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1 Executive Summary

The continuing merger of computer and communication technologies is leading to a new comput-
ing/communications infrastructure of unprecedented magnitude, enabling new applications with
broad economic and social impact. Yet, such applications pose major challenges to researchers in
Computer Science and in application domains.

Distributed Laboratories. The topic of the proposed research program is the realization of
distributed laboratories, where individuals can interact with each other, and more importantly,
with powerful, distributed computational tools as readily as if all were located in a single site. Our
intent is to permit scientists, engineers, and managers at geographically distinct locations (including
individuals “tele-commuting” from home) to combine their expertise in solving shared problems, by
allowing them to simultaneously view, interact with, and steer sophisticated computations executing
on high performance distributed computing platforms. The research results and tools resulting from
the requested infrastructure will have broad application in many domains. However, we will use
two specific applications to focus our efforts, and to help ensure that our results and software tools
are properly integrated:

1. A distributed laboratory for experimentation with high performance numeric computations
for applications in molecular physics, atmospheric sciences, and manufacturing systems.

2. A distributed laboratory for studying the behavior of future-generation, large-scale telecom-
munication networks through high performance parallel and distributed simulation models of
wired and wireless networks, called the virtual telecommunication networks application.

Proposed research. Five research projects will develop underlying, enabling technologies to
support these applications. Three are primarily concerned with “middle-ware” software and tech-
nologies that will be directly utilized by the driver applications. The first project will study the
dynamic monitoring, adaptation, and interactive steering of high performance computations for on-
line control of “virtual laboratory instruments” and for “what-if?7” experimentation with complex
simulation models by distributed laboratory users. The second project will explore the efficient ex-
ecution of simulation programs, especially discrete-event simulations of telecommunication network
models, on multi-granular compute servers (servers containing both tightly-coupled multiprocessors
and loosely-coupled workstations). The third project will explore the collaboration technologies re-
quired in distributed laboratories, including the architecture of CSCW systems, user interfaces, and
the indexing of video and audio records about experiments.

The fourth and fifth project are concerned, respectively, with the distributed systems and
telecommunication networking technologies underlying distributed laboratories. They will provide
technical support and software for each of the three middle-ware projects. The emphasis in dis-
tributed systems research is on support for shared-state in multi-granular and distributed comput-
ing environments. Networking research is concerned with providing the necessary communication
facilities for distributed laboratory applications, both at the workplace and when tele-commuting
from the home. Networking research also serves a dual role as a user of the proposed virtual
telecommunication network environment.

Specific research issues. Research issues explored in each of the middle-ware projects include:

e Interactive Steering

— Distributed laboratory architectures: We will develop a framework for the establishment,
management, and growth, of integrated distributed laboratory environments.
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Distributed laboratory managers: We will develop mechanisms that support the cre-
ation and management of distributed laboratories, so that laboratory components can
be “plugged together” and participants can be added and removed dynamically.

Foundations: We will define formalisms for describing configurable and monitorable
attributes of distributed/parallel programs, and develop portable tools using these spec-
ifications for on-line program monitoring, configuration, and display of high performance
computations on multiprocessor and multi-granular compute servers.

e Distributed Simulations

Efficient, adaptive synchronization protocols: We will develop methods for efficient syn-
chronization of simulations executing on multi-granular compute servers, and apply these
techniques to simulations of large telecommunication networks.

Mapping and load balancing: We will study the effects of load management policies on
the efficiency of synchronization mechanisms, and develop techniques to map and load
balance distributed simulations on multi-granular compute servers.

Real-time and interactive simulations: We will develop methods to enable distributed
discrete-event simulations to support interactive and hardware-in-the-loop simulations
by guaranteeing real-time constraints.

Shared state abstractions: We will develop multi-versioned memory structures to support
shared-state abstractions for distributed simulation applications.

e Collaborative Systems

System architectures: We will develop structures for open and extensible collaborative
systems utilizing a shared-state approach.

User interface composition: We will develop automatic and semi-automatic techniques
to construct user interfaces for distributed laboratory applications.

Indexing video and audio recordings: We will develop new techniques for indexing video
and audio recordings, e.g., so late-joiners can quickly review missed discussions prior to
joining a meeting.

Research issues explored in the state-sharing and telecommunication network projects include:

e State Sharing

Caching mechanisms: We will develop scalable techniques for efficient caching of shared
state in distributed laboratories, e.g., by exploiting weakened consistency requirements.

Compile-time and runtime support: We will explore the use of compile-time and runtime
information to reduce overheads for managing consistent copies of shared state.

e Networking Research

The ubiquitous network: We will develop new protocols to enable cost-effective, high-
speed, networking both within the office and lab using ATM technology and to the home
and community utilizing fiber/cable plant, enabling distributed laboratory applications
to be utilized wherever the experimenter may be located.

Multicast communications: We will develop techniques for scalable multicast commu-
nications for collaborative systems, maintaining coherence in state-sharing coherence
protocols, and in distributed simulation computations.



— Quality of service guarantees and resource management: We will develop models to
characterize workloads for distributed laboratory applications, develop resource alloca-
tion algorithms to maintain quality of service guarantees of connections, and evaluate
these algorithms on the virtual telecommunication network facility and with actual dis-
tributed laboratory applications.

These projects build on each other in a synergistic fashion. For example, results from the state
sharing and multicast research will be exploited by the interactive steering and distributed simula-
tion projects. Work in these latter two projects will be brought together to enable distributed sim-
ulation computations to be rolled back, and re-executed forward using different parameter settings,
providing the ability to, in effect, execute the simulation program backwards. The collaborative
work project will enable multiple users at different locations to interact with these simulations,
and adds capabilities for human-to-human interaction both during and after the experiments. The
distributed simulation and networking projects are closely coupled through the virtual telecommu-
nication network application.



2 Research

Our research proposes to create distributed laboratories in which scientists and engineers working
in geographically distributed locations share access to observational instruments and large-scale
simulation computations, share information generated by such instruments as well as data produced
by computational models (i.e., virtual instruments), and collaborate across time and space to
evaluate and discuss their results. The distributed laboratory lestbed proposed by our group will
contain the computational and networking equipment required for the creation of such laboratories
distributed across the Atlanta metropolitan area, including multiple physical laboratory sites at
Georgia Tech and researchers participating in laboratory experiments from their homes.

Enabled by the planned national information infrastructure, we expect several benefits from the
use of geographically distributed laboratories. First, scientists, engineers, and managers can work
from their office locations, laboratories, or homes with similar ease, and they can interact with
each other and with sophisticated computational tools with minimal regard to physical location.
This can increase their productivity, reduce transportation costs and pollution (tele-commuting),
and result in the rapid distribution of scientific insights among collaborators. Second, by dynamic
extension of laboratories to new sites and by rapid inclusion of new investigators or instruments,
special skills and tools available at different physical locations can be brought to bear on the
solution of complex problems. Third, the ability to run and control experiments on distributed
computational resources permits the co-location of instruments with relevant 1/O facilities or even
the emulation of future distributed physical systems by distributed simulation of their physical
processes.

Two “driver” applications will be utilized to focus and ensure proper integration of our re-
search results and tools, thereby maximizing its impact. The first is a distributed laboratory
for experimentation with high performance numeric computations for applications in molecular
physics, atmospheric and pollution modelling, and manufacturing systems. The second concerns
a laboratory for experimentation with next generation telecommunication networks via sophisti-
cated distributed discrete event simulation software, called the virtual telecommunication network
application.

The research enabled by the proposed distributed laboratory facility will be the provision of tools
and principles with which ‘distributed laboratories’ can be constructed and controlled. In contrast to
facilities like the World Wide Web which are mostly employed for information access and browsing,
a distributed laboratory has several essential and novel characteristics:

1. The information generated in a distributed laboratory must not only be accessible to all users,
but users must also be given interactive interfaces for the on-line control of virtual or physical
laboratory instruments, for steering simulations and other computations using instrument
data, and for controlling information generation, analysis, storage, and sharing between sites
and physical and virtual instruments. Furthermore, interactive laboratory access should be
provided with little regard to the physical location of experimenters and instruments, includ-
ing home locations with limited computational and storage capabilities, access bandwidths,
and increased access latencies.

