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SUMMARY 

A large proportion of the human genome, over 60% by estimation, is derived from 

transposable element (TE) sequences. Majority of these TE sequences in the human 

genome are retrotransposons – a type of TEs that replicates and inserts in the host genome 

via reverse transcription of RNA intermediates [1, 2]. TEs are known to contribute to the 

regulation of the human genome. Despite the fact that the majority of known TE-derived 

regulatory sequences correspond to relatively ancient insertions, which are fixed across 

human populations, there are several active families of retrotransposons, including the Alu 

[3, 4], LINE-1 (L1) [5, 6], and SVA [7, 8] retrotransposons that are capable of mobilizing 

via reverse transcription of RNA intermediates . Germline transposition of these elements 

generates polymorphisms between individuals, and somatic transposition generates 

cellular heterogeneity.  

Given the disruptive potential of TE insertions, along with the regulatory potential 

of TE-derived sequences, one may expect a complex interplay between TE insertion 

polymorphisms and inter-individual differences in the expression of human genes, as well 

as TE activities and the host regulatory mechanisms. In the past, the host genome regulation 

on TE activities, as well as the impact of TE on host gene expressions, have been studied 

mostly in cell lines and model organisms. Due to the nature of the experimental approach, 

previous studies only evaluated a limited number genes that regulates TE activities. For the 

TE sequences that may potentially regulates host gene expression, majority of the previous 

studies have been focusing on fixed TE elements, i.e. elements that are no longer capable 

of transposition, and evaluated their impact on the human genome. Other studies that have 
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focused on polymorphic TE insertions were limited the investigation within model 

organisms or human cell lines.  

Recently, with the growing number of whole genome sequences of healthy human 

individuals available at the population scale, it is now possible for the first time to 

systematically screen for modifiers of TE activities, as well as, evaluate the impact of TE 

on host genome regulation at the genome-wide scale. My dissertation is focusing on the 

role of polymorphic TEs in the regulation of the genes and how the human genome 

regulates TE activities. Specifically, I used the genome-wide association approach to 

evaluate how the host genome regulates TE activities, and the extent to which recent TE 

activity could lead to regulatory polymorphisms among populations.  

Research Advance 1: Genome-wide association screens were performed in search 

for modifiers of human L1 activities. With integrated genotype profiles and gene 

expression profiles of matched individuals, the association analysis was performed to relate 

the SNP genotype profiles and gene, L1 transcript abundance levels. Full-length, intact L1 

expression levels were quantified with covariates adjusted to control for confounding 

variables. The expression quantitative trait loci (eQTL) analysis was applied for the 

discovery of individual single nucleotide polymorphisms (SNPs) that are jointly associated 

with both L1 and gene expression.  Putative L1 modifier genes were identified including 

35% of 34 known L1 modifier genes, 24% putative transcription factor genes and 30% 

chromatin modifier genes.  

Research Advance 2: Genome-wide association screens were performed to 

evaluate the impact of polyTE on human genome regulation. The locus-specific polyTE 
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insertion genotypes were related to B cell gene expression levels among 445 individuals 

from 5 human populations.  My results showed that numerous human polyTE insertion 

sites correspond to both cis and trans expression quantitative trait loci (eQTL) with genes 

that are directly related to cell type-specific function in the immune system. A polyTE 

insertion loci was found to be associated with the expression level of a cell type specific 

transcription factor PAX5 and its downstream target genes. The genome-wide significant 

associations indicate that human TE genetic variation can have important phenotypic 

consequences. Our results also suggested that TE-eQTL may be involved in transcriptional 

network rewiring and population-specific gene regulation.   

Research Advance 3: Integrated genome-wide associations and other evidences 

was performed to evaluate the impact of polyTE on human disease and health outcomes.  

TE insertion polymorphisms were related to common health and disease phenotypes that 

have been previously interrogated through genome-wide association studies (GWAS) 

based on the linkage disequilibrium (LD) structure of the population. eQTL analysis was 

performed on the GWAS SNP-linked and enhancer co-localized polyTEs to identify 

polyTE insertions that are linked to gene expression changes in B-cells. Two polyTE loci 

that are co-located with cell type-specific enhancers were linked to common diseases 

phenotypes. Taken together, my results showed that polyTE could impact human health 

and disease phenotypes by causing changes in gene expression.   

Research Advance 4: A comprehensive survey of recent research progress on 

evaluation of the impact of polyTE on human genome regulation. Genome-enabled 

approaches, including developed bioinformatics tools and high-throughput experimental 

approaches, for characterizing TE insertion variants were developed in recent years. 
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Several studies have applied these approaches to characterize polyTE insertion profiles at 

population level. The eQTL approaches, along analyses of linkage disequilibrium 

structures in the population have uncovered the connection between TE insertion 

polymorphisms with previously characterized genome-wide association study (GWAS) 

trait variants of common complex diseases. In summary, these genome-enabled population 

scale analysis approach shows great potential for evaluating the contribution of recent and 

ongoing TE activity to the variations among human individuals.   
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CHAPTER 1. INTRODUCTION 

1.1 Transposable elements (TEs) – definitions and concepts 

Transposable elements (TEs) are DNA sequences that capable of moving themselves 

to a new location in the host genome. There are two distinct mechanisms through which 

TEs can transpose [9]. One is the so called “copy-and-paste” mechanism, where the TE 

sequences in the host genome were first transcribed into RNA and then reverse transcribed 

to DNA and insert back to a new genomic location in the host genome. This type of TEs 

are called retrotransposons. Another way through which the TE sequences jumps in the 

host genome is the “cut-and-paste” mechanism. The type of TEs are transposes through 

this mechanism is called DNA transposons.  

 

1.1.1 Retrotransposons 

In order to facilitate their transposition in the host genome, some retrotransposons 

encode their own proteins that helps them transpose. This type of retrotransposons are 

known as the autonomous retrotransposons. Both the long terminal repeat (LTR) 

retrotransposons and the non-LTR encodes their own proteins, and the latter ones encode 

proteins with a poly A tail [10-12]. The retrotransposons that does not encode their own 

proteins are called non-autonomous retrotransposons. Not surprisingly, these non-

autonomous retrotransposons that do not encode any proteins lack the molecular machinery 

that are required for transposition. In fact, the non-autonomous retrotransposons are found 

to rely on the reverse transcriptase and endonuclease that encoded by autonomous elements 
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to transpose [13, 14]. A successful transpositional event of retrotransposons will create at 

least one new copy of themselves in the host genome. Therefore, transposable element 

activities can be measured by their copy numbers in the host genomes. In addition to the 

direct observation of the copy numbers of retrotransposon in the host genome, the 

abundance of gene transcripts and protein products that encoded by the autonomous 

retrotransposons become a key measurement of the activities of TE activities. 

 

1.1.2 TE compositions in the host genomes 

TEs were initially discovered in maize by Barbara McClintock in the late 1940s [15]. 

As more genomes have been studied, TEs sequences were found to have broad existence 

in the genomes of almost all living organisms. Different host genomes usually have quite 

distinct profiles of TEs - both in terms of the types of TEs that exist in the host genome and 

the proportion that the host genome is comprised of TE sequences. In fact, in the maize 

genome where TEs were initially discovered, TEs comprised about 60% of its genome, 

whereas the proportion of TE sequences in other species, such as the yeast genome can be 

as low as 3% [16].  

The human genome project was the first systematic characterization of transposable 

elements throughout the entire human genome [1]. By estimation, there are more than 50% 

of the human genome sequence that is derived from TE insertions, containing both 

retrotransposons and DNA transposons [1, 2]. Retrotransposons, specifically the long 

interspersed elements (LINEs), short interspersed elements (SINEs) and long terminal 

repeat (LTR) retrotransposons, are the major types of TEs in the human genome. LINEs 
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are the largest class of TEs in the human genome measured by bases, taking up over 20% 

of the genome. SINE is the largest class of TEs in the human genome measured by copy 

number, with over 1.5 million copies in the human genome. LINEs and SINEs takes up a 

total of 34% of the human genome. The remaining TEs in the human genome are ~0.5 

million LTR, including endogenous retroviruses (ERVs) and ~0.3 million DNA 

transposons. Among all the LINEs, the LINE-1 (L1) is the most abundant class in the 

human genome, with over half million copies and 462.1 megabases (Mb) in total lengths 

[1]. Among all the SINEs in the human genome, Alu is youngest and the the largest 

subclass of SINEs [3, 4].  

 

1.2 Functional Roles of TEs 

Followed by the initial discovery of TEs, the “selfish DNA” hypothesis seemed to 

hold when little was known about any function that these widely spread repetitive 

sequences encodes and how they could be involved in various of basic biological processes 

that are necessary for the survival of their host. As genome parasites, it seems plausible 

that the only purpose of TEs in the host genome is simply to propagate themselves and 

colonize the host genome. However, accumulating evidences have been found to show that 

TE sequences have been widely recruited and integrated in the host genome regulatory 

machinery, providing functional regulatory elements [17]. In fact, TEs provide an abundant 

source of regulatory sequences in the host genomes [17, 18]. 
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1.2.1 TE-derived cis-regulatory elements 

TEs were originally studied for their impact on the expression of host gene due to 

the destructive effects that the new TE insertions have on the host genes or regulatory 

elements. Nevertheless, TEs actually provide an abundant source of cis-regulatory 

elements for the host genomes [17], including promoters [19-21], enhancers [22-26]. It has 

been shown that TE sequences were present in ~25% of experimentally validated human 

promoter [20]. Over 50 thousand ERV-derived sequences were found to initiate 

transcription in the human genome[19]. These observation is coherent with our knowledge 

about TEs from an evolutionary perspective. In order to survive and proliferate in the host 

genome, TEs carry cis regulatory sequences that mimic the host promoters. In addition to 

promoter sequences, TE can also function as enhancers and alternatively spliced exons and 

regulate host gene expression levels [22-27].  

 

1.2.2 Trans-regulatory activities of TEs 

In addition to its cis-regulatory activities, TEs were also found to contribute a number 

of trans-regulatory elements such as transcription terminators [28], small RNAs [29-31],  

chromatin boundary elements [32] and involved in regulatory networks [33]. There are 55 

experimentally validated human microRNA (miRNA) genes were found to be derived from 

TEs. These TE-derived sequences could impact thousands of human genes that are 

regulated by these miRNAs [30]. A subclass of SINEs, the mammalian-wide interspersed 

repeats (MIRs) in the human genome were found to provide insulators that could organize 

the chromatin in different regulatory domains through enhancer-blocking and separate 
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active and repressive chromatin domains through chromatin barrier activity [32]. A set of 

closely related ERV sequences were found to have significant impact on human tumor 

suppressor gene p53 regulatory network by providing a near-perfect binding site for its 

target genes [33]. Therefore, TE-derived sequences can have a directly impact on host gene 

expression through regulating chromatin states, as well as have an indirect impact on host 

gene expressions via regulatory network rewiring. 

 

1.3 Human genome regulation of TE activities 

Human TE activities were initially discovered by their mutagenic effects. The 

repetitive sequences in TEs may introduce genome instabilities such as alterations and 

inversions in the host genome. TE insertions may also occur in genes or regulatory regions 

such that they disrupt function encoded by the gene and lead to deleterious effects to the 

host. In fact, there are many diseases that are found to be directly caused by TE insertions. 

For example, there are 96 genetic diseases that have been demonstrated to be caused by 

retrotransposon insertions, including cystic fibrosis (Alu), hemophilia A (L1) and X-linked 

dystonia-parkinsonism (SVA) [34, 35].  In addition, somatic mutations caused by human 

TE activity have been linked to a number of different kinds of cancer [36, 37]. Therefore, 

it is not surprising that the host genomes have evolved to have different suppression 

mechanisms to suppress TE activities. Specifically, for retrotransposons the host 

suppressions target both the transcriptional processes and post-transcriptional processes. 
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1.3.1 Transcriptional suppression of TE activities 

Transcriptional suppression of TE activities mainly relies on the epigenetic silencing 

of TE sequences through different chromatin modifications, including DNA methylation, 

histone modification and chromatin remodeling [38]. TE activations have been observed 

in mice with deficiencies in their DNA methyltransferases (DNMTs) [39]. The cytosine 

methyltransferases are enzymes that transfer methyl groups to cytosine nucleotides of 

genomic DNA and maintain the methylation. Loss of function in these enzymes will cause 

the loss of methylation at the CpG island of TE promoter regions and thus lead to the 

derepression of TEs. In humans, hypomethylation of L1 DNA has been shown to be 

associated with elevated L1 transcriptional activities [40-42]. Histone modifications have 

also been shown to silence TEs in mice and preimplantation embryos [43]. Moreover, loss 

of function in genes involve in repressive histone modifications also lead to activation of 

TEs. Mutations in a methyltransferase gene for histone H3 lysine 9 (H3K9) methylation in 

mice result in the overexpression of TEs [44]. In humans, analysis on global histone 

modifications have found that H3K9 is enriched at human retrotransposons, suggesting the 

repression role of histone methylation in TE repression [44-46]. Proteins that involve in 

alteration of chromatin structures, such as condensation and packing, could also be critical 

for TE silencing [47]. For example, condensin II subunit, which participates in maintaining 

the structures of chromosomes, has been shown to repress retrotransposition in Drosophila. 

Nevertheless, epigenetic silencing is not the only mechanism through which the host cells 

suppress retrotranspositions. Other mechanisms at the post-transcription level act as a 

suppression to TE activities. 
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1.3.2 Post-transcriptional suppression of TE activities 

In addition to transcriptional suppressions, there are also different mechanisms that 

suppresses TE activities at the post-transcriptional level. The RNAi pathway also plays an 

important role in the post-transcriptional silencing of TEs [48]. In the RNAi pathway, the 

dicer proteins cleave the dsRNAs of the TE transcripts and yield small interfering RNAs 

(siRNAs) [48]. The siRNAs and the RNA-degrading complexes forms the siRNA-guided 

transcript-cleavage complex RISC and the degrade TE transcripts that are complementary 

to the guide siRNA.  It has been shown that many human siRNAs were generated from 

TEs and antisense transcripts-mediated RNAi regulate retrotranspositional activities [49]. 

In addition to RNAi, other mechanisms has also been shown to suppress retrotransposition 

It has been shown that in human cells, ribonucleoprotein (hnRNPL) interact with L1 RNA 

and down-regulates L1 retrotransposition [50]. The melatonin receptor 1 (MT1) was found 

to inhibit retrotranspositional activities of L1 through downregulation of the transcripts 

[51].  For L1s, the ORF1 protein (ORF1p) and ORF2 protein (ORF2p) binds the L1 

mRNAs and forms a ribonucleoprotein (RNP). Therefore, addition to degrading RNA 

transcripts of L1s, some host mechanisms also targets the RNP formation and delivery to 

genomic DNA processes in order to inhibit retrotransopositions [52]. The innate immune 

system has also been found to play a role in post-transcriptional TE suppression. The 

autophagy signaling pathway has been shown to prevent new TE insertions by degrading 

RNA intermediate of TEs [53]. 

In summary, existing evidences show that the host genome regulates TE activities 

through a variety of mechanisms. Different mechanisms interact or interfere with each 

other and other host regulatory machineries in a complex way. Several genes were 
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demonstrated to be essential for the suppressing or silencing of TE activities in mammalian 

cells [22, 23]. However, genome-wide screens for such suppressor genes were only 

performed in a few organisms such as S. cerevisiae [6] and C. elegans [7]. Moreover, most 

of the current human-specific analysis on TE suppressors were performed under disease 

conditions such as cancers, which may not represent the full picture of the TE regulations 

by human genomes. Therefore, the question of how TE activities are regulated in human 

cells has yet to be systematically addressed at the genome-wide scale. 

 

1.4 Active TEs in the human genome 

While most of the TE sequences in the human genome are remnants of ancient 

insertional events. In other words, a large proportion of the TE sequences in the human 

genome are no longer capable of transposition. There are three families of retrotransposons 

that are currently active in the human genome: Alu [3, 4], L1 [5, 6] and SVA [7, 8]. Recent 

studies have also found a small number of human endogenous retrovirus K (HERV-K) 

elements are also active in the human genome [54].  

A full-length L1 is ~6 kilobases (kb) in length and encodes its own RNA polymerase 

II promoter, and two proteins – the ORF1 and ORF2 proteins [55, 56]. The ORF1 proteins 

have the RNA-binding function and the ORF2 proteins can function as both the 

endonuclease and reverse-transcriptase [56]. These molecular functions collectively 

facilitate the transpositions, and thus make L1 the dominant autonomous retrotransposons 

in the human genome. In addition to its own transposition, the machinery that encoded by 

L1s also promotes the reverse transcriptional activities in the human genome, including the 
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transposition of other non-autonomous retrotransposons such as the Alu elements. While 

most of the L1 sequences accumulates mutations over time and gradually lost their 

mobility, there are ~145 full-length, intact L1s in the human genome [5, 57]. These L1s 

have their have their intact ORF1 and ORF2 sequences that encodes a functional protein 

and thus they have their full capacity to transpose. As a result, for these full-length, intact 

L1 elements, it is possible to measure their transcription levels with a relatively high 

confidence via either a targeted assay approach or whole transcriptome approach.  

As a class of non-autonomous retrotransposons, SINEs do not encode any protein. 

Of the ~1.5 million copies of SINEs in the human genome, ~1.1 million copies of them are 

Alu, which is the most abundant [1]. Among all the SINEs in the human genome, Alu is 

youngest and the only active element. An Alu element is usually ~300 base pairs (bp) long 

and harbors their own RNA polymerase III promoter sequence [58]. Since Alu sequences 

do not carry any RNA polymerase III termination signal, therefore, once Alu sequences get 

transcribed, the transcription will carry through until a termination signal was reached [59]. 

As a result, most observed Alu transcriptions via the whole transcriptome approach would 

be read-through transcripts. 
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Figure 1 Schematic showing the structure of different TEs in the human genome 

The SINE-VNTR-Alus (SVAs) are hominoid specific retrotransposons that are 

currently active in the human genome. SVA, as its name SINE-VNTR-Alu indicates, is a 

chimeric retrotransposon that is comprised of SINE, VNTR and Alu sequences. SVAs 

usually have a full length of ~2 kb long [7, 8]. Like Alu elements, they are also non-

autonomous retrotransposons and therefore, its transposition is also likely to rely on the L1 

machinery. Unlike Alu sequences that carries an internal RNA polymerase III promoter, 

SVAs do not encode any internal promoter sequence. It has been shown that SVAs can be 

by RNA polymerase II and it is likely to rely on the promoter sequences from its flanking 

regions [7, 8]. In other words, the observed transcription of SVA sequences is likely to be 

initiated in its flanking regions.  
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1.5 Human TE Polymorphisms and Genome Regulation 

The retrotransposition rate (RR) of active human TEs have been estimated be about 

one insertion every 10 to 100 births [60]. When members of the active TE families jump 

in the somatic cells, they generate cellular heterogeneity. Similarly, when they jump in 

germline cells, they create inter-individual differences at the TE insertional sites. These 

sites segregate human individuals within and between populations through TE insertional 

polymorphisms.  

The initial studies on TE polymorphisms were started in the 1990s where a small 

number of sites in the human genome with very recent insertions were studied. The Alu 

elements, namely Ya5/8 and Yb8 Alu elements were found to be present in some human 

populations while absent in others [3, 61, 62]. Four Alu insertion polymorphisms were 

identified for the first time in 16 populations worldwide [62]. Subsequent study 

characterized 8 polymorphic Alu insertions in 1,500 individuals from 34 populations 

worldwide [63]. In the past decade, new experimental and computational approaches have 

been developed to systematically characterize structural variations, including TE 

polymorphisms in the entire human genome [64]. The 1000 genomes project (1KGP) has 

applied multiple approaches to characterize TE polymorphisms in 2,504 individuals from 

26 populations worldwide [65]. Given the disruptive nature of TE insertions, along with 

the demonstrated impact of TE-derived sequences to on the regulation of the human 

genome, TE insertion polymorphisms opened a new opportunity for us to systematically 

study the impact of TEs on inter-individual differences in the regulation of gene expression. 

For example, some human TE polymorphisms may lead to differences in gene expression 

patterns between individuals. Therefore, inter-individual differences in regulatory 
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variations generated by these recent TE insertions may have important implications for 

health and disease.   
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CHAPTER 2. GENOME-WIDE SCREEN FOR MODIFIERS OF 

HUMAN LINE-1 EXPRESSION 

2.1 Abstract 

LINE-1 (L1) is an active family of transposable elements (TEs), which exerts a major 

impact on the structural integrity of the human genome.  L1 transpositional activity is 

highly disruptive, and L1-mediated insertions have been linked to more than one hundred 

human diseases.  Accordingly, human cells employ a wide variety of mechanisms to 

mitigate the impact of L1 activity by suppressing their expression.  Here, we report the 

development of a novel genome-wide screen for genetic modifiers of human L1 expression.  

Our approach relies on expression quantitative trait loci (eQTL) analysis for the discovery 

of individual genetic variations, i.e. single nucleotide polymorphisms (SNPs), which are 

jointly associated with both L1 and gene expression.  We applied this approach to known 

modifiers of L1 expression (n=34), as a positive control, along with sets of transcription 

factor (n=1,244) and chromatin associated (n=450) protein encoding genes.  The joint L1-

gene eQTL association analysis was able to recover 35% of 34 known L1 modifier genes, 

including the DNA methyltransferase gene DNMT3A and the RNA helicase gene MOV10.  

We also discovered 24% putative transcription regulator genes and 30% chromatin 

modifier genes, which that can be considered as putative L1 modifiers based on the results 

of our screen.  Notable transcription regulator genes uncovered by our screen include the 

TAF13 gene, which encodes part of the transcription factor IID complex, and the TCF19 

cell-type specific transcription factor gene.  With respect to putative chromatin modifiers 

of L1, a number of histone deacetylase genes, including HDAC1, HDAC3, and HDAC5, as 
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well as the histone H3 lysine demethylase gene KDM5A, were detected via the joint L1-

gene eQTL analysis.  The list of putative L1 modifiers detected by our genome-wide screen 

can be considered as a set of working hypotheses regarding human regulation of L1 

activity; definitive proof for the role of these genes in the regulation of L1 expression will 

require further experimental interrogation.  Nevertheless, our results underscore the 

potential utility of genome-scale approaches to the analysis of host-TE interactions, 

particularly in terms of the ability to substantially narrow down the search space for 

candidate genes of interest. 

 

2.2 Introduction 

Transposable element (TE) derived sequences make up more than half of the human 

genome, and members of a single TE family alone, LINE-1 (L1), comprise 17% of the 

genome sequence [1].  L1s are retrotransposons, which transpose via the reverse 

transcription of an RNA intermediate.  Full-length L1 elements are ~6 kilobases (kb) in 

length and encode an RNA polymerase II promoter along with the ORF1 and ORF2 

proteins that catalyze reverse transcription [55, 56].  L1s are the only family of autonomous 

TEs that remain active in the human genome [5], and the L1 transcriptional machinery is 

also responsible to catalyzing the transposition of the non-autonomous Alu and SVA TE 

families [58, 66].  Accordingly, L1 activity has a major impact on the structure of the 

human genome. 

Ongoing L1 activity poses a direct threat to human genome stability.  In fact, L1 

transpositional activity was discovered by virtue of a Hemophilia A causing insertion in 
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the Coagulation Factor VIII gene (F8) [6].  To date, 124 independent TE insertions 

resulting from L1 activity, including L1-mediated Alu and SVA insertions, have been 

linked to human disease [67].  For example, germline L1 insertions are causal mutations 

for chronic granulomatous disease, Duchenne muscular dystrophy, and Hemophilia B [68-

70].  Somatic L1 insertions have been implicated in a variety of cancer types [71], including 

colorectal cancer [72], head and neck cancers [73, 74], and lung carcinomas [75].  L1s can 

also disrupt genome stability by facilitating non-homologous recombination and 

chromosome breakage [66, 76]. 

Host genomes’ TE regulatory machinery are a crucial component of genome 

stability.  Human cells employ a wide variety of mechanisms to mitigate the impact of L1 

insertions by tightly regulating their activity.  As transcription is rate-limiting step for the 

activity of retrotransposons, such as L1, host genomes keep these elements in check by 

regulating their expression at the pre- and post-transcriptional levels [76-78].  Different 

cell types can employ distinct cellular machineries to suppress L1 activities.    

In germline cells, the PIWI-interacting RNA (piRNA) pathway inhibits L1 activity 

via DNA methylation genomic L1 genomic sequences and RNA degradation of L1 

transcripts.  This pathway involves the methylation regulator DMNT3L and the piRNA 

bidnding protein PIWIL4 [79, 80].  Recent evidence has shown that piRNA pathway may 

be active in tissues other than the germline [81, 82].  In embryonic stem cells (ESCs), three 

DNA methyltransferases genes, DNMT1, DNMT3A and DNMT3B coordinately maintain 

the repressive L1 methylation [83].  The Sirtuin 6 (SIRT6) protein has been shown to 

repress L1s in mice embryonic fibroblast cells by packaging the L1 sequences into 

heterochromatin in collaboration with the tripartite motif containing 28 (TRIM28) gene 
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(also known as KAP1) [84].  In neural stem cells, the transcription factor Sox2 (SOX2) and 

the histone deacetylase 1 protein (HDAC1) form a complex on the L1 5’ promoter region 

to represses element transcription [85, 86]. 

Post-transcriptional suppression mechanisms usually target L1 mRNA or the 

formation and transportation of the L1 ribonucleoprotein (RNP) complexes.  For example, 

dicer proteins of the RNA interference (RNAi) pathway cleave dsRNAs from L1 

transcripts to yield small interfering RNAs (siRNAs). The siRNA-guided RNA-induced 

silencing complex (RISC) then identifies and the degrades L1 transcripts complementary 

to guide siRNA sequences [48].  The ribonucleoprotein hnRNPL has been shown to 

interact with L1 mRNA directly and inhibits retrotransposition by decreasing steady-state 

levels of L1 transcripts [50].  The Mov10 RNA helicase (MOV10), which is a component 

of the RNA-induced silencing complex (RISC), physically associates with the L1 RNP and 

represses L1 retrotransposition by promoting stress granule formation [52, 87, 88].  The 

endonucleases TREX1 and ERCC1 inhibit L1 retrotransposition post-transcriptionally by 

cleaving the reverse-transcribed L1 cDNA molecules [89, 90]. 

The experimental approaches used to characterize the modifiers of L1 expression 

described above traditionally rely on candidate gene approaches, which require a priori 

knowledge regarding host L1 activity related pathways and their constituent genes 

(proteins).  Candidate L1 modifier genes are experimentally manipulated, e.g. via knock-

out or over-expression techniques, and the impact on L1 activity is then observed.  For 

example, the role of the piRNA pathway in L1 repression was investigated by insertional 

mutation of the PIWIL4 gene followed by the use of in situ hybridization to compare L1 

transcript levels in wild-type versus mutant cells [80].  Similarly, for studies of the SIRT6 
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L1 suppressor gene, an L1 green fluorescent protein (L1-EGFP) [91] reporter system was 

used to measure de novo retrotransposition events in wild type versus SIRT6 knockout 

cells [84].  While approaches of this kind have been extremely valuable in characterizing 

the host L1 regulatory machinery, they are typically limited to a relatively small set of 

candidate genes (proteins). 

For this study, we developed and applied a genome-wide screen for putative genetic 

modifiers of L1 activity.  Our genome-wide screen uses the expression quantitative trait 

loci (eQTL) approach to look for genetic variants, i.e. single nucleotide polymorphisms 

(SNPs), which are associated with both L1 and gene expression levels (Figure 1).  We 

considered SNPs that are jointly associated with L1 and gene expression to be putative 

genetic modifiers of L1 expression, with the paired genes implicated as members of L1 

regulatory pathways.  This approach can be considered to be largely hypothesis free, and 

therefore less biased, compared to more traditional candidate gene approaches, and it is 

also distinguished by its genome-wide scale, with respect to the ability to screen thousands 

of genes at a time. 

We applied our eQTL approach to known L1 modifier genes, as a positive control, 

along with potential L1 modifier genes encoding transcription factors and chromatin 

associated proteins.  In addition to recovering known L1 modifier genes, such as DNMT3A 

and MOV10, our screen also identified a number of novel L1 transcriptional regulator genes 

(TAF13 and TCF19) as well as chromatin associated proteins implicated in L1 regulation 

(HDAC5 and KDM5A).     
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2.3 Materials and Methods 

2.3.1 Genome-wide SNP genotypes 

Genome-wide SNP genotype calls for 358 individuals from four European 

populations were accessed from the phase 3 variant release of the 1000 Genomes Project 

(1KGP) [92], corresponding to the human genome reference sequence build 

GRCh37/hg19.  The four populations are CEU: Utah Residents (CEPH) with Northern and 

Western Ancestry, FIN: Finnish in Finland, GBR: British in England and Scotland and 

TSI: Toscani in Italy.  As previously described for the 1KGP [92], whole genome 

sequencing (DNA-seq) was performed for lymphoblastoid cell lines, i.e. Epstein–Barr 

virus (EBV) transformed B-lymphocytes (B cells), from these individuals and used to call 

genetic variants.  The SNP genotype data were accessed from the 1000 Genomes Project 

ftp server maintained at the NCBI: 

http://ftp-trace.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/. 

 

2.3.2 Gene expression quantification and normalization 

Matched gene expression data for the same 358 individuals were taken from 

Genetic European Variation in Health and Disease (GEUVADIS) project [93].  Gene 

expression levels were measured for the same lymphoblastoid cell lines that were used for 

DNA-seq analysis in the 1KGP.  PEER normalization was applied on the gene expression 

levels, with parameters optimized for cis eQTL discovery, as previously described [94].  

The PEER normalization controls for multiple, potentially confounding sample covariates 

http://ftp-trace.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/
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in a similar way as described for the L1 expression analysis below.  Normalized RNA-seq 

gene expression levels were accessed from the GUEVADIS project ftp server maintained 

at EBI: 

ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-

1/analysis_results/. 

 

2.3.3 L1 expression quantification and normalization 

Matched RNA-seq data from the GEUVEDIS project were also used to quantify 

the expression levels of full-length, intact and potentially active L1 elements genome-wide.  

The locations of 145 full-length, intact human L1s were obtained from L1Base version 2 

(http://l1base.charite.de/) [95].  RNA-seq reads mapped to the human genome reference 

sequence build GRCh37/hg19 were access from the GEUVADIS project ftp server 

maintained at EBI: 

ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-

6/processed/ 

The program TEtranscripts was used to quantify the expression levels for each of 

the 145 individual, full-length L1 elements.  The TEtranscripts program works by re-

mapping RNA-seq reads genome-wide, allowing for ambiguous or multi-mapped reads, 

and generating read counts for both genes and TEs [96].  The program subsequently uses 

an EM algorithm to optimally map ambiguous reads to a unique genomic location, taking 

into account the entire space of reads mapped genome-wide.  The resulting uniquely 

ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-1/analysis_results/
ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-1/analysis_results/
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mapped reads were used to generation L1-specific read counts, which were log transformed 

and quantile normalized to a standard normal distribution using the edgeR package [97].  

A series of additional normalization steps were used to control for sample covariates, as 

described below, in order to allow for accurate downstream eQTL analysis. 

 

2.3.4 Controlling sample covariates for L1 expression levels 

We controlled for the effects of potential confounding variables in the eQTL 

analysis by regressing sample covariates out of the expression dataset, following 

previously suggested analysis standards [93, 98].  The specific sample covariates controlled 

for are (1) gender, (2) sequencing batch, (3) population group, (4) gene expression 

heterogeneity, and (5) population structure.  All covariates were combined in a single 

covariates matrix 𝐶𝐶 with sub-matrices representing each of the five covariates.  (1) Gender: 

a binary vector of gender labels for each individual sample.  (2) Sequencing batch: a vector 

with sample labels for the sequencing labs where the RNA-seq experiments were 

conducted.  (3) Population group: a matrix of sample indicator variables for each of the 

four populations – CEU, FIN, GBR, and TSI.  (4) Gene expression heterogeneity: to control 

for variance due to unknown experimental factors or confounding factors in the expression 

dataset, we used the top 10 principal components (PCs), corresponding to the top 10 

eigenvectors, of the covariance matrix of quantile normalized expression levels as sample 

covariates.  (5) Population structure: in addition to the population group sample labels, we 

also used the top 2 PCs from the SNP genotype matrix of the individuals to control for any 

additional population structure.  The genotype matrix was built using biallelic SNPs with 
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minor allele frequency (MAF) > 10%.  The program PLINK was then used to perform LD-

pruning with a window size of 50 SNPs, a step size of 5 SNPs and a pairwise correlation 

cutoff of 0.5 [99].  The final genotype matrix contains genotypes for pruned SNPs across 

all individuals, where for each SNP location, 0, 1, and 2 correspond to reference 

homozygous, heterozygous, and alternative homozygous.  

Using the combined covariates matrix 𝐶𝐶, made up of the five submatrices described 

above, we computed the hat matrix 𝐻𝐻 as: 

𝐻𝐻 = 𝐶𝐶(𝐶𝐶𝑇𝑇𝐶𝐶)−1𝐶𝐶𝑇𝑇 

We then applied the hat 𝐻𝐻  matrix to residualize the gene expression levels.  The 

residualized gene expression matrix was computed as: 

𝑌𝑌 = (1 − 𝐻𝐻)𝑌𝑌′ 

where 𝑌𝑌′ is the matrix of quantile normalized expression levels and 𝑌𝑌 is the matrix of 

residuals.  Finally, L1 expression levels were extracted from the residualized expression 

matrix for downstream analysis. 

 

2.3.5 eQTL association analysis 

We performed two kinds of eQTL association analyses using the program Matrix 

eQTL [100]: (1) association of SNP genotypes with L1 expression levels, and (2) 

association of SNP genotypes with gene expression levels.  For the L1 eQTL associations, 

SNP genotypes with MAF > 5% were regressed against residualized L1 expression levels 
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using the additive linear analysis option of Matrix eQTL with no covariates.  Sample 

covariates were not included since they were explicitly controlled for as described above.  

The false discovery rate (FDR) was used to control for multiple statistical tests, with an 

FDR cutoff of 0.05, corresponding to P<1.37 x 10-7, used to define statistically significant 

associations.  As an eQTL association control, we permuted the unlinked SNP genotypes, 

by randomly assigning them to individual genomes, and then ran the same eQTL 

association with permuted SNP genotypes analysis against residualized L1 expression 

levels.  The resulting random eQTL association P-values were used as a null distribution 

against which the observed eQTL association P-values were compared. 

For the gene eQTL associations, SNP genotypes with MAF > 5% were regressed 

against PEER normalized gene expression levels using the additive linear analysis option 

of Matrix eQTL with gender and population sample covariates included.  The gene eQTL 

associations were limited to cis SNPs, which were defined as falling within 1Mb upstream 

or downstream of annotated gene model boundaries (transcription start and stop sites).  An 

FDR cutoff of 0.05, corresponding to P < 9.54 x 10-4, was used to define statistically 

significant associations.  The same random SNP permutation procedure as described above 

was used to generate a null P-value distribution for comparison with the observed eQTL 

association P-values.    

 

2.3.6 Genetic modifiers of L1 expression 

To search for potential genetic modifiers of L1 expression, individual SNPs that are 

jointly associated with both L1 and gene expression were identified.  Fisher’s combined 
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probability test was used to combine P-values for matched SNP-L1 and SNP-gene eQTL 

associations.  The χ2 distribution, with 4 degrees of freedom (2 x 2 P-values combined), 

was used to measure the significance of the combined P-values.  An FDR cutoff of 10-4, 

corresponding to P < 3.21 x 10-5, was applied to filter out jointly significant gene-L1 pairs.  

We focused on eQTL associated with three classes of genes, encoding for: known L1 

suppressors, transcription factors, and chromatin associated proteins.  A collection of 34 

previously characterized L1 suppressor genes were curated from the literature.  Human 

gene ontology (GO) annotations provided NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz) were parsed in order to identify 1,244 

transcription factor genes and 450 chromatin association protein encoding genes.    

 

2.4 Results and Discussion 

2.4.1 Genome-wide screening with shared eQTL associations 

We used joint eQTL association analysis of L1 and gene expression levels in order 

to conduct a genome-wide screen for genetic modifiers of L1 expression (Figure 1).  

Genome-wide SNP variant calls for 358 individuals from 4 European populations – CEU, 

FIN, GBR, and TSI – were taken from the phase 3 release of the 1KGP, and matched gene 

expression levels for the same individuals were taken from the GEUVEDIS RNA-seq 

project.  Gene expression levels were characterized for the same lymphoblastoid cell lines 

that were used for DNA-seq analysis in the 1KGP project.  Gene expression levels were 

normalized using the PEER method in order to optimize downstream eQTL association 

analyses.  We re-analyzed the GEUVEDIS RNA-seq read data in order to measure gene 
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expression levels at 145 full-length, potentially active L1 loci.  L1 expression analysis was 

performed in such a way as to find the best locations for multi-mapping sequence tags and 

to control for potentially confounding sample covariates, such as population structure and 

sequencing batch (Supplementary Figure S1).  The details of our L1 and gene expression 

analyses are provided in the Materials and Methods. 

 

Figure 2 Genome-wide approach to screen for genetic modifiers of L1 expression 

SNP genotype and transcriptome profiling of 358 European individuals were combined for 
expression quantitative trait loci (eQTL) analysis.  SNP genotypes were regressed against 
L1 and gene expression levels to search for shared eQTL associations.  An example of a 
shared eQTL association that represents a L1 suppressor is shown, where the SNP 
genotypes associated with decreased L1 expression are simultaneously associated with 
increased expression of the putative L1 modifier gene.   

 

Individual SNP genotypes were regressed against both L1 and gene expression 

levels to search for shared associations (Figure 1).  SNPs that are jointly associated with 
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both L1 and gene expression are considered to be putative genetic modifiers of L1 

expression.  We did this for known L1 modifier genes, as a proof of principle (i.e. a positive 

control), along with candidate L1 modifier genes encoding transcription factors and 

chromatin associated proteins.  Results of our genome-wide eQTL analysis are shown 

separately for L1 expression (Figure 3A) and for gene expression (Figure 3B).  The 

observed eQTL associations for both L1 and gene expression are compared to a null 

distribution of eQTL associations generated via random permutation of SNP genotypes.  

The Q-Q plots for L1 and gene expression show substantially more significant associations 

than expected by chance, as indicated by the deviation of the observed values from both 

the diagonal line and the randomly permuted SNP genotype association values.  Manhattan 

plots also show a striking difference between the genome-wide distributions of the 

observed versus permuted eQTL associations.  The L1 eQTL association Manhattan plot 

shows distinct peaks on chromosome 6, 12, and 16.  There are far more significant 

association peaks observed for gene expression, likely owing to the fact that we analyzed 

far more gene (22,128) than L1 (145) loci.  
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Figure 3 Results of the eQTL association analyses for L1 and gene expression  

Quantile-quantile (Q-Q) plots (left) and Manhattan plots (right) are shown for the L1 (A - 
orange) and gene (B - blue) results.  The Q-Q plots show the observed eQTL association 
log transformed P-values (L1-orange and gene-blue dots) compared to randomly permuted 
association P-values (gray dots) and the expected P-value distribution under the null 
hypothesis of no association (gray lines).  The upper panels of the Manhattan plots show 
the observed eQTL association log transformed P-values and the lower panels show 
randomly permuted association P-values.  

 

L1 and gene eQTL association P-values were combined to screen for shared SNP 

eQTL, i.e. putative L1 genetic modifiers.  Fisher’s combined probability test was used to 

combine L1 and gene association P-values, yielding χ2 values for shared associations 

(Figure 4).  The combined P-value χ2 distributions show 2,346 statistically significant 
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shared L1-gene eQTL associations (χ2>25.9, df=4, FDR q<10-4) across all three classes of 

genes that we evaluated.  This includes numerous shared associations with known L1 

modifier genes as should be expected if our genome-wide screen is adequately powered to 

detect L1-gene regulatory interactions.  We also found many shared associations with 

genes that encode transcription factor and chromatin associated proteins; these shared 

associations point to potentially novel genetic modifiers of L1 expression.  Comparison of 

the three gene categories does not show any substantial difference in the strength of shared 

associations.  The top shared associations observed for each of these three categories of 

genes are shown in Table 1, and examples for each of the three categories are described in 

the following sections of the manuscript.   

