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PREFACE

“There is no royal road to knowledge. [So] always strive to better your best!”

-Dr. Leonard W. Johnson
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SUMMARY

The objective of this research is to develop a methodology to understand the

neural control of movement with aging and applications to the stroke population.

The number of Americans age 65 or older will double to ∼70 million in the next

25 years. Without in-depth research and sophisticated technologies to understand

the mechanisms involved in normal neuromuscular aging, America will struggle to

care for this maturing population. Research in this area will not only benefit the

aging population, but the findings from healthy individuals can then be extrapolated

to investigate clinical populations with disorders influencing their neural control of

movement, specifically stroke patients. One in six people over the age of 55 will

suffer from a stroke, with over 1.1 million elderly (>65 years) Americans reporting

impairment of motor function post-stroke [108].

The work in this dissertation focuses on tasks requiring a level of fine motor con-

trol in the upper extremity because activities involved in daily living require some

level of fine motor control (e.g., dressing, bathing, preparing a meal), and the ability

to perform such tasks can degrade with age and post-stroke. In the controlled ex-

periments, tasks were selected that represent the multiple modalities that might be

involved in performing a task for daily living (e.g., unilateral motor, bilateral motor,

and motor cognitive). To address the research statement of developing a methodology

to interpret the neural control of movement with aging and stroke populations, the

project was divided into four parts. The first portion considers the aspect of the neu-

ral control of movement with a focus on task. The second portion incorporated task

in the context of healthy aging. While the first two parts took more of a statistical
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approach, the third portion models the neural control of movement with aging taking

a data mining approach. Lastly, the fourth portion investigates the neural control of

movement in the stroke population.

The methodological approach incorporated traditional features from the physi-

ology community (corticomuscular coherence and power spectral density) with the

addition of features from time, frequency, and information theory domains. Addi-

tionally, the use of cepstral analysis was modified toward this application to analyze

electroencephalogram and electromyogram signals. Optimal features for distinguish-

ing between young and elderly adults were obtained using forward, backward, and

branch-and-bound feature selection algorithms. The inclusion and optimization of

cepstral features significantly improved classification accuracy. Additionally, classi-

fication of young and elderly adults using Gaussian Mixture Models with Minimum

Classification Error improved overall accuracy values.

Contributions from the dissertation include demonstration of the change in cor-

related activity between muscle and brain with fine motor simple and complex dual

tasks; demonstration of the application and optimization of cepstral analysis for anal-

ysis of muscle and brain activity; a quantitative feature library for characterizing the

neural control of movement with aging under three task conditions; and a methodol-

ogy for the selection and classification of features to characterize the neural control

of movement. Additionally, the dissertation provides functional insight for the asso-

ciation of features with tasks, aging, and clinical conditions. The results of the work

are significant because the automated investigation of the neural control of move-

ment with aging is not well established for the physiology community. From these

contributions, future potential contributions are: 1) a methodology for physiologists

to analyze and interpret data; 2) a computational tool to provide early detection of

neuromuscular disorders in healthy populations; 3) a methodology for assessing the

status and rehabilitation of patient populations.
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CHAPTER I

INTRODUCTION

1.1 Problem Definition

According to the National Institute on Aging (NIA) Health Disparities Strategic Plan

for 2009-2013, the number of Americans age 65 or older (∼35 million) will double in

the next 25 years [98]. The NIA has stated that one of the challenges for the 21st

Century is to better understand the aging process “to make these added years as

healthy and productive as possible” [98]. As a result, the NIA aims to “understand

the mechanisms involved in normal brain aging; the role of cognition in everyday

functioning; protective factors for sensory, motor, emotional, and cognitive function;

and the pathogenesis of Alzheimer’s Disease and other neurodegenerative disorders

of aging within health disparity populations” [98]. With this in mind, sophisticated

technologies are necessary to advance research in this domain. Methodologies proven

successful for healthy adults can then be extrapolated to investigate clinical popu-

lations with disorders influencing their neural control of movement. This rationale

is supported by one of the goals of the National Institute of Neurological Disorders

and Stroke (NINDS) goals to “understand how the normal brain and nervous system

develop and work, and what goes wrong in disease” [99]. With this knowledge, the

second goal is to “translate basic and clinical discoveries into better ways to prevent

and treat neurological disorders.”

This work creates a methodology for understanding the neural control of move-

ment with aging, using both statistical and data mining approaches, with applications

to clinical populations. The work employs features from the time, frequency, and in-

formation theory domains, in addition to the novel application of cepstral analysis,
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to provide functional insight to the neural control of movement with aging. In addi-

tion, the data mining approach uses optimization of classification schemes specifically

aimed at minimizing classification error, to improve electroencephalogram (EEG) and

electromyogram (EMG) analysis. This research is the first of its kind to create a

methodology for understanding the neural control of movement during fine motor

tasks with aging using data mining methodologies adding value to previous work. A

long range goal of the research is to provide a computational tool for physiologist

to analyze and interpret data, with the ultimate goal being a tool to provide early

detection of neuromuscular disorders in healthy populations.

1.2 Research Aims

Aim 1: Modulation of the Neural Control of Movement with Task

Approach: Determine how the neural control of movement (EEG and EMG) are

influenced by unilateral motor task and concurrent motor tasks (bilateral motor and

motor cognitive) utilizing classical features of coherence, power spectral density and

coefficient of variation. In addition, assess the potential association between the

frequency and time domain features.

Test the modulation of the neural control of movement with two tasks:

1. Simple task

2. Complex task

Hypothesis: Corticomuscular coherence would decrease with an additional motor

or cognitive task because attention is divided from the primary motor task.

Aim 2: Neural Control of Movement with Aging

Approach: Determine the influence of aging on the features in Aim 1 using a

unilateral motor task and concurrent motor tasks (additional motor and non-motor).
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Test the modulation of the neural control of movement between young and elderly

adults using the complex task from Aim 1.

Hypothesis: Beta-band corticomuscular coherence in elderly adults will be lower in

the beta band and greater in the alpha band when compared to young adults during

dual tasks, due to greater influences of divided attention.

Aim 3: Model the Neural Control of Movement

Approach: Develop a set of features that best distinguish between aging (young

and elderly) during unilateral and concurrent motor/cognitive tasks.

1. Determine the appropriate parameters for feature extraction.

2. Determine the optimal subset of features from time, frequency, and information

theory domains. Test automatic speech recognition features (cepstrum) for

application to EEG and EMG and signal classification.

3. Classify selected features to provide proof of concept for a methodology and

computational tool to be used by physiologists in practical applications.

Aim 4: Neural Control of Movement Post-Stroke

Approach: Apply the methodology of data preparation, feature selection, and

classification to motor stroke data to validate the proposed methodology and suggest

how it may be applied to future clinical applications.

Hypothesis: Stroke subjects will exhibit beta-band corticomuscular coherence dur-

ing the unilateral motor task (however less than the control group) and a decrease in

coherence with an additional motor or cognitive task. Additionally, despite recovery,

frequency, automatic speech recognition and time domain features will be attenuated

due to neural plasticity in the stroke population.
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Figure 1: Research Overview.

1.3 Organization of the Study

The remaining portions of the dissertation are organized into seven chapters and ap-

pendices. Chapter 2 provides a review of relevant literature addressing the general

background and motivation for the dissertation work. The experimental approach to

address the research statement is presented in Chapter 3. The next three chapters

address Aims one through three. Within each of these chapters, the aim is reiter-

ated, the specific methodology is explained, followed by results and discussion of the

findings. The work from chapters 4, 5, and 6 is extended in Chapter 7 and applied

to a clinical population (stroke) by considering the influence of task and the poten-

tial application of the methodology. A summary and integration of the dissertation

findings, and suggestions for future work are discussed in the final chapter.
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CHAPTER II

BACKGROUND

2.1 Physiological Signals

Electroencephalogram. Activity of the brain can be measured in a variety of

ways, such as with electroencephalogram (EEG), magnetoencephalogram (MEG),

and functional magnetic resonance imaging (fMRI). MEG measures the magnetic

fields generated by the electrical activity in the brain. Based on Maxwell’s equations,

any electrical current will produce an orthogonally-oriented magnetic field. MEG

measures this field to find the locations of the neuronal sources in the brain. In

comparison to EEG, MEG has good spatial and temporal resolution, but it is very

expensive. Despite MEG and EEG being sensitive to different cortical sources (MEG

to tangential dipole sources in the sulci and EEG to sources in the cortical gyri) [97],

the use of EEG to investigate functional aspects of cortical activity during voluntary

movement in humans is comparable to the use of MEG [44]. As opposed to EEG,

fMRI provides an indirect measure of brain electrical activity by measuring the change

in blood flow [51]. Active regions of the brain require more oxygen; therefore, fMRI

provides a comparison of the blood oxygen levels in different regions of the brain.

The temporal resolution of fMRI is approximately seconds, whereas the temporal

resolution of EEG is milliseconds. Simplicity and reliability are advantages of EEG.

Most importantly, the availability, cost, and non-invasiveness make EEG a feasible

tool for university research settings.

Conventional measurement of EEG via scalp surface electrodes is based on the

International 10-20 System of Electrode Placement defined by H. Jasper in 1958

[54]. The name of the system (10-20) is based on the distances for placement of
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Figure 2: Standard 64-channel EEG channel layout (International 10-20 system)
modified from [54].

the electrodes. Distances from the outer limits of the scalp in both longitudinal and

transversal planes are divided into segments with a length of 10% and 20% of the

total measured distance (Figure 2). The outer limits of the scalp are based on the

nasion, inion, and the preaurical points of the earlobes.

EEG electrodes on the scalp record activity from a large number of neurons in

underlying regions of the brain. The source of the activity is associated with post-

synaptic potentials as opposed to action potentials, but the fundamental source-field

relations are the same [104]. The assumed source of current causing the fluctuating

scalp potential is primarily the pyramidal neurons and their synaptic connections to

deeper layers of the cortex. Contributions from interneurons and glial cells to the

EEG are small in comparison to the pyramidal neurons because their cells are not

oriented in parallel, and their dendrites are not perpendicular to the cortical surface
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like pyramidal neurons. The fluctuating scalp potential is a result of the reciprocal

interaction of excitatory and inhibitory postsynaptic potentials. Excitatory postsy-

naptic potentials increase internal potentials, and inhibitory postsynaptic potentials

decrease internal potentials [97]. The membrane potentials of groups of neurons are

generating a small electrical field that changes over time.

EEG signal activity is predominately within the frequency range of 0.5 to 55 Hz.

This spectrum can be partitioned into several frequency bands characterizing brain

activity. The main EEG frequency bands are delta (≈0.5 - 4 Hz), theta (≈4 - 7 Hz),

alpha (≈8 - 14 Hz), beta (≈15 - 32 Hz), and gamma (≈33 - 55 Hz). The dissertation

primarily focused on the beta range of frequencies because beta-band rhythms are

related to movement planning and production with activity localized around 20 Hz

in the motor cortex [145, 3, 95].

Electromyogram. Electromyography is a method of monitoring the bioelectrical

signals generated by the activity of skeletal muscles. The recording of the signals is

called the electromyogram (EMG). Surface EMG is a non-invasive way to measure

the composite of all muscle fiber action potentials occurring in the muscle under

the skin where the surface electrode is placed (Figure 3). The action potentials are

independent and occur at somewhat random intervals.

2.2 Task

The aim of the NIA is critical because the majority of everyday motor tasks necessitate

the use of bimanual movements or concurrent cognitive processing. Compared with a

simple unimanual movement, the involvement of additional tasks, such as additional

contralateral movement or cognitive processing, accompanies divided attention and

decreases the quality of motor performance in healthy individuals and often more so in

elderly adults and patients with movement disorders (stroke) [56, 79, 7, 37, 146, 138,

49]. In particular, an additional task degrades fine motor performance such as motor
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Figure 3: EMG signal formed from the linear summation of motor unit action po-
tentials ([4], page 81).

steadiness and accuracy [146, 138]. Divided or reduced attention to a motor task

influences neural activity, such as motor unity activity [114] and increased cortical

activation of the supplementary motor area (17) and areas controlling higher-order

processing (23). Recent studies imply that attention or fine motor performance may

be associated with the amount of coherent activity between the motor cortex and

muscle in the beta-band frequency range [76, 82].

The current method of determining corticomuscular coupling in the physiology

community is using coherence analysis. Corticomuscular coherence between EMG in

a contracting muscle and EEG or MEG in the contralateral hemisphere represents

the synchronized oscillatory discharges of corticospinal cells [2, 20, 73] during muscle

contraction. This synchronized oscillatory activity is dominant within the beta band

for motor tasks [20, 44, 72, 87]. Alpha-band corticomuscular coherence is not domi-

nant during motor tasks; however, significant peaks of corticomuscular coherence have

been observed within the alpha band in some motor tasks requiring a distribution of
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attention to the task [33, 77] and rapid movements of the wrist [21]. Alterations in

the magnitude of corticomuscular coherence are regarded as the net result of multiple

factors. Corticomuscular coherence appears to be influenced by task characteristics

[33, 72, 77, 88], immobilization [82], muscle [43, 130], and visuo-motor learning [101].

However, the influence of advanced aging on and the functional significance of corti-

comuscular coherence are unclear.

Compared with the simple unilateral tasks, the influence of an additional task

on beta-band coherence is rarely examined. One study [77] showed that, when a

subject performed high-precision hand motor task with a concurrent cognitive task,

the percentage of trials showing significant beta band coherence decreased from 23%

to ≈ 12%. Another study [74] showed that the temporal profile of coherence between

the right motor cortex and left hand performing steady contraction was modulated

by the concurrent right-hand movement. Despite the fact that beta band coherence

is susceptible to many factors as stated above, there is no study that systematically

examines the influence of distinct types of additional tasks, cognitive and motor, on

beta band coherence under the same condition for the performing hand.

2.3 Population

2.3.1 Aging

Advanced aging often degrades fine motor performance that can be attributed to

several factors including age-associated alterations in information processing, motor

neuron organization, and neuromotor activity [27, 113, 118, 116, 119]. While it is

commonly accepted that with advanced age comes reductions in cognitive demanding

tasks [22]; there are cases when elderly adults do not exhibit significant reductions

and show signs of improvement as they progress through elderly age [19]. With this

in mind, the ability to classify someone as young or elderly should not be taken for

granted or assumed simply because their age is available. Measures of biological
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changes with age provide the necessary information for understanding senescence.

While neural activity during motor tasks is often altered in elderly adults com-

pared with young adults in various aspects including EMG power [42, 124, 131], EEG

power [113, 133], and motor unit discharge strategies such as coherence [115, 116, 118],

the effects of aging on corticomuscular coherence have been observed from childhood

to middle age only [42, 53]. During a unilateral task, corticomuscular coherence within

the beta band increased with development and aging from childhood (0 years old) to

middle age (35 and 59 years old [42, 53], but not to senior age (55-80 years old) [42].

Alpha-band corticomuscular coherence during unilateral task was observed within el-

derly adults (55-80 years old) in more cases than within young adults (21-35 years

old), but no significant difference was reported on the magnitude of coherence [42].

Hence, the current knowledge from only a few studies for elderly adults is that there is

no significant change in the magnitude of corticomuscular coherence post-adulthood

(>60 years old) although alpha band corticomuscular coherence might increase at

senior age.

The execution of a task requiring divided attention degrades performance and

often more so in elderly adults [7, 49, 138]. In particular, divided attention with dual

tasks induces greater changes in neuromuscular activity [107] and task performance in

elderly than young adults [86, 138] likely because elderly adults have less attentional

resources or require more attention for performing a task [135]. Considering these

more responsive neuromotor characteristics with regard to attention in elderly than

young adults, corticomuscular coherence in elderly adults would be less in the beta

band and greater in the alpha band compared with young adults if they perform tasks

requiring substantial divided attention.
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2.3.2 Stroke

A stroke occurs when regular blood flow to the brain is interrupted, causing a lack

of oxygen which subsequently results in brain cells dying and potentially permanent

damage (infarction) [64]. There are two major types of stroke, ischemic and hem-

orrhagic. An ischemic stroke occurs when blood flow to a portion of the brain is

interrupted because of a blockage within a blood vessel. Hemorrhagic strokes occur

when a blood vessel ruptures and bleeds within a particular area of the brain. The

majority of strokes are ischemic in nature, therefore ischemic strokes were evaluated

in the current work. According to a 2007 report from the American Heart Associa-

tion Statistics Committee and Stroke Statistics Subcommittee, 87% of all strokes are

ischemic in nature [108]. Additionally, one in six people over the age of 55 will suffer

from a stroke, with over 1.1 million elderly (>65 years) Americans reporting impair-

ment of motor function post-stroke [108]. Impairment of motor function may take

the form of hemiparesis or hemiplegia of the upper limbs. Recovery of hand motor

function is important for regaining control of tasks involved in daily living such as

buttoning a shirt, opening a jar, or tying a shoe lace.

The residual motor deficits in elderly individuals are greater in comparison to

young individuals at least six months post-stroke [69]. It is well known that brain

neural plasticity changes following stroke to compensate for degenerated hemispher-

ical areas [55]. Current research has shown decreased beta-band corticomuscular

coherence of the affected side compared with the unaffected side in distal muscles

of well-recovered patients with a subcortical infarction [89], and decreased beta- and

gamma-band corticomuscular coherence during reaching in poorly recovered patients

[29]. Cortico-cortical coherence research has also shown that while dominant beta

band left hemisphere networks are responsible for praxis preparation of hand move-

ments in healthy subjects, coherence is absent in the left hemisphere of stroke patients

[141].
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2.4 Feature Analysis

Feature extraction is the process of computing quantitative information (features)

over a sliding window of data points, yielding a new time series of scalar quantities.

This process reduces the data size, which decreases computation time, thus com-

putational costs. Traditional pattern classification includes the following modules:

preprocessing, feature extraction, feature selection, and classification [24]. Feature

extraction and selection are considered one of the most important modules [71, 24]

because if an extracted feature has low separation between groups, then the classifier

will consequently demonstrate poor discrimination of the groups. If the computa-

tional demands of a classifier depend upon the performance of the features that it

processes, it is more efficient to select quality features prior to classification to avoid

unnecessary complex processing.

Feature selection algorithms aim to select a subset of features that reduce the fea-

ture space dimensionality and maximize the separation between classes [24]. Given a

set of M features, the selection algorithm chooses a subset of size m <M, which op-

timizes the objective function J(.). Optimization occurs by minimizing classification

error or maximizing class separation. Objective functions are commonly optimized

using two methods: filters or wrappers. Filters evaluate subsets based on interclass

distance, statistical dependence or information content without the use of a classifier

[13]. Wrappers evaluate subsets using classifiers based on their predictive accuracy.

While filters are computationally less demanding, they tend to have lower classifi-

cation accuracies and select large subsets as the optimal solution. Another form

of feature selection is the transformation of features into lower dimensional space

in order to reduce the number of correlated features. The challenge with feature

transformation is the ability to functionally explain the reduced feature set or fused

feature. Chapter 6 provides a comparison of forward feature selection, backward

feature selection, and branch and bound selection.
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As alluded to, analysis in this area is dominated by the coherence and power

spectral density features, with periodic inclusion of time domain features (mean,

standard deviation, and coefficient of variation). While these features have provided

significant insight, other features more appropriate for characterizing age-dependent

changes in biological data have the potential to provide more information. Features

involving genetic algorithms have also been applied to biological data; however, after

the fusion of features, the functional implications can no longer be explained by

physiologists. A medium between traditional features from physiologists and high-

order features is desired, in conjunction with tools for selecting and classifying these

features. The stochastic and non-linear nature of the EEG and EMG signals suggests

that the inclusion of information theory and non-linear features might provide more

information to the nature of the characteristic changes with advanced aging [80]. The

challenge with non-linear features is the high computational demand making the use

of non-linear features a challenge for real-time applications.

Another feature set that has the potential to provide more information on the

energy and frequency content, and not conflict with the statistical assumptions of the

signals, are automatic speech recognition (ASR) features, the real cepstrum, and Mel

Frequency Cepstral Coefficients (MFCC). The real cepstrum is the inverse Fourier

transform of the real logarithm of the magnitude of the Fourier transform of a signal.

MFCCs are short-term frequency based features obtained by calculating the discrete

Fourier transform of a specified window, extracting the log of the amplitude spectrum

ignoring the phase component, then converting the latter to a Mel spectrum, and

finally computing the Discrete Cosine Transform. The real cepstrum and MFCCs

have long been applied to speech signals [106] and more recently for music modeling

[81]. Despite both speech and EEG signals having significant spectral characteristics

the application of automatic speech recognition (ASR) features for biological data is

only recently being investigated. Preliminary research has looked at the application of
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the cepstrum to extracellular neural spike detection [117] and neonatal EEG signals

for seizure detection [128]. These works have only considered computing the real

cepstrum and lack examination of the application and interpretation of the results.

2.5 Classification

Classification uses feature characteristics to assign a class label to an unknown seg-

ment [134]. Learning occurs as the classifier uses a training set to estimate unknown

parameters and optimize the function representing the classification error [24]. The

dissertation utilized a supervised learning approach where the class labels for each

feature window were provided for training.

To the author’s knowledge, aging research on the classification of young and elderly

adults has been limited to gait and balance analysis using support vector machines

(SVMs) [8]. Automatic classification of gait patterns in young and elderly adults

was reported with a maximum of 90% classification accuracy using a support vector

machine [8]. The research has focused on identifying features to reflect gait degener-

ation in hopes of understanding falls in young and elderly adults. Features reflecting

complexity and variability have been considered; however, biological signals were not

include.

In alignment with being prepared to care for the aging population of the United

States and the world, other aging research classified tasks of daily living using sensor

data in smart homes with SVMs [34]. The dissertation builds upon this body of

literature by considering classification of young and elderly adults during fine motor

upper extremity motor tasks with the inclusion of biological data.
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CHAPTER III

EXPERIMENTAL DESIGN

3.1 Experimental Overview

The neural control of movement can encompass numerous motor tasks. The disser-

tation focused on tasks requiring a level of fine motor control in the upper extremity

because activities involved in daily living often require some level of fine motor control

(e.g., dressing, bathing, preparing a meal). In the controlled experiments, tasks were

selected that represent the multiple modalities that might be involved in performing a

task for daily living. Examples include, the use of one hand to brush teeth (unilateral

motor), two hands to open a jar or get dressed (bilateral motor), and the use of a

hand and cognitive processing to receive and count change after making a purchase

(motor cognitive). To address the research statement of developing a methodology

to interpret the neural control of movement with aging and stroke populations, the

project was broken into four parts. The first portion considered the neural control of

movement primarily focusing on task. The second portion incorporated task in the

context of healthy aging. The third portion developed a methodology to assess the

change in the neural control of movement with aging. Lastly, the fourth portion in-

vestigated the neural control of movement in the stroke population by drawing upon

the techniques and findings from the previous portions of the work.

The neural control of movement with task dependence was assessed using two

levels of task difficulty. The first study considered the neural control of movement

with a simple task, where for the dual task involving two motor modalities each were

synchronized. The dual task involved a motor and cognitive aspect with a longer

time duration for cognitive processing in comparison to the second study. The second
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study increased the difficulty of the additional tasks by modulating the timing and

synchronicity of the additional task. The change to an asynchronous and dynamic

task was used to increase task difficulty [111].

This chapter provides an overview of the recruitment of subjects and collection of

data for the study.

3.2 Subject Recruitment

Healthy right-hand dominant adults were recruited from the campus of Georgia In-

stitute of Technology and the surrounding Atlanta area.