2. Users of a shared distributed laboratory must be able to participate in meetings and discus-
sions where laboratory resource usage, experimental results, and research goals and plans can
be discussed even when the users are not co-located or available for a meeting at the same
time. In addition, and in contrast with current collaboration environments (e.g., support-

5



ing direct remote audio and video), a shared laboratory must also support communications
through and with computations such as shared manipulations of visualizations, interactive
experimentation with running simulations, remote and joint operation of programs controlling
instruments, etc.

The research that will be performed using the requested facility is structured around five on-
going research projects. Topics to be addressed by the proposed work include user interface tech-
nologies for collaboration, high-performance simulation computations, software tools and operating
system technologies to support distributed laboratories, instruments and experiments, and finally,
communication protocols and platforms offering the required communication latencies and band-
widths into laboratories, offices, and homes. Specific research problems addressed by our group
include a framework for construction of collaborative systems, the interactive monitoring and con-
trol of instruments and experiments, the eflicient implementation and execution of large-scale dis-
tributed simulations, the provision of operating system support for efficient representation and
manipulation of the state shared among simulations, laboratory instruments and experimenters,
and high performance networking across the range of physical media and locations used by dis-
tributed laboratories. Networking serves a dual role as both a principal area for much of our
research and as an application using the tools we develop.

Application Scenarios. To illustrate the distributed computational laboratories we envision and
to expose some of the underlying research issues that must be addressed, we next describe a scenario
depicting envisioned laboratory use. This scenario uses an atmospheric science modeling application
(one user of the tools we will develop) as an example, but our efforts will be directed at a variety of
target applications, including the aforementioned virtual telecommunication network application
which is based, in part, on on-going collaborative research between our group and Bellcore.

In the following scenario, multiple laboratory instruments are interconnected and multiple sci-
entists are able to interact with each other and with distributed laboratory instruments on-line
and across local or wide area networks. Prototype systems realizing scenarios such as this, as well
as similar scenarios concerning the virtual telecommunication network application will be realized
during the period of this proposal.

Consider two atmospheric scientists from different parts of a campus working together on one
of the atmospheric modeling simulations. Dr. Smith (fictional name) is working on a high-end
SGI workstation in the Atmospheric Sciences building, Dr. Jones is in the College of Computing
building running on another SGI machine, and the simulation code itself is running on a multi-
granular compute server. Collaborative work includes (a) debugging or simply experimenting with
parameters used in the simulation code (e.g., wind fields, initial values of chemical concentrations,
etc.) or (b) understanding observational data received from NASA sites or from the U.K. (the UARS
satellite data sets) in reference to output data being produced by their simulation models. One
individual in our scenario is a computer scientist knowledgeable about the simulation software, the
multi-granular compute server, and data visualization tools. The atmospheric sciences researcher
is primarily concerned with interpreting simulation inputs and outputs.

The scientists begin work by establishing a communications link between them that transports
voice and a small video image of each other to their respective workstations. This connection is
established by dragging an icon representing the other party into a shared workspace. Initially,
the video connection has a fairly high scan rate for improved person-to-person communications (as
they say hello, etc.). After a predetermined time (about 5 minutes) or when experimentation has
shifted from discussion to work employing other media, the scan rate drops off to less than one
frame per second to serve more of an awareness and less of a communications role.
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After a short discussion, the scientists begin work by preparing data for use as initial conditions
to the simulation. This involves using observational data stored locally on Dr. Smith’s workstation
(or perhaps retrieved from a site across the country) and an interpolation/conversion program
running on one of the local workstations. The data is initially visualized on both Smith and Jones’
workstations using simple 3D visualization tools, where one tool creates iso-surfaces depicting
chemical concentrations and a second tool draws vectors indicating wind fields. The purpose of the
discussion among the two scientists is twofold: (1) to compose these separate visualizations into a
single display using a simple depth-buffer technique developed by Dr. Jones, and (2) to determine
visualization parameters (e.g., correctly using and inserting polar projections) resulting in output
data useful to atmospheric science researchers. In addition, while Dr. Smith is intimately familiar
with the actual input data set and with its processing, he does not understand how to import actual
data into the visualization package (e.g., dealing with conversion among different data formats, etc.),
which is Dr. Jones’ domain.

Once the observational data has been interpolated into a suitable grid structure, Smith and
Jones, decide to modify parts of the data in order to answer a what-if question via the simulation.
For example, they increase chemical concentrations in one area to see how its effects propagate over
time (e.g., to study the damage to ozone from high altitude aircraft). This is performed using a
shared data manipulation tool used with the visualization. This tool runs at whatever location is
maintaining the data, but exports a simple user interface to all sites. The tool internally represents
selected information about the distributed laboratory as shared data, modifiable and accessible
to all participants, and it permits its data representation (e.g., shared files or shared abstract
types) and its enforced data consistency to be made specific to the target application program’s
needs. Once the initial data has been determined, data is input into a complex simulation program
executing on the compute server. In effect, this simulation represents a complex wvirtual instrument.
The simulation is initiated interactively by connecting an icon representing the dataset to an icon
representing the virtual instrument.

After several time steps, the scientists begin to look at simulation (experiment) results, again
using the volume visualization described above. However, to inspect output data in detail, a shared
3D ‘“slice tool’ cuts the volume visualization at some plane and renders more detailed information
on the cutting surface. In this case, the cutting plane shows a color coding of the grid and step
sizes being used by the simulation. The cutting plane is moved back and forth within the volume
to identify areas that have interesting features but coarse sizes, as well as to identify uninteresting
areas that have too fine a granularity in the simulation. Performance tuning done in this fashion
benefits from the knowledge of the computer science user about multi-granular machine and imple-
mentation characteristics (e.g., suitable granularity of parallelism, or required degree of locality in
data and code access) and the knowledge of the atmospheric scientist about the application itself
(e.g., permissible variations in grid sizes). Based on their findings and a discussion between them,
the scientists may use user interface objects (buttons, sliders, etc.) exported by the simulation
to modify, for example, parameters in the mathematical approximations capturing vertical con-
stituent movement in the atmosphere. Atmospheric scientists desire to experiment with alternative
formulations and implementations of such movement (since the actual physical processes in the
atmosphere remain ill-understood), while computer scientists try to understand the performance
effects of increased data sharing along the vertical dimension. Both sets of scientists can perform
such work by jointly controlling the shared ‘instrument’ (i.e., steering the program).

Other aspects of our research not encompassed by the above scenario include extending our
environment to the home, and temporally distributed (different time, different place) interaction
between experimenters. Work in the virtual telecommunication network project also introduces
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issues concerning interactive distributed discrete event simulations.

It is readily apparent how the research projects included in this program contribute to the
realization of the scenario. The interactive steering and distributed simulation projects provide the
necessary interactive, high performance computation tools. The collaborative work project provides
not only a system for sessions such as that described above to take place, but also studies effective
means of indexing video and audio recordings of prior and on-going sessions. These three projects,
in turn, build on system software for supporting shared-state among program components and/or
human users. Finally, the networking research examines future-generation networking technology
that is essential to making these scenarios practical.

Integrated systems using the testbed facility will be realized utilizing tools and results from
each of the five research projects. In the following we elaborate on the driver applications and
the specific research problems that will be addressed in each of the five projects, and discuss the
relationship among these projects.