 

Figure 4 Results of the joint L1-gene eQTL association analysis 

SNP rs11126321 genotypes Joint L1-gene eQTL results are shown for SNPs associated 
with known L1 suppressors (red), transcription factor (purple), and chromatin associated 
(green) genes.  Cumulative distributions are shown for Fisher’s combined probability test  
𝜒𝜒42 values for all three gene sets.  The left panel shows the entire distribution, and the 
middle panel shows only statistically significant values (FDR < 10-4).  The right panel 
shows the median and standard error of the 𝜒𝜒42 values for the three gene sets.  
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2.4.2 Known modifiers of L1 expression 

The potential utility of our eQTL genome-wide screen for L1 genetic modifiers can 

be illustrated by the results seen for known modifiers of L1 expression, including both 

transcriptional and post-transcriptional modifiers.  For example, the alternate allele (A) of 

the SNP rs11126321 was found to be jointly associated with increased L1 expression and 

decreased expression of the DNA Methyltransferase 3 Alpha gene (DNMT3A) (Figure 5A).  

DNMT3A encodes a de novo DNA methyltransferase that is known to repress L1 

expression via the methylation of CpG islands proximal to element promoters [83].  

Accordingly, the expression levels of DNMT3A and L1 are expected to be inversely 

correlated as can be seen here.  

In a similar example, we found shared, and inverse, eQTL L1-gene associations for 

the SNP rs6537785.  The alternate allele of this SNP (T) is associated with increased L1 

expression and decreased expression of the Mov10 RISC Complex RNA Helicase 

(MOV10) (Figure 5B).  MOV10 has been implicated in post-transcriptional regulation of 

L1 elements by virtue of its role as an inhibitor of L1 mRNA transport between the nucleus 

and the cytoplasm, a critical, rate-limiting step it the retrotransposition cycle [52].  MOV10 

achieves this by promoting the degradation of L1 mRNA in the cytoplasm via the formation 

of cytoplasmic stress granules, thereby limiting their ability to return to the nucleus where 

reverse transcription takes place. 



 29 

 

Figure 5 Known L1 suppressor genes implicated by the joint eQTL association 
analysis 

 (A) L1 and gene eQTL associations for a known L1 transcriptional suppressor.  SNP 
rs11126321 genotypes are jointly associated with increased L1 expression and decreased 
expression of DNMT3A (left).  A schematic for the role of DNMT3A in L1 suppression 
(right).  (B) L1 and gene eQTL associations for a known post-transcriptional suppressor 
of L1.  SNP rs6537785 genotypes are jointly associated with increased L1 expression and 
decreased expression of MOV10 (left).  A schematic for the role of MOV10 in L1 post-
transcriptional suppression (right).   

 

An interesting counter example of shared L1-gene associations for known L1 

modifiers was seen for the Nuclear RNA Export Factor 1 gene (NXF1).  In this case, the 

SNP rs111438108 shows the same pattern of association for L1 and gene expression, 

whereby the alternate allele (T) is associated with decreased expression of both (Figure 6).  

NXF1 also plays an important role in the transport of L1 mRNAs from the nucleus to the 
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cytoplasm by forming part of the nuclear pore through which the mRNAs pass to the 

cytoplasm [101].  Presumably, increased expression of the gene would facilitate greater 

transport of L1 mRNAs and accordingly higher apparent L1 expression. 

 

Figure 6 Known L1 retrotransposition promoting genes implicated by the joint 
eQTL association analysis.   

L1 and gene eQTL associations for a known post-transcriptional modifier of L1.  SNP 
rs111438108 genotypes are jointly associated with decreased L1 expression and decreased 
expression of NXF1 (left).  A schematic for the role of NXF1 is enhancing L1 expression 
(right).      

 

2.4.3 Novel transcription factor L1 modifiers 

We were most interested in the discovery of novel potential modifiers of L1 

expression via our shared eQTL approach.  We found a number of transcription factors, 

which to our knowledge were not previously implicated in L1 regulation, that are 

associated with SNPs which are also eQTL for L1 expression (Table 1).  For transcription 

factors, we focused on shared eQTL that showed the same direction of association, 

reasoning that their increased expression may lead in turn to upregulation of L1 elements.  

An example of this pattern can be seen for the SNP rs28515780, for which the alternate 
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allele (A) is associated with increased gene expression of the TATA-Box Binding Protein 

Associated Factor 13 gene (TAF13) along with increased expression of four L1 loci (Figure 

7A).  TAF13 encodes the 18 KDa subunit of the basal transcription initiation factor protein 

TFIID, which is expected to be crucial for the expression of L1 elements by the RNA 

polymerase II machinery. 

Table 1 Top modifiers genes identified via joint eQTL analysis 

Gene 
set SNP Gene L1 ID 𝛘𝛘2 

statistic P-value FDR  
q-value 

TE
 su

pp
re

ss
or

 

rs2887269 HNRNPL L1-136 34.41 6.14E-07 4.60E-06 

rs11126321 DNMT3A L1-136 31.57 2.34E-06 1.42E-05 

ss1388073530 AICDA L1-49 29.35 6.64E-06 3.22E-05 

rs7529736 AGO1 L1-56 29.19 7.15E-06 3.41E-05 

rs467053 SQSTM1 L1-52 28.38 1.04E-05 4.53E-05 

C
hr

om
at

in
 

rs4668938 DDX1 L1-78 103.62 1.66E-21 9.27E-20 

rs28366287 CSNK2B L1-28 98.19 2.39E-20 1.19E-18 

rs540748076 BRD2 L1-28 54.88 3.45E-11 5.88E-10 

rs10902548 MEF2A L1-106 53.18 7.82E-11 1.27E-09 

rs13202640 GMNN L1-120 48.61 7.05E-10 9.78E-09 
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Gene 
set SNP Gene L1 ID 𝛘𝛘2 

statistic P-value FDR  
q-value 

Tr
an

sc
rip

tio
n 

Fa
ct

or
 

rs386525443 TCF19 L1-103 72.19 7.84E-15 2.04E-13 

rs113823631 RXRB L1-57 64.07 4.05E-13 8.76E-12 

rs386525443 POU5F1 L1-103 61.28 1.56E-12 3.18E-11 

rs841657 ARNTL2 L1-94 56.91 1.29E-11 2.34E-10 

rs7258563 ZNF790 L1-129 51.12 2.11E-10 3.19E-09 

 

A similar example of this kind can be seen for genes that encode a pair of 

transcription factors – Transcription Factor 19 (TCF19) and POU Class 5 Homeobox 1 

(POU5F1) – both of which show increased expression associated with the alternate allele 

(T) of the SNP rs386525443 (Figure 7B).  The same allele of rs386525443 is also 

associated with increased expression of four L1 elements.  These two transcription genes 

are located in close proximity on the short arm of chromosome 6, within the major 

histocompatibility locus (MHC).  There is evidence suggesting that these two genes 

function together, and they are both important in embryonic development and stem cell 

pluripotency.  It may be the case that they are connected to developmentally regulated 

expression of L1 elements. 
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Figure 7 Putative L1 modifier transcription factors uncovered by the joint eQTL 
association analysis 

 (A) Shared gene and L1 eQTL associations for the putative L1 transcription factor TAF13.  
SNP rs28515780 genotypes are jointly associated with increased expression of TAF13 
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(upper – blue) and four L1 loci (lower – orange).  A schematic for the role of TAF13 in 
regulating L1 transcription is shown.  (B) Shared gene and L1 eQTL associations for the 
putative transcription factors TCF19 and POU5F1.  SNP rs386525443 genotypes are 
associated with increased expression of both TCF19 and POU5F1 (upper – blue), along 
with increased expression of four L1 loci (lower – orange).  A schematic showing the 
shared genomic location of TCF19 and POU5F1. 

 

2.4.4 Novel chromatin L1 modifiers    

We searched for novel chromatin modifiers of L1 expression, with an emphasis on 

shared L1-gene eQTL that showed the opposite direction of association.  The rationale 

behind this approach is based on the fact that chromatin compaction plays an important 

role in the suppression of L1 activity [102] and can be considered to serve as the ‘ground 

state’ through which L1 elements are held silent across the genome.  Accordingly, 

decreased expression of chromatin modifiers is expected to lead to increased expression of 

L1 elements.  We found three histone deacetylase encoding genes – HDAC1, HDAC3, and 

HDAC5 – each of which has a shared and inverse eQTL association with L1 expression 

(Figure 8 A-C).  Activity of these histone deacetylases leads to decreased acetylation, 

decrease chromatin compaction and increased expression of L1s, consistent with the 

inverse directions of the shared associations observed here.  We found a similar inverse 

shared eQTL association for the Lysine Demethylase 5A encoding gene (KDM5A), which 

demethylates lysine 4 of the histone H3 (Figure 8D).  Histone methylation is also a 

repressive chromatin mark, so decreased expression of this gene is expected to be 

associated with increased L1 expression as we observe here (Figure 8E).  
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Figure 8 Putative chromatin L1 modifiers uncovered by the joint eQTL association 
analysis 

Shared gene and L1 eQTL associations are shown for three histone deacetylase genes: 
HDAC5 (A), HDAC3 (B), and HDAC1 (C) along with the histone demethylation gene 
KDM5A (D).  In each case, there is a single SNP with genotypes that are simultaneously 
associated with increased L1 expression and decreased expression.  (E) A schematic 
illustrating the L1 suppression roles of the histone deacetylases and the histone 
demethylation genes. 
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2.5 Conclusions 

Our genome-wide approach to the discovery of genetic modifiers of L1 expression 

yielded a number of promising results, including confirmation of previously characterized 

L1 modifiers (i.e. positive controls) as well as potentially novel L1 modifiers that act at the 

level of transcription initiation or chromatin modification.  These results attest to the power 

of genome-scale eQTL studies to decipher the regulatory architecture governing the 

expression of human TEs.  Given TEs’ known roles in mutation and genome dynamics, a 

deeper understanding of genetic modifiers of L1 expression has important implications for 

studies of mutagenesis and genome stability. 

The current study is limited by its focus on a single tissue type – the lymphoblastoid 

cell lines that were used for both the 1KGP DNA-seq and GEUVEDIS RNA-seq studies.  

This limitation is based on the fact that eQTL association studies of the kind employed here 

require the characterization of genome-wide sets of genotype calls and gene expression 

levels from hundreds of matched human samples.  Until recently, this has only been 

available for the single tissue type analyzed here.  However, the recently completed GTEx 

project provides matched genotype and expression data for scores of human samples.  

Exploration of this rich data set, together with consideration of the known tissue-specific 

expression profiles of L1 elements, should yield additional resolution for the discovery of 

novel L1 modifiers.  In particular, paired discovery and validation analyses could be used 

to provide an additional line of support for putative L1 modifiers. 

Another note of caution is that the identities of the novel L1 genetic modifiers 

discovered here should be treated with caution given the bioinformatics techniques 
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employed for their discovery.  Indeed, these putative L1 modifiers can be best considered 

as predictions, or hypotheses, that will need to be validated by careful experimental efforts.  

Nevertheless, the genome-wide screen approach that we took here should prove to be 

useful in guiding future experiments.  In particular, we hope that evaluation of our lists of 

putative L1 modifiers by L1 experts, and experimentalists with deep knowledge of L1 

regulation, will prove to be useful in substantially narrowing the space of possible studies 

that need to be done to discover novel dimensions of human genome regulation and 

dynamics. 
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CHAPTER 3. HUMAN POPULATION-SPECIFIC GENE 

EXPRESSION AND TRANSCRIPTIONAL NETWORK 

MODIFICATION WITH POLYMORPHIC TRANSPOSABLE 

ELEMENTS  

3.1 Abstract 

Transposable element (TE) derived sequences are known to contribute to the 

regulation of the human genome.  The majority of known TE-derived regulatory sequences 

correspond to relatively ancient insertions, which are fixed across human populations.  The 

extent to which human genetic variation caused by recent TE activity leads to regulatory 

polymorphisms among populations has yet to be thoroughly explored.  In this study, we 

searched for associations between polymorphic TE (polyTE) loci and human gene 

expression levels using an expression quantitative trait loci (eQTL) approach.  We 

compared locus-specific polyTE insertion genotypes to B cell gene expression levels 

among 445 individuals from 5 human populations.  Numerous human polyTE loci 

correspond to both cis and trans eQTL, and their regulatory effects are directly related to 

cell type-specific function in the immune system.  PolyTE loci are associated with 

differences in expression between European and African population groups, and a single 

polyTE loci is indirectly associated with the expression of numerous genes via the 

regulation of the B cell-specific transcription factor PAX5.  The polyTE-gene expression 

associations we found indicate that human TE genetic variation can have important 

phenotypic consequences.  Our results reveal that TE-eQTL are involved in population-

specific gene regulation as well as transcriptional network modification.   
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3.2 Introduction 

Transposable elements (TEs) are mobile DNA sequences that create copies of 

themselves when they move among chromosomal locations.  TE activity has had a major 

impact on the evolution and structure of the human genome; millions of TE sequence 

copies have accumulated over the last ~100my.  The initial sequencing and subsequent 

analysis of the human genome revealed that >50% of the genome sequence is derived from 

past TE sequence insertions [1, 2]. 

TEs can also shape the function of the human genome, particularly with respect to 

the regulation of gene expression[17].  Human TE-derived sequences have been shown to 

provide a wide variety of gene regulatory sequences including promoters [19-21], 

enhancers [22-26], transcription terminators [28] and several classes of small RNAs [29-

31].  Human TEs also influence various aspects of chromatin structure throughout the 

genome [1, 32, 103-106].   

The vast majority of human TE sequences are remnants of ancient transposition 

events that occurred many millions of years ago [1].  Accordingly, studies that have 

uncovered the regulatory properties of TE-derived sequences have dealt with fixed TE 

insertions that are present at the same locations in the genome sequences of all human 

individuals.  Such fixed TE-derived regulatory sequences are not expected to provide for 

gene regulatory variation based on insertional polymorphisms between individuals. 

It has only recently become possible to systematically evaluate the effects of TE 

genetic variation within and between human populations, i.e. TE polymorphisms.  Human 

TE polymorphisms are primarily generated via the activity of three families of 
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retrotransposons: Alu [3, 4], L1 [5, 6] and SVAs [7, 8].  Transposition events by members 

of these polymorphic TE (polyTE) families yield numerous differences in the 

presence/absence of insertions at specific loci among individual human genome sequences.  

The recent phase 3 variant release of the 1000 Genomes Project included a catalog of 

presence/absence genotypes for >16,000 polyTE loci among 2,504 individuals from 26 

human populations [65, 99].  This genome-wide collection of polyTE genotypes provides 

an opportunity to explore the phenotypic consequences of TE activity at the level of human 

populations.   

Considering the known regulatory properties of human TEs, together with the fact 

that TE insertional activity is known to be highly disruptive [34, 35], we hypothesized that 

polyTE activity can lead to gene expression differences between human individuals.  We 

used an integrated analysis of polyTE genotypes and genome-wide expression profiles, for 

the same set of 1000 Genome Project samples, in order to test this hypothesis (Figure 9).  

Gene expression levels were regressed against polyTE genotypes to search for polyTE-

gene expression associations.  This approach revealed numerous human polyTE loci that 

correspond to expression quantitative trait loci (eQTL).  The TE-eQTL uncovered here are 

involved in the establishment of population-specific expression profiles as well as 

transcriptional regulatory network modification.  
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3.3 Materials and Methods 

3.3.1 Polymoprhic transposable element (polyTE) analysis 

Genotype calls for three families of human polyTEs – Alu, L1 and SVA – in 445 

individuals from 5 populations were taken from the phase 3 variant release of the 1000 

Genomes Project[99].  The phase 3 variant release corresponds to the human genome 

reference sequence build GRCh37/hg19.  The 5 human populations are CEU: Utah 

Residents (CEPH) with Northern and Western Ancestry, FIN: Finnish in Finland, GBR: 

British in England and Scotland and TSI: Toscani in Italy from Europe along with YRI: 

Yoruba in Ibadan, Nigeria from Africa (Figure 9).  These populations were chosen because 

they have matching RNA-seq data for the same individuals (see RNA-seq analysis section).  

PolyTE genotypes were characterized by the 1000 Genomes Project Structural Variation 

Group using the program MELT as previously described [65].  The polyTE genotype data 

were accessed from the 1000 Genomes Project ftp server maintained at the NCBI: 

http://ftp-trace.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/.   
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Figure 9 Scheme for the polymorphic transposable element (polyTE) expression 
quantitative trait loci (eQTL) analysis conducted 

Data were taken from 87 African and 358 European individuals from the 1000 Genomes 
Project.  Genome (DNA-seq) and transcriptome (RNA-seq) data were used to characterize 
polyTE genotypes and gene expression levels for all individuals in the study.  Individual 
gene expression levels were regressed against polyTE insertion genotypes in an effort to 
reveal associations between polyTE loci and human gene expression, i.e. TE-eQTL. 

 

For any given polyTE insertion site, there are three possible presence/absence 

genotype values for an individual genome: 0-no polyTE insertion (homozygote absent), 1-

a single polyTE insertion (heterozygote), and 2-two polyTE insertions (homozygote 
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present).  PolyTE genotypes were used for eQTL analysis as described below.  PolyTE 

genotypes were also used to compute pairwise genetic distances between individuals 

as:  𝑑𝑑𝑥𝑥𝑥𝑥
𝑔𝑔 = 1

𝑛𝑛
∑ |𝑔𝑔𝑥𝑥𝑥𝑥 −  𝑔𝑔𝑥𝑥𝑥𝑥|𝑛𝑛
𝑥𝑥=1 , where 𝑔𝑔𝑥𝑥𝑥𝑥   and 𝑔𝑔𝑥𝑥𝑥𝑥  are the polyTE genotype value for 

individual 𝑥𝑥 and individual 𝑦𝑦 at insertion site 𝑖𝑖, for a total of 𝑛𝑛 sites.  The resulting pairwise 

polyTE genotype distance matrix was subject to dimension reduction using 

multidimensional scaling (MDS)[107], using the cmdscale function from the R statistical 

package version 3.2.2[108], in order to visualize the genetic relationships between 

individuals based on their polyTEs (Figure 10C).  
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Figure 10 Distribution of polyTEs among the African and European population 
groups analyzed 

Data are broken down into Alu, L1 and SVA polyTE families.  (A) PolyTE insertion allele 
frequency distributions for African and European populations are shown along with the 
numbers of shared and population-specific polyTE loci.  (B) The numbers of African and 
Europen polyTE insertions with allele frequencies >5%.  (C) Genetic relationships among 
the individuals analyzed here based on their polyTE genotypes.  Individual’s population 
origins are color coded as shown in the key.     
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3.3.2 RNA sequencing (RNA-seq) analysis 

RNA-seq expression data, for the same 445 individuals from 5 human populations 

with polyTE genotypes characterized as described in the previous section, were taken from 

the GUEVADIS RNA sequencing project for 1000 Genomes samples[109].  These RNA-

seq data characterize genome-wide expression levels from the same lymphoblastoid cell 

lines, i.e. Epstein–Barr virus (EBV) transformed B-lymphocytes, used for DNA-seq 

analysis in the 1000 Genomes project.  RNA isolation, library preparation, sequencing and 

read-to-genome mapping was performed as previously described [109].  As with the 

polyTE data, the RNA-seq read mapping corresponds to the human genome build 

GRCh37/hg19.  Mapped reads were used to quantify gene expression levels for ENSEMBL 

gene models[110] and normalization of gene expression levels was done using a 

combination of a modified RPKM approach followed by the probabilistic estimation of 

expression residuals (PEER) method[111] as previously described[112].  The PEER 

normalized RNA-seq gene expression levels were accessed from the GUEVADIS project 

ftp server maintained at EBI: 

ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-

1/analysis_results/. 

Genome-wide expression profiles were used to compute pairwise phenotypic 

distances between individuals as: 𝑑𝑑𝑥𝑥𝑥𝑥𝑒𝑒 = �∑ (𝑒𝑒𝑥𝑥𝑥𝑥 −  𝑒𝑒𝑥𝑥𝑥𝑥)2𝑛𝑛
𝑥𝑥=1   where 𝑒𝑒𝑥𝑥𝑥𝑥  and 𝑒𝑒𝑥𝑥𝑥𝑥  are the 

normalized gene expression level for individual 𝑥𝑥 and individual 𝑦𝑦 at gene 𝑖𝑖, for a total of 

𝑛𝑛  genes.  The resulting pairwise expression distance matrix was subject to dimension 

reduction using multidimensional scaling (MDS)[107], using the cmdscale function from 
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the R statistical package version 3.2.2[108], in order to visualize the relationships between 

individuals based on their genome-wide expression profiles (Figure 11A).  Differential 

gene expression between African and European populations was evaluated using a paired 

ttest implemented with the genefilter package from Bioconductor[113] (Figure 11B). 

 

Figure 11 Gene expression profiles within and between populations analyzed 

(A) Individuals from different populations are related based on their genome-wide 
expression profiles.  Individual’s population origins are color coded as shown in the key.  
(B) Heatmap showing genes that have expression profiles that are significantly different 
between the African and European population groups.  Gene expression levels are color 
coded as shown in the key. 

 

3.3.3 Expression quantitative trait loci (eQTL) analysis 

PolyTE genotypes from the individuals analyzed here were related to their gene 

expression levels to identify eQTLs that correspond to polyTE insertion sites (TE-eQTLs) 

using the program Matrix eQTL[114] (Figure 9).  Only polyTE insertion sites with >5% 

TE-present allele frequency were used for this purpose (Figure 10A and B).  Matrix eQTL 

was run using the additive linear (least squares model) option with covariates for gender 
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and population.  This was done for all possible pairs of polyTE insertion sites and genes.  

Cis versus trans eQTLs were defined later as polyTE insertion sites that fall inside (cis) or 

outside (trans) 1Mb from gene boundaries.  P-values were calculated for all pairs of 

polyTE-gene expression comparisons, and FDR q-values were then calculated to correct 

for multiple statistical tests.  The genome-wide significant polyTE-gene expression eQTL 

association threshold was set at FDR q<0.05 (P<4.7e-7).   

A series of three additional control analyses were implemented in an effort to 

control for potentially confounding effects regulatory SNPs in particular, on the TE-eQTL 

associations that passed the genome-wide significance threshold (Figure 27).  [Control 1] 

TE-eQTL versus SNP-eQTL comparisons: For all of the genes found to be associated with 

TE-eQTLs, we searched the results of the GEUVADIS RNA-seq project [109] to identify 

the number of SNPs that were previously implicated as eQTLs for the same genes (Figure 

27A).  [Control 2] Conditional association analysis: For the genes that were found to be 

associated with both TE-eQTLs and SNP-eQTLs, we performed conditional association 

analysis whereby multiple regression of expression against genotype is done using both TE 

and SNP genotype information used as explanatory variables in the same multiple 

regression model (Figure 27B).  The conditional association analysis was performed using 

the same multiple regression approach as implemented in the GCTA program[115].  

[Control 3] Regional association scans: Regional eQTL association scans were done by 

defining linked 1Mb regions that are centered on individual polyTE loci, and then all SNP 

and polyTE genotypes from the linked regions were further evaluated for association with 

gene expression using the same approach used for TE-eQTLs (Figure 27A).  Results of the 
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regional eQTL association scans were visualized using the regional association plot R 

script from the Broad Institute of MIT and Harvard [116]. 

 

3.3.4 Functional enrichment analysis 

Genes that correspond to best TE-eQTLs were used for gene set enrichment 

analysis using the KEGG, BIOCARTA and REACTOME data sets from the Molecular 

Signatures Database webserver (version 5.1)[117] in order to identify functionally enriched 

gene categories.  A FDR q-value threshold of 0.05 was used for this purpose. 

 

3.3.5 Transcription factor (TF) target identification 

TF (PAX5) target genes were taken from annotations of experimentally 

characterized TF binding sites from the 2015.1 version of GENOME TRAXTM 

(www.biobase-international.com/genome-trax) from BIOBASE corporation[118].  TF-

target gene interactions were visualized using the program Circos (version 0.69)[119]. 

 

3.4 Results 

3.4.1 The landscape of human TE polymorphisms 

Computational analysis of next-generation (re)sequencing data can be used to 

identify the locations of polyTE insertions genome-wide[120].  Recent applications of this 
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approach to human genome sequences from the 1000 Genomes Project has resulted in a 

deep characterization of human genetic variation resulting from TE activity[65, 99].  We 

analyzed polyTE loci from the genome sequences of 445 individuals sampled from 5 

human populations (4 European and 1 African) characterized as part of this project.  There 

are a total of 10,106 polyTE insertions observed for these 445 individual genome 

sequences: 8,274 for Alu, 1,307 for L1 and 525 for SVA (Figure 10A).  Most of the polyTE 

insertions that we observe (9,799) can be considered to be cis to human genes as they either 

fall within gene boundaries or within 1Mb upstream or downstream of genes.  Furthermore, 

consistent with previous results, the majority of polyTE loci for these 5 populations show 

low frequencies of TE insertions (i.e., low minor allele frequencies), suggesting that TE 

insertions are highly disruptive and subject to strong purifying selection[65, 121].  

Nevertheless, there are 2,617 polyTE loci that show >5% TE insertion frequency for these 

populations (Figure 10B); these common polyTE loci were used for the subsequent eQTL 

analysis.  The vast majority of these are Alu polyTE loci with an order of magnitude fewer 

L1 and fewest SVA loci.   

Despite the similar shapes of the TE insertion allele frequency distributions, many 

of the loci are specific to individual populations or continental population groups.  Indeed, 

genetic distances between individuals calculated based on their polyTE genotypes clearly 

separates European from African populations (Figure 10C).  Population-specific polyTE 

loci with higher insertion frequencies can be considered to be more likely to exert broad 

regulatory effects across individuals and populations.  Accordingly, we focused our 

subsequent analysis on these (relatively) high frequency polyTE loci, and searched for 

possible population-specific regulatory effects of such loci. 
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3.4.2 TE expression quantitative trait loci (TE-eQTL) 

We analyzed genome-wide expression profiles for these same individuals in an 

effort to evaluate the relationship between TE genetic variation and human gene regulation.  

Genome-wide expression profiles were compared to compute a pairwise phenotypic 

(regulatory) distance matrix for the individuals analyzed here.  Unlike what is seen for the 

polyTE genetic distances, genome-wide expression profiles do not separate individual 

humans among different population groups (Figure 11A).  In other words, gene expression 

variation does not segregate globally in the same way that TE genetic variation does.  

Nevertheless, there are several hundred genes that do show statistically different levels of 

expression between the African and European populations analyzed here (Figure 11B). 

We evaluated the relationship between TE genetic variation and human gene 

regulation by searching for expression quantitative trait loci (eQTL) that correspond to 

polyTE insertion sites.  To do this, gene-specific expression levels were regressed against 

presence/absence genotypes – 0, 1 or 2 TE insertions – for individual polyTE loci (Figure 

9).  We used an additive linear model as described in the Methods section to search for 

statistically significant associations between the polyTE genotypes at any given locus and 

expression levels for individual genes.  This was done separately for African and European 

population groups as well as for all individuals considered together.  The total number of 

statistically significant (FDR q-value<0.05, P<4.7e-7) polyTE-gene expression 

associations (TE-eQTLs) for the different population cohorts, and different polyTE 

families, are shown in Figure 12A.  Alu polyTE loci provide the greatest number of TE-

eQTL by far, consistent with their substantially higher numbers in the genome.  A quantile-

quantile (Q-Q) plot for these data confirms a strong overall signal of statistically significant 



 51 

associations (Figure 12B), which are shown along individual chromosomes, and broken 

down by polyTE family, in the Manhattan plot in Figure 12C.  A complete list of the TE-

eQTL discovered here is provided as Table 3.  

 

Figure 12 Polymorphic transposable element expression quantitative trait loci (TE-
eQTL) detected  

(A) Numbers of statistically significant TE-eQTL are shown for different population group 
cohorts and different polyTE families.  The numbers of individuals (n) are shown for each 
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population cohort at the top of the table, and the total number of genes involved in TE-
eQTL associations are shown at the bottom of the table.   (B) Quantile-quantile (Q-Q) plot 
showing observed versus expected distributions of polyTE loci-gene expression association 
P-values (negative log transformed).  (C) Manhattan plot showing the genomic distribution 
of polyTE-gene expression association values.  The dashed yellow line indicates the FDR 
q-value cutoff of 0.05, which corresponds to a P-value of 4.7e-7.  P-values are color coded 
according to polyTE families as shown in the key. 

 

The set of genes that are associated with TE-eQTL is enriched for a number of 

immune-related functions including IgA production, antigen processing/presentation and 

several signalling pathways that lead to immune cell differentiation and activation (Figure 

13 and Table 4).  This result is consistent with the fact that the expression data were taken 

from lymphoblastoid cell lines (i.e., transformed B-lymphocytes) and points to cell type-

specific functional relevance of polyTE mediated gene regulation. 

We performed a series of additional analyses in an effort to control for the potential 

effects of other genomic variations, regulatory SNPs in particular, on the TE-eQTL 

associations uncovered by our initial screen (see Materials and Methods; Figure 27).  First, 

we assessed the extent of overlap between the genes that we observe to be associated with 

TE-eQTL here and genes previously found to be associated with SNPs using the same 

sequence and expression data.  The overlap between the TE-eQTL genes identified here 

and the previously identified SNP-eQTL genes is extremely low (n=71 or ~1%), consistent 

with the fact that we are primarily identifying novel regulatory associations (Figure 28).  

Second, for those genes that were found to be associated with both TE-eQTL and SNP-

eQTL, we performed conditional association analyses that combine both TE and SNP 

genotypes.  The majority of the TE-eQTL from the initial screen remain significant after 

conditioning on the SNP genotypes (Table 5).  Third, regional association scans were used 
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to evaluate the regulatory effects of all genomic variants linked to the TE-eQTL discovered 

here (Table 6).  Examples of this analysis can be seen in the following section on 

population-specific TE-eQTLs.   

 

Figure 13 Functional enrichment of polyTE loci associated genes   

Enriched, immune-related gene sets are shown along with the FDR q-values indicating the 
significance of the enrichments. 

 

3.4.3 Population-specific TE-eQTL 

A number of factors suggested the possibility that TE-eQTL may exert population-

specific effects on human gene regulation.  The polyTE landscapes of human populations 
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are very distinct, with polyTE genetic variation clearly delineating African from European 

populations.  While gene expression does not show the same overall pattern of population 

divergence, there are hundreds of genes that do show population-specific expression.  

Finally, the numbers of TE-eQTL vary substantially for the African, European and merged 

population cohorts. 

To evaluate the population-specific effects of TE-eQTL, we searched for gene-by-

population interactions whereby specific polyTE loci are only associated with gene 

expression in the European or African populations (but not both).  There are a total of 589 

TE-eQTL that show such gene-by-population interactions: 407 for African and 182 for 

Europe (Figure 29).  These apparent population-specific effects of TE-eQTL can be 

attributed to cases where the polyTE genotypes are differentially distributed across 

population groups (Figure 14A and B) or where polyTE genotypes are shared across 

populations but their effects on gene expression are limited to one population group (Figure 

14C). 

The polyTE locus Alu-5788 is strongly associated with REL expression levels when 

both population groups are considered together (Figure 14A).  However, polyTE insertions 

at this locus are almost entirely African-specific and are associated with higher expression 

of the gene.  Thus, consideration of the European population group alone would not turn 

up any association between this polyTE locus and the REL gene.  REL encodes the c-Rel 

protein, which is part of the NF-κB family of transcription factors[122].  REL is considered 

to be a proto-oncogene that influences the survival and proliferation of B-lymphocytes.  

The gene’s function has clinical significance with somatic mutations that are associated 
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with B-cell lymphomas[123] and SNPs that are associated with ulcerative colitis and 

rheumatoid arthritis[124, 125]. 

A similar kind of a population-specific TE-eQTL is seen for the Alu-10841 locus, 

which is associated with PSD4 expression levels (Figure 14B).  In this case, the presence 

of Alu insertions at the locus is associated with a reduction in gene expression levels.  Alu 

insertions at this locus are far more common in European populations, and African 

individuals that lack the insertions tend to show higher expression levels for the gene.  

PSD4 encodes a guanine nucleotide exchange factor that works with the ARF6, 

ARL14/ARF7 protein complex to control the movement of MHC class II containing 

vesicles along the actin cytoskeleton. 

Gene-by-population interactions can also be seen for polyTE loci that are found in 

both the African and European population groups.  While insertions at the Alu-1870 locus 

are commonly found in both population groups, polyTE insertion genotypes are only 

associated with decreased PRDM2 expression in the African population (Figure 14C).  The 

population-specific effects of Alu insertions at this locus could be attributable to the distinct 

genetic background of each population, via interactions with population-enriched variants 

for instance.  On the other hand, insertions at the Alu-8559 locus are similarly found in 

both African and European populations, but both populations show polyTE insertion 

associations with decreased expression levels of the HSD17B12 gene (Figure 14D).  

Interestingly, this particular example was detected with the FDR q-value cutoff employed 

here (0.05) for the both the European and merged population cohorts but not for the African 

population alone (P=8.7e-5 and FDR q-value=3.9e-1).  This may be attributable to the 

relatively low number of human samples analyzed for the single African population and 
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suggests the possibility that some bona fide African-specific associations may have been 

overlooked in this study.   

 

Figure 14 Examples of population-specific TE-eQTL detected 
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Population-specific TE-eQTL where polyTE insertions are found primarily in only one 
population group are shown for the (A) REL and (B) PSD4 genes.  Box-plots show the 
distributions of individual gene expression levels for each of the three possible polyTE 
insertion genotypes.  Regional association plots show all associations with the gene 
expression centered on the polyTE locus.  Association P-values are shown as indicated on 
the left y-axis along with the local recombination rate shown on the right y-axis.  (C) A 
population-specific TE-eQTL is shown for PRDM2 gene where the associated polyTE 
locus has insertions found in both population groups but an association with gene 
expression is only seen in the African population.  (D) A counter example of a polyTE locus 
with insertions shared among both population groups and similar associations with 
HSD17B12 are seen for both groups. 

 

3.4.4 Transcriptional network TE-eQTLs 

We found a number of cases where polyTE loci corresponded to TE-eQTL for more 

than one human gene (Figure 12A and Table 3).  This suggested the possibility that 

individual polyTE loci may participate in coordinated gene regulatory networks.  One 

possible mechanism by which this may occur is through indirect polyTE-expression 

associations that are mediated by transcription factors (TFs), which regulate the expression 

of multiple genes.  In other words, if a polyTE loci affects the expression of a TF, it may 

also appear to affect the regulation of one or more gene targets of that TF (Figure 15A).  

The Alu-7481 locus exemplifies this phenomenon.  Alu insertions at this locus are 

associated with increased expression of PAX5 (Figure 15B), which encodes a transcription 

factor crucial to the specific identity and function on B cells.  In particular, PAX5 

expression is critical for differentiation of lymphoid progenitor cells into B cells (Figure 

15C).  It achieves this by simultaneously activating B lineage-specific genes and repressing 

genes active in distinct lineages[126].  There are 274 known Pax5 target genes that show 

the identical Alu-7481 insertion genotype expression pattern as seen for their cognate TF 

(Figure 15D and Table 7).  While the majority of these do not reach the FDR q-value cutoff 
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used here, there are three immune related target genes – PIK3AP1, REL and ZSCAN23 – 

that all remain statistically significant after controlling for multiple tests (Figure 15E).  

These data suggest that polyTE insertions are also involved in establishing cell type-

specific regulatory networks with phenotypically important consequences. 

 

Figure 15 TE-eQTL and a PAX5 transcriptional regulatory network   

(A) Scheme for how a single polyTE loci can provide trans eQTL for multiple genes by 
modifying the expression of a transcription factor encoding gene (PAX5) and its 
downstream target genes.  (B) The Alu-7481 PAX5 TE-eQTL.  PAX5 expression levels are 
shown for individuals with different Alu-7481 insertion genotypes (0, 1 or 2 insertions); 
the association P-value is shown.  (C) The role of PAX5 in B-cell development.  (D) 
Average expression level of 274 PAX5 target genes for individuals with different Alu-7481 
insertion genotypes.  Normalized (z-score transformed) gene expression levels are color-
coded as shown in the key.  Target genes that correspond to the most significant Alu-7481 
TE-eQTL (FDR q-value<0.05, P<4.7e-7) are indicated.  (E) Circos plot showing the 
chromosomal locations of the Alu-7481 TE-eQTL, PAX5 and the downstream target genes.  
TE-gene associations are shown in red, and PAX5-target gene interactions are shown in 
blue.  The association P-values are shown on the inner circle as indicated in the key. 
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3.5 Discussion 

Numerous previous studies have uncovered gene regulatory contributions of human 

TE sequences[17, 19-26, 28-32, 104-106].  However, these studies have dealt with TE 

sequences derived from relatively ancient insertion events, which now are fixed in human 

populations.  In other words, these TE-derived sequences exist at the same genomic 

locations in all human genomes, and thus may not contribute substantially to regulatory 

variation between individuals.  Here, we present a systematic analysis of the regulatory 

contributions of polyTE loci that were generated by recent transpositional activity and 

thereby differ between individuals.  The TE-eQTL that we discovered underscore the 

extent to which TE-generated human genetic variation can affect regulatory differences 

within and between populations.   

Our results indicate that polyTE loci provide greater numbers of trans compared to 

cis eQTL (Figure 12A).  This may be considered somewhat surprising given the fact that 

most human eQTL studies focus on cis eQTL[109, 127].  However, studies on eQTL are 

often limited to cis associations owing the large number of possible SNP-by-gene 

comparisons that whole genome (i.e., both cis and trans) analyses entail.  Thus, it is not 

entirely clear whether cis eQTL are actually expected to be more common that trans eQTL.  

The relatively low number of polyTE loci studied here (~16,000), combined with the 

introduction of a more computationally efficient eQTL detection algorithm[114], allowed 

us to evaluate all possible cis and trans TE-eQTL.  There are several possible mechanisms 

by which polyTE loci could serve as trans eQTL.  For example, they may exert trans eQTL 

effects indirectly by regulating transcription factors, which in turn regulate numerous target 

genes, as we have shown for PAX5 (Figure 15).  In addition, TEs have been shown to 
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influence three-dimensional genome architecture, via the formation of chromosome loops 

or association with the nuclear scaffold/matrix for instance[20].  It is tempting to speculate 

that TEs can exert trans eQTL effects via similar mechanisms that bring distal, homologous 

TE sequences into close proximity. 

It is worth noting that human TE activity has often been associated with disease[34, 

35].  Indeed, transpositional activity of human TEs was confirmed via the discovery of de 

novo insertions with obvious effects on health[6].  However, the samples analyzed here 

correspond to (presumably) healthy individuals from the 1000 Genomes Project and are 

thereby taken to represent the normal scope of human genetic variation.  The fact that many 

of the polyTE loci analyzed here have accumulated to relatively high insertion allele 

frequencies (Figure 10) is consistent with the notion that they are not deleterious.  Thus, 

the phenotypic impact of human TE activity is not limited to deleterious effects; it also 

includes the generation of regulatory differences that fall within the scope of naturally 

occuring human variation.  These kinds of functionally relevant but subtle TE-genetic 

variations, which necessarily avoid elimination by purifying selection, may provide an 

important substrate for ongoing human evolution.  
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CHAPTER 4. HUMAN RETROTRANSPOSON INSERTION 

POLYMORPHISMS ARE ASSOCIATED WITH HEALTH AND 

DISEASE VIA GENE REGULATORY PHENOTYPES  

4.1 Abstract 

 The human genome hosts several active families of transposable elements (TEs), 

including the Alu, LINE-1, and SVA retrotransposons that are mobilized via reverse 

transcription of RNA intermediates.  We evaluated how insertion polymorphisms 

generated by human retrotransposon activity may be related to common health and disease 

phenotypes that have been previously interrogated through genome-wide association 

studies (GWAS).  To address this question, we performed a genome-wide screen for 

retrotransposon polymorphism disease associations that are linked to TE induced gene 

regulatory changes.  Our screen first identified polymorphic retrotransposon insertions 

found in linkage disequilibrium (LD) with single nucleotide polymorphisms (SNPs) that 

were previously implicated in common complex diseases by GWAS.  We further narrowed 

this set of candidate disease associated retrotransposon polymorphisms by identifying 

insertions that are located within tissue-specific enhancer elements.  We then performed 

expression quantitative trait loci (eQTL) analysis on the remaining set of candidates in 

order to identify polymorphic retrotransposon insertions that are linked to gene expression 

changes in B-cells of the human immune system.  This progressive and stringent screen 

yielded a list of six retrotransposon insertions as the strongest candidates for TE 

polymorphisms that lead to disease via enhancer-mediated changes in gene regulation.  For 

example, we found an SVA insertion within a cell-type specific enhancer located in the 

second intron of the B4GALT1 gene.  B4GALT1 encodes a glycosyltransferase that 

functions in the glycosylation of the Immunoglobulin G (IgG) antibody in such a way as 
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to convert its activity from pro- to anti-inflammatory.  The disruption of the B4GALT1 

enhancer by the SVA insertion is associated with down-regulation of the gene in B-cells, 

which would serve to keep the IgG molecule in a pro-inflammatory state.  Consistent with 

this idea, the B4GALT1 enhancer SVA insertion is linked to a genomic region implicated 

by GWAS in both inflammatory conditions and autoimmune diseases such as systemic 

lupus erythematosus and Crohn’s disease.  We explore this example and the other cases 

uncovered by our genome-wide screen in an effort to illuminate how retrotransposon 

insertion polymorphisms can impact human health and disease by causing changes in gene 

expression.     

