the resource utilization of

PlanetLab and accepts a user-defined overlay topology as input. NetFinder then performs

overlay network assignment by selecting the set of PlanetLab nodes and their interconnec-

tion for the desired user overlay.

5.2 Network architecture

PlanetLab is composed of a number of nodes connected to the Internet at different locations.

Therefore, there is an end-to-end native Internet path connecting each pair of PlanetLab

nodes. From the view point of PlanetLab users, the only resources available are those at

individual Planetlab nodes and along paths between PlanetLab nodes. Network situation

on all other links and nodes are transparent to PlanetLab users. Therefore, the PlanetLab

network itself can be viewed as a full-mesh overlay on top of the native Internet.
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The PlanetLab network in turn serves as a shared substrate to support multiple user-

defined overlays. Each user would treat the underlying PlanetLab network just like any

physical network.

 
Overlay 1 Overlay 2 Overlay N… 

PlanetLab network 

Internet 

Overlay networks 

Substrate network 

Native network 

 

Figure 33: PlanetLab network layered architecture

Based on the above consideration, we model the PlanetLab overlay network configura-

tion using three layers of network: a native Internet, a PlanetLab substrate network and a

number of user-defined overlay networks. The lowest layer is the native Internet composed

of native routers and links. On top of that, there is a common PlanetLab substrate network,

composed of PlanetLab nodes and the interconnection between them. Finally, a number

of user-defined overlays are built on top of the PlanetLab substrate such that each overlay

node is a substrate node and each overlay link is a substrate path, which could, in turn,

be a concatenation of a set of Internet paths. In this work, we assume that all PlanetLab

nodes are already deployed and their interconnection are determined by native IP routing

mechanisms, and focus only on issues between the substrate layer and user overlays.

The flowchart of NetFinder is illustrated in Figure 34. In the background, the system

periodically collects the PlanetLab resource utilization information including both available

bandwidth data and available CPU data from external sources. NetFinder then accepts

user-defined overlay requests. When the user requests include constraints such as the mini-

mum CPU or minimum bandwidth requirements, infeasible parts of the PlanetLab network

are removed through preprocessing. Finally, the overlay assignment algorithm is used to

calculate the overlay configuration.

The rest of this section discusses each component of the system in detail.
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Figure 34: System diagram

5.2.1 Overlay network request format

To setup an overlay network in the PlanetLab, a user submits a request specifies the topology

of the overlay network and a set of resource constraints. An example to setup a 4 node 8

link overlay network is shown in Table 2. The request also indicates that each overlay link

should have minimum available bandwidth of 10Mbps and each selected PlanetLab node

should have at least 20% free available CPU resource.

Table 2: Overlay request format

# NUM NODES, MIN BW MIN CPU
4, 10 20

# LINKS: SRC DEST
0 1
1 0
0 2
2 0
0 3
3 0
1 2
2 1
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5.2.2 PlanetLab substrate performance monitoring

NetFinder collects measurement results from other reporting services. It then preprocesses

and stores the resulting data into its own database. The current version of NetFinder

obtains node CPU usage information by periodically polling the CoMon daemon on each

PlanetLab node. This probing also serves as a failure detection mechanism, where NetFinder

determines that a node is down if the probe times out.

The bandwidth measurement in PlanetLab is a challenging problem due to the scale

of the network and practical limitations of various tools. NetFinder uses the bandwidth

measurement result from the S3 project, which reports the all-pair available bandwidth

measurement results of 400+ PlanetLab nodes every four hours. NetFinder then processes

the raw measurement results by removing all inactive nodes and links and keeping only

relevant bandwidth and CPU data.

Although NetFinder relies on the PlanetLab measurement results, it is not restricted

by any specific tools or reporting services. We choose S3 results since it is the only all-pair

bandwidth measurement service available for the large scale PlanetLab network. However,

NetFinder has the flexibility to adapt to measurement results of new techniques when they

become available in the future. The only thing that needs to be done is to convert the

format from the raw measurement data to NetFinder’s internal data format.

5.2.3 Overlay network assignment

NetFinder’s overlay network assignment is based on our recent work on network virtual-

ization. The problem of assigning PlanetLab nodes/paths to the overlay network is similar

to the virtual network (VN) assignment problem [91]. However, to be able to work with

PlanetLab, we need the following modifications and enhancements:

• Using bandwidth as the Link-state metrics instead of substrate link stress: Unlike the

scenario of VN assignment in [91], where stress is used to model the utilization of the

substrate node and substrate link, the meaning of stress in the PlanetLab context is

not obvious.
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• Constraints in overlay network assignment: The overlay assignment algorithm should

consider a number of constraints in making the assignment decision. Basic constraints

include bandwidth constraints (e.g., the available bandwidth of the overlay link should

exceed 10Mbps) and CPU constraints.

Based on the above consideration, we modify our original VN assignment algorithm as

follows:

5.2.3.1 Preprocessing

After obtaining the measurement results, given an overlay request with bandwidth or CPU

constraints. The algorithm first removes all nodes and links that do not have enough

resources.

5.2.3.2 Cluster center localization

In the PlanetLab overlay configuration, we use the more realistic metrics such as CPU usage

and available bandwidth instead of the abstract ideas of node/link stress to represent the

resource availability in the substrate network.

Specifically, we modify the definition of neighborhood resource availability (NR) in [91]

as follows:

NR(t, v) = C(t, v) ·
∑

e∈L(v)

B(t, e) (17)

where C(t, v) is the available CPU at substrate node v, B(t, e) is the available bandwidth

on substrate link e, and L(v) is the set of substrate links directly connected to substrate

node v.

The above definition of NR captures both the node resources and neighboring link

resources in the sense that a substrate node with a high NR means that both the node

itself and some of its directly connected links are lightly loaded. The cluster center, which

is the first selected substrate node, is, therefore, identified as the substrate node with the

highest NR value. In the example shown in Figure 35, the NR for the substrate node in

Figure 35(a) and 35(b) are 16 and 12 respectively. Therefore, the former substrate node is

preferred even though it has a lower node degree.
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Figure 35: Neighborhood resource availability, numbers beside links and nodes represent
the available bandwidth and CPU respectively

5.2.3.3 Substrate node selection

After identifying the cluster center, the next step is to select the rest of the substrate nodes

for the overlay request. We redefine the distance of a single substrate path p at time t as

follows:

d(t, p) =
∑
e∈p

1
B(t, e) + δL

(18)

where δL is a small positive constant to avoid dividing by zero in computing the distance.

And the distance between two substrate nodes u and v is defined as the minimum distance

of all paths between them, i.e.,

D(t, (u, v)) = min
p∈PS(u,v)

d(t, p) (19)

Since the overlay topology could be arbitrary, there could be an overlay link between

any pair of overlay nodes. Therefore, to minimize the overall distance, the weight of an

overlay node is set to be the summation of distances to all previously assigned overlay

nodes. Combining the distance and node stress, we use the following node potential as the

criteria for substrate node selection:

π(t, v) =

∑
u∈VA

D(t, (v, u))

C(t, v) + δN
(20)
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where VA is the set of selected substrate nodes for the same overlay and δN is a small

positive constant to avoid dividing by zero. The set of substrate nodes with the minimum

potential are then selected.

After all substrate nodes are determined, we need to map the overlay nodes into the

selected substrate nodes such that overlay nodes with higher degree are mapped to substrate

nodes with higher NR. The intuition behind this is that overlay nodes with higher degree will

setup more overlay links. All of these overlay links will go through some of the substrate link

in the neighborhood of the corresponding substrate node. Therefore,the above matching

tends to reduce the congestion and balance the link load.

5.2.3.4 Substrate path selection

The last step of the overlay assignment scheme is to connect the selected substrate nodes

based on the overlay topology. This is a standard routing problem and we use the shortest-

distance path algorithm [49] again to select the path with minimum distance (defined in

Eq. (18)) between corresponding substrate nodes. Therefore, it is consistent with Eq. (19)

in our node selection process. The detailed overlay assignment algorithm is given in Algo-

rithm 6.