2.1 Driver Applications
2.1.1 Toward Distributed Laboratories for Scientific Experimentation

Motivation. The novel characteristics of a distributed laboratory compared to arbitrary distributed
programs have been identified earlier as (1) the need to make all information generated in such
a laboratory on-line accessible and to all users, and the need to give users on-line control of ex-
periments and laboratory instruments, and (2) the need for additional collaboration tools enabling
users to interact not only via their instruments and experiments but also via video and audio inter-
faces supporting both on-line and time-delayed human interactions. This section elaborates on the
spatial and temporal distribution of laboratory instruments, experiments, and experimenters, where
multiple laboratory instruments can be interconnected and multiple scientists are able to interact
with each other and with distributed laboratory instruments on-line and across time via local or
wide area networks. The specific example used to explain these concepts is the aforementioned, on-
going interdisciplinary research effort in the interactive steering of global atmospheric models, which
currently brings together four sets of investigators at Georgia Tech, residing in (1) the School of
Earth and Atmospheric Sciences, (2) the College of Computing, (3) the Center for Graphics, User
Interfaces, and Visualization, and (4) the High Performance Computing group. This effort already
utilizes distributed machines ranging from SGI and SUN workstations to the low-end supercom-
puters existing at Georgia Tech (a Cray, a KSR, and an IBM SP2 machine), linked with FDDI and
Ethernet local area networks. With the proposed funding, the physical facilities available to this
research will be enhanced significantly, including the availability of higher performance computing
in form of the proposed multi-granular compute server. Furthermore, the I/O needs of atmospheric
modeling applications will be served with the proposed, high performance communication infras-
tructure. This will enable investigators to use both off-line (typically CD-ROM or taped-stored)
and on-line (acquired from satellite links) observational data in model computations, along with
the outputs of previous model runs.

Definition of terms. A distributed laboratory consists of a collection of physical or virtual in-
struments, which are interoperable due to their use of a common data format. Each individual
instrument consists of a program implementing or representing it, its defined inputs and outputs
in terms of our common data format definition, and of interactive controls and sensors/probes able
to steer and monitor its use. An experiment consists of a time duration within which a number of



instruments are used to solve some problem of interest to the experimenters. Associated with this
experiment are (1) the required and generated input and output data, (2) descriptions of monitoring
specifications and output data, and of control information (i.e., steering commands and instrument
settings not specified by input data), and (3) discussion information recorded from the video and
audio stream and indexed by the telepointing methods explained below, based on all of which the
temporally offset experimenter can repeat experiment runs when necessary. The research issues
arising for (3) are discussed in Section 2.2.3 of this proposal. Issues concerning (1) and (2) are
addressed in Section 2.2.1. Operating system support for the efficient sharing of data and control
between coupled instruments, collaborating end users, and instruments and their user interfaces
are explained in Section 2.3.1.

Purpose of research. The purpose of our work is to enable experimenters to perform effective
research in the physical and engineering sciences with physical or virtual instruments that are
distributed across different physical laboratories, computational sites, and even experimenters’
offices. Toward this end, we will develop the appropriate tools, systems support, and user interfaces
for on-line interaction with remote models, instruments, or data sets in distributed and parallel
systems. Our research has three specific aims:

1. On-line instruments. It should facilitate and enable collaborative, on-line experiments among
different researchers who are all working with a single target simulation (the atmospheric
modeling code) running on a single compute server. In essence, when researchers are sharing
a single, remote instrument (i.e., the model), they should be given the ability to converse
via this shared instrument (simultaneous or handed off instrument control, sharing of visual
displays of instrument outputs, etc.).

2. Spatially distributed experiments. A distributed laboratory should facilitate the simultaneous
use of multiple, spatially distributed instruments. In this example, such instruments include
the pre- and post-processing packages required for atmospheric data (e.g., satellite-received
data sets), the shared visualizations of complex 3D data sets, and the actual atmospheric
modeling code.

3. Temporally distributed experiments. A more complex set of experiments involves multiple
distributed instruments, where no single investigator can be assumed familiar with all of
the instruments involved. The specific cases we are studying concern (1) the debugging of
specific models (i.e., instruments) being developed jointly with Computer Science experts
on parallel and distributed programming with domain experts familiar with atmospheric
science applications and (2) the connection of local pollution models with a global atmospheric
model, where outputs from the local model determine input values of the global model (e.g.,
the concentrations of certain constituents at selected geographical locations). Due to the
inherent physical distribution of experimenters (e.g., atmospheric researchers at Georgia Tech
primarily study global phenomena, whereas local phenomena and models are being studied at
other sites in the U.S. and Europe), such experiments may require that experimenters ‘joining
late’ can ‘catch up’ on previous experiment results and discussions, by reviewing experiment
data and/or by reviewing video-taped discussions among experimenters.

2.1.2 Virtual Telecommunication Networks

The second driver application is an environment to support the design and management of large,
complex, telecommunication networks among a collection of geographically distributed engineers,
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scientists, and managers. We envision an environment to support (for instance) “brainstorming ses-
sions” among a group of researchers, geographically distributed in their respective homes and/or
offices, each viewing, on-line simulation experiments of future-generation telecommunication net-
works. We envision scenarios where collections of individuals simulate a variety of approaches to
recover from a major system failure in order to identify the most suitable approach.

At the heart of this environment are interactive, large-scale, distributed simulators containing
sophisticated models of the network. Interactive steering tools provide the ability to experiment
with different “what-if?” scenarios by repeatedly rolling back the simulator to an earlier state (e.g.,
after steady state is reached, but just prior to some stress situation), changing model parameters
to study network reaction to a specific phenomenon, and then repeating this exercise for different
parameter settings. Collaborative work tools enable multiple participants to simultaneous view and
interact with the simulator, as well as each other, in these brainstorming sessions.

The VTN laboratory will support research in wired and wireless networks, as well as full-
system simulations utilizing both. Users of the tools including researchers in the telecommunication
group here at Georgia Tech (including some of the research in telecommunication network design
that is described elsewhere in this proposal) as well as researchers at Bellcore, with whom we
have been working for the past two years in developing high performance simulators for personal
communication services (PCS) and asynchronous transfer mode (ATM) networks.

It is crucial that the simulation tools provide sufficient performance to simulate large-scale
networks with sufficient accuracy. But, simulations of high—speed networks are extremely time
consuming on sequential machines. For example, up to three hundred thousand cells! may arrive
in one second of real time operation of a 155 Mbps ATM link, depending on how heavily the
link is loaded. Assuming 10% average utilization, a cell-level simulation of a few minutes of the
operation of a network containing a few hundred links will require a minimum of 10? simulator
events to be processed. This will require hours, if not days, of CPU time on a high performance
workstation. Experiments with larger networks or over longer periods of time would simply not
be done. Further, stringent Quality of Service (QoS) objectives associated with ATM networks
also result in much longer simulation runs (e.g., tens of minutes of real time) to capture enough
occurrences of rare-events (e.g., cell losses) to obtain a sufficiently accurate confidence interval.

Similarly, large amounts of computation are required for simulations of PCS networks. Due
to limited computation power, simulation studies typically only examine small-scale networks con-
taining fewer than 50 cells [23, 27]. However, Lin and Mak [24] showed that this approach may lead
to biased output statistics, and suggest using simulations containing hundreds of cells over tens of
thousands of seconds to obtain accurate steady state results. Such simulations will require many
hours on sequential machines.

Distributed simulation techniques will be utilized to attack this problem, and forms a major
component of the research that will be performed. In addition, we will also examine modeling
techniques that significantly reduce the computation that is required. For instance, in [25] we
employ burst-level simulations of ATM multiplexors to provide one or more orders of magnitude
improvement in speed, but without sacrificing accuracy.

The VTN laboratory will utilize many of the tools and technologies developed in conjunction
with the interactive virtual instruments laboratory described earlier. Both utilize tools for collab-
orative work and interactive steering, and are supported by the underlying networking and state
sharing projects. The main distinguishing characteristic (other then the application domain itself)

LA cell is a 53 byte fixed size packet.
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is the reliance on distributed discrete-event simulation tools on which the VI'N laboratory is based.

2.2 Tools Research

We now discuss specifics of the projects in the distributed laboratory research program.