• Aim 1

– Simple Task: Young adults (n=10), mean age: 27.1 ± 4.0 yrs; 5 females

and 5 males

– Complex Task: Young adults (n=10) 24.9 ± 7.1 yrs; 6 females and 4 males

• Aim 2

– Young adults (n=16), mean age: 23.9 ± 5.8 yrs; 10 females and 6 males

– Elderly adults (n=13), mean age: 69.2 ± 4.7 yrs; 7 females and 6 males

• Aim 3

– Young adults (n=10), mean age: 24.9 ± 7.1 yrs; 6 females and 4 males

– Elderly adults (n=10), mean age: 70.3 ± 4.2 yrs; 4 females and 6 males

Subjects were comprised of individuals who were free from high- or low-blood pressure,

pregnancy, arthritis in their hands, history of neurological disorder, diabetes, skin

allergies, and medication use that might influence motor control and/or neurological

function. These factors were considered exclusion criteria because of their potential to

erroneously influence EEG and/or EMG recordings. In addition, another constraint
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in this investigation is the risk of population bias by choosing to sample only healthy

older adults not having ailments typically associated with the aging process. Although

this factor is acknowledged, the current research is focused on the effects of healthy

aging to create a baseline for future research studies.

Subjects were instructed to refrain from caffeine and nicotine 2-3 hours prior to

the experiment to control for varying levels of anxiety or awareness. Before beginning

each experiment, hand dominance and cognitive state were measured according to the

Edinburgh Handedness Inventory [100] (Appendix A) and a modified Mini-Mental

State Exam (MMSE) [35] (Appendix B), respectively. Each subject’s written consent

was obtained prior to the experiment in accordance with the Institutional Review

Board (IRB) of the Georgia Institute of Technology.

Additionally, approval was obtained from the Georgia Institute of Technology

Institutional Review Board (IRB) for the collection of 3 right-hemispheric stroke

subjects over the age of 40 years for the purpose of showing application to a patient

population in Aim 4 (n=3, age: 51.7 ± 9.1 yrs, 2 females, 1 male). All subjects were

right hand dominant. Subjects were physically and cognitively healthy with no history

of neurological disorder outside of stroke. In addition, subjects with no hand move-

ment, more than minimal neglect, uncontrolled high- or low-blood pressure, arthritis

in their hands, skin allergies, or taking medications that affect motor control (outside

of ones for the stroke) were excluded from the study. Lastly, stroke subjects were in-

cluded if they met the following criteria: at least 6 months post-stroke, demonstrated

spontaneous recovery, and have minimum neglect of the impaired upper extremity.

Stroke subjects were recruited with the assistance of Dr. Steve Wolf and colleagues

at Emory University.
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3.3 Experimental Setup

All experiments were conducted in the Centennial Research Building on the cam-

pus of the Georgia Institute of Technology. Subjects were seated in an electrically

shielded, dimly-lit room with their hands and forearms pronated and supported in

rigid vacuum foam pads (Figure 4). The left and right shoulders were abducted at

approximately 35◦. The index finger was placed in a finger splint with all interpha-

langeal joints extended. All other fingers were fixed to a platform with Velcro straps.

The metacarpophalangeal joint was in the neutral position such that the index finger

was level with a force transducer during the measurement. Contraction intensity for

the motor tasks was based on the subject’s maximal voluntary contraction (MVC)

force. Visual feedback of target and actual force levels was displayed on the monitor

for all tasks. Performance of all motor task utilized the experimental setup designed

by the author (Figure 4).

MVC.

Prior to the experimental tasks, maximal voluntary contraction (MVC) was per-

formed to obtain the maximum abduction force independently exerted by the right

and left index fingers. The MVC task consisted of a gradual increase in force from

zero to maximum over 3 s, with the maximal force held for 2 to 3 s. The task was

conducted by abducting the index finger and pulling on a rigid piece connected to a

force transducer (21.3-21.4 N/V; Model 34, Honeywell, Ohio, USA). Subjects were

verbally encouraged to achieve maximal force while the force exerted by the index

finger was visually displayed on a monitor in front of the subjects. Three to four

trials were performed, excluding trials not within 5% of maximal force of each other.

Recordings

EMG.
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Figure 4: Experimental setup for young adults.

Surface EMG was recorded from the first dorsal interosseous (FDI) muscle on the

left and right hands during the motor tasks. The FDI muscle was selected because

it is responsible for approximately 93% of the abduction force exerted by the index

finger [18]. Electrical recordings are accurate and reliable because the muscle has a

small mass [68] that is isolated, thus when recording the abduction force from the

FDI muscle there is limited interference from surrounding muscles. The intensity of

steady contraction tasks was ≤ 10% of the MVC force for all experiments, which is

an intensity commonly used during activities of daily living [70].

The ActiveTwo Biosemi electrode system (Biosemi, Amsterdam, The Nether-

lands) was used to obtain EMG. This system is equipped with a miniature preamp

adjacent to each electrode to reduce the contamination of electrical noise. To further

reduce electrical noise contributions, a battery powered A/D box digitizes the signals

and transfers them to a computer through a fiber optic connection. One active Ag-

AgCl EMG electrode (diameter: 4 mm) was placed over the belly of the muscle and

the other was attached to the skin over the base of the proximal phalanx of the index

finger. A reference electrode was placed on the radial styloid process on the dorsal

surface of the hand.
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EEG.

Cortical EEG signals were recorded using the international 10-20 electrode placement

method from C3 (left motor cortex) and C4 (right motor cortex) referenced to Cz.

An EEG electrode cap was placed on the subject’s head to assist with collection (Fig-

ure 4). The electro-oculogram (EOG) generated from blinks and eye movement was

recorded from three facial electrodes: one ∼1 cm to the left of the left eye, one ∼1 cm

to the right of the right eye, and one in between the left and right eyebrows. EEG and

EOG were also obtained with the ActiveTwo Biosemi electrode system. The ground

signal was recorded from a scalp electrode in the center of the EEG electrode array.

The ActiveTwo system uses a gain of least significant bit equal to 31.25 nV, with a

1% gain accuracy. All bioelectric signals were digitized on a computer using ActiView

software (Biosemi, Amsterdam, The Netherlands) and sampled at 2048 samples/s.

Force.

Force generated by index finger abduction was sensed by the transducer connected

to an amplifier (Transbridge 4M, World Precision Instruments, Sarasota, Florida,

USA). Target and actual forces were digitized at 2048 samples/s, in parallel with

electrophysiological data, using an analogue-to-digital converter (Power 1401, Cam-

bridge Electronic Design, Cambridge, UK). The force and electrophysiological data

were synchronized with the concurrent recording of the synchronization pulse.

3.4 Preprocessing of Data

Care was taken to provide a comfortable and relaxed experimental environment within

an electrically shielded room. To account for movement and electrodermal artifacts,

portions of the body not involved in the task were constrained, and the subject

was provided specific instruction not to move. The electrodermal artifacts are seen
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particularly in the EEG signal, although they are also observed in EMG as very low-

frequency signals typically in the range of 0.25 to 0.5 Hz. While the amplitude of

electrodermal artifacts may impact the EEG, these artifacts can be easily removed

with a high-pass filter because of their localization in the low frequency range [1].

Electrodermal artifacts were also accounted for by requesting that subjects wash

their hair the night before testing to ensure a clean scalp and by maintaining a com-

fortable temperature in the laboratory. Electrodes were treated with salt water prior

to all experiments to maintain optimal impedance levels. Preprocessing consisted

of preparing the signals for analysis. Data during the steady phases of force (10-s

period) were used for analysis. EOG data was monitored in real-time for excessive

eye blinks. Trials with excessive eye blinks (> 5 blinks per 12 seconds) were excluded

and subjects were asked to repeat the trial.

The data was filtered using a 4th-order butterworth filter for Aims 1 and 2, and

10th-order butterworth filter for Aims 3 and 4. In both cases, the specified filter

parameters for the stop and passbands were verified. The butterworth filter was

selected for the flat passband and for being monotonic overall. While the monotonicity

is a trade-off for the rolloff steepness, a higher order can increase the rolloff steepness.

A concern for the use of an infinite impulse response (IIR) filter versus a finite-impulse

response (FIR) filter is the potential non-linear phase distortion. This is a concern for

real-time systems where all of the data is not available prior to filtering. In the case

of the present work, all analysis is performed offline using script written in MATLAB

(Mathworks, Natick, MA, USA) thus all data is available prior to filtering. Also, the

Matlab function ’filtfilt’ was used and it is a zero-phase digital filter, thus accounting

for the potential non-linear phase distortion with IIR filters.

The EEG and EMG signals were analyzed using a bipolar configuration to mini-

mize the common mode artifact. The EEG signal was band-pass filtered (5-200 Hz)

and detrended. This removes the baseline drift DC voltage that is sometimes present
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in EEG and EMG signals. These steps also remove any high frequency noise not

containing relevant information. A rectified EMG signal was obtained from the bipo-

lar EMG that was band-pass filtered (10-500 Hz), full-wave rectified, and detrended.

The EMG signal was rectified prior to power and coherence analysis according to the

literature [44, 87, 112, 17] to reflect the timing and firing pattern of grouped motor

units [92, 143]. Recent studies have questioned the appropriateness of rectified EMG

for frequency analysis [93, 126]. The argument is that rectified EMG introduces a

strong non-linearity, and the process is not based on neurophysiological properties.

While the results in [126] showed suppressed coherence and power in certain fre-

quency bands, the results were all based on simulations. The author of the present

work investigated and presented a direct comparison of rectifying and not rectifying

the EMG signal [57] and a statistical difference was not observed. It is of note that

further research might continue to investigate the process of rectification to form a

consensus.
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CHAPTER IV

NEURAL CONTROL OF MOVEMENT WITH TASK

The neural control of movement was assessed using two levels of task difficulty. The

first study considered how the neural control of movement was effected by simple

tasks, and the second study increased the difficulty of the additional tasks by modu-

lating the timing and synchronicity of the additional tasks.

Aim 1: Modulation of the Neural Control of Movement with Task

Approach: Determine how the neural control of movement (EEG and EMG) is

influenced by unilateral motor task and concurrent motor tasks (additional motor

and non-motor) utilizing classical features of coherence, power spectral density, and

coefficient of variation. In addition, assess the potential association between the

frequency and time domain features.

Test the modulation of the neural control of movement with two tasks:

1. Simple task

2. Complex task

Hypothesis: Corticomuscular coherence would decrease with an additional motor

or cognitive task because attention is divided from the primary motor task.

4.1 First Study Methodology: Neural Control of Movement
Simple Task

Subjects were instructed to keep their head straight and minimize the number of

extraneous movements, including eye blinks, during the actual trial for all tasks.
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Instructions were provided to wait for a signal on the screen to begin the trial. The

experimenter counted down from three to one to ensure the subject was prepared for

the trial. After a 2-s delay, a red box turned green indicating to the subject to begin

the trial.

Five tasks were performed: unilateral abduction of the right index finger (uni-

lateral motor task); unilateral abduction of the left index finger (unilateral motor

task); cognitive task involving arithmetic and memory (cognitive task); concurrent

cognitive-motor task with the right finger (motor-cognitive task); and bilateral motor-

motor task with the left and right index fingers (motor-motor task). The unilateral

motor task with the left hand and independent cognitive task were included to yield

control values for comparison to additional motor and cognitive tasks.

Motor tasks. The motor tasks involved abduction of the index finger. A light-weight

compliant spring (stiffness: 0.8 N/mm, mass: 0.24 g) was attached to the finger-splint

between the ulnar side of the index finger at the distal interphalangeal joint and a

force transducer (9.1-9.2 N/V; Model 31, Honeywell, Ohio, USA). Thus, when the

index finger was abducted, the spring would pull on the force transducer. The spring

was used because the primary feature of interest, corticomuscular coherence, is more

evident with the addition of compliance in the transmission of force [72]. Subjects

were instructed to exert force matching 5% and 10% of their MVC force by abducting

the index finger of the left and right hands independently or concurrently (Figure 5).

Each level was matched for 10 s with 2 s for ramping to the next level continuously

(order: 5%, 10%, 5%, 10%; 48 s for one trial) (Figure 6). Subjects were instructed

to keep their finger fully extended in a finger splint and level during the motor tasks.

The same experimental procedures were used for left and right hand tasks.

Cognitive tasks. During the cognitive task, subjects were asked to solve four math-

ematical problems (2-digit addition and subtraction) and remember the answers until
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Figure 5: Representative recordings of force and rectified EMG in the first dorsal
interosseus muscle during the unilateral motor task performed by the right hand. The
first 5% and 10% MVC levels are shown.

Figure 6: Simple task. Unilateral motor, bilateral motor, and motor cognitive tasks.
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the end of each trial (48-s duration). The mathematical problems were displayed on

the monitor in front of the subjects. They were asked to verbally recall the four

answers at the end of the trial.

Data Analysis The power spectrum of EEG, rectified EMG, and coherence between

EEG and EMG were determined for each trial. Power spectra (Eq. 2) and coherence

(Eq. 1) were calculated over 2048-point FFT segments with 50% overlap. The total

power of the EEG and EMG signals was calculated within the beta band (15-30 Hz)

and full band (0-60 Hz). Corticomuscular coherence was computed between C3 and

the rectified EMG signal in the right hand. Coherence, Cxy(f), is the square of the

cross-spectrum of the two signals, normalized by the product of the auto-spectra of

each individual signal over frequency, f .

| Cxy(f) |2= | Pxy(f) |2
Pxx(f)Pyy(f)

(1)

where f is the frequency of interest, Pxx(f) (resp. Pyy(f)) is the power spectrum

of the signal x(t) (resp. y(t)), and Pxy(f) is the cross power spectrum of those two

signals. With a continuous time signal, the power spectrum is defined as the square

of the modulus of the Fourier transform of the signal, where Pxx(f) is the power

spectrum and F (f) is the Fourier transform of the time signal.

Pxx(f) = Fx(f)F
∗
x (f) =| Fx(f) |2 (2)

The amplitude of P (f) is always positive for a real signal, and represents that

signal power which exists in the frequency interval f to f + df . The cross power

spectrum, Pxy(f), can be calculated between two signals x(t) and y(t) as,

Pxy(f) = Fx(f)F
∗
y (f) (3)
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Coherence is a real number bound between 0 and 1 that provides a summary

measure of the amount of similarity (or correlation) between the surface EMG activity

and EEG activity . An arc hyperbolic tangent transform, Tanh−1 |Cxy(f)|, was taken
to stabilize the variance in the distribution of the coherence [45]. To determine

significant levels of coherence the confidence interval (cl) of the coherence function

was measured [109] at the α quantile for L number of segments. This formula is given

for coherence calculations based on the Fourier transform [109] where L is the signal

duration minus the overlap, divided by the window length minus the overlap.

cl(α = 0.95) = 1− (1− α)
1

L−1 (4)

Coherence was considered to be significant if the value in the beta band (15-30 Hz)

was above the 95% confidence limit (Figure 7). Significant corticomuscular coherence

during the unilateral motor task was observed only for the first 5% and 10% MVC

levels; therefore only data from these periods were included for further analysis. The

comparison of coherence across tasks was to compare the magnitude of coherence at

the same frequency bin that had the highest peak during the right-hand unilateral

motor task across tasks. The highest significant peaks of coherence were observed for

the contralateral right and left hands with C3 and C4 EEG electrodes, respectively.

Reported results are for EEG channels C3 and C4. Peak value of the coherence in

the beta band was determined. Cortico-cortico inter-hemispheric coherence (C3-C4)

was also calculated.

Variability and accuracy of motor output were used for assessing fine motor skills.

Force signals were low-pass filtered at 100 Hz and detrended. The coefficient of

variation (CV, standard deviation divided by mean) was determined for variability.

To assess the accuracy of motor output, absolute error was calculated as the error

27



ratio using the following equation. Error ratio

Errorratio =

∣∣∣∣EF − TF

TF

∣∣∣∣ ∗ 100% (5)

where EF is exerted force and TF is target force. In addition, variability of muscle

activity was assessed with the CV of EMG that was full-wave rectified, low-pass

filtered at 5 Hz, and detrended.

Cognitive accuracy was calculated as the ratio between the number of correct

responses and the number of the math problems, represented by percentages. If a

subject answered with the exact value for the problem set it was considered correct,

any other response was considered incorrect. For example, if 3 out of 4 responses

were correct then the accuracy was 75%.

4.1.1 Statistical Analysis

Statistical analysis was performed to assess the influence of adding a concurrent mo-

tor and non-motor task to a unilateral motor task in the right hand. The calculated

variables were determined in each trial and averaged across 4 trials in each task. The

dependent variables were peak corticomuscular and cortico-cortico coherence, EEG

and EMG spectral power, coefficient of variation of force and EMG, standard devi-

ation of force, error ratio of force, and cognitive accuracy. Statistical significance of

these dependent variables was tested between unilateral motor (right hand), unilateral

motor (left hand), bilateral motor, motor-cognitive, and cognitive tasks for appropri-

ate combinations. To test the variables associated with the right-hand contraction

(peak coherence between EEG in the left motor cortex and EMG in the right hand,

peak coherence between EEG in the left and right motor cortices, spectral power of

those EEG and EMG, coefficient of variation of force and EMG, standard deviation

of force, and error ratio of force in the right hand), a two-factor, 3 x 2 analysis of

variance (ANOVA) with repeated measures was used for each variable. The factors
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were task (unilateral motor (right hand), bilateral motor, motor-cognitive) and con-

traction intensity (5% and 10% MVC). To test peak coherence between EEG in the

right motor cortex and EMG in the left hand during the tasks that involved the left-

hand contraction, a two-factor, 2 x 2 ANOVA with repeated measures was used. The

factors were task (unilateral motor (left hand) and bilateral motor) and contraction

intensity (5% and 10% MVC). Post-hoc analysis was performed using Tukey’s test

for pair-wise comparison when appropriate. The association between peak coherence

and the coefficient of variation of force and EMG was evaluated using a Pearson’s

correlation coefficient. Cognitive accuracy was measured at the termination of each

trial for the individual cognitive task and the motor-cognitive task. The difference in

cognitive accuracy between these tasks was assessed with a paired t-test. An alpha

level of 0.05 was chosen for all statistical comparisons. P <0.05 or P <0.01 was ad-

ditionally noted where appropriate. Unless stated otherwise, the data are presented

as mean ± SE. Standard error is used to visually view the statistical differences in

the figures and is consistent with the text.

4.2 First Study Results: Neural Control of Movement with
Simple Task

Coherence. For the unilateral motor task with the right hand, eight of the ten

subjects displayed significant coherence between the EMG in the right hand and EEG

in the left motor cortex (C3). Strength of C3-right hand coherence was maximal across

subjects at 0.22 and the peak frequency ranged from 15.0 to 27.5 Hz (mean frequency:

22.5 Hz, median frequency: 23.0 Hz) across subjects (Table 1). Corticomuscular

coherence was not significantly different between the 5% and 10% MVC levels, hence

the factor of contraction intensity is not considered in the subsequent analysis of EMG

and EEG [61].
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Table 1: Summary of coherence results across subjects and tasks
Maximum coherence Frequency range Mean frequency

0.22 15 - 27.5 Hz 22.5 Hz

0 5 10 15 20 25 30 35 40 45 50 55 60
0
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Figure 7: Representative coherence.

Corticomuscular coherence decreased significantly from the unilateral motor task

with the right hand to both bilateral motor (P <0.05) and motor-cognitive (P <0.05)

tasks (Figure 8) [61]. The decrease in coherence with either of these tasks was ob-

served in 88% of the cases. There was no significant difference in corticomuscular

coherence between the bilateral motor and motor-cognitive tasks. Of the eight sub-

jects showing significant corticomuscular coherence during the unilateral motor task

with the right hand, there were zero and two subjects who showed significant corti-

comuscular coherence during the bilateral motor task and the motor-cognitive task,

respectively. The data are shown from using the value of coherence that corresponds

to the frequency where a peak was observed in the unilateral motor task with the

right hand as a control.

For the unilateral motor task with the left hand, significant coherence between

the EMG in the left hand and EEG in the right motor cortex (C4) was observed in

5 out of the 8 subjects (Figure 8b). In these 5 subjects, as with the unilateral motor

task with the right hand, corticomuscular coherence was not significantly different
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Figure 8: (a) Peak coherence between EEG in the left motor cortex (C3) and EMG
in the right hand for the unilateral motor task, bilateral motor task, and concurrent
motor cognitive task (N = 8). (b) Peak coherence between EEG in the right motor
cortex (C4) and EMG in the left hand for the unilateral motor task with the left hand
and bilateral motor task (N = 5). Data were averaged for intensity. *, P <0.05 vs.
unilateral motor task.
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Figure 9: Total and beta-band power of EEG (C3) and EMG during the unilateral
motor task, bilateral motor task, and concurrent motor cognitive task at two levels of
contraction intensity. (a), total power of EEG in the left motor cortex; (b), beta-band
power of EEG in the left motor cortex; (c), total power of EMG in the right hand;
(d), beta band power of EMG in the right hand. N = 8. **, P <0.01 vs. 5% MVC
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between 5% and 10% MVC. Coherence during the unilateral motor task with the left

hand decreased significantly during the bilateral motor task (P <0.05). In addition,

the two subjects who did not show significant coherence between the right hand and

left motor cortex (C3) for the unilateral right hand motor task also did not show

significant corticomuscular coherence for the left hand and right motor cortex in the

unilateral left hand task.

Inter-hemispheric coherence between C3 and C4 was observed in 5 out of the 8

subjects indicating significant corticomuscular coherence. As with corticomuscular

coherence, cortico-cortico coherence was not significantly different between 5% and

10% MVC. The direction of coherence alteration with task varied across subjects,

resulting in the absence of statistical significance across tasks, unilateral motor right

(0.29 ± 0.13), bilateral motor (0.30 ± 0.13) and motor-cognitive (0.26 ± 0.09) tasks,

respectively [61].

Cortical and Muscular Spectral Power. EEG spectral power was calculated

for the left motor cortex (C3) (Figure 9). Total power of the EEG, full band and beta

band, were not significantly different across the unilateral motor, bilateral motor and

motor-cognitive tasks. This was also true for the total power of the EMG in the right

hand across tasks although there was a significant difference between contraction in-

tensities for the total power (full-band and beta band) of the EMG in the right hand

(full-band: P <0.01; beta band: P <0.01) [61].

Motor Output Variability and Accuracy. An additional task influenced motor

output variability of EMG, but not of force (Table 2). The coefficient of variation

of EMG was significantly greater during the bilateral motor task when compared

with the unilateral motor task (P <0.05) [61]. The coefficient of variation of force

was significantly smaller (P <0.01) at 10% MVC compared with 5% MVC. Also,
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Table 2: Fine motor performance during the Unilateral Motor, Bilateral Motor, and
Motor-Cognitive tasks. Mean ± SE (N = 8). *, P <0.05 vs. Unilateral Motor, **, P
<0.01 vs. Unilateral Motor, †, P <0.01 vs. 5% MVC

5% MVC 10 %MVC
Coefficient of variation of EMG
Unilateral Motor 0.11 ± 0.00 0.13 ± 0.01
Bilateral Motor 0.14 ± 0.01* 0.14 ± 0.01*
Motor Cognitive 0.13 ± 0.01 0.14 ± 0.01
Coefficient of variation of force
Unilateral Motor 0.018 ± 0.002 0.009 ± 0.001†
Bilateral Motor 0.020 ± 0.002 0.011 ± 0.001†
Motor Cognitive 0.019 ± 0.001 0.011 ± 0.001†
Standard deviation of force
Unilateral Motor 0.015 ± 0.003 0.017 ± 0.004
Bilateral Motor 0.018 ± 0.011** 0.020 ± 0.004**
Motor Cognitive 0.018 ± 0.012** 0.021 ± 0.004**
Error ratio of force (%)
Unilateral Motor 0.88 ± 0.16 0.76 ± 0.12
Bilateral Motor 1.09 ± 0.18 0.91 ± 0.17
Motor Cognitive 1.19 ± 0.28 0.84 ± 0.22

standard deviation of force was significantly greater during the bilateral motor (P

<0.01) and motor cognitive (P <0.01) tasks compared with the unilateral motor

task. Motor accuracy was calculated in terms of the error ratio of the mean exerted

force. There were no significant differences in the error ratio across tasks.