Algorithm 6 Overlay assignment algorithm (Upon the i’th overlay arrival at time ai)
INPUTS:

Gs = (VS , ES): substrate topology;
C(a−i , v),∀v ∈ VS : current available CPU;
B(a−i , e),∀e ∈ ES : current available bandwidth;
Gi

v = (V i
V , Ei

V ): Overlay topology;
OUTPUTS:

f i
N (v̂),∀v̂ ∈ V i

V and f i
L(ê),∀ê ∈ Ei

V

VA = ∅ {Note: VA is the set of selected substrate nodes}
VA = VA ∪ {arg maxv∈VS

NR(a−i , v)}
for i = 2, . . . , |V i

V | do
VA = VA ∪ {arg minv∈VS−VA

π(a−i , v)}
end for
Assign nodes in VA to overlay nodes such that
NR(f i

n(û)) ≥ NR(f i
n(v̂)), iff Degree(û) ≥ Degree(v̂)

Find the shortest-distance path for all overlay links

88



5.3 Implementation

We implement the above service to include all 412 nodes in the S3 data base. Latest

NetFinder results detects 352 alive nodes and 68, 966 substrate links with bandwidth mea-

surement results.

The high level service model of NetFinder is shown in Figure 36, which is composed of

three entities: a PlanetLab network (composed of nodes and paths connecting them) served

as the substrate for all user-defined overlays, a central database responsible for collecting

measurement data of PlanetLab and answering overlay setup requests, and users submitting

their requests to setup overlay networks. Events in the centralized model evolve as follows:

1) Each PlanetLab node perform periodic performance measurement of its own as well

as paths leading to the neighboring PlanetLab nodes, this information is stored at each

PlanetLab node as local data 1. 2) The centralized database periodically contacts each

PlanetLab node to get a copy of the local measurement data and merge them into a global

view of the current PlanetLab network status. 3) The software at PlanetLab user sends a

request for the current substrate states. 4) Central database returns the data to the user

software. 5) The user software calculates the assignment and generates suitable outputs.

6) IIAS script is launched to start the overlay network based on the output from step 5) 2.

5.4 Performance evaluation

To evaluate the performance of NetFinder from its user’s perspective, we use the following

metrics: 1) average overlay node available CPU, defined as the average available CPU of the

selected PlanetLab nodes, and 2) average overlay link available bandwidth, defined as the

available bandwidth along the path connecting the corresponding PlanetLab nodes. Since

each overlay node is assigned to a PlanetLab node, the available CPU on the selected Plan-

etLab node represents the available computational resources for the corresponding overlay

node. Therefore, these metrics are more relevant to individual user.

In the first experiment, we took a snapshot of the PlanetLab network and run NetFinder

1This step is not needed when NetFinder obtains performance data from third-party sources, such as S3.
2This step is needed when we use IIAS to directly startup the overlay.

89



Central 
Database `

(1) (6)

(3)

(4)(2)
(5)

Substrate 
Network

PlanetLab 
User

Figure 36: Centralized NetFinder service model

to assign 5,000 randomly generated overlay networks (with evenly distributed size from 2

to 40 and average link probability 0.5). Each overlay network is assumed to be given the

identical PlanetLab snapshot. Therefore, this experiment evaluates the average performance

of NetFinder on different overlay topologies. For comparison purposes, we also show the

results for two alternative overlay assignment schemes: 1) Least load scheme and 2) random

selection. The least-load scheme represents the scenario where node selection tools such as

CoMon or SWORD is used to find the set of nodes with maximum available CPU. The

selected nodes are then connected to form the overlay network. The random selection

scheme represents the case where a user totally ignores the performance of PlanetLab and

selects nodes randomly.

Figure 37 shows the cumulative distribution function (CDF) of single hop overlay path

available bandwidth (i.e., the direct overlay link available bandwidht). Comparing the

results of NetFinder with least-load and random selection heuristics, we can clearly see that

NetFinder significantly improves the available bandwidth. Specifically, more than 90% of

the overlay links have the available bandwidth higher than 60Mbps. In contrast, more than

50% overlay links assigned by the least-load scheme have available bandwidth lower than

60Mbps. The random selection scheme performs slightly better than the least-load scheme

since it spreads the load among all PlanetLab nodes. However, it is still significantly worse
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than NetFinder.

A potential use of the overlay network is bandwidth based overlay routing, where data

are sent from the source to the destination through the overlay path with the maximum

available bandwidth. To show how assigned overlay networks perform under this scenario,

we collected the widest overlay path between each pair of overlay nodes and show their CDF

in Figure 38. The result has a similar pattern as the direct overlay link available bandwidth.

But the different between these schemes are even more significant.
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Figure 37: CDF of single hop overlay path available bandwidth
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Figure 38: CDF of widest overlay path available bandwidth

Figure 39 shows the CDF of available CPU on overlay nodes. As expected, the least-load

scheme has the best node CPU performance since it performs node selection exclusively on

the node performance optimization [91]. However, the difference between NetFinder and
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the optimal least-load scheme is small. This indicates that NetFinder can achieve near

optimal available CPU performance.
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Figure 39: CDF of overlay node available CPU
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Figure 40: Average available bandwidth of single hop overlay path

The second experiment studies the performance of assigning a single overlay network at

different time instances. We collect the PlanetLab measurement data during the week of

February 13-17, 2006 and plot the results of assigning the same 20 node 176 link overlay

network. Figure 40, 41 and 42 show the average available bandwidth of all 1-hop overlay

paths (i.e., direct overlay path without going through any intermediate overlay node), 2-hop

overlay paths (i.e., indirect overlay paths that go through exactly one intermediate overlay

node), and widest overlay paths (i.e., overlay paths with the highest available bandwidth)

respectively. All these results show that NetFinder can allocate significantly higher available

92



0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Time instance

A
ve

ra
ge

 2
ho

p 
bw

NetFinder
Random
Least load

Figure 41: Average available bandwidth of 2-hop overlay path
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Figure 42: Average available bandwidth of the widest overlay path
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Figure 43: Average available CPU of overlay nodes

93



bandwidth than the other two schemes. Furthermore, the performance improvements are

consistent throughout all time instances. Another interesting observation is that selecting

the PlanetLab nodes at random and totally ignoring the network states, performs better

than the least-load scheme in terms of available bandwidth. The reason is that the low

loaded areas in the substrate network tend to be isolated, and therefore, they may be

separated by some heavily loaded links. In terms of available CPU, the Least load scheme

which is optimal outperforms NetFinder. However, the difference is marginal.

Another observation in this experiment is that the performance curves of NerFinder are

much smoother than the other two schemes. This indicates that NetFinder is capable of

achieving consistent performances in dynamic network situations. As a summary of this

experiment, the results indicate that the NetFinder service can achieve significantly higher

available bandwidth than the both least-load and random schemes.

5.5 Summary

PlanetLab has been widely used in the networking community to test and deploy user-

defined overlays. One problem always faced by PlanetLab users is how to select a set of

PlanetLab nodes to form a user-defined overlay. In this chapter, we develop NetFinder,

an automatic overlay network configuration tool for PlanetLab. This tool continuously

collects information about the resource utilization of PlanetLab and accepts a user-defined

overlay topology as input. NetFinder then selects the set of PlanetLab nodes and their

interconnection for the user overlay. Performance evaluation using realistic PlanetLab data

demonstrates the advantage of NetFinder by comparing it with alternative heuristics or

existing tools. The results indicate that NetFinder is highly effective in locating the available

PlanetLab resources and avoiding overloaded nodes and links.
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CHAPTER VI

MULTI-HOMED OVERLAY NETWORKS - A HYBRID

ARCHITECTURE FOR INTELLIGENT ROUTING

Multihoming and overlay routing are used, mostly separately, to bypass Internet outages,

congested links and long routes. In this chapter, we examine a scenario in which multihom-

ing and overlay routing are jointly used. Specifically, we assume that an Overlay Service

Provider (OSP) aims to offer its customers the combined benefits of multihoming and over-

lay routing, in terms of improved performance, availability and reduced cost, through a

network of multihomed overlay routers. We focus on the corresponding design problem,

i.e., where to place the overlay routers and how to select the upstream ISPs for each router,

with the objective to maximize the profit of the OSP. We examine, with realistic network

performance and pricing data, whether the OSP can provide a network service that is prof-

itable, better (in terms of round-trip time), and less expensive than the competing native

ISPs. Perhaps surprisingly, we find out that the OSP can meet all three objectives at the

same time. We also show that the MON design process is crucial. For example, operating

more than 10 overlay nodes or routing traffic through the minimum-delay overlay path,

rarely leads to profitability in our simulations.