2.2.1 Interactive Program Steering

(Schwan)

Our research focusses on the on-line steering and monitoring of the distributed and parallel
programs constituting the components of a distributed laboratory:

o A distributed laboratory manager will support the dynamic creation and management of dis-
tributed laboratories, so that laboratory components can be ‘plugged’ together, participants
in laboratory experiments can be added and removed, and laboratory sessions can be recorded
and replayed (also see Section 2.2.3).

e Programming libraries will support (1) the on-line monitoring of arbitrary aspects of dis-
tributed laboratories (i.e., of distributed and parallel programs), (2) the on-line steering of
distributed instruments, models, and analyses, and (3) the interactive and distributed display
and visualization of monitored information and of the results being produced by laboratory
experiments.

e An open environment for laboratory and experiment monitoring will permit different in-
struments to be connected easily to each other via shared inputs and outputs, as well as to
additional components performing on-line instrument monitoring, experiment (session) estab-
lishment and management support, and others. An important issue to be addressed by our
work is how such diverse components may be integrated within a single coherent framework
so that they can communicate and interoperate[10, 7].

Research approach. Concerning program monitoring and steering, we will construct mechanisms
and tools for interacting with distributed and parallel programs executing on the multi-granular
compute server, such that their on-line monitoring and control are possible. The interactive inter-
faces should permit end users to continuously assess experiment progress, to steer the experiment’s
execution toward important data regions, and perhaps, even improve performance by elimination
of needless computations. The promise of such interactive program steering is that it can make
large-scale scientific or engineering computations more accessible to end users by permitting them
to rapidly understand computational results (or problems). The additional promise of distributed
laboratories is that the domain expertise of multiple users can be brought to bear on solving complex
problems. While it will be hard to prove promises of enhanced utility, effectiveness, or performance
attained with distributed laboratories, it is also inevitable that fragments of distributed laboratories
will be built and that program steering will be performed in the future, in part because scientists
now have available to them elements of the proposed national information infrastructure, the means
for interactive data visualization, for virtual reality interfaces to programs, and the computational
and network power for interactive execution of interesting physical simulations.

The technical content of our research is the development of the conceptual foundation and the
technologies required for on-line program steering and monitoring, including (1) formalisms for the
description of configurable and monitorable attributes of parallel application programs, (2) portable
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tools using these formalisms for on-line program monitoring, configuration, and display, and (3)
mechanisms and means for integration of such tools in distributed environments. In addition, we
will use known and develop new algorithms for automatic, on-line program configuration, for certain
classes of applications and for specific target hardware and operating system mechanisms.

We will answer questions such as: (1) how can monitoring be performed on-line such that the
latencies between event occurrence and event detection by the human or algorithm performing
steering are minimized, (2) how can we describe and capture the application-specific information
desired by end users (e.g., ‘heat’ variables rather than “processor utilization”), (3) what are the
appropriate mechanisms with which such dynamic monitoring and steering may be performed so
that performance improvements are attained or functionality is increased without undue perfor-
mance penalties, and (4) how can monitoring and steering be made ‘dynamic’, enabling end users to
easily change the program characteristics they wish to inspect and/or alter? An issue only partially
addressed by our research will be effective user interfaces for program monitoring and steering.

There are no generally accepted mechanisms for on-line and application-specific program moni-
toring or configuration, so that the diverse systems in existence or being developed must offer their
own formalisms and frameworks (a) for capture and analysis of the on-line program information
required by individual configurations, (b) for specification of desired program manipulations, and
(c) for enactment of specific program changes[1, 5, 3]. As a result, the main technical contribution
of our work will be the development of principles and of a common framework for both program
monitoring and program configuration. Our approach to developing this framework will have three
components, each of which are described below.

Uniform model of monitorable and configurable software. The first component is the design and
implementation of a uniform model of monitorable and steerable software. The technical approach
chosen for specification of program configuration and monitoring is language and operating system
independent. Specifically, we assume that implementors explicitly specify both monitoring and
configuration program atiribules. The framework, then, permits the on-line inspection of monitoring
attributes, and the on-line alteration of configuration attributes.

Efficient access to monitoring information. The second component of the framework addresses the
program state collected via on-line monitoring, which must be efficiently accessible to algorithms
or displays using the information for purposes of program steering. In addition, the programs
being steered must be represented such that their steering attributes are easily described and
manipulated. Toward these ends, we will develop descriptions, storage, and access methods for the
program attributes required for on-line steering.

Open system for inclusion of distributed instruments. The third component of the framework
addresses the inclusion of instruments not specifically developed for their use within a distributed
laboratory. We will use object-oriented methods for this purpose. In addition, in our current
research on interactive atmospheric modeling, we have already developed tool integration methods
relying on the exchange of binary files such that ‘file’ accesses can be directed to local vs. remote
files as well as to Unix communication sockets across which such files are transferred in a manner
transparent to the accessing programs.

Evaluation and relationship to other projects. The evaluation of the proposed work will
proceed in three phases: (1) internal testing and evaluation involving implementations and per-
formance evaluation on the multi-granular compute server. (2) Internal cross-project evaluation,
where on-line steered applications make use of the state sharing libraries and protocols already
available and/or being developed as part of the proposed research, which also results in the use of
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distributed laboratory applications as benchmarks for state sharing library and protocol research.
In addition, by using the tools, libraries, and mechanisms or algorithms offered by the collaborative
systems project, on-line program steering will be enriched significantly, by addition of application-
independent interfaces between different experimenters jointly performing distributed experiments.
As a result, distributed laboratories will also provide a testbed for understanding future collabo-
rative, interactive environments operating on distributed multi-granular computing platforms. (3)
Last, we will perform ezternal evalualions, where on-line steering and monitoring mechanisms are
exported as generally useful libraries to research and user communities via the Internet. This will
and has been involving collaborations with industrial partners.

Steps (1)-(3) have already been performed using existing parallel computers (the KSR-2) with
initial releases of our software. A monitorable threads package has been exported to a large number
of sites in the U.S. and internationally; a release of ‘visual threads’ is planned via the Internet and
to our industry partners for early 1995. Our NASA funding requires similar software releases to
NASA sites for future work. Research funding from ARPA (jointly with Honeywell) will result
in additional pressure toward making our software available to a large number of university and
potential industry partners.

Several comments concerning the steering project’s use of supporting technologies appear next.
The principal interface of this project with supporting technologies is with the proposed state shar-
ing and communication protocol technologies essential for the efficient representation and transport
of information shared across different processors of the single, multiprocessor platform on which
steered applications are run, and across multiple, networked machines on which the parallel codes
are run concurrently with visualizations and animations of the codes’ output and performance
data. The former work has already resulted in the construction of a library for sharing typed
state first implemented on distributed memory machines [9] and now developed for shared memory
machines[2] and for workstation platforms (led by M. Ahamad — see Section 2.3.1). In addition,
this work has resulted in the development of communication protocols able to be configured for
the efficient transport of typed, shared information described in more detail in [4] and performed
jointly with M. Ammar. Additional on-going work concerns the development of a realistic net-
working benchmark program able to impose the computational and communication loads of future
distributed instruments on the underlying platforms in a controlled fashion (joint with E. Zegura

and A. Mukherjee).

2.2.2 Distributed Simulation
(Fujimoto and Schwan)

Discrete-event simulation has long played a central role in the design and evaluation of com-
plex dynamical systems such as telecommunication networks, computer systems and manufacturing
facilities. Distributed simulation technology is a key and essential facility for the Virtual Telecom-
munication Networks application. For applications such as this, simulation technology for the 21st
century will have at least two key requirements: (1) high performance, necessitating use of dis-
tributed and/or parallel simulation techniques to model systems of interesting size and complexity
with sufficient detail, and (2) user interfaces that allow human operators to easily interact with the
simulator for hypothesis testing, rapid understanding of simulation results, and in some cases, in-
teractions with other operators. Geographically distributed resources, e.g., databases or interactive
users, may also necessitate use of distributed simulation techniques.