Association of Motor Output Variability and Coherence. There was no sig-

nificant association between peak coherence and motor output variability including

CV of EMG or CV and standard deviation of force (Figure 10). In addition, the

relative change in the coefficient of EMG and force from the unilateral motor task

with the right hand to the bilateral motor task and motor cognitive task were also

not shown to be significantly associated with the relative change in peak coherence

[61].
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Figure 10: Distribution of corticomuscular coherence (EEG in the left motor cortex
- EMG in the right hand) as a function of motor output variability across tasks.
Distribution of EMG fluctuations as a function of coherence at 5% MVC (a) and 10%
MVC (b). Distribution of force fluctuations as a function of coherence at 5% MVC
(c) and 10% MVC (d). N = 8. There was no significant correlation.
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Cognitive Performance. Cognitive performance was measured as accuracy or

correct responses to cognitive problems. The cognitive accuracy was 95% ± 0.11%

during the cognitive task, but it decreased significantly (P <0.01) to 83% ± 0.16%

during the motor cognitive task [61].

4.3 Second Study Methodology: Neural Control of Move-
ment Complex Task

The second study in Aim 1 considered the influence of a more complex task than

that of the first study on commonly accepted physiological features, focusing on cor-

ticomuscular coherence. The incorporation of a more complex task was motivated by

the results of the first study to determine if increasing task complexity might further

attenuate the reduction in coherence with an additional task. Also, the complex task

allowed the investigation into if the lack of an association between the coherence fea-

ture and time domain features, to assess motor output variability, was simply because

of task simplicity. To increase task difficulty, the bilateral motor task was modified to

make the additional motor task more dynamic, and the number of cognitive problems

to complete in a designated time period was increased (Figure 11).

Five tasks were performed: unilateral abduction of the right index finger (unilat-

eral motor task); unilateral abduction of the left index finger; cognitive task involv-

ing arithmetic and memory (cognitive task); concurrent cognitive-motor task with

the right finger (motor cognitive task); and bilateral motor task with the left and

right index fingers (bilateral motor task). The performance of the task was similar

to the simple task described in Section 4.1. For the unilateral motor task with the

right hand, subjects were instructed to abduct the right index finger to exert a force

matching 5% of their MVC force. For the unilateral motor task with the left hand,

subjects were instructed to abduct the left index finger to exert forces matching 2.5%,

5% and 7.5% of their MVC force. The order of percentages of MVC to match was

randomized across subjects. For the bilateral motor task, the motor tasks for the
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Figure 11: Comparison of the simple task versus the complex task.

right and left hands were performed concurrently. During the cognitive task, subjects

were asked to solve three mathematical problems (2-digit addition and subtraction)

and remember the answers until the end of each trial (12-s duration). Each trial

was 12 s in duration (right hand: 5% MVC matched for 10 s with 2 s for ramping

to the level; left hand: each level matched for 2 s with 2 s for ramping to the next

level continuously). Just as with the simple task, the cognitive task was performed

concurrently with the motor task in the right hand for the motor-cognitive task.

4.4 Second Study Results: Neural Control of Movement
Complex Task

Coherence. Corticomuscular coherence decreased significantly from the unilateral

motor task with the right hand to both bilateral motor (P <0.05) and motor-cognitive

(P <0.05) tasks (Figure 12) just as in the first study with the simple task (Figure 7).

Cortical and Muscular Spectral Power. As with coherence, cortical and mus-

cular power did not change with a more complex task. Total power of the EEG, full
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Figure 12: Comparison of the coherence for the simple task versus the complex task.

band and beta band, were not different across the unilateral motor, bilateral motor

and motor-cognitive tasks. Total power of the EMG in the right hand was not influ-

enced by task.

Motor Output Variability and Association to Coherence. As opposed to

with the simple task, force variability increased with an additional task (P <0.05),

but CV of EMG was not influenced. Again, there was no correlation between peak

coherence and coefficient of variation of EMG or force.

4.5 Discussion

The main finding of Aim 1 was that beta-band corticomuscular coherence decreased

with either an additional motor or non-motor task irrespective of task complexity. In

addition, corticomuscular coherence was not associated with motor output variability

or accuracy.

Reduction in beta-band coherence with an additional task
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Corticomuscular coherence in the beta band is regarded to arise from the oscilla-

tory synchronous discharge of populations of corticospinal cells around 15-30 Hz [2].

The addition of a cognitive or contralateral motor task imposed subjects to divide

their attention, and the latter may have induced inter-hemispheric neural interference.

Hence, decreases in synchronized oscillatory activity of corticospinal cells due to di-

vided attention or inter-hemispheric interference are possibilities that may explain

reduced corticomuscular coherence with an additional task.

Previous reports, although employing different experimental designs than the cur-

rent one, suggest that oscillatory neural activity or corticomuscular coherence are

related to the amount of attention directed toward a task. With regard to oscilla-

tory neural activity, synchronous oscillations of local field potentials and single motor

units during fine finger movements (similar to a precision grip task) that would require

more attention were more prevalent than during simple wrist flexion and extension

in monkeys [90]. In humans, synchronous motor unit activity was greater during

tasks that required subjects to focus more attention toward the task (higher visual

feedback gain) [114]. These studies showed that greater attention directed toward

the task increased synchronous oscillations in local field potentials and motor unit

activity.

Similarly, there are reports suggesting greater attention directed toward the mo-

tor task may be associated with greater magnitude or incidence of significant corti-

comuscular coherence. Corticomuscular coherence during a finger flexion/extension

movement task was increased when subjects were instructed to put more attention

to the task performance [33]. In another study where attention toward the finger

precision task was decreased with concurrent mental arithmetic, the incidence of sig-

nificant corticomuscular coherence was reduced while the amount of decrease was not

reported [77]. In the current work, EMG fluctuations increased and cognitive per-

formance decreased, respectively, with the addition of a motor task and non-motor
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task. It appears that each task required a substantial amount of divided attention,

and the attention placed to the primary task was likely reduced. Although there is no

study that reported the potential effect of an additional motor task, all these studies

are in line with an interpretation of current findings that corticomuscular coherence

decreased with an additional concurrent task due to reduced attention towards the

primary motor task.

While attention toward the primary motor task cannot be compared between the

motor-cognitive task and the bilateral motor task, the amount of reduction in cortico-

muscular coherence was similar between the two tasks (Figure 12) for both the simple

and complex tasks. It is possible that there is a flooring effect on corticomuscular

coherence; once below a certain threshold, there might not be a further reduction

of corticomuscular coherence. In other words, there may be a low requirement of

divided attention to suppress oscillatory activity in the beta band, so any variability

in attention level above this requirement would not suppress the beta-band activity

any more or less. This speculation was confirmed with the second study considering a

complex task. Even after attempting to divide subject’s attention to a greater level,

a further reduction in corticomuscular coherence was not observed.

For the potential effect of an additional motor task with the contralateral hand,

one might expect inter-hemispheric neural interaction to influence oscillatory neural

activity in a hemisphere and corticomuscular coherence because of interactions of

neuronal networks including the transfer of excitatory and inhibitory activity via the

corpus callosum. However, the literature and current experiments do not support

this expectation. A previous study [74] found that while the left hand performed

a constant steady contraction and the right hand produced a pair of steady con-

tractions with a ramping phase in between, there was a decrease in the left hand

and right motor cortex coherence while the right hand ramped up to another hold

phase. This observation suggests inter-hemispheric interaction; however, the absence
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of significant coherence between the motor cortices in their study [74] casts doubt on

inter-hemispheric interaction for the coherence. A probable reason for the decrease

in corticomuscular coherence is the division of attention from maintaining a constant

contraction in the left hand to ramping up in the right hand, not inter-hemispheric

interaction. In a primate manipulating peanuts, synchronous oscillations of local

field potentials were present in both hemispheres for unimanual and bimanual move-

ments at the same rate [91]. For both the simple and complex tasks, direction of

inter-hemispheric EEG coherence between C3 and C4 alteration (i.e. an increase or

decrease in peak coherence) with task varied across subjects, resulting in the absence

of significant differences across tasks. Based on the equal probability of synchronized

cortical activity and indifferent inter-hemispheric EEG coherence during both uni-

manual and bimanual tasks, it is less likely that inter-hemispheric neural interaction

has a substantial influence on cortical synchronous oscillations and thus corticomus-

cular coherence. This is further supported by the current findings that the reduction

in corticomuscular coherence during the bimanual task was no more than that dur-

ing the motor-cognitive task (Figure 12), implying there was no additional effect of

inter-hemispheric neural interaction on the presumably attention-induced reduction

in corticomuscular coherence.

No association of coherence with fine motor performance

The functional significance of beta-band corticomuscular coherence for motor perfor-

mance is of interest and importance, especially in light of the potential application of

corticomuscular coherence to clinical populations with movement disorders [89, 29].

In the current study on healthy young adults, there was no significant correlation be-

tween corticomuscular coherence and motor output steadiness or variability in a hand

muscle within or across individuals for both the simple and complex tasks. This find-

ing was against the reported accompanying changes in corticomuscular coherence and

41



EMG variability in wrist extensor and hand muscles after immobilization [82] and the

reported positive correlation between corticomuscular coherence and force accuracy

in wrist extension across individuals [76]. The results are in agreement with an ab-

sence of association between corticomuscular coherence and position accuracy during

ankle dorsi-plantarflexion across individuals [101]. Hence, modulations in beta-band

corticomuscular coherence are not necessarily related to alterations in fine motor per-

formance such as steadiness and accuracy. Rather, beta band modulations may be

influenced by other factor(s) associated with immobilization and specific tasks, if not

attention.

Corticomuscular coherence for different contralateral pairs

Literature on beta-band corticomuscular coherence has mainly focused on unilateral

tasks. Although the presence of contralateral corticomuscular coherence has been

demonstrated for both hands [74, 14], the potential influence of hand dominance or

side of corticomuscular coherence has yet to be directly studied. Incidentally, the

experimental design for the simple task allowed us to address this issue. The smaller

number of subjects showing coherence for the pair of right motor cortex EEG and

left (non-dominant) hand EMG (Figure 8B) indicates that EEG-EMG beta band co-

herence is less prevalent for the task with the left or non-dominant hand compared

with the task with the right or dominant hand. Similar decreases in coherence in the

right and left motor cortices with an additional motor task suggested that a reduc-

tion in corticomuscular coherence with an additional contralateral motor task was a

robust phenomenon independent of hemisphere and hand. While the statistics show

a significant difference, the small number of subjects (n = 5) showing coherence for

the pair with the left hand indicates that further research is necessary to investigate

this phenomena in more detail.

42



Additional Analysis.

As mentioned in Section 3.4, recent studies have questioned the appropriateness

of EMG rectification procedure for assessing oscillatory neural activity from inter-

ference EMG [93, 94, 126]. For example, using simulated data of central input to

the α-motoneuron pool and resultant interference EMG, coherence between central

input and rectified EMG was lower compared with unrectified EMG across 1-100 Hz

[126]. In another study, when a pair of reconstructed interference EMG signals from

contracting muscles were manipulated to have very strong common oscillations in

the 12-30 Hz range, an increase in the EMG-EMG coherence in the corresponding

frequency range did not manifest with the use of rectified EMG [94]. In the other

report cited, when cross-wavelet power spectra between EMGs from a pair of con-

tracting muscles were compared between two contraction intensities, greater power in

the 13-30 Hz range at the higher contraction intensity was observed using unrectified

EMG, but not rectified EMG [93]. These reports speak against the use of rectified

EMG in assessing corticomuscular coherence in the beta band.

While this was not the focus of the dissertation work and the question of rectifica-

tion is still open, the data was analyzed using unrectified EMG as well. Additionally,

the peak corticomuscular coherence within the beta band was independently deter-

mined in each task. This approach considered slight shifts in the location of peak

coherence across tasks such that essential information on the correlated activity of

the EEG and EMG within each task would be captured. The additional analysis took

into account recently published literature and technical discussions as the dissertation

was in process.

For the simple task, nine out of ten subjects displayed a significant level of corti-

comuscular coherence. Beta-band corticomuscular coherence was significantly greater

in the 10% MVC level in comparison to the 5% MVC level (P <0.01) as a main effect

of contraction intensity. Corticomuscular coherence was not significantly influenced
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by an additional motor or cognitive task. The results of the complex task with ad-

ditional analysis are shown in the following chapter with the addition of the elderly

population. The lack of a task main effect shows that the approach is sensitive to

finding changes with task.

Figure 13: Beta-band corticomuscular coherence with unrectified EMG.

Further research should continue to investigate the process of rectification to de-

termine a consensus for the trade-off between highlighting the timing and discharge

pattern of a group of motor units and potentially introducing a non-linearity.

Conclusion.

Aim 1 showed that beta-band corticomuscular coherence decreased with an additional

task to the same degree whether the second task was a motor or non-motor task with

the inclusion of unrectified EMG. The analysis approach (rectified or unrectified EMG

and considering shifts in the peak coherence) is sensitive to detecting effects of task.

In addition, beta-band coherence was not associated with fine motor performance

such as motor output variability and accuracy. The results suggested that attention

toward the primary motor task influenced beta-band corticomuscular coherence.
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CHAPTER V

NEURAL CONTROL OF MOVEMENT WITH AGING

Aging and dual tasks often degrade fine motor performance, but the effects of ag-

ing on correlated neural activity between motor cortex and contracting muscle dur-

ing fine motor performance in dual task are unknown. The decline in fine mo-

tor performance can be attributed to several factors including age-associated alter-

ations in information processing, motor neuron organization, and neuromotor activity

[27, 113, 116, 118, 124]. As one feature of neuromotor activity involved in fine motor

performance, correlated oscillatory neural activity between motor cortex and muscle

(corticomuscular coherence) has been investigated. As described in Section 1.1, a

significant difference in corticomuscular coherence has not been observed into senior

age [42]. The purpose of this chapter was to compare the task-dependent change

in the corticomuscular coherence feature and fine motor performance between young

and elderly adults during the execution of a unilateral fine motor task and concurrent

tasks that required substantial divided attention.

Aim 2: Neural Control of Movement with Aging

Approach: Determine the influence of aging on the features in Aim 1, between a

unilateral motor task and concurrent motor tasks (additional motor and non-motor).

Test the modulation of the neural control of movement between young and elderly

adults using the complex task from Aim 1.

Hypothesis: Beta-band corticomuscular coherence in elderly adults will be lower in

the beta band and greater in the alpha band when compared to young adults during

dual tasks, due to greater influences of divided attention.
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Figure 14: Experimental setup for elderly adults.

5.1 Methodology

Twenty-nine healthy right-handed young (n = 16, 23.9 ± 5.8 yrs, ranging 18-38 yrs;

10 women and 6 men) and elderly (n = 13, 69.2 ± 4.7 yrs, ranging 61-75 yrs; 7

women and 6 men) adults participated in the study. Additionally, young adults were

recruited for inclusion in Aim 2 to ensure the young and elderly adults were perform-

ing the same task under the same conditions.

Tasks. Subjects performed 5 tasks in a similar manner to the complex task de-

scribed in Aim 1. Each subject performed 8 trials for each task. Instruction to

subjects remained consistent, and similar visual feedback was provided. To reiterate

the tasks, subjects were instructed to produce finger abduction force as accurate and

steady as possible while keeping their finger level and fully extended in the finger

splint. For the unilateral motor task with the right hand, subjects were instructed

to abduct the right index finger to exert a force matching 5% of their MVC force

for 10 s. For the unilateral motor task with the left hand, subjects were instructed

to abduct the left index finger to exert forces matching the target varying between
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2.5%, 5% and 7.5% of their MVC force within a trial. They matched each level for

2 s with 2 s for ramping to the next level continuously, and the order of target level

to match was randomized across subjects. Visual feedback of target and actual force

level were displayed on the monitor. The scale for each hand was relative to 10%

of MVC for that hand (57.8 pixels/% MVC or 263.5 pixels/N on average). For the

bilateral motor task, the motor tasks for the right and left hands were performed

concurrently (Figure 15), and there was no instruction with regard to the prioritiza-

tion to either of the task. Each trial was 12 s in duration. A longer task duration

was not implemented for several reasons. First, prolonged task durations decrease

the magnitude of significant coherence observed [72]. Second, longer task durations

may induce fatigue with multiple trials. Third, subjects may become irritable with

longer task durations as observed especially in elderly adults in the pilot experiments.

Cognitive tasks. During the cognitive task, subjects were asked to solve three mathe-

matical problems (2-digit addition and subtraction) and remember the answers until

the end of each trial (12-s duration). The mathematical problems were displayed on

the monitor in front of the subjects and they were asked to verbally recall the three

answers at the end of the trial. The cognitive task was performed concurrently with

the unilateral motor task in the right hand for the motor cognitive task.

Data Analysis

Coherence between EEG and EMG, and variability and accuracy of motor output

were assessed for young and elderly subjects in the same manner as Section 4.1. The

EEG signal was band-pass filtered (5-200 Hz) and detrended. The EMG signal was

obtained from the bipolar EMG that was band-pass filtered (10-500 Hz) and detrended

(Figure 15). The process of rectifying the EMG signal introduces a non-linearity into

the frequency characteristics of the EMG [30, 93, 94, 126] altering the identification
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Figure 15: Representative recordings of force and rectified EMG in the first dorsal
interosseus muscle in young and elderly adults. The plot indicates the profile of the
motor task in the right and left hands. Subjects abducted their right index finger
to exert a force matching 5% of their maximal voluntary contraction (MVC) force
for the unilateral motor task. For the bilateral motor task, subjects abducted their
left index finger to exert forces matching 2.5%, 5% and 7.5% of their MVC force
(randomly) while concurrently abducting their right index finger.
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of neural oscillations, thus suggesting that unrectified EMG is more appropriate for

assessing the frequency content of the EMG signal. Accordingly, current analysis

used variables with unrectified EMG as the primary dependent variables for testing

the hypothesis. Nonetheless, analysis with rectified EMG was also incorporated for

the purpose of comparing the findings with those in the literature that used rectified

EMG [42, 53]. The EMG data during all trials were concatenated [65] for each task

individually, as were the EEG data. The power spectrum of EEG, power spectrum of

EMG, and coherence (Eq. 1) between EEG and EMG were computed. Concatenating

the data allows for a more stable measure of coherence because of the additional data

points. Concatenating the data was not possible in Aim 1 because of the two different

levels of MVC being matched with the right hand. This step was employed to improve

the quality of the results. Power spectra and coherence were calculated over 2048-

point FFT segments. The peak corticomuscular coherence within the beta band was

independently determined in each task. With the inclusion of elderly adults and

the potential for shifts in the location and bands of neural activity, this approach

considered slight shifts in the location of peak coherence across tasks. Additionaly,

pooled corticomuscular coherence, CC(f), [46] was computed to summarize the effects

of aging on corticomuscular coherence

CC(f) =

∣∣∣∣∣
∑k

i=1 LiR
i
xy(f)∑k

i=1 Li

∣∣∣∣∣
2

(6)

cl = 1− α
1∑
Li−1 (7)

where k is the number of subjects, L is the number of disjoint segments, and α is 0.05.

Additionally, inter-hemispheric cortico-cortical coherence (C3-C4) was also calculated

in a similar manner.
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5.1.1 Statistical Analysis

To test the effect of age and hand on MVC, a two-factor, 2 x 2 analysis of variance

(ANOVA) with repeated measures was performed. Statistical significance of lateral-

ity quotient and Mini-Mental State Exam (MMSE) score between ages were assessed

using a Student’s paired t-test. The dependent variables during the unilateral, bilat-

eral, and motor-cognitive tasks were peak corticomuscular and cortico-cortical (C3

and C4) coherence in each band, frequency at which peak value in coherence was

observed in each band, normalized EEG (C3) and EMG spectral power in each band,

CV of force and EMG, and error ratio of force in the right hand. Statistical signifi-

cance of these dependent variables was tested between ages (young and elderly) and

tasks (unilateral motor, bilateral motor, and motor-cognitive tasks) for appropriate

combinations. To test the effects of age and task on variables associated with the

right-hand task (peak coherence between EEG in the left motor cortex and EMG in

the right hand, normalized spectral power of those EEG and EMG), a two-factor, 2 x

3 ANOVA with repeated measures was used for each variable. Post-hoc analysis was

performed using Tukey for pair-wise comparison when appropriate. The association

between peak corticomuscular coherence and normalized spectral power of EEG and

EMG, the CV of force and EMG, and error ratio was evaluated using a Pearson’s

correlation coefficient. To test the effects of age and task on root mean square error

(RMSE) of force in the left hand, a 2 x 2 ANOVA with repeated measures was per-

formed. The effects of age and task on cognitive accuracy were assessed with a 2 x 2

ANOVA with repeated measures. An alpha level of 0.05 was chosen for all statistical

comparisons. P <0.05 or P <0.01 was additionally noted where appropriate. All

statistical analyses were performed using Statistica 9.0 software (StatSoft Inc., Tulsa,

OK, USA).
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Figure 16: Representative corticomuscular coherence for an individual young (24
years) and individual elderly (71 years) subject between EEG in the left motor cortex
(C3) and unrectified EMG (young, (a) and elderly,(b)) and rectified EMG (young,
(c) and elderly,(d)) in the right hand during the unilateral motor task with the right
hand. The broken horizontal lines indicate the confidence interval.

5.2 Results

The MVC force was comparable between young and elderly adults for both the right

(young: 21.7 ± 6.2 N; elderly: 19.6 ± 8.1 N) and left (young: 18.3 ± 4.3 N; elderly:

19.4 ± 8.4 N) hands [58]. The handedness test confirmed that all subjects were right

hand dominant, with a slightly higher laterality quotient in elderly adults (0.92 ±
0.10) compared with young adults (0.80 ± 0.17, P <0.05). According to the MMSE,

there were no signs of cognitive impairment in the subjects, with all scores ≥ 27

although there was a small difference between young (29.8 ± 0.4) and elderly adults

(28.6 ± 1.0; P <0.01).
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Coherence. Representative corticomuscular coherence for an individual young (24

years) and individual elderly (71 years) adults are shown in Figure 16. In using un-

rectified EMG, all subjects had significant corticomuscular coherence between the left

motor cortex (C3) and the right hand in the beta band with peak value at similar

frequencies of 24.3 ± 5.0 Hz in young subjects and 22.8 ± 5.6 Hz in elderly subjects

during the unilateral motor task. Beta-band peak corticomuscular coherence was

higher (F1,27 = 10.59, P <0.01) in elderly adults compared with young adults across

tasks (Figure 17d) [58]. Apparent changes in beta-band corticomuscular coherence

with additional concurrent tasks were not statistically different compared with the

unilateral motor task (Figure 17c). However, when compared with the bilateral mo-

tor task, beta-band corticomuscular coherence during the motor cognitive task was

greater (P <0.05) across age groups as a main effect of task (F2,54 = 4.26, P <0.05).

There was no significant interaction between age and task. Additionally, subject age

was positively correlated with beta-band corticomuscular coherence (pearson correla-

tion coefficient, r=0.374). Relating the results to the additional analysis in the simple

task of Aim 1, the results indicate that with an increase in task complexity, a main

effect of task is observed. There was a positive association between subject age and

beta-band corticomuscular coherence with unrectified EMG (correlation coefficient

(r): 0.381, (P < 0.01)).