6.1 Overview

The most basic form of Internet access is singlehoming, where a stub network uses a single

upstream ISP to reach all destinations. It has been shown that singlehoming can lead to poor

availability and performance [9]. The single route from the source network to a destination

network/prefix may not be always available, while routing policies and traffic engineering

practices can (and often do) impose a heavy performance penalty on the resulting end-to-end

performance [6].
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To achieve improved reliability and performance, multihoming has become the main-

stream service model for major content providers (see Figure 44(a)). In the more advanced

form of this model, known as intelligent route control, the multihomed source network se-

lects the upstream ISP for every significant destination prefix based on performance and

cost considerations [1, 30].

Another approach to improve end-to-end availability and performance is overlay rout-

ing (see Figure 44(b)). Here, the traffic between two networks is sent through one or

more intermediate overlay nodes that are connected through IP tunnels [9,48]. The advan-

tage of overlay routing is that it typically provides a greater number of diverse paths to

reach a destination network compared to the typical case of multihoming to 2-4 upstream

ISPs [63]. On the other hand, overlay routing requires the deployment of a distributed rout-

ing/forwarding overlay infrastructure. A comparison of multihoming and overlay routing

has been conducted in [7].

Given the previous two approaches, it is interesting to consider a scenario in which both

models are used. Specifically, we envision a new type of Internet provider referred to as

Overlay Service Provider (OSP) (to distinguish from an ISP) that attempts to offer its

customers the combined benefits of multihoming and overlay routing in terms of improved

performance, availability and reduced cost. The OSP operates a Multihomed Overlay Net-

work (MON), with each MON node being a multihomed router. MON nodes are placed at

“key” Internet locations, mostly Internet Exchange Points (IXPs), and the OSP purchases

Internet connectivity for each MON node from several locally present ISPs. An OSP cus-

tomer can connect directly to a MON node if the former is collocated at the same IXP with

that MON node. Major content providers are usually collocated at major IXPs to avoid

the cost of leased lines. On the other hand, the OSP is responsible to route a customer’s

traffic with greater availability and higher performance than the customer’s current native

ISP. Note that this is similar to the InterNAP service and business model [1].

Furthermore, we envision that the OSP performs overlay routing, utilizing MON nodes

as overlay routers. Based on the findings of [92], we limit the number of intermediate MON

nodes in an overlay path to one. It is rarely the case that more intermediate nodes are
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Figure 44: Multihoming, overlay routing, and the Multihomed Overlay Network (MON)
architecture.

needed to improve performance or availability significantly. Figure 44(c) shows that the

MON network can utilize multihoming to form direct paths and overlay routing to form

indirect paths. If a MON node is multihomed to K ISPs, there are K direct MON paths

to choose from for each flow. With N MON nodes, the number of indirect MON paths for

each flow increases to K2(N − 1).

It is interesting that an OSP is “an Internet provider that does not own a network”,

in the sense that the OSP does not operate any long-distance links or a backbone. Its
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infrastructure is located at the network edges, and its long-distance communications are

conducted from the underlying native-layer ISPs. In fact, early ISPs were often built in the

same way, leasing long-distance trunks from telecommunication providers and placing IP

routers at aggregation points at the network edge.
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(b) Indirect MON path

Figure 45: Direct and indirect MON paths.

In this chapter, we focus on the MON design problem, i.e., where to place MON nodes

and how to select the upstream ISPs for each node. We aim to examine, with realistic

network performance and pricing data, whether an OSP can combine multihoming and

overlay routing to provide a network service that is, first, profitable, second, better in

terms of performance than the competing native ISPs, and third, less expensive than the

competing native ISPs.1 Perhaps surprisingly, we find out that the OSP can meet all three

objectives. We also show, however, that the MON design process is crucial. For example,

operating more than 10 MON nodes or routing traffic through the minimum-delay MON

path, rarely leads to profitability in our simulations.

In more detail, we formulate an optimization problem where the OSP aims to maximize

its profit by placing up to N MON nodes and connecting each node with up to K locally

present ISPs. The OSP revenues come from subscribed customers while the costs are due to

leased upstream capacity and node deployment. The optimization is constrained because a

potential customer will only subscribe to the OSP if the latter can offer better performance

than the competing native ISP, at least for a large fraction of the customer’s traffic. As in

any network design problem, we focus on large timescales, namely weeks or months. The

1In terms of availability, we assume that the OSP can take advantage of its multihoming and overlay
routing capabilities to provide higher availability than singlehoming or just multihoming.
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reason is that both the deployment of MON nodes and the contractual agreements with

native ISPs are hard to change in shorter timescales. Consequently, the performance metric

we consider is the propagation delay between MON nodes. Other metrics, such as loss rate

or available bandwidth, vary significantly in shorter timescales and so they would not be

appropriate as inputs to a network design problem.

6.2 Model and problem formulation

The MON design problem involves ISPs and the performance of the native network, the

location and traffic matrix of potential customers, and the OSP routing strategy, pricing

function and node deployment costs. In this section, we present a model for these compo-

nents of the problem and formulate a MON design optimization framework. We also prove

that the optimal MON design problem is NP-hard.

6.2.1 ISPs and the native network

Consider a geographical area that the OSP aims to cover. There are L possible locations

where the OSP can place MON nodes (e.g., IXP locations or network access points). The

set of ISPs that are present at location l ∈ L is denoted by Il, while the union of all such

sets is I. We use the term POP p = (l, i) to identify the access point to ISP i at location l.

LOC(p) and ISP(p) are the location and ISP that correspond to POP p, respectively. The

set of all POPs is denoted by P .

We represent the native-layer performance with the matrix T|P |×|P |, where the entry τp,q

represents the propagation Round-Trip Time (RTT) from POP p to q. We expect that most

of the elements in this matrix remain practically constant for weeks, except during periods

of interdomain routing instability. The matrix T can be measured directly, as long as the

OSP can conduct simple measurements (e.g., ping) between any pairs of POPs. If that is

not possible, the matrix T can be estimated using the technique presented in Section 6.3.

6.2.2 MON representation

MON consists of up to N nodes, with each node placed at a different location of L. Each

MON node is multihomed to at most K locally present ISPs. We say that a MON node

99



is present at POP p if the node is located at LOC(p) and connected to ISP ISP(p). The

entire MON network can be represented with the POP selection vector MON ,

MON (p) =

 1 if a MON node is present at POP p

0 otherwise
(21)

Given a POP selection vector, we can identify the locations of all MON nodes with:

NODE(l) =

 1 if
∑

LOC(p)=lMON (p) > 0

0 otherwise
(22)

6.2.3 Customers and OSP-preferred flows

We denote the set of potential OSP customers as U . A customer u is present at location

LOC(u) and, before subscribing to the OSP, is connected to one or more locally present

ISPs. To attract a customer, the OSP needs to provide better performance (lower RTT)

to most of that customer’s traffic. Specifically, the workload of customer u is a set of flows

F (u). A flow f = (sf , df , rf , τf ) is defined as a large traffic aggregate from one of u’s source

POPs towards a destination POP, where sf and df are the flow’s source and destination

POPs, respectively, rf is the flow’s average rate, and τf is the RTT in the flow’s native

path. The set of all flows is F . The flow f is OSP-preferred if the OSP can route f , through

a direct or indirect path, with RTT τ̂f < τf . The corresponding MON path is referred to

as OSP-preferred path for flow f . Customer u subscribes to the OSP if at least a fraction

H (say 70-80%) of its traffic is in OSP-preferred flows.