 

4.2 Introduction 

 At least one half of the human genome sequence is derived from the replication and 

insertion of retrotransposons – RNA agents that transpose among chromosomal locations 

via the reverse transcription of RNA intermediates [1, 2].  The vast majority of 

retrotransposon-related sequences in the human genome are derived from ancient insertion 

events and are no longer capable of transposition.  Nevertheless, there are several families 

of human retrotransposons that remain active.  The most abundant active families of human 

retrotransposons are the Alu [3, 4], LINE-1 (L1) [5, 6], and SVA [7, 8] retrotransposons; 

recent evidence indicates that a smaller number of HERV-K endogenous retroviruses also 

remain capable of transposition [54]. 

 Sequences from active retrotransposon families generate insertional 

polymorphisms within and between human populations by means of germline transposition 

events.  In this way, ongoing retrotranspositional activity of these RNA agents serves as an 

important source of human genetic variation.  Retrotransposons are further distinguished 

by the fact that they are known to impact the regulation of human genes in a number of 
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different ways [17, 18, 128].  Nevertheless, the joint phenotypic implications of 

retrotransposon generated human genetic variation, coupled with their capacity for genome 

regulation, have yet to be fully explored.  We previously studied the implications of 

somatic retrotransposition for the etiology of cancer vis a vis retrotransposon induced 

regulatory changes in tumor suppressor genes [129].  For the current study, we were 

curious to understand how insertion polymorphisms generated by human retrotransposon 

activity may be related to commonly expressed health and disease phenotypes.  

 In one sense, a link between retrotransposon activity and disease is already well 

established.  Active human retrotransposons were originally discovered due to the 

deleterious effects of element insertions [6].  There are 124 genetic diseases that have been 

demonstrated to be caused by retrotransposon insertions, including cystic fibrosis (Alu), 

hemophilia A (L1) and X-linked dystonia-parkinsonism (SVA) [34, 67].  However, these 

cases represent so-called Mendelian diseases caused by very deleterious mutations that are 

expressed with high penetrance.  Disease causing mutations of this kind are extremely rare 

and do not segregate among populations as common genetic polymorphisms.  Complex 

multi-factorial diseases, on the other hand, are associated with more common genetic 

variants that exert their effects in a probabilistic as opposed to a deterministic manner.  The 

contribution of common retrotransposon polymorphisms to complex health and disease 

related phenotypes has yet to be systematically explored.   

 Given the known connection between retrotransposon activity and genetic disease, 

we hypothesized that retrotransposon insertion polymorphisms may also contribute to 

inter-individual phenotypic differences that are associated with common diseases that have 

complex, multi-factorial genetic etiology.  Since we previously showed that 

retrotransposon insertions contribute to inter-individual and population-specific 

differences in human gene regulation [130], we also hypothesized that the impact of 
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retrotransposon insertion polymorphisms on human health could be mediated by gene 

regulatory effects.  

Previously, it has only been possible to investigate the impact of retrotransposon 

polymorphisms on disease phenotypes for a limited number of individuals owing to the 

number of genomes that were available [131].  For the current study, we leveraged the 

accumulation of whole genome sequence and expression datasets, along with data on single 

nucleotide polymorphism (SNP) disease-associations, in order to perform a population 

level genome-wide screen for retrotransposon polymorphisms that are linked to complex 

health- and disease-related phenotypes. 

 

4.3 Materials and Methods 

4.3.1 Polymorphic transposable element (polyTE) and SNP genotypes 

 Human polymorphic TE (polyTE) insertion presence/absence genotypes for whole 

genome sequences of 445 individuals from five human populations were accessed from the 

phase 3 variant release of the 1000 Genomes Project (1KGP) [99].  Whole genome SNP 

genotypes were taken for the same set of individuals.  The phase 3 variant release 

corresponds to the human genome reference sequence build GRCh37/hg19, and the 5 

human populations are YRI: Yoruba in Ibadan, Nigeria from Africa, CEU: Utah Residents 

(CEPH) with Northern and Western European Ancestry, FIN: Finnish in Finland, GBR: 

British in England and Scotland and TSI: Toscani in Italia from Europe.  We chose these 

genome sequence datasets because they have matching RNA-seq data for the same 

individuals (see eQTL analysis section).  The YRI population was taken to represent the 

African continental population group (AFR), and the 4 populations from Europe (CEU, 

FIN, GBR and TSI) were grouped together as the European (EUR) continental population 
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group for downstream analysis (Figure 16).  PolyTE insertion genotypes were 

characterized by the 1KGP Structural Variation Group using the program MELT as 

previously described [65].  Previously, we performed an independent validation the 

performance of this program for human polyTE insertion variant calling from whole 

genome sequences [64].  The polyTE genotype data were downloaded via the 1000 

Genomes Project ftp hosted by the NCBI: http://ftp-

trace.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/.  For a given polyTE insertion 

site in the genome, there are three possible presence/absence genotype values for an 

individual genome: 0-no polyTE insertion (homozygote absent), 1-a single polyTE 

insertion (heterozygote), and 2-two polyTE insertions (homozygote present).  PolyTE 

genotypes were used for eQTL analysis as described in section 2.5.  For each of the two 

continental population groups, only polyTE insertions and SNPs with greater than 5% 

minor allele frequencies (MAF) were used for the downstream analysis to ensure both the 

confidence of genotype calls and the reliability of the association analyses.  Minor alleles 

for TEs are assumed to be the insertion present allele, since the ancestral state for any 

polyTE insertion site corresponds to the absence of an insertion [121].  

http://ftp-trace.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/
http://ftp-trace.ncbi.nlm.nih.gov/1000genomes/ftp/release/20130502/
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Figure 16 Integrative data analysis used to screen for polyTE disease-associations. 
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Matched DNA-seq and RNA-seq samples were analyzed for 445 individuals, 87 Africans 
(AFR - blue) and 358 Europeans (EUR - orange).  Genome-wide genotypes were 
characterized for polyTE insertions (presence/absence) and SNPs, and the linkage 
disequilibrium (LD) structure for polyTE insertions and SNP alleles was characterized for 
all samples.  The NHGRI-EBI GWAS database was mined to extract SNP disease-
associations and related information on diseases, phenotypes, genes and SNP genomic 
locations.  A series of filters was applied to screen for a set of high-confidence polyTE 
disease-associations.  PolyTEs were evaluated for: (1) minor allele frequency (MAF), (2) 
linkage to disease-associated SNPS (i.e., GWAS hits), (3) overlap with tissue-specific 
enhancers, (4) associations with gene expression, and (5) functional relevance for blood- 
and immune system-related diseases. 

 

4.3.2 PolyTE-SNP linkage analysis 

 The GCTA program (version 1.25.0) was used to estimate the linkage 

disequilibrium (LD) structure for polyTEs and SNPs in genomic regions centered at each 

polyTE insertion site.  For each polyTE insertion site, pairwise correlations (r) between the 

target polyTE insertion alleles and all SNP alleles in the same LD block were computed 

across all individual genome samples.  A correlation (r) significance P-value threshold of 

0.05 was used to identify all SNPs considered to be in LD with each polyTE insertion.  

Pairwise distances between polyTE insertion sites and linked SNPs were calculated as the 

number of base pairs between each polyTE insertion site and all linked SNP locations. 

 

4.3.3 Genome wide association studies (GWAS) for disease 

 Associations between human genetic variants (SNPs) and health- or disease-related 

phenotypes were explored using the NHGRI-EBI GWAS database [132].  GWAS database 

SNPs with genome-wide association values of P<10-5 were taken for analysis, and the 

genomic location, specific health- or disease-related phenotype, identity of the risk allele 

and original reporting publications were recorded for each associated SNP.  The GWAS 
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SNPs were screened for LD with polyTE insertions as described in section 4.3.2 to yield a 

set of candidate disease-linked polyTE insertions for further analysis.  

 

4.3.4 Evaluating polyTE regulatory potential  

 The regulatory potential for polyTE insertions was evaluated by considering their 

co-location with known enhancer sequences.  Active enhancers for 127 cell-types and 

tissues were characterized by the Roadmap Epigenomics Project using the ChromHMM 

program [133, 134].  ChromHMM integrates multiple genome-wide chromatin datasets 

(i.e., epigenomes), such as ChIP-seq of various histone modifications, using a multivariate 

Hidden Markov Model to identify the locations of tissue-specific enhancers based on their 

characteristic chromatin states.  The data files with genomic locations for enhancers across 

all 127 epigenomes were accessed through the project website at 

http://mitra.stanford.edu/kundaje/leepc12/web_portal/chr_state_learning.html.  The 

genomic locations of polyTE insertions that are in LD with disease-associated SNPs were 

compared with the genomic locations for enhancers from the 127 epigenomes, and polyTE 

insertions found to be located within active enhancer elements were considered to have 

regulatory potential.  A subset of 27 epigenomes characterized for cells and tissues related 

to blood and the immune system – such as T cells, B cells and hematopoietic stem cells – 

were selected for downstream eQTL analysis (see section 4.3.5).    

 The overall relative regulatory potential of polyTE insertions in a given epigenome 

𝑖𝑖 is quantified as: 

𝑟𝑟𝑥𝑥 =
𝑡𝑡𝑥𝑥
𝑠𝑠𝑥𝑥

 

http://mitra.stanford.edu/kundaje/leepc12/web_portal/chr_state_learning.html
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where 𝑡𝑡𝑥𝑥 is the proportion of polyTEs that are co-located with an enhancer element in a 

given epigenome 𝑖𝑖, and 𝑠𝑠𝑥𝑥 is the proportion of SNPs from polyTE LD blocks that overlap 

with an enhancer element in the same epigenome 𝑖𝑖. 

 Physical associations between TE-enhancer insertions and nearby gene promoter 

regions were evaluated with chromatin-chromatin interaction map data, based on several 

different data sources, including 4C, 5C, ChIA-PET and Hi-C, using the Chromatin 

Chromatin Space Interaction (CCSI) database at http://songyanglab.sysu.edu.cn/ccsi/ 

[135].   

 

4.3.5 Expression quantitative trait locus (eQTL) analysis 

 Associations between polyTE insertion genotypes and tissue-specific gene 

expression levels were characterized using eQTL analysis (Figure 16).  PolyTE insertion 

presence/absence genotypes were characterized as described in section 2.1.  RNA-seq gene 

expression data for the same 445 individual genome samples used for polyTE genotype 

characterization were taken from the GEUVADIS RNA sequencing project.  Genome-wide 

expression levels were measured for the same lymphoblastoid cell lines, i.e. Epstein–Barr 

virus (EBV) transformed B-lymphocytes (B cells), as used for DNA-seq analysis in the 

1KGP.  RNA isolation, library preparation, sequencing and read-to-genome mapping were 

performed as previously described [109].  As with the polyTE genotype data, the RNA-seq 

reads were mapped to the human genome build GRCh37/hg19.  The process of gene 

expression normalization and quantification based on these RNA-seq data has been 

extensively validated as part of the GEUVEDIS project [112].  The GEUVADIS RNA-seq 

data were used to compute gene expression levels for ENSEMBL gene models as 

previously described [110].  Normalization of gene expression levels was done using a 

combination of a modified reads per kilobase per million mapped reads (RPKM) approach 

http://songyanglab.sysu.edu.cn/ccsi/
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followed by the probabilistic estimation of expression residuals (PEER) method as 

previously described [111].  This procedure has been shown to eliminate batch effects 

among different RNA-seq samples and to reduce the overall variance across samples, 

thereby ensuring the most accurate and comparable gene expression level inferences 

among samples.  The normalized gene expression levels were accessed from the 

GUEVADIS project ftp server hosted at the EBI: 

ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-

1/analysis_results/. 

 PolyTE insertions that are (1) linked to at least one disease-associated SNP, and (2) 

located within a blood- or immune system-related enhancer were taken as a candidate set 

for eQTL analysis with the lymphoblastoid cell line RNA-seq data.  PolyTE insertion 

presence/absence genotypes were regressed against gene expression levels to identify 

eQTLs (TE-eQTLs) using the program Matrix eQTL [114].  Matrix eQTL was run using 

the additive linear (least squares model) option with gender and population used as 

covariates.  This was done for all possible pairs of polyTE insertion sites from the candidate 

set and all genes.  Cis versus trans TE-eQTLs were defined later as polyTE insertion sites 

that fall inside (cis) or outside (trans) 1 megabase from gene boundaries.  P-values were 

calculated for all TE-eQTL associations, and FDR q-values were then calculated to correct 

for multiple statistical tests.  The genome-wide significant TE-eQTL association threshold 

was set at FDR q<0.05, corresponding to P=4.7 x 10-7 (AFR) and P=2.6 x 10-7 (EUR).   

 

4.3.6 Interrogation of disease-associated gene function and association consistency 

 The potential functional impacts of disease-associated TE-eQTL were evaluated 

via comparison of annotated gene functions and reported GWAS phenotypes for polyTE-

ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-1/analysis_results/
ftp://ftp.ebi.ac.uk/pub/databases/microarray/data/experiment/GEUV/E-GEUV-1/analysis_results/
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linked SNPs.  Gene functions were taken from the NCBI Entrez gene summaries, and 

GWAS phenotypes were taken from the original literature where the associations were 

reported.  Genes that were found to be functionally related to GWAS reported health- or 

disease-related phenotypes were further checked for the direction of association.  If the 

GWAS SNP-gene pair shows the same direction of association as the polyTE-gene pair, 

then the pair was included in the final set of significant gene-polyTEs association pairs 

(Table 2).  For each gene in the final set, its tissue-specific expression levels across 18 

tissues, including 4 blood- and immune-related tissues, were taken from the Illumina 

BodyMap and GTEx projects [110, 136, 137]. 

 

4.4 Results 

 We used a genome-scale data analysis approach to explore the potential impact of 

human genetic variation generated by the activity of TEs on health and disease (Figure 16).  

This approach entailed an integrative analysis of (1) TE insertion polymorphisms, (2) 

single nucleotide polymorphisms (SNPs), (3) SNP-disease associations, (4) tissue-specific 

enhancers, (5) expression quantitative trait loci (eQTL), and (6) gene function/expression 

profiles.  The rationale behind this approach was to employ a series of successive genome-

wide filters, which would converge on a set of high-confidence TE insertion 

polymorphisms that are most likely to impact health- or disease-related phenotypes.  Our 

analysis started with 5,845 polyTE insertions, with minor allele frequencies (MAF)>0.05 

for two continental population groups (European and African), and converged on a final 

set of seven high-confidence TE disease-association candidates (Figure 17).  The final set 

of seven health/disease-implicated TE insertion polymorphisms that we found are 

distinguished by their linkage to disease-associated SNPs as well as their regulatory and 
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functional properties.  We describe the results and implications for each step in our TE 

disease-association screen in the sections below.   

 

Figure 17 Results of the genome-wide screen for polyTE disease-associations 

As illustrated in Figure 16, a series of filters was applied to screen for a final set of high-
confidence polyTE disease-associations.  The number of polyTE insertions that remain 
after the application of each successive filter is shown for the African (AFR – blue) and 
European (EUR – orange) population groups.   

 

4.4.1 Linkage disequilibrium for polyTEs and disease-associated SNPs 

 The genomic locations of polyTE insertions were characterized for 445 individuals 

from one African (AFR) and four European (EUR) populations as described in section 2.1 

of the Materials and Methods. This was done for the most common families of active 

human TEs: Alu, L1 and SVA.  For each polyTE insertion location, individual genotypes 

were characterized as homozygous absent (0), heterozygous (1), or homozygous present 
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(2). The distributions of polyTE insertion genotypes among individuals from each 

population were used to screen for polyTEs that are found at relatively high MAF>0.05.  

The linkage disequilibrium (LD) structure of the resulting common polyTE insertions, with 

adjacent common SNPs (also at MAF>0.05), was then defined using correlation analysis 

across individual genome samples (Materials and Methods section 4.3.2).  In addition, the 

genomic locations of common polyTE insertion variants and their linked SNPs were 

compared to the locations of disease-associated SNPs reported in the NHGRI-EBI GWAS 

database (Materials and Methods section 4.3.3).  Linkage correlation coefficients between 

all polyTE insertions analysed here and GWAS SNPs are shown in Table 8 and Table 9. 

 Distributions of LD correlations between polyTEs and adjacent SNPs were 

compared separately for non-disease-associated versus disease-associated SNPs.  For all 

three families of active human TEs, in both the AFR and EUR population groups, polyTEs 

are found in significantly higher LD with disease-associated SNPs compared to non-

disease-associated SNPs (Figure 18A).  In addition, polyTE variants are located closer to 

disease-associated SNPs than non-disease-associated SNPs for the EUR population group 

(Figure 18B).  A similar enrichment was not seen for the AFR population group, which 

may be attributed to the lower number of samples available for analysis for this group 

(AFR=87 vs. EUR=358).  Indeed, when a larger number of AFR samples, which do not 

have matched RNA-seq data, were used for the same linkage analysis, the results were 

qualitatively identical to those seen for the EUR samples analysed here.  Taken together, 

these results indicate that polyTEs are more likely to be tightly linked to disease-associated 

SNPs compared to adjacent linked SNPs from the same LD blocks, suggesting a possible 

role in disease etiology for some TE variants.  This is notable in light of the facts that (1) 

the TE genotypes were not considered in the initial association studies, and (2) TE 

insertions entail substantially larger-scale genetic variants than SNPs.  Thus, polyTEs 
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found on the same haplotypes as disease-associated SNPs may be expected to have an even 

greater impact on health- and disease-outcomes in some cases.  

 

Figure 18 Linkage between polyTE insertions and SNP disease-associations from 
GWAS.   

(A) Distributions of the allele correlation coefficients (r) are shown for (1) polyTE 
insertions and non-GWAS SNPs, and (2) polyTE insertions and GWAS SNPs.  Higher 
correlation coefficients indicate tighter linkage.  The significance of the differences for the 
non-GWAS SNP versus the GWAS SNP correlation coefficient distributions are indicated 
(Kolmogorov-Smirnov test; *** = P<2.4 x 10-5).  (B) Density distributions of the distance 
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between polyTE insertions and SNPs to the nearest GWAS disease-associated SNP.  
Correlation coefficient (A) and density (B) distributions are shown separately for the Alu 
(red), L1 (blue) and SVA (green) TE families in the African (AFR – blue) and European 
(EUR – orange) population groups. 

 

4.4.2 Co-location of disease-linked polyTEs with tissue-specific enhancers 

 Given the fact that TEs are known to participate in human gene regulation via a 

wide variety of mechanisms [17, 18, 128], we hypothesized that polyTEs may impact 

disease by virtue of gene regulatory effects.  The regulatory potential of polyTEs linked to 

disease-associated SNPs was first evaluated by searching for insertions that are co-located 

with tissue-specific enhancers.  The locations of enhancers were characterized for 127 cell- 

and tissue-types based on their chromatin signatures as described in section 2.4 of the 

Materials and Methods.  An example of an enhancer co-located with a disease-linked 

polyTE is shown for an Alu element that is inserted 5’ to the Immunoglobulin Heavy 

Variable 2-26 (IGHV2-26) encoding gene (Figure 19A).  We found a total 607 disease-

linked polyTEs co-located with enhancers in the AFR population group and 437 in EUR 

group; 391 (AFR) and 336 (EUR) of those enhancers correspond to blood- or immune-

related tissues (Figure 17).  Details on the co-localization of polyTE insertions and the 

enhancers characterized for each epigenome are shown in online Supplementary Data 

Table S2. 

 We estimated the overall regulatory potential for disease-linked polyTEs in all cell- 

and tissue-types by computing the relative ratio of enhancer co-located insertions as 

described in section 2.4 of the Materials and Methods.  The results of this analysis are 

considered separately for the blood- and immune-related tissues (Figure 19B) and all other 

tissues from which enhancers were characterized.  Enhancer co-located disease-linked 

polyTEs from blood/immune cell-types show higher overall regulatory potential than ones 
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that are co-located with enhancers characterized for the other tissue-types (Figure 12C and 

4D).  These results suggest that the set of disease-linked polyTEs studied here may have a 

disproportionate impact on immune-related diseases, and we focused our subsequent 

efforts on this subset of health conditions.  
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Figure 19 Regulatory potential of disease-linked polyTE insertions. 

PolyTE insertions linked to disease-associated SNPs were evaluated for their co-location 
with tissue-specific enhancers.  (A) UCSC Genome Browser screen capture showing an 
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example of a polyTE insertion – Alu-10537 – that overlaps with a number of tissue specific 
enhancers.  The genomic location of the Alu insertion on chromosome 14, downstream of 
the IGHV2-26 gene (blue gene model), is indicated with a red arrow.  The genomic 
locations of co-located enhancers, characterized based on chromatin signatures from a 
variety of tissue-specific epigenomes, are indicated with yellow bars.  (B) Heatmap 
showing the relative regulatory potential (Materials and Methods section 2.4) of polyTE 
insertions for a variety of tissue-specific epigenomes.  Blood- and immune-related tissues 
are shown separately from examples of the other tissue types analyzed here.  (C) 
Developmental lineage of immune-related cells for which enhancer genomic locations 
were characterized.  (D) The mean relative regulatory potential for disease-linked polyTE 
insertions is shown for blood- and immune-related tissues compared to all other tissue-
types analyzed here.  Values for the African (AFR – blue) and European (EUR – orange) 
population groups are shown separately. 

 

4.4.3 Expression associations for disease-linked and enhancer co-located polyTEs 

 We further evaluated the regulatory potential of the polyTEs that were found to be 

both disease-linked and co-located with blood- and immune-related enhancers using an 

expression quantitative trait loci (eQTL) approach (see Materials and Methods section 2.5).  

Genotypes for this subset of polyTEs from the 445 genome samples analyzed here were 

regressed against gene expression levels characterized from lymphoblastoid cell lines for 

the same individuals.  Quantile-quantile (Q-Q) plots comparing the observed versus 

expected P-values for the e-QTL analysis in the AFR and EUR population groups are 

shown in Figure 20A, revealing a number of statistically significant associations that are 

likely to be true-positives.  There are 83 (AFR) and 42 (EUR) genome-wide significant 

TE-eQTL (Table 10 and Table 11), and they are enriched in genomic regions that encode 

immune-related genes (Figure 20B).  We narrowed this list further by selecting the 

strongest TE-eQTL association for each individual polyTE, resulting in a final list of 37 

(AFR) and 24 (EUR) immune-related TE-eQTL (Figure 17).   
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Figure 20 Expression quantitative trait (eQTL) analysis for disease-linked polyTEs. 

eQTL analysis was performed by regressing lymphoblastoid gene expression levels against 
polyTE insertion genotypes for the for the African (AFR – blue) and European (EUR – 
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orange) individuals analyzed here.  (A) Quantile-quantile (Q-Q) plots relating the 
observed (y-axis) to the expected (x-axis) TE-eQTL log transformed P-values.  (B) 
Manhattan plots showing the genomic distributions of TE-eQTL log transformed P-values.  
The dashed line corresponds to a false discovery rate (FDR) threshold of q<0.05, 
corresponding to P=4.7 x 10-7 (AFR) and P=2.6 x 10-7 (EUR). 

 

 The results of the TE-eQTL analysis further underscore the regulatory potential of 

the disease-linked polyTEs characterized here and also allowed us to narrow down the list 

of candidate insertions.  Starting with the list of TE-eQTL, we searched for ‘consistent’ 

examples where the disease-linked polyTE is associated with the expression of a gene that 

is functionally related to the annotated disease phenotype.  This allowed us to converge on 

a final set of seven high-confidence disease-associated TE insertion polymorphisms 

(Figure 17 and Table 2).  Four of these disease-associated polyTEs are illustrated in Figure 

21, and we provide additional information on two examples in the following section (3.4).  

The four examples shown in Figure 21 all correspond to polyTEs that are linked to disease-

associated SNPs and co-located with enhancers characterized from blood- or immune 

system-related tissues; in addition, the genes that these polyTE insertions regulate are all 

known to function in the immune system.   

Table 2 Summary of TE-disease associations 
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 Six of the seven disease-associated polyTE insertions are considered to be 

population-specific, based on significant eQTL results in only one population, whereas a 

single case is shared between both the AFR and EUR population groups (Figure 21C).  

However, two of the six cases considered to be population-specific using the eQTL 

criterion do show consistent trends across populations but failed to reach genome-wide 

significance when controls for multiple statistical tests were implemented (Figure 21D and 

Figure 22B).   

 

Figure 21 Gene expression profiles and eQTL results for disease-associated polyTE 
insertions. 
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Bar-charts of tissue-specific expression levels and box-pots of eQTL analyses are shown 
for four examples of TE-eQTLs corresponding to disease-linked and enhancer co-located 
polyTE insertions that regulate immune-related genes: (A) Alu-2829 and LILRA1, (B) Alu-
5072 and HLA-DRB5, (C) Alu-5075 and HLA-DQB1-AS1, and (D) SVA-282 and HLA-
DPB2.  Bar-charts show tissue-specific expression levels as normalized RPKM values 
(green).  The inset eQTL box-plots show individual sample gene expression levels (y-axis) 
regressed against polyTE insertion presence/absence genotypes (x-axis): 0-homozygous 
absent, 1-heterozygous, 2-homozygous present.  Each dot represents a single individual 
from the African (AFR – blue) and/or European (EUR – orange) population groups. 

  

4.4.4 Effects of polyTE insertions on immune- and blood-related conditions 

 Here, we described two specific examples of the effects that polyTE insertions can 

exert on immune- and blood-related disease phenotypes.  Figure 22A shows the SVA-401 

insertion that is co-located with a cell-type specific enhancer found in the second intron of 

the Beta-1,4-Galactosyltransferase 1 (B4GALT1) encoding gene, which is normally 

expressed at high levels in immune-related tissues.  Chromatin interaction maps 

characterized for several different cell types – CD34, GM12878 and Mcf7 – show that this 

B4GALT1 intronic enhancer physically associates with the gene’s promoter region.  The 

disruption of the B4GALT1 enhancer by the SVA insertion is associated with down-

regulation of the gene in B-cells, for both AFR and EUR population groups (Figure 22B).  

B4GALT1 encodes a glycosyltransferase that functions in the glycosylation of the 

Immunoglobulin G (IgG) antibody in such a way as to convert its activity from pro- to anti-

inflammatory (Figure 22C) [138-140].  Down-regulation of this gene in individuals with 

the enhancer SVA insertion should thereby serve to keep the IgG molecule in a pro-

inflammatory state.  Consistent with this idea, the B4GALT1 enhancer SVA insertion is 

linked to a genomic region implicated by GWAS in both inflammatory conditions and 

autoimmune diseases such as systemic lupus erythematosus and Crohn’s disease [140]. 
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 Another example of an SVA insertion into an enhancer element is shown for the 

adjacently located Signal Transducing Adaptor Molecule (STAM) and Transmembrane 

Protein 236 (TMEM236) encoding genes.  The SVA-438 insertion is co-located with an 

enhancer in the first intron of the STAM gene (Figure 22D), but its presence is associated 

with changes in expression of the nearby TMEM236 gene (Figure 22E).  TMEM236 is 

located ~100kbp downstream of the SVA-438 insertion and is most highly expressed in 

pancreatic islet α-cells (Figure 22F) [141, 142].  Islet α-cells function to secrete glucagon, 

a peptide hormone that elevates glucose levels in the blood [143].  The SVA-438 insertion 

is associated with increased expression of TMEM236, which would be expected to lead to 

increased blood glucose levels.  This expectation is consistent with the fact that the SVA-

438 insertion is also linked to the risk allele (T) of the SNP rs6602203, which is associated 

with a reduced metabolic clearance rate of insulin (MCRI), an endophenotype that is 

associated with the risk of type 2 diabetes [144].  In other words, up-regulation of 

TMEM236 by the SVA-438 insertion may be mechanistically linked to insulin resistance 

by virtue of increasing blood sugar and decreasing insulin clearance. 
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Figure 22 PolyTE insertions associated with immune- and blood-related conditions.   

(A) UCSC Genome Browser screen capture showing the location of the SVA-401 insertion 
(red arrow) on chromosome 19 within the second exon of the B4GALT1 gene.  The inset 
shows the genomic locations of co-located enhancers, characterized based on chromatin 
signatures from a variety of tissue-specific epigenomes locations, as yellow bars.  The bar-
chart shows B4GALT1 tissue-specific expression levels as normalized RPKM values 
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(green).  (B) eQTL box-plots show individual sample gene expression levels (y-axis) 
regressed against SVA-401 insertion presence/absence genotypes (x-axis): 0-homozygous 
absent, 1-heterozygous, 2-homozygous present.  Each dot represents a single individual 
from the African (AFR – blue) or European (EUR – orange) population groups.  (C) 
B4GALT1 catalysed glycosylation of the Immunoglobulin G (IgG) antibody, resulting in 
conversion from pro- to anti-inflammatory activity.  (D) UCSC Genome Browser screen 
capture showing the location of the SVA-438 insertion (red arrow) on chromosome 10 
within the first exon of the STAM gene, upstream of the regulated TMEM236 gene.  The 
inset shows the genomic locations of co-located enhancers (yellow bars).  (E) Bar-chart of 
TMEM236 tissue-specific expression levels and box-pot of the SVA-438 TMEM236 eQTL 
analyses.  (F) Functional role and cell-type specific expression profile for TMEM236. 

 

4.5 Discussion 

 The results reported here underscore the influence that retrotransposon insertion 

polymorphisms can exert on human health- and disease-related phenotypes.  The 

integrative data analysis approach that we took for this study also revealed how polyTE 

disease-associations are mediated by the gene regulatory properties of retrotransposon 

insertions.  We adopted a conservative approach to screen for the potential regulatory 

effects of retrotransposon insertions by choosing candidate elements as those that were 

inserted into regions previously defined as tissue-specific enhancers in blood/immune 

cells.  Retrotransposons that insert into enhancer sequences could entail loss-of-function 

mutants by virtue of disrupting enhancer sequences, or they could serve as gain-of-function 

mutants by altering enhancer activity.  Our results can be considered to show instances of 

both loss- and gain-of-function enhancer mutations with respect to the decrease or increase, 

respectively, of gene expression levels that are associated with element insertion genotypes 

(Figure 21 and 22).  Nevertheless, it is worth noting that our conservative approach could 

be prone to false negatives as it would not uncover novel enhancer activity provided by 

element insertions at new locations in the genome.    
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 The TE regulatory findings that we report here are consistent with previous studies 

showing that TE-derived sequences have contributed a wide variety of gene regulatory 

elements to the human genome [17, 18, 128], including promoters [19-21], enhancers [22-

26], transcription terminators [28] and several classes of small RNAs [29-31].  Human TEs 

can also influence gene regulation by modulating various aspects of chromatin structure 

throughout the genome [1, 32, 103-106]. 

 It is important to note that the research efforts which have uncovered the regulatory 

properties of human TEs, including a number of our own studies, have dealt exclusively 

with sequences derived from relatively ancient insertion events. These ancient TE 

insertions are present at the same (fixed) locations in the genome sequences of all human 

individuals.  In other words, previously described TE-derived regulatory sequences are 

uniformly present among individual human genomes and thereby do not represent a source 

of structural genetic variation.  Such fixed TE-derived regulatory sequences may not be 

expected to provide for gene regulatory variation among individuals or for that matter to 

contribute to inter-individual differences related to health and disease. 

 Nevertheless, we recently showed that TE insertion polymorphisms also exert 

regulatory effects on the human genome [130].  Specifically, polyTE insertions were 

shown to contribute to both inter-individual and population-specific differences in gene 

expression and to facilitate the re-wiring of transcriptional networks.  The results reported 

here extend those findings up the hierarchy of human biological organization by revealing 

potential mechanistic links between polyTE-induced gene regulatory changes and the 

endophenotypes that underlie human health and disease. 
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CHAPTER 5. TRANSPOSABLE ELEMENT ACTIVITY, 

GENOME REGULATION AND HUMAN HEALTH  

5.1 Abstract 

 A recent convergence of novel genome analysis technologies is enabling population 

genomic studies of human transposable elements (TEs).  Population surveys of human 

genome sequences have uncovered thousands of individual TE insertions that segregate as 

common genetic variants, i.e. TE polymorphisms.  These recent TE insertions provide an 

important source of naturally occurring human genetic variation.  Investigators are 

beginning to leverage population genomic data sets to execute genome-scale association 

studies for assessing the phenotypic impact of human TE polymorphisms.  For example, 

the expression quantitative trait loci (eQTL) analytical paradigm has recently been used to 

uncover hundreds of associations between human TE insertion variants and gene 

expression levels.  These include population-specific gene regulatory effects as well as 

coordinated changes to gene regulatory networks.  In addition, analyses of linkage 

disequilibrium patterns with previously characterized genome-wide association study 

(GWAS) trait variants have uncovered TE insertion polymorphisms that are likely causal 

variants for a variety of common complex diseases.  Gene regulatory mechanisms that 

underlie specific disease phenotypes have been proposed for a number of these trait 

associated TE polymorphisms.  These new population genomic approaches hold great 

promise for understanding how ongoing TE activity contributes to functionally relevant 

genetic variation within and between human populations.   
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5.2 Introduction 

Transposable elements (TEs) are distinguished by their ability to move, i.e. 

transpose, among genomic locations, often making copies of themselves as they go.  TEs 

can replicate to extremely high copy numbers over time; at least 50% of the human genome 

sequence is thought to be derived from TE insertions [1, 2].  The abundance of TE 

sequences, along with their ability to colonize a seemingly endless variety of host genomes, 

begs an explanation for their evolutionary success.  The selfish DNA theory holds that TEs 

are genomic parasites, which play no functional role for their hosts and exist simply by 

virtue of their ability to out-replicate the genomes in which they reside [145, 146].  The 

selfish DNA theory is still widely considered to represent the null hypothesis that best 

explains the presence of TEs from an evolutionary standpoint.  Nevertheless, numerous 

studies have revealed instances of exaptation [147], also referred to as molecular 

domestication [148], whereby formerly selfish TE sequences have been co-opted to 

provide some functional utility for their host genomes.  The most widely observed route of 

molecular domestication entails the conversion of TE sequences into host genome 

regulatory elements [17, 18, 128]. 

TE-derived sequences provide a wide variety of regulatory elements to the human 

genome, including promoters [19-21], enhancers [22-26], transcription terminators [28] 

and several classes of small RNAs [29-31].  Human TE-derived sequences can also exert 

higher order influences on gene regulation by shaping chromatin structure across the 

genome [32, 103-106].  It is important to note that, until this time, nearly all studies on 

human TE regulatory elements have focused on TE-derived sequences that are remnants 

of relatively ancient insertion events and no longer capable of transposition.  In other 
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words, known human TE regulatory sequences largely correspond to so-called ‘fixed’ TE 

insertions, which are found at the same genomic insertion site locations within the genomes 

of all human individuals.  This distinction is critical, since fixed TE insertions are not 

expected to contribute to regulatory variation among individual humans.  In other words, 

fixed TE regulatory elements, while functionally important, do not provide a source of 

human population genetic variation. 

Over the last several years, a convergence of genome-enabled technologies has 

begun to power studies that are focused squarely on structural variations generated by the 

ongoing activity of human TEs.   There are several families of human TEs that retain the 

ability to transpose, primarily Alu [3, 4], L1 [5, 6], and SVA [7, 8].  Smaller numbers of 

HERV-K endogenous retroviruses also remain active in the human genome [54].  When 

members of these TE families transpose within the human genome, they generate inter-

individual variations that segregate within and between populations in the form of TE 

insertion site polymorphisms.  Given the known regulatory properties of human TEs, it is 

not unreasonable to expect that segregating TE polymorphisms could have significant 

regulatory consequences.  In particular, some human TE polymorphisms may lead to 

differences in gene expression patterns between individuals.  Furthermore, human 

regulatory variation generated by recent TE activity may have important implications for 

health and disease.  This mini-review is focused on recent studies that are beginning to 

shed light on the ways in which ongoing TE activity can impact human health via changes 

in genome regulation.  These studies are distinguished by their population level approach 

to the study of TE generated human variation (Figure 23). 
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Figure 23 The population genomic approach for the study of TE phenotypic effects.   

Individuals sampled from human populations are characterized using genome (DNA-seq) 
and transcriptome (RNA-seq) profiling techniques.  Genome-wide TE insertion genotypes 
are compared to tissue-specific gene expression levels to uncover TE variants implicated 
in gene regulation.  The linkage disequilibrium patterns (LD) among TE polymorphisms 
and SNPs are evaluated to identify TE insertions linked to genome-wide association study 
(GWAS) loci.  Interrogation of functional information is used to hone in on likely TE causal 
variants. 
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5.3 Genome-enabled approaches for characterizing TE insertion variants 

Two distinct classes of genome-enabled approaches for the characterization of TE 

insertion variants have emerged over the last several years [131]: (1) bioinformatics 

methods that rely on the analysis of whole genome sequence data to find TE insertions that 

differ from a reference sequence (Figure 24A), and (2) high-throughput experimental 

methods that leverage next-generation sequencing to pinpoint the locations of novel TE 

insertions (Figure 24B). 

 

Figure 24 Genome-enabled approaches for the discovery and characterization of TE 
insertion variants. 

(A) Bioinformatics methods rely on the computational analysis of whole genome sequence 
read data to characterize genome-wide patterns of TE insertion alleles and genotypes.  (B) 
High-throughput experimental methods use enrichment of genomic fragments that contain 
known active TE sequences followed by sequence or array based characterization of their 
genomic locations. 
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Computational approaches for the discovery of TE insertion variants rely on one of 

two methods: (1) discordant read-pair mapping for short read sequencing technology, or 

(2) split read mapping for long read technology [120].  Our own group recently performed 

a benchmarking study on 21 bioinformatics tools designed for detecting human TE 

insertion variants from whole genome sequence data [64].  After an initial screen of tools 

that were found to be unreliable, or no longer maintained, our study focused on seven 

programs: ITIS [149], MELT [150], Mobster [151], RetroSeq [152], Tangram [153], 

TEMP [154], and T-lex2 [155].  We found MELT to have superior performance for human 

TE variant detection from whole genome sequence data, but also show how a combined 

approach using two or more methods, including Mobster and RetroSeq, could yield 

superior performance.  Since the publication of our paper, two new computational tools for 

TE insertion discovery have been published.  The program STEAK [156] claims superior 

performance compared to existing short read methods, whereas LoRTE [157] is designed 

for PacBio® long read sequence technology.  

At this time, given the predominance of Illumina® short read sequencing 

technology, discordant read-pair mapping approaches are most widely used.  However, 

these methods are still far from perfect and there is substantial room for additional 

development in the field.  As long read sequencing technology becomes more widespread, 

split read approaches should become more popular. Perhaps more importantly, we expect 

that split read approaches will be inherently more accurate and reliable than discordant read 

pair mapping, since long reads that span entire TE insertions should be mapped with much 

less ambiguity than shorter reads.   
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High-throughput experimental techniques for TE variant detection also share 

several basic features: (1) DNA fragmentation, (2) TE enrichment, and (3) TE calling.  The 

methods are distinguished by the approaches used for each step of the process.  DNA 

fragmentation can be achieved via enzymatic digestion or by mechanical shearing.  TE 

enrichment can be performed using PCR, with active TE-specific primers, or with 

hybridization to active TE-specific probes.  Finally, TE calling is done using next-

generation sequencing, for more recent methods, or with tiling arrays for the older methods.  