Within the alpha band using unrectified EMG, all but one young subject had

significant corticomuscular coherence with the peak value at similar frequencies of 11.6

± 2.3 Hz in young subjects and 12.3 ± 2.4 Hz in elderly subjects during the unilateral

motor task. This alpha-band frequency for peak coherence was not influenced by age

or task. Elderly adults also exhibited a higher magnitude of corticomuscular coherence

within the alpha band compared with young adults (main effect of age, F1,27 = 6.62,

P <0.05) (Figure 17b) [58]. This difference appears to result mostly from the large

increase during the motor-cognitive task in elderly adults. As a main effect of task
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Figure 17: Peak corticomuscular coherence (using unrectified EMG) in the (a) and
(b) alpha (8-14 Hz) and (c) and (d) beta (15-32 Hz) bands during the unilateral
motor, bilateral motor, and motor-cognitive tasks in young and elderly adults. Data
in each task and group are shown in the left column, and the data collapsed across
tasks are shown in the right column. *, P <0.05 for the age-related difference across
tasks (main effect of age) or at a corresponding task (interaction of age and task). †,
P <0.05 due to a main effect of task.

(F2,54 = 4.83, P <0.05), alpha-band corticomuscular coherence was higher in the

motor-cognitive task (0.087 ± 0.097 when collapsed across ages) compared with the

unilateral motor task 0.046± 0.030) across age groups (Figure 17a). As an interaction

of age and task (F2,54 = 3.21, P <0.05), alpha-band corticomuscular coherence during
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the motor-cognitive task was higher (P <0.05) in elderly than young adults, whereas

no significant age-associated difference was observed in other tasks.

For corticomuscular coherence with rectified EMG, elderly adults exhibited higher

corticomuscular coherence within the beta band (F1,27 = 10.15, P < 0.01) (Figure

18d) [58]. A significant effect of task was not observed when rectified EMG was used.

There was a positive association between subject age and beta-band corticomuscular

coherence with rectified EMG (r = 0.374, P < 0.01). Elderly adults also exhibited

higher corticomuscular coherence with rectified EMG in the alpha band (F1,27 = 8.25,

P < 0.01) (Figure 18b). This age-associated difference appears to result mostly from

the large increase during the motor-cognitive task in elderly adults. As an interaction

of age and task (F2,54 = 5.21, P < 0.01), alpha-band corticomuscular coherence with

rectified EMG during the motor-cognitive task was higher (P < 0.01) in elderly than

young adults (Figure 18a).

To summarize the age-associated difference in corticomuscular coherence, pooled

coherence was further calculated. For corticomuscular coherence with unrectified

EMG, significant pooled coherence was observed between 9 and 32 Hz for young adults

and between 10 and 26 Hz for elderly adults (Figure 19a) [58]. Using rectified EMG,

significant pooled coherence was observed between 9 and 32 Hz for young adults and

between 9 and 26 Hz for elderly adults (Figure 19b). In both cases (using unrectified

and rectified EMG), the pooled coherence visually displayed greater corticomuscular

coherence in elderly adults compared with young adults.

Inter-hemispheric cortico-cortico coherence between C3 and C4 EEGs tended to be

higher in the beta band in elderly adults, on average, but did not have any significant

effect of age or task (Table 3).

Cortical and muscular spectral power.
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Figure 18: Peak corticomuscular coherence (using rectified EMG) in the (a) and (b)
alpha (8-14 Hz) and (c) and (d) beta (15-32 Hz) bands during the unilateral motor,
bilateral motor, and motor-cognitive tasks in young and elderly adults. Data in each
task and group are shown in the left column, and the data collapsed across tasks are
shown in the right column. **, P <0.01 for the age-related difference across tasks
(main effect of age) or at a corresponding task (interaction of age and task)

The significant effect of age or task on normalized EEG was observed only in

beta-band power in the left motor cortex (C3) [58]. Beta-band EEG (C3) power

was greater (F1,27 = 12.18, P <0.01) in elderly adults (0.454 ± 0.116 when collapsed

across tasks) than young adults (0.331 ± 0.081) across tasks (Table 4). Similarly to

beta-band corticomuscular coherence, beta-band EEG power during the concurrent
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Figure 19: Pooled corticomuscular coherence across young (broken lines, n = 16)
and elderly (solid lines, n = 13) adults for unrectified EMG (A) and rectified EMG
(B) during the unilateral motor task with the right hand. The broken horizontal
lines indicate the confidence interval for young adults and the solid horizontal lines
indicate the confidence interval for elderly adults

motor cognitive task was higher (P <0.05) compared with the bilateral motor task

across age groups as a main effect of task (F2,54 = 3.54, P <0.05). When the data

for all age groups and tasks were considered, beta-band EEG power was positively

correlated with beta-band corticomuscular coherence with a correlation coefficient (r)

of 0.392 (P <0.01). Significant associations were not observed between alpha-band

EEG power and alpha-band corticomuscular coherence.

Significant effects of age or task were observed on the normalized EMG in the right

hand across frequency bands [58]. Compared with the unilateral task, unrectified
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Table 3: Inter-hemispheric cortico-cortico coherence between C3 and C4 EEGs in
alpha (8-14 Hz) and beta (15-32 Hz) bands during the unilateral motor, bilateral
motor, and motor-cognitive tasks in young and elderly adults. Mean ± SD There was
no significant effect of age or task. (Young, n=16; Elderly, n=13)

Young Elderly
Alpha band
Unilateral Motor 0.15 ± 0.07 0.14 ± 0.04
Bilateral Motor 0.12 ± 0.10 0.15 ± 0.07
Motor Cognitive 0.16 ± 0.09 0.13 ± 0.07
Beta band
Unilateral Motor 0.16 ± 0.12 0.20 ± 0.09
Bilateral Motor 0.14 ± 0.08 0.22 ± 0.10
Motor Cognitive 0.15 ± 0.11 0.19 ± 0.10

EMG power during the motor cognitive task was slightly increased in the alpha (P

<0.05) and beta (P <0.05) bands across age groups. Beta-band unrectified EMG

power was positively correlated with beta-band corticomuscular coherence (r = 0.360,

P <0.01) when the data from all age groups and tasks were considered. Elderly adults

exhibited greater alpha-band unrectified EMG power compared with the young adults

across tasks (F1,27 = 5.07, P <0.05; elderly: 0.030 ± 0.010, young: 0.023 ± 0.008).

Elderly adults also exhibited greater alpha-band rectified EMG power compared with

young adults (main effect of age, F1,27 = 5.00, P <0.05; elderly: 0.183 ± 0.028, young:

0.137 ± 0.071).

Coherence and fine motor performance. Motor output variability during steady con-

traction in the right hand was assessed for the fluctuations in force and EMG. The

CV of force was greater (main effect of age, F1,27 = 10.60, P <0.01) in elderly adults

compared with young adults across tasks (Figure 20b) [58]. As a main effect of task

(F2,54 = 20.83, P <0.01), the CV of force during bilateral motor (0.058 ± 0.062 when

collapsed across ages, P <0.05) and motor-cognitive (0.061 ± 0.052, P <0.05) tasks

were greater compared with the unilateral motor task (0.027 ± 0.021 when collapsed
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Table 4: Frequency power of EEG in the left motor cortex (C3) and EMG (unrectified
and rectified) in the right hand for the alpha and beta bands during the unilateral
motor, bilateral motor, and motor-cognitive tasks in young and elderly adults. Power
in each band is normalized to total power. Mean ± SD. *, P <0.05 vs. Young, **, P
<0.01 vs. Young; †, P <0.05 vs. Motor cognitive

Young Elderly
EEG power, C3
Alpha band
Unilateral Motor 0.338 ± 0.131 0.298 ± 0.139
Bilateral Motor 0.332 ± 0.126 0.275 ± 0.080
Motor Cognitive 0.342 ± 0.132 0.319 ± 0.108
Beta band
Unilateral Motor 0.337 ± 0.084 0.436 ± 0.133**
Bilateral Motor 0.318 ± 0.079 † 0.449 ± 0.123**, †
Motor Cognitive 0.340 ± 0.083 0.478 ± 0.096**
Unrectified EMG power
Alpha band
Unilateral Motor 0.022 ± 0.006 † 0.029 ± 0.009*, †
Bilateral Motor 0.024 ± 0.008 0.029 ± 0.009*
Motor Cognitive 0.024 ± 0.009 0.033 ± 0.012*
Beta band
Unilateral Motor 0.288 ± 0.048 † 0.316 ± 0.056 †
Bilateral Motor 0.293 ± 0.043 0.320 ± 0.055
Motor Cognitive 0.304 ± 0.036 0.325 ± 0.047
Rectified EMG power
Alpha band
Unilateral Motor 0.138 ± 0.071 0.189 ± 0.026*
Bilateral Motor 0.135 ± 0.067 0.178 ± 0.024*
Motor Cognitive 0.139 ± 0.079 0.184 ± 0.035*
Beta band
Unilateral Motor 0.366 ± 0.064 0.370 ± 0.044
Bilateral Motor 0.371 ± 0.052 0.376 ± 0.043
Motor Cognitive 0.376 ± 0.052 0.383 ± 0.052
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across age groups) across age groups. This task effect appears to be greater in elderly

adults based on the age and task interaction (F2,54 = 6.45, P <0.01), indicating that

the CV of force increased by more than a factor of two with an additional motor

(P <0.01) and cognitive task (P <0.01) in elderly adults, but not in young adults

(Figure 20a). For another measure of motor output variability, the CV of EMG was

greater (main effect of age, F1,27 = 8.01, P <0.01) in elderly than young adults across

tasks (Figure 20d).

Motor output error was assessed by the error ratio of the mean exerted force.

Error ratio was greater (F1,27 = 11.92, P <0.01) in elderly than in young adults when

averaged across tasks (Figure 20f) [58]. This difference appeared to result mainly from

larger values in elderly adults during the bilateral motor task and motor-cognitive

tasks, with a greater influence from the latter. As a main effect of task (F2,54 =

12.37, P <0.01), error ratio during the motor-cognitive task (9.1 ± 7.7%) was greater

when compared with the unilateral motor task (5.1 ± 3.3%, P <0.05) across age

groups (Figure 20E). As an interaction of age and task (F2,54 = 5.03, P <0.05), error

ratio during the bilateral motor (P <0.01) and motor-cognitive (P <0.01) tasks were

greater in elderly than young adults, with a greater value in the latter compared with

the former (P <0.05). In addition, error ratio during the motor-cognitive task was

greater when compared with the unilateral motor task in both young (P <0.01) and

elderly (P <0.05) adults, but greater compared with the bilateral motor task only in

elderly adults (P <0.05).

Using unrectified EMG, significant correlations between beta-band corticomuscu-

lar coherence and fine motor performance were observed only for the motor-cognitive

task [58]. There was a negative correlation between error ratio and beta-band corti-

comuscular coherence using unrectified EMG (r = -0.629, P <0.01), but not rectified

EMG (r = -0.417, P = 0.11), across young adults during the motor-cognitive task

(Table 5). Thus, young adults that showed a higher coherence showed a lower error
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Figure 20: The influences of task and age on fine motor performance. (a) and (b)
Coefficient of variation (CV) of force, (c) and (d) CV of EMG, and E and F) error
ratio. Data in each task and group are shown in the left column, and the data
collapsed across tasks are shown in the right column. †, P <0.05 and ‡, P <0.01 for
the task-related difference in the corresponding age groups (interaction of age and
task). **, P <0.01 for the age-related difference across tasks (main effect of age) or
at a corresponding task (interaction of age and task)
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Table 5: Correlations between beta-band corticomuscular coherence and the coeffi-
cient of variation (CV) of force, CV of EMG, and error ratio in the motor-cognitive
task in young and elderly adults. r, Pearson’s coefficient of correlation; n.s., not
significant. (young, n=16; elderly, n=13)

r P
Young
CV of force -0.128 n.s
CV of EMG 0.152 n.s.
Error ratio -0.629 <0.01
Elderly
CV of force 0.216 n.s.
CV of EMG 0.298 n.s.
Error ratio 0.469 n.s.

rate during the motor-cognitive task. Using rectified EMG, a significant negative cor-

relation between the CV of force and beta-band corticomuscular coherence appeared

across young adults during the unilateral motor task (r = -0.541, P <0.05), which

was not significant when unrectified EMG was used (r = -0.328, P = 0.22). Signifi-

cant associations were not observed for other measures of fine motor performance or

in elderly adults whether rectified or unrectified EMG was used for coherence calcu-

lation.

Motor performance in the left hand. The RMSE of force was greater (main effect

of age, F1,27 = 19.58, P <0.01) in elderly adults when compared with young adults

across tasks (Table 6) [58]. As a main effect of task (F1,27 = 6.77, P <0.05), the

RMSE of force in the left hand during bilateral motor (0.361 ± 0.234 N) tasks was

greater compared with the unilateral motor task with the left hand (0.276 ± 0.234

N). There was no significant interaction of age and task.
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Table 6: Root mean square error (RMSE) during the unilateral motor left and
bilateral motor tasks, and average across tasks in young and elderly adults. Mean ±
SD. **, P <0.01 vs. Young, ‡, P <0.01 vs. Unilateral motor left

Young Elderly Average
(n = 16) (n = 13)

Unilateral Motor Left 0.158 ± 0.071 N 0.420 ± 0.295 N 0.276 ± 0.234 N
Bilateral Motor 0.227 ± 0.078 N 0.518 ± 0.249 N 0.361 ± 0.234 N‡
Average 0.192 ± 0.071 N 0.467 ± 0.273 N**

Table 7: Cognitive accuracy during the cognitive task, motor-cognitive task, and
average across tasks in young and elderly adults. Mean ± SD. **, P <0.0 1 vs.
Young, ‡, P <0.01 vs. Cognitive

Young Elderly Average
(n = 16) (n = 13)

Cognitive 88.3% ± 9.8% 72.1% ± 22.5%** 81.0% ± 18.3%
Motor Cognitive 84.1% ± 12.6% 58.0% ± 27.0%**,‡ 72.4% ± 23.9%‡
Average 86.2% ± 11.3% 65.1% ± 25.4%**

Cognitive accuracy. Cognitive accuracy was measured as the percentage of correct

responses to cognitive problems. Cognitive accuracy was greater (F1,27 = 10.52, P

<0.01) for young than elderly subjects when averaged across tasks (Table 7) [58].

As a main effect of task (F1,27 = 15.07, P <0.01), cognitive accuracy decreased by

approximately 9% during the motor cognitive task compared with the cognitive task

across age groups. This difference was more prominent in elderly adults because

cognitive accuracy during the motor-cognitive task in elderly adults was significantly

less compared with the cognitive task (P <0.01) in young adults as an interaction of

age and task (F1,27 = 4.46, P <0.01).

5.3 Discussion

The findings with the use of unrectified EMG are highlighted as described in the

methodology section. The main findings of Aim 2 include: 1) beta-band corticomus-

cular coherence was higher in elderly than young adults for both unilateral motor
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and dual tasks; 2) alpha-band corticomuscular coherence in the motor-cognitive task

was greater in elderly than young adults; and 3) beta-band corticomuscular coherence

was negatively correlated with motor output error in the motor-cognitive task across

young, but not elderly adults.

Beta band. Age-associated increase in corticomuscular coherence has only been

observed up to middle age (59 years) [53] and not to older age [42]. A review of

literature has shown that the current work is the first to find a continued increase in

beta-band corticomuscular coherence post adulthood into a senior age (62-75 years).

Beta-band corticomuscular coherence increased from childhood (4-12 years) to adult-

hood (21-35 years) in the opponens pollicis muscle during a pinch grip task [42] and

from childhood (0 years old) to middle age (59 years old) during a wrist extension or

gripping task [53]. However, for advanced age, a significant difference in beta-band

corticomuscular coherence was not observed between adulthood (21-35 years) and

elderly age (55-80 yrs) in the opponens pollicis muscle during a pinch grip task [42].

The previous studies on aging effects [42, 53] used rectified EMG in the calcula-

tion of corticomuscular coherence. The current study found greater corticomuscular

coherence in elderly than young adults whether unrectified or rectified EMG was used

(Figures 17 and 18). Hence, the different finding from the previous study [42] is not

because of the use of EMG rectification. Since the greater beta-band corticomuscular

coherence in the first dorsal interosseous muscle was found for elderly adults across

unilateral and dual tasks (Figure 17), this difference does not seem to be related to

divided attention. Rather, the difference is potentially due to the difference in muscle

and other task details that may influence corticomuscular coherence [43, 72, 88, 130].

The potential influence of the tested muscle and task on age-associated changes

in common oscillatory activity may also be inferred from studies on EMG-EMG co-

herence and motor unit coherence. In the developmental ages from adolescence to
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adulthood, beta-band EMG-EMG coherence between the abductor pollicis longus and

brevis muscles during thumb abduction was smaller in the ages of 7-9 years compared

with 12-14 years and adults (22-59 years) [31]. Collectively with the above mentioned

increases in corticomusuclar coherence from childhood to adulthood in the opponens

pollicis [42] and forearm extensor muscles [53], increases in beta-band common oscil-

latory activity during motor development appear to be consistent regardless of the

tested muscle and task details, at least in the upper limb. In elderly age, the current

findings may be indirectly supported by a study on motor unit coherence in the same

muscle during a similar task [115]. Compared with young adults (24.1 ± 4.1 years),

coherence in the discharge intervals between pairs of motor units in the first dorsal

interosseus muscle tended to be greater within the beta band in elderly adults (70.4

± 5.9 years) during steady isometric contraction ≥10% MVC with visual feedback of

force [115]. In the study that did not observe a difference on beta-band corticomus-

cular coherence between young and elderly adults on the opponnens pollicis muscle

[42], subjects tried to squeeze an object gently and steadily with the thumb and index

finger without visual feedback of force, and the steadiness of exerted force was not

quantified. Presence or absence of visual feedback may influence muscle activity and

force steadiness [5, 140], and potential associations between motor output steadiness

and beta-band corticomuscular coherence were suggested [42, 76]. Thus, the absence

of visual feedback and/or the variability in the steadiness of motor output may have

influenced the comparable beta-band corticomuscular coherence between young and

elderly adults in the previous study [42]. Until these possibilities are clarified in fu-

ture studies, it would be safer to state that beta-band corticomuscular coherence is

greater in elderly than young adults during steady contraction with visual feedback.

Corticomuscular coherence originates from oscillatory activity in the cortex, but

the influence of aging on cortical spectral power has been unclear at the senior age.

Varying changes in beta-band EEG power have been reported with senior age, but it is
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proposed here that the inconsistency was probably because of the inclusion of clinical

populations. In some reports that showed decreases or no change in beta-band EEG

power in elderly adults [52, 110], subjects were not considered to be healthy because

of psychogenic disease, mild psychological disorders or physical disability. In other

studies that did not mention the inclusion or exclusion of clinical populations, an

increase in beta-band EEG power with age was reported [25, 26, 66, 75, 136]. Care

was taken in all experiments to control for extraneous factors that might influence

neural activity if including unhealthy subjects. Subjects were without evidence of

neurological disorders, not medicated, and fully alert. The comparable MVC values

between young and elderly subjects support the healthy status of one aspect of their

neuromuscular system in their tested muscle. Although Aim 2 did not examine clinical

populations, the results are in favor of the contention that beta-band EEG power

during motor tasks is increased in healthy elderly adults.

The increase in both EEG power and corticomuscular coherence in the beta band

suggests a potential association between the two. A study [76] reported a positive

correlation between beta-band cortical power and corticomuscular coherence in the

flexor digitorum superficialis muscle during isometric flexion of the index finger. This

observation was supported by the current finding of a positive correlation between

beta-band cortical power and corticomuscular coherence (r = 0.392). Mathematically

speaking, a decrease in corticomuscular coherence would result because of an indepen-

dent increase in EEG power with no change in correlation between EEG and EMG in

the beta band (see Eq. 1). Therefore, the positive correlation in the previous [76] and

current studies implied that greater beta-band EEG power significantly contributed

to producing greater correlated corticomuscular coherence in the beta band in elderly

adults. Hence, the results of Aim 2 are interpreted to mean that beta-band cortico-

muscular coherence in healthy elderly adults is increased due to increased oscillatory

synchronous discharges of corticospinal cells.
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The greater beta-band corticomuscular coherence in elderly adults across uni-

lateral and dual tasks (Figure 17) was opposite to the hypothesis. Measurement of

corticomuscular coherence is regarded as the net result of multiple factors that may in-

dependently increase or decrease coherence. Potential factors that were likely involved

in the current protocol include attention, stress, and activation of the supplementary

motor area. First, the distribution of attention to an additional task would reduce

beta-band corticomuscular coherence in the primary motor task [33, 61, 77]. Second,

the increased stress due to increased task difficulty with an additional task may in-

crease coherence because various forms of stress appear to increase cortical spectral

power. Stress from mental arithmetic increased beta-band cortical activity in humans

[144], and post-traumatic stress disorder (PTSD) increased beta-band power in the

central (13.5-18 Hz) and frontal (18.5-30 Hz) regions in PTSD subjects in comparison

with control subjects [9]. Third, an additional cognitive task may increase cortical

activity of the supplementary motor area [67] when a sensorimotor loop may have

become engaged contributing to the increase in corticomuscular coherence [3]. Al-

though the apparent net results in beta-band corticomuscular coherence were similar

between age groups (Figure 17), it is unknown if neural activity was similarly or dif-

ferentially influenced by each factor. The present study for Aim 2 originally focused

on the potential influence of the first factor (attention) in building the hypothesis,

but the effects of the second and third factors above appear to have overridden this

assertion.

Considering the reported differences in the responsiveness to the listed factors

[86, 136, 137] and in the employed neural strategy for coping with dual tasks between

young and elderly adults [36, 38, 48], it would be worthwhile to speculate the pos-

sibility that neural activity was differentially influenced by different factors between

age groups. Different neural strategies between ages have been observed as increased
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activation of sensorimotor and frontal cortex regions in elderly adults during inter-

limb dual tasks [48] and bimanual in-phase and anti-phase movements of the wrist

[38]. Dual-task paradigms are known to attenuate performance in elderly adults to

a greater magnitude compared with young adults [38, 138] (Figure 20 and Table 7).

The greater increasing trend in beta-band corticomuscular coherence with additional

tasks in elderly adults may imply that they have been influenced more by one or

both of the latter two upregulating factors (stress and activation of supplementary

motor area) compared with young adults. In line with this speculation, elderly adults

demonstrated greater impairment in fine motor (Figure 20) and cognitive perfor-

mances (Table 7) and verbally expressed frustration and anxiety, especially during

the motor-cognitive task. Future studies are warranted to clarify the specific influence

of each factor on beta-band corticomuscular coherence and to directly quantify the

involvement of each factor in young and elderly adults.

An increase of beta-band corticomuscular coherence in elderly compared with

young adults across unilateral and dual tasks was also observed for the inclusion of

rectified EMG. However, a significant difference in corticomuscular coherence across

task was not observed when rectified EMG was used (Figure 18c and 18d). The

frequency range of significant coherence as observed from the pooled coherence was

similar between corticomuscular coherence computed with and without rectified EMG

(Figure 19). The similar result of increase in corticomuscular coherence with age using

unrectified and rectified EMG supports the continued increase in beta-band cortico-

muscular coherence post adulthood into senior age. According to the most recent

examination on coherence calculation with rectified EMG, when a single EEG chan-

nel is used, signal interference from other sources in the brain appears to be reflected

more in corticomuscular coherence with rectified EMG than unrectified EMG [6].