6.2.4 OSP routing strategy

As mentioned earlier (and shown in Figure 45), an OSP can utilize either one of the direct

paths from the ingress MON node to the destination, or one of the indirect paths through

an intermediate MON node. The OSP uses a certain routing strategy to select the path to

each destination. One routing strategy is that the OSP always selects the path, direct or

indirect, with the minimum native RTT.

In most of this chapter (except for Section 6.5.4) we consider a more economical strategy,
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referred to as Direct-Routing-First (DRF). With DRF, the OSP first attempts to route a

flow f through the direct path with the minimum RTT. If that path does not result in lower

RTT than τf , and there exists an OSP-preferred indirect path, the OSP selects the indirect

path with the minimum RTT. The reasoning behind DRF is that indirect paths are more

costly because the OSP has to pay for upstream capacity at two MON nodes (rather than

at a single node for the case of direct paths). So, with DRF, the OSP assigns higher priority

to direct paths than to indirect paths.

If PAT H(f) is the sequence of POPs for an OSP-preferred flow f using a certain routing

strategy, then the following function identifies whether flow f passes through the MON node

at POP p,

RT E(p, f) =

 1 if p ∈ PAT H(f)

0 otherwise
(23)

Given a POP selection vector and an OSP routing strategy, as well as the set of flows F (u),

it is easy to determine whether each flow of u can be OSP-preferred, and thus whether

customer u would subscribe to the OSP or not,

SUB(u) =

 1 if customer u subscribes to OSP

0 otherwise
(24)

6.2.5 OSP revenues and costs

The OSP generates revenue from subscribed customers. Let P̂ (r) be the OSP pricing

function, where r is the total traffic rate from a customer, say in the period of a month.

Then the total OSP revenue in that period is:

R(MON ) =
∑
u∈U

SUB(u) · P̂ (
∑

f∈F (u)

rf ) (25)

The OSP has two types of costs: first, a recurring cost for each deployed node (i.e.,

monthly fee at IXPs) and second, the cost of upstream capacity from native ISPs. In

general, different ISPs have different capacity pricing functions, and these functions may
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vary across different locations. Therefore, we calculate the OSP capacity cost on a per-POP

basis. Specifically, the required upstream capacity at POP p is:

c(p) =
∑
u∈U

SUB(u) ·
∑

f∈F (u)

RT E(p, f) · rf (26)

and so the total capacity cost is:

CCP (MON ) =
∑

p

MON (p) · Pp (c(p)) (27)

where Pp(·) is the pricing function used by the ISP at POP p.

The total node deployment cost can be modeled as:

CND(MON ) =
∑
l∈L

NODE(l) · d(l) (28)

where d(l) is the cost of deploying a MON node at location l.

The OSP pricing function P̂ (r), as well as the ISP pricing functions Pp(r), are assumed

to be non-decreasing and concave, which is the typical case in practice [28]. The concavity

is important because it implies economies of scale, i.e., the price per Mbps decreases as the

purchased capacity r increases. The OSP can exploit this property of the capacity market

to offer less expensive services than the competing native ISPs by aggregating the traffic

from many customers. Specifically, suppose that the pricing ratio Rp between the OSP and

ISP pricing functions is constant,

Rp =
P̂ (r)
Pp(r)

(29)

If Rp < 1, the OSP is less expensive than the ISP at POP p. The OSP can still be profitable,

however, because the aggregation of traffic from several customers means that the OSP can

purchase upstream capacity at a lower unit price than what it charges to its customers.

6.2.6 Problem statement

We can now state the MON design problem as the following constrained nonlinear opti-

mization problem. Given the following inputs:
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Native network information: Set of locations L and ISPs I; Delay matrix T ; ISP pricing

functions Pp(·) for all p ∈ P ;

OSP information: OSP routing strategy; OSP pricing function P̂ (·); MON node deploy-

ment cost d(l) for all l ∈ L;

Customer information: Set of customers U with their flow descriptors F (u) for all u ∈ U ;

Subscription threshold H;

Determine the POP selection vector MON to maximize the profit:

Π(MON ) = R(MON )− CCP (MON )− CND(MON ) (30)

under the following constraints:

1) At most N MON nodes:
∑

l∈LNODE(l) ≤ N

2) Maximum multihoming degree K: For all l ∈ L,
∑

p∈P,LOC(p)=lMON (p) ≤ K

6.2.7 NP-hardness

We next give a sketch of the NP-hardness proof based on a reduction from the set covering

problem. Consider a set of sets S, where
⋃

si∈S si = X. The set covering problem is to

find a minimum-size set C ⊆ S such that
⋃

ci∈C ci = X. We construct an instance of

the MON design problem in which there is a set of ISPs S available at a single location l

and the MON design constraints are N=1 and K=|S|. Let X be the set of customers at

location l, with one flow per customer, and suppose that all flows can be OSP-preferred,

i.e., there is at least one ISP in S that can make each flow OSP-preferred. Assume that the

OSP has a constant pricing function P̂ (r) = posp, and all ISPs have the constant pricing

functions Pp(r) = pisp, with posp � pisp and posp � d(l). Under these constraints, the

OSP should deploy a single MON node at location l, and determine the minimum-size set

of ISPs that maximizes its profit. We can determine (in polynomial time with |S| and |X|)

the set of flows si that become OSP-preferred when the MON node is connected to the i’th

ISP. Because posp � pisp and posp � d(l), the OSP can maximize its profit by connecting

to just enough ISPs so that all flows are OSP-preferred. In other words, the OSP needs

to find a minimum-size set of ISPs C ⊆ S such that
⋃

ci∈C ci = X. So, any instance of

the set covering problem can be reduced in polynomial time to the previous instance of the
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MON design problem. Therefore, given that the set covering problem is NP-hard, the MON

design problem is also NP-hard.

6.3 Estimating the native RTT matrix

In this section, we describe a methodology for estimating the native RTT matrix T . Recall

that this matrix consists of the POP-to-POP pairwise RTTs in the native network, and it is

a required input for one of the four heuristics of the next section. Also recall that the RTT

we aim to estimate is the propagation delay RTT, which mostly depends on the physical

distance between two POPs and the routing at the underlying native network; queuing

delays, in particular, are not included in these RTTs.

We distinguish between intradomain RTTs, where both POPs are in the same Au-

tonomous System (AS), and interdomain RTTs, otherwise. As shown next, an intradomain

RTT can be modeled as proportional to the physical driving distance between the two

POPs, at least for the networks we measured. An interdomain RTT, on the other hand,

further increases with the number of AS’s in the route between the two POPs. So, in the

interdomain case, the ratio between RTT and driving distance depends on the number of

AS hops.

6.3.1 Intradomain case

To develop an accurate model for intradomain RTTs, we examined the correlation among

various distance metrics and the measured RTTs between POPs of various network providers

in the US. The highest correlation resulted from the “highway driving distance”, as reported

from Google-map. This is probably because most backbone optical fiber is laid along

highways or railroads. In the following, we analyze RTT pairwise measurements between

15 ping servers (located at POPs) in the US Level3 network. For each source/destination

POP pair, we conducted 1,000 consecutive ping measurements, reporting the minimum

RTT as the best estimate of the propagation delay RTT. Figure 46 shows that the minimum

measured RTT varies almost linearly with the physical driving distance, with a correlation

coefficient of about 95%. Therefore, the OSP could model the intradomain RTT between
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two POPs p and q of the Level3 network as:

τintra(p, q) = 0.02349 · L(p, q) (31)

where τintra(p, q) and L(p, q) are the intradomain RTT (in milliseconds) and the driving

distance (in miles) from p to q, respectively. The same procedure should be followed for

each ISP, because the proportionality constant between RTT and distance may be different

across ISPs.
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Figure 46: Intradomain RTT versus driving distance in the US Level3 network
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6.3.2 Interdomain case

We observed that in the interdomain case, the RTTs are not so highly correlated with the

physical distance between POPs. The reason is that interdomain routes are commonly

dictated by policy constraints, and so they often follow suboptimal paths. We observed,

however, that there is a high correlation between RTT and driving distance when we consider

routes with the same number of AS hops (i.e., the same number of traversed networks).