The distributed simulations required for the VI'N application must produce accurate numeric
results. This is in contrast to simulations used for training applications (e.g., the DIS environment)
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where errors resulting from distribution can be tolerated. The distributed simulators that are
discussed here produce identical results as a sequential execution, with only modest constraints
(e.g., random numbers must be generated from multiple uncorrelated streams rather than a single
stream).

A multi-granular compute server is an essential component for our work in distributed simula-
tion. Compute servers such as this are becoming widespread in engineering environments, where
discrete event simulation tools are widely used. However, the execution of distributed simulation
mechanisms on these platforms has not been widely studied.

Proposed Research. We have over seven years of experience in building simulations on dis-
tributed and parallel computers, especially shared-memory multiprocessors. A key emphasis in
our future work is in developing efficient simulations in multi-granular computing environments
consisting of shared memory multiprocessors and clusters of uniprocessor workstations.

Adaptive, Optimistic Synchronization. The irregular, data dependent nature of discrete event simu-
lations makes synchronization much more complex than other, more well structured computations.
Ensuring that computations (events, in simulation terminology) that depend on each other are
processed in the correct (according to the simulated time of the events) order is difficult because it
is non-trivial to determine which events depend on each at run-time. Indeed, an event that affects
one being considered for execution may not have even been created yet; dependence constraints
between events are virtually impossible to determine at compile-time.

Optimistic synchronization mechanisms such as Time Warp [22] detect out of order execution
of dependent events (synchronization errors) and recover using a rollback mechanism. They offer
excellent potential for transparency and high performance. We have obtained good performance
using Time Warp in telecommunication network simulations, including nearly a 38-fold speedup
on 42 processors in a PCS network simulation containing 2048 cells (radio ports) and over 75,000
portables (mobile phones) [14]. This simulation model, developed in collaboration with Bellcore
[13], is able to simulate up to 30 million phone calls per minute (wall clock time) on a KSR-2.

For the VTN application we are particularly concerned with large-scale (tens or hundreds of
thousands of simulator objects) with relatively little computation per event (e.g., hundreds of
machine instructions). The aforementioned PCS simulation is one example of such a computation.
Simulations of ATM networks also have small granularities, though the number of objects may not
be this large. The nature of these computations call for efficient data structures for handling large
amounts of data, careful control of memory allocation to avoid excessive memory utilization, and
simple execution mechanisms so that the overhead in processing each event is minimized.

Using a multiprocessor workstation, we will continue our work on shared-memory platforms by
developing efficient data structures and optimizing execution to best utilize the multiprocessor’s
caching and memory management mechanisms. In addition, we will extend this work to distributed
multi-granular computing platforms where portions of the model execute on the multiprocessor,
while others execute on the rack-mounted workstation cluster. A key question is how to offset the
higher communication latencies that arise in such configurations. To address this question, we will
study the impact of communication latencies on optimistic synchronization mechanisms (e.g., do
more rollbacks occur as communication latency increases?), and study countermeasures (e.g., batch
processing of events) and evaluate their effectiveness. Our initial experience in utilizing Time Warp
in distributed computing environments have been encouraging [13, 17].

An effective optimistic synchronization mechanism must avoid overly optimistic execution (al-
lowing some simulator objects to advance too far ahead of others). We propose an approach to
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control memory allocation to prevent such behavior; limiting the amount of memory provided to
an object effectively limits how far it can advance ahead of others. We have studied performance
memory tradeoffs extensively both analytically [12] and experimentally [15], and demonstrated
good performance using only a modest amount of memory beyond that required for sequential
execution. Based on this work, we have developed an adaptive flow-control protocol that monitors
the simulator’s execution, and automatically adjusts the amount of memory used by the simula-
tor to maximize performance [16]. We will examine the extension of this memory management to
multi-granular distributed computing environments. Issues that must be addressed include the lack
of a global memory pool and high communication latencies. New, eflicient memory management
protocols for distributed memory systems will be developed in this project.

Complex simulators may consist of separately developed continuous and discrete simulation pro-
grams that are combined into a single, integrated system. For example, one could envision adding
continuous models for signal propagation to our discrete PCS network simulation. A key issue in
these systems is to develop techniques to effectively integrate different synchronization mechanisms,
particularly rollback-based mechanisms such as Time Warp with time-stepped simulation mecha-
nisms. Open research questions regarding these federated simulators include: What is the best
approach for integrating these protocols to maximize performance? Should one or more protocols
be modified to accommodate interaction with other protocols? If so, how? What is the nature of
the interaction of disparate protocols and how does one impact the performance of another?

Mapping and Load Balancing. The mapping of large-scale simulations to multi-granular platforms
is an open question. Load-balancing algorithms will be needed for networks with dynamically
changing traflic flows as well as for simulators where good static mappings cannot be easily obtained
because traffic patterns are unknown. The interplay between the mapping/load balancing algorithm
and synchronization mechanisms is not well understood. It is widely recognized that a poor mapping
algorithm can lead to catastrophically poor performance, but it is not known how “carefully” one
must balance the workload to achieve acceptable performance; for instance, it is not known how
frequently the workload must be re-balanced in large-scale, small granularity simulations.

Load management in optimistic distributed simulators must use different metrics for balancing
decisions than conventional programs. Processor utilization is a poor metric because it does not
take into account processors that are experiencing an excessive amount of rollback, or are advancing
too far ahead of other processors. In both cases, the processor should receive more of the simulation
workload, even though its utilization may be very high. Metrics such as effective utilization [26]
account for rolled back computation, but not overly optimistic execution. Further, it is an open
question as to whether standard load balancing algorithms (modified to utilize different metrics)
are effective for optimistic simulators, or whether entirely new algorithms are required.

We will initially study these questions in the context of shared-memory multiprocessors, and
then expand our work to the more complex question of multi-granular computing platforms. In
the latter case, it is clear that communication latencies play an important role in load management
decisions.

Interactive simulations. Simulation models that include embedded physical devices (e.g., real-time
simulators may include portions of an actual network, and simulation models for other compo-
nents) or interactive components necessitate that the simulator be able to interact with an external
environment in a timely fashion to satisfy certain hard and/or soft real-time deadlines. This is a
particularly challenging problem for optimistic simulations because rollbacks (which are inherently
unpredictable) must be factored into schedulability computations. A key observation is that one
must be able to characterize or limit the effect of incorrect computations (incorrect in the sense
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that they will later be rolled back) in optimistic simulations. In recent work [21], we have shown
that parallel simulation protocols with limited optimistic execution show good promise in provid-
ing both high performance and predictability. We will use the requested equipment to continue to
explore this issue in multi-granular computing platforms.

A related problem concerns storage reclamation in optimistic distributed simulators. This
function, commonly referred to as fossil collection is analogous to garbage collection in symbolic
computing systems. Fossil collection in large-scale simulations containing hundreds of thousands of
simulator objects is time consuming, and represents a significant roadblock to interactive use. We
propose to attack this problem by using “on-the-fly” fossil collection where memory is reclaimed
incrementally as it is needed, rather than all at once during a periodic fossil collection procedure.
This is possible because each block of memory contains a timestamp, and memory with timestamps
less than global virtual time (a computed value indicating a lower bound on the timestamp of any
future rollback) can be reclaimed. The use of timestamps to determine which memory can be
reclaimed distinguishes fossil collection from garbage collection in symbolic computing systems.

Another important application of rollback is in interactive steering of computations, whereby
one might run a simulation until a steady state or some interesting event occurs, and then modify
certain system parameters to experiment with different scenarios. This is precisely the functionality
we need for implementation of simulations that may be used for telecommunication network control,
where a discrete event simulation may be used for experimentation with alternative scenarios in
response to exceptional network or traffic conditions. In such simulations, the built-in rollback
mechanism can be used to reset the simulator to some previous point in time to begin a new
experiment.