Differences in the influence of task highlights the potential sensitivity of rectification

for detecting changes in specific neural activity across tasks.

67



Alpha band. Until Aim 2 of the dissertation work was conducted, the only impli-

cation about the influence of healthy aging on alpha-band corticomuscular coherence

had been a possible increase with healthy aging. The possibility was because alpha-

band corticomuscular coherence was observed in elderly adults in more cases than in

young adults for the right opponens pollicis muscle during an isometric pinch-grip

task [42]. Aim 2 considered the potential influence of attention on this implication

because significant alpha-band corticomuscular coherence was observed during tasks

requiring divided attention between motor and arithmetic tasks [77] or focused atten-

tion to complete a rapid movement of the index finger to the same positions [33]. As a

result, the greater alpha-band corticomuscular coherence during the motor-cognitive

task in elderly adults (Figure 17) was consistent with the hypothesis. The level of

attention required to perform the task was different between Aim 2 and previous

studies [42]. In this previous study [42], subjects performed a unilateral task and

did not have a specific target on which to focus because feedback of force was not

provided. The increase in alpha-band corticomuscular coherence with an addition of

a cognitive task in young and elderly adults (Figure 17) was consistent with the pres-

ence of significant alpha-band corticomuscular activity during motor tasks involving

additional cognitive task [77]. For the bilateral motor task, the amount of divided

attention in the protocol for Aim 2 was likely less than the motor-cognitive task

according to a smaller increase in motor output error (Figure 20). Hence, divided

attention with an addition of a contralateral motor task in the current protocol may

not have been large enough to increase alpha-band corticomuscular coherence by an

effective amount. The findings indicated that the influence of aging on alpha-band

corticomuscular coherence is task dependent, and collectively with the knowledge in

the literature, attention-related cognitive components appear to play a role.

As with the beta band, the influence of aging on alpha-band cortical spectral power

68



had been unclear at the senior age. From adulthood to a senior age, some reports

indicated no change in the occipital region [25] and the sensorimotor cortex [42], and

others indicated a decrease on average across the prefrontal, temporal, central and

occipital regions [75] in alpha-band EEG power. In agreement with the former two

studies, no change was observed in alpha-band EEG power between young and elderly

adults. The similarity between young and elderly adults may be related to the healthy

status of the young adults included and cortical regions observed. The absence of an

association between EEG power and corticomuscular coherence suggested that aging

and an additional cognitive task can increase alpha-band corticomuscular coherence

independent of the relative amount of oscillatory discharges of corticospinal cells in

the alpha band.

Corticomuscular coherence and fine motor performance. As a potential

functional significance of corticomuscular coherence, the association between beta-

band corticomuscular coherence and fine motor performance (motor output error

and variability) had been demonstrated across trials or segments within subjects

[42, 76, 82], but not across subjects. For motor output error, no correlation across

subjects was found between beta-band corticomuscular coherence and position error

during unilateral ankle dorsi-plantarflexion [101] or force error during index finger

abduction in either single- or dual-task paradigm (as in Aim 1, [61]). The absence of

correlation across subjects during the unilateral motor task (Table 5) was consistent

with Aim 1 and [101]. With a difficult motor-cognitive task, a negative correlation ap-

peared between beta-band corticomuscular coherence and motor output error across

young, but not elderly adults (Table 5). Although the correlation did not reach sta-

tistical significance when rectified EMG was used, these new results were in line with

the authors expectation. The difficulty of the current motor-cognitive task was evi-

dent from the greater motor error for this task than other tasks (Figure 20e). The
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results thus indicated that in a difficult dual task that divides attention and requires

substantial cognitive processing, young adults with greater beta-band corticomuscu-

lar coherence tend to produce less error (i.e. higher motor accuracy). The absence

of correlation across elderly adults between beta-band corticomuscular coherence and

motor output error was as expected. The age-related discrepancy in this correlation

underscored the distinction in neural strategy for accomplishing dual task between

young and elderly adults, such as increased activation of additional cortical regions

besides the primary motor cortex in elderly adults [84].

For motor output variability, in Aim 1 (simple task) [61], no correlation was

found across young adults between beta-band corticomuscular coherence and force

variability or EMG variability. The absence of correlation between beta-band cor-

ticomuscular coherence, using unrectified EMG, and motor output variability across

young or elderly adults (Table 5) followed the previous findings of Aim 1 [61] and

was against the expectation for young adults but not for elderly adults. In young

adults, neither additional task induced any significant change in motor output vari-

ability (Figure 20), indicating that the employed additional task was not influential

to motor output variability in young adults. In elderly adults, large changes in the

force variability with little change in EMG variability implied an involvement of an

antagonist muscle that would counter an association between motor output variability

and beta-band corticomuscular coherence in the agonist muscle. When rectified EMG

was used, there was an unexpected appearance of a significant negative correlation

between beta-band corticomuscular coherence and the CV of force during the unilat-

eral motor task across young subjects. Considering that this correlation has not been

observed in the literature [101] (or Aim 1 [61]) and that corticomuscular coherence

using a single EEG channel with rectified EMG may involve greater interference from

other sources than with unrectified EMG [6], this inconsistent finding may possibly

be influenced by neural activity in areas other than C3. Clarification of this matter
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would require a study with multi-channel EEG.

Collectively with the findings in the literature, the following possibilities appear to

exist for the potential association between beta-band corticomuscular coherence and

fine motor performance. Trials or segments with higher beta-band corticomuscular

coherence may produce less motor output errors and variability in some tasks or in-

dividuals in young [42, 82], but not elderly adults. Individuals with lower beta-band

corticomuscular coherence do not show smaller motor output variability as shown in

Aim 1 ([61] and the current aim), but may exhibit more accurate motor output ([76]

and current aim) in young, but not elderly adults.

Conclusion.

In support of the NIA’s aim to “understand the mechanisms involved in normal brain

aging; the role of cognition in everyday functioning; protective factors for sensory,

motor, emotional, and cognitive function” [98] the results have provided insight into

the neural control of fine motor tasks with healthy aging. Aim 2 showed that during

steady contraction with visual feedback corticomuscular coherence (a measure of the

correlated activity between brain and muscle) was higher in elderly adults compared

with young adults in the alpha and beta bands across unilateral and dual tasks. In the

alpha band, the increase in corticomuscular coherence was largest with an additional

cognitive task in elderly adults. In the beta band, corticomuscular coherence was

increased with an additional task in the same manner between young and elderly

subjects. In addition, beta-band corticomuscular coherence in the motor-cognitive

task was negatively correlated with motor output error across young, but not elderly

adults. The results suggest that 1) corticomuscular coherence was increased in senior

age with a greater influence of an additional cognitive task in the alpha-band and

2) individuals with lower beta-band corticomuscular coherence may exhibit more

accurate motor output in young, but not elderly adults, during steady contraction
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with visual feedback.
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CHAPTER VI

CLASSIFY NEURAL CONTROL OF MOVEMENT

To begin developing a methodology for investigating the neural control of movement,

changes in neuromuscular activity with task and healthy aging were considered in

Aims 1 and 2. The results indicated that with the addition of a motor or cognitive task

to a unilateral motor task, both time and frequency domain features are statistically

changed with respect to healthy aging.

Extending the knowledge acquired in the first two Aims leads to the purpose of

the current chapter: to provide a data mining context to classifying the neural control

of movement with consideration for unilateral and concurrent motor/cognitive tasks

and healthy aging. The extension in this Aim automates the process of distinguishing

between young and elderly adults utilizing a data mining approach. Features beyond

the classical ones of coherence and power spectral density were also investigated.

Aim 3: Model the Neural Control of Movement

Develop a set of features that best distinguish between age (young and elderly)

during unilateral and concurrent motor/cognitive tasks.

Approach:

1. Determine the appropriate parameters for feature extraction.

2. Determine the optimal subset of features from time, frequency and information

theory domains. Test automatic speech recognition features (cepstrum) for

application to EEG and EMG and signal classification.

3. Classify selected features to provide a proof of concept for a methodology and

computational tool for use by physiologists in practice.
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6.1 Preliminary: Classify the Neural Control of Movement

Section 6.1 focuses on the efficacy of classifying between young and elderly adults us-

ing time and frequency domain features and determines the optimal feature selection

algorithm. The section also investigates the efficacy of the real cepstrum for classifi-

cation of non-speech signals and the use of minimum classification error for Gaussian

mixture model classification.

6.1.1 Age (Time/Frequency Features)

To begin developing a methodology for investigating the neural control of movement

with aging, time and frequency domain features were selected and classified via a

Support Vector Machine classifier to distinguish age differences.

Twelve healthy right-hand dominant young (n = 6; mean age: 26.0 ± 7.3 yrs)

and elderly (n = 6; mean age: 67.3 ± 4.8 yrs) adults were considered. Eight of

the twelve subjects (young, n=4 and elderly, n=4) were used to test the feature

selection approach that yielded the highest classification accuracy with the smallest

subset of features. Four subjects (young, n=2 and elderly, n=2) were used to test

the applicability of the selected features by classifying the additional subjects and

comparing the classification accuracies.

The following features were extracted from the signals: mean absolute value,

variance, coefficient of variation, root mean square, energy, kurtosis, power spectral

density, and coherence. Mean absolute value is a nonnegative measurement of the

signal’s amplitude. The variance feature is a measure of how the signal is dispersed

with respect to mean value of the signal. Quantitatively, the coefficient of variation is

a measure of the spread of the signal’s distribution normalized by the signal’s mean

and provides a measure of the variability of the signal. Root mean square is a measure

of the signal’s magnitude of variation. The energy feature shows the average energy

(signal amplitude squared) of the signal in the time domain. The kurtosis feature

74



shows the sensitivity of the signal’s distribution to outliers. Power spectral density

(PSD) provides a measure of a signal’s distribution of power with respect to frequency.

The maximum PSD considers the peak power in a particular band and relative PSD

is a measure of the signal’s power within a particular band of frequencies relative to

the total power across the complete range of frequencies in question. Coherence as

described previously is a measure of the correlated activity between two signals in

the frequency domain.

Power spectral density and coherence features were extracted from alpha (8-14.5

Hz), beta (15-30 Hz), and gamma (30.5-55 Hz) bands. Feature extraction involved

a moving average window of length L that calculated the feature values. A one

second window length was employed with no overlap. Features were calculated over

all channels, except coefficient of variation which was only calculated for EMG and

coherence specifically calculated for EMGRt-C3, C3-C4, F3-F4, and FC3-FC4. Prior

to data analysis, class labels were assigned to young and old data. Features were

normalized by subtracting the mean and dividing by the standard deviation, prior

to feature selection. Seventy-six features were extracted creating the feature vector,

XM = {x1, x2, ..., xM} , where M=76. Feature selection reduced the feature set, XM ,

to a subset, Xm = {x1, x2, ..., xm} , m<M such that the objective function for the

feature selection algorithm was maximized.

Feature selection algorithms Forward Selection (FS), Backward Selection (BS),

and Branch-and-Bound Selection (BB) were executed for varying feature subset sizes

(1 ≥ m ≥ 29) for classifying young and elderly subjects within tasks (unilateral

motor, bilateral motor and motor-cognitive). Subsets were selected up to 29 features

because the aim was to have a minimal number of features in a subset in order to

reduce computational cost. Feature selection optimization for the FS, BS, and BB

algorithms was obtained using the Mahalanobis distance objective function
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D =

√
(x− µ)T C−1 (x− µ) (8)

where D is the Mahalanobis distance, x is the feature vector, µ is the mean vector, and

C−1 is the covariance matrix. The Mahalanobis distance accounts for the covariance

among the features in calculating distances. Unlike with the Euclidean distance, the

problems of imbalanced feature scale and correlated features are not an issue.

Forward selection (FS) is an iterative algorithm which starts by considering an

empty matrix and adds a feature based on optimizing the objective function [15]. If

the performance metric increases, then the feature being considered is added to the

feature subset. If the number of features in the subset is less than the desired number,

then the process continues, otherwise the subset is complete.

Backward selection (BS) aims to exclude one feature at a time from the original

extracted feature set, such that the reduced feature set leads to optimizing the ob-

jective function (reduce classification error or increase classification accuracy) [15].

Backward selection is similar to forward selection except that backward selection ex-

cludes one feature until the subset number is equal to the desired number of features.

Branch and bound selection (BB) reduces the number of features if the objective

function, J(.), satisfies the monotonicity property [123]. The objective function sat-

isfies this property whenever two arbitrary subsets F1 and F2 of F satisfies J(F1) ≤
J(F2) for any F1 ⊆ F2. The algorithm constructs a search tree and starts from the

root of the tree traversing through the leaves. At the root of the tree where all features

are considered, J(F) is computed. J(F) is continuously computed at each new leaf

(subset of F ). When a leaf has an objective function lower than the current bound,

that leaf (subset) is removed from the tree, reducing the number of computations.

The monotonicity property removes subsets of features where the objective function

is not better than the current bound, thus avoiding evaluations where the subset is

not the optimal solution.
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Support Vector Machine

A Support Vector Machine (SVM) with a Gaussian radial basis function (RBF) kernel

was used for classification. Given a set of observations, each of m input features,

xi ∈ Xm, with corresponding class labels, y ∈ {+1,−1}, the SVM attempts to define

a hyperplane,

y(x) = wTx+ w0, (9)

that discriminates between the two classes. The parameters w and w0 are the weight

vector and hyperplane bias, respectively, selected to maximize the margin of the

hyperplane. To minimize generalization error, the SVM selects the hyperplane with

the largest margin, where the margin is the distance between the closest members

from the two classes. For linearly separable cases,

wTxi + w0 ≥ 0 for y = 1 (10)

wTxi + w0 ≤ 0 for y = -1 (11)

for a new point xi. Generally speaking, most data are not linearly separable, thus in

these cases a soft margin SVM is used which allows some data points to be misclas-

sified. The soft margin SVM solves the optimization problem,

min

{
1

2
wTw

}
+ C

∑
i

ςi, (12)

for all {(xi, yi)}, such that yi
(
wTxi + w0

) ≥ 1− ςi.

The parameter C is a regularization parameter that controls trade off between

complexity of the machine and the number of non-separable points. If C becomes

too large, the classifier can suffer from over-fitting. If C becomes too small the

training error can potentially be large. The parameters ςi are the slack variables
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which correspond to the deviation from the margin borders and they control the

allowable error.

The non-linear SVM maps the input vector of features into vectors in a high-

dimensional feature space to perform classification in the high dimensional space.

The data cast nonlinearly into a high dimensional feature space is more likely to be

linearly separable there than in a lower-dimensional space [24]. The Gaussian radial

basis function (RBF) kernel function

k (x, xi) = e
−‖xi−x‖2

σ2 (13)

was used to do the mapping. Kernels are able to operate in the input space, where the

solution of the classification problem is a weighted sum of kernel functions evaluated

at the support vector. Parameters for the SVM were estimated from the combinations

σ = [0.1, 0.5, 1, 5, 10] and C = [0.1, 1, 10, 100] to minimize the quadtratic program-

ming equation, Equation 12.

For the training set, a balanced proportion of young and old data was used for

training the classifier. A balanced proportion of class data during training increases

the potential for representative classification during testing [12], preventing bias in the

classification process. Cross-validation of the classification accuracy was performed

using 10 hold-out cross-validations within a loop with equal probability of each class

for testing and training. To validate the optimal subset of features, 4 subjects, young

and elderly, were used for classification.

6.1.1.1 Age (Time/Frequency Features) Results

The highest classification accuracies were observed at 93.1% (15 features), 94.1% (13

features), and 88.4% (15 features) for the unilateral, bilateral, and motor cognitive
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Table 8: Classification results for forward selection. Time domain features are se-
lected over frequency domain features across EEG and EMG channels.

Task Test Validation # of features
Unilateral Motor 93.1% 87.4% 15
Bilateral Motor 94.1% 92.6% 13
Motor Cognitive 88.4% 81.3% 15

tasks, respectively (Table 8) for the forward selection algorithm. The branch-and-

bound algorithm also yielded high accuracies (91.6% (11 features), 90.8% (21 fea-

tures), and 85.6% (13 features)), although not as high as FS. The subset of features

selected (coefficient of variation, variance, mean absolute value, root mean square,

and energy) from the FS algorithm were the same across tasks. These features all

belonged to the time domain. Frequency domain features were not included in the

subsets until at least 17 features were selected. Validation of the selected features was

performed using the FS optimal subsets because this algorithm yielded the highest

classification accuracies. Classification accuracy decreased by 6.1% (original: 93.1%

± 1.1%; validation: 87.4% ± 2.8%) for validation of the unilateral motor subset. Val-

idation of the optimal subset for the bilateral motor task showed a 1.6% decrease in

classification accuracy (original: 94.1% ± 0.8%; validation: 92.6% ± 1.5%). Lastly,

for the motor cognitive task using the optimal subset of features, classification accu-

racy decreased by 8.0% with validation (original: 88.4% 0.9%; validation: 81.3% ±
1.7%).

6.1.1.2 Age (Time/Frequency Features) Discussion

In spite of previously observed (Table 4, Figure 17 ) frequency domain features show-

ing class distinctions, when the time and frequency domain features were used in a

data mining context, subsets of time domain features were selected over the frequency

domain features with high classification accuracies. This finding was interesting to
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Figure 21: Box plot of feature selection algorithms forward selection (FS), backward
selection (BS), and branch-and-bound (BB) selection for the (a) unilateral motor, (b)
bilateral motor, and (c) motor cognitive tasks.
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note because literature and the previously observed results in Chapter 5 show fre-

quency domain changes [75, 60, 57], in addition to time domain changes, with age.

The frequency domain features extracted were all relative, as opposed to the time

domain features which were both absolute and relative. This difference in the ob-

servation may have played a role in the features that were ultimately selected. The

preliminary results encouraged further research into these features and incorporation

of additional features (absolute and relative) from other relevant domains to highlight

the physiological changes in the signals, including consideration of non-traditional fea-

tures (cepstrum) for EEG/EMG analysis.

6.1.2 Automatic Speech Recognition Features for Biological Signal Anal-
ysis

6.1.2.1 Real Cepstral Analysis

Automatic speech recognition (ASR) features are used in speech processing to cancel

out noise contribution in the signal from speech recorded using multiple microphones.

Speech recognition considers the frequency content of different sounds; therefore,

features that provide spectral information (e.g. FFT) are desired, just as in EEG

analysis. For this reason, the cepstrum is often computed to extract the spectral

information from the speech signal. The computation of the cepstrum can be related

to a deconvolution of the signal. The noise removing deconvolution of the speech

signal is applicable to removing the inherent environmental noise associated with

recording EEG signals. As in speech recognition, neural changes in EEG as well as

EMG are dominant in the frequency domain with age and the control of movement.

Initial consideration of the real cepstrum was evaluated for classification of seizure

and non-seizure states within the EEG signal. The real cepstrum is the inverse Fourier

transform of the real logarithm of the magnitude of the Fourier transform of a signal.

Seizure data was used for preliminary investigations because the signature of seizures

in EEG are more distinct than signatures of age. Seizures are sudden abnormal
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discharges in the brain often represented by convulsions or loss of consciousness.

This brain abnormality is represented in electroencephalogram (EEG) recordings by

frequency changes and increased signal amplitudes [41]. The ability to accurately

capture the frequency and amplitude changes is key to the detection of seizure and

non-seizure states. Several techniques capable of classifying seizure and non-seizure

states from EEG signals have been presented in the literature [121, 120, 32, 129,

128]. Si et al. [121] reports on an automated pediatric seizure detector based on

fuzzy logic and neural networks with 91% overall recognition. Faul et al. [32] uses

Gaussian Process (GP) modeling theory to detect neonatal seizures. The GP EEG

measure, Gaussian variance, provided a classification accuracy of 82.8%. Thomas et

al. [129] obtained a 79% detection rate using Gaussian mixture models and frequency,

time, and information theory domain features for neonatal seizures. Expanding on

this work, Temko et al. [128] incorporated automatic speech recognition features to

classify neonatal seizures using a support vector machine classifier. Assessing the

area under the Receiver Operating Curve (ROC), they obtained 93.1% with spectral-

enveloped based features and cepstral coefficients.

While all of these approaches have made contributions towards a real-time system,

the challenges of unbalanced data (seizure and non-seizure) and system computational

efficiency still remain. The rare occurrence of a seizure over hours of EEG recordings

makes training and testing of the model difficult because of the potential class bias

towards the non-seizure state, increasing the number of false alarms. The dissertation

results add to the body of work with the incorporation of the MCE algorithm applied

on Gaussian mixture models to classify seizure and non-seizure states using cepstral

analysis. The approach is novel in that it accounted for the challenge of unbalanced

datasets (seizure and non-seizure), while also showing a system capable of real-time

feature extraction.

This section of Aim 3 tested the efficacy of the application of speech processing
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techniques (real cepstrum) to discriminate between seizure and non-seizure states in

EEG signals. Additionally, the use of the Minimum Classification Error (MCE) al-

gorithm applied on Gaussian mixture models for improving classification accuracy

was tested; showing the comparison of the efficacy of MCE with two classification

schemes, including support vector machines and standard Gaussian mixture mod-

els. More importantly, the MCE algorithm specifically targeted the constraint of

unbalanced data.

6.1.2.2 Methodology

To begin the investigation of the application of ASR features for EEG/EMG signal

analysis and classification, the real cepstrum feature was extracted from pediatric

seizure data to classify seizure and non-seizure segments [59]. Seizure data was used

for preliminary investigations because the signature of seizure in EEG is more dis-

tinct than the signature of performing a different task, age or even stroke. A dataset

of pediatric EEG recordings was obtained from the PhysioNet on-line database [39]

for the preliminary investigation. The database included recordings from 22 subjects

(males: n=5, ages 3-22; females: n=17, ages 1.5-19) recorded at the Children’s Hos-

pital Boston. Recordings were of 23 surface EEG channels sampled at 256 Hz, from

subjects with intractable seizures. The data consisted of 182 seizures with approxi-

mately 6 hours of data per subject. Each subject had approximately 8 seizures.

The real cepstrum feature was extracted over 10 second windows of EEG samples.

Consecutive moving windows of 3 seconds were used, resulting in a 66% overlap. A

cepstral transformation was applied on each of these windows. The cepstral trans-

formation is well known for its ability to preserve the envelope of the spectrum. It

provides a compact representation of the spectrum into a small set of features that

are well decorrelated. For these initial experiments, the first 12 cepstral coefficients
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were retained. Binary labels were assigned to each feature vector of 12 cepstral coef-

ficients, following a simple majority rule. If in the time domain, less than 50% of the

EEG samples belonged to a segment of seizure activity, the feature vector takes the

label of class C2 (non-seizure). Otherwise, the feature vector was labeled with class

C1 (seizure).

Support Vector Machine

A SVM classifier with a Gaussian RBF kernel was used for classification as described

in Section 6.1. Again, the SVM was programmed to use the best combination of

parameters to minimize the quadratic programming problem, Equation (12).

Discriminative training of Gaussian Mixture Models (GMMs)

The generative and discriminative approaches to classification problems are two com-

peting philosophies in machine learning. The generative approach attempts to directly

fit a model to training data on a category-per-category basis, typically based on the

Maximum Likelihood (ML) criterion or Mean Square Error. Classification is done by

comparing the score of each model and choosing the classes whose model yields the

optimum score. In contrast, the discriminative approach tries to directly estimate the

boundaries between classes.

Gaussian Mixture Models (GMMs)

The GMM classification model will be explained using the seizure detection problem.