Consequently, we can model the interdomain RTT between two POPs p and q as:

τinter(p, q) = xinter(h) · L(p, q) (32)

where xinter(h) is a constant that depends on the number of AS hops h in the native route

between POPs p and q.

To estimate xinter(h) for various values of h, we measured 3,136 interdomain paths from

32 PlanetLab US nodes to 98 web servers (of museums and newspapers) with two servers

per continental state. For each path, we conducted 1,000 ping measurements (to estimate

the propagation delay RTT) and a traceroute measurement. The latter was used to estimate

the AS hop-count of the path, using the IP-to-AS mapping database of [51]. Figure 47(a)

shows the histogram of AS hop-counts in the measured paths. Note that most paths have

2-7 AS hops, including the destination AS (but not the source AS).

Figure 47(b) shows the 95% confidence interval of xinter(h) as a function of h. Note that

h=0 corresponds to the intradomain case. The results show clearly an increasing trend in

xinter(h) as h increases. Furthermore, the confidence intervals are narrow, indicating that

the RTT can be modeled as proportional to the driving distance for a given AS hop-count,

except the single hop and 7-9 hop cases (for which we do not have enough measurements

though). In summary, the OSP can estimate the RTT between two interdomain POPs as

long as it can determine the number of AS’s between the two POPs (e.g., through BGP

routing feeds) and also construct a measurement-based graph such as Figure 47(b).
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Table 3: Input requirements for each heuristic

Heuristic Customer info Traffic info Performance info
RAND
CUST

√

TRFC
√ √

PERF
√ √ √

6.4 MON design heuristics

The MON design problem involves two major tasks: 1) select up to N locations for placing

MON nodes; 2) select up to K upstream ISPs for each deployed MON node. In this section,

we present four heuristics for the MON design problem. The heuristics differ in terms of their

inputs, ranging from a simple random heuristic (RAND) that does not require any customer

or performance data, to the most complex heuristic (PERF) that utilizes information for

the location of customers, the traffic matrix of each customer, and the native delay matrix

(see Table 3). The heuristics assume that the node deployment cost is the same at all

locations, and the ISPs at the same location have identical pricing functions. The latter is

a reasonable assumption for a stable and competitive ISP market.

6.4.1 Random (RAND)

This heuristic represents a naive approach in which we select N random locations, and

connecting node at location l to a random set of min (K, |Il|) locally present ISPs.

6.4.2 Customer-driven (CUST)

In RAND, different locations and ISPs have equal probabilities of being selected. Obviously,

this strategy will not perform well when customers are not uniformly distributed. CUST

utilizes information about the location of each customer and places N MON nodes at the

locations with the maximum number of customers. Placing MON nodes at those locations

enables more customers to connect to the OSP and therefore it increases revenues. At

each selected location l, CUST then selects the min (K, |Il|) locally present ISPs with the

maximum coverage, i.e., the ISPs that are present at the largest number of locations. The
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intuition here is that larger-coverage ISPs can typically reach traffic destinations through

fewer AS’s, and so they are more likely to provide lower RTTs.

6.4.3 Traffic-driven (TRFC)

Although CUST utilizes the profile of customers locations, it does not consider the traffic

that each customer generates, nor the distribution of traffic destinations. The traffic-driven

heuristic uses the aggregated traffic rate that originates from all potential customers at a

location. TRFC places N MON nodes at the locations with the largest volume of aggregated

customer traffic. By placing MON nodes at locations where “traffic-heavy” customers are

located, more traffic can subscribe to the OSP generating more revenue than CUST. At each

selected location l, TRFC then selects the min (K, |Il|) locally present ISPs that receive the

maximum traffic rate from customers. The intuition here is that an ISP that can deliver

traffic directly to its destination will probably result in lower delays than an ISP that delivers

traffic through other AS’s.

6.4.4 Performance-driven (PERF)

Note that the CUST and TRFC heuristics do not utilize any native delay information.

If there are OSP-preferred direct paths then these two heuristics perform quite well in

identifying a good set of locations, because the DRF routing strategy does not need to

consider indirect paths in that case. If, however, many customer flows only have indirect

OSP-preferred paths, then the previous two heuristics cannot choose good locations for

placing intermediate MON nodes. This motivates the performance-driven heuristic (PERF).

PERF requires an estimate of the native delay matrix T . The key idea in PERF is to select

locations and upstream ISPs that will turn as many flows to OSP-preferred as possible.

The location selection process is performed iteratively. PERF keeps track of the set L̄

of locations that are not yet selected and the set F̄ of flows that are not yet OSP-preferred.

Initially, L̄ = L and F̄ = F . During each iteration, PERF associates a weight WL(l) with

each location l to represent the amount of traffic that can become OSP-preferred if l is

selected. At the beginning of an iteration, all weights are set to zero. PERF then processes

the flows in F̄ sequentially. For each flow f ∈ F̄ , PERF first finds all OSP-preferred MON
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paths for that flow based on the currently chosen locations, assuming that these locations

are multihomed to all locally present ISPs (the assumption will be refined during the ISP

selection phase of the algorithm). Then, PERF updates the weight WL(l) as follows: If l

is the ingress location of a direct path for flow f , WL(l) is increased by the rate rf . If l is

either the ingress or the intermediate location of an indirect path for f , WL(l) is increased

by rf/2. After all flows have been processed, the location with the highest weight is selected

and removed from L̄, and the flows that are now OSP-preferred are removed from F̄ . This

process repeats until we either select N locations or all flows are OSP-preferred. After the

MON node locations have been selected, the OSP-preferred flows are routed based on the

given OSP routing strategy. The set of flows assigned to location l is denoted by FA(l).

Next, PERF enters the ISP selection phase for each selected location l. For each locally

present ISP i, we calculate the weigh WI(i) as the traffic rate of all flows in FA(l) that

use ISP i in their OSP-preferred path. The ISP with the highest weigh is selected and the

process is repeated until either K ISPs are selected or all flows in FA(l) are OSP-preferred.

The pseudo code for the PERF heuristic is shown in Algorithm 7.

Algorithm 7 Performance-driven heuristic
Location selection:

Initialize L̄ = L, F̄ = F ;
Repeat until N locations are selected or F̄ = ∅;
Begin

Initialize weights WL(l) = 0, ∀l ∈ L̄;
For each flow f ∈ F̄ , find all OSP-preferred paths, and update WL(l) as follows:

If l is on a direct OSP-preferred path:
WL(l) = WL(l) + rf ;

If l is on an indirect OSP-preferred path:
WL(l) = WL(l) + rf/2;

Select location l̂ = arg maxl WL(l);
Update L̄=L̄-{l̂} and remove OSP-preferred flows from F̄ ;

End
Assign OSP-preferred flows to selected location l, calculate FA(l);

ISP selection (for each selected location l):
Initialize Ī = Il, F̄ = FA(l);
Repeat until K ISPs are selected or F̄ = ∅;
Begin

Calculate the weight WI(i) as the total traffic in FA(l) that can be OSP-preferred if ISP i is
selected;

Select ISP î = arg maxi WI(i);
Update Ī=Ī-{̂i} and remove the OSP-preferred flows from F̄ ;

End
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6.5 Performance evaluation

We conducted extensive simulations to compare the MON design heuristics, study the OSP

profitability and performance depending on several key parameters (number of MON nodes,

degree of multihoming, node deployment cost, OSP/ISP pricing ratio), and examine various

OSP routing strategies.