The most widely used experimental methods for TE variant detection include ME-Scan 

[158], L1-Seq [159], RC-seq [160], and Transposon-Seq [75].  One area of ongoing 

improvement for these methods entails the refinement of algorithms used to map enriched 

TE fragments to genome reference sequences.  For example, the TIPseqHunter algorithm 

was recently developed to refine and improve human TE variant calls made by the existing 

TIP-seq experimental method [161].   

Genome-scale experimental approaches of this kind have been most widely applied 

to the study of somatic TE variants that characterize cancer tissues.  This is one of the most 

promising areas of recent human TE research, and it has been extensively reviewed 

elsewhere [162].  This mini-review is focused instead on germline mutations that yield 

inter-individual differences in TE insertion patterns and manifest themselves as human 

population genetic variations, i.e. TE polymorphisms. 
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5.4 TE polymorphisms and human genome regulation 

 Our own group recently published a population-level view of the regulatory 

consequences of recent human TE activity [163].  To do so, we adopted the expression 

quantitative trait loci (eQTL) analytical paradigm for human TE polymorphisms.  eQTL 

are genomic variants associated with changes in gene expression levels [164].  The eQTL 

approach requires multiple individual samples that have been deeply characterized at both 

the genomic (DNA-seq) and transcriptomic (RNA-seq) levels.  Gene expression levels for 

individual samples are regressed against locus-specific genotypes for matched individuals 

to uncover eQTL associations.  This approach was developed for single nucleotide 

polymorphism (SNP) genotypes, whereas in our case, we used locus-specific TE insertion 

state genotypes.  TE insertion genotypes at any locus can be encoded as 0 (homozygous - 

insertion absent), 1 (heterozygous - one insertion present), or 2 (homozygous - two 

insertions present).  Differences in gene expression levels across these distinct TE insertion 

states are indicative of TE polymorphism-to-gene expression associations (Figure 23). 

 This approach was powered by the 1000 Genomes Project (1KGP), phase 3 of 

which entailed the genome-wide characterization of TE insertion genotypes for 2,504 

individuals across 26 human populations [92, 99].  B-lymphocyte gene expression data for 

445 of the same 1KGP individuals, representing one African population and four European 

populations, were taken from the Genetic European Variation in Health and Disease 

(GEUVEDIS) RNA-seq project [93].  Merging data from both projects allowed us to 

directly compare TE insertion site genotypes to gene expression levels from the same 

individuals.  Furthermore, comparison of results for African and European populations 

allowed us to uncover population-specific regulatory effects of human TE polymorphisms.  
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 Regression of gene expression against TE insertion site genotypes revealed 

hundreds of eQTL associations, and TE-eQTL were found both within and between the 

African and European populations.  A number of TE polymorphisms were shown to be 

associated with expression differences between population groups.  One advantage of using 

TE insertion site genotypes for eQTL analysis is that the relatively low number of common 

TE genotypes across the genome (~16,000) allows for both cis and trans eQTL analysis.  

This is because the number of possible eQTL associations is the product of the number of 

genes and the number of variants being compared; accordingly, the analysis of millions of 

SNPs times thousands of genes presents a combinatorically daunting bioinformatics 

analysis challenge.  For this reason, most SNP eQTL studies focus exclusively on cis SNPs 

that are found within or in close proximity to individual genes.  Since our study was not 

limited in this way, we were able to discover many trans effects of TE polymorphisms on 

human gene regulation.  In fact, we were surprised to find that trans regulatory effects for 

TE polymorphisms were even more common than cis effects. 

 For one particular example, the B cell specific transcription factor PAX5, we 

uncovered a potential mechanism that could explain the numerous trans TE-eQTL that we 

observed (Figure 25).  This example also underscores how individual TE loci can 

participate in the rewiring of entire regulatory networks.  The PAX5 gene has a cis Alu 

eQTL that is associated with increased expression in B lymphocytes.  This same Alu 

insertion is associated with increased expression of numerous PAX5 target genes, 

presumably by virtue of a transitive effect whereby increased PAX5 expression in turn 

increases the expression of downstream targets in its regulatory network.  
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Figure 25 The impact of TE polymorphisms on gene regulatory networks 

The eQTL approach is used to discover associations between TE insertion variants and 
tissue-specific gene expression levels (i.e. TE-eQTLs).  A TE insertion variant found in cis 
to a transcription factor (TF) can lead to coordinated changes across a gene regulatory 
network via transitive effects on downstream targets of the TF.  An example is shown, 
similar to what has been observed for the TF gene PAX5, where TE associated increase in 
the expression of a TF leads in turn to increased expression of the TF target genes.  This 
will reveal itself as multiple trans TE-eQTL associations for the same TE insertion variant. 
 

 To our knowledge, this is the first and only study of its kind in humans.  However, 

analogous genome-scale approaches have been used to discover TE associations with gene 

expression in the model organisms Arabidopsis [165] and maize [166].   

 

5.5 TE polymorphisms and complex common disease 

 Two recent studies have taken a similar population-level view of the phenotypic 

effects of human TE polymorphisms [167, 168].  For each of these studies, associations 
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between TE insertion site genotypes and complex common diseases were explored.  Both 

studies relied on the analysis of linkage disequilibrium (LD) patterns to discover TE 

polymorphisms linked to SNPs that were previously associated with health or disease 

related phenotypes via genome-wide association studies (GWAS).  An implicit rationale 

for genome-scale surveys of this kind is the notion that TE insertions are expected to be 

more disruptive than SNP variations given the larger scale genomic changes that they 

entail.  Interestingly, both studies report that TE polymorphisms are enriched at GWAS 

loci, highlighting their potential impact.  The first study of this kind, from the group of 

Kathleen Burns, found 44 Alu insertions in tight LD with previously discovered GWAS 

trait associated SNPs [167].  The authors pointed out that this represents a >20-fold increase 

over the number of polymorphic Alu insertions that were previously known to be 

associated with human phenotypes, thereby underscoring the power of population genomic 

approaches for studies on the phenotypic impact of TE polymorphisms.  Furthermore, the 

implicated Alu polymorphisms were found to be associated with a very broad range of 

health and disease related phenotypes.   

 Our own study on the impact of TE polymorphisms on complex common disease 

was designed to explore the connection between TE-mediated genome regulation and 

disease related phenotypic effects [168].  To achieve this aim, we used a progressive set of 

genome-wide bioinformatics screens that searched for polymorphic TE insertions that are: 

(1) found in LD with known GWAS SNPs, (2) located within tissue-specific enhancers, 

and (3) associated with tissue-specific gene expression levels.  We further narrowed our 

search for candidate TE polymorphisms to those associated with genes with blood or 

immune related functions, consistent with the fact that the gene expression data we 

analyzed is from B lymphocytes.  This progressive and stringent genomic screen uncovered 

six TE polymorphisms that are likely to be associated with disease phenotypes by virtue of 

their gene regulatory effects.  These included both Alu elements, as previously reported, as 
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well as SVA elements.  For example, we discovered an SVA insertion in the cell-type 

specific enhancer of the B4GALT1 gene (Figure 26).  B4GALT1 acts to convert the 

Immunoglobulin G (IgG) antibody from a pro-inflammatory to an anti-inflammatory form.  

The SVA insertion is associated with both down-regulation of the B4GALT1 gene, thereby 

potentially leading to increased inflammation, and linked to a genomic region implicated 

by GWAS in both inflammatory conditions and autoimmune disease. 

 

Figure 26 TE insertion variants impact on human disease via gene regulatory 
changes   

TE insertion variants are found in tight linkage disequilibrium (LD) with previously 
characterized genome-wide association study (GWAS) SNP risk alleles.  The linked TE 
insertion variant is associated with reduced gene expression, which is in turn associated 
with elevated disease risk.  The scheme shown here corresponds to a TE insertion variant 
associated with reduced expression of the B4GALT1 gene, which leads to increased 
inflammation and related disease pathology. 
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5.6 Conclusions 

 The population genomics view of TEs exemplified by the recent studies reviewed 

here has the potential to expand our understanding of the phenotypic impact of human TEs.  

While ongoing human TE activity has widely been considered to be deleterious, the 

presence of TE insertion variants that segregate as common polymorphisms among human 

populations indicates that many novel TE insertions must have escaped the action of 

purifying selection.  Accordingly, polymorphic human TE insertion variants comprise an 

important source of naturally occurring genetic variation with subtle effects on genome 

regulation and human health.  Functionally relevant TE polymorphisms of this kind are 

likely to provide crucial source material for ongoing human evolution.  
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APPENDIX A.  

SUPPLEMENTARY INFORMATION FOR CHAPTER 2 

 

Figure 27 RNA-seq normalization and covariate adjustments 

(A) Comparison of four RNA-seq normalization approaches that were evaluated here: 
unsupervised SVAseq, PCA, unsupervised RUVseq and empirical RUVseq.  The matrix 
shows the results of pairwise comparisons between the latent factors influencing gene 
expression estimated by each method.  For each cell in the pairwise comparison matrix, 
the shape and the color represent the magnitude of the correlation coefficient (r) observed 
between methods, based on the estimated latent factors.  Rounder shapes and lighter colors 
show lower correlations; more narrow and brighter colors show higher correlations.  (B) 
Comparison of the first two PCAs of the L1 expression matrices shown before and after 
adjustment for co-variates.  L1 expression PCA values are color coded by population 
origin (top) and sequencing batch (bottom).  
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APPENDIX B.  

SUPPLEMENTARY INFORMATION FOR CHAPTER 3 
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Figure 28 Scheme of the three analyses used to control for the potential effects of 
regulatory SNPs on the TE-eQTL associations observed here.   

(A) TE-eQTL versus SNP-eQTL comparisons.  (B) Conditional association analysis.  (C) 
Regional association scans.   

 

 

Figure 29 TE-eQTL versus SNP-eQTL comparisons. 

Venn diagrams showing the numbers of genes found to be associated with TE-eQTL and/or 
SNP-eQTL for (A) African (blue) or (B) European (orange) populations.  The numbers of 
genes associated with both TE-eQTL and SNP-eQTL for each population group are shown 
in the intersections. 
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Figure 30 Population-specific TE-eQTL associations. 

Venn diagram showing the number of polyTEs with associations that are found in Africa 
(blue), Europe (orange) or both (intersection).   

 

Table 3 Best TE eQTLs identified in the analysis 

Chr Pos TE Gene t Statistic P-value FDR TE subfamily eQTL type 

chr17 44153977 SVA_umary_SVA_706 RP11-259G18.3 22.63 7.83E-76 4.54E-68 SVA trans 

chr17 43670097 SVA_umary_SVA_705 RP11-259G18.3 14.37 1.11E-38 1.61E-31 SVA trans 

chr6 133160120 ALU_umary_ALU_5602 RPS12 -13.91 1.04E-36 1.21E-29 ALU cis 

chr17 43660599 SVA_umary_SVA_704 RP11-259G18.3 13.47 7.28E-35 7.02E-28 SVA trans 

chr8 71914591 ALU_umary_ALU_6806 XKR9 12.07 3.54E-29 2.05E-22 ALU cis 

chr1 75192907 L1_umary_LINE1_61 CRYZ -11.02 4.12E-25 1.84E-18 L1 cis 

chr22 19210913 L1_umary_LINE1_2986 CLTCL1 10.72 5.37E-24 2.22E-17 L1 cis 

chr7 32831241 ALU_umary_ALU_5939 DPY19L1P1 10.62 1.28E-23 4.93E-17 ALU cis 

chr4 185651677 ALU_umary_ALU_3997 CENPU -9.93 4.11E-21 1.40E-14 ALU cis 

chr9 33130564 SVA_umary_SVA_401 B4GALT1 -9.60 6.13E-20 1.87E-13 SVA cis 

chr6 130614798 ALU_umary_ALU_5583 TMEM200A -9.54 9.93E-20 2.87E-13 ALU cis 

chr9 98696746 ALU_umary_ALU_7578 LINC00476 9.33 5.29E-19 1.46E-12 ALU cis 

chr6 32657952 ALU_umary_ALU_5075 HLA-DQB1-AS1 -9.11 2.86E-18 7.52E-12 ALU cis 

chr6 29818872 ALU_umary_ALU_5053 HLA-J 9.04 5.03E-18 1.27E-11 ALU cis 

chr11 43877448 ALU_umary_ALU_8559 HSD17B12 -8.98 7.96E-18 1.92E-11 ALU cis 

chr14 92619420 SVA_umary_SVA_615 NDUFB1 -8.96 9.00E-18 2.08E-11 SVA cis 

chr13 21894780 ALU_umary_ALU_9602 LINC00422 -8.92 1.22E-17 2.72E-11 ALU cis 

chr3 48372326 ALU_umary_ALU_2337 FCF1P2 -8.53 2.39E-16 5.12E-10 ALU cis 

chr6 33030313 SVA_umary_SVA_282 HLA-DPB2 8.29 1.36E-15 2.71E-09 SVA cis 

chr12 56753252 ALU_umary_ALU_9228 RP11-977G19.11 -8.03 8.77E-15 1.59E-08 ALU cis 

chr15 41100332 ALU_umary_ALU_10654 ZFYVE19 -8.02 9.90E-15 1.74E-08 ALU cis 

chr10 70973334 SVA_umary_SVA_452 HKDC1 7.97 1.40E-14 2.32E-08 SVA cis 

chr18 59713734 ALU_umary_ALU_11754 PIGN -7.95 1.54E-14 2.47E-08 ALU cis 

chr7 23665685 ALU_umary_ALU_5888 CCDC126 7.90 2.29E-14 3.59E-08 ALU cis 

chr19 52888074 ALU_umary_ALU_11979 ZNF880 7.88 2.57E-14 3.81E-08 ALU cis 

chr2 191478717 L1_umary_LINE1_477 MFSD6 -7.72 7.82E-14 1.08E-07 L1 cis 

chr9 37596348 ALU_umary_ALU_7420 POLR1E -7.58 2.05E-13 2.76E-07 ALU cis 

chr6 32589834 ALU_umary_ALU_5072 HLA-DRB5 -7.47 4.31E-13 5.67E-07 ALU cis 

chr19 57023579 ALU_umary_ALU_11997 ZFP28 7.45 4.82E-13 6.20E-07 ALU cis 

chr1 11830220 SVA_umary_SVA_5 C1orf167 7.31 1.28E-12 1.61E-06 SVA cis 

chr13 50173371 ALU_umary_ALU_9777 ARL11 -7.21 2.41E-12 2.84E-06 ALU cis 

chr15 45569912 ALU_umary_ALU_10670 CTD-2651B20.3 7.18 2.90E-12 3.36E-06 ALU cis 
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chr2 3630321 ALU_umary_ALU_970 RNASEH1-AS1 -7.18 3.03E-12 3.44E-06 ALU cis 

chr14 57744450 ALU_umary_ALU_10334 MAML2 7.08 5.87E-12 6.41E-06 ALU trans 

chr21 31411594 ALU_umary_ALU_12362 NCCRP1 7.00 9.38E-12 9.88E-06 ALU trans 

chr2 20085249 ALU_umary_ALU_1042 PATL1 6.84 2.64E-11 2.73E-05 ALU trans 

chr6 31250241 ALU_umary_ALU_5060 HCG4P7 6.71 5.88E-11 5.78E-05 ALU trans 

chr2 199988338 ALU_umary_ALU_1903 PIK3AP1 6.69 6.88E-11 6.64E-05 ALU trans 

chr4 56371962 ALU_umary_ALU_3295 SRD5A3 6.68 7.07E-11 6.71E-05 ALU cis 

chr11 65984338 ALU_umary_ALU_8622 RP11-755F10.1 6.65 8.76E-11 8.19E-05 ALU cis 

chr4 146749 SVA_umary_SVA_203 ZNF718 6.64 9.07E-11 8.34E-05 SVA cis 

chr7 125922888 ALU_umary_ALU_6374 IGLV3-27 6.64 9.47E-11 8.57E-05 ALU trans 

chr3 26906584 ALU_umary_ALU_2238 GPR128 6.61 1.11E-10 9.91E-05 ALU trans 

chr2 68733422 ALU_umary_ALU_1278 PVR 6.60 1.16E-10 1.02E-04 ALU trans 

chr12 58359071 ALU_umary_ALU_9234 XRCC6BP1 6.55 1.61E-10 1.40E-04 ALU cis 

chr9 76893085 ALU_umary_ALU_7481 PHF2 6.53 1.85E-10 1.58E-04 ALU trans 

chr5 124155349 L1_umary_LINE1_1205 IGKV2D-29 6.52 1.91E-10 1.60E-04 L1 trans 

chr1 234805728 ALU_umary_ALU_884 RP4-781K5.6 -6.47 2.65E-10 2.17E-04 ALU cis 

chr17 6538671 ALU_umary_ALU_11197 CTC-281F24.1 6.36 4.95E-10 3.98E-04 ALU cis 

chr5 36792620 ALU_umary_ALU_4218 CTD-2353F22.1 -6.34 5.70E-10 4.52E-04 ALU cis 

chr15 55129551 L1_umary_LINE1_2652 CRYBB2 6.31 6.85E-10 5.36E-04 L1 trans 

chr14 82223469 ALU_umary_ALU_10437 LRRC20 -6.29 7.57E-10 5.77E-04 ALU trans 

chr14 75499581 ALU_umary_ALU_10401 EIF2B2 6.29 7.79E-10 5.86E-04 ALU cis 

chr3 21234927 L1_umary_LINE1_558 MAML2 6.28 8.07E-10 5.91E-04 L1 trans 

chr2 227473038 ALU_umary_ALU_2029 IGLV3-27 6.28 8.35E-10 6.04E-04 ALU trans 

chr9 87506228 ALU_umary_ALU_7533 ST8SIA1 6.27 8.83E-10 6.31E-04 ALU trans 

chr2 65163783 ALU_umary_ALU_1256 SLC1A4 -6.25 9.54E-10 6.66E-04 ALU cis 

chr8 133725454 ALU_umary_ALU_7169 FAM65B 6.23 1.06E-09 7.30E-04 ALU trans 

chr9 97710713 ALU_umary_ALU_7572 CROCCP2 6.22 1.15E-09 7.77E-04 ALU trans 

chr12 97526402 ALU_umary_ALU_9451 GJA4 6.22 1.15E-09 7.77E-04 ALU trans 

chr7 91751552 ALU_umary_ALU_6200 CYP51A1P2 -6.22 1.19E-09 7.89E-04 ALU trans 

chr7 63880180 ALU_umary_ALU_6074 TRIM60P18 6.20 1.32E-09 8.66E-04 ALU cis 

chr8 35244893 L1_umary_LINE1_1650 LRP2 6.18 1.48E-09 9.63E-04 L1 trans 

chr13 60032561 ALU_umary_ALU_9825 HTR3A 6.17 1.56E-09 1.00E-03 ALU trans 

chr6 131028588 ALU_umary_ALU_5587 ZNF462 6.17 1.57E-09 1.00E-03 ALU trans 

chr15 53941096 ALU_umary_ALU_10715 TPCN2 -6.16 1.68E-09 1.04E-03 ALU trans 

chr10 6271127 ALU_umary_ALU_7761 FRAS1 6.15 1.78E-09 1.09E-03 ALU trans 

chr5 118097178 ALU_umary_ALU_4615 LRRC20 -6.13 1.91E-09 1.14E-03 ALU trans 

chr11 86195336 ALU_umary_ALU_8700 IGLV7-46 6.13 2.00E-09 1.18E-03 ALU trans 

chr7 22799818 ALU_umary_ALU_5885 SMPDL3A 6.11 2.15E-09 1.26E-03 ALU trans 

chr12 80480726 ALU_umary_ALU_9371 TPCN2 -6.07 2.68E-09 1.54E-03 ALU trans 

chr12 4742915 SVA_umary_SVA_532 AKAP3 -6.06 2.89E-09 1.61E-03 SVA cis 

chr4 185875956 ALU_umary_ALU_3998 TEPP 6.05 3.03E-09 1.66E-03 ALU trans 

chr6 32449301 ALU_umary_ALU_5065 HLA-DRB1 6.02 3.68E-09 1.97E-03 ALU cis 
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chr3 86264950 L1_umary_LINE1_634 ATP6V0E2-AS1 6.02 3.71E-09 1.97E-03 L1 trans 

chr7 18345324 ALU_umary_ALU_5870 RP11-777B9.5 6.01 3.82E-09 2.01E-03 ALU trans 

chr8 2275573 ALU_umary_ALU_6535 ENPEP 5.98 4.65E-09 2.40E-03 ALU trans 

chr4 95413280 ALU_umary_ALU_3517 FREM1 5.96 5.07E-09 2.55E-03 ALU trans 

chr1 40524704 ALU_umary_ALU_114 RP11-386M24.6 5.96 5.14E-09 2.56E-03 ALU trans 

chr4 74430433 ALU_umary_ALU_3402 CRYBB2 5.96 5.18E-09 2.56E-03 ALU trans 

chr5 95394266 ALU_umary_ALU_4487 CCL1 5.96 5.26E-09 2.57E-03 ALU trans 

chr3 165336826 ALU_umary_ALU_2883 LZIC 5.95 5.34E-09 2.57E-03 ALU trans 

chr5 37648672 ALU_umary_ALU_4220 CRYBB2P1 5.94 5.78E-09 2.72E-03 ALU trans 

chr17 35210358 ALU_umary_ALU_11294 ASB14 5.94 5.93E-09 2.77E-03 ALU trans 

chr12 84955216 L1_umary_LINE1_2324 FAM153B 5.91 6.74E-09 3.12E-03 L1 trans 

chr1 36474694 ALU_umary_ALU_102 CLEC4A 5.90 7.13E-09 3.28E-03 ALU trans 

chr1 249191472 L1_umary_LINE1_242 LRRC20 -5.90 7.45E-09 3.40E-03 L1 trans 

chr6 32514622 SVA_umary_SVA_280 HLA-DRB5 -5.89 7.54E-09 3.41E-03 SVA cis 

chr3 66951653 ALU_umary_ALU_2413 IGHV3-64 5.87 8.45E-09 3.78E-03 ALU trans 

chr2 213168133 ALU_umary_ALU_1964 IGLV4-60 5.87 8.48E-09 3.78E-03 ALU trans 

chr3 180190410 ALU_umary_ALU_2977 GAPT 5.86 8.97E-09 3.94E-03 ALU trans 

chr4 40235018 ALU_umary_ALU_3239 NR2F2 5.84 1.03E-08 4.50E-03 ALU trans 

chr6 80086769 ALU_umary_ALU_5318 RP4-756H11.3 5.83 1.05E-08 4.52E-03 ALU trans 

chr17 735172 ALU_umary_ALU_11176 XCL1 5.83 1.07E-08 4.57E-03 ALU trans 

chr2 129573988 L1_umary_LINE1_398 RCCD1 5.82 1.11E-08 4.67E-03 L1 trans 

chr8 69587130 ALU_umary_ALU_6797 FAT1 5.82 1.14E-08 4.68E-03 ALU trans 

chr8 80466350 ALU_umary_ALU_6867 RP11-435B5.5 5.80 1.30E-08 5.31E-03 ALU trans 

chr3 132577737 ALU_umary_ALU_2718 VIL1 5.79 1.36E-08 5.48E-03 ALU trans 

chr7 125861744 ALU_umary_ALU_6372 ACSM1 5.78 1.43E-08 5.72E-03 ALU trans 

chr6 44114176 SVA_umary_SVA_289 RP11-793H13.8 5.78 1.44E-08 5.72E-03 SVA trans 

chr15 80662580 ALU_umary_ALU_10836 LGALS9B 5.77 1.47E-08 5.78E-03 ALU trans 

chr11 5126963 SVA_umary_SVA_482 HERC2P8 5.75 1.66E-08 6.33E-03 SVA trans 

chr6 103871467 L1_umary_LINE1_1371 FITM1 5.75 1.67E-08 6.33E-03 L1 trans 

chr3 109697784 ALU_umary_ALU_2606 CD2 5.74 1.72E-08 6.37E-03 ALU trans 

chr11 82657872 ALU_umary_ALU_8680 XCL1 5.74 1.73E-08 6.37E-03 ALU trans 

chr7 123194557 ALU_umary_ALU_6352 VARS 5.74 1.75E-08 6.37E-03 ALU trans 

chr6 26962174 ALU_umary_ALU_5039 RP11-457M11.5 -5.73 1.86E-08 6.73E-03 ALU cis 

chr3 6525411 ALU_umary_ALU_2124 GCLM 5.73 1.87E-08 6.73E-03 ALU trans 

chr15 76826019 ALU_umary_ALU_10819 IGKV1D-13 5.71 2.05E-08 7.32E-03 ALU trans 

chr22 23872686 ALU_umary_ALU_12453 RP11-124N14.3 5.70 2.14E-08 7.60E-03 ALU trans 

chr5 148917332 ALU_umary_ALU_4754 WSCD1 5.70 2.19E-08 7.72E-03 ALU trans 

chr6 141414904 ALU_umary_ALU_5647 PSORS1C3 5.69 2.27E-08 7.97E-03 ALU trans 

chr8 111644268 ALU_umary_ALU_7045 GDAP1 5.69 2.31E-08 8.08E-03 ALU trans 

chr3 192376526 ALU_umary_ALU_3032 IGKV2-29 5.68 2.40E-08 8.26E-03 ALU trans 

chr12 58458223 ALU_umary_ALU_9236 XRCC6BP1 5.68 2.41E-08 8.27E-03 ALU cis 

chr15 81392597 ALU_umary_ALU_10841 PSD4 -5.68 2.47E-08 8.38E-03 ALU trans 
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chr1 165553149 L1_umary_LINE1_157 IGLC2 5.67 2.57E-08 8.60E-03 L1 trans 

chr13 36325342 SVA_umary_SVA_566 NEDD9 5.67 2.57E-08 8.60E-03 SVA trans 

chr10 68217408 ALU_umary_ALU_8046 CAND2 5.66 2.68E-08 8.83E-03 ALU trans 

chr12 61247559 ALU_umary_ALU_9258 CRYBB2P1 5.66 2.68E-08 8.83E-03 ALU trans 

chr6 104772669 ALU_umary_ALU_5447 HSPE1P8 -5.66 2.74E-08 8.92E-03 ALU trans 

chr12 46175166 ALU_umary_ALU_9193 IGLV3-27 -5.66 2.78E-08 8.96E-03 ALU trans 

chr1 97717644 ALU_umary_ALU_379 IGLV1-50 5.66 2.80E-08 8.96E-03 ALU trans 

chr5 5279799 ALU_umary_ALU_4046 WEE2 5.66 2.80E-08 8.96E-03 ALU trans 

chr10 9683707 ALU_umary_ALU_7780 IGHV1-58 5.65 2.89E-08 9.19E-03 ALU trans 

chr12 21006856 ALU_umary_ALU_9055 IGHV3-20 5.65 2.94E-08 9.30E-03 ALU trans 

chr3 169270604 ALU_umary_ALU_2911 BACE1 5.65 2.96E-08 9.30E-03 ALU trans 

chr1 38447717 ALU_umary_ALU_107 UBALD1 5.64 3.06E-08 9.42E-03 ALU trans 

chr4 5667998 L1_umary_LINE1_773 POC1B 5.64 3.09E-08 9.42E-03 L1 trans 

chr6 126509049 ALU_umary_ALU_5563 RP11-288E14.2 5.64 3.11E-08 9.42E-03 ALU trans 

chr5 63430716 ALU_umary_ALU_4330 SEC61A1 5.64 3.13E-08 9.42E-03 ALU trans 

chr18 56819477 ALU_umary_ALU_11733 PPIC 5.63 3.14E-08 9.42E-03 ALU trans 

chr16 79190739 ALU_umary_ALU_11136 PPP4R4 5.63 3.29E-08 9.82E-03 ALU trans 

chr9 118509752 ALU_umary_ALU_7676 HOXB7 5.62 3.37E-08 9.90E-03 ALU trans 

chr10 17712792 SVA_umary_SVA_438 TMEM236 5.61 3.65E-08 1.06E-02 SVA cis 

chr4 186361924 ALU_umary_ALU_4000 RP11-276H1.3 -5.60 3.77E-08 1.08E-02 ALU trans 

chr2 4256152 ALU_umary_ALU_974 RAB11FIP5 5.60 3.86E-08 1.10E-02 ALU trans 

chr3 112466720 SVA_umary_SVA_179 LILRA1 5.59 3.92E-08 1.10E-02 SVA trans 

chr15 28179379 ALU_umary_ALU_10586 CA9 5.59 3.92E-08 1.10E-02 ALU trans 

chr8 17943136 ALU_umary_ALU_6606 ARHGEF12 5.59 3.94E-08 1.10E-02 ALU trans 

chr7 6314063 ALU_umary_ALU_5788 REL 5.59 3.96E-08 1.10E-02 ALU trans 

chr16 52412371 ALU_umary_ALU_11042 EPHB2 5.59 4.00E-08 1.11E-02 ALU trans 

chr3 168199075 ALU_umary_ALU_2905 IQCA1 5.59 4.08E-08 1.12E-02 ALU trans 

chr18 50097757 L1_umary_LINE1_2823 TP53BP2 5.58 4.13E-08 1.13E-02 L1 trans 

chr3 144610083 L1_umary_LINE1_704 IGKV2-29 5.58 4.14E-08 1.13E-02 L1 trans 

chr14 66934461 ALU_umary_ALU_10374 SSPN 5.58 4.24E-08 1.14E-02 ALU trans 

chr20 32793460 ALU_umary_ALU_12140 UBLCP1 5.57 4.54E-08 1.21E-02 ALU trans 

chr13 90038686 ALU_umary_ALU_10010 PIM1 5.57 4.55E-08 1.21E-02 ALU trans 

chr11 13092200 ALU_umary_ALU_8387 RP5-902P8.10 5.56 4.70E-08 1.24E-02 ALU trans 

chr2 192982697 ALU_umary_ALU_1861 VCAN-AS1 5.55 4.83E-08 1.26E-02 ALU trans 

chr9 80704885 ALU_umary_ALU_7506 ZNF667-AS1 5.55 5.07E-08 1.32E-02 ALU trans 

chr7 65045619 SVA_umary_SVA_343 RP11-146F11.1 5.53 5.37E-08 1.38E-02 SVA trans 

chr7 85013802 ALU_umary_ALU_6166 CLCN2 5.53 5.51E-08 1.41E-02 ALU trans 

chr8 128119620 ALU_umary_ALU_7140 DHRS4-AS1 -5.53 5.53E-08 1.41E-02 ALU trans 

chr11 25108568 ALU_umary_ALU_8453 U1 5.52 5.74E-08 1.43E-02 ALU trans 

chr4 134922359 ALU_umary_ALU_3724 EGFL7 5.52 5.89E-08 1.45E-02 ALU trans 

chr7 18273084 ALU_umary_ALU_5868 TIMP2 5.51 6.11E-08 1.47E-02 ALU trans 

chr6 72753379 ALU_umary_ALU_5270 MT3 5.51 6.15E-08 1.47E-02 ALU trans 
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chr10 73193547 ALU_umary_ALU_8081 MAML2 -5.50 6.36E-08 1.51E-02 ALU trans 

chr5 116763098 ALU_umary_ALU_4607 SPTLC3 5.50 6.42E-08 1.52E-02 ALU trans 

chr14 30525258 L1_umary_LINE1_2526 TMEM63C 5.50 6.53E-08 1.54E-02 L1 trans 

chr8 122155287 ALU_umary_ALU_7101 P2RY2 5.49 6.64E-08 1.56E-02 ALU trans 

chr10 21192833 ALU_umary_ALU_7830 TMEM38A 5.49 6.81E-08 1.59E-02 ALU trans 

chr8 8920127 ALU_umary_ALU_6560 AF131215.2 5.48 7.12E-08 1.64E-02 ALU trans 

chr20 3242418 ALU_umary_ALU_12024 IGKV2-29 5.48 7.17E-08 1.65E-02 ALU trans 

chr6 32773435 ALU_umary_ALU_5079 TAP2 5.47 7.70E-08 1.76E-02 ALU cis 

chr5 146369626 ALU_umary_ALU_4737 RALA -5.46 7.88E-08 1.79E-02 ALU trans 

chr7 126661404 ALU_umary_ALU_6375 OTOF 5.46 7.94E-08 1.79E-02 ALU trans 

chr3 155818384 ALU_umary_ALU_2834 IGHV1-69 5.46 8.01E-08 1.79E-02 ALU trans 

chr3 44340304 ALU_umary_ALU_2324 MAPK9 5.46 8.02E-08 1.79E-02 ALU trans 

chr4 106550763 ALU_umary_ALU_3575 SEMA5A 5.45 8.45E-08 1.86E-02 ALU trans 

chr12 75931101 ALU_umary_ALU_9345 ENPP5 -5.44 8.76E-08 1.91E-02 ALU trans 

chr8 88410445 ALU_umary_ALU_6917 SNORA57 5.43 9.22E-08 1.99E-02 ALU trans 

chr11 114686177 ALU_umary_ALU_8857 RP11-566K19.6 5.43 9.30E-08 1.99E-02 ALU trans 

chr7 52789472 L1_umary_LINE1_1509 N6AMT2 5.43 9.33E-08 1.99E-02 L1 trans 

chr2 212707197 L1_umary_LINE1_504 GNG12 5.43 9.36E-08 1.99E-02 L1 trans 

chr14 51719000 ALU_umary_ALU_10302 TMX1 5.43 9.41E-08 2.00E-02 ALU cis 

chr4 86099317 ALU_umary_ALU_3472 PPFIBP1 5.43 9.49E-08 2.00E-02 ALU trans 

chr11 73562793 ALU_umary_ALU_8639 MRPL48 5.42 9.84E-08 2.04E-02 ALU cis 

chr1 51029967 ALU_umary_ALU_156 EPCAM 5.42 9.93E-08 2.05E-02 ALU trans 

chr5 122976151 ALU_umary_ALU_4639 RP11-575G13.2 5.42 9.95E-08 2.05E-02 ALU trans 

chr8 42039906 ALU_umary_ALU_6700 ENPP4 -5.41 1.03E-07 2.10E-02 ALU trans 

chr1 65572274 ALU_umary_ALU_214 MCOLN2 5.40 1.09E-07 2.16E-02 ALU trans 

chr2 189853875 ALU_umary_ALU_1846 SLC5A5 5.40 1.09E-07 2.16E-02 ALU trans 

chr1 169524859 L1_umary_LINE1_164 ATP5H 5.40 1.11E-07 2.17E-02 L1 trans 

chr10 105817214 ALU_umary_ALU_8203 AC005740.3 -5.40 1.11E-07 2.17E-02 ALU trans 

chr5 116897151 ALU_umary_ALU_4608 LRRC20 -5.39 1.12E-07 2.17E-02 ALU trans 

chr14 30854683 L1_umary_LINE1_2529 ADAD2 5.39 1.13E-07 2.17E-02 L1 trans 

chr3 5484122 ALU_umary_ALU_2116 RANBP17 5.39 1.15E-07 2.20E-02 ALU trans 

chr10 97668538 ALU_umary_ALU_8182 ENTPD1 5.39 1.16E-07 2.21E-02 ALU cis 

chr3 193354185 L1_umary_LINE1_769 RP11-175P19.2 5.39 1.16E-07 2.22E-02 L1 cis 

chr4 86607956 L1_umary_LINE1_885 IGHV3-32 5.38 1.19E-07 2.26E-02 L1 trans 

chr1 184950473 ALU_umary_ALU_643 MDK 5.38 1.19E-07 2.26E-02 ALU trans 

chr20 17860937 L1_umary_LINE1_2915 NPRL3 -5.37 1.26E-07 2.35E-02 L1 trans 

chr22 35180750 ALU_umary_ALU_12488 CCDC3 5.37 1.26E-07 2.35E-02 ALU trans 

chr17 49408800 ALU_umary_ALU_11342 POTEE 5.37 1.27E-07 2.36E-02 ALU trans 

chr2 186001780 ALU_umary_ALU_1824 GPR183 5.37 1.28E-07 2.36E-02 ALU trans 

chr7 142673652 ALU_umary_ALU_6458 RP4-730K3.3 5.37 1.28E-07 2.36E-02 ALU trans 

chr12 78396948 ALU_umary_ALU_9357 TIMP2 5.37 1.30E-07 2.39E-02 ALU trans 

chr7 46504534 ALU_umary_ALU_6008 RP11-452L6.7 5.36 1.32E-07 2.39E-02 ALU trans 
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Chr Pos TE Gene t Statistic P-value FDR TE subfamily eQTL type 
chr15 79167169 ALU_umary_ALU_10832 ADAMTS7 5.36 1.35E-07 2.44E-02 ALU cis 

chr20 26190974 ALU_umary_ALU_12132 LINC00969 5.36 1.36E-07 2.44E-02 ALU trans 

chr11 90530723 ALU_umary_ALU_8730 FN1 5.36 1.37E-07 2.45E-02 ALU trans 

chr6 102220590 ALU_umary_ALU_5428 CLDN12 5.35 1.39E-07 2.48E-02 ALU trans 

chr11 88908952 ALU_umary_ALU_8717 HMGB1P1 5.35 1.40E-07 2.48E-02 ALU trans 

chr3 76222309 ALU_umary_ALU_2455 CREM 5.35 1.40E-07 2.48E-02 ALU trans 

chr11 100911793 ALU_umary_ALU_8790 USP32 -5.34 1.46E-07 2.57E-02 ALU trans 

chr21 28249247 ALU_umary_ALU_12342 LZIC 5.34 1.49E-07 2.59E-02 ALU trans 

chr21 26354237 ALU_umary_ALU_12333 NEDD9 -5.34 1.50E-07 2.59E-02 ALU trans 

chr13 50912089 ALU_umary_ALU_9780 FBN2 5.34 1.52E-07 2.61E-02 ALU trans 

chr15 53956115 L1_umary_LINE1_2651 TPCN2 -5.33 1.58E-07 2.68E-02 L1 trans 

chr21 27163622 SVA_umary_SVA_808 RP11-22P6.3 5.32 1.65E-07 2.76E-02 SVA trans 

chr11 23572069 ALU_umary_ALU_8441 SEMA3A 5.31 1.73E-07 2.85E-02 ALU trans 

chr19 18835612 SVA_umary_SVA_743 SSTR3 5.31 1.73E-07 2.85E-02 SVA trans 

chr1 112992009 ALU_umary_ALU_454 CTTNBP2NL -5.31 1.74E-07 2.85E-02 ALU cis 

chr17 70696176 ALU_umary_ALU_11447 TMEM159 5.31 1.74E-07 2.85E-02 ALU trans 

chr11 117683506 ALU_umary_ALU_8864 TINAG 5.31 1.77E-07 2.88E-02 ALU trans 

chr8 115604486 ALU_umary_ALU_7074 RASSF8 5.31 1.79E-07 2.89E-02 ALU trans 

chr3 195829642 SVA_umary_SVA_202 PDLIM4 5.30 1.79E-07 2.89E-02 SVA trans 

chr20 47206176 ALU_umary_ALU_12190 IGHV1OR15-2 5.30 1.80E-07 2.89E-02 ALU trans 

chr1 112103110 ALU_umary_ALU_444 NPIPB15 5.30 1.80E-07 2.89E-02 ALU trans 

chr11 47806655 ALU_umary_ALU_8566 TBC1D1 -5.30 1.83E-07 2.90E-02 ALU trans 

chr1 102920544 ALU_umary_ALU_412 RP11-670E13.5 5.30 1.84E-07 2.90E-02 ALU trans 

chr8 87770103 ALU_umary_ALU_6912 IGKV1-13 5.30 1.88E-07 2.94E-02 ALU trans 

chr5 56830734 ALU_umary_ALU_4298 CXCL9 5.29 1.95E-07 3.03E-02 ALU trans 

chr6 153633385 ALU_umary_ALU_5701 TRAPPC8 5.29 1.97E-07 3.04E-02 ALU trans 

chr4 190684483 SVA_umary_SVA_231 IGLV10-54 -5.28 2.02E-07 3.09E-02 SVA trans 

chr6 114091219 L1_umary_LINE1_1379 GVINP1 5.28 2.02E-07 3.09E-02 L1 trans 

chr4 79289449 ALU_umary_ALU_3430 RP11-165P7.1 5.28 2.04E-07 3.11E-02 ALU trans 

chr2 114106446 ALU_umary_ALU_1441 ACY1 5.28 2.05E-07 3.12E-02 ALU trans 

chr10 83042769 ALU_umary_ALU_8107 NEK4 5.28 2.08E-07 3.14E-02 ALU trans 

chr1 212765848 ALU_umary_ALU_767 AC007551.2 5.27 2.10E-07 3.16E-02 ALU trans 

chr20 15513281 ALU_umary_ALU_12084 CTD-3065B20.2 5.27 2.19E-07 3.26E-02 ALU trans 