Shared state and space-lime memory. Some simulation models are most naturally represented as
collections of simulator objects migrating over a shared state space. For instance, in a PCS network
simulation, the objects are mobile units, and the shared state space is the physical terrain over which
the objects move. Shared state is seldom allowed in distributed simulations because at any instant,
the simulator objects are usually at different instances of simulated time, e.g., one object might
have been simulated up to 10:00 AM, while another may have been simulated up to 10:15 AM. If
both objects are simultaneously observing a state variable, e.g., the number of channels currently
in use in the radio port, some method is necessary to ensure that each object sees the version that
existed at its current simulated time.

Space-time memory is a memory system with a two-dimensional addressing structure. Memory
accesses specify both the spatial address (similar to conventional memory addresses) to indicate the
variable being accessed, and a simulated time for the access [18]. An optimistic (rollback-based)
synchronization mechanism is used to ensure that each read access returns the most recently written
value in simulated time. For instance, in the above example, if the object at time 10:15 reads the
channel value prior to the object at time 10:00 modifying it, the former object will be rolled back
and re-executed using the correct value. Previously, we have studied space-time memory in the
context of shared-memory multiprocessor systems [19]. We will extend this work to distributed and
multi-granular computing platforms.

Relation to other Projects and Equipment Needs. The space-time memory work will utilize
results (and software) from the shared-state project. Global computations such as global virtual
time (used for fossil collection) can exploit results from the multicast research described later
(Section 2.3.2). As noted above, there is also a natural synergy between the interactive steering
project and the rollback-based synchronization mechanism used here. The interactive and real-time
simulation work described above is already a collaborative effort between Fujimoto and Schwan
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[20, 21]. Last, it is clear that once program steering can be effectively provided to a single user, the
next logical step is to make this capability available to multiple users at different locations using
software developed with the proposed collaborative work project.

A multi-granular compute server (including the multiprocessor and rack-mounted machines) is
an ideal platform for the research in the distributed simulation project. The workstations for the
collaborative work project and for home use provide excellent vehicles for interactive use of the
simulators.

Evaluation. Evaluation of the work will be performed both by our group as well as by end users.
At the system level, our goal is to obtain performance within each processor equal to at least 90% of
an efficient sequential simulator, and rollback efficiency exceeding 90% (i.e., fewer than one in ten
computations rolled back) for benchmark applications that simulate telecommunication networks
(both wireless and ATM networks), enabling our system to yield speedups of 0.8N or more when
using N processors to simulate large-scale applications. Simulation validations will be performed,
at least in part, by comparing performance predictions with operational networks and existing
commercial simulators.

Related Research. The research on this project extends prior research on optimistic synchroniza-
tion of parallel simulations in several ways, including: combining memory management protocols
with mechanisms to prevent excessive rollback in adaptive simulation protocols [16] and integra-
tion of different synchronization mechanisms, mapping and load management issues for networked
multiprocessor platforms, developing mechanisms to exploit optimistic execution in the context of
real-time simulations [21], and combining interactive steering with parallel simulation techniques.

2.2.3 Collaborative Systems Infrastructure
(Hudson, Ezquerra, and Potts)

The collaborative system testbed proposed here forms a central bridge between several other
aspects of this project. On one end, it provides an interactive base upon which the proposed driver
applications can be built and tested. On the other, it provides a customer for use and testing of
the underlying system components of network infrastructure and shared state maintenance in a
practical and demanding setting.

To support the prototype instrumentation laboratory and virtual telecommunications network
simulations (as well as similar general class of distributed interactive applications), we propose
to construct an open and extensible system structure for composing and controlling collaborative
tools made up of small semi-independent programs. This structure, in addition to providing a base
for our testbed applications, will make use of several of the proposed system capabilities described
later, and will serve as a solid experimental testbed to explore the use of these technologies in
realistic, practical, and demanding circumstances.

The key to this testbed structure will be its open nature — allowing a number of relatively
small tools to be used together — along with some key system technologies needed to facilitate
smooth sharing, communications, and user interaction. On top of this infrastructure base, we
propose to develop and/or adapt several general application level tools, as well as our specific
proposed applications, in order to both test the infrastructure and enable the types of distributed
collaboration illustrated above.

In the setting of collaborative applications, it is convenient to structure programs around shared
data — viewing user actions as manipulations of pools of shared data and system presentations as
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views of that data. Because of its advantages in supporting direct manipulation interfaces [29, 30]
this approach has been advocated in the user interface software community for single user interfaces
for some time. We believe this approach will be particular advantageous in collaborative interfaces,
and that we will be able to exploit new system capabilities for providing shared state to make such
systems practical in a distributed setting.

Proposed Research. Central to the collaboration infrastructure we are proposing will be a user
interface server. A copy of this server will run at each participant’s local workstation and accept
small scripts, which when executed by the interpreter which makes up the heart of the server, will
create part or all of a user interface. In this regard, what we are proposing can be handled by
existing tools, most notably TCL/Tk [28]. However, our work will extend these capabilities in
several significant ways. First, as indicated earlier, interfaces will be strongly based on the notion
of shared data. Interfaces will be seen primarily as interactive mechanisms to allow an end user to
manipulate shared values (rather than the more typical approach of treating user interfaces as a
way to let the user execute pieces of code).

To accomplish this, the Ul server, in addition to making heavy use of shared state maintenance
techniques proposed here, will also use techniques for user interface composition. These techniques
treat user interfaces as hierarchical structures where parent objects are responsible for composing
the smaller user interface objects defined by their children into larger interface objects. The simplest
types of these compositions include things such as rows and columns which simply place their child
objects in simple arrangements. However, this general technique can be used to achieve a wide
range of more sophisticated effects (see for example [31, 32, 33]). For this work, we will be most
interested in composition techniques which can be performed in an automatic or semi-automatic
fashion.

In addition, this research will pursue new techniques for supporting transitions between syn-
chronous and asynchronous interactions. For example, support to allow late-joiners to quickly
review the discussions of a meeting before actually connecting to it, and techniques to allow bet-
ter use of recorded video and audio information to review results after a collaborative session is
complete.

Video and audio recordings often contain the richest sources of information about what has
happened during an interactive setting. Unfortunately, the information contained in audio and
video is sequential in nature, and very difficult to index. One of our central goals in supporting
transitions between synchronous and asynchronous interactions will be to improve the usefulness
of video and audio recordings by allowing them to be indexed in some from.

Indexing of actual video images or audio signals is very difficult. To overcome this difficulty, we
are proposing to use ancillary information to form an index. In particular, we propose to record
other interactive actions — particularly the use of telepointers and other interactive devices along
with information about the context in which they operate (e.g., which document or shared object a
telepointer refers to) — and use this information as an index back into the more informal information
contained in audio and video recordings. For example, after a collaborative session we might wish to
review the discussion of atmospheric data in a particular geographic region. We could retrieve much
of this discussion using a query that selects recorded telepointing actions (recorded as interactive
events in an event stream associated with the interaction) which occurred over a visualization of
that region. The recorded timestamps from those events can then be used to retrieve and replay
selected portions of the video and audio recording.
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In general, asynchronous participants will be able to search to find periods of time that are
likely to contain discussions of interest to them by formulating queries against the event stream.
These queries can be formulated in terms of any sort of recorded facts such as: what data sets were
being displayed, what areas of various displays were being telepointed to, and who was actively
participating (manipulating interactive components) in the discussions. In addition to automat-
ically recorded interactive events, it may also be possible for the original participants to provide
additional markers or annotations within the event stream, for example by pressing simple buttons
labeled “remember this,” or “that’s interesting.”

The results of a query against the event stream will be one or more time intervals. These time
intervals can then be used to control the playback of the full recording with a VCR-like control
interface. In addition to simple playback (e.g., of an audio stream) in some cases this will involve
gathering recorded information (such as changes to shared values) in order to recreate displays that
were not recorded as a whole.