A model is created for each category (seizure or non-seizure), and detection is based

on the optimum score of a category given a sample. Gaussian Mixture Models are

a widely used modeling approach, typically applied to clustering or pattern classifi-

cation, in particular in the context of speaker identification, language identification,

or image segmentation. Its attractiveness is because of its ability to approximate the
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data distribution of a given class, making it a judicious choice for detection problems

that exhibit differences in distribution across categorical data.

Formally, a GMM represents the probability density function (pdf) of a random

variable, x ∈ Rd, as a weighted sum of k Gaussian distributions:

p (x|Θ) =

k∑
m=1

αmp (x|θm) , (14)

where Θ is the mixture model, αm corresponds to the weight of component m and

the density of each component is given by the normal probability distribution:

p (x|θm) = |∑m|−1/2

(2π)d/2
exp

{
−1

2
(x− μm)

T
−1∑
m

(x− μm)

}
. (15)

MCE Motivation

The Maximum Likelihood Criteria is the standard estimation approach for GMM

in which the parameters α, μ and
∑

are iteratively estimated via the Expecta-

tion Maximization (EM) algorithm in order to maximize the log-likelihood of the

model. Theoretically, a ML-trained GMM can approximate any probability distri-

bution, provided a sufficiently large training set and an optimal choice of the model

order (number of mixtures k) are available. However, in practical situations, the

training set is usually not sufficiently large, or the optimal model order is unknown.

Furthermore, by estimating the model of each category separately, ML only provides

an indirect approach to the classification task. To remedy these deficiencies, the Min-

imum Classification Error (MCE) algorithm was employed to correct and enhance a

given ML-trained GMM, based on an optimization criterion that closely reflects the

error rate on a training set.

Minimum Classification Error was utilized based on its success in speech and

usability across a broad range of classifiers. The choice of the MCE approach is

motivated by its straightforward applicability to various types of classifiers and its

flexibility in tuning the learning parameters to achieve the targeted performance. In
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addition, MCE training has found a range of applications in various areas, including

speech recognition and handwriting recognition.

MCE minimizes a smooth approximation of the error rate [63] and unlike ML,

MCE does not attempt to fit a distribution, but rather to discriminate against com-

peting models [63]. MCE training is more directly aimed at reducing the recognizer’s

mistakes. MCE has been found efficient in handwriting recognition [11] and feature

extraction [12] and to the author’s knowledge has never been applied to seizure de-

tection. This section describes the MCE application to Gaussian Mixtures Models

(GMMs).

Minimum Classification Error training of Gaussian Mixture Models

The MCE learning paradigm provides a correction of the ML-estimation techniques

by its focus on directly improving the detection capabilities of the GMM. Given a

two-class problem in which the goal is to classify data between seizure and non-seizure

states (or young and elderly), the two categories C1 and C2 are represented by two

GMMs of parameters Θ1 and Θ2. The parameter Θ = {Θi} for i = 1, 2, is defined

as the parameter space of the overall model. Given a feature vector X, the MCE

training procedure is implemented as follows.

First, the discriminant function (gi) of category Ci is defined as

gi(X; Θi) = log p (x|Θi) + logP (Ci) (16)

where P (Ci) is the prior probability of the category Ci; this prior probability is esti-

mated from training data. The computation of prior probability is a unique modifica-

tion to account for potentially unbalanced datasets for each class. The discriminant

function is the score generated by the GMM of category Ci, given a sample X; it

is an estimation of how likely the given sample belongs to that category (seizure or

non-seizure; young or elderly). Decoding is done by choosing the category that has

the highest discrimination measure (the highest score). That is,
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choose Ci if i = argmax
1,2

gj(X; Θj). (17)

Second, assuming that X belongs to Ci, we define the misclassification measure

(di) of Ci as

di(X; Θ) = −gi(X ; Θi) + gj,j �=i(X; Θj). (18)

This misclassification measure estimates how well the model of category Ci can dis-

criminate against another category, given a sample dataset. The sign of the misclas-

sification measure reflects the performance of the model. A negative sign indicates a

correct detection and a positive sign represents an incorrect detection. Finally, the

MCE loss assigned to X is defined as �(X; θ) = �(di(X; θ), where �(·) is a smooth

approximation of the step-wise 0− 1 loss function, typically chosen to be a sigmoid

�(d) =
1

1 + exp(−αd)
(19)

with a positive α chosen to allow for reasonable degree of smoothness. The MCE loss

is a smooth approximation of the 0-1 loss, which reflects a correct versus incorrect

decision made by the system.

The method optimizes the classification by minimizing the expected loss L(Θ),

defined as a function of the overall parameter set:

L(Θ) =

2∑
i=1

∫
X∈Ci

�(X ; Θ)P (X)dX. (20)

In practice, MCE training focuses on the minimization of the MCE average loss

defined over a body of training data of size N as

LN(Θ) =
1

N

M∑
i=1

�(X ; Θ). (21)

Clearly, LN(Θ) approximates the empirical error rate, given that a body of training

data and its evolution closely reflect the performance of the system on the training
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Figure 22: Minimum classification error smooth approximation of the 0-1 loss error
function.

set. By minimizing LN(Θ), the error in the training is more directly minimized than

when done with the standard ML technique.

To minimize LN (Θ), a gradient descent approach was used in which the Θ param-

eters of the system are iteratively updated as follows:

Θτ+1 = Θτ − μ∇L(Θτ ) (22)

where μ is a learning rate, which specifies the rate of convergence of the algorithm.

Model Implementation

The efficacy of the approach was tested during a summer of 2010 internship with

the Exploratory Stream Analytics Group at the T.J. Watson Research Center in

Hawthorne, NY. Initial testing was performed using MatlabTM; however, despite

the favorable modeling capabilities of the software, it struggled to handle the large

data set. Attempts to extract features using windows of several EEG signals were

unsuccessful with Matlab due to the computational burden of the modeling step.
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Figure 23: Spade analysis graph for EEG filtering, feature extraction, and labeling.

SPSSTM[125] and WekaTM[139] were also considered; however, these software plat-

forms were also unable to handle processing the large dataset. As a result, IBM’s

InfoSphere StreamsTM(Streams) platform was used to build an experimental test-bed

for the EEG analysis (Figure 23). The use of Streams allowed for a forward look

into the potential for a real-time application of the model. Other applications are

discussed in Section 8.2.

Streams is a highly scalable and programmable stream computing software plat-

form allowing application developers to process structured, as well as unstructured

streaming data. It provides several services in addition to its analytical capabili-

ties, including fault tolerance, scheduling and placement optimization, distributed

job management, storage services, and security. Streams was designed to scale to a

large collection of computational nodes, simultaneously hosting multiple applications.

Streams applications are represented as directed data flow graphs (Figure 23) con-

sisting of a set of processing elements (PEs) connected by data streams. Each data
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stream carries a series of stream data elements. A PE implements data stream analyt-

ics and is the basic execution container that is distributed over computational hosts.

At the operating system level, PEs are within in their own processes and communi-

cate with each other via their input and output ports, using the TCP/IP network

stack. Input and output ports are connected by streams to form these directed data

flow graphs. More detailed information on the use of Streams can be in found in [59].

6.1.2.3 Seizure Results

Preliminary results from the use of cepstral analysis and GMM

Feature vectors were classified using standard Gaussian Mixture Models (GMM) using

ML and MCE applied to these standard GMMs. The GMM modeling was performed

by optimally growing the number of Gaussians up to 32. MCE training starts from

the ML-estimated GMM model and adjusts the parameters of that model to generate

a better performing model on the training set. A 10-fold cross validation approach

was used.

Application of the real cepstrum and GMM showed comparable accuracy results

(overall 91.7% recognition with standard GMM) in comparison to the use of the same

dataset for seizure/non-seizure classification, but with time and frequency domain

features (overall 95.0% recognition) [120]. The recognition rates with the standard

GMM were 92.2% for non-seizure windows and only 64.2% for the rare seizure events

(Table 9) [59]. The low frequency of seizure events in the data set makes it hard

for the classifier to have good detection accuracy for seizure events. However, the

application of MCE to better discriminate (account for the unbalanced seizure/non-

seizure states) between these two classes significantly boosted the seizure detection

accuracy. With MCE applied to the GMM model described above, the recognition

accuracy of non-seizure events was slightly decreased, while significantly boosting the

recognition accuracy of seizure events by 42.4% in comparison to the standard GMM
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Table 9: Seizure classification results.
Non-Seizure Seizure

SVM 90.0% 81.0%
standard GMM 92.2% 64.2%
GMM + MCE 84.9% 91.4%

(Table 9) [59]. The SVM classifier using RBF achieved a comparable recognition rate

for the non-seizure class in comparison to the standard GMM, but the result for the

seizure class was inferior to the accuracy reached with MCE on the seizure class.

6.2 Extension: Classify the Neural Control of Movement

This section uses EEG and EMG data to classify between healthy young and elderly

adults expanding the nature of features used for classification. Time, frequency, in-

formation theory, and automatic speech recognition features are incorporated and

selected from using the forward selection algorithm as tested and described in Sec-

tion 6.1. The automatic speech recognition features are optimized and the GMM

using MCE classifier is tested against the SVM and GMM using ML for classification

between young and elderly adults.

6.2.1 Features

The feature subset from Section 6.1 has been expanded (Table 10, Appendix C)

to include additional time and frequency domain features, as well as the cepstral

features noted in the previous section. Additionally, nonlinear features, katz fractal

dimension and nonlinear energy, were included for analysis. The following explains

the new features added for extraction. The nonlinear features were included due to

their ability to better characterize nonlinear aspects of the EMG and EEG signals.

Katz Fractal dimension is a measure of the long-range dependence of the signal. It

provides a measure of the signal’s self-similarity and complexity. Shannon entropy

91



provides a measure of the randomness of the amplitude values of the signal. Thus, the

higher the entropy, the more disorder is expected within the signal. Quantitatively,

complexity is a measure of the slope of the mobility of the signal, where mobility is

the average slope of the signal. Complexity provides a measure of the randomness of

the signal. Mutual information is a measure of the amount information one random

variable contains with respect to another. The random variable can be used as a

general description of the EEG and EMG signals [96]. The mutual information feature

provides a measure of the interdependence of either the EEG and EMG, or EEG and

EEG for intracortical interactions. Wavelet coherence is similar to the coherence

previously described; however, wavelet coherence provides a measure of the time and

frequency domain characteristics simultaneously. Zero crossing is a measure of the

number times the signal crosses the zero value “line”.

Features were extracted from all channels: EMGRt, C3, C4, F3, F4, FC3, and

FC4, for three window lengths (0.5s, 1s, 2s). Class labels were assigned to young and

old data segments. Features were normalized by subtracting the mean and dividing

by the standard deviation, prior to feature selection. Based on the preliminary results,

features were selected using forward selection with the objective function being the

sum of estimated Mahalanobis distance for classifying young and elderly subjects

within tasks (unilateral motor, bilateral motor, and motor-cognitive). Feature subset

sizes (1 ≥ m ≥ 75) were considered. Subsets were selected up to 75 features because

the aim was to have a minimal number of features that reduce computational cost

for distinguishing between young and elderly adults.
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Table 10: Feature Table.
Feature Number Feature Name

1 Mutual Information
2 Coherence: Delta
3 Coherence: Theta
4 Coherence: Alpha
5 Coherence: Beta
6 Coherence: Gamma
7 Mean
8 Standard Deviation
9 Kurtosis
10 Zero Crossing
11 Sample Entropy
12 Shannon Entropy
13 Max PSD: Delta
14 Max PSD: Theta
15 Max PSD: Alpha
16 Max PSD: Beta
17 Max PSD: Gamma
18 Relative PSD: Delta
19 Relative PSD: Theta
20 Relative PSD: Alpha
21 Relative PSD: Beta
22 Relative PSD: Gamma
23 Complexity
24 Nonlinear Energy
25 Katz Fractal Dimension
26 Modified Real Cepstrum
27 Modified MFCC
28 Wavelet Coherence

6.2.1.1 Cepstral Analysis Optimization

The preliminary results of the application of the real cepstrum for classification of

seizure and non-seizure states was expanded to also include the mel-frequency cep-

strum coefficient for classification between young and elderly adults. As noted, the

real cepstrum is the inverse Fourier transform of the real logarithm of the magnitude

of the Fourier transform of a signal. Mel-Frequency Cepstral Coefficients (MFCC) are
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short-term frequency based features computed by taking the discrete Fourier trans-

form of a window, the log of the amplitude spectrum ignoring the phase component,

converting to a Mel spectrum, then taking the Discrete Cosine Transform. The mel

scale is linear up to 1000 Hz and then logarithmic afterwards. The equation for the

mel scale is

m = 2595 log(1 +
f

700
). (23)

Despite both speech and EEG/EMG signals having significant spectral character-

istics, the application of ASR features for biological data (EEG and EMG) is only

recently being investigated. The inclusion of cepstral analysis for EEG and EMG sig-

nals required investigation of the number of coefficients for both the real cepstrum and

MFCC and the filterbank spacing for the mel-frequency cepstrum. The MFCC fea-

ture was modified for application to EEG and EMG by modifying the Mel-Frequency

Warping to equally spaced filterbanks. The Mel-frequency cepstrum originally used

a linear-spaced filter up to approximately 1 kHz followed by a log-spaced filterbank.

The filterbank spacing for application to non-speech signals was adjusted to include

a linear-spaced filterbank between 0.5 and 55 Hz. The MFCC feature was extracted

using a linear-spaced Hamming window.

The determination of the number of coefficients to maintain for speech has been

determined empirically and used throughout the speech community. In a similar man-

ner to [105], the number of coefficients to maintain for EEG and EMG analysis was

determined using principle component analysis (PCA). The main purpose of PCA

is to derive a relatively small number of uncorrelated linear combinations (principle

components) of a set of random zero-mean variables while retaining as much of the

information from the original variable as possible [24]. The PCA transform is derived

from the eigenvalues and eigenvectors of the covariance of the training data. Dimen-

sionality is reduced by removing principle components corresponding to relatively low
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Figure 24: Modified linear filterbank spacing for the mel-frequency cepstrum.

eigenvalues. The desired amount of variance accounted for depends on the number

of components retained.

The number of cepstral coefficients for both the real cepstrum and MFCC were

determined using PCA on each of the EMG and EEG signals (n = 7), maintaining

only the components accounting for 90 percent of the variance. This was performed for

each task (unilateral motor, bilateral motor, and motor-cognitive) and window length

(0.5 s, 1 s, 2 s) to account for the influence of these parameters. Figure 25 depicts

the number of coefficients that were determined from each of the seven channels for

the real cepstrum and the MFCC. EEG channels ranged from 7-9 coefficients for

the real cepstrum and 2 coefficients for each of the channels for the MFCC. The

EMG channel ranged from 4-5 coefficients for the real cepstrum and 2 for the MFCC.

This included the coefficients that accounted for 90% of the variance across young and

elderly subjects. For the cases where a channel had a different number of components,

the maximum number of components across all test sets was used for that channel.

Thus, in the end for the real cepstrum, 9 coefficients were maintained for each EEG

channel and 5 coefficients for the EMG channel. For the MFCC, 2 coefficients were

maintained for each of the EEG and EMG channels.

To assess the potential improvement of classification accuracy with optimization
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Figure 25: Optimal number of real cepstrum and mel-frequency cepstrum coefficients.

of the real cepstrum and MFCC, classification was performed with and without the

optimization.

6.2.2 Classification

Classification of features was performed using the SVM classifier, the GMM classifier

with Maximum Likelihood, and Minimum Classification Error as described in Section

6.1. A SVM with a Gaussian RBF kernel was used, and the parameters were estimated

using cross-validation. Classification was also performed with a GMM classifier using

both Maximum Likelihood and Minimum Classification Error.

The features were analyzed in groups to highlight individual differences and then

analyzed all together to observe the overall influence from each feature. Classifier

performance was defined as

ClassificationAccuracy =

(∑
(Palgorithm = Pexpected)

Ptotal

)
∗ 100 (24)

where Palgorithm is the classifier’s output for the window, Pexpected is the expert label-

ing for the window, and Ptotal is the total number of windows.
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6.2.2.1 Support Vector Machine

The results of feature classification using SVM are shown in Figures 26 - 32. Clas-

sification results across window lengths and tasks are summarized in Tables 11 - 16,

showing the maximum classification accuracy and corresponding number of features

in bold. For the SVM, the 1 and 2 second windows resulted in the highest classifica-

tion accuracies across tasks, with the 2 second window providing significantly higher

classification accuracies over the 0.5 second window.

(a) (b)

(c)

Figure 26: Time, Frequency, and Information Theory features (Support Vector Ma-
chine) for the (a) unilateral motor, (b) bilateral motor, and (c) motor cognitive tasks.
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(a) (b)

(c)

Figure 27: Nonlinear features (Support Vector Machine) for the (a) unilateral motor,
(b) bilateral motor, and (c) motor cognitive tasks.

Table 11: Time, frequency, and information theory features SVM classification re-
sults (maximum classification accuracy, number of features).

0.5 second 1 second 2 second
Unilateral Motor 81.0%, 43 78.9%, 41 83.5%, 25
Bilateral Motor 82.3%, 43 84.9%, 37 88.3%, 33
Motor Cognitive 82.2%, 51 86.6%, 39 85.4%, 41
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(a) (b)

(c)

Figure 28: Cepstral features (Support Vector Machine) for the (a) unilateral motor,
(b) bilateral motor, and (c) motor cognitive tasks.

Table 12: Nonlinear features SVM classification results (maximum classification
accuracy, number of features).

0.5 second 1 second 2 second
Unilateral Motor 92.7%, 13 95.3%, 13 95.4%, 13
Bilateral Motor 94.0%, 13 93.8%, 13 95.6%, 13
Motor Cognitive 93.8%, 13 97.0%, 13 96.2%, 13
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(a) (b)

(c)

Figure 29: Cepstral Optimized features (Support Vector Machine) for the (a) uni-
lateral motor, (b) bilateral motor, and (c) motor cognitive tasks.

Table 13: Cepstral features SVM classification results (maximum classification ac-
curacy, number of features).

0.5 second 1 second 2 second
Unilateral Motor 58.0%, 3 59.7%, 23 72.9%, 19
Bilateral Motor 56.5%, 41 57.0%, 39 60.9%, 27
Motor Cognitive 61.4%, 19 61.6%, 33 68.8%, 15

Overall, the results indicate that the nonlinear features, katz fractal dimension

and nonlinear energy, produce the highest classification accuracies (unilateral motor:

95.44%, bilateral motor: 95.5%, motor cognitive: 97%) (Table 12) when comparing
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(a) (b)

(c)

Figure 30: All features (Support Vector Machine) for the (a) unilateral motor, (b)
bilateral motor, and (c) motor cognitive tasks.

Table 14: Cepstral features (optimized) SVM classification results (maximum clas-
sification accuracy, number of features).

0.5 second 1 second 2 second
Unilateral Motor 60.0%, 41 63.0%, 39 77.0%, 25
Bilateral Motor 62.2%, 47 65.0%, 37 76.8%, 25
Motor Cognitive 61.0%, 27 65.8%, 45 78.9%, 41

against the time, frequency, information theory, and cepstral features. As noted, the

cepstral features were classified before and after making the modifications for appli-

cation to EEG and EMG signal analysis. After modifying the filterbank spacing and
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(a) (b)

(c)

Figure 31: All Optimized features (Support Vector Machine) for the (a) unilateral
motor, (b) bilateral motor, and (c) motor cognitive tasks.

Table 15: All features SVM classification results (maximum classification accuracy,
number of features).

0.5 second 1 second 2 second
Unilateral Motor 89.1%, 27 92.5%, 27 86.9%, 15
Bilateral Motor 91.6%, 19 92.6%, 17 90.3%, 43
Motor Cognitive 89.3%, 33 92.3%, 33 85.7%, 23

number of coefficients for the cepstral features, the classification accuracy increased

by 5.6% for the unilateral task, 26.1% for the bilateral task, and 14.7% for the motor

cognitive task (Tables 13 and 14).
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Table 16: All features (optimized) SVM classification results (maximum classification
accuracy, number of features).

0.5 second 1 second 2 second
Unilateral Motor 96.0%, 21 96.5%, 23 96.1%, 19
Bilateral Motor 88.0%, 23 83.0%, 19 93.7%, 21
Motor Cognitive 94.1%, 19 94.0%, 15 98.0%, 27

The inclusion of all features from Table 10 was also compared before and after

the cepstral features were optimized. The incorporation of modified cepstral features

improved classification accuracy when using all features (Figure 32). Classification

accuracy significantly increased from using all features to using all features after the

optimization of the cepstral features (unilateral motor: P < 0.01; bilateral motor:

P < 0.01; motor cognitive: P < 0.01) (Figure 32). For the bilateral motor task,

the cepstral features were not included in the subsets where the classification line

for “All features”’ was greater than for “All features Optimized”’ (Figure 32b). For

the optimal subsets, classification accuracy increased by 4.3% for the unilateral task,

1.2% for the bilateral task, and 6.2% for the motor cognitive task (Tables 15 and 16,

respectively).

The maximum classification accuracy of 96.5% obtained for the unilateral motor

task corresponded to 92.5% accuracy for the young class and 99.0% accuracy for

the elderly class. For the bilateral motor task, a maximum classification accuracy of

93.7% was obtained, corresponding to 96.4% accuracy for the young class and 90.7%

accuracy for the elderly class. The maximum classification accuracy of 98.0% ob-

tained for the motor cognitive task corresponded to 98.5% accuracy for the young

class and 97.4% accuracy for the elderly class.

6.2.2.2 Gaussian Mixture Model: ML and MCE

Statistically significant increases in classification accuracy using the GMM with MCE

were observed across all feature subsets in comparison to the GMM with Maximum
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Figure 32: Comparison of All features versus All features optimized for Support
Vector Machine Classification for the (a) unilateral motor, (b) bilateral motor, and
(c) motor cognitive tasks.

Likelihood and SVM (unilateral motor: P < 0.01; bilateral motor: P < 0.05; motor

cognitive: P < 0.01). At the optimal feature subset, increased accuracy was observed

between MCE and ML; however, a smaller increase was observed in MCE over the

SVM (Figure 33). Figure 33 provides a graphical representation of the statistical

differences between the three classifiers using the optimal subset of features. The box

plot shows the 75th percentile, median, and 25th percentile. As noted statistically

when compared, the median classification accuracy of the GMM with MCE is greater

than the other two classifiers. The description of the results will primarily focus on

the GMM with MCE because this classifier produced the highest overall accuracies

for the model.
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Figure 33: Box plot comparison of classification accuracies across the Support Vec-
tor Machine (SVM), Gaussian Mixture Model with Maximum Likelihood (ML) and
Gaussian Mixture Model with Minimum Classification Error (MCE) classifiers for the
(a) unilateral motor, (b) bilateral motor, and (c) motor cognitive tasks.

The 2-second window yielded higher classification accuracies for the GMM for

both ML and MCE, with significantly higher accuracies for the 2-second window in

comparison to the 0.5-second window (Figures 34 - 45). As with the SVM classifier,

classification accuracy was the highest with the use of the nonlinear features in com-

parison to the other feature domain groups (Table 18). Additionally, classification

accuracy increased with the optimization of the cepstral features. The classification

accuracy increased by 9.3% for the unilateral task, 11.2% for the bilateral task, and

10.6% for the motor cognitive task (Table 19 and 20).

Optimizing the cepstral features increased classification accuracy from using All
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features to using ”‘All features after the optimization of the cepstral features by

9.0% for the unilateral task, 7.6% for the bilateral task, and 7.1% for the motor

cognitive task (Tables 21 and 22, respectively). The maximum classification accuracy

of 97.7% obtained for the unilateral motor task corresponded to 97.0% accuracy for

the young class and 98.1% accuracy for the elderly class. For the bilateral motor task,

a maximum classification accuracy of 97.7% was obtained corresponding to 96.8%

accuracy for the young class and 98.0% accuracy for the elderly class. The maximum

classification accuracy of 98.0% obtained for the motor cognitive task corresponded

to 98.3% accuracy for the young class and 98.0% accuracy for the elderly class.