chr18 15325826 ALU_umary_ALU_11565 FXR2 5.26 2.23E-07 3.30E-02 ALU trans 

chr3 157369140 ALU_umary_ALU_2844 RGS22 5.26 2.26E-07 3.31E-02 ALU trans 

chr3 144308219 ALU_umary_ALU_2765 FITM1 5.26 2.27E-07 3.31E-02 ALU trans 

chr4 43399986 ALU_umary_ALU_3259 TPCN2 5.25 2.32E-07 3.34E-02 ALU trans 

chr8 87315040 L1_umary_LINE1_1704 EMBP1 -5.25 2.32E-07 3.34E-02 L1 trans 

chr8 110101605 ALU_umary_ALU_7037 AC007881.4 5.25 2.32E-07 3.34E-02 ALU trans 

chr11 103736375 ALU_umary_ALU_8803 RP11-578F21.9 5.25 2.36E-07 3.37E-02 ALU trans 

chr8 75448823 ALU_umary_ALU_6841 HNRNPA1P10 5.25 2.39E-07 3.40E-02 ALU trans 

chr3 186372141 L1_umary_LINE1_761 TBC1D1 5.25 2.40E-07 3.40E-02 L1 trans 
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chr12 43256994 L1_umary_LINE1_2278 MAML2 -5.25 2.40E-07 3.40E-02 L1 trans 

chr15 62606061 ALU_umary_ALU_10767 SNORA73B 5.24 2.44E-07 3.44E-02 ALU trans 

chr21 28221359 ALU_umary_ALU_12341 KANSL1-AS1 5.24 2.45E-07 3.46E-02 ALU trans 

chr12 70788935 ALU_umary_ALU_9313 CDC5L -5.24 2.46E-07 3.46E-02 ALU trans 

chr6 126423676 ALU_umary_ALU_5562 WSCD1 5.24 2.47E-07 3.47E-02 ALU trans 

chr1 156705360 ALU_umary_ALU_528 CEP72 5.24 2.49E-07 3.48E-02 ALU trans 

chr11 7352462 ALU_umary_ALU_8361 PCDHGA7 5.24 2.52E-07 3.49E-02 ALU trans 

chr10 48419952 ALU_umary_ALU_7936 UAP1L1 5.24 2.55E-07 3.52E-02 ALU trans 

chr5 169376692 SVA_umary_SVA_268 PPFIA3 5.23 2.60E-07 3.54E-02 SVA trans 

chr7 42647660 ALU_umary_ALU_5994 RP11-336N8.4 -5.23 2.61E-07 3.54E-02 ALU trans 

chr4 26438630 ALU_umary_ALU_3159 RALA -5.23 2.61E-07 3.54E-02 ALU trans 

chr2 126051106 ALU_umary_ALU_1497 ATP8B1 5.23 2.61E-07 3.54E-02 ALU trans 

chr8 17336021 ALU_umary_ALU_6603 PKIB 5.23 2.63E-07 3.56E-02 ALU trans 

chr6 124865521 ALU_umary_ALU_5553 SOX30 5.23 2.68E-07 3.60E-02 ALU trans 

chr5 137130159 L1_umary_LINE1_1215 RP11-578F21.10 5.23 2.68E-07 3.60E-02 L1 trans 

chr4 100740869 ALU_umary_ALU_3545 AOAH 5.22 2.71E-07 3.64E-02 ALU trans 

chr6 122157421 SVA_umary_SVA_305 RP11-124N14.3 -5.22 2.79E-07 3.71E-02 SVA trans 

chr20 9605206 ALU_umary_ALU_12057 IGHV4-61 5.22 2.82E-07 3.74E-02 ALU trans 

chr1 100994221 ALU_umary_ALU_402 PHF2 -5.22 2.82E-07 3.74E-02 ALU trans 

chr3 29550384 ALU_umary_ALU_2253 ST3GAL6-AS1 5.21 2.86E-07 3.77E-02 ALU trans 

chr6 87678642 ALU_umary_ALU_5348 IGHV7-81 5.21 2.90E-07 3.82E-02 ALU trans 

chr3 47782873 ALU_umary_ALU_2333 PLA2G4C -5.21 2.95E-07 3.87E-02 ALU trans 

chr2 226970099 ALU_umary_ALU_2028 FERMT1 5.21 2.96E-07 3.88E-02 ALU trans 

chr1 58071869 ALU_umary_ALU_182 CD86 -5.20 2.99E-07 3.90E-02 ALU trans 

chr10 14396698 ALU_umary_ALU_7798 ZBTB38 5.20 3.05E-07 3.95E-02 ALU trans 

chr16 74897618 ALU_umary_ALU_11115 GUCY1B3 5.20 3.05E-07 3.95E-02 ALU trans 

chr8 79813676 L1_umary_LINE1_1693 ABCA4 5.20 3.11E-07 3.97E-02 L1 trans 

chr4 81899822 ALU_umary_ALU_3448 SAPCD2 -5.19 3.14E-07 3.99E-02 ALU trans 

chr8 77248370 ALU_umary_ALU_6854 SPRED2 5.19 3.15E-07 3.99E-02 ALU trans 

chr4 135130281 ALU_umary_ALU_3726 EGFL7 5.19 3.19E-07 4.03E-02 ALU trans 

chr5 89450997 L1_umary_LINE1_1164 ST8SIA1 -5.19 3.20E-07 4.03E-02 L1 trans 

chr18 5411665 ALU_umary_ALU_11513 RHBDL1 5.19 3.20E-07 4.03E-02 ALU trans 

chr2 160159011 ALU_umary_ALU_1684 LINC00638 5.19 3.30E-07 4.11E-02 ALU trans 

chr6 46310306 L1_umary_LINE1_1293 MAML2 -5.17 3.49E-07 4.29E-02 L1 trans 

chr5 33633348 L1_umary_LINE1_1089 MAML2 -5.17 3.55E-07 4.32E-02 L1 trans 

chr8 50147620 ALU_umary_ALU_6712 RP11-124N14.3 -5.17 3.55E-07 4.32E-02 ALU trans 

chr5 91031026 ALU_umary_ALU_4463 NRIP1 5.17 3.56E-07 4.32E-02 ALU trans 

chr15 24591239 ALU_umary_ALU_10560 LINC00649 5.17 3.61E-07 4.36E-02 ALU trans 

chr1 64850193 SVA_umary_SVA_35 NMT2 -5.17 3.61E-07 4.36E-02 SVA trans 

chr11 25605138 ALU_umary_ALU_8456 AC078899.1 -5.16 3.70E-07 4.42E-02 ALU trans 

chr17 54947583 ALU_umary_ALU_11371 DGKE -5.16 3.70E-07 4.42E-02 ALU cis 

chr14 22578806 ALU_umary_ALU_10141 PRIM1 -5.16 3.70E-07 4.42E-02 ALU trans 
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chr3 82615586 SVA_umary_SVA_174 BTG1 5.16 3.70E-07 4.42E-02 SVA trans 

chr5 55167661 ALU_umary_ALU_4287 RP11-122K13.12 5.16 3.74E-07 4.45E-02 ALU trans 

chr1 64958078 ALU_umary_ALU_211 SAPCD2 5.16 3.76E-07 4.46E-02 ALU trans 

chr4 76993824 ALU_umary_ALU_3412 RAB3IP 5.16 3.83E-07 4.51E-02 ALU trans 

chr9 94058487 L1_umary_LINE1_1863 IGLV2-34 5.15 3.84E-07 4.51E-02 L1 trans 

chr10 29105298 ALU_umary_ALU_7874 FTH1P12 -5.15 3.86E-07 4.52E-02 ALU trans 

chr1 178495286 ALU_umary_ALU_620 BRD7P3 5.15 3.91E-07 4.56E-02 ALU trans 

chr3 124568685 ALU_umary_ALU_2682 CHI3L1 5.15 3.92E-07 4.56E-02 ALU trans 

chr8 50550379 ALU_umary_ALU_6716 LGALS4 5.15 3.96E-07 4.58E-02 ALU trans 

chr10 58902214 ALU_umary_ALU_7994 DDI2 5.15 3.98E-07 4.59E-02 ALU trans 

chr10 94571333 ALU_umary_ALU_8168 ANKRD36BP2 5.14 4.13E-07 4.70E-02 ALU trans 

chr6 32687172 ALU_umary_ALU_5076 ATP4B 5.14 4.18E-07 4.73E-02 ALU trans 

chr3 137565396 ALU_umary_ALU_2733 FAM151B 5.14 4.18E-07 4.73E-02 ALU trans 

chr13 55438087 ALU_umary_ALU_9798 PCDHGA3 5.14 4.20E-07 4.73E-02 ALU trans 

chr6 153859178 ALU_umary_ALU_5702 PCBP3 5.14 4.20E-07 4.73E-02 ALU trans 

chr8 1310538 ALU_umary_ALU_6532 SAMD3 5.13 4.35E-07 4.83E-02 ALU trans 

chr11 9758001 ALU_umary_ALU_8374 SOCS2-AS1 5.13 4.36E-07 4.83E-02 ALU trans 

chr7 10215359 ALU_umary_ALU_5815 MEST 5.13 4.36E-07 4.83E-02 ALU trans 

chr8 107230078 ALU_umary_ALU_7010 TBC1D9B 5.13 4.37E-07 4.83E-02 ALU trans 

chr12 10234202 ALU_umary_ALU_8992 DHRS4-AS1 5.13 4.40E-07 4.85E-02 ALU trans 

chr7 128215395 SVA_umary_SVA_355 IGLL1 5.12 4.49E-07 4.91E-02 SVA trans 

chr4 176281836 ALU_umary_ALU_3956 SLC22A31 5.12 4.52E-07 4.93E-02 ALU trans 

chr17 43818955 ALU_umary_ALU_11327 AC022182.1 5.12 4.55E-07 4.94E-02 ALU trans 

chr4 180698483 ALU_umary_ALU_3979 CTSF 5.12 4.56E-07 4.94E-02 ALU trans 

chr9 72777422 L1_umary_LINE1_1833 SNORD3B-2 5.12 4.58E-07 4.94E-02 L1 trans 

chr4 123796599 ALU_umary_ALU_3659 PNPLA3 5.12 4.60E-07 4.94E-02 ALU trans 

chr11 55771332 ALU_umary_ALU_8585 CXCL12 5.12 4.62E-07 4.94E-02 ALU trans 

chr2 212708356 ALU_umary_ALU_1959 CECR2 5.12 4.67E-07 4.97E-02 ALU trans 

chr6 101194045 SVA_umary_SVA_298 PDK2 5.11 4.71E-07 4.99E-02 SVA trans 

chr4 175534305 ALU_umary_ALU_3953 CDK11A 5.11 4.71E-07 4.99E-02 ALU trans 
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Table 4 Functional enrichment of genes that are associated with TE-eQTL  

Gene Set Name 
# Genes 
in Gene 
Set (K) 

Description 

# Genes 
in 

Overlap 
(k) 

k/K p-value FDR q-value 

KEGG INTESTINAL 
IMMUNE NETWORK FOR 

IGA PRODUCTION 
48 

Intestinal immune 
network for IgA 

production 
11 0.2292 4.08E-14 4.40E-11 

KEGG TYPE I DIABETES 
MELLITUS 44 Type I diabetes 

mellitus 8 0.1818 9.41E-10 5.07E-07 

KEGG CELL ADHESION 
MOLECULES CAMS 134 

Cell adhesion 
molecules 
(CAMs) 

11 0.0821 4.29E-09 1.54E-06 

KEGG ALLOGRAFT 
REJECTION 38 Allograft rejection 7 0.1842 9.83E-09 2.65E-06 

KEGG GRAFT VERSUS 
HOST DISEASE 42 Graft-versus-host 

disease 7 0.1667 2.05E-08 4.42E-06 

REACTOME 
TRANSLOCATION OF ZAP 
70 TO IMMUNOLOGICAL 

SYNAPSE 

14 

Genes involved in 
Translocation of 

ZAP-70 to 
Immunological 

synapse 

5 0.3571 3.57E-08 6.41E-06 

KEGG LEISHMANIA 
INFECTION 72 Leishmania 

infection 8 0.1111 5.34E-08 8.21E-06 

KEGG ASTHMA 30 Asthma 6 0.2 6.85E-08 9.21E-06 
REACTOME 

PHOSPHORYLATION OF 
CD3 AND TCR ZETA 

CHAINS 

16 

Genes involved in 
Phosphorylation 
of CD3 and TCR 

zeta chains 

5 0.3125 7.70E-08 9.21E-06 

KEGG AUTOIMMUNE 
THYROID DISEASE 53 Autoimmune 

thyroid disease 7 0.1321 1.09E-07 1.18E-05 

REACTOME PD1 
SIGNALING 18 Genes involved in 

PD-1 signaling 5 0.2778 1.49E-07 1.46E-05 

REACTOME 
COSTIMULATION BY THE 

CD28 FAMILY 
63 

Genes involved in 
Costimulation by 
the CD28 family 

7 0.1111 3.70E-07 3.32E-05 

KEGG VIRAL 
MYOCARDITIS 73 Viral myocarditis 7 0.0959 1.02E-06 8.48E-05 

REACTOME GENERATION 
OF SECOND MESSENGER 

MOLECULES 
27 

Genes involved in 
Generation of 

second messenger 
molecules 

5 0.1852 1.33E-06 1.03E-04 

REACTOME ADAPTIVE 
IMMUNE SYSTEM 539 

Genes involved in 
Adaptive Immune 

System 
16 0.0297 2.40E-06 1.72E-04 

KEGG ANTIGEN 
PROCESSING AND 

PRESENTATION 
89 

Antigen 
processing and 

presentation 
7 0.0787 3.92E-06 2.64E-04 

REACTOME MHC CLASS II 
ANTIGEN PRESENTATION 91 

Genes involved in 
MHC class II 

antigen 
presentation 

7 0.0769 4.55E-06 2.88E-04 

REACTOME IMMUNE 
SYSTEM 933 Genes involved in 

Immune System 21 0.0225 5.29E-06 3.17E-04 

REACTOME INTERFERON 
GAMMA SIGNALING 63 

Genes involved in 
Interferon gamma 

signaling 
6 0.0952 6.42E-06 3.64E-04 
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Gene Set Name 
# Genes 
in Gene 
Set (K) 

Description 

# Genes 
in 

Overlap 
(k) 

k/K p-value FDR q-value 

REACTOME 
DOWNSTREAM TCR 

SIGNALING 
37 

Genes involved in 
Downstream TCR 

signaling 
5 0.1351 6.78E-06 3.65E-04 

REACTOME TCR 
SIGNALING 54 Genes involved in 

TCR signaling 5 0.0926 4.45E-05 2.28E-03 

KEGG SYSTEMIC LUPUS 
ERYTHEMATOSUS 140 Systemic lupus 

erythematosus 7 0.05 7.48E-05 3.66E-03 

KEGG PYRIMIDINE 
METABOLISM 98 Pyrimidine 

metabolism 6 0.0612 8.05E-05 3.77E-03 

KEGG PRIMARY 
IMMUNODEFICIENCY 35 Primary 

immunodeficiency 4 0.1143 1.16E-04 5.21E-03 

BIOCARTA TH1TH2 
PATHWAY 19 Th1/Th2 

Differentiation 3 0.1579 3.29E-04 1.42E-02 

BIOCARTA CTLA4 
PATHWAY 21 

The Co-
Stimulatory 

Signal During T-
cell Activation 

3 0.1429 4.47E-04 1.85E-02 

KEGG CYTOKINE 
CYTOKINE RECEPTOR 

INTERACTION 
267 

Cytokine-cytokine 
receptor 

interaction 
8 0.03 7.67E-04 2.97E-02 

REACTOME CHEMOKINE 
RECEPTORS BIND 

CHEMOKINES 
57 

Genes involved in 
Chemokine 

receptors bind 
chemokines 

4 0.0702 7.73E-04 2.97E-02 

REACTOME GAP 
JUNCTION TRAFFICKING 27 

Genes involved in 
Gap junction 
trafficking 

3 0.1111 9.53E-04 3.54E-02 

KEGG PURINE 
METABOLISM 159 Purine 

metabolism 6 0.0377 1.08E-03 3.76E-02 

REACTOME INTERFERON 
SIGNALING 159 

Genes involved in 
Interferon 
Signaling 

6 0.0377 1.08E-03 3.76E-02 
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Table 5 Results for conditional association controls 

SNP TE Gene Gene ID Conditional P-
value Group 

rs113175928 ALU_umary_ALU_6806 XKR9 ENSG00000221947 1.12E-22 EUR 

rs56289286 SVA_umary_SVA_706 LRRC37A4P ENSG00000214425 7.36E-15 EUR 

rs140032472 ALU_umary_ALU_9602 LINC00422 ENSG00000224429 2.81E-14 EUR 

rs150156751 ALU_umary_ALU_11979 ZNF880 ENSG00000221923 4.93E-13 EUR 

rs11485298 L1_umary_LINE1_61 CRYZ ENSG00000116791 1.67E-12 EUR 

rs138311123 SVA_umary_SVA_706 LRRC37A ENSG00000176681 1.21E-10 EUR 

rs138311123 SVA_umary_SVA_705 LRRC37A ENSG00000176681 2.81E-09 EUR 

rs56289286 SVA_umary_SVA_705 LRRC37A4P ENSG00000214425 8.64E-09 EUR 

rs9892659 ALU_umary_ALU_11371 DGKE ENSG00000153933 7.31E-08 EUR 

rs138311123 SVA_umary_SVA_704 LRRC37A ENSG00000176681 1.37E-07 EUR 

rs56289286 SVA_umary_SVA_704 LRRC37A4P ENSG00000214425 4.27E-07 EUR 

rs116628019 SVA_umary_SVA_282 HLA-DPA1 ENSG00000231389 5.16E-07 EUR 

rs12104210 ALU_umary_ALU_11997 ZFP28 ENSG00000196867 6.41E-07 EUR 

rs12150699 ALU_umary_ALU_11754 PIGN ENSG00000197563 7.27E-07 EUR 

rs138311123 SVA_umary_SVA_706 LRRC37A2 ENSG00000238083 1.37E-06 EUR 

rs35854157 ALU_umary_ALU_1256 SLC1A4 ENSG00000115902 3.79E-06 EUR 

rs71664293 ALU_umary_ALU_3295 SRD5A3 ENSG00000128039 6.06E-06 EUR 

rs138311123 SVA_umary_SVA_705 LRRC37A2 ENSG00000238083 7.40E-06 EUR 

rs9399043 ALU_umary_ALU_5602 RPS12 ENSG00000112306 9.13E-06 EUR 

rs140032472 ALU_umary_ALU_9603 LINC00422 ENSG00000224429 1.19E-05 EUR 

rs142039218 SVA_umary_SVA_706 GOSR2 ENSG00000108433 1.44E-05 EUR 

rs11714944 ALU_umary_ALU_2337 NME6 ENSG00000172113 2.11E-05 EUR 

rs116405062 ALU_umary_ALU_5075 HLA-DRB1 ENSG00000196126 4.54E-05 EUR 

rs9274660 ALU_umary_ALU_5075 HLA-DQB1 ENSG00000179344 6.26E-05 EUR 

rs116786525 ALU_umary_ALU_5053 HLA-G ENSG00000204632 9.13E-05 EUR 

rs35801758 ALU_umary_ALU_12145 CPNE1 ENSG00000214078 1.03E-04 EUR 

rs11070297 ALU_umary_ALU_10654 ZFYVE19 ENSG00000166140 3.16E-04 EUR 

rs175037 ALU_umary_ALU_10401 EIF2B2 ENSG00000119718 3.72E-04 EUR 

rs1660559 ALU_umary_ALU_884 RP4-781K5.6 ENSG00000230628 8.37E-04 EUR 

rs399970 ALU_umary_ALU_11997 ZNF470 ENSG00000197016 9.49E-04 EUR 

rs1061810 ALU_umary_ALU_8559 HSD17B12 ENSG00000149084 1.93E-03 EUR 

rs11160042 SVA_umary_SVA_615 NDUFB1 ENSG00000183648 2.31E-03 EUR 

rs2647071 SVA_umary_SVA_280 HLA-DRB5 ENSG00000198502 2.61E-03 EUR 

rs10193212 L1_umary_LINE1_477 MFSD6 ENSG00000151690 2.88E-03 EUR 

rs10431506 ALU_umary_ALU_9236 XRCC6BP1 ENSG00000166896 3.26E-03 EUR 

rs2647071 ALU_umary_ALU_5072 HLA-DRB5 ENSG00000198502 4.17E-03 EUR 

rs12629 ALU_umary_ALU_970 RNASEH1-
AS1 ENSG00000234171 4.24E-03 EUR 

rs3824458 SVA_umary_SVA_401 B4GALT1 ENSG00000086062 4.25E-03 EUR 

rs2647071 ALU_umary_ALU_5079 HLA-DRB5 ENSG00000198502 5.18E-03 EUR 
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value Group 

rs10431506 ALU_umary_ALU_9234 XRCC6BP1 ENSG00000166896 5.51E-03 EUR 

rs139480590 SVA_umary_SVA_706 CRHR1 ENSG00000120088 7.85E-03 EUR 

rs74687091 ALU_umary_ALU_7578 LINC00476 ENSG00000175611 1.19E-02 EUR 

rs2621323 ALU_umary_ALU_5079 TAP2 ENSG00000204267 1.39E-02 EUR 

rs4634177 SVA_umary_SVA_203 ZNF718 ENSG00000250312 2.40E-02 EUR 

rs56298119 ALU_umary_ALU_10302 TMX1 ENSG00000139921 2.70E-02 EUR 

rs7679215 ALU_umary_ALU_3997 CENPU ENSG00000151725 3.72E-02 EUR 

rs4309324 ALU_umary_ALU_10302 TRIM9 ENSG00000100505 5.14E-02 EUR 

rs71526018 ALU_umary_ALU_5888 CCDC126 ENSG00000169193 5.61E-02 EUR 

rs12200674 ALU_umary_ALU_5583 TMEM200A ENSG00000164484 6.92E-02 EUR 

rs74904447 ALU_umary_ALU_6178 TP53TG1 ENSG00000182165 7.76E-02 AFR 

rs10973388 ALU_umary_ALU_7420 POLR1E ENSG00000137054 1.38E-01 EUR 

rs7326010 ALU_umary_ALU_9777 ARL11 ENSG00000152213 2.26E-01 AFR 

rs3176891 ALU_umary_ALU_8182 ENTPD1 ENSG00000138185 2.53E-01 EUR 

rs199444 SVA_umary_SVA_706 WNT3 ENSG00000108379 2.71E-01 EUR 

rs2647071 ALU_umary_ALU_5075 HLA-DRB5 ENSG00000198502 3.07E-01 EUR 

rs35084227 L1_umary_LINE1_353 PLGLB1 ENSG00000183281 4.77E-01 EUR 

rs887307 SVA_umary_SVA_532 AKAP3 ENSG00000111254 4.90E-01 EUR 

rs139348312 SVA_umary_SVA_5 C1orf167 ENSG00000215910 5.52E-01 EUR 

rs3998867 SVA_umary_SVA_450 SLC25A16 ENSG00000122912 5.60E-01 EUR 
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Table 6 Results for regional association controls 

Chr Pos TE Gene P-value Global 
FDR 

Regional 
FDR 

TE 
subfamily 

eQTL 
type 

chr14 82223469 ALU_umary_ALU
_10437 LRRC20 7.57E-10 1.09E-05 5.77E-04 ALU trans 

chr8 133725454 ALU_umary_ALU
_7169 FAM65B 1.06E-09 9.31E-06 7.30E-04 ALU trans 

chr15 80662580 ALU_umary_ALU
_10836 LGALS9B 1.47E-08 2.20E-04 5.78E-03 ALU trans 

chr3 6525411 ALU_umary_ALU
_2124 GCLM 1.87E-08 3.24E-04 6.73E-03 ALU trans 

chr15 81392597 ALU_umary_ALU
_10841 PSD4 2.47E-08 3.53E-04 8.38E-03 ALU trans 

chr6 104772669 ALU_umary_ALU
_5447 HSPE1P8 2.74E-08 3.80E-04 8.92E-03 ALU trans 

chr7 6314063 ALU_umary_ALU
_5788 REL 3.96E-08 4.24E-04 1.10E-02 ALU trans 

chr18 50097757 L1_umary_LINE1
_2823 TP53BP2 4.13E-08 2.54E-04 1.13E-02 L1 trans 

chr14 66934461 ALU_umary_ALU
_10374 SSPN 4.24E-08 2.60E-04 1.14E-02 ALU trans 

chr3 44340304 ALU_umary_ALU
_2324 MAPK9 8.02E-08 9.20E-04 1.79E-02 ALU trans 

chr12 75931101 ALU_umary_ALU
_9345 ENPP5 8.76E-08 1.21E-03 1.91E-02 ALU trans 

chr7 52789472 L1_umary_LINE1
_1509 N6AMT2 9.33E-08 1.57E-03 1.99E-02 L1 trans 

chr4 86099317 ALU_umary_ALU
_3472 PPFIBP1 9.49E-08 1.15E-03 2.00E-02 ALU trans 

chr10 105817214 ALU_umary_ALU
_8203 

AC005740
.3 1.11E-07 1.46E-03 2.17E-02 ALU trans 

chr20 17860937 L1_umary_LINE1
_2915 NPRL3 1.26E-07 9.48E-04 2.35E-02 L1 trans 

chr11 88908952 ALU_umary_ALU
_8717 

HMGB1P
1 1.40E-07 2.11E-03 2.48E-02 ALU trans 

chr11 100911793 ALU_umary_ALU
_8790 USP32 1.46E-07 5.68E-04 2.57E-02 ALU trans 

chr19 18835612 SVA_umary_SVA
_743 SSTR3 1.73E-07 2.56E-03 2.85E-02 SVA trans 

chr17 70696176 ALU_umary_ALU
_11447 TMEM159 1.74E-07 2.73E-03 2.85E-02 ALU trans 

chr1 102920544 ALU_umary_ALU
_412 

RP11-
670E13.5 1.84E-07 2.75E-03 2.90E-02 ALU trans 

chr8 87315040 L1_umary_LINE1
_1704 EMBP1 2.32E-07 2.02E-03 3.34E-02 L1 trans 

chr3 186372141 L1_umary_LINE1
_761 TBC1D1 2.40E-07 3.56E-03 3.40E-02 L1 trans 

chr21 28221359 ALU_umary_ALU
_12341 

KANSL1-
AS1 2.45E-07 1.82E-03 3.46E-02 ALU trans 

chr12 70788935 ALU_umary_ALU
_9313 CDC5L 2.46E-07 2.52E-03 3.46E-02 ALU trans 

chr7 42647660 ALU_umary_ALU
_5994 

RP11-
336N8.4 2.61E-07 3.70E-03 3.54E-02 ALU trans 

chr10 14396698 ALU_umary_ALU
_7798 ZBTB38 3.05E-07 2.90E-03 3.95E-02 ALU trans 

chr2 160159011 ALU_umary_ALU
_1684 

LINC0063
8 3.30E-07 4.47E-03 4.11E-02 ALU trans 

chr3 82615586 SVA_umary_SVA
_174 BTG1 3.70E-07 5.18E-03 4.42E-02 SVA trans 

chr4 76993824 ALU_umary_ALU
_3412 RAB3IP 3.83E-07 5.26E-03 4.51E-02 ALU trans 

chr1 178495286 ALU_umary_ALU
_620 BRD7P3 3.91E-07 2.63E-03 4.56E-02 ALU trans 

chr8 107230078 ALU_umary_ALU
_7010 TBC1D9B 4.37E-07 5.80E-03 4.83E-02 ALU trans 

chr6 101194045 SVA_umary_SVA
_298 PDK2 4.71E-07 6.17E-03 4.99E-02 SVA trans 
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Chr Pos TE Gene P-value Global 
FDR 

Regional 
FDR 

TE 
subfamily 

eQTL 
type 

chr4 175534305 ALU_umary_ALU
_3953 CDK11A 4.71E-07 6.61E-03 4.99E-02 ALU trans 
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Table 7 eQTL results for known Pax5 target genes that are associated with Alu-7481 

Gene t Statistic P-value FDR eQTL type 

PIK3AP1 5.63 3.13E-08 9.42E-03 trans 

ZSCAN23 5.45 8.54E-08 1.87E-02 trans 

REL 5.43 9.55E-08 2.00E-02 trans 

TBC1D1 5.03 7.15E-07 6.16E-02 trans 

GPR183 4.84 1.80E-06 9.49E-02 trans 

CCDC19 4.78 2.43E-06 1.08E-01 trans 

RAB27A 4.74 2.93E-06 1.18E-01 trans 

MYO7B 4.71 3.30E-06 1.24E-01 trans 

ARHGEF7 4.67 3.92E-06 1.33E-01 trans 

C7orf50 4.47 9.93E-06 1.89E-01 trans 

STK17B 4.43 1.18E-05 2.03E-01 trans 

CHMP4B 4.36 1.63E-05 2.26E-01 trans 

TMEM38A 4.36 1.65E-05 2.26E-01 trans 

ACTR2 4.30 2.08E-05 2.44E-01 trans 

TMEM37 4.28 2.27E-05 2.51E-01 trans 

BMPR1A 4.24 2.75E-05 2.66E-01 trans 

NOL7 4.16 3.82E-05 2.91E-01 trans 

SEMA7A 4.15 4.00E-05 2.94E-01 trans 

B3GNT2 4.06 5.72E-05 3.26E-01 trans 

PIKFYVE 4.06 5.77E-05 3.27E-01 trans 

CAPZA1 4.06 5.86E-05 3.27E-01 trans 

ESAM 4.06 5.88E-05 3.27E-01 trans 

DOCK9 4.05 5.94E-05 3.28E-01 trans 

UBL3 4.05 5.97E-05 3.28E-01 trans 

TMEM123 4.04 6.25E-05 3.32E-01 trans 

CD40 4.03 6.49E-05 3.36E-01 trans 

PTPN2 4.01 7.00E-05 3.43E-01 trans 

CD82 4.01 7.10E-05 3.44E-01 trans 

CSK 4.00 7.28E-05 3.47E-01 trans 

KLF3 4.00 7.48E-05 3.50E-01 trans 

UBE3A 3.94 9.33E-05 3.69E-01 trans 

ARHGEF1 3.93 9.81E-05 3.74E-01 trans 

NT5C 3.93 1.00E-04 3.76E-01 trans 

STRN 3.93 1.00E-04 3.76E-01 trans 

HIVEP2 3.91 1.05E-04 3.80E-01 trans 

STAP1 3.89 1.16E-04 3.90E-01 trans 

MGAT5 3.88 1.23E-04 3.95E-01 trans 

TSSC1 3.86 1.30E-04 4.02E-01 trans 

LILRB2 3.83 1.44E-04 4.13E-01 trans 
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Gene t Statistic P-value FDR eQTL type 

DNAJA2 3.82 1.52E-04 4.18E-01 trans 

DHRS7 3.81 1.58E-04 4.21E-01 trans 

LEMD3 3.79 1.69E-04 4.27E-01 trans 

PRMT6 3.77 1.83E-04 4.35E-01 trans 

RBM43 3.74 2.09E-04 4.47E-01 trans 

TET3 3.74 2.11E-04 4.48E-01 trans 

RAB28 3.73 2.18E-04 4.51E-01 trans 

SH2D3A 3.73 2.18E-04 4.51E-01 trans 

NXPH3 3.72 2.29E-04 4.56E-01 trans 

HESX1 3.71 2.30E-04 4.57E-01 trans 

CR2 3.71 2.31E-04 4.57E-01 trans 

GADD45B 3.71 2.38E-04 4.60E-01 trans 

JAK1 3.69 2.55E-04 4.67E-01 trans 

DTNBP1 3.67 2.68E-04 4.72E-01 trans 

AGGF1 3.66 2.86E-04 4.78E-01 trans 

CHMP2A 3.65 2.96E-04 4.82E-01 trans 

INO80C 3.64 3.03E-04 4.84E-01 trans 

SLC46A3 3.63 3.13E-04 4.87E-01 trans 

VANGL1 3.63 3.15E-04 4.88E-01 trans 

COASY 3.62 3.25E-04 4.91E-01 trans 

SFT2D2 3.61 3.35E-04 4.95E-01 trans 

GPSM3 3.61 3.44E-04 4.97E-01 trans 

KIF26B 3.60 3.55E-04 5.00E-01 trans 

RCSD1 3.59 3.71E-04 5.04E-01 trans 

MRPS18A 3.58 3.85E-04 5.08E-01 trans 

IFT52 3.58 3.87E-04 5.08E-01 trans 

SETBP1 3.56 4.12E-04 5.15E-01 trans 

ASPHD2 3.54 4.37E-04 5.21E-01 trans 

FRY 3.54 4.40E-04 5.22E-01 trans 

PTPN22 3.54 4.49E-04 5.24E-01 trans 

SH3RF1 3.53 4.51E-04 5.24E-01 trans 

LNPEP 3.51 4.89E-04 5.33E-01 trans 

FAM188B 3.50 5.08E-04 5.37E-01 trans 

PSAP 3.50 5.20E-04 5.40E-01 trans 

CD38 3.48 5.50E-04 5.45E-01 trans 

RAB8B 3.48 5.54E-04 5.46E-01 trans 

ATF6 3.48 5.57E-04 5.46E-01 trans 

OXCT1 3.48 5.58E-04 5.47E-01 trans 

XPR1 3.47 5.76E-04 5.50E-01 trans 

DEK 3.46 5.90E-04 5.52E-01 trans 

ZCCHC7 3.43 6.68E-04 5.65E-01 trans 

CD19 3.42 6.88E-04 5.68E-01 trans 
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Gene t Statistic P-value FDR eQTL type 

PHOSPHO1 3.41 7.03E-04 5.70E-01 trans 

PLCL2 3.41 7.20E-04 5.72E-01 trans 

P2RX5 3.39 7.64E-04 5.78E-01 trans 

ASB7 3.39 7.68E-04 5.79E-01 trans 

TNIP2 3.38 7.76E-04 5.80E-01 trans 

RHOH 3.38 7.86E-04 5.82E-01 trans 

SNAPC4 3.38 7.92E-04 5.82E-01 trans 

MRPS23 3.38 8.01E-04 5.83E-01 trans 

NAT14 3.37 8.06E-04 5.84E-01 trans 

FCRL3 3.37 8.14E-04 5.85E-01 trans 

T 3.37 8.15E-04 5.85E-01 trans 

KIAA0226L 3.36 8.49E-04 5.89E-01 trans 

PPP1R18 3.36 8.50E-04 5.89E-01 trans 

KCNN1 3.36 8.58E-04 5.90E-01 trans 

USP18 3.35 8.64E-04 5.91E-01 trans 

ATP6V0E2 3.35 8.81E-04 5.93E-01 trans 

AP1B1 3.34 8.96E-04 5.95E-01 trans 

PLEKHF2 3.33 9.29E-04 5.99E-01 trans 

ACTB 3.33 9.35E-04 5.99E-01 trans 

BAD 3.29 1.07E-03 6.11E-01 trans 

FAM96A 3.29 1.09E-03 6.13E-01 trans 

PDCD2 3.29 1.09E-03 6.14E-01 trans 

TMEM131 3.27 1.17E-03 6.20E-01 trans 

DDX21 3.26 1.20E-03 6.23E-01 trans 

FAM65B 3.26 1.22E-03 6.25E-01 trans 

RALA 3.25 1.24E-03 6.26E-01 trans 

ZNF837 3.25 1.26E-03 6.28E-01 trans 

ILK 3.24 1.28E-03 6.30E-01 trans 

RNF146 3.24 1.31E-03 6.32E-01 trans 

MYBL1 3.23 1.33E-03 6.34E-01 trans 

KIAA1147 3.22 1.36E-03 6.36E-01 trans 

SLC35A4 3.22 1.37E-03 6.37E-01 trans 

LAMP3 3.22 1.39E-03 6.38E-01 trans 

SAMD10 3.21 1.42E-03 6.39E-01 trans 

GEMIN7 3.20 1.47E-03 6.42E-01 trans 

EBI3 3.20 1.48E-03 6.43E-01 trans 

MYL12A 3.19 1.52E-03 6.46E-01 trans 

LSM11 3.19 1.53E-03 6.47E-01 trans 

TET2 3.18 1.56E-03 6.48E-01 trans 

IPO8 3.17 1.61E-03 6.51E-01 trans 

C19orf84 3.17 1.61E-03 6.51E-01 trans 

BCL2A1 3.17 1.61E-03 6.52E-01 trans 
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Gene t Statistic P-value FDR eQTL type 

CYCS 3.17 1.63E-03 6.52E-01 trans 

ZNF608 3.16 1.66E-03 6.54E-01 trans 

GUCY1B3 3.16 1.69E-03 6.55E-01 trans 

ZNF783 3.15 1.73E-03 6.57E-01 trans 

MRS2 3.15 1.76E-03 6.60E-01 trans 

TMEM154 3.13 1.89E-03 6.66E-01 trans 

MATN1 3.12 1.95E-03 6.69E-01 trans 

TMEM230 3.12 1.96E-03 6.69E-01 trans 

UBASH3A 3.11 2.02E-03 6.72E-01 trans 

RGS3 3.10 2.03E-03 6.72E-01 trans 

ZNF717 3.10 2.04E-03 6.73E-01 trans 

DBNDD1 3.09 2.12E-03 6.76E-01 trans 

PAN3 3.09 2.14E-03 6.77E-01 trans 

ACTR3 3.09 2.15E-03 6.77E-01 trans 

COPS3 3.09 2.15E-03 6.77E-01 trans 

VPS13D 3.08 2.17E-03 6.78E-01 trans 

BNIP1 3.08 2.21E-03 6.79E-01 trans 

HEATR6 3.07 2.27E-03 6.82E-01 trans 

MARCKS 3.07 2.31E-03 6.83E-01 trans 

SLC37A1 3.06 2.33E-03 6.84E-01 trans 

LATS2 3.06 2.34E-03 6.84E-01 trans 

NUS1 3.06 2.36E-03 6.85E-01 trans 

PIP5K1B 3.06 2.37E-03 6.85E-01 trans 

MTPN 3.06 2.38E-03 6.86E-01 trans 

CSNK1G2 3.03 2.62E-03 6.94E-01 trans 

WDSUB1 3.03 2.62E-03 6.95E-01 trans 

ADAP1 3.03 2.63E-03 6.95E-01 trans 

MAPKAPK2 3.02 2.65E-03 6.95E-01 trans 

ID3 3.01 2.77E-03 6.99E-01 trans 

ATP5L 3.01 2.79E-03 6.99E-01 trans 

VASP 3.00 2.81E-03 7.00E-01 trans 

RBM38 3.00 2.83E-03 7.01E-01 trans 

PPFIBP1 3.00 2.84E-03 7.01E-01 trans 

FIG4 2.99 2.92E-03 7.04E-01 trans 

ZNF621 2.99 2.92E-03 7.04E-01 trans 

SCIMP 2.99 2.93E-03 7.04E-01 trans 

RIN3 2.99 2.94E-03 7.04E-01 trans 

EML3 2.99 2.94E-03 7.04E-01 trans 

SMIM11 2.99 2.98E-03 7.05E-01 trans 

GNG2 2.98 3.09E-03 7.07E-01 trans 

KLF13 2.97 3.10E-03 7.08E-01 trans 

SLC16A11 2.97 3.11E-03 7.08E-01 trans 
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Gene t Statistic P-value FDR eQTL type 