To realize recording, indexing, and playback of collaborative sessions, we will assume that every
media type and interactive program involved in collaboration (or at least the part of a collaboration
that we will record and playback) will be able to make a recording of its actions. These will either
be a direct recording of results as presented to the user (for example, we would initially record
video and audio with a relatively simple computer controlled VCR), or a series of critical values,
which, when combined with the original datasets involved, are sufficient to recreate the original
presentations. Each of these media recordings will be accessed only on the basis of time. In addition
to these heterogeneous recordings, an additional recording of all user interface actions — the event
stream — will be made by the user’s various user interface servers. As described above, this event
stream will serve as the primary content-based index. Although this plan presents a potential
synchronization problem at playback, our experience shows that as long as the audio and video
streams are tightly synchronized (typically by being recorded and played back via the same device),
considerable timing skew can be tolerated between other media — perhaps as high as 750ms.

Evaluation Plan. To evaluate the effectiveness of the techniques proposed here we will follow
an overall two stage plan. Our first objective will be to test whether the system can in fact be
constructed, and more specifically to discover where the difficulties and bottlenecks lie, particularly
with respect to performance and function of the underlying system components. This will be done
in the context of building prototypes for the proposed collaborative applications. Our evaluation
at this stage will be aimed both at validating and refining the architectural concepts of the collab-
orative testbed, and at providing feedback to the underlying system layers about performance and
functionality needs. Our goal in this first phase will be to simply to build functional prototypes of
collaborative applications.

In the second phase we will begin to evaluate the usability aspects of these applications. To
do this, we will draw on the considerable expertise in usability testing found in the Graphics,
Visualization, and Usability Center (for example, we have an existing usability testing facility with
one-way glass, remotely controlled video cameras, recording and mixing equipment, etc. that is
regularly used for testing of this type). Here, our goal will be to discover aspects of the collaborative
testbed that directly impact usability for the end-user, and translate these into implications for
the underlying system components. For example, we would expect to discover which performance
aspects actually impact usability (and hence should perhaps be given high priority for additional
work) and which do not.
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2.3 System and Networking Technologies

2.3.1 State Sharing
(Ahamad and Ramachandran)

Information sharing via shared state is pervasive throughout the envisioned distributed labora-
tory environment. As discussed in Section 2.2.3, interactions between humans in the collaborative
work project are based on a paradigm utilizing a hierarchy of shared objects. Similarly, shared
state is utilized to realize interactions between users and programs, and between program compo-
nents in the interactive steering work (Section 2.2.1). As mentioned in the distributed simulation
project (section 2.2.2), abstractions for shared state for discrete-event simulations facilitate program
development.

Many different types of information are shared with differing requirements in terms of latency
and consistency of shared state. For example, when a scientist is “watching” the visualization of a
simulation that is running on a remote machine, strong consistency of the shared state between the
visualization and simulation is not necessary. This is because it is acceptable if the visualization
is somewhat delayed from the actual state of the simulation since the simulation state constantly
evolves. On the other hand, strong consistency may be necessary between the components of the
simulation executing on different processors. The “virtual meeting” applications supported by the
collaborative work system also require support for state sharing. The shared state in such a system
includes video and audio information, visualization output, and meta-data that is used to index
into the recordings of the meetings. Again, consistency requirements differ for these different types
of shared information. The requested infrastructure provides an essential testbed for implementing
and experimenting with state sharing under realistic workloads.

Existing state sharing technologies range from shared file systems to software supported dis-
tributed shared memory (DSM) abstractions. Although these technologies can support initial
prototypes of distributed laboratories, we claim that they cannot meet either the consistency or
the performance requirements of such applications. This is mainly due to the fact that these state
sharing systems do not exploit application semantics in maintaining consistency of shared state.
For example, a distributed file system can be used to share data sets but it does not provide the
level of consistency that is needed when the data sets are read and written concurrently at different
systems. The Sprite file system provides strong consistency by disabling caching when there is a
writer but that could limit performance. The sharing of state between program components differs
significantly from the coarse-grain sharing that occurs between participants in a virtual meeting.

Our goal is to explore state sharing techniques that meet both the consistency and performance
requirements of distributed laboratories. We will explore how application semantics captured by
attributes such as the level of consistency and granularity of sharing can be used in developing
efficient state sharing systems.

Proposed Research. To reduce access latency and communication overhead, shared information
must be cached. The caching of shared information introduces the problem of consistency among
its copies that are stored at different nodes. We will use several techniques to investigate how an
appropriate level of consistency can be provided efficiently. First, we will use alternate notions of
consistency which are appropriate for the applications being considered.

Weak consistency. The performance of protocols that allow data to be shared across nodes critically
depends on the degree of consistency that needs to be provided for the data. In the distributed
laboratory applications, it is possible to weaken consistency requirements to provide better per-
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formance. Causal consistency, which captures causal relationships between data accesses in a
distributed system, provides the level of consistency that is appropriate in many of these applica-
tions. For example, if Dr. Jones (in the scenario described earlier) makes a change which results
in changes in the simulation execution and also in the visualization at Dr. Smith’s workstation,
causal consistency ensures that changes in the visualization become visible before the changed out-
put is received from the simulation program. Causal consistency not only meets the consistency
requirements of many applications but can also be implemented efficiently because it allows both
read and write operations on cached data to complete without requiring communication with other
nodes. This can be done even when other nodes are accessing the data concurrently. The changes
made to shared state at a node can be propagated to other nodes asynchronously.

We will explore scalable solutions for providing causal consistency. We assume a logically shared
object space where nodes cache copies of only the objects that have been accessed in the recent past.
One problem is how to detect if copies of data objects cached at a node are mutually consistent with
respect to causal consistency. Also, to ensure that changes to shared objects propagate to other
nodes, we want to develop schemes that do not require any global synchronization operations, but
rather, require a more limited multicast operation. For example, a node should be able to propagate
a change to its neighbors which can then propagate it further to other nodes (such schemes are
used for propagating routing information in distributed routing protocols). The key problem is
how to maintain ordering information between updates and apply them in a consistent order at the
nodes that cache shared data. We will also explore techniques that do not depend on broadcast or
ordered communication.

Multi-granular compute servers introduce new issues with respect to maintaining consistency.
Strict, hardware enforced consistency may be automatically provided within the multiprocessor,
but this property is lost as soon as the shared state migrates beyond the multiprocessor’s shared
memory. It is not clear how one can seamlessly support multiple consistency mechanisms among
concurrent programs in a way that is efficient and easy to use.

We will implement the new algorithms as user level libraries on the requested infrastructure.
Currently we are exploring a CORBA compliant framework that will allow applications to benefit
from caching without any change in programming. Our system will also provide support for shared
objects that offer different degrees of consistency. For example, in the shared visualizations appli-
cation, a visualization is driven by the state of objects, and these objects should be kept causally
consistent. Our algorithms will detect when accessed objects are not locally cached, fetch their
current copies and ensure that copies of locally cached objects remain causally consistent when a
new object is brought to a node.

Program-driven consistency. To support program state sharing we are exploring the use of compile-
time and runtime information in conjunction with the inherent synchronization in the application
to reduce the overhead of consistency maintenance for shared data structures. The research issues
here are performing compile-time data flow analysis of the synchronization regions in a parallel
program, and development of efficient primitives to be implemented in the operating system for
enforcing consistency at runtime when so-directed by the flow analysis. To enable the sharing of
resources between the components of a distributed application, we are exploring the development
of appropriate system abstractions. In particular, a combination of message-passing and shared
memory semantics would be appropriate depending on the locality properties of shared resources.

The notion of shared state takes on a new, additional meaning in certain distributed laboratory
applications. Consider individual processors in the multi-granular compute server, where each
is generating a specific portion of the global system state, as is the case in many distributed
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simulations. Different simulation models may require different views of the same portion of the
global state. These views must remain consistent when changes to the state occur. The traditional
view in distributed shared memory systems is clearly not appropriate for this problem.