6.5.1 Simulation setup

We randomly chose 51 cities in the continental US as the set of POP locations L. The

population of these locations varies from 29,000 to 8,100,000.2 These locations are served,

overall, by 100 ISPs. The average number of ISPs per location is 10, and the number of

ISPs per location is proportional to the logarithm of that locations’s population.

Unless otherwise specified, we assume a population-based customer distribution (CUST-

POPUL), i.e., the number of customers at each location is proportional to that locations’s

population. Furthermore, 70% of the customers are multihomed to 2-4 ISPs (as long as there

are enough ISPs at that location). For a multihomed customer, each flow originates from a

single ISP at that location; the assignment of flows to ISPs is random. We model only the

10 largest flows of each customer; recall that a “flow” in this context is a traffic aggregate

from a customer to a destination POP. The flow destinations are uniformly distributed

across all POPs. The average flow rate follows the gravity model (RATE-GRVTY), i.e., the

rate between a pair of POPs is proportional to the product of the population at the two

locations [68]. The flow rates are normalized by a constant factor so that the average flow

rate is 1Mbps. We set the customer subscription threshold to H=70%. Unless otherwise

specified, the maximum multihoming degree is K=2, and the total number of potential

customers is 500.

An important input to the MON design problem is the ISP pricing function Pp(r) at

each POP p and the OSP/ISP pricing ratio Rp = P̂ (r)/Pp(r). It has been observed that,

at least during the last 10 years or so, ISP capacity pricing shows economies of scale, i.e.,

the price per Mbps drops almost logarithmically with the purchased capacity r [28]. Based

2We have also experimented with the 50 largest US cities and the results are very similar.
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Figure 48: Internet capacity pricing function

on data from [2], and using the previous logarithmic relationship, we model the ISP pricing

function as:

Pp(r) = [118− 13.9 · ln(r)] · r (33)

where r is measured in Mbps and the price is a monthly fee in USD (see Figure 48). Note

that ISP pricing is sometimes done at discrete capacity values, and so the pricing function

can be a discrete step-like function. Here, we assume a usage-based pricing model where

both ISPs and the OSP charge based on the routed traffic volume. For simplicity, we also

assume that the pricing function is the same at all POPs, and that the pricing ratio Rp is

constant with r, the same at all POPs. If these assumptions do not hold in practice, the

MON design process can still use the proposed optimization framework but the evaluation

will be more cumbersome. Unless otherwise specified, the deployment cost per MON node

at any location l is d(l)=$5,000, based on [4], and the pricing ratio Rp=0.8.

6.5.2 Comparison of MON design heuristics

We first compare the four MON design heuristics in terms of OSP profitability as we increase

the number of MON nodes. Together with the default models, CUST-POPUL and RATE-

GRVTY, we also examine models of uniform customer distribution across all locations

(CUST-UNFRM), and uniform traffic rate distribution across all flows (RATE-UNFRM).
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The average flow rate is adjusted in each model to maintain similar maximum traffic load

at the MON nodes.

Figure 49 shows that, as expected, heuristics that utilize more information about cus-

tomers, traffic, or the native network perform better. Specifically, PERF outperforms all

other heuristics, while RAND performs so poorly that it never leads to positive profit. In

the more realistic combination of models, CUST-POPUL and RATE-GRVTY, PERF per-

forms significantly better than other heuristics, providing a maximum monthly profit of

about $50,000 instead of $40,000 with TRFC or CUST (Figure 49(a)). Clearly, the OSP

would have a strong motivation to optimize the MON design process, even if that requires

the collection of more input data. In the following sections we show results only for PERF.

With the CUST-POPUL and RATE-UNFRM models (Figure 49(b)), the OSP has lower

profit, compared to the RATE-GRVTY model, because traffic tends to be more dispersed.

So it becomes harder to aggregate large traffic volumes destined to the same POP and route

them through direct paths. Furthermore, TRFC and PERF do not perform much better

than CUST because the additional information they have about the traffic is not so useful

with the RATE-UNFRM model. With the CUST-UNFRM and RATE-GRVTY models

(Figure 49(c)), CUST performs equally bad with RAND, because in this case placing nodes

where most customers are located is no different than placing nodes randomly. TRFC and

PERF perform better, but the profits are still significantly lower than the CUST-POPUL

model because the OSP cannot place nodes in just a small number of locations where most

customers are. Finally, the CUST-UNFRM and RATE-UNFRM models (Figure 49(d)) do

not lead to OSP profitability, with any of the four heuristics, under the default OSP/ISP

pricing ratio Rp = 0.8. Achieving substantial traffic aggregation with just a few MON nodes

is much harder in this case. At the same time, the OSP has to pay the node deployment

costs and so it does not end up with profit.

112



0 2 4 6 8 10 12
−8

−6

−4

−2

0

2

4

6
x 10

4

Number of MON nodes

O
S

P
 p

ro
fit

 (
U

S
D

)

PERF
TRFC
CUST
RAND

(a) CUST-POPUL, RATE-GRVTY

0 2 4 6 8 10 12
−7

−6

−5

−4

−3

−2

−1

0

1

2

3
x 10

4

Number of MON nodes

O
S

P
 p

ro
fit

 (
U

S
D

)

PERF
TRFC
CUST
RAND

(b) CUST-POPUL, RATE-UNFRM

0 2 4 6 8 10 12
−10

−8

−6

−4

−2

0

2
x 10

4

Number of MON nodes

O
S

P
 p

ro
fit

 (
U

S
D

)

PERF
TRFC
CUST
RAND

(c) CUST-UNFRM, RATE-GRVTY

0 2 4 6 8 10 12
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

Number of MON nodes

O
S

P
 p

ro
fit

 (
U

S
D

)

PERF
TRFC
CUST
RAND

(d) CUST-UNFRM, RATE-UNFRM

Figure 49: OSP profitability under four customer and traffic distribution models

6.5.3 Optimal number of MON nodes

Here we investigate the effect of the number N of MON nodes on OSP performance and

profitability. Figure 50(a) shows that the total number of flows from subscribed customers

increases as more nodes are deployed. This is because more customers become collocated

with MON nodes and the OSP can provide more paths towards each destination POP. As

a result, the number of subscribed customers also increases with N .

Figure 50(b) shows that both the OSP revenues and costs increase with N . The reason

that the revenue increase rate slows down as N increase is that, gradually, there are fewer

new subscribed customers per node. The increase in capacity costs also follows a concave
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Figure 50: Effects of number of MON nodes

shape, because the OSP traffic volume follows a similar pattern. But as N increases,

the amount of traffic per MON node grows more slowly, reducing the economic benefit of

aggregation. On the other hand, the deployment costs increase linearly. The net result, at

least in these simulations where K=2, is that the OSP achieves maximum profit when N

is only 3-4 nodes (as shown in Figure 50(c)). Comparing Figures 50(a) and 50(c), we note

that deploying more nodes attracts more customer flows, but that does not increase the

OSP profit due to increased costs.

Figure 50(d) shows the average native RTT, as well as the average MON RTT, for

all flows from subscribed customers. The results show that by subscribing to the OSP,

customers reduce the average RTT of their flows significantly, by about 40msec in these
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simulations. This is despite the fact that only H=70% of the customer traffic is guaranteed

to have lower MON RTT than native RTT. The reason for this large decrease is because

OSP customers are not a random sample of the customer population. Instead, most of

their traffic goes through long interdomain routes, allowing the OSP to offer significant

RTT improvements through multihoming and overlay routing.

The reason both native and MON RTTs decrease with N is as follows. As N increases,

more flows become subscribed to the OSP, and thus included in the calculation of the

average RTT. These flows, however, tend to have lower native RTTs because they become

OSP-preferred only after the OSP has deployed more than a number of nodes. For the same

reason, the average MON RTT also decreases with N .