TTC39B 2.97 3.15E-03 7.09E-01 trans 

BTF3 2.96 3.22E-03 7.11E-01 trans 

FBXW11 2.96 3.25E-03 7.11E-01 trans 

LYRM9 2.96 3.26E-03 7.12E-01 trans 

CMKLR1 2.96 3.27E-03 7.12E-01 trans 

ZNF215 2.95 3.31E-03 7.13E-01 trans 

TTC38 2.95 3.33E-03 7.14E-01 trans 

ABHD17B 2.95 3.38E-03 7.15E-01 trans 

TINF2 2.94 3.40E-03 7.16E-01 trans 

OSBPL3 2.94 3.45E-03 7.17E-01 trans 

LBH 2.94 3.49E-03 7.18E-01 trans 

TRIP10 2.93 3.57E-03 7.19E-01 trans 

DBT 2.92 3.73E-03 7.22E-01 trans 

C20orf196 2.91 3.78E-03 7.23E-01 trans 

C9orf9 2.91 3.79E-03 7.24E-01 trans 

UBAC2 2.90 3.98E-03 7.28E-01 trans 

ATP6V1E2 2.90 3.98E-03 7.28E-01 trans 

MAP2K6 2.89 3.98E-03 7.28E-01 trans 

POMP 2.89 3.99E-03 7.29E-01 trans 

TWISTNB 2.89 4.10E-03 7.30E-01 trans 

TTC24 2.88 4.13E-03 7.31E-01 trans 

SLC10A7 2.88 4.14E-03 7.31E-01 trans 

SC5D 2.88 4.22E-03 7.32E-01 trans 

LYN 2.88 4.23E-03 7.33E-01 trans 

FLYWCH2 2.87 4.29E-03 7.34E-01 trans 

CNP 2.86 4.40E-03 7.36E-01 trans 

CD83 2.86 4.40E-03 7.36E-01 trans 

ALDH3A1 2.85 4.56E-03 7.39E-01 trans 

BCL2L13 2.85 4.58E-03 7.39E-01 trans 

IFITM3 2.84 4.72E-03 7.42E-01 trans 

MTA2 2.84 4.77E-03 7.42E-01 trans 

PHLDB3 2.83 4.80E-03 7.43E-01 trans 

EIF1B 2.83 4.87E-03 7.44E-01 trans 

VTI1A 2.83 4.89E-03 7.44E-01 trans 

CSTF3 2.83 4.93E-03 7.45E-01 trans 

RASD1 2.82 5.02E-03 7.46E-01 trans 

PAK1IP1 2.82 5.02E-03 7.46E-01 trans 

PARP12 2.82 5.07E-03 7.47E-01 trans 

GRK5 2.81 5.14E-03 7.48E-01 trans 

TIGIT 2.81 5.15E-03 7.48E-01 trans 

FBXL14 2.81 5.16E-03 7.49E-01 trans 

SNX3 2.81 5.16E-03 7.49E-01 trans 
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Gene t Statistic P-value FDR eQTL type 

FASTKD2 2.81 5.20E-03 7.49E-01 trans 

PIK3R5 2.80 5.29E-03 7.51E-01 trans 

GHITM 2.80 5.34E-03 7.51E-01 trans 

RFX3 2.80 5.36E-03 7.52E-01 trans 

ST3GAL2 2.79 5.47E-03 7.53E-01 trans 

ABHD3 2.79 5.47E-03 7.53E-01 trans 

PSMD6 2.79 5.50E-03 7.53E-01 trans 

CDKN2D 2.79 5.51E-03 7.53E-01 trans 

CWC22 2.79 5.54E-03 7.54E-01 trans 

MMD 2.78 5.61E-03 7.55E-01 trans 

ACYP2 2.78 5.64E-03 7.55E-01 trans 

MED13 2.78 5.66E-03 7.56E-01 trans 

TAOK1 2.78 5.71E-03 7.56E-01 trans 

SRP19 2.78 5.73E-03 7.57E-01 trans 

DCXR 2.77 5.91E-03 7.59E-01 trans 

PTPN12 2.77 5.92E-03 7.59E-01 trans 

EFHD2 2.75 6.15E-03 7.62E-01 trans 

CTDSPL2 2.75 6.18E-03 7.62E-01 trans 

NEK7 2.75 6.29E-03 7.64E-01 trans 

MAPK6 2.74 6.36E-03 7.65E-01 trans 

KCNC3 2.74 6.43E-03 7.66E-01 trans 

TAF10 2.74 6.44E-03 7.66E-01 trans 

CHST2 2.74 6.46E-03 7.66E-01 trans 

GRK4 2.73 6.64E-03 7.68E-01 trans 

ANAPC13 2.73 6.65E-03 7.68E-01 trans 

ILKAP 2.72 6.77E-03 7.70E-01 trans 

PPP4R2 2.72 6.78E-03 7.70E-01 trans 

STT3B 2.71 6.94E-03 7.72E-01 trans 

MYO1G 2.71 6.96E-03 7.72E-01 trans 

RCAN1 2.71 6.98E-03 7.72E-01 trans 

DCK 2.71 7.03E-03 7.73E-01 trans 

TBC1D12 2.71 7.06E-03 7.73E-01 trans 

ELOVL6 2.70 7.10E-03 7.74E-01 trans 

SRD5A1 2.70 7.25E-03 7.75E-01 trans 

MFN1 2.70 7.28E-03 7.76E-01 trans 

GIPR 2.69 7.32E-03 7.76E-01 trans 

ETF1 2.69 7.40E-03 7.77E-01 trans 

SPN 2.69 7.45E-03 7.77E-01 trans 

SEPP1 2.68 7.54E-03 7.78E-01 trans 

HECA 2.68 7.66E-03 7.79E-01 trans 

CBX5 2.68 7.70E-03 7.80E-01 trans 

NRSN2 2.67 7.83E-03 7.81E-01 trans 
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Gene t Statistic P-value FDR eQTL type 

PRR14 2.67 7.84E-03 7.81E-01 trans 

TIMM8B 2.67 7.88E-03 7.82E-01 trans 

CCDC71 2.67 7.97E-03 7.82E-01 trans 

MVD 2.66 8.01E-03 7.83E-01 trans 

CDYL 2.65 8.27E-03 7.85E-01 trans 

SLC50A1 2.65 8.40E-03 7.86E-01 trans 

MYL12B 2.64 8.49E-03 7.87E-01 trans 

C17orf62 2.64 8.49E-03 7.87E-01 trans 

LDLR 2.64 8.53E-03 7.88E-01 trans 

GPR63 2.63 8.80E-03 7.90E-01 trans 

MCOLN2 2.63 8.86E-03 7.91E-01 trans 

IFNGR1 2.63 8.93E-03 7.91E-01 trans 

ALAD 2.62 8.99E-03 7.92E-01 trans 

PNKP 2.62 9.00E-03 7.92E-01 trans 

SNAPC2 2.62 9.04E-03 7.92E-01 trans 

GTF3C1 2.62 9.05E-03 7.92E-01 trans 

CRTC3 2.62 9.17E-03 7.93E-01 trans 

PPP6R3 2.62 9.22E-03 7.94E-01 trans 

MIOS 2.62 9.23E-03 7.94E-01 trans 

MOB3C 2.60 9.58E-03 7.96E-01 trans 

RSL24D1 2.60 9.64E-03 7.97E-01 trans 

COX16 2.60 9.65E-03 7.97E-01 trans 

MFSD3 2.60 9.68E-03 7.97E-01 trans 

TBCA 2.59 9.89E-03 7.98E-01 trans 

WDFY4 2.59 9.90E-03 7.98E-01 trans 
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APPENDIX C.  

SUPPLEMENTARY INFORMATION FOR CHAPTER 4 

Table 8 Top LD results for polyTE for African population 

TE GWAS hits GWAS phenotype GWAS gene r 

ALU_umary_ALU_64 rs4654899 Superior frontal gyrus grey matter 
volume EIF4G3 0.46 

ALU_umary_ALU_102 rs96067 Corneal structure COL8A2 0.65 

ALU_umary_ALU_153 rs17106184 Type 2 diabetes FAF1 0.43 

ALU_umary_ALU_216 rs10889569 C-reactive protein LEPR -0.59 

ALU_umary_ALU_224 rs1417437 Orofacial clefts LRRC7 0.50 

ALU_umary_ALU_226 rs11809230 Cannabis use (initiation) . 0.74 

ALU_umary_ALU_250 rs10789369 Schizophrenia KRT8P21,LRRIQ3 0.51 

ALU_umary_ALU_267 rs1857353 MRI atrophy measures SLC44A5 0.40 

ALU_umary_ALU_335 rs17131547 Bone mineral density TGFBR3 0.41 

ALU_umary_ALU_368 rs6675668 Stearic acid (18:0) plasma levels ALG14 0.45 

L1_umary_LINE1_99 rs11578152 Menarche (age at onset) DNAJA1P5,COL11A1 0.53 

SVA_umary_SVA_45 rs7411387 Interferon alpha levels in systemic 
lupus erythematosus CHIA 0.40 

ALU_umary_ALU_542 rs6427528 Response to anti-TNF treatment in 
rheumatoid arthritis CD84 0.40 

SVA_umary_SVA_57 rs4657482 Testicular germ cell tumor UCK2 0.41 

ALU_umary_ALU_580 rs6687813 D-dimer levels SLC19A2,F5 0.63 

L1_umary_LINE1_164 rs6703865 Hippocampal atrophy F5 0.58 

ALU_umary_ALU_668 rs12720541 Epilepsy (generalized) PLA2G4A 0.41 

ALU_umary_ALU_676 rs10737562 Systemic lupus erythematosus RNA5SP73,BRINP3 0.59 

ALU_umary_ALU_689 rs10801047 Crohn's disease HNRNPA1P46,RGS18 0.51 

ALU_umary_ALU_699 rs6678275 Alzheimer's disease (late onset) B3GALT2,RPL23AP22 0.53 

ALU_umary_ALU_716 rs426736 Meningococcal disease CFHR3 0.65 

ALU_umary_ALU_717 rs426736 Meningococcal disease CFHR3 0.88 

ALU_umary_ALU_718 rs426736 Meningococcal disease CFHR3 0.89 

ALU_umary_ALU_842 rs12410462 Major depressive disorder BTF3P9,TUBB8P10 0.64 

ALU_umary_ALU_884 rs482329 Life threatening arrhythmia LINC00184,LINC01132 -0.54 

ALU_umary_ALU_897 rs2820037 Hypertension RPL39P10,CHRM3 0.59 

ALU_umary_ALU_903 rs476141 Diabetic retinopathy LOC339529 0.45 

ALU_umary_ALU_940 rs10802346 Fractional exhaled nitric oxide 
(childhood) SMYD3 -0.46 

ALU_umary_ALU_971 rs11123610 
Response to inhaled corticosteroid 

treatment in asthma (percentage 
change of FEV1) 

ALLC -0.41 
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TE GWAS hits GWAS phenotype GWAS gene r 

L1_umary_LINE1_266 rs17043947 Self-rated health RNA5SP87,KLHL29 0.61 

L1_umary_LINE1_267 rs2681019 Dialysis-related mortality RNA5SP87,KLHL29 -0.53 

ALU_umary_ALU_1078 rs7601155 Waist circumference BRE 0.44 

L1_umary_LINE1_286 rs6750486 Conduct disorder (symptom count) SLC25A5P2,MIR548AD 0.43 

ALU_umary_ALU_1156 rs4245791 LDL cholesterol ABCG8 0.60 

ALU_umary_ALU_1163 rs2341459 Height CAMKMT -0.58 

ALU_umary_ALU_1184 rs12987465 
Adverse response to chemotherapy 

(neutropenia/leucopenia) 
(etoposide) 

MIR548BA,RPL7P13 -0.46 

ALU_umary_ALU_1207 rs2163237 IgG glycosylation PNPT1,EFEMP1 0.42 

ALU_umary_ALU_1221 rs889956 Educational attainment EIF2S2P7,VRK2 0.44 

ALU_umary_ALU_1224 rs17552189 Cannabis dependence LINC01122 0.45 

ALU_umary_ALU_1231 rs17552189 Cannabis dependence LINC01122 0.48 

ALU_umary_ALU_1273 rs4141819 Endometriosis ETAA1,C1D 0.71 

ALU_umary_ALU_1275 rs2901879 Colorectal cancer (diet interaction) MEIS1-AS2,DNMT3AP1 0.42 

ALU_umary_ALU_1277 rs6759808 Obesity-related traits PLEK,FBXO48 -0.45 

ALU_umary_ALU_1278 rs10208940 Urate levels in lean individuals . -0.56 

L1_umary_LINE1_337 rs13391552 Metabolic traits ALMS1 0.43 

ALU_umary_ALU_1324 rs2037723 
Lung function (forced expiratory 

volume in 1 second to forced vital 
capacity ratio) 

SNAR-H,CYCSP6 0.67 

L1_umary_LINE1_366 rs4321386 Hormone measurements IL1R2 0.42 

ALU_umary_ALU_1406 rs2163349 Addiction NCK2 -0.71 

ALU_umary_ALU_1517 rs17015535 Coronary artery calcification WDR33 0.56 

ALU_umary_ALU_1557 rs13405020 Non-small cell lung cancer THSD7B 0.64 

ALU_umary_ALU_1585 rs17515225 Motion sickness LRP1B 0.58 

ALU_umary_ALU_1621 rs7584099 Response to statin therapy PABPC1P2,RPL26P14 0.58 

ALU_umary_ALU_1623 rs2307394 Urate levels ORC4 0.70 

ALU_umary_ALU_1693 rs10192369 Amyotrophic lateral sclerosis MIR4785,TANK 0.43 

ALU_umary_ALU_1736 rs2102808 Parkinson's disease PHF5GP,CERS6 0.51 

ALU_umary_ALU_1740 rs16856332 Liver enzyme levels (alkaline 
phosphatase) ABCB11 0.41 

ALU_umary_ALU_1756 rs836589 Erectile dysfunction in type 1 
diabetes PDK1,RAPGEF4-AS1 -0.57 

ALU_umary_ALU_1778 rs9287989 Periodontal microbiota EXTL2P1,KIAA1715 -0.60 

ALU_umary_ALU_1802 rs16867321 Obesity CWC22,SCHLAP1 0.68 

ALU_umary_ALU_1824 rs11678036 IgG glycosylation RPL23AP33,ELF2P4 -0.60 

ALU_umary_ALU_1843 rs2675399 Obesity-related traits DIRC1,COL3A1 0.65 

ALU_umary_ALU_1869 rs801350 
Response to anti-retroviral therapy 

(ddI/d4T) in HIV-1 infection 
(Grade 3 peripheral neuropathy) 

HNRNPA1P47,AHCYP5 0.68 

ALU_umary_ALU_1871 rs801350 
Response to anti-retroviral therapy 

(ddI/d4T) in HIV-1 infection 
(Grade 3 peripheral neuropathy) 

HNRNPA1P47,AHCYP5 0.49 

ALU_umary_ALU_1894 rs6434928 Schizophrenia SF3B1,COQ10B 0.48 

L1_umary_LINE1_488 rs988583 Neutrophil count PLCL1 0.60 

ALU_umary_ALU_1903 rs12471454 Insomnia PLCL1,SATB2 0.62 

ALU_umary_ALU_1943 rs13383928 Lung cancer-asbestos exposure 
interaction LOC101927960 0.77 
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ALU_umary_ALU_1963 rs4673659 Asthma (sex interaction) ERBB4 0.42 

ALU_umary_ALU_1971 rs9789347 Obesity-related traits SPAG16 0.64 

ALU_umary_ALU_1987 rs16857609 Breast cancer DIRC3 0.49 

ALU_umary_ALU_2009 rs10170846 Schizophrenia (inflammation and 
infection response interaction) . 0.52 

ALU_umary_ALU_2069 rs2292873 Obesity-related traits RAB17 0.47 

ALU_umary_ALU_2101 rs7652782 Serum uric acid levels CNTN4 0.62 

ALU_umary_ALU_2109 rs2587949 Periodontitis (DPAL) SUMF1 -0.72 

ALU_umary_ALU_2114 rs1810320 Breast cancer GRM7 0.43 

SVA_umary_SVA_157 rs3729931 Cardiac hypertrophy RAF1 0.56 

ALU_umary_ALU_2164 rs1318937 Alcohol dependence SH3BP5,SH3BP5-AS1 -0.66 

ALU_umary_ALU_2289 rs13072940 

Autism spectrum disorder  attention 
deficit-hyperactivity disorder  

bipolar disorder  major depressive 
disorder  and schizophrenia 

(combined) 

HSPD1P6,TRANK1 -0.60 

L1_umary_LINE1_580 rs3922844 PR interval SCN5A 0.82 

ALU_umary_ALU_2333 rs319690 Blood pressure MAP4 0.77 

SVA_umary_SVA_170 rs9876781 Longevity ATRIP 0.41 

ALU_umary_ALU_2340 rs11719291 Cognitive function IP6K2 0.47 

ALU_umary_ALU_2346 rs7613875 Body mass index . 0.48 

ALU_umary_ALU_2349 rs11130248 Keloid . 0.50 

ALU_umary_ALU_2371 rs6764184 Optic cup area . 0.63 

L1_umary_LINE1_629 rs17518584 Cognitive function CADM2 0.60 

ALU_umary_ALU_2504 rs9883474 Brain connectivity KRT8P25,APOOP2 -0.48 

ALU_umary_ALU_2577 rs10511217 Economic and political preferences 
(environmentalism) MIR548AB,RAP1BP2 0.66 

ALU_umary_ALU_2578 rs2677247 IgG glycosylation MIR548AB,RAP1BP2 0.70 

ALU_umary_ALU_2616 rs1881681 Current cigarettes per day in onic 
obstructive pulmonary disease PVRL3,CD96 0.41 

ALU_umary_ALU_2627 rs13092825 Dental caries . 0.46 

ALU_umary_ALU_2637 rs9841504 Gastric cancer LOC102723469,ZBTB20 0.57 

ALU_umary_ALU_2654 rs6804441 Systemic lupus erythematosus CD80 0.42 

ALU_umary_ALU_2693 rs13075436 Response to angiotensin II receptor 
blocker therapy C3orf56,TPRA1 0.42 

ALU_umary_ALU_2696 rs2687729 Menarche (age at onset) EEFSEC 0.50 

ALU_umary_ALU_2697 rs2712381 Monocyte count RPN1 -0.66 

ALU_umary_ALU_2698 rs1534166 Alcohol consumption (transferrin 
glycosylation) SRPRB 0.42 

ALU_umary_ALU_2757 rs3773506 Type 2 diabetes PLS1 0.78 

ALU_umary_ALU_2795 rs13072552 Serum ceruloplasmin levels CP 0.44 

ALU_umary_ALU_2810 rs1351267 Schizophrenia SUCNR1,MBNL1 -0.42 

ALU_umary_ALU_2838 rs12638253 Multiple sclerosis (severity) LEKR1 0.41 

ALU_umary_ALU_2842 rs13064954 Smoking cessation in onic 
obstructive pulmonary disease LINC00881,CCNL1 0.71 

L1_umary_LINE1_723 rs2362965 Height RSRC1 0.43 

ALU_umary_ALU_2847 rs2362965 Height RSRC1 0.49 

ALU_umary_ALU_2911 rs2201862 Myeloproliferative neoplasms . 0.42 
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ALU_umary_ALU_2929 rs3913363 Response to angiotensin II receptor 
blocker therapy TMEM212,FNDC3B 0.44 

L1_umary_LINE1_761 rs9898 Activated partial thromboplastin 
time HRG 0.46 

ALU_umary_ALU_3022 rs10937470 Total ventricular volume UTS2B 0.83 

ALU_umary_ALU_3079 rs4619890 Glaucoma (primary open-angle) AFAP1 0.46 

ALU_umary_ALU_3085 rs13142500 Rheumatoid arthritis CLNK,RNPS1P1 0.66 

ALU_umary_ALU_3178 rs7442317 Attention deficit hyperactivity 
disorder motor coordination EEF1A1P21,RPS3AP17 -0.65 

ALU_umary_ALU_3235 rs35141484 Asthma (childhood onset) KLHL5 0.56 

ALU_umary_ALU_3236 rs11096990 Cognitive function WDR19 0.42 

ALU_umary_ALU_3244 rs10938397 Body mass index PRDX4P1,PRKRIRP9 0.41 

ALU_umary_ALU_3246 rs114070671 Opioid sensitivity APBB2 0.45 

L1_umary_LINE1_831 rs2055942 Type 2 diabetes GABRA4 -0.54 

ALU_umary_ALU_3274 rs13106975 Sphingolipid levels ATP10D 0.42 

ALU_umary_ALU_3295 rs13113518 Height CLOCK 0.64 

ALU_umary_ALU_3340 rs7656244 Kawasaki disease TECRL -0.40 

ALU_umary_ALU_3393 rs7041 Serum vitamin D-binding protein 
levels GC 0.40 

ALU_umary_ALU_3402 rs1894292 Prostate cancer AFM -0.58 

ALU_umary_ALU_3412 rs2273 Longevity SDAD1 -0.42 

ALU_umary_ALU_3430 rs1268789 Hair morphology FRAS1 0.62 

ALU_umary_ALU_3479 rs6834314 Liver enzyme levels (alanine 
transaminase) GAPDHP60,MIR5705 0.60 

ALU_umary_ALU_3594 rs10033900 Age-related macular degeneration PLA2G12A,CFI 0.43 

SVA_umary_SVA_222 rs4698790 Fasting insulin (interaction) CFI,GAR1 0.40 

L1_umary_LINE1_928 rs1585471 Myopia (pathological) RPL36AP23,CCDC34P1 0.89 

ALU_umary_ALU_3601 rs10034228 Myopia (pathological) RPL36AP23,CCDC34P1 0.70 

ALU_umary_ALU_3688 rs724950 Obesity-related traits RBM48P1,INTU 0.43 

ALU_umary_ALU_3796 rs1395821 Coronary heart disease TTC29,MIR548G 0.71 

ALU_umary_ALU_3957 rs2333163 Obesity-related traits ADAM29,TSEN2P1 0.65 

ALU_umary_ALU_3997 rs2130392 Kawasaki disease CENPU -0.41 

ALU_umary_ALU_4046 rs16875288 
Functional impairment in major 

depressive disorder  bipolar 
disorder and schizophrenia 

ADAMTS16 0.49 

ALU_umary_ALU_4079 rs2607292 Body mass index 6-Mar 0.48 

L1_umary_LINE1_1051 rs20476 PR interval in Tripanosoma cruzi 
seropositivity CTNND2 0.49 

ALU_umary_ALU_4117 rs4866334 IgG glycosylation RPL36AP21,RPL32P14 0.52 

L1_umary_LINE1_1097 rs10053502 Myopia (pathological) INTS6P1,LINC00603 0.81 

ALU_umary_ALU_4266 rs9291768 Classic bladder exstrophy . -0.50 

ALU_umary_ALU_4267 rs4865673 Dental caries HMGB1P47,KATNBL1P4 0.43 

ALU_umary_ALU_4283 rs7716219 Height SLC38A9 -0.46 

ALU_umary_ALU_4289 rs16884711 IgG glycosylation FLJ31104,ANKRD55 0.56 

ALU_umary_ALU_4310 rs6859219 Rheumatoid arthritis ANKRD55 0.40 

ALU_umary_ALU_4329 rs1494630 Age-related hearing impairment HTR1A,RNF180 0.50 

ALU_umary_ALU_4333 rs1494630 Age-related hearing impairment HTR1A,RNF180 0.48 
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SVA_umary_SVA_245 rs7729539 QT interval CWC27,ADAMTS6 0.68 

ALU_umary_ALU_4367 rs10515148 Hip geometry YBX1P5,ZNF366 0.43 

ALU_umary_ALU_4449 rs6870983 Body mass index . -0.66 

ALU_umary_ALU_4535 rs1829883 Hemostatic factors and 
hematological phenotypes RPS9P3,GUSBP8 0.43 

ALU_umary_ALU_4563 rs112724034 Alzheimer's disease (cognitive 
decline) LOC100289673 0.45 

ALU_umary_ALU_4615 rs2376682 Diisocyanate-induced asthma . -0.41 

ALU_umary_ALU_4650 rs1910003 Antibody status in Tripanosoma 
cruzi seropositivity RPSAP37,GRAMD3 0.42 

ALU_umary_ALU_4684 rs7735563 Diisocyanate-induced asthma . 0.60 

ALU_umary_ALU_4773 rs727809 Age-related hearing impairment 
(interaction) TRNAC32P,GRIA1 0.62 

ALU_umary_ALU_4807 rs2853694 Psoriasis . 0.66 

ALU_umary_ALU_4976 rs204247 Breast cancer RANBP9,MCUR1 -0.67 

ALU_umary_ALU_5017 rs4712652 Obesity . 0.54 

ALU_umary_ALU_5040 rs3129055 Nasopharyngeal carcinoma TRNAI25 0.41 

ALU_umary_ALU_5044 rs172166 Cardiac Troponin-T levels TRNAI25 0.47 

ALU_umary_ALU_5053 rs2523822 Drug-induced liver injury 
(amoxicillin-clavulanate) TRNAI25 0.92 

ALU_umary_ALU_5054 rs1061235 Adverse response to carbamapezine HLA-A 0.79 

ALU_umary_ALU_5055 rs259919 HIV-1 control ZNRD1-AS1 0.58 

ALU_umary_ALU_5056 rs6935053 Ulcerative colitis TRNAI25 0.58 

ALU_umary_ALU_5060 rs12175489 Visceral adipose tissue adjusted for 
BMI MICA 0.46 

SVA_umary_SVA_278 rs9368677 Atopic dermatitis TRNAI25 0.82 

ALU_umary_ALU_5064 rs1055569 Psychotic symptoms and prion 
disease . -0.64 

ALU_umary_ALU_5075 rs7775228 Asthma TRNAI25 0.65 

ALU_umary_ALU_5076 rs2859113 IgG glycosylation TRNAI25 0.62 

ALU_umary_ALU_5077 rs7756516 Chronic hepatitis B infection HLA-DQB2 0.56 

ALU_umary_ALU_5079 rs2621416 Lymphoma TRNAI25 0.80 

SVA_umary_SVA_282 rs3077 Hepatitis B (viral clearance) HLA-DPA1 0.65 

ALU_umary_ALU_5127 rs10948222 Height SUPT3H 0.57 

ALU_umary_ALU_5132 rs10948222 Height SUPT3H 0.81 

L1_umary_LINE1_1293 rs9357506 Body mass index . 0.42 

L1_umary_LINE1_1317 rs9342616 QT interval NUFIP1P,RNA5SP208 0.45 

ALU_umary_ALU_5237 rs9354654 Classic bladder exstrophy . -0.47 

ALU_umary_ALU_5248 rs9346353 Sleep duration LMBRD1 0.43 

ALU_umary_ALU_5278 rs9447004 Calcium levels CD109 0.45 

ALU_umary_ALU_5280 rs9447004 Calcium levels CD109 0.72 

ALU_umary_ALU_5298 rs7738636 Acute lymphoblastic leukemia 
(childhood) IMPG1,HTR1B -0.40 

ALU_umary_ALU_5356 rs366676 Echocardiographic traits AKIRIN2,SPACA1 -0.44 

ALU_umary_ALU_5380 rs2506933 Cognitive performance ATF1P1,COPS5P1 0.53 

ALU_umary_ALU_5395 rs11757063 Migraine FUT9,UFL1 0.82 

ALU_umary_ALU_5415 rs4840097 Age-related macular degeneration 
(smoking status interaction) PRDM13,MCHR2 0.40 

ALU_umary_ALU_5429 rs484621 Glucose homeostasis traits ATG5 0.41 
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ALU_umary_ALU_5475 rs33980500 Psoriatic arthritis TRAF3IP2,TRAF3IP2-AS1 0.42 

ALU_umary_ALU_5495 rs9488822 Cholesterol  total FRK 0.42 

ALU_umary_ALU_5509 rs89107 Cardiac structure and function SLC35F1 -0.51 

SVA_umary_SVA_305 rs12110693 Biomedical quantitative traits RPL23AP48,HMGB3P18 -0.56 

ALU_umary_ALU_5565 rs13209747 Blood pressure RPS4XP9,RSPO3 0.44 

ALU_umary_ALU_5575 rs6938574 Menarche (age at onset) LOC101928140,PTPRK 0.42 

ALU_umary_ALU_5647 rs225675 
Thiazide-induced adverse 

metabolic effects in hypertensive 
patients 

VTA1 0.40 

L1_umary_LINE1_1418 rs225675 
Thiazide-induced adverse 

metabolic effects in hypertensive 
patients 

VTA1 0.84 

SVA_umary_SVA_315 rs1933488 Prostate cancer RGS17 -0.58 

ALU_umary_ALU_5708 rs2275336 Parkinson's disease CNKSR3 0.47 

ALU_umary_ALU_5713 rs4269383 Pancreatic cancer LOC101928923 0.43 

SVA_umary_SVA_318 rs2451258 Rheumatoid arthritis TAGAP,FNDC1 0.42 

ALU_umary_ALU_5769 rs7762018 
Thiazide-induced adverse 

metabolic effects in hypertensive 
patients 

PHF10 0.60 

ALU_umary_ALU_5882 rs12670798 Cholesterol  total DNAH11 0.62 

ALU_umary_ALU_5886 rs2286503 Fibrinogen TOMM7 -0.56 

ALU_umary_ALU_5916 rs10486483 Crohn's disease SKAP2 0.61 

L1_umary_LINE1_1474 rs10486483 Crohn's disease SKAP2 0.49 

ALU_umary_ALU_5957 rs9648428 Obesity-related traits EEPD1 0.53 

ALU_umary_ALU_5967 rs2392510 Periodontitis GPR141 -0.40 

ALU_umary_ALU_5970 rs4723738 Treatment response for severe 
sepsis STARD3NL 0.65 

ALU_umary_ALU_6007 rs1722133 Sitting height ratio . 0.44 

ALU_umary_ALU_6013 rs10279826 Urate levels in obese individuals . 0.42 

ALU_umary_ALU_6059 rs7786410 Age-related hearing impairment 14-Sep 0.44 

ALU_umary_ALU_6100 rs7794356 Response to montelukast in asthma 
(change in FEV1) . 0.51 

ALU_umary_ALU_6200 rs1133906 Systemic lupus erythematosus and 
Systemic sclerosis SAMD9L -0.42 

L1_umary_LINE1_1577 rs10953730 Metabolite levels LINC00998,PPP1R3A 0.68 

ALU_umary_ALU_6320 rs41997 
Response to platinum-based 

chemotherapy in non-small-cell 
lung cancer 

ANKRD7,GTF3AP6 0.40 

ALU_umary_ALU_6359 rs4731207 Cutaneous malignant melanoma . 0.48 

ALU_umary_ALU_6369 rs7458938 
Response to efavirenz-containing 

treatment in HIV 1 infection 
(virologic failure) 

RPL31P39,GRM8 0.53 

ALU_umary_ALU_6372 rs2687481 Hearing function RPL31P39,GRM8 0.73 

ALU_umary_ALU_6373 rs2687481 Hearing function RPL31P39,GRM8 0.70 

ALU_umary_ALU_6375 rs17864092 Depression (quantitative trait) GRM8 0.42 

ALU_umary_ALU_6427 rs10250997 

Autism spectrum disorder  attention 
deficit-hyperactivity disorder  

bipolar disorder  major depressive 
disorder  and schizophrenia 

(combined) 

MTPN,PSMC1P3 0.51 

ALU_umary_ALU_6521 rs10274279 Myopia (pathological) PTPRN2 0.58 

ALU_umary_ALU_6531 rs11986414 Gaucher disease severity CLN8,MIR3674 0.41 
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ALU_umary_ALU_6563 rs6601327 Multiple myeloma (hyperdiploidy) PPP1R3B,TNKS -0.55 

ALU_umary_ALU_6564 rs6601327 Multiple myeloma (hyperdiploidy) PPP1R3B,TNKS 0.51 

ALU_umary_ALU_6565 rs6601327 Multiple myeloma (hyperdiploidy) PPP1R3B,TNKS -0.45 

ALU_umary_ALU_6611 rs920590 Acute lymphoblastic leukemia 
(childhood) CSGALNACT1,INTS10 0.45 

SVA_umary_SVA_369 rs7843479 Mean corpuscular volume XPO7 0.41 

ALU_umary_ALU_6662 rs2439312 Dialysis-related mortality NRG1 -0.48 

ALU_umary_ALU_6669 rs11997175 Body mass index . 0.62 

ALU_umary_ALU_6673 rs6990255 

Autism spectrum disorder  attention 
deficit-hyperactivity disorder  

bipolar disorder  major depressive 
disorder  and schizophrenia 

(combined) 

CYCSP3,RPL10AP3 0.47 

ALU_umary_ALU_6674 rs6987004 Pulmonary function decline RPL10AP3,RPL21P80 0.78 

ALU_umary_ALU_6695 rs7829127 Refractive error ZMAT4 0.51 

ALU_umary_ALU_6769 rs9650199 Response to amphetamines PDCL3P1,RAB2A -0.45 

ALU_umary_ALU_6806 rs7017914 Bone mineral density XKR9 0.62 

ALU_umary_ALU_6820 rs11994034 Attention deficit hyperactivity 
disorder (combined symptoms) TRPA1,RNA5SP271 0.54 

ALU_umary_ALU_6893 rs7015622 
Response to anti-depressant 

treatment in major depressive 
disorder 

HNRNPA1P4,RALYL 0.81 

ALU_umary_ALU_6951 rs278567 Bipolar disorder and schizophrenia C8orf87 0.76 

ALU_umary_ALU_6990 rs2033562 IgA nephropathy . 0.52 

ALU_umary_ALU_7003 rs284489 Glaucoma (primary open-angle) LRP12,RPL23P9 -0.44 

ALU_umary_ALU_7007 rs12541635 Age of smoking initiation RPL12P24,SLC16A14P1 -0.50 

SVA_umary_SVA_389 rs374810 Ossification of the posterior 
longitudinal ligament of the spine RSPO2 0.68 

ALU_umary_ALU_7037 rs7832552 Body mass (lean) TRHR 0.60 

ALU_umary_ALU_7106 rs3870371 Periodontal disease-related 
phenotypes HAS2-AS1,MRPS36P3 0.53 

ALU_umary_ALU_7140 rs7830341 Body mass index . 0.57 

ALU_umary_ALU_7143 rs13281615 Breast cancer LOC101930033 0.47 

ALU_umary_ALU_7218 rs10962181 Superior frontal gyrus grey matter 
volume RNA5SP279,SMARCA2 -0.43 

L1_umary_LINE1_1778 rs10814916 Type 2 diabetes GLIS3 0.50 

L1_umary_LINE1_1783 rs16924631 Periodontal microbiota UHRF2 -0.42 

ALU_umary_ALU_7256 rs4742269 Radiation response KDM4C 0.42 

ALU_umary_ALU_7311 rs3904778 Adolescent idiopathic scoliosis . -0.45 

ALU_umary_ALU_7331 rs7867456 Axial length HACD4,IFNNP1,PTPLAD2 -0.48 

ALU_umary_ALU_7339 rs10738626 Atopic dermatitis UBA52P6,DMRTA1 -0.58 

ALU_umary_ALU_7381 rs10969853 Alcohol dependence (age at onset) RBMXP2,KRT18P66 0.57 

SVA_umary_SVA_401 rs10758189 IgG glycosylation B4GALT1 -0.63 

L1_umary_LINE1_1831 rs11145465 Refractive error . 0.41 

ALU_umary_ALU_7499 rs79460104 Response to amphetamines . 0.50 

L1_umary_LINE1_1854 rs12554999 
Plasma omega-6 polyunsaturated 
fatty acid levels (gamma-linolenic 

acid) 
CHCHD2P9,TLE4 0.87 

ALU_umary_ALU_7555 rs883924 Hepatitis C induced liver fibrosis LINC01508,LOC101927873 0.45 

L1_umary_LINE1_1867 rs10122541 Thyroid cancer . 0.57 
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ALU_umary_ALU_7593 rs7028939 Preeclampsia ERP44 -0.71 

ALU_umary_ALU_7594 rs7028939 Preeclampsia ERP44 -0.77 

ALU_umary_ALU_7615 rs7848024 Tourette's syndrome or obsessive-
compulsive disorder ZYG11AP1,CYLC2 0.53 

ALU_umary_ALU_7658 rs10980800 Monocyte count RNY4P18,MIR7702 0.41 

ALU_umary_ALU_7756 rs7086888 Multiple myeloma (IgH 
translocation) LINC00703,LINC00704 0.41 

ALU_umary_ALU_7783 rs11256676 Dental caries CUX2P1,SFTA1P 0.48 

ALU_umary_ALU_7866 rs927675 MRI atrophy measures MPP7 0.48 

ALU_umary_ALU_8021 rs442309 Vogt-Koyanagi-Harada syndrome ZNF365,ALDH7A1P4 0.62 

ALU_umary_ALU_8046 rs2441727 Interstitial lung disease CTNNA3 0.42 

ALU_umary_ALU_8048 rs2441727 Interstitial lung disease CTNNA3 0.43 

ALU_umary_ALU_8056 rs16926246 Hemoglobin HK1 0.43 

SVA_umary_SVA_449 rs58180147 Parasitemia in Tripanosoma cruzi 
seropositivity MYPN 0.42 

ALU_umary_ALU_8112 rs1414874 Self-reported allergy MARK2P15,HMGN2P8 0.60 

ALU_umary_ALU_8178 rs1934951 Osteonecrosis of the jaw CYP2C8 -0.41 

ALU_umary_ALU_8182 rs56322409 Blood metabolite levels ALDH18A1 0.73 

ALU_umary_ALU_8232 rs11195062 Multiple myeloma MXI1 0.52 

ALU_umary_ALU_8297 rs7069346 Migraine without aura C10orf88,PSTK -0.59 

ALU_umary_ALU_8344 rs2213169 Hematology traits LCRB 0.43 

ALU_umary_ALU_8398 rs1330 Height NUCB2 0.40 

L1_umary_LINE1_2073 rs12788764 Age-related nuclear cataracts LUZP2,RPL36AP40 0.52 

ALU_umary_ALU_8456 rs10834691 IgG glycosylation LUZP2,RPL36AP40 0.73 

ALU_umary_ALU_8509 rs1355223 Systemic lupus erythematosus and 
Systemic sclerosis LOC102723568 0.41 

ALU_umary_ALU_8532 rs7951105 Free thyroxine concentration RPL7AP56,RPL18P8 -0.44 

L1_umary_LINE1_2104 rs1484948 RR interval (heart rate) RPL9P23,HNRNPKP3 0.79 

ALU_umary_ALU_8559 rs2176598 Body mass index . 0.71 

ALU_umary_ALU_8572 rs1351696 D-dimer levels OR4C4P,OR4C5 0.58 

ALU_umary_ALU_8574 rs1814175 Height CBX3P8,TRIM51FP 0.81 

ALU_umary_ALU_8590 rs11228719 Orofacial clefts OR2AH1P,OR9G1 0.48 

ALU_umary_ALU_8620 rs478304 Acne (severe) RNASEH2C,KRT8P26 -0.73 

ALU_umary_ALU_8692 rs17148090 Phospholipid levels (plasma) DLG2 0.47 

ALU_umary_ALU_8712 rs1386330 Multiple sclerosis (age of onset) HMGB3P25,RAB38 0.58 

ALU_umary_ALU_8716 rs2658782 Pulmonary function decline CCDC67 0.42 

ALU_umary_ALU_8717 rs10830228 Age-related macular degeneration RNU6-16P,TYR 0.68 

ALU_umary_ALU_8799 rs7947821 Tuberculosis . 0.88 

ALU_umary_ALU_8801 rs313426 Toenail selenium levels DYNC2H1 -0.44 

L1_umary_LINE1_2187 rs326946 Alzheimer's disease (cognitive 
decline) ARHGAP20 0.46 

L1_umary_LINE1_2191 rs2250417 Protein quantitative trait loci BCO2 0.85 

ALU_umary_ALU_8954 rs2007044 Schizophrenia . 0.43 

ALU_umary_ALU_8998 rs1031391 Bitter taste perception PRH1-PRR4 0.46 

ALU_umary_ALU_9001 rs2908835 Information processing speed HIGD1AP8,IQSEC3P2 0.52 
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ALU_umary_ALU_9108 rs1979679 Ossification of the posterior 
longitudinal ligament of the spine CCDC91 0.81 

ALU_umary_ALU_9143 rs11170468 Body mass index . 0.48 

ALU_umary_ALU_9156 rs11170468 Body mass index . 0.41 

ALU_umary_ALU_9158 rs76904798 Parkinson's disease RPL30P13,LRRK2 0.54 

ALU_umary_ALU_9177 rs275380 Adverse response to lamotrigine 
and phenytoin ADAMTS20 0.52 