Table 17: Time, Frequency, and Information Theory features Gaussian Mixture
Model classification results (maximum classification accuracy, number of features).

0.5 second 1 second 2 second
Maximum Likelihood
Unilateral Motor 83.8%, 59 84.8%, 59 86.5%, 33
Bilateral Motor 83.2%, 57 90.0%, 51 90.7%, 35
Motor Cognitive 81.7%, 51 86.5%, 57 88.8%, 31
Minimum Classification Error
Unilateral Motor 87.1%, 57 89.8%, 59 92.1%, 35
Bilateral Motor 87.6%, 47 93.8%, 51 95.4%, 45
Motor Cognitive 86.2%, 57 89.1%, 39 91.8%, 41

Table 18: Nonlinear features Gaussian Mixture Model classification results (maxi-
mum classification accuracy, number of features).

0.5 second 1 second 2 second
Maximum Likelihood
Unilateral Motor 88.9%, 11 92.1%, 13 84.9%, 13
Bilateral Motor 88.3%, 13 90.1%, 9 84.8%, 11
Motor Cognitive 72.5%, 13 84.5%, 7 86.8%, 13
Minimum Classification Error
Unilateral Motor 95.2%, 13 93.7%, 13 91.5%, 13
Bilateral Motor 93.6%, 11 94.7%, 11 90.7%, 7
Motor Cognitive 94.2%, 13 91.1%, 13 91.5%, 13
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Figure 34: Time, Frequency, Information Theory features (GMM Maximum Like-
lihood) for the (a) unilateral motor, (b) bilateral motor, and (c) motor cognitive
tasks.
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Figure 35: Nonlinear features (GMM Maximum Likelihood) for the (a) unilateral
motor, (b) bilateral motor, and (c) motor cognitive tasks.
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Figure 36: Cepstral features (GMM Maximum Likelihood) for the (a) unilateral
motor, (b) bilateral motor, and (c) motor cognitive tasks.
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Figure 37: Cepstral Optimized features (GMM Maximum Likelihood) for the (a)
unilateral motor, (b) bilateral motor, and (c) motor cognitive tasks.
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Figure 38: All features (GMM Maximum Likelihood) for the (a) unilateral motor,
(b) bilateral motor, and (c) motor cognitive tasks.
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Figure 39: All Optimized features (GMMMaximum Likelihood) for the (a) unilateral
motor, (b) bilateral motor, and (c) motor cognitive tasks.
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Figure 40: Time, Frequency, Information Theory features (GMM Minimum Classifi-
cation Error) for the (a) unilateral motor, (b) bilateral motor, and (c) motor cognitive
tasks.
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Figure 41: Nonlinear features (GMM Minimum Classification Error) for the (a)
unilateral motor, (b) bilateral motor, and (c) motor cognitive tasks.
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Figure 42: Cepstral features (GMM Minimum Classification Error) for the (a) uni-
lateral motor, (b) bilateral motor, and (c) motor cognitive tasks.
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Figure 43: Cepstral Optimized features (GMM Minimum Classification Error) for
the (a) unilateral motor, (b) bilateral motor, and (c) motor cognitive tasks.
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Figure 44: All features (GMM Minimum Classification Error) for the (a) unilateral
motor, (b) bilateral motor, and (c) motor cognitive tasks.

117



0 10 20 30 40 50 60 70 80

20

40

60

80

100

Feature Subset

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Unilateral Motor
All Optimized

 

 

(a)

0 10 20 30 40 50 60 70 80

20

40

60

80

100

Feature Subset
C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y 
(%

)

Bilateral Motor
All Optimized

 

 

(b)

0 10 20 30 40 50 60 70 80

20

40

60

80

100

Feature Subset

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

(%
)

Motor Cognitive
All Optimized

 

 

0.5s
1s
2s

(c)

Figure 45: All Optimized features (GMM Minimum Classification Error) for the (a)
unilateral motor, (b) bilateral motor, and (c) motor cognitive tasks.
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Table 19: Cepstral features Gaussian Mixture Model classification results (maximum
classification accuracy, number of features).

0.5 second 1 second 2 second
Maximum Likelihood
Unilateral Motor 64.4%, 59 67.2%, 55 71.8%, 53
Bilateral Motor 64.5%, 49 69.6%, 31 72.2%, 41
Motor Cognitive 60.6%, 53 64.2%, 51 70.5%, 31
Minimum Classification Error
Unilateral Motor 66.3%, 49 69.2%, 33 75.5%, 29
Bilateral Motor 69.8%, 47 71.2%, 31 75%, 29
Motor Cognitive 65.4%, 39 72.7%, 39 74.4%, 31

Table 20: Cepstral features (optimized) Gaussian Mixture Model classification re-
sults (maximum classification accuracy, number of features).

0.5 second 1 second 2 second
Maximum Likelihood
Unilateral Motor 74.2%, 55 75.2%, 59 78.8%, 57
Bilateral Motor 72.7%, 49 75.1%, 51 80.7%, 35
Motor Cognitive 68.7%, 51 73.5%, 49 77.8%, 31
Minimum Classification Error
Unilateral Motor 75.1%, 55 75.2%, 35 82.5%, 33
Bilateral Motor 76.2%, 47 78.2%, 33 83.4%, 33
Motor Cognitive 71.4%, 43 79.6%, 39 82.3%, 41

Feature Trends

Investigation of the nature of the features selected indicates that nonlinear fea-

tures (nonlinear energy and katz fractal dimension) were primarily selected when all
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Figure 46: Gaussian Mixture Model Minimum Classification Error versus Maximum
Likelihood for All Optimized features for the (a) unilateral motor, (b) bilateral motor,
and (c) motor cognitive tasks.
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Table 21: All features Gaussian Mixture Model classification results (maximum
classification accuracy, number of features).

0.5 second 1 second 2 second
Maximum Likelihood
Unilateral Motor 85.1%, 27 86.7%, 27 88.2%, 19
Bilateral Motor 80.5%, 45 82.5%, 53 86.1%, 41
Motor Cognitive 87.7%, 29 87.7%, 27 89.9%, 27
Minimum Classification Error
Unilateral Motor 84.5%, 43 86.0%, 27 89.6%, 15
Bilateral Motor 81.1%, 43 86.9%, 47 90.8%, 29
Motor Cognitive 88.4%, 29 89.9%, 43 91.5%, 23

Table 22: All features (optimized) Gaussian Mixture Model classification results
(maximum classification accuracy, number of features).

0.5 second 1 second 2 second
Maximum Likelihood
Unilateral Motor 91.2%, 45 92.5%, 27 94.7%, 19
Bilateral Motor 90.1%, 47 89.1%, 47 93.4%, 41
Motor Cognitive 94.9%, 27 95.1%, 27 97.3%, 23
Minimum Classification Error
Unilateral Motor 91.0%, 43 93.5%, 27 97.7%, 15
Bilateral Motor 94.9%, 49 95.1%, 49 97.7%, 29
Motor Cognitive 95.1%, 29 96.4%, 43 98.0%, 23

features were considered. Figure 47 shows the overall frequency of the selected fea-

tures across tasks. The location of the selected features varied according to the task

being considered. For the unilateral motor task, features were primarily selected from

the left hemisphere (C3 and FC3) (Figure 48a). The nonlinear energy feature was se-

lected from 5 out of the 7 channels recorded (C3, F3, C4, F4, FC4). For the bilateral

motor task, features were equally selected within the left and right hemispheres (Fig-

ure 48b). Additionally, 9 features were selected from the EMG channel in comparison

to 2 EMG features for the unilateral motor task and 3 EMG features for the motor

cognitive task. For the motor cognitive task, features were primarily selected from

the more frontal electrodes (F3, F4, FC3, and FC4) (Figure 48c). The frequency of

features selected was the greatest for nonlinear energy (5 features) and Katz fractal
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dimension (3 features) for the unilateral motor task, nonlinear energy (3 features)

and Katz fractal dimension (3 features) for the bilateral motor task, and nonlinear

energy (4 features), real cepstrum (4 features), and sample entropy (5 features) for

the motor cognitive task.
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Figure 47: Frequency of selected features across all tasks.

Comparing the location of features selected for the unilateral motor task with the

two dual tasks, indicates an increase in the number of features within the right hemi-

sphere for the two dual tasks. Five features were selected in the right hemisphere for

the unilateral motor task, 10 features for the bilateral motor task, and 11 features for

the motor cognitive task. The real cepstrum features were selected for the two dual

tasks (bilateral motor and motor cognitive), but not the unilateral motor task. It is

also observed that few frequency domain features are selected across tasks in support

of the previous finding from the preliminary investigations [62]. Frequency domain

features were selected 1 out of 15 for the unilateral motor task, 8 out of 29 for the

bilateral motor task, and 1 out of 23 for the motor cognitive task (Figure 48).

Statistical Validation of Approach

Statistical analysis was performed per task-type for only feature-values computed
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(a)

(b) (c)

Figure 48: Selected Features from Gaussian Mixture Model Minimum Classification
Error for the (a) unilateral motor, (b) bilateral motor, and (c) motor cognitive tasks.
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using the 2-second window-size, which provided the best performance (Section 6.2.2.2).

Dependent variables were values of the forward-selected features and the class label

(young or elderly) was the independent variable. The data was analyzed using a

one-way multivariate analysis of variance (MANOVA) as an omnibus test (p-values

less than 0.05 indicated statistically significant differences) and a one-way ANOVA

with Bonferroni correction for each feature as a post-hoc test (p < 0.05/N indicated

statistically significant differences, where N was the number of selected features).

The MANOVA determined statistically significant difference between young and

old subjects on the features for each task, supporting the use of the selected features

for the model. Subsequent ANOVAs further revealed which features most contributed

to the differences between subjects. For the unilateral task, 14 out of 15 selected

features lead to statistically significant differences (Pillai’s Trace = 0.663, F(15,784)

= 102.717, pMANOVA <0.001, η2 = 0.663, pANOVA ≤ 0.0033). For the bilateral task,

11 out of 29 selected features lead to statistically significant differences (Pillai’s Trace

= 0.677, F(20,770) = 55.676, pMANOVA < 0.001, η2 = 0.677, pANOVA ≤0.0017). For

the motor-cognitive task, 15 out of 23 selected features lead to statistically significant

differences (Pillai’s Trace = 0.721, F(23,776) = 87.320, pMANOVA < 0.001, η2 = 0.721,

pANOVA ≤ 0.0022)

6.3 Discussion

GMM MCE Seizure. The work described an application of cepstral analysis and

the Minimum Classification Error (MCE) training scheme to the problem of EEG

seizure classification. The MCE criterion was used to estimate the Gaussian Mixture

Model (GMM) parameters for the task of classifying seizure episodes in EEG data.

Results showed that the MCE algorithm accounted for the unbalanced data and

improved the performance of the classifier over the SVM and GMM with Maximum

Likelihood (ML). Additionally, the stream computing paradigm accounted for the
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computational efficiency required for a future real-time system.

The results with the MCE criterion confirm prior comparative results of the two

techniques [10, 85]. The MCE efficiency is due to its ability to formulate a lightweight

classifier of maximum efficiency. The presented results are in line with the MCE

philosophy which emphasizes all classes equally, weighting them for minimum error

purposes.

The efficacy of the real cepstrum and MCE training for seizure classification pro-

vided the groundwork and motivation for applying these algorithms to classify aging

datasets. The specific applications were considered in more detail and extended to

test the efficacy for both EEG and EMG data for classification of young and elderly

healthy adults.

Aging. Classification of young and elderly subjects was originally performed using

only time and frequency domain features. The results of this analysis suggested that

time domain features provided a better indicator of age-related differences. It was hy-

pothesized that the selection of time domain features over frequency domain features

may have been related to the incorporation of both absolute and relative features

for the time domain and relative features only for the frequency domain. The work

was further extended by incorporating additional features from the previously named

domains, as well as features from information theory and features from automatic

speech recognition (cepstrum).

Similar to the observation in Section 6.1.2.3 with classification of seizure states,

classification with GMM using MCE improved classification accuracy over the SVM

and GMM with ML. This increase in classification accuracy can be attributed to

the ability of the classifier to account for the prior probability of each class before

training and testing (Eq. 16). MCE explicitly incorporates classification performance

into the training criterion (Eq. 18) and does not attempt to fit a distribution like
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Maximum Likelihood, but instead aims to discriminate against competing models and

minimize the average loss (Eq. 21). The increase in classification accuracy using MCE

in comparison to ML also resulted in fewer features necessary for the classification,

potentially decreasing computation time.

The inclusion and optimization of the real cepstrum and mel-frequency cepstrum

improved classification accuracy across tasks (9.3% - 11.2%). While the optimized

cepstral features provided improvements for distinguishing between young and elderly

adults, the absolute value of the classification accuracy was 82.3% to 83.4% across

tasks (Table 20). The modest increase in the absolute value of the classification ac-

curacy may reflect the sensitivity of the measure to small changes in the EEG and

EMG with healthy aging. The use of cepstral analysis might be more appropriate for

applications with more prominent changes as in the case of seizure detection, where

higher classification accuracies were obtained (Table 9). Additionally, the real cep-

strum features were only selected for the two dual tasks (bilateral motor and motor

cognitive). These features were selected in the fronto-central and frontal electrodes.

Selection of the real cepstrum features for only the two dual task could suggest a

unique characteristic of the EEG signal in regions of higher order processing that is

highlighted by the real cepstrum.

Selected Feature Trends. The inclusion of absolute frequency domain features

resulted in some being selected, although not to a high degree as with features from

other domains. Findings in the literature for changes in power with aging, and the low

rate of selection for relative [62] and absolute frequency domain features, suggests that

frequency domain measures are not necessarily predictive of age-related changes. Or,

the neural aspects of the signals are maintained more than the time domain measures.

Nonlinear features, nonlinear energy and Katz fractal dimension were the most

robust in that they were selected more frequently in comparison to the other features.
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The nonlinear features are potentially highlighting the characteristic changes with

advanced aging. Nonlinear energy has been used as an index to detect the onset

of surface EMG activity during isometric contractions in healthy adults [122] and

in elderly adults walking [50]. By calculating the energy of the signal while taking

into account both the amplitude and frequency changes, the signal to noise ratio

is lower [78]. The computation of nonlinear energy differs from the computation of

linear feature energy in that it also takes into account frequency information. To the

author’s knowledge, nonlinear energy methods applied to EEG to assess influences

of aging have yet to be published for an automated system. Fractal dimensions have

been used for seizure detection in the EEG [28], assessing heart rate variability [40],

as well as detection of dementia in the elderly [47]. Katz fractal dimension is derived

directly from the waveform and is suggested to be relatively insensitive to noise [28],

making it a suitable feature.

Features were primarily selected from the frontal electrodes and the right hemi-

sphere across tasks (Figure 48). The frontal electrodes represent a portion of the

cortex that is attributed to higher order processing (executive processing). The selec-

tion of more electrodes from the frontal region, as opposed to the central electrodes

over the motor cortex could suggest that the differences observed between young and

elderly subjects are not their specific task or performance differences, but their neural

strategy for accomplishing the tasks. The activation within the motor cortex (C3 and

C4 electrodes) would be related more to the subject’s ability to perform the task.

The observation/selection of features in the right hemisphere during the unilat-

eral motor and motor cognitive tasks suggest a level of bilateral activation and/or

intercortical interactions between the hemispheres which highlights the differences

between the two subject groups. Features selected from the right hemisphere dur-

ing the right hand task which activate the left hemisphere supports the potential

difference in hemispheric activation captured in the model. These findings suggest
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that motor control in healthy aging is not only isolated to the hemisphere controlling

the motor activity of the dominant side (left hemisphere). The results support the

finding of bilateral activation with advanced aging. Cabeza et al. [16] reported that

high-performing elderly adults attempt to counteract age-related neural changes via

neural plasticity. The neural plasticity changes were represented by bilateral activa-

tion. While the dissertation did not classify subjects into categories of high or low

performance, the recruited elderly adults were all active for daily living purposes,

performed comparable to young adults on the MMSE, and self-reported some level of

physical activity. This could suggest the included elderly adults to some degree were

using a compensatory mechanism resulting in bilateral activation as represented by

the features selected from the right hemisphere during the motor task with the right

hand.

Literature has suggested that with advanced age, neural networks within the hu-

man brain become less “complex” due to neurodegeneration [80]. While it has been

reported that with advanced aging and disease, decreased complexity is observed

[80, 103], contrasting reports have shown that the potential increase or decrease in

complexity is dependent upon the conditions for assessing the dynamical system and

the factors that may have been acting upon the dynamical system [132]. The time

scale with which the features are measured can influence the potential change, as well

as deterministic and stochastic stimuli, and external forces can influence the inter-

pretation of the EEG and EMG. Assessment of complexity changes in the EEG and

EMG with age can be made using some of the features in the presented approach.

Nonlinear measures (nonlinear energy and Katz fractal dimension), entropy, complex-

ity, and kurtosis are all features that are suggested to provide measures of complexity

[80].

One of the points of Aim 3 was to determine an optimal subset of features for

classifying young and elderly adults. Additionally, the optimally selected features
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from the model were used to determine the statistical significance between young and

elderly adults across channels.

The MANOVA statistical test was run as a means to support the results of fea-

ture selection and classification. In a similar manner to the data mining methodology

presented, the MANOVA considers the collective contribution of the selected subset

of features to statistically determine if there is a significant difference between the

young and elderly classes. The presented methodology provides an accuracy value and

the MANOVA test provides a level of significance. The MANOVA suggested that an

even smaller subset of features than the subsets determined by forward selection might

sufficiently predict the difference between young and elderly electrographical signals

during behavioral tasks. The smaller subsets were based on P-values and effect-size.

A potential difference in results between the MANOVA and forward selection was

with the bilateral task (11 out of 29 selected features led to statistically significant

differences). The use of the Mahalanobis distance objective-function for feature selec-

tion versus the partial eta-squared statistic (or a p-value) for the MANOVA highlights

a potential difference in the percentage of features showing significant differences. It

is conjectured that forward selection may have tolerated some over-fitting for the bi-

lateral and motor cognitive tasks resulting in an increase of the number of features

selected. Additionally, the greater physical and mental complexity of each the bilat-

eral and motor cognitive task contrasted against the unilateral task necessitated more

measures to characterize the electrographic responses due to each task. As suggested

in the literature, specific increases or decreases are highly dependent on the testing

conditions. Additionally, trends for increases and decreases varied across cortical re-

gions. The results provide an automated approach for classifying between young and

elderly adults, supporting the need for an automated process to detect changes in the

EEG [47].
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Conclusion.

Chapter 6 determined the appropriate parameters for feature extraction and a subset

of the optimal features for distinguishing between young and elderly adults. Nonlinear

features were highlighted as being the most robust measures. The efficacy of cepstral

features were shown with the optimization of the filterbank spacing and number of

coefficients; however, they did not outperform the other features incorporated. Addi-

tionally, classification using Gaussian Mixture Models with Minimum Classification

Error was shown to increase accuracy and overall to be a useful tool for physiologists

in practice. The results support the use of feature selection and data mining tools

to determine appropriate measures for assessing the influence of age on the neural

control of movement.
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CHAPTER VII

NEURAL CONTROL OF MOVEMENT POST-STROKE

Aim 4: Model applications to clinical populations

Approach: Apply the methodology of data preparation, feature selection, and

classification to motor stroke data to validate the proposed methodology and suggest

how it may be applied to future clinical applications.

Hypothesis: Stroke subjects will exhibit beta-band corticomuscular coherence dur-

ing the unilateral motor task (however less than the control group) and a decrease in

coherence with an additional motor or cognitive task. Additionally, despite recovery,

frequency, automatic speech recognition and time domain features will be attenuated

due to neural plasticity in the stroke population.

7.1 Methodology

Three right-hemispheric stroke subjects (age: 51.7 ± 9.1 yrs) were recruited and

included in the experiment with the approval of the Georgia Tech IRB. Inclusion and

exclusion criteria for stroke subjects are detailed in Section 3.2 of the Experimental

Design Chapter. Stroke subjects performed the same tasks as young and elderly

subjects explained in Aim 2 (Section 5.1). Subjects were allowed additional practice

in comparison to the other subject groups to account for the difficulty in performing

the tasks due to their motor deficits. Additional practice consisted of practicing the

task one additional time prior to each task set.

After considering how the neural control of movement was influenced in terms of

the common oscillatory activity (corticomuscular coherence) in the EEG and EMG,
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Figure 49: Experimental setup for stroke subjects.

Table 23: Stroke subject demographics
Subject Number Age Gender Date of Stroke

1 53 Male 12/20/2006
2 60 Female 3/14/2009
3 42 Male 07/2008

the optimal subset of features from Chapter 6 were used to distinguish between el-

derly and stroke subjects to show the application of the methodology to a clinical

population.

The limited number of stroke subjects (n=3) did not allow for statistical analysis

to be performed, thus trends are described in the results section.

7.2 Results

Stroke subject’s MVC force for the right hand was 24.4 ± 2.6 N and the left hand

was 10.8 ± 7.4 N. The Edinburgh Handedness Inventory confirmed that all stroke

subjects were right hand dominant (1.0 ± 0.0). According to the MMSE, there were

no signs of cognitive impairment in the stroke subjects, with all scores ≥ 27. While

the number of subjects was not large enough to perform statistical comparisons, Table
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24 provides a comparison of average values for elderly and stroke subjects.

Table 24: Comparison of behavioral measures
Elderly Stroke

MVC Right 19.6 N 24.4 N
MVC Left 19.4 N 10.8 N
MMSE 28.6 29.0
Laterality Quotient 0.92 1.00

Significant corticomuscular coherence between unrectified EMG and EEG was

observed in all three stroke subjects. Unlike young and elderly adults, peak values of

coherence were not centered in the beta band during the unilateral motor task (Figure

50). Peaks in coherence were observed across frequency bands. The magnitude of

coherence across task was less in the stroke subjects in comparison to the young

and elderly adults (Figure 17) across all bands. Corticomuscular coherence showed a

trend for an increase in the alpha band during the bilateral motor task (Figure 51a).

The beta band showed a trend for a decrease in coherence during the two dual tasks

(bilateral motor and motor cognitive) in support of the hypothesis. Gamma-band

coherence did not show task trends.
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Figure 50: Representative coherence.

133



(a)

(b) (c)

Figure 51: Peak corticomuscular coherence in the (a) alpha (8-14 Hz), (b) beta (15-
32 Hz) and (c) gamma (33-55 Hz) bands during the unilateral motor, bilateral motor,
and motor-cognitive tasks in stroke subjects (n=3)

EEG and EMG power were both primarily concentrated in the gamma band.

Normalized gamma-band power in the EMG was more than double the power in the

alpha and beta bands (Table 25).

Motor output variability tended to increase with the motor cognitive task in both

the force and EMG signals (Figure 52). Cognitive accuracy was lower in both the

cognitive (43.1% ± 37.6%) and the motor cognitive (44.4% ± 34.7%) tasks for stroke
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Table 25: Frequency power of EEG in the left motor cortex (C3) and EMG in the
right hand in alpha, beta and gamma bands during the unilateral motor, bilateral
motor, and motor-cognitive tasks in stroke subjects. Power in each band is normalized
to total power. Mean ± SD.