6.5.4 Effect of OSP routing strategy

We now examine the effect of the OSP routing strategy, comparing Direct-Routing-First

(DRF) with 1) Minimum-MON-Delay-Routing (MDR), i.e., the OSP routes flows through

the MON (direct or indirect) path with the minimum RTT, and 2) Direct-Routing-Only

(DRO), i.e., the OSP routes flows through direct MON paths only. With the DRO strat-

egy, the OSP operates similarly to InterNAP, a commercial network provider that utilizes

intelligent route control and multihoming, but not overlay routing.

Figure 51(a) shows the average RTT of all flows using these three routing strategies;

the average native RTT is also given for comparison. The results indicate that the OSP

can reduce the RTT relative to native routing with any of the previous routing strategies.

However, by combining multihoming with overlay routing, both DRF and MDR perform

significantly better than DRO. Of course, by definition, MDR results in lower RTT than

DRF, especially for larger N because the number of possible paths increases quickly with

N .

On the other hand, Figure 51(b) shows that the DRF strategy leads to significantly

higher profit than MDR. The reason is that MDR makes extensive use of overlay routing

and indirect paths, and so the OSP often has to pay for upstream capacity at two locations

instead of one to route a flow. The comparison between DRO and DRF is less clear and
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consistent, making the two strategies roughly equivalent in terms of profit. The previous

results show that the DRF strategy achieves a good tradeoff between OSP performance and

profitability: DRF is close to MDR in terms of average RTT, which is much better than

DRO. At the same time DRF is much more profitable than MDR and it is as profitable as

DRO.

6.5.5 Effect of pricing ratio

When the pricing ratio Rp is less than one, the OSP can offer a less expensive service than

the native ISPs for the same traffic volume. If this is a profitable scenario, then the OSP

can be both better and less expensive than native ISPs. Setting Rp too high can also hurt

OSP’s profitability because customers may not be willing to subscribe to the OSP despite

the performance improvements.

In this simulation, we vary Rp from 0.4 to 2, monitoring the OSP profit as a function of

the number of OSP customers. Figure 52 shows that the OSP can be profitable even when

the OSP charges 40% of the ISP price, as long as there are enough customers. The reason

is that, with enough customers, the OSP can achieve large traffic aggregation, and so it can

purchase capacity from upstream ISPs at a lower price per Mbps than what it charges to

its customers. An OSP with lower Rp needs more customers to be profitable. For example,

the OSP only needs 50 customers to break even when Rp=2, but it needs more than 300

customers to make profit when Rp = 0.8.

6.5.6 Effect of maximum multihoming degree

The maximum multihoming degree K is another important parameter because it determines

the local path diversity at each MON node. In the simulations so far, K was set to 2. Now

we examine four values of K, from one (singlehoming) to four ISPs, as we increase the

number of MON nodes N . Figure 53 shows the OSP profit under two node deployment

costs: 1) d(l)=$5,000, representing a new OSP that creates a MON from scratch, and 2)

d(l)=$100, representing an OSP that already has a distributed infrastructure in place (e.g.,

Akamai).

Figure 53(a) shows that, with the higher deployment cost, the best strategy is to place
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a small number of MON nodes (3-5 nodes in our simulations) and connect each node to

2-3 ISPs. Singlehoming is clearly suboptimal, and deploying more than 5-6 nodes quickly

makes the OSP unprofitable. In contrast, Figure 53(b) shows that, with the lower de-

ployment cost, placing several (around 10) singlehomed nodes is a more profitable OSP

configuration. More generally, there is certainly a trade-off between the number of MON

nodes and their multihoming degree. The most profitable point in this trade-off depends on

the node deployment cost relative to what the OSP has to pay for capacity at each POP.
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6.6 Sumarry

We examined the effectiveness of combing multihoming and overlay routing from the prag-

matic perspective of a network provider (OSP) that attempts to be both profitable and also

offer better and less expensive Internet access to its customers. Interestingly, we found out

that it is possible to meet all previous objectives, as long as the OSP can follow the fol-

lowing basic guidelines: 1) use a performance-aware MON design heuristic (such as PERF)

even if that requires additional inputs and measurements, 2) deploy nodes at few locations

where significant traffic aggregation is possible, 3) connect each MON node to ISPs that

can directly reach traffic-heavy destination POPs, 4) give direct paths higher priority than

indirect paths, 5) charge less than the competing native ISPs for the same traffic rate to

attract more customers, and 6) determine the best trade-off between the number of MON

nodes and multihoming degree based on the node deployment cost.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

In this thesis, we address various issues of overlay network design, including the overlay

routing algorithms, overlay network assignment and multihomed overlay networks. We

also examine the behavior of overlay networks under a wide range of network settings

and identify key factors that affects the performance of overlay networks. Based on these

findings, practical design guidelines are also given. In this chapter, we summarize the major

contributions of this thesis, and suggest several topic of future research.

7.1 Research summary

7.1.1 Dynamic overlay routing

In this thesis, we presented a simulation study of dynamic overlay routing. Given that most

previous work focused on delay-driven path selection, we focused instead on avail-bw based

overlay routing algorithms leveraging the recently developed measurements techniques for

end-to-end avail-bw. We considered two main approaches for overlay routing, proactive and

reactive, as well as a number of factors that can affect the performance of these routing

algorithms.

The main conclusions of this study are:

• Reactive overlay routing performs better in terms of efficiency than native or proactive

overlay routing. The efficiency gain compared to native routing can be substantial,

especially if the network is not very lightly loaded. Also, reactive routing is much

much stable than proactive routing.

• Proactive overlay routing performs better in terms of headroom (safety margin) than

native and reactive overlay routing.

• A single intermediate overlay node is sufficient for reactive routing to achieve its
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throughput and headroom gain over native routing. For proactive routing, limiting

the maximum overlay hop count Hmax to two is even more critical in terms of efficiency

and stability.

• The reactive algorithm is quite robust to stale link-state information, and it performs

better than native routing even when the link-state refresh period Pr is a few seconds.

The proactive algorithm, on the other hand, is very sensitive to link-state staleness,

and Pr should be as short as possible.

• A hybrid algorithm that acts reactively in about 90% of the time and proactively in

about 10% of the time, can achieve a good compromise between high throughput,

stability and safety margin, combining the best features of reactive and proactive

routing.

• Overlay routing performs better with longer overlay flows, because the latter create

lower traffic variability. Cross traffic variations can also decrease the performance of

overlay routing, especially when these variations are significant in lower time scales

than the path update period Pu.

• Relative errors in the avail-bw estimation process (which are common and probably

unavoidable) will have negligible impact on the efficiency of hybrid overlay routing.

Absolute or random errors, on the other hand, can have a significant impact.

• Even though native sharing effects can affect the performance of hybrid overlay rout-

ing, ignoring native sharing performs almost equally well with having complete infor-

mation about the native network.

7.1.2 Virtual network assignment

In this thesis, we developed a basic scheme for VN assignment without reconfiguration and

use it as a building block for all other advanced algorithms. Subdividing heuristics and

adaptive optimization strategies are presented to further improve the performance. We also

developed a selective VN reconfiguration scheme that prioritizes the reconfiguration for the

most critical VNs.
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We evaluate the performance of the proposed VN assignment algorithms through ex-

tensive experiments and our findings are summarized as follows:

• The basic VN assignment algorithm performs consistently better than the least-load

algorithm.

• The benefits of subdividing the VN topology are more significant when the VN topol-

ogy is sparse.

• The advantage of proposed VN assignment algorithms is more prominent when the

substrate network is sparsely connected.

• The proposed VN assignment algorithms can effectively avoid hot spots or congestion

in the substrate network (such as the transit-stub links).

• For VN reconfiguration, reconfiguring only a subset of the existing VNs that are most

critical achieves most of the benefits of dynamic reconfiguration while keeping a low

cost. Small reconfiguration threshold and reconfiguration period should be used but

their exact values should be determined by the specific substrate topology to achieve

the desired tradeoff between performance and cost.