ALU_umary_ALU_9214 rs59448276 Diisocyanate-induced asthma . 0.51 

ALU_umary_ALU_9233 rs1633360 Rheumatoid arthritis OS9 -0.41 

ALU_umary_ALU_9243 rs17121944 Temperament (bipolar disorder) RPS6P22,METTL15P2 0.49 

ALU_umary_ALU_9286 rs6581612 Hippocampal volume APOOP3,LEMD3 0.54 

ALU_umary_ALU_9348 rs2669010 Systemic lupus erythematosus RPL7AP9,YWHAQP7 0.46 

ALU_umary_ALU_9371 rs10778699 
Thiazide-induced adverse 

metabolic effects in hypertensive 
patients 

RPL7P38,RPL26P32 -0.47 

ALU_umary_ALU_9388 rs1511589 Optic cup area . 0.72 

ALU_umary_ALU_9431 rs11106179 Expressive vocabulary in infants DCN,C12orf79 0.45 

ALU_umary_ALU_9450 rs7953959 IgG glycosylation TRNAQ46P,RMST,TRQ-TTG9-1 0.65 

ALU_umary_ALU_9636 rs509915 Urate levels (BMI interaction) . 0.45 

SVA_umary_SVA_566 rs7328278 Asthma (childhood onset) DCLK1 0.44 

L1_umary_LINE1_2401 rs4142110 Nephrolithiasis DGKH 0.80 

ALU_umary_ALU_9813 rs9537938 Educational attainment RNA5SP30,CTAGE16P 0.61 

ALU_umary_ALU_9857 rs1340490 Response to platinum-based 
chemotherapy (cisplatin) RPL32P28,LINC00395 0.84 

L1_umary_LINE1_2432 rs1340490 Response to platinum-based 
chemotherapy (cisplatin) RPL32P28,LINC00395 0.58 

ALU_umary_ALU_9861 rs11148643 Rheumatoid arthritis NFYAP1,LGMNP1 -0.45 

ALU_umary_ALU_9863 rs9540294 Recalcitrant atopic dermatitis . 0.74 

ALU_umary_ALU_9886 rs2991396 Male fertility RPSAP53,NPM1P22 0.45 

ALU_umary_ALU_9941 rs975739 Hair color MIR3665,EDNRB-AS1 -0.41 

ALU_umary_ALU_9995 rs4773460 Hippocampal atrophy DDX6P2,TXNL1P1 -0.62 

ALU_umary_ALU_9998 rs9589866 Diisocyanate-induced asthma . -0.51 

ALU_umary_ALU_10028 rs4771859 
Adverse response to chemotherapy 

(neutropenia/leucopenia) (all 
antimicrotubule drugs) 

GPC5 0.46 

ALU_umary_ALU_10095 rs1509091 Metabolite levels (Pyroglutamine) FAM155A 0.46 

ALU_umary_ALU_10151 rs1950500 Height RIPK3,NFATC4 0.45 

ALU_umary_ALU_10167 rs7493138 Longevity RPL26P3,EIF4A1P12 0.41 

ALU_umary_ALU_10255 rs2488856 Osteoprotegerin levels YWHAQP1,TUBBP3 0.58 

ALU_umary_ALU_10284 rs7159841 Hemostatic factors and 
hematological phenotypes MDGA2 -0.45 

ALU_umary_ALU_10285 rs7159841 Hemostatic factors and 
hematological phenotypes MDGA2 0.45 

ALU_umary_ALU_10299 rs1959536 Psychosis (atypical) TRIM9 0.48 

ALU_umary_ALU_10334 rs11851015 Alcohol consumption EXOC5 0.56 

ALU_umary_ALU_10353 rs7153648 Prostate cancer SIX1,SIX4 0.46 

ALU_umary_ALU_10368 rs10498514 Cognitive performance MTHFD1 -0.49 

ALU_umary_ALU_10374 rs8020095 Depression (quantitative trait) GPHN 0.64 

L1_umary_LINE1_2583 rs8017304 Age-related macular degeneration RAD51B 0.57 
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ALU_umary_ALU_10396 rs55951657 Hippocampal volume ACOT4,ACOT6 0.44 

ALU_umary_ALU_10401 rs910316 Height TMED10 0.67 

SVA_umary_SVA_613 rs6574644 Obesity-related traits STON2 -0.53 

ALU_umary_ALU_10482 rs17124955 Obesity-related traits TTC8,TRA-AGC15-1,TRNAA17 0.53 

ALU_umary_ALU_10518 rs7140601 Immune response to smallpox 
vaccine (IL-6) C14orf64,C14orf177,LINC01550 0.81 

ALU_umary_ALU_10580 rs61996546 Response to methotrexate in 
juvenile idiopathic arthritis GABRB3 0.45 

L1_umary_LINE1_2647 rs2414095 Follicule stimulating hormone CYP19A1 0.47 

SVA_umary_SVA_632 rs2553218 Immune response to smallpox 
vaccine (IL-6) UNC13C 0.55 

ALU_umary_ALU_10715 rs491567 Chronic kidney disease WDR72 -0.50 

L1_umary_LINE1_2651 rs491567 Chronic kidney disease WDR72 -0.41 

ALU_umary_ALU_10766 rs1436958 IgG glycosylation VPS13C 0.60 

SVA_umary_SVA_640 rs1549318 Proinsulin levels RPL29P30,LARP6 0.41 

ALU_umary_ALU_10812 rs8038465 Liver enzyme levels (gamma-
glutamyl transferase) CD276 0.74 

ALU_umary_ALU_10819 rs3099143 Recalcitrant atopic dermatitis . 0.60 

ALU_umary_ALU_10885 rs7495052 Inattentive symptoms SLCO3A1 0.40 

ALU_umary_ALU_11100 rs8047014 Attention deficit hyperactivity 
disorder RPS2P45,HAS3 0.53 

ALU_umary_ALU_11101 rs12149862 Blood pressure (smoking 
interaction) CYB5B 0.46 

ALU_umary_ALU_11136 rs8050187 Anorexia nervosa WWOX 0.48 

ALU_umary_ALU_11154 rs12933472 Glucose homeostasis traits CDH13 0.52 

SVA_umary_SVA_683 rs781856 Glucose homeostasis traits ZZEF1 0.72 

ALU_umary_ALU_11196 rs73976923 Diisocyanate-induced asthma . 0.59 

ALU_umary_ALU_11238 rs7211756 Blood pressure (smoking 
interaction) ZSWIM7 0.64 

ALU_umary_ALU_11275 rs225212 Hypertension risk in short sleep 
duration MYO1D 0.69 

ALU_umary_ALU_11276 rs379123 Local histogram emphysema 
pattern MYO1D 0.50 

ALU_umary_ALU_11327 rs7207400 Alzheimer's disease in APOE e4- 
carriers . -0.54 

ALU_umary_ALU_11330 rs2935183 Multiple sclerosis or amyotrophic 
lateral sclerosis NPEPPS -0.56 

ALU_umary_ALU_11333 rs9303542 Ovarian cancer SKAP1 -0.64 

ALU_umary_ALU_11353 rs9635759 Menarche (age at onset) RPL7P48,CA10 0.42 

ALU_umary_ALU_11384 rs7224438 Immune reponse to smallpox 
(secreted IL-2) BCAS3 0.41 

ALU_umary_ALU_11398 rs4329 Metabolic traits ACE 0.62 

ALU_umary_ALU_11400 rs7223966 Body mass index . 0.66 

ALU_umary_ALU_11422 rs817565 
Response to anti-retroviral therapy 

(ddI/d4T) in HIV-1 infection 
(Grade 1 peripheral neuropathy) 

MAP2K6 0.48 

ALU_umary_ALU_11427 rs10775360 QT interval CALM2P1,CASC17 0.51 

ALU_umary_ALU_11428 rs10775360 QT interval CALM2P1,CASC17 0.42 

ALU_umary_ALU_11462 rs16970672 Psychosis and Alzheimer's disease FLJ45079,TNRC6C 0.42 

ALU_umary_ALU_11474 rs7220048 Obesity-related traits AATK -0.45 

ALU_umary_ALU_11492 rs2345595 PR interval in Tripanosoma cruzi 
seropositivity LINC00470,METTL4 0.53 

ALU_umary_ALU_11552 rs1893217 Celiac disease or Rheumatoid 
arthritis PTPN2 0.77 
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ALU_umary_ALU_11628 rs7239368 Response to citalopram treatment NOL4 0.61 

ALU_umary_ALU_11673 rs1398217 Menarche (age at onset) SKOR2 0.45 

ALU_umary_ALU_11704 rs4940203 Obesity-related traits DCC 0.51 

ALU_umary_ALU_11708 rs11876941 Body mass index (interaction) DCC 0.42 

ALU_umary_ALU_11760 rs11152166 Major depressive disorder CCBE1 0.41 

ALU_umary_ALU_11766 rs4553720 
Adverse response to chemotherapy 

(neutropenia/leucopenia) 
(docetaxel) 

LINC00305,CDH7 0.69 

ALU_umary_ALU_11798 rs637644 

Adverse response to chemotherapy 
in breast cancer (alopecia) 

(cyclophosphamide+doxorubicin+/-
5FU) 

LINC00305,CDH7 0.41 

ALU_umary_ALU_11899 rs1865075 Dental caries RPL34P34,ZNF98 0.44 

ALU_umary_ALU_12007 rs6117615 
Adverse response to chemotherapy 

in breast cancer (alopecia) 
(docetaxel) 

SLC52A3,FAM110A 0.89 

ALU_umary_ALU_12018 rs6139030 Response to hepatitis C treatment ITPA 0.44 

ALU_umary_ALU_12039 rs6054383 Optic cup area . 0.40 

ALU_umary_ALU_12074 rs6042314 Intelligence (childhood) ESF1 0.51 

ALU_umary_ALU_12101 rs6044112 Response to taxane treatment 
(docetaxel) KIF16B 0.46 

ALU_umary_ALU_12132 rs816535 Parkinson disease and lewy body 
pathology . 0.87 

ALU_umary_ALU_12143 rs6088765 Ulcerative colitis PROCR 0.45 

ALU_umary_ALU_12183 rs6065906 Triglycerides PLTP,PCIF1 0.49 

ALU_umary_ALU_12184 rs6065906 HDL cholesterol PLTP,PCIF1 0.60 

ALU_umary_ALU_12208 rs6091737 Calcium levels RNU7-14P,SUMO1P1 0.56 

ALU_umary_ALU_12366 rs458685 Breast cancer GRIK1 0.44 

L1_umary_LINE1_2980 rs12483205 HIV-1 replication DYRK1A 0.41 

ALU_umary_ALU_12465 rs132390 Breast cancer EMID1 0.55 

ALU_umary_ALU_12536 rs138880 Schizophrenia BRD1 0.66 
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TE GWAS hits GWAS phenotype GWAS gene r 

ALU_umary_ALU_14 rs11120822 Stearic acid (18:0) plasma 
levels CAMTA1,LOC100129476 0.43 

ALU_umary_ALU_19 rs12711517 Breast cancer SLC45A1 -0.55 

ALU_umary_ALU_20 rs301799 Thyroid peroxidase antibody 
positivity LOC102724552,RERE 0.44 

SVA_umary_SVA_5 rs17367504 Blood pressure MTHFR 0.70 

ALU_umary_ALU_33 rs2489260 Obesity-related traits AADACL4,AADACL3 0.82 

ALU_umary_ALU_64 rs4654899 Superior frontal gyrus grey 
matter volume EIF4G3 0.70 

SVA_umary_SVA_18 rs28411352 Rheumatoid arthritis MTF1 -0.48 

ALU_umary_ALU_127 rs2274465 Menarche (age at onset) KDM4A 0.65 

ALU_umary_ALU_139 rs11588062 Age-related hearing 
impairment (interaction) UQCRH 0.51 

ALU_umary_ALU_189 rs2811893 Diabetic retinopathy MYSM1 0.45 

ALU_umary_ALU_194 rs7534016 Obesity-related traits FGGY 0.87 

ALU_umary_ALU_216 rs1751492 Soluble leptin receptor 
levels LEPR 0.45 

ALU_umary_ALU_224 rs1417437 Orofacial clefts LRRC7 0.59 

ALU_umary_ALU_226 rs11809230 Cannabis use (initiation) . 0.49 

ALU_umary_ALU_244 rs2568958 Weight GDI2P2,RPL31P12 -0.44 

ALU_umary_ALU_288 rs12024204 Endometriosis ADH5P2,HMGB1P18 -0.65 

ALU_umary_ALU_342 rs12091709 Cognitive function LRRC8D 0.65 

ALU_umary_ALU_390 rs303386 

Adverse response to 
chemotherapy 

(neutropenia/leucopenia) (all 
topoisomerase inhibitors) 

LOC100129620 0.46 

L1_umary_LINE1_98 rs1948368 Bipolar disorder PPIAP7,RPSAP19 0.77 

L1_umary_LINE1_99 rs11578152 Menarche (age at onset) DNAJA1P5,COL11A1 0.63 

ALU_umary_ALU_412 rs10874639 Protein quantitative trait loci DNAJA1P5,COL11A1 0.55 

ALU_umary_ALU_417 rs3934285 Obesity-related traits AMY1C,FTLP17 0.74 

SVA_umary_SVA_45 rs7411387 
Interferon alpha levels in 

systemic lupus 
erythematosus 

CHIA 0.52 

ALU_umary_ALU_446 rs10776733 Obesity-related traits ADORA3 0.46 

ALU_umary_ALU_464 rs11102807 Autism EIF2S2P5,PKMP1 0.42 

ALU_umary_ALU_481 rs10802047 Relative hand skill in 
reading disability RNA5SP56,PSMC1P12 -0.69 

ALU_umary_ALU_510 rs12403795 Illicit drug use MRPS21 0.49 

ALU_umary_ALU_534 rs857684 Red blood cell traits OR10Z1 0.45 

SVA_umary_SVA_57 rs3790672 Testicular germ cell tumor UCK2 0.83 

ALU_umary_ALU_585 rs3903239 Atrial fibrillation GORAB,PRRX1 -0.42 

ALU_umary_ALU_589 rs28588043 Number of children (6+ vs. 
0 or 1) . 0.86 

ALU_umary_ALU_602 rs17301853 Migraine - clinic-based RABGAP1L 0.57 

ALU_umary_ALU_618 rs12760731 Obesity-related traits LINC00083,TEX35 0.62 

ALU_umary_ALU_632 rs199950 Body mass index (change 
over time) CACNA1E 0.55 

ALU_umary_ALU_659 rs12125250 Economic and political 
preferences SLC4A1APP2,RPS3AP9 0.43 
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ALU_umary_ALU_660 rs12125250 Economic and political 
preferences SLC4A1APP2,RPS3AP9 0.46 

ALU_umary_ALU_664 rs10489764 Amyotrophic lateral 
sclerosis (sporadic) SLC4A1APP2,RPS3AP9 0.49 

ALU_umary_ALU_672 rs12408261 Number of pregnancies . -0.68 

ALU_umary_ALU_689 rs10801047 Crohn's disease HNRNPA1P46,RGS18 0.67 

ALU_umary_ALU_713 rs1890645 Neonatal lupus EEF1A1P14,KCNT2 0.43 

ALU_umary_ALU_716 rs426736 Meningococcal disease CFHR3 0.76 

ALU_umary_ALU_717 rs426736 Meningococcal disease CFHR3 0.71 

ALU_umary_ALU_718 rs426736 Meningococcal disease CFHR3 0.74 

ALU_umary_ALU_795 rs12120588 Urate levels in overweight 
individuals . 0.57 

ALU_umary_ALU_796 rs12120588 Urate levels in overweight 
individuals . -0.50 

ALU_umary_ALU_841 rs12410462 Major depressive disorder BTF3P9,TUBB8P10 0.44 

ALU_umary_ALU_842 rs12410462 Major depressive disorder BTF3P9,TUBB8P10 0.40 

ALU_umary_ALU_845 rs801114 Basal cell carcinoma FTH1P2,ISCA1P2 0.57 

ALU_umary_ALU_884 rs482329 Life threatening arrhythmia LINC00184,LINC01132 -0.72 

SVA_umary_SVA_79 rs12135191 Urate levels (BMI 
interaction) . -0.44 

ALU_umary_ALU_897 rs2820037 Hypertension RPL39P10,CHRM3 0.92 

ALU_umary_ALU_958 rs10189761 Obesity FAM150B,TMEM18 0.88 

ALU_umary_ALU_971 rs11123610 

Response to inhaled 
corticosteroid treatment in 
asthma (percentage change 

of FEV1) 

ALLC 0.59 

ALU_umary_ALU_1048 rs4635554 Hypertriglyceridemia TDRD15,RNA5SP87 -0.46 

L1_umary_LINE1_267 rs2681019 Dialysis-related mortality RNA5SP87,KLHL29 -0.87 

ALU_umary_ALU_1070 rs3795958 Metabolite levels 
(HVA/MHPG ratio) DRC1 0.48 

ALU_umary_ALU_1128 rs1863080 Anthropometric traits MRPL50P1,RPL21P36 0.66 

ALU_umary_ALU_1149 rs3816183 Hypospadias HAAO -0.50 

ALU_umary_ALU_1163 rs2341459 Height CAMKMT -0.52 

ALU_umary_ALU_1171 rs12474201 Height CRIPT,SOCS5 0.57 

ALU_umary_ALU_1173 rs34198350 QT interval in Tripanosoma 
cruzi seropositivity RPS27AP7,VN1R18P 0.74 

ALU_umary_ALU_1211 rs12713280 Economic and political 
preferences EML6 0.51 

ALU_umary_ALU_1216 rs6751715 HIV-1 control MIR216B,CCDC85A -0.40 

ALU_umary_ALU_1221 rs889956 Educational attainment EIF2S2P7,VRK2 0.73 

SVA_umary_SVA_110 rs3845817 Bipolar disorder RPS15AP15,KRT18P33 0.60 

ALU_umary_ALU_1273 rs4141819 Endometriosis ETAA1,C1D 0.48 

ALU_umary_ALU_1287 rs432203 Longevity . -0.51 

ALU_umary_ALU_1336 rs10496262 Aging traits LRRTM1,MTND4P25 0.85 

ALU_umary_ALU_1337 rs10496262 Aging traits LRRTM1,MTND4P25 0.75 

L1_umary_LINE1_346 rs12052359 Bilirubin levels LRRTM1,MTND4P25 0.51 

L1_umary_LINE1_348 rs10496289 Hypertension MTND5P27,RPL37P10 0.61 

ALU_umary_ALU_1350 rs7581224 Coronary artery calcification SUCLG1,DNAH6 -0.41 

ALU_umary_ALU_1388 rs7583877 Type 1 diabetes nephropathy AFF3 -0.50 
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L1_umary_LINE1_366 rs1558648 Serum protein levels (sST2) IL1RL2 0.53 

ALU_umary_ALU_1406 rs2163349 Addiction NCK2 0.88 

ALU_umary_ALU_1429 rs13401811 Chronic lymphocytic 
leukemia ACOXL 0.66 

ALU_umary_ALU_1433 rs11122895 Allergic sensitization RPL34P8,ANAPC1 0.61 

ALU_umary_ALU_1441 rs1823125 Sleep duration LOC101927400 0.63 

ALU_umary_ALU_1555 rs13405020 Non-small cell lung cancer THSD7B -0.53 

ALU_umary_ALU_1557 rs13405020 Non-small cell lung cancer THSD7B 0.61 

ALU_umary_ALU_1585 rs17515225 Motion sickness LRP1B -0.77 

ALU_umary_ALU_1621 rs7584099 Response to statin therapy PABPC1P2,RPL26P14 0.64 

ALU_umary_ALU_1623 rs2307394 Urate levels ORC4 0.71 

ALU_umary_ALU_1628 rs10191411 Protein quantitative trait loci RPS29P8,EPC2 0.43 

L1_umary_LINE1_426 rs7594648 Age-related hearing 
impairment MTND5P30,NR4A2 0.84 

ALU_umary_ALU_1709 rs1424760 Phospholipid levels (plasma) RNA5SP109,RPL7P61 -0.48 

ALU_umary_ALU_1740 rs2268365 Blood pressure (smoking 
interaction) LRP2 0.51 

ALU_umary_ALU_1778 rs9287989 Periodontal microbiota EXTL2P1,KIAA1715 -0.43 

L1_umary_LINE1_455 rs13413635 Heart rate PDE11A 0.73 

ALU_umary_ALU_1824 rs6741522 Cervical artery dissection RPL23AP33,ELF2P4 0.58 

ALU_umary_ALU_1838 rs2675399 Obesity-related traits DIRC1,COL3A1 0.56 

ALU_umary_ALU_1843 rs2675399 Obesity-related traits DIRC1,COL3A1 0.46 

ALU_umary_ALU_1867 rs2176528 Bipolar disorder RPS17P8,GLULP6 0.57 

ALU_umary_ALU_1894 rs6738825 Crohn's disease . -0.81 

L1_umary_LINE1_489 rs17266097 Menarche (age at onset) SATB2 0.41 

ALU_umary_ALU_1947 rs12478665 Hippocampal volume MEAF6P1,MAP2 0.65 

ALU_umary_ALU_1961 rs1464443 Amyotrophic lateral 
sclerosis (sporadic) ERBB4 -0.48 

ALU_umary_ALU_1964 rs4673659 Asthma (sex interaction) ERBB4 0.66 

ALU_umary_ALU_1987 rs16857609 Breast cancer DIRC3 0.74 

ALU_umary_ALU_1992 rs492400 Body mass index . 0.72 

ALU_umary_ALU_2011 rs12621643 Acute lymphoblastic 
leukemia (childhood) KCNE4 -0.42 

ALU_umary_ALU_2101 rs7652782 Serum uric acid levels CNTN4 0.70 

ALU_umary_ALU_2109 rs2587949 Periodontitis (DPAL) SUMF1 -0.55 

ALU_umary_ALU_2123 rs271066 Alzheimer's disease (age of 
onset) MRPS35P1,MRPS36P1 0.50 

SVA_umary_SVA_157 rs3729931 Cardiac hypertrophy RAF1 -0.42 

ALU_umary_ALU_2169 rs6771632 

Lung function (forced 
expiratory flow between 

25%25 and 75%25 of forced 
vital capacity) 

IMPDH1P8,GALNT15 -0.42 

ALU_umary_ALU_2247 rs7617877 Parkinson's disease LINC00693 -0.59 

ALU_umary_ALU_2251 rs4680719 Metabolite levels (HVA) MESTP4,RBMS3-AS3 -0.41 

ALU_umary_ALU_2289 rs75968099 Schizophrenia HSPD1P6,TRANK1 0.83 

L1_umary_LINE1_580 rs11708996 QT interval SCN5A 0.57 

ALU_umary_ALU_2319 rs10865924 Clozapine-induced 
agranulocytosis ACKR2 0.88 

ALU_umary_ALU_2333 rs319690 Blood pressure MAP4 -0.52 
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ALU_umary_ALU_2337 rs319690 Blood pressure MAP4 0.47 

ALU_umary_ALU_2340 rs11719291 Cognitive function IP6K2 0.80 

ALU_umary_ALU_2349 rs1031925 Melanoma . 0.75 

ALU_umary_ALU_2352 rs2029213 Heart rate DCP1A 0.60 

ALU_umary_ALU_2371 rs6764184 Optic cup area . 0.72 

L1_umary_LINE1_629 rs17518584 Cognitive function CADM2 -0.51 

ALU_umary_ALU_2515 rs7632427 Orofacial clefts EPHA3,PROS2P,PROSP 0.48 

ALU_umary_ALU_2575 rs1397924 
Economic and political 

preferences 
(environmentalism) 

MIR548AB,RAP1BP2 0.63 

ALU_umary_ALU_2577 rs12485744 
Economic and political 

preferences 
(environmentalism) 

MIR548AB,RAP1BP2 0.81 

ALU_umary_ALU_2578 rs2677247 IgG glycosylation MIR548AB,RAP1BP2 0.65 

ALU_umary_ALU_2591 rs12491921 Cannabis dependence CBLB,FCF1P3 -0.43 

ALU_umary_ALU_2627 rs7611694 Prostate cancer SIDT1 0.43 

ALU_umary_ALU_2637 rs9841504 Gastric cancer LOC102723469,ZBTB20 0.86 

ALU_umary_ALU_2667 rs13077101 Obesity-related traits RABL3 0.84 

ALU_umary_ALU_2697 rs2712381 Monocyte count RPN1 -0.55 

ALU_umary_ALU_2733 rs16847609 Alzheimer's disease in 
APOE e4- carriers . 0.82 

ALU_umary_ALU_2743 rs908821 Multiple sclerosis TRIM42,RPL23AP41 0.50 

ALU_umary_ALU_2757 rs9826463 
QRS duration in 

Tripanosoma cruzi 
seropositivity 

PLS1 0.65 

ALU_umary_ALU_2770 rs345013 Prostate cancer RNA5SP144,LARP7P4 0.90 

ALU_umary_ALU_2810 rs1351267 Schizophrenia SUCNR1,MBNL1 -0.52 

ALU_umary_ALU_2845 rs7646881 Tetralogy of Fallot LOC100287290 0.52 

ALU_umary_ALU_2909 rs9864370 Multiple myeloma 
(hyperdiploidy) MECOM 0.67 

ALU_umary_ALU_2913 rs13097028 Melanoma SDHDP3,TERC 0.83 

ALU_umary_ALU_2925 rs3913363 Response to angiotensin II 
receptor blocker therapy TMEM212,FNDC3B 0.79 

ALU_umary_ALU_3022 rs10937470 Total ventricular volume UTS2B -0.77 

SVA_umary_SVA_203 rs11723261 Immune response to 
smallpox vaccine (IL-6) . 0.61 

ALU_umary_ALU_3058 rs11723261 Immune response to 
smallpox vaccine (IL-6) . 0.61 

ALU_umary_ALU_3062 rs13108904 Obesity-related traits LOC101928676,MAEA -0.77 

ALU_umary_ALU_3085 rs16872571 Vitiligo CLNK,RNPS1P1 -0.69 

L1_umary_LINE1_786 rs1503874 Illicit drug use KRT18P63,RPL21P46 0.47 

ALU_umary_ALU_3139 rs4697263 Age-related hearing 
impairment (interaction) KCNIP4-IT1,GPR125 0.84 

ALU_umary_ALU_3178 rs7442317 
Attention deficit 

hyperactivity disorder motor 
coordination 

EEF1A1P21,RPS3AP17 0.87 

ALU_umary_ALU_3195 rs2177312 
Very long-chain saturated 
fatty acid levels (fatty acid 

22:0) 
PCDH7,MAPRE1P2 0.53 

L1_umary_LINE1_818 rs10010758 Periodontal microbiota TBC1D1 0.44 

L1_umary_LINE1_831 rs2055942 Type 2 diabetes GABRA4 0.52 

ALU_umary_ALU_3287 rs6820391 Cervical artery dissection LNX1 -0.45 
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ALU_umary_ALU_3295 rs13113518 Height CLOCK 0.71 

ALU_umary_ALU_3340 rs7656244 Kawasaki disease TECRL 0.49 

ALU_umary_ALU_3360 rs1155865 Cognitive test performance RPS23P3,CENPC 0.77 

ALU_umary_ALU_3378 rs4356975 Obesity-related traits UGT2B7 0.44 

ALU_umary_ALU_3409 rs6854845 Survival in rectal cancer . 0.45 

ALU_umary_ALU_3486 rs4416442 
Chronic obstructive 
pulmonary disease 

(moderate to severe) 
FAM13A 0.40 

ALU_umary_ALU_3554 rs17030795 Anorexia nervosa PPP3CA 0.80 

L1_umary_LINE1_913 rs6533014 
Homeostasis model 

assessment of beta-cell 
function (interaction) 

SLC39A8,NFKB1 0.54 

L1_umary_LINE1_915 rs4699052 Testicular germ cell tumor CENPE,DDX3P3,DDX3Y
P3 0.45 

L1_umary_LINE1_928 rs10034228 Myopia (pathological) RPL36AP23,CCDC34P1 0.93 

ALU_umary_ALU_3601 rs10034228 Myopia (pathological) RPL36AP23,CCDC34P1 0.82 

L1_umary_LINE1_942 rs6838310 Cognitive function NT5C3AP1,NDST3 0.45 

ALU_umary_ALU_3643 rs10028773 Educational attainment KLHL2P1 -0.40 

ALU_umary_ALU_3782 rs1512281 Percentage gas trapping . 0.71 

ALU_umary_ALU_3796 rs1395821 Coronary heart disease TTC29,MIR548G 0.54 

ALU_umary_ALU_3944 rs6835098 
Dementia and core 
Alzheimer's disease 

neuropathologic changes 
GALNT7,LOC101930370 -0.40 

ALU_umary_ALU_3997 rs2130392 Kawasaki disease CENPU 0.61 

ALU_umary_ALU_4041 rs11748327 Myocardial infarction IRX1,LINC01020 0.72 

ALU_umary_ALU_4046 rs16875288 

Functional impairment in 
major depressive 

disorder%2C bipolar 
disorder and schizophrenia 

ADAMTS16 0.54 

ALU_umary_ALU_4055 rs7729273 Cognitive performance RNA5SP176,ADCY2 0.59 

ALU_umary_ALU_4195 rs1173766 Blood pressure NPR3,RPS8P8 -0.54 

ALU_umary_ALU_4218 rs293748 Obesity-related traits NIPBL 0.74 

ALU_umary_ALU_4266 rs9291768 Classic bladder exstrophy . 0.43 

ALU_umary_ALU_4267 rs4865673 Dental caries HMGB1P47,KATNBL1P4 0.64 

ALU_umary_ALU_4270 rs4348174 Serum thyroid-stimulating 
hormone levels KATNBL1P4,RPS17P11 0.42 

ALU_umary_ALU_4283 rs7716219 Height SLC38A9 0.60 

ALU_umary_ALU_4294 rs16886364 Breast cancer (early onset) MAP3K1 0.87 

ALU_umary_ALU_4375 rs295688 Dysphagia . 0.48 

ALU_umary_ALU_4403 rs672413 Blood and toenail selenium 
levels ARSB 0.52 

SVA_umary_SVA_248 rs506500 Blood trace element (Se 
levels) BHMT -0.50 

ALU_umary_ALU_4406 rs567754 Toenail selenium levels BHMT 0.40 

ALU_umary_ALU_4449 rs6452790 Cognitive function RPS3AP22,LINC00461 0.68 

ALU_umary_ALU_4509 rs10067427 Non-alcoholic fatty liver 
disease histology (lobular) EEF1A1P20,MTND5P10 0.68 

ALU_umary_ALU_4510 rs10067427 Non-alcoholic fatty liver 
disease histology (lobular) EEF1A1P20,MTND5P10 0.65 

ALU_umary_ALU_4514 rs4702982 Panic disorder FAM174A,ST8SIA4 0.68 

ALU_umary_ALU_4562 rs4388249 Schizophrenia MAN2A1 0.89 
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ALU_umary_ALU_4571 rs3853750 Asthma and hay fever SLC25A46,TSLP 0.44 

ALU_umary_ALU_4589 rs55670112 Epilepsy KCNN2,TRIM36 0.45 

ALU_umary_ALU_4624 rs255788 Response to platinum-based 
chemotherapy (carboplatin) FAM170A,PRR16 0.55 

ALU_umary_ALU_4646 rs6595551 Type 2 diabetes (young 
onset) and obesity ZNF608,RPL28P3 0.59 

ALU_umary_ALU_4684 rs6890695 Alzheimer's disease in 
APOE e4- carriers . 0.68 

ALU_umary_ALU_4717 rs3776331 Uric acid levels ARHGAP26 0.44 

ALU_umary_ALU_4737 rs9325032 Cognitive test performance PPP2R2B -0.51 

ALU_umary_ALU_4773 rs727809 Age-related hearing 
impairment (interaction) TRNAC32P,GRIA1 0.77 

ALU_umary_ALU_4796 rs411174 Personality traits in bipolar 
disorder ITK 0.47 

ALU_umary_ALU_4807 rs2082412 Psoriasis UBLCP1,IL12B -0.48 

L1_umary_LINE1_1242 rs17504106 Post-traumatic stress 
disorder . 0.81 

ALU_umary_ALU_4959 rs2236212 Phospholipid levels (plasma) ELOVL2 0.47 

ALU_umary_ALU_4976 rs204247 Breast cancer RANBP9,MCUR1 -0.75 

ALU_umary_ALU_4993 rs2274136 Obesity-related traits NUP153 0.56 

ALU_umary_ALU_5002 rs664154 Information processing 
speed . -0.42 

ALU_umary_ALU_5053 rs2523822 Drug-induced liver injury 
(amoxicillin-clavulanate) TRNAI25 0.88 

ALU_umary_ALU_5055 rs259919 HIV-1 control ZNRD1-AS1 0.56 

ALU_umary_ALU_5058 rs12526186 Response to antipsychotic 
treatment HCG20,TRNAI25 0.58 

ALU_umary_ALU_5060 rs9263739 Ulcerative colitis CCHCR1 0.58 

SVA_umary_SVA_278 rs9368677 Atopic dermatitis TRNAI25 0.75 

ALU_umary_ALU_5064 rs1055569 Psychotic symptoms and 
prion disease . 0.69 

ALU_umary_ALU_5065 rs2157337 Rheumatoid arthritis TRNAI25 0.52 

SVA_umary_SVA_280 rs10484561 Follicular lymphoma TRNAI25 0.78 

ALU_umary_ALU_5072 rs4530903 Lymphoma TRNAI25 0.88 

ALU_umary_ALU_5075 rs2858870 Nodular sclerosis Hodgkin 
lymphoma TRNAI25 0.69 

ALU_umary_ALU_5076 rs7756516 Chronic hepatitis B infection HLA-DQB2 -0.71 

ALU_umary_ALU_5077 rs7756516 Chronic hepatitis B infection HLA-DQB2 -0.66 

ALU_umary_ALU_5079 rs2621416 Lymphoma TRNAI25 0.62 

SVA_umary_SVA_282 rs3077 Chronic hepatitis B infection HLA-DPA1 0.90 

ALU_umary_ALU_5106 rs9296295 Obesity-related traits KIF6 0.48 

ALU_umary_ALU_5120 rs9472155 Vascular endothelial growth 
factor levels 

LINC01512,LOC1001323
54 0.58 

ALU_umary_ALU_5132 rs10948222 Height SUPT3H 0.87 

L1_umary_LINE1_1293 rs9357506 Body mass index . -0.87 

ALU_umary_ALU_5165 rs1161397 Overweight status TRNAI25 0.59 

ALU_umary_ALU_5209 rs9475752 Menarche (age at onset) DST 0.58 

ALU_umary_ALU_5213 rs9500256 Eosinophilic esophagitis 
(pediatric) GAPDHP15,RBBP4P4 0.48 

ALU_umary_ALU_5237 rs4710654 Response to amphetamines RNA5SP208,ADGRB3,B
AI3 0.72 

ALU_umary_ALU_5239 rs875033 Response to amphetamines RNA5SP208,ADGRB3,B
AI3 0.55 
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ALU_umary_ALU_5259 rs1048886 Type 2 diabetes C6orf57,SDHAF4 0.76 

ALU_umary_ALU_5262 rs6922893 Obesity-related traits B3GAT2 0.79 

ALU_umary_ALU_5264 rs9351814 Coronary artery disease or 
ischemic stroke LINC00472,KRT19P1 0.42 

ALU_umary_ALU_5280 rs9447004 Calcium levels CD109 0.78 

ALU_umary_ALU_5296 rs12198063 Capecitabine sensitivity IMPG1,HTR1B 0.42 

ALU_umary_ALU_5324 rs10943724 
Thiazide-induced adverse 

metabolic effects in 
hypertensive patients 

RPL17P25,FAM46A 0.54 

ALU_umary_ALU_5395 rs11757063 Migraine FUT9,UFL1 0.85 

ALU_umary_ALU_5402 rs6924808 

Response to inhaled 
glucocorticoid treatment in 
asthma (percentage change 

of FEV1) 

. 0.49 

SVA_umary_SVA_298 rs239198 Menarche (age at onset) ASCC3 0.44 

L1_umary_LINE1_1370 rs1416280 Longevity (90 years and 
older) GRIK2,R3HDM2P2 0.43 

ALU_umary_ALU_5490 rs9488343 Gray matter volume 
(schizophrenia interaction) HS3ST5 0.55 

ALU_umary_ALU_5509 rs11153730 Heart rate RPL29P4,CEP85L -0.58 

ALU_umary_ALU_5582 rs7749983 Periodontal disease-related 
phenotypes LOC102723409 0.53 

ALU_umary_ALU_5583 rs10447419 PR interval SAMD3 0.68 

L1_umary_LINE1_1418 rs225675 
Thiazide-induced adverse 

metabolic effects in 
hypertensive patients 

VTA1 0.79 

ALU_umary_ALU_5657 rs10979 Hypospadias LOC285740 -0.45 

SVA_umary_SVA_315 rs1933488 Prostate cancer RGS17 0.73 

ALU_umary_ALU_5713 rs1449672 Trans fatty acid levels LOC101928923 0.41 

SVA_umary_SVA_320 rs1620921 Lipoprotein (a) - cholesterol 
levels PLG,MAP3K4 -0.60 

ALU_umary_ALU_5742 rs13191362 Body mass index . 0.69 

ALU_umary_ALU_5746 rs9364687 Body mass index . 0.55 

L1_umary_LINE1_1448 rs59072263 Intraocular pressure GLCCI1,ICA1 0.51 

ALU_umary_ALU_5809 rs9918508 Hippocampal atrophy RPL9P19,GAPDHP68 0.59 

L1_umary_LINE1_1460 rs6961860 

Adverse response to 
chemotherapy 

(neutropenia/leucopenia) (all 
antimicrotubule drugs) 

RAD17P1,AHR 0.75 

ALU_umary_ALU_5868 rs12666612 Obesity-related traits HDAC9 0.89 

ALU_umary_ALU_5886 rs2286503 Fibrinogen TOMM7 0.69 

ALU_umary_ALU_5967 rs2392510 Periodontitis GPR141 -0.40 

ALU_umary_ALU_5969 rs16879765 Dupuytren's disease EPDR1 0.62 

ALU_umary_ALU_5970 rs4723738 Treatment response for 
severe sepsis STARD3NL 0.47 

ALU_umary_ALU_6007 rs1722133 Sitting height ratio . 0.47 

ALU_umary_ALU_6015 rs1551277 Anxiety disorder PKD1L1 0.41 

ALU_umary_ALU_6027 rs4132601 Acute lymphoblastic 
leukemia (childhood) IKZF1 0.42 

ALU_umary_ALU_6074 rs10266483 Response to statin therapy ZNF679,VN1R39P 0.69 

ALU_umary_ALU_6114 rs2245368 Body mass index . 0.67 

ALU_umary_ALU_6127 rs62468577 Bronchopulmonary 
dysplasia MAGI2 0.72 
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ALU_umary_ALU_6148 rs2715148 Major depressive disorder PCLO 0.55 

ALU_umary_ALU_6185 rs17301259 Heschl's gyrus morphology ZNF804B 0.71 

ALU_umary_ALU_6272 rs1404697 Smoking behavior C7orf66,EIF3IP1 0.90 

ALU_umary_ALU_6316 rs757278 Response to methotrexate in 
juvenile idiopathic arthritis CTTNBP2 0.67 

ALU_umary_ALU_6320 rs41997 
Response to platinum-based 
chemotherapy in non-small-

cell lung cancer 
ANKRD7,GTF3AP6 -0.62 

ALU_umary_ALU_6359 rs4731207 Cutaneous malignant 
melanoma . -0.65 

ALU_umary_ALU_6372 rs2687481 Hearing function RPL31P39,GRM8 0.46 

ALU_umary_ALU_6373 rs2687481 Hearing function RPL31P39,GRM8 0.74 

ALU_umary_ALU_6374 rs2687481 Hearing function RPL31P39,GRM8 0.45 

ALU_umary_ALU_6427 rs10250997 

Autism spectrum 
disorder%2C attention 
deficit-hyperactivity 
disorder%2C bipolar 
disorder%2C major 

depressive disorder%2C and 
schizophrenia (combined) 