Alpha Beta Gamma
EEG power, C3
Unilateral Motor 0.231 ± 0.229 0.258 ± 0.058 0.429 ± 0.266
Bilateral Motor 0.202 ± 0.239 0.270 ± 0.032 0.452 ± 0.307
Motor Cognitive 0.207 ± 0.188 0.290 ± 0.027 0.429 ± 0.272
EMG power
Unilateral Motor 0.021 ± 0.008 0.258 ± 0.020 0.720 ± 0.028
Bilateral Motor 0.019 ± 0.008 0.298 ± 0.042 0.683 ± 0.040
Motor Cognitive 0.023 ± 0.010 0.266 ± 0.019 0.711 ± 0.028

subjects in comparison to young and elderly subjects (Table 7).

Cepstral Analysis. Real cepstrum and mel-frequency coefficients were determined in

the same manner as Section 6.2. The maximum number of coefficients from each

channel were maintained for further analysis (Figure 53). Nine coefficients for each

EEG channel and six coefficients for the EMG channel were maintained for the real

cepstrum. Three coefficients were maintained for each channel for the MFCC. Sim-

ilarly, nine real cepstrum coefficients were maintained for the EEG channels in Sec-

tion 6.2.1.1 and five were maintained in the EMG channel. Two coefficients were

maintained across channels for the MFCC in Section 6.2.1.1. The optimized cepstral

features were used for feature selection and classification along with the other features

from Table 10.

Classification

The NINDS’s goal to ‘translate basic and clinical discoveries into better ways to pre-

vent and treat neurological disorders” was applied for the classification of elderly and

stroke subjects. The optimal parameters and subsets of features from Aim 3 were

applied in Aim 4. Optimal feature subsets from Figure 48 were used with the GMM
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Figure 52: Motor output variability of stroke subjects (n=3) during unilateral motor,
bilateral motor and motor cognitive tasks. (a) CV of force and (b) CV of EMG

with MCE to classify elderly and stroke subjects within each task. A classification

accuracy of 99.0% was obtained for the unilateral motor task corresponding to 98.8%

accuracy for the elderly class and 99.2% accuracy for the stroke class (Table 26). For

the bilateral motor task, a classification accuracy of 80.8% was obtained correspond-

ing to 42.4% accuracy for the elderly class and 95.9% accuracy for the stroke class.

A classification accuracy of 97.8% was obtained for the motor cognitive task corre-

sponding to 93.3% accuracy for the elderly class and 99.8% accuracy for the stroke

class.
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Figure 53: Optimal number of real cepstrum and mel-frequency cepstrum coefficients.

Table 26: Summary of classification results.
Overall Elderly Stroke

Unilateral Motor 99.0% 98.8% 99.2%
Bilateral Motor 80.8% 95.9% 42.4%
Motor Cognitive 97.8% 93.3% 99.8%
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As noted in Figure 47, the nonlinear energy and Katz fractal dimension features

were selected the most frequently. Classification considers all of the features within

the optimal subset, so to see the influence of an individual feature for distinguishing

between age groups, the nonlinear energy and Katz fractal dimension features were

plotted. The trend for an increase or decrease depends upon the location of the

electrode and the task condition.

7.3 Discussion

The results show that a methodology proven successful for healthy adults can be

extrapolated to investigate the stroke population. The approach also confirms appli-

cation of the selected features for classification of elderly and stroke EEG and EMG

data.

Behavioral measures suggest that stroke subjects have compensated for the motor

deficits in their left hand by increasing the usefulness of their right hand. The MVC

force of stroke subjects was greater than elderly adults, and while only right hand

dominant individuals were included, right hand dominance was greater in the stroke

subjects (Table 24).

Corticomuscular coherence has been suggested as a useful tool for assessing the

functional influences on the neural control of movement post-stroke [89]. Findings

from Aims 1 and 2 (Chapters 4 and 5) may potentially contribute to clinical applica-

tions of corticomuscular coherence analyses to assess and treat neurological patients

including stroke [89, 29]. For example, a smaller beta band corticomuscular coherence

was observed on the affected side compared to the unaffected side in well-recovered

patients with a subcortical infarction [89]. A significant reduction in corticomuscular

coherence was also observed in poorly recovered stroke subjects with varying types of

strokes and lesions in different regions of the brain [29]. In addition, bimanual tasks
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 54: Nonlinear energy across groups and tasks.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 55: Katz fractal dimension across groups and tasks.
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are difficult to perform for individuals with stroke, Parkinson’s disease, and even

healthy elderly adults [61, 127, 37, 142]. Aim 4 considered the influence of stroke on

corticomuscular coherence during unilateral and dual tasks. A decrease in the magni-

tude of coherence was observed in stroke subjects (Figure 51) in comparison to healthy

adults (Figure 17). The trend for task increases and decreases differed between the

stroke subjects and their healthy counterparts. It is suggested that corticomuscular

coherence decreases with stroke recovery potentially due to neural plasticity changes.

The results support the NINDS’s goal to “understand how the normal brain

work[s]” to “translate basic and clinical discoveries into better ways to prevent and

treat neurological disorders.” The optimal subset of features from Chapter 6 provided

clear discriminatory information for the classification between elderly and stroke sub-

jects with high accuracy (Table 26). The large number of features from the right

hemisphere (same location of the infarction) could account for the classifier’s ability

to perform well. Increased bilateral activation occurs post-stroke [23, 83], highlighting

the greater distinction in the right hemisphere from the healthy subjects because this

region of the brain was primarily impacted from the stroke.

Overall classification accuracy for discriminating between elderly and stroke sub-

jects suggests the methodology from Aim 3 is appropriate for the application to the

stroke population (Table 26). The overall and individual class accuracies for the

unilateral motor and motor cognitive tasks are much higher than the accuracies for

the bilateral motor task. Stroke subjects had a very difficult time performing the

bilateral motor task because of the complexity of the task and the involvement of

their impaired hand. The degree to which the bilateral task was perceived by the

author to be difficult for stroke subjects varied across the three subjects. The level

of difficulty was potentially due to the stage and type of rehabilitation each subject

was undergoing; however, details on rehabilitation interventions were not available to

further speculate the influence of recovery on the observed results.
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Conclusion.

The results support the goal of the NINDS to take knowledge from healthy individuals

and extrapolate them to provide tools for treating patient populations. Stroke sub-

jects compensated for the motor deficits in their left hand by increasing the usefulness

of their right hand. Despite the increased useful of the right hand, corticomuscular

coherence was variable across stroke subjects. The results validate the application

of the approach using the optimal subset of features from Chapter 6 to the stroke

population, but with limitations for classification during the bilateral motor task.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Integration of Findings

The NIA has stated that one of the challenges for the 21st Century is to better un-

derstand the aging process “to make these added years as healthy and productive as

possible” [98]. The aim of the NIA is critical because the majority of everyday motor

tasks necessitate the use of bimanual movements or concurrent cognitive processing.

Compared with a simple unimanual movement, the involvement of additional tasks,

such as additional contralateral movement or cognitive processing, accompanies di-

vided attention and decreases the quality of motor performance in healthy individuals

and often more so in elderly adults and patients with movement disorders (stroke)

[79, 7, 37, 146, 138, 49].

One approach to make the aging process as “healthy and productive as possible”

is to support the development of methodologies capable of understanding the per-

formance of daily living tasks and how the neural control of movement is influenced

by advanced aging. There is a need for an automated process capable for use by

general practitioners to detect changes in biological signals [47]. This dissertation

considered how the normal brain controls motor activity in a muscle by investigating

the correlated activity with age under different task conditions with a focus on the

corticomuscular coherence feature. The approach was used to develop a process to

automatically classify between young and elderly adults. That information was then

extrapolated for the stroke population to further address the aim of the NINDS.

The dissertation showed that beta-band (the frequency band attributed to motor

activity) corticomuscular coherence decreased with an additional task to the same
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degree whether the second task was a motor or non-motor task. The complexity of the

task did not influence this reduction because beta band coherence was not associated

with fine motor performance such as motor output variability and accuracy. The

same response was observed with increased task complexity. The decrease in beta-

band corticomuscular coherence with an additional task is believed to be the result of

divided attention toward the primary motor task. Although, it was out of the scope

of the dissertation, the influence of the visual feedback provided on attention may

have influenced the measurement of coherence. Consideration of visual feedback and

measurement from the visual cortex are suggested in Section 8.2 on Future Work.

Attention was shown to have a significant influence on coherence; however, detec-

tion of the task difference was also shown to be dependent upon the analysis approach.

When unrectified EMG was used for analysis and the peak of coherence was inde-

pendently determined, the observation of a significant task effect was only observed

for the complex task as seen in Aim 2 with young and elderly adults. In spite of the

differing trends for a main effect of task with analysis approach, it is still believed that

corticomuscular coherence is influenced by the amount of attention directed towards

a primary motor task.

The improved analysis approach of unrectified EMG and independently deter-

mining the peak of coherence were incorporated to test the influence of aging on

correlated activity between muscle and brain. The dissertation work extended previ-

ous literature that only considered up to middle age, as well as work that considered

into elderly age; however, without a significant difference in coherence. Results of

the present work showed a significant increase in corticomuscular coherence with and

without rectification of the EMG signal in both the alpha and beta bands across uni-

lateral and dual tasks. In the alpha band, the increase in corticomuscular coherence

was largest with an additional cognitive task in elderly adults. Again, this supports

the notion of attention because alpha activity is attributed to cognitive processing
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which can cause an increase in the necessary level of attention for the task. In the

beta band, corticomuscular coherence was increased with an additional task in the

same manner between young and elderly subjects. In addition, beta-band cortico-

muscular coherence in the motor-cognitive task was negatively correlated with motor

output error across young, but not elderly adults. The results suggested that 1)

corticomuscular coherence was increased in senior age with a greater influence of an

additional cognitive task in the alpha-band and 2) individuals with lower beta-band

corticomuscular coherence may exhibit more accurate motor output in young, but

not elderly adults.

After the neural control of movement was considered for the correlated activity

between muscle and brain, the features showing specific age differences were incor-

porated for developing a methodology to automate the process of determining the

optimal features and classifying between young and elderly adults. Despite the corti-

comuscular coherence feature providing significant discriminatory information using

a purely statistical approach, the coherence feature was not selected within any of the

optimal subsets for classification. This suggests that while corticomuscular coherence

has long been used as a measure for assessing the potential changes in the neural

control of movement, there are other features, that together can provide more dis-

criminatory information. Additionally, frequency domain features were not selected

as frequently as initially anticipated. This suggests that some aspects of neural strat-

egy might be maintained into senior age and not change to a large degree.

The observation of features (e.g. corticomuscular coherence, power spectral den-

sity) showing a significant difference between young and elderly adults using a statisti-

cal approach, but not selecting the feature for classification suggests that the features

may highlight different aspects of aging using the different approaches. The statis-

tical approach highlights trends for increases or decreases in the observed features,

while the data mining approach provides a tool for general classification between the
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two groups for potential diagnostic applications. MANOVA, a statistical approach,

supported the findings of the data mining approach by indicating significant differ-

ences between young and elderly adults for each task. The scientific approach of only

focusing on features that have previously been reported to show a significant differ-

ence limits the depth of investigation and potentially overlooks features that could

improve the physiological understanding of the aging process.

At times value can be added through features that do not show statistical differ-

ences individually. Nonlinear energy and Katz fractal dimension were shown to be

the most robust features due to the high frequency of their selection and the inde-

pendent ability of these features to produce high classification accuracies. In Aim 3

these features showed significant differences in cases, but not all between young and

elderly adults. The lack of a significant difference in some cases could be attributed

to subject variability. Further investigations by increasing the subject number would

highlight additional differences between the two populations.

The dissertation also presented a novel approach to classification of young and

elderly biological signals with application of cepstral analysis and Gaussian Mix-

ture Models with the Minimum Classification Error training scheme. Results from

the dissertation expanded aging research on the classification of young and elderly

adults that was previously limited to gait and balance analysis using support vector

machines. Aim 3 optimized the real cepstrum and mel-frequency cepstrum for ap-

plication to the biological signals, EEG and EMG. The inclusion and optimization

of the real cepstrum and mel-frequency cepstrum significantly improved classification

accuracy across tasks, however the modest increase in the absolute value of the clas-

sification accuracy is a reflection of the sensitivity of the measure to small changes in

the EEG and EMG with healthy aging. The use of cepstral analysis is believed to be

more appropriate for applications with more prominent changes, as seen in the vali-

dation with seizure data in the first portion of Aim 3. The MCE criterion was used
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to estimate the GMM parameters for the task of classifying young and elderly adults

using EEG and EMG data. Experimental results showed that the MCE algorithm

improved classification accuracy over the SVM and GMM with ML classifiers. This

increase in classification accuracy can be attributed to the classifiers ability to account

for the prior probability of each class before training and testing, and discriminating

against competing models to minimize the average loss of the classifier.

The findings in this dissertation not only have scientific significance, but also con-

tain clinical importance toward the treatment of individuals with impaired movement.

Classification between elderly and stroke subjects with 80.8% to 99.0% accuracy val-

idates the application of the methodology for healthy adults to a clinical population.

Validation of the approach is limited for the bilateral motor task because while the

overall classification accuracy was 80.8%, the accuracy for the stroke class was 42.4%.

This finding highlights the difficulty of the stroke subjects to perform the bilateral

motor task, which was the only task to use the impaired left hand. The set of features

included is not exhaustive in that there are additional features that could potentially

be considered. Potential features could include fluctuations in mu (8-12 Hz) senso-

rimotor activity of the EEG that occur during movement. Mu activity is a narrow

band that often times is masked within the beta band [102]. Additionally, genetically

fused features could be considered if the nature of feature is no longer of interests,

but mainly the increase in classification accuracy. Additionally, classification for the

bilateral motor task could improve with the inclusion of the force signal to capture

the variations in motor output variability.

Additional clinical applications for the work are possible for monitoring the reha-

bilitation from a stroke or traumatic brain injury patients by evaluating the retention

of neural strategy via classification throughout the rehabilitation process. Other clin-

ical applications are the developmental steps towards a methodology for real-time
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seizure classification and detection. These findings would lead to a better under-

standing of the functional significance of the neural control of movement with aging

and applications to clinical populations.

8.2 Suggested Future Work

The following section lists suggestions for future work to expand the dissertation

work.

• Subject inclusion and exclusion criteria should be considered in different con-

text. Inclusion of “non-healthy” elderly adults that represent the progression

of aging. For example, the inclusion of elderly adults with hypertension and/or

arthritis. Additionally, the small variations in some parameters comparing

young and elderly adults may have been due to the definition of elderly adults

as >60 years. A future work should include subjects over the age of 75 years,

closer to range of oldest old (>85yrs).

• The research primarily focused on the connection of movement to the brain from

motor cortex to the muscle, and then considering the proprioceptive feedback.

Future work should expand the regions of interests to include the influence

of visual feedback, tactile feedback, and cognitive processing to assessing the

neural control of movement. Each of those factors are influenced by aging and

their potential impact on the system. Figure 56 displays a block diagram of the

interaction of each region for performing the task.

• Expansion of the work to the stroke community, to further address the NINDS

aims, would benefit from working with physicians more closely to understand

the recovery stage of stroke subjects and their rehabilitation regimen might

influence the ability to classify between healthy and stroke subjects.
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Figure 56: Sensorimotor feedback during motor task.

• A future goal of the dissertation work is for the methodology to be used in

practice by physiologists, general practitioners, and rehabilitation therapist.

Testing of the methodology in real-time setting using a brain computer interface

would enable development of the approach and testing the timing efficiency. The

necessary hardware is suggested in Aim 3 through the use of IBM’s InfoSphere

Stream computing software.

8.3 Contributions

The objective of the research was to develop a methodology to understand the neu-

ral control of movement with aging, and applications to the stroke population. The

results of the work support the National Institute on Aging’s aim to “understand

the mechanisms involved in normal brain aging; the role of cognition in everyday

functioning; protective factors for sensory, motor, emotional, and cognitive function;
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and the pathogenesis of Alzheimer’s Disease and other neurodegenerative disorders

of aging within health disparity populations” [98]. It is of hope that the results can

also support the National Institute of Neurological Disorders and Stroke’s goals to

“understand how the normal brain and nervous system develop and work, and what

goes wrong in disease” and to “translate basic and clinical discoveries into better ways

to prevent and treat neurological disorders” [99].

Contributions

• Demonstration of the change in correlated activity between muscle and brain

with fine motor simple and complex dual tasks with healthy aging

• Demonstration of the application and optimization of cepstral analysis for anal-

ysis of muscle and brain activity

• A quantitative-based feature library for characterizing the neural control of

movement with aging during unilateral, bilateral, and motor cognitive tasks

• A methodology for the selection and classification of time, frequency, informa-

tion theory, nonlinear and cepstral features to characterize the neural control of

movement. In turn providing future potential contributions for: 1) a method-

ology for physiologist to analyze and interpret data; 2) a computational tool to

provide early detection of neuromuscular disorders in healthy populations; 3) a

methodology for assessing the status and rehabilitation of patient populations.

• Functional explanations for the association of features with aging during uni-

lateral, bilateral, and motor cognitive tasks.

The research in this dissertation has been published in following forms:

Journal(s):
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• A.N. Johnson and Shinohara, M. “Corticomuscular coherence with and with-

out additional task in elderly,” Journal of Applied Physiology, in press.

• A.N. Johnson, Wheaton, L. and Shinohara, M. “Attenuation of corticomus-

cular coherence with additional motor or non-motor task,” Clinical Neurophys-

iology, vol. 122, pp. 356-363, 2011.

Peer-reviewed proceedings:

• A.N. Johnson, Sow, D. and Biem, A. “A Discriminative Approach to EEG

Seizure Detection,” Proceedings of the American Medical Informatics Associa-

tion (AMIA 2011), pp. 1309-1317, 2011.

• A.N. Johnson, Vachtsevanos, G. and Shinohara, M. “Feature subset selection

for age-related changes in EEG and EMG during motor tasks,” Proceedings of

the 2010 International Conference of the IEEE Engineering in Medicine and

Biology Society, pp. 3285-3288, 2010.

Additional studies supporting the dissertation work:

Journal(s):

• A.N. Johnson, Huo, X., Ghovanloo, M. and Shinohara, M. “Dual-task

motor performance with a tongue-operated assistive technology compared with

hand operations,” Journal of NeuroEngineering and Rehabilitation, in press.

Peer-reviewed proceedings:

• J. Fairley, Johnson, A.N., Georgoulas, G. and Vachtsevanos, G. “Au-

tomated polysomnogram artifact compensation using the generalized singular

value decomposition algorithm,” Proceedings of the 2010 International Confer-

ence of the IEEE Engineering in Medicine and Biology Society, pp. 5097-5100,

2010.
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• A.N. Johnson, Huo, X., Cheng, C., Ghovanloo, M. and Shinohara, M.

“Effects of additional workload on hand and tongue performance,” Proceedings

of the 2010 International Conference of the IEEE Engineering in Medicine and

Biology Society, pp. 6611-6614, 2010.
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APPENDIX A

EDINBURGH HANDEDNESS INVENTORY

Subject ID:

Please indicate your preferences in the use of hands in the following activities by

putting + in the appropriate column. Where the preference is so strong that you

would never try to use the other hand unless absolutely forced to, put ++. If in any

case you are really indifferent put + in both columns. Some of the activities require

both hands. In these cases the part of the task, or object, for which hand preference

is wanted is indicated in brackets. Please try to answer all of the questions, and only

leave a blank if you have no experience at all of the object or task.

Table 27: Handedness Inventory.
Left Right

1 Writing
2 Drawing
3 Throwing
4 Scissors
5 Toothbrush
6 Knife (without fork)
7 Spoon
8 Broom (upper hand)
9 Striking Match (match)
10 Opening box (lid)
11 Which foot do you prefer to kick with?
12 Which eye do you use when using only one?

Laterality quotient (L.Q.) value* =

153



* the L.Q. value is the total number of +’s for the RIGHT hand boxes, less the total

number of +’s for the LEFT hand boxes, divided by the total +’s in both RIGHT

and LEFT hand boxes.
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APPENDIX B

MINI-MENTAL STATE EXAM

Table 28: Mini-Mental State Exam.

Maximum Score

5 What is the (year) (season) (date) (day) (month)?

5 Where are we (state) (country) (town/city) (campus of)
(floor)?

3 Name 3 objects: 1 second to say each. Then ask the
subject all 3 after you have said them.

5 Count by serial 7’s and stop after 5 answers.

3 What were the three objects learned above?

2 Name a pencil and watch.

1 Repeat the following ”No ifs, ands, or buts”

3 Follow a 3-stage command:”Take a paper in your hand,
fold it in half, and put it on the floor.”

1 Read and obey the following: CLOSE YOUR EYES

1 Write a sentence.

1 Copy the design shown.

/30 Total Score Alert Overtly Anxious Concentration Difficulty Drowsy

Figure 57: Mini-Mental State Exam design.
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APPENDIX C

FEATURE LIBRARY

Table 29: Feature Library Part 1

Feature Name Feature Equation Channels
Feature
Domain

Coherence | Cxy(f) |2= |Pxy(f)|2
Pxx(f)Pyy(f)

EMG-C3,
EMG-F3,
EMG-FC3,
C3-C4, F3-
F4, FC3-FC4

Frequency

Power Spectral Density
(maximum)

max(|FFT (xi)|2) All 7 channels Frequency

Power Spectral Density
(relative)

|FFT (xi)|2subband
|FFT (xi)|2total

All 7 channels Frequency

Wavelet Coherence
CohW (a, b) =

|∑n
i=1 Wψxi(a,b)Wψyi(a,b)|2

∑n
i=1|Wψxi(a,b)|2 ∑n

i=1|Wψyi(a,b)|2

EMG-C3,
EMG-F3,
EMG-FC3,
C3-C4, F3-
F4, FC3-FC4

Frequency

Mean Absolute Value 1
n

∑n
i |xi| All 7 channels Time

Standard Deviation
√

1
n

∑n
i (xi − x̄)2 All 7 channels Time

Zero-crossing

ZC ′
i =

1, xi ≤ 0 ∩ xi+1

1, xi ≥ 0 ∩ xi+1

0, otherwise

ZC =
∑n−1

i ZC ′
i

All 7 channels Time
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Table 30: Feature Library Part 2

Feature Name Feature Equation Channels
Feature
Domain

Mutual Information
∑

y∈Y
∑

x∈X p(x, y)log
(

p(x,y)
p(x)p(y)

)
EMG-C3,
EMG-F3,
EMG-
FC3,
C3-C4,
F3-F4,
FC3-FC4

Information
Theory

Kurtosis
1
n

∑n
i (xi−x̄)4(√

1
n

∑n
i (xi−x̄)2

)4
All 7
channels

Information
Theory

Complexity

√
a4
a0

a4, variance of 2nd derivative of
signal
a0, variance of signal

All 7
channels

Information
Theory

Sample Entropy

−ln
(
A
B

)
A
B
, conditional probability that

two sequences within a particular
tolerance remain in that tolerance
at the next point

All 7
channels

Information
Theory

Shannon Entropy −∑n
i (pdf(xi) ∗ log(pdf(xi)))

All 7
channels

Information
Theory

Nonlinear Energy
∑n

i x
2
i − xi+1xi−1

All 7
channels

Nonlinear

Katz Fractal Dimension

∑n
i

log(n−1)

log

⎛
⎝max

(∑√
(xi−x1)2+i2

)

∑√
(xi+1−xi)2+1

⎞
⎠+log(n−1)

All 7
channels

Nonlinear

Real Cepstrum FFT−1(log |FFT (x)|) All 7
channels

Cepstral
(Nonlinear)

Mel-Frequency Cepstrum DCT (log(FFT (x)))
All 7
channels

Cepstral
(Nonlinear)
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