7.1.3 Overlay network assignment tool

In this thesis, we design and implement NetFinder, an automatic overlay network configu-

ration tool for PlanetLab. NetFinder continuously collects information about the resource

utilization of PlanetLab and accepts the user-defined overlay topology as inputs. It then

selects the set of PlanetLab nodes and their interconnection for the user overlay. Perfor-

mance evaluation using realistic PlanetLab data demonstrates the advantage of our service

by comparing it with alternative heuristics or existing tools and indicate that NetFinder is

highly effective in locating the available PlanetLab resources and avoid overloaded nodes

and links.
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7.1.4 Multihomed overlay network

This thesis examines the effectiveness of combing multihoming and overlay routing from

the pragmatic perspective of a network provider (OSP) that attempts to be both profitable

and also offer better and less expensive Internet access to its customers. Interestingly, we

found out that it is possible to meet all previous objectives, as long as the OSP can follow

the following basic guidelines: 1) use a performance-aware MON design heuristic (such as

PERF) even if that requires additional inputs and measurements, 2) deploy nodes at few

locations where significant traffic aggregation is possible, 3) connect each MON node to ISPs

that can directly reach traffic-heavy destination POPs, 4) give direct paths higher priority

than indirect paths, 5) charge less than the competing native ISPs for the same traffic rate

to attract more customers, and 6) determine the best trade-off between the number of MON

nodes and multihoming degree based on the node deployment cost.

7.2 Future work

This thesis suggests several topic for future work.

7.2.1 Dynamic overlay routing

In this thesis we chose to ignore bandwidth sharing issues in congested links and congestion

responsive transport mechanisms. Congestion control adds a feedback loop between the

overlay nodes and the network that may interact with the overlay routing feedback loop,

causing effects that are currently largely unexplored [12]. These interactions will be an

interesting topic for future work.

7.2.2 Network virtualization

The future research direction in network virtualization can be categorized into the following

two aspects.

7.2.2.1 Substrate Monitoring and Data Processing

Substrate network monitoring refers to the task of periodically obtaining the multi-metric

substrate network resource availability information. Since the substrate network may have a
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large number of nodes/links, the major challenge is to obtain this information in a timely and

scalable manner. It deserves a sperate study to investigate and develop scalable performance

monitoring schemes to continuously monitor the resource availability in a large substrate

network. To reach this goal, future research should cover the following issues:

• Substrate performance metrics: Evaluate various substrate network performance met-

rics and identify the set of substrate performance metrics most relevant for the purpose

of network virtualization. New performance metrics may also defined when necessary.

• Measurement requirement: Identify key factors that affect the VN assignment per-

formance, investigate the sensitivity of VN assignment performance to the quality of

measurement results such as staleness, granularity, and measurement error. Based

on these findings, we can determine the requirement of substrate layer information,

including the measurement frequency, accuracy and granularity.

• Measurement techniques: For the selected metrics and their measurement require-

ments, it is necessary to investigate existing measurement tools and techniques, iden-

tify their feasibility and limitations on large scale substrate networks. We may propose

possible modifications or design new measurement tools for network visualization to

meet the measurement requirements. Protocols to exchange measurement results also

need to be addressed.

• Scalable and efficient monitoring schemes: Besides modifying the measurement tools

themselves, we can also improve the scalability of the substrate monitoring by per-

forming substrate network measurements in a more intelligent way. For example, one

observation is that not all parts of the substrate network are important for VN assign-

ment. Instead, the overloaded substrate nodes and links are unlikely to be chosen in

the VN assignment process. This means that the information regarding over loaded

parts of the substrate network is not critical to the VN assignment decision and we

may use this information to prioritize the measurement for more critical parts of the

substrate network.
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Another approach is to measure the substrate network in the unit of region. The

intuition behind this is that the overloaded/underloaded links/nodes of the substrate

network tends to form clusters since the resource are used in the unit of a whole VN

instead of isolated virtual links, shown in Figure 54. Therefore, overloaded regions

can be efficiently removed and fine grained measurements only need to be performed

in the remaining substrate network.
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Figure 54: Overloaded regions in the substrate network

Both of the above ideas are expected to decrease the measurement overhead without

penalizing the VN assignment performance.

• Data storage and processing: After getting the substrate network measurement re-

sults, the next step is to process and store the substrate information to enable scalable

resource discovery. The measurement results are processed to keep only the useful in-

formation for VN assignment. Future work should also explore suitable data structure

and searching techniques to support scalable storage and querying for the purpose of

substrate network resource discovery.

7.2.2.2 Control and Maintenance

As the network and demand grow, we may need some specialized VN manager, who is

responsible for discovering resources for VN request and controlling and maintaining VNs

in the substrate network. Future research efforts on VN manager should cover various

design issues as follows:

• Adapting VN changes: One purpose of using VN is for the deployment new network
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technologies. In such scenario, VNs could be deployed in multiple phases. Starting

from small test networks with low bandwidth requirement, the VN can be gradu-

ally expanded in size and bandwidth over time. When a certain VN changes (either

topology change or constraint change), the VN manager should be able to adjust

the assignment accordingly. The adjustment allows the changed VN to better fit

the substrate network and results in more efficient substrate network resource uti-

lization. However, since the adjustment involves shifting the existing VN to its new

assignments, it is desirable that the adjustment could be carried out with minimum

disruption to the existing VN. Furthermore, when future VN changes are planned, it

is an interesting problem to see how a VN manager could assign the substrate network

resources such that future changes do not cause significant adjustments.

• Resilient VN assignment: In the event of network failure, parts of the substrate net-

work may become unavailable which will cause service disruption for all VNs using

them. If VNs become widely deployed, this type of interruption may potentially be

catastrophic. Therefore, providing protection and failure recovery is important to the

continuing development of network virtualization. There are two approaches to build

resilient VNs. First, the substrate network could provide protection from network

failure. However, substrate protection may be slow in responding to network fail-

ures. Alternatively, the individual VN manager could also perform quick recovery for

those affected VNs. However, providing resilience to VNs is challenging since multi-

ple virtual links/nodes are considered concurrently. These two options could also be

coordinated to achieve even better resilience. It will be interesting to investigate both

options and the interaction of these two.

• Distributed VN management: The idea of a VN manager is very flexible. There are

different options for the VN manager: 1) centralized manager where a single manager

controls and maintains all VNs in the network. 2) Disseminated VN manager, where

there are multiple VN managers and each manager manages a certain number of VNs
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(e.g., VN manager in CA is responsible for all VN requests coming from CA). 3) Dis-

tributed VN manager, where a single VN is requested from and controlled by multiple

coordinating managers. Each manager controls part of the VN. Therefore, distributed

VN managers needs to communicate with each other. Examples of disseminated and

distributed VN manager are shown in Figure 55. We can investigate different design

options for VN manager.
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(b) Distributed VN manager

Figure 55: Control plan architecture of VN managers

• More intelligent VN manager: In the VN assignment problem we considered before, a

user submits the VN topology to the VN manager, which in turn discovers and allo-

cates the substrate resources for the request VN. However, in some cases, an ordinary

user may only have a traffic matrix and some constraints (cost, performance) without

a clear idea of what VN topology they need. Therefore, a more intelligent VN man-

ager could first design the VN topology for the user and then perform VN assignment,

control and maintenance. Therefore, given the substrate network information, how to

design a virtual network to satisfy certain traffic demand and constraints is another

interesting problem.

7.2.3 Multihomed overlay network

The MON design problem studied in this thesis is performed at large time scales, namely

months. Therefore, we only focus on static performance metrics such as propagation delay

based RTT. At the same time, there are more dynamic events, such as fluctuations in

available bandwidth and loss rate, network failures. They occur in smaller time scales in the
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native network. To handle these events, the OSP could implement certain dynamic routing

algorithms in the MON network such that MON paths to each important destination is

selected dynamically based on current network situation. Since the MON network combines

both multihoming and overlay network, MHO routing includes both routing within an

overlay and multihoming path selection. It is interesting to investigate the dynamic routing

in the MON scenario and consider the possible interaction/coordiantion between static

MON design and dynamic MON routing.
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