MTPN,PSMC1P3 0.52 

ALU_umary_ALU_6482 rs2708240 QT interval (interaction) CNTNAP2 -0.46 

ALU_umary_ALU_6493 rs17173637 HDL cholesterol AOC1 0.65 

ALU_umary_ALU_6560 rs1045529 Myopia (pathological) ERI1 0.76 

ALU_umary_ALU_6563 rs12545912 Multiple myeloma 
(hyperdiploidy) TNKS 0.82 

ALU_umary_ALU_6564 rs6601327 Multiple myeloma 
(hyperdiploidy) PPP1R3B,TNKS -0.53 

ALU_umary_ALU_6594 rs4831760 Pulmonary function decline TUSC3 0.75 

ALU_umary_ALU_6595 rs4831760 Pulmonary function decline TUSC3 -0.41 

ALU_umary_ALU_6611 rs920590 Acute lymphoblastic 
leukemia (childhood) CSGALNACT1,INTS10 0.78 

ALU_umary_ALU_6645 rs4732957 Response to amphetamines ADRA1A 0.43 

ALU_umary_ALU_6669 rs11997175 Body mass index . -0.58 

ALU_umary_ALU_6674 rs6987004 Pulmonary function decline RPL10AP3,RPL21P80 0.74 

ALU_umary_ALU_6760 rs1387221 Clozapine-induced 
cytotoxicity . -0.60 

ALU_umary_ALU_6766 rs6984242 Schizophrenia NUDT15P1,CA8 0.56 

ALU_umary_ALU_6805 rs13272623 IgG glycosylation LACTB2-
AS1,LOC286190 0.60 

ALU_umary_ALU_6806 rs7017914 Bone mineral density XKR9 -0.74 

ALU_umary_ALU_6814 rs13263568 Migraine EYA1 0.59 

ALU_umary_ALU_6846 rs16939046 Information processing 
speed CASC9 0.85 

ALU_umary_ALU_6919 rs9969524 Optic disc area . -0.43 

ALU_umary_ALU_6932 rs160451 Leprosy RNA5SP272,RIPK2 -0.73 

ALU_umary_ALU_6951 rs278567 Bipolar disorder and 
schizophrenia C8orf87 0.76 

ALU_umary_ALU_6959 rs7818688 

Vincristine-induced 
peripheral neuropathy in 

acute lymphoblastic 
leukemia 

. 0.68 

ALU_umary_ALU_6965 rs3104964 Colorectal cancer C8orf37-
AS1,LOC100616530 0.56 

ALU_umary_ALU_6990 rs2033562 IgA nephropathy . -0.42 
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SVA_umary_SVA_389 rs374810 
Ossification of the posterior 
longitudinal ligament of the 

spine 
RSPO2 0.56 

ALU_umary_ALU_7045 rs36068923 Schizophrenia RPSAP48,EEF1A1P37 0.62 

ALU_umary_ALU_7125 rs13268726 Amyotrophic lateral 
sclerosis SQLE 0.51 

ALU_umary_ALU_7143 rs13281615 Breast cancer LOC101930033 0.62 

ALU_umary_ALU_7145 rs4733601 Diffuse large B cell 
lymphoma 

MIR1208,LINC00824,LIN
C01263 0.53 

L1_umary_LINE1_1761 rs16904191 Migraine MIR5194,ASAP1 0.66 

ALU_umary_ALU_7166 rs7004484 Survival in rectal cancer . 0.83 

L1_umary_LINE1_1787 rs4626664 Restless legs syndrome PTPRD 0.82 

ALU_umary_ALU_7311 rs3904778 Adolescent idiopathic 
scoliosis . 0.54 

ALU_umary_ALU_7320 rs10810865 Cognitive performance PABPC1P11,PUS7P1 0.54 

ALU_umary_ALU_7331 rs7867456 Axial length HACD4,IFNNP1,PTPLA
D2 -0.56 

ALU_umary_ALU_7381 rs10969853 Alcohol dependence (age at 
onset) RBMXP2,KRT18P66 0.40 

SVA_umary_SVA_401 rs10758189 IgG glycosylation B4GALT1 0.82 

SVA_umary_SVA_402 rs11574914 Rheumatoid arthritis CCL21,LOC101929761 0.84 

ALU_umary_ALU_7420 rs4878712 HIV-1 susceptibility . -0.45 

ALU_umary_ALU_7547 rs2814828 Height SPATA31C2,RPSAP49 0.44 

ALU_umary_ALU_7555 rs883924 Hepatitis C induced liver 
fibrosis 

LINC01508,LOC1019278
73 -0.43 

L1_umary_LINE1_1863 rs4743820 Inflammatory bowel disease SYK,AUH 0.45 

ALU_umary_ALU_7564 rs944990 Body mass index . 0.55 

L1_umary_LINE1_1867 rs755109 Quantitative traits HEMGN 0.56 

ALU_umary_ALU_7593 rs7028939 Preeclampsia ERP44 0.72 

ALU_umary_ALU_7594 rs7028939 Preeclampsia ERP44 0.88 

ALU_umary_ALU_7615 rs10990268 Tourette syndrome ZYG11AP1,CYLC2 0.54 

ALU_umary_ALU_7620 rs144649413 Metabolite levels (MHPG) CYLC2,RNA5SP291 0.59 

ALU_umary_ALU_7645 rs7048146 Vascular brain injury YBX1P6,PALM2 0.46 

ALU_umary_ALU_7653 rs1889321 Pulmonary function decline SVEP1 0.56 

ALU_umary_ALU_7654 rs10980508 Type 2 diabetes (dietary 
heme iron intake interaction) SVEP1,MUSK 0.46 

ALU_umary_ALU_7709 rs888219 Response to antipsychotic 
treatment PBX3,MVB12B -0.40 

ALU_umary_ALU_7750 rs7092929 Coronary artery calcification PITRM1-AS1,KLF6 -0.44 

ALU_umary_ALU_7864 rs10508727 Immune response to 
smallpox vaccine (IL-6) MKX 0.57 

ALU_umary_ALU_7994 rs11005694 
Antibody status in 
Tripanosoma cruzi 

seropositivity 
ZWINT,MIR3924 0.57 

ALU_umary_ALU_8012 rs10761482 Schizophrenia ANK3 -0.51 

ALU_umary_ALU_8021 rs224136 Crohn's disease ZNF365,ALDH7A1P4 0.58 

ALU_umary_ALU_8022 rs442309 Vogt-Koyanagi-Harada 
syndrome ZNF365,ALDH7A1P4 -0.52 

ALU_umary_ALU_8067 rs1900005 Vertical cup-disc ratio ATOH7,KRT19P4 -0.55 

SVA_umary_SVA_450 rs12571093 Optic nerve measurement 
(disc area) ATOH7,KRT19P4 0.43 

ALU_umary_ALU_8138 rs791888 Magnesium levels . 0.64 
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ALU_umary_ALU_8178 rs1934955 Blood metabolite levels CYP2C59P,CYP2C8 0.74 

ALU_umary_ALU_8182 rs56322409 Blood metabolite levels ALDH18A1 0.68 

ALU_umary_ALU_8202 rs7069733 

Autism spectrum disorder, 
attention deficit-

hyperactivity disorder, 
bipolar disorder, major 

depressive disorder, and 
schizophrenia (combined) 

. 0.47 

ALU_umary_ALU_8232 rs11195062 Multiple myeloma MXI1 0.48 

ALU_umary_ALU_8297 rs7069346 Migraine without aura C10orf88,PSTK 0.66 

SVA_umary_SVA_488 rs1472189 
Metabolite levels 

(Dihydroxy docosatrienoic 
acid) 

USP47,DKK3 0.67 

ALU_umary_ALU_8387 rs2727405 Obesity-related traits RASSF10,ARNTL 0.55 

ALU_umary_ALU_8392 rs12287212 Vitamin D levels RRAS2,COPB1 0.68 

L1_umary_LINE1_2073 rs12788764 Age-related nuclear 
cataracts LUZP2,RPL36AP40 -0.48 

ALU_umary_ALU_8454 rs11602337 Vascular brain injury LUZP2,RPL36AP40 0.74 

ALU_umary_ALU_8457 rs10834691 IgG glycosylation LUZP2,RPL36AP40 0.43 

ALU_umary_ALU_8468 rs12295638 Obesity (extreme) ANO3 0.72 

ALU_umary_ALU_8489 rs2057178 Tuberculosis RCN1,WT1 0.41 

ALU_umary_ALU_8490 rs2057178 Tuberculosis RCN1,WT1 0.44 

ALU_umary_ALU_8492 rs10767971 Parkinson's disease (age of 
onset) PRRG4,QSER1 -0.49 

L1_umary_LINE1_2092 rs331463 Rheumatoid arthritis PRR5L,TRAF6 0.81 

L1_umary_LINE1_2104 rs10768747 Post-traumatic stress 
disorder . 0.94 

ALU_umary_ALU_8549 rs9300039 Type 2 diabetes RPL9P23,HNRNPKP3 0.58 

ALU_umary_ALU_8559 rs2176598 Body mass index . 0.72 

ALU_umary_ALU_8566 rs10838725 Alzheimer's disease (late 
onset) CELF1 0.53 

ALU_umary_ALU_8572 rs11246602 HDL cholesterol OR4C46,OR4C7P 0.84 

ALU_umary_ALU_8574 rs1814175 Height CBX3P8,TRIM51FP -0.74 

ALU_umary_ALU_8583 rs2220004 Odorant perception 
(&beta%3B-damascenone) OR8H3,OR5BN1P 0.56 

ALU_umary_ALU_8585 rs7927370 Systemic lupus 
erythematosus OR4A15 0.72 

L1_umary_LINE1_2125 rs7927370 Systemic lupus 
erythematosus OR4A15 0.70 

ALU_umary_ALU_8590 rs11228719 Orofacial clefts OR2AH1P,OR9G1 0.49 

ALU_umary_ALU_8591 rs7927370 Systemic lupus 
erythematosus OR4A15 0.61 

ALU_umary_ALU_8620 rs478304 Acne (severe) RNASEH2C,KRT8P26 -0.79 

ALU_umary_ALU_8622 rs524281 Electroencephalogram traits PACS1 0.77 

ALU_umary_ALU_8629 rs12808519 Urate levels in overweight 
individuals . 0.42 

ALU_umary_ALU_8698 rs17817600 Alzheimer's disease PICALM 0.47 

ALU_umary_ALU_8717 rs10830228 Age-related macular 
degeneration RNU6-16P,TYR -0.72 

ALU_umary_ALU_8801 rs313426 Toenail selenium levels DYNC2H1 0.56 

ALU_umary_ALU_8804 rs10895547 LDL cholesterol PDGFD 0.80 

L1_umary_LINE1_2187 rs7945071 Cognitive function RDX,FDX1 0.42 

L1_umary_LINE1_2191 rs2250417 Inflammatory biomarkers BCO2 -0.57 
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ALU_umary_ALU_8951 rs11062040 Response to gemcitabine in 
pancreatic cancer . -0.59 

ALU_umary_ALU_9052 rs7134375 HDL cholesterol TCP1P3,PDE3A 0.51 

ALU_umary_ALU_9104 rs12371778 Breast size PTHLH,CCDC91 0.90 

ALU_umary_ALU_9105 rs11049611 Height CCDC91 0.76 

ALU_umary_ALU_9107 rs11049611 Height CCDC91 0.84 

ALU_umary_ALU_9108 rs1979679 
Ossification of the posterior 
longitudinal ligament of the 

spine 
CCDC91 0.86 

ALU_umary_ALU_9150 rs826838 Heart rate CPNE8 0.53 

ALU_umary_ALU_9158 rs10467147 Obesity-related traits LRRK2,MUC19 0.58 

ALU_umary_ALU_9169 rs285575 Body mass index . 0.76 

ALU_umary_ALU_9177 rs7978895 Type 2 diabetes . -0.53 

ALU_umary_ALU_9215 rs17655565 Plasma amyloid beta peptide 
concentrations (ABx-42) KRT86 0.50 

ALU_umary_ALU_9228 rs11575234 Inflammatory skin disease . 0.91 

ALU_umary_ALU_9233 rs10876993 Celiac disease or 
Rheumatoid arthritis B4GALNT1,RPL13AP23 0.67 

ALU_umary_ALU_9268 rs7301016 IgG glycosylation MON2 0.69 

ALU_umary_ALU_9310 rs2904524 Amyotrophic lateral 
sclerosis (age of onset) CNOT2 0.78 

ALU_umary_ALU_9320 rs1495377 Creutzfeldt-Jakob disease 
(variant) TSPAN8,LGR5 -0.54 

ALU_umary_ALU_9331 rs7964120 Obesity-related traits RPL31P48,VENTXP3 0.52 

ALU_umary_ALU_9355 rs17788937 Myopia (pathological) NAV3 0.89 

ALU_umary_ALU_9388 rs1511589 Optic disc area . 0.78 

L1_umary_LINE1_2324 rs1545843 Major depressive disorder RPL6P25,SLC6A15 0.43 

ALU_umary_ALU_9398 rs7132746 Lewy body disease N/A 0.76 

ALU_umary_ALU_9450 rs7953959 IgG glycosylation TRNAQ46P,RMST,TRQ-
TTG9-1 0.74 

ALU_umary_ALU_9499 rs10444533 Social autistic-like traits RIC8B 0.53 

ALU_umary_ALU_9509 rs59227481 Age-related nuclear 
cataracts MMAB 0.43 

ALU_umary_ALU_9517 rs6490294 Mean platelet volume ACAD10 0.53 

ALU_umary_ALU_9537 rs11064768 Schizophrenia CCDC60 0.64 

ALU_umary_ALU_9553 rs1716403 Response to fenofibrate 
(adiponectin levels) ZNF664-FAM101A 0.47 

ALU_umary_ALU_9589 rs12282 Immune response to 
smallpox vaccine (IL-6) GOLGA3 0.44 

ALU_umary_ALU_9602 rs9788333 
Thiazide-induced adverse 

metabolic effects in 
hypertensive patients 

MIPEPP3 0.53 

ALU_umary_ALU_9625 rs17079928 Orofacial clefts SPATA13 0.45 

SVA_umary_SVA_560 rs1816752 Obesity-related traits CYCSP33,PARP4 0.41 

ALU_umary_ALU_9639 rs10507349 Type 2 diabetes RNF6 -0.41 

ALU_umary_ALU_9670 rs7331540 IgG glycosylation FRY 0.43 

ALU_umary_ALU_9701 rs6563569 
Tourette's syndrome or 
obsessive-compulsive 

disorder 
TRPC4 0.59 

ALU_umary_ALU_9724 rs7336933 Calcium levels VWA8-AS1,RPS28P8 0.41 

ALU_umary_ALU_9726 rs4142110 Nephrolithiasis DGKH 0.50 

L1_umary_LINE1_2401 rs4142110 Nephrolithiasis DGKH 0.69 
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ALU_umary_ALU_9727 rs9594738 Bone mineral density FABP3P2,TNFSF11 -0.42 

ALU_umary_ALU_9775 rs9568281 Multiple sclerosis RCBTB1,ARL11 0.52 

ALU_umary_ALU_9789 rs9536318 Airflow obstruction PCDH8,OLFM4 0.65 

ALU_umary_ALU_9798 rs1116255 Post-traumatic stress 
disorder . 0.78 

ALU_umary_ALU_9803 rs9527419 Response to platinum-based 
chemotherapy (cisplatin) MIR5007,HNF4GP1 0.60 

ALU_umary_ALU_9813 rs9537938 Educational attainment RNA5SP30,CTAGE16P -0.60 

ALU_umary_ALU_9815 rs9563576 Body mass index . 0.68 

ALU_umary_ALU_9834 rs4886238 Menopause (age at onset) TDRD3 0.52 

L1_umary_LINE1_2422 rs1847505 Polychlorinated biphenyl 
levels . 0.50 

ALU_umary_ALU_9847 rs9528384 Verbal declarative memory PCDH20,RAC1P8 0.54 

ALU_umary_ALU_9863 rs9540294 Recalcitrant atopic 
dermatitis . 0.83 

ALU_umary_ALU_9869 rs1333026 Body mass index STARP1,HNRNPA3P5 0.54 

L1_umary_LINE1_2451 rs1324913 Menarche (age at onset) KLF12 0.40 

ALU_umary_ALU_9941 rs975739 Hair color MIR3665,EDNRB-AS1 -0.61 

ALU_umary_ALU_9943 rs975739 Hair color MIR3665,EDNRB-AS1 -0.50 

ALU_umary_ALU_9951 rs9601248 Major depressive disorder NDFIP2,LINC00382 0.56 

ALU_umary_ALU_9959 rs11149178 Major depressive disorder PWWP2AP1,ARF4P4 0.54 

ALU_umary_ALU_9960 rs6563199 Height ARF4P4,HIGD1AP2 -0.47 

ALU_umary_ALU_10026 rs2352028 Lung cancer GPC5 -0.48 

ALU_umary_ALU_10031 rs4771859 

Adverse response to 
chemotherapy 

(neutropenia/leucopenia) (all 
antimicrotubule drugs) 

GPC5 -0.66 

ALU_umary_ALU_10059 rs285098 Migraine FARP1 0.55 

ALU_umary_ALU_10096 rs12871532 

Autism spectrum 
disorder%2C attention 
deficit-hyperactivity 
disorder%2C bipolar 
disorder%2C major 

depressive disorder%2C and 
schizophrenia (combined) 

FAM155A-IT1,LIG4 0.65 

ALU_umary_ALU_10121 rs1278769 Interstitial lung disease ATP11A -0.42 

ALU_umary_ALU_10152 rs10147992 White blood cell types STXBP6 0.48 

ALU_umary_ALU_10246 rs1612141 QT interval (interaction) FBXO33,LRFN5 0.66 

ALU_umary_ALU_10250 rs2154294 
Alcoholism (12-month 

weekly alcohol 
consumption) 

OR10V7P,YWHAQP1 0.47 

ALU_umary_ALU_10258 rs2488856 Osteoprotegerin levels YWHAQP1,TUBBP3 0.57 

ALU_umary_ALU_10284 rs7144383 Idiopathic pulmonary 
fibrosis MDGA2 0.48 

ALU_umary_ALU_10312 rs12434047 Economic and political 
preferences (fairness) DDHD1,RPS3AP46 0.47 

ALU_umary_ALU_10325 rs2274273 Protein biomarker DLGAP5 0.72 

ALU_umary_ALU_10401 rs910316 Height TMED10 0.75 

SVA_umary_SVA_613 rs6574644 Obesity-related traits STON2 -0.47 

ALU_umary_ALU_10518 rs4900384 Type 1 diabetes C14orf64,C14orf177,LIN
C01550 0.69 

ALU_umary_ALU_10560 rs11858159 Platelet thrombus formation . -0.41 
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ALU_umary_ALU_10562 rs35600665 Obesity-related traits PWRN3,PWRN1 0.48 

L1_umary_LINE1_2634 rs587847 Intraocular pressure MIR8063,RPS15P8 0.66 

ALU_umary_ALU_10670 rs2467853 Renal function and chronic 
kidney disease SPATA5L1 -0.51 

SVA_umary_SVA_630 rs12594515 Weight SQRDL,SEMA6D 0.57 

ALU_umary_ALU_10674 rs11633886 Diisocyanate-induced 
asthma . 0.54 

ALU_umary_ALU_10693 rs8023445 Major depressive disorder SHC4 0.88 

ALU_umary_ALU_10695 rs10519227 Thyroid hormone levels FAM227B,FGF7 0.81 

L1_umary_LINE1_2647 rs1124769 Cognitive performance TNFAIP8L3 0.72 

ALU_umary_ALU_10749 rs7179456 Asperger disorder SLTM 0.54 

L1_umary_LINE1_2659 rs7172342 Schizophrenia RORA 0.59 

ALU_umary_ALU_10766 rs1436958 IgG glycosylation VPS13C 0.84 

ALU_umary_ALU_10778 rs7170930 
Response to cytadine 
analogues (cytosine 

arabinoside) 
MIR4311,DIS3L 0.65 

ALU_umary_ALU_10786 rs2241423 Body mass index MAP2K5 0.44 

ALU_umary_ALU_10812 rs8038465 
Liver enzyme levels 
(gamma-glutamyl 

transferase) 
CD276 0.78 

ALU_umary_ALU_10819 rs3099143 Recalcitrant atopic 
dermatitis . 0.72 

ALU_umary_ALU_10821 rs2404602 Blood metabolite levels SCAPER -0.67 

ALU_umary_ALU_10824 rs2137111 Anticoagulant levels HMG20A,LINGO1 0.47 

ALU_umary_ALU_10830 rs950776 Sudden cardiac arrest CHRNB4 0.50 

ALU_umary_ALU_10832 rs2289700 Bipolar disorder CTSH 0.61 

ALU_umary_ALU_10841 rs2663905 QT interval (interaction) MESDC1,ANP32BP3 -0.44 

ALU_umary_ALU_10855 rs6496044 Interstitial lung disease AKAP13,LOC101929656 0.48 

ALU_umary_ALU_10921 rs4533267 Height ADAMTS17 -0.42 

ALU_umary_ALU_10963 rs7200786 Multiple sclerosis CLEC16A 0.65 

ALU_umary_ALU_11003 rs7404095 Inflammatory bowel disease PRKCB -0.71 

ALU_umary_ALU_11054 rs17291845 Information processing 
speed IRX5,IRX6 0.73 

SVA_umary_SVA_673 rs2865531 Pulmonary function CFDP1 -0.49 

ALU_umary_ALU_11154 rs12933472 Glucose homeostasis traits CDH13 0.69 

ALU_umary_ALU_11164 rs17789174 Dysphagia . 0.62 

ALU_umary_ALU_11244 rs8082590 Schizophrenia GID4 -0.55 

ALU_umary_ALU_11275 rs225212 Hypertension risk in short 
sleep duration MYO1D 0.83 

ALU_umary_ALU_11298 rs6607284 Bipolar disorder and 
schizophrenia . 0.45 

SVA_umary_SVA_704 rs199533 Parkinson's disease NSF 0.65 

SVA_umary_SVA_705 rs12185268 Parkinson's disease MAPT-AS1,SPPL2C 0.71 

SVA_umary_SVA_706 rs12373124 Male-pattern baldness MAPT-AS1,SPPL2C 0.92 

ALU_umary_ALU_11330 rs8070463 Ankylosing spondylitis KPNB1,TBKBP1 0.43 

ALU_umary_ALU_11333 rs9303542 Ovarian cancer SKAP1 0.85 

ALU_umary_ALU_11336 rs2411984 Sex hormone-binding 
globulin levels LOC102724596 0.41 

ALU_umary_ALU_11398 rs4351 Blood metabolite levels ACE 0.68 
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ALU_umary_ALU_11400 rs11658329 Height LOC101927898,MAP3K3 0.65 

ALU_umary_ALU_11428 rs10775360 QT interval CALM2P1,CASC17 0.65 

L1_umary_LINE1_2778 rs8066985 Waist-to-hip ratio adjusted 
for body mass index . 0.56 

ALU_umary_ALU_11447 rs8066857 Amyotrophic lateral 
sclerosis SLC39A11 0.41 

ALU_umary_ALU_11484 rs1291183 Pulmonary function in 
asthmatics YES1,ADCYAP1 0.46 

ALU_umary_ALU_11492 rs1992269 Alzheimer's disease (late 
onset) . 0.44 

ALU_umary_ALU_11525 rs7244245 

Response to anti-retroviral 
therapy (ddI/d4T) in HIV-1 

infection (Grade 1 peripheral 
neuropathy) 

MTCL1,RPS4XP19 0.45 

ALU_umary_ALU_11576 rs7235440 Obesity-related traits HRH4,RAC1P1 0.44 

ALU_umary_ALU_11598 rs11083271 Non-alcoholic fatty liver 
disease histology (lobular) CDH2,ARIH2P1 0.72 

ALU_umary_ALU_11708 rs11876941 Body mass index 
(interaction) DCC -0.52 

ALU_umary_ALU_11719 rs12959570 
Tourette's syndrome or 
obsessive-compulsive 

disorder 
WDR7 0.55 

ALU_umary_ALU_11754 rs62096106 

Response to abacavir-
containing treatment in HIV-

1 infection (virologic 
failure) 

PIGN 0.43 

ALU_umary_ALU_11766 rs4553720 

Adverse response to 
chemotherapy 

(neutropenia/leucopenia) 
(docetaxel) 

LINC00305,CDH7 -0.78 

L1_umary_LINE1_2860 rs2406342 

Adverse response to 
chemotherapy 

(neutropenia/leucopenia) 
(cisplatin) 

ARL2BPP1,ZNF236 0.48 

ALU_umary_ALU_11946 rs11673344 Obesity-related traits ZNF585B 0.48 

L1_umary_LINE1_2883 rs2288912 
Very long-chain saturated 
fatty acid levels (fatty acid 

20:0) 

APOC2,APOC4,APOC4-
APOC2 0.52 

ALU_umary_ALU_12024 rs965469 IFN-related cytopenia C20orf194 0.44 

ALU_umary_ALU_12050 rs6077414 Estradiol plasma levels 
(breast cancer) PLCB1 0.42 

ALU_umary_ALU_12052 rs6056209 Cognitive performance PLCB1 -0.60 

ALU_umary_ALU_12098 rs932541 Intelligence KIF16B 0.41 

ALU_umary_ALU_12132 rs816535 Parkinson disease and lewy 
body pathology . 0.90 

ALU_umary_ALU_12143 rs17310467 Hemostatic factors and 
hematological phenotypes MYH7B 0.50 

ALU_umary_ALU_12145 rs11906854 Migraine - clinic-based PHF20 0.58 

ALU_umary_ALU_12207 rs2041278 Obesity-related traits ZNF217,RNU7-14P 0.49 

ALU_umary_ALU_12382 rs2833607 Vitiligo HUNK,LINC00159 0.64 

L1_umary_LINE1_2987 rs11089937 Periodontitis (PAL4Q3) IGL 0.69 

ALU_umary_ALU_12449 rs11089937 Periodontitis (PAL4Q3) IGL 0.70 

ALU_umary_ALU_12461 rs739310 Obesity-related traits ISCA2P1,MIAT 0.50 

ALU_umary_ALU_12480 rs12530 IgG glycosylation RTCB 0.87 

ALU_umary_ALU_12481 rs12530 IgG glycosylation RTCB 0.75 

ALU_umary_ALU_12536 rs138880 Schizophrenia BRD1 -0.42 
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Table 10 Genome-wide significant TE-eQTL for African population  

Chr Pos TE Gene t Statistic P-value FDR 

13 49536621 ALU_umary_ALU_9771 SLC7A2 7.98 7.27E-12 6.29E-05 

6 29892872 ALU_umary_ALU_5054 JPH1 7.64 3.37E-11 1.46E-04 

20 52273671 ALU_umary_ALU_12207 EPB41L4B 7.51 6.18E-11 1.78E-04 

19 30850007 ALU_umary_ALU_11922 LILRA1 7.20 2.49E-10 4.75E-04 

12 92483455 ALU_umary_ALU_9431 IGHV3-20 7.18 2.75E-10 4.75E-04 

11 7435902 L1_umary_LINE1_2054 IMPG1 7.12 3.59E-10 5.17E-04 

2 161430249 ALU_umary_ALU_1693 IGKV1D-12 7.01 5.90E-10 6.80E-04 

1 116548031 L1_umary_LINE1_118 IGHV2-26 6.99 6.28E-10 6.80E-04 

2 161430249 ALU_umary_ALU_1693 IGKV1-12 6.84 1.24E-09 1.20E-03 

18 12884841 ALU_umary_ALU_11552 RP4-614O4.11 6.66 2.84E-09 2.42E-03 

19 30850007 ALU_umary_ALU_11922 RP11-304L19.5 6.64 3.08E-09 2.42E-03 

19 30850007 ALU_umary_ALU_11922 TEX22 6.53 5.02E-09 3.59E-03 

4 9704849 SVA_umary_SVA_206 KIAA1462 6.51 5.39E-09 3.59E-03 

19 30850007 ALU_umary_ALU_11922 SCNN1D 6.46 6.62E-09 4.09E-03 

11 7435902 L1_umary_LINE1_2054 SLC35F4 6.45 7.13E-09 4.11E-03 

19 30850007 ALU_umary_ALU_11922 ZNF667 6.34 1.15E-08 6.05E-03 

11 35348849 ALU_umary_ALU_8504 ABCC3 6.33 1.19E-08 6.05E-03 

19 30850007 ALU_umary_ALU_11922 RP11-122K13.12 6.31 1.29E-08 6.20E-03 

19 30850007 ALU_umary_ALU_11922 HAUS3 6.26 1.65E-08 7.51E-03 

8 122731020 ALU_umary_ALU_7106 RP4-669L17.2 6.20 2.11E-08 8.94E-03 

19 30850007 ALU_umary_ALU_11922 ZNF667-AS1 6.19 2.17E-08 8.94E-03 

4 9704849 SVA_umary_SVA_206 IGLV3-21 6.17 2.41E-08 9.08E-03 

10 78496693 ALU_umary_ALU_8096 SYT5 6.17 2.41E-08 9.08E-03 

13 49536621 ALU_umary_ALU_9771 FERMT1 6.14 2.73E-08 9.85E-03 

20 52273671 ALU_umary_ALU_12207 LHFPL3 6.07 3.62E-08 1.25E-02 

6 32657952 ALU_umary_ALU_5075 HLA-DQB1-AS1 -6.06 3.89E-08 1.30E-02 

13 49536621 ALU_umary_ALU_9771 SNORD116-20 6.03 4.45E-08 1.38E-02 

20 2371733 ALU_umary_ALU_12019 ZCCHC17 6.02 4.46E-08 1.38E-02 

20 42310903 ALU_umary_ALU_12175 ALPL 6.01 4.68E-08 1.40E-02 

6 29892872 ALU_umary_ALU_5054 GHRLOS 6.00 5.05E-08 1.44E-02 

11 7435902 L1_umary_LINE1_2054 NEB 5.99 5.17E-08 1.44E-02 

12 92483455 ALU_umary_ALU_9431 PXMP2 5.98 5.32E-08 1.44E-02 

3 72016139 ALU_umary_ALU_2429 MCEE 5.96 5.88E-08 1.54E-02 

11 7435902 L1_umary_LINE1_2054 RBM44 5.92 6.98E-08 1.69E-02 
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11 7435902 L1_umary_LINE1_2054 RP4-738P11.3 5.92 6.98E-08 1.69E-02 

2 102912450 L1_umary_LINE1_366 DPPA3P2 5.92 7.05E-08 1.69E-02 

2 56373531 ALU_umary_ALU_1216 TNS1 5.90 7.59E-08 1.78E-02 

11 7435902 L1_umary_LINE1_2054 SLC15A2 5.86 9.04E-08 2.06E-02 

1 116548031 L1_umary_LINE1_118 TMEM56 5.83 1.02E-07 2.26E-02 

11 7435902 L1_umary_LINE1_2054 RP11-409I10.2 5.81 1.11E-07 2.39E-02 

15 66921115 ALU_umary_ALU_10780 RP11-829H16.2 5.80 1.15E-07 2.43E-02 

19 30850007 ALU_umary_ALU_11922 HMX2 5.80 1.19E-07 2.45E-02 

10 73193547 ALU_umary_ALU_8081 NRP2 5.75 1.42E-07 2.86E-02 

2 161430249 ALU_umary_ALU_1693 GALNT9 5.73 1.60E-07 3.05E-02 

1 116548031 L1_umary_LINE1_118 RP11-303E16.3 5.72 1.61E-07 3.05E-02 

20 42310903 ALU_umary_ALU_12175 IGKV2D-28 5.72 1.63E-07 3.05E-02 

11 7435902 L1_umary_LINE1_2054 RP4-738P11.4 5.72 1.67E-07 3.05E-02 

20 52369852 ALU_umary_ALU_12208 CTC-248O19.1 5.70 1.75E-07 3.05E-02 

4 9704849 SVA_umary_SVA_206 STRC 5.70 1.79E-07 3.05E-02 

11 7435902 L1_umary_LINE1_2054 IGDCC4 5.70 1.82E-07 3.05E-02 

20 52369852 ALU_umary_ALU_12208 BDKRB2 5.69 1.83E-07 3.05E-02 

3 72016139 ALU_umary_ALU_2429 EEF1E1 5.69 1.88E-07 3.05E-02 

2 144010793 L1_umary_LINE1_410 EPS8L1 5.68 1.93E-07 3.05E-02 

19 30850007 ALU_umary_ALU_11922 RP11-166B2.1 5.68 1.93E-07 3.05E-02 

11 77905200 ALU_umary_ALU_8655 VPS13B 5.68 1.94E-07 3.05E-02 

19 30850007 ALU_umary_ALU_11922 ARVCF 5.68 1.98E-07 3.05E-02 

8 115604486 ALU_umary_ALU_7074 RPS15AP1 5.62 2.53E-07 3.84E-02 

20 52369852 ALU_umary_ALU_12208 PRKAG1 5.61 2.58E-07 3.84E-02 

17 43383714 ALU_umary_ALU_11326 TAT 5.61 2.62E-07 3.84E-02 

15 22797908 ALU_umary_ALU_10550 RP11-481K16.2 5.60 2.66E-07 3.84E-02 

19 30850007 ALU_umary_ALU_11922 ZNF10 5.60 2.71E-07 3.85E-02 

7 86968519 ALU_umary_ALU_6178 TP53TG1 -5.57 3.03E-07 4.21E-02 

10 130888837 ALU_umary_ALU_8317 FREM1 5.57 3.11E-07 4.21E-02 

11 7435902 L1_umary_LINE1_2054 CTA-134P22.2 5.56 3.15E-07 4.21E-02 

8 122731020 ALU_umary_ALU_7106 AC139099.5 5.56 3.16E-07 4.21E-02 

8 132942724 ALU_umary_ALU_7166 AC019221.4 5.56 3.22E-07 4.23E-02 

6 29892872 ALU_umary_ALU_5054 AF165138.7 5.54 3.52E-07 4.48E-02 

8 21879122 SVA_umary_SVA_369 RMI2 5.53 3.57E-07 4.48E-02 

11 35348849 ALU_umary_ALU_8504 AS3MT 5.53 3.61E-07 4.48E-02 

19 30850007 ALU_umary_ALU_11922 SNHG9 5.53 3.63E-07 4.48E-02 

6 29892872 ALU_umary_ALU_5054 GGTA1P 5.52 3.75E-07 4.53E-02 

22 44324605 L1_umary_LINE1_2991 IGHV3-65 5.52 3.81E-07 4.53E-02 

11 77905200 ALU_umary_ALU_8655 RP11-234B24.2 5.52 3.82E-07 4.53E-02 

11 72381238 ALU_umary_ALU_8635 C9orf57 5.51 3.89E-07 4.53E-02 

20 42310903 ALU_umary_ALU_12175 LAMB1 5.51 3.93E-07 4.53E-02 

3 111271467 ALU_umary_ALU_2617 ROCK1P1 -5.50 4.14E-07 4.72E-02 
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Chr Pos TE Gene t Statistic P-value FDR 

5 8749528 L1_umary_LINE1_1049 CLDN6 5.49 4.21E-07 4.74E-02 

11 7435902 L1_umary_LINE1_2054 C20orf203 5.49 4.35E-07 4.81E-02 

11 7435902 L1_umary_LINE1_2054 FREM2 5.48 4.41E-07 4.81E-02 

6 114078807 ALU_umary_ALU_5489 IGLV2-5 5.48 4.45E-07 4.81E-02 

6 114078807 ALU_umary_ALU_5489 BAMBI 5.48 4.55E-07 4.83E-02 

6 29892872 ALU_umary_ALU_5054 FITM1 5.47 4.58E-07 4.83E-02 

17 55926227 ALU_umary_ALU_11375 TMEM56 5.47 4.68E-07 4.88E-02 

 

Table 11 Genome-wide significant TE-eQTL for European population  

Chr Pos TE Gene t Statistic P-value FDR 

17 43660599 SVA_umary_SVA_704 RP11-259G18.3 11.77 3.32E-27 2.47E-20 

22 19210913 L1_umary_LINE1_2986 CLTCL1 11.05 1.43E-24 5.30E-18 

17 43660599 SVA_umary_SVA_704 KANSL1-AS1 10.44 2.08E-22 5.16E-16 

17 43660599 SVA_umary_SVA_704 RP11-259G18.2 9.89 1.55E-20 2.88E-14 

9 33130564 SVA_umary_SVA_401 B4GALT1 -9.76 4.47E-20 6.64E-14 

6 33030313 SVA_umary_SVA_282 HLA-DPB2 7.74 1.05E-13 1.30E-07 

12 58359071 ALU_umary_ALU_9234 XRCC6BP1 7.50 5.21E-13 5.54E-07 

6 32589834 ALU_umary_ALU_5072 HLA-DRB5 -7.43 8.49E-13 7.89E-07 

17 43660599 SVA_umary_SVA_704 LRRC37A4P -7.01 1.22E-11 1.01E-05 

6 32657952 ALU_umary_ALU_5075 HLA-DQB1-AS1 -6.99 1.36E-11 1.01E-05 

17 43660599 SVA_umary_SVA_704 LRRC37A 6.50 2.71E-10 1.83E-04 

3 154966214 ALU_umary_ALU_2829 LILRA1 6.37 5.94E-10 3.68E-04 

6 32657952 ALU_umary_ALU_5075 HLA-DQB1 -6.33 7.45E-10 4.26E-04 

13 32328983 SVA_umary_SVA_565 CCDC58 6.29 9.26E-10 4.92E-04 

8 5506286 ALU_umary_ALU_6548 CDH23 6.10 2.82E-09 1.40E-03 

6 33030313 SVA_umary_SVA_282 HLA-DPA1 -6.02 4.40E-09 2.04E-03 

2 65163783 ALU_umary_ALU_1256 SLC1A4 -5.85 1.11E-08 4.87E-03 

8 5506286 ALU_umary_ALU_6548 TMEM132B 5.82 1.33E-08 5.50E-03 

8 5506286 ALU_umary_ALU_6548 RP11-492E3.2 5.80 1.46E-08 5.71E-03 

8 5506286 ALU_umary_ALU_6548 APOC2 5.77 1.76E-08 6.53E-03 

7 123194557 ALU_umary_ALU_6352 VARS 5.74 2.03E-08 7.17E-03 

11 86195336 ALU_umary_ALU_8700 IGLV7-46 5.72 2.21E-08 7.48E-03 

8 5506286 ALU_umary_ALU_6548 CD2 5.70 2.56E-08 8.27E-03 

2 227473038 ALU_umary_ALU_2029 IGLV3-27 5.68 2.81E-08 8.69E-03 

2 114106446 ALU_umary_ALU_1441 ACY1 5.66 3.07E-08 9.14E-03 

14 106756949 ALU_umary_ALU_10537 NPR3 5.57 5.08E-08 1.42E-02 

20 9477936 L1_umary_LINE1_2901 FAM110C 5.54 5.78E-08 1.42E-02 

14 106756949 ALU_umary_ALU_10537 AC026703.1 5.54 5.79E-08 1.42E-02 
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14 106756949 ALU_umary_ALU_10537 PRODH 5.54 5.90E-08 1.42E-02 

4 106636862 ALU_umary_ALU_3576 PIK3CA 5.54 5.96E-08 1.42E-02 

6 32589834 ALU_umary_ALU_5072 HLA-DRB6 -5.54 5.98E-08 1.42E-02 

8 5506286 ALU_umary_ALU_6548 FBXO27 5.53 6.12E-08 1.42E-02 

6 32657952 ALU_umary_ALU_5075 HLA-DRB1 -5.53 6.38E-08 1.44E-02 

10 105817214 ALU_umary_ALU_8203 RP1-37N7.3 -5.49 7.59E-08 1.66E-02 

11 100781393 ALU_umary_ALU_8788 HMGN2P19 5.48 8.25E-08 1.75E-02 

14 106756949 ALU_umary_ALU_10537 CLSTN2 5.40 1.21E-07 2.50E-02 

10 17712792 SVA_umary_SVA_438 TMEM236 5.39 1.30E-07 2.62E-02 

1 65346960 ALU_umary_ALU_212 VANGL2 5.38 1.39E-07 2.72E-02 

1 97717644 ALU_umary_ALU_379 IGLV1-50 5.36 1.53E-07 2.91E-02 

9 112908065 ALU_umary_ALU_7651 AC020571.3 5.33 1.74E-07 3.23E-02 

14 106756949 ALU_umary_ALU_10537 CDH2 5.27 2.32E-07 4.21E-02 

6 32657952 ALU_umary_ALU_5075 HLA-DRB5 -5.25 2.57E-07 4.54E-02 
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