We define a new abstraction that seems more meaningful in this setting, namely, versioned
shared memory (VSM). A request for a copy of an object may create a new version. Consistency
across versions of the same object will be enforced as needed using the attributes of the object.
Techniques used in database systems to enhance concurrency may be brought to bear here. We have
been conducting some work along these lines where we use DSM as an abstraction for supporting
the organization of distributed databases. The issues we have explored so far include enhancing
client-server database architectures using DSM, increasing transaction throughput and scalability
through DSM techniques [51], enhancing concurrency and reducing crash recovery times through
versioning techniques [52]. The research challenge in defining the semantics of VSM in the context
of distributed laboratory applications is in exploiting some of the well-known database technologies
in this domain without any of the usual rigidity of database systems such as serializability.

Previous Research. We have undertaken several research projects in areas related to state shar-
ing [53, 54, 55, 38]. One project addressed the implementation of shared memory abstractions on
workstation networks. It addressed the formal characterization of shared memory systems [34, 48],
and also implemented consistency protocols derived from a number of approaches that have been
proposed for building high performance distributed memory systems [38]. For a comprehensive
evaluation of the coherence approaches represented by the different protocols, we used applications
that capture a range of data sharing patterns. The results of our studies led to important insights
into the operation of DSM protocols for scientific applications. We have also further explored
the benefits of weaker consistency provided by causal memory [37, 49, 36], and explored the pro-
gramming of causal memory for various types of programs [35]. Our detailed performance studies
have shown that for many parallel applications, causal memory significantly reduces the time the
applications spend in state sharing related activities.

We have extended the DSM work to address cache consistency issues in a tightly coupled
shared memory multiprocessor systems as well [57, 58, 59]. We have also researched the kinds
of architectural support that are pertinent to support efficient message passing in a distributed
system [60, 61, 62]. This combined system experience of addressing the system issues for both
“message passing” and “shared memory” computation in a distributed setting gives us a unique
edge in being able to answer some of the challenges involved in devising the system abstractions in a
heterogeneous environment. In a related NSF-funded project, we have developed a framework and
a comprehensive set of tools for scalability studies of parallel systems [63, 64]. At the heart of the
framework is an execution-driven simulator called SPASM which identifies, isolates, and quantifies
the overheads that occur in a parallel system. Further, we have also implemented a suite of parallel
applications drawn from several different domains including scientific, image understanding, and
combinatorial optimization, on a variety of parallel architectures including KSR-2, MasPar MP-2,
Intel iPSC/2, and PVM-based workstation clusters, to enable this scalability study [65, 66]. This
framework will be useful in this evaluation process for the system abstractions for state sharing.

We have also investigated protocols that can be used to maintain the consistency of replicate
data such as files. Our work in replicated data management has ranged from development of new
protocols that provide a higher degree of load sharing to techniques that can be used to evaluate
the performance of various protocols [50, 43].

Other Related Research. Data sharing techniques have been investigated widely in distributed
systems. For fine-grain sharing, many implementations of distributed shared memories (DSM)
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exist. These include Ivy [45], Munin [39], Treadmarks [41], Midway [46] and several others. Weakly
ordered memory systems have also been proposed [40, 44, 47] which have led to multiprocessor cache
coherence protocols that guarantee memory consistency only at well defined points in a program.
We feel that exploitation of weaker consistency that meets application needs and the structure of
shared state are the two key aspects of our proposed work which have not been explored by past
work.

We have claimed that causal consistency is natural for many of the interactions in driver ap-
plications. Causality has also been investigated widely in distributed systems. Although the ISIS
causal broadcast [42] can be used to update replicated data, this represents a particular policy for
handling replication. Since the choice of a policy depends on application requirements, we plan to
explore techniques which allow objects to be cached and uncached at a node dynamically without
executing multicast group membership change protocols.

Coarse grain sharing can be done via file access. Many distributed file systems exist but they
either do not provide the desired level of consistency (e.g., the NF'S file system) or restrict caching
that could impact performance.

2.3.2 Network Support for Distributed Laboratories
(Limb, Ammar, Mukherjee, and Zegura)

It is clear that a versatile, high-performance, communication infrastructure is essential to the
future success of distributed laboratories. Transport facilities must carry a complex mix of traffic
types in an integrated manner. When sharing visualizations, multicast communication must be
efficiently performed, while also guaranteeing some latency requirements imposed by human end-
users. Further, when supporting the real-time transfer of video and audio, protocols must be able to
meet varying quality of service demands as users’ requirements change (e.g., when actually looking
at a remote collaborator vs. when simply having a collaborator’s picture in the background). Fi-
nally, the service should be ubiquitous; collaboration should be possible from the office, laboratory,
remote field station, on-the-road, and importantly, from home.

The specific issues we propose to address in the provision of a networking infrastructure for
distributed laboratories are: (1) high-speed ubiquitous networking connectivity between industry,
lab, home and community, (2) efficient multicast transport for data representing multiple media
types with varying quality of service requirements (e.g., latency and reliability), for maintaining
consistency of shared state (see section 2.3.1) and global operations for distributed simulations
(see section 2.2.2), and (3) the accurate modelling of the traffic patterns that are generated by
the distributed laboratory applications so that we can study how to better manage and utilize the
network resources.

The Ubiquitous Network. The ubiquitous network provides the physical network on which
the distributed laboratories (and the proposed virtual telecommunication network laboratory) will
operate. Within industry and academe high-speed network connectivity is usually available. This
may take the form of DS1 (1.5 Mb/s) or DS3 (45Mb/s) connectivity to either a private network or to
a public packet network such as the Internet. While these speeds are adequate for many purposes,
higher transmission rates will be required to fully extend distributed laboratory environments to
the home.

When we move into the home or the community at large the picture changes and the highest
communication channel possible may be a 9600 baud MODEM, or if one lives in certain locations,
128 Mb/s may be possible via ISDN. While higher transmission speeds can be obtained over tele-
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phone lines, it is relatively expensive to do so and most telephone companies together with the
cable companies are looking toward some mixture of fiber and coaxial cable as the most attractive
means to achieve larger bandwidths to the home.

This research will focus on providing higher bandwidths, inexpensively, wherever the virtual
laboratory may reside. While much of the networking research described below focuses on providing
faster, cheaper ATM connectivity in the workplace, cable technology appears to have the greatest
potential for extending this capability to the home.

High-speed Data Over Cable. Today fiber/cable plant covers about half all residential areas in
the U.S. and the coverage is continuing to increase. Techniques are being developed to enable
this channel to support high-speed digital communications. On both the downstream, broadcast
channel and the upstream channel shared access is naturally provided by the physical nature of
the medium. However, while in some ways it is similar to a satellite channel and in other ways
similar to a dual bus, it is unique. Efficient exploitation requires that the channel access protocols
be tuned to this medium. Our investigations so far suggests that a centrally controlled reservation
protocol, with random access to a separate reservation channel appears most appropriate. Such
a mechanism can efficiently support stream traffic such as voice and video and bursty traffic such
as file transfers and scientific data transfer. Our plan is to emulate these protocols in software
and then implement them within the laboratory on fiber/cable plant. If successful at this level we
would collaborate with the cable/telephone industry to evaluate the system in a field trial.

There is very little other research ongoing in this area that is public. The one piece of research
that speaks directly to this area concerns a protocol called DQRAP and XDQRAP [67, 68]. Our
approach uses similar protocols but it directly accounts for the limitations in the physical medium
that we do not see addressed in the above work. For example, a station cannot reliably read any
signal originated by another station on the network apart from the head-end. There are a limited
number of products on the market. They apply the Ethernet protocol to the cable topology, a
rather inefficient way to use Ethernet.

Multicast Communication. A multicast communication service is one that is called upon to
deliver copies of the same information to multiple recipients. It is a primary form of communication
in distributed laboratories. There are many approaches to providing a multicast service in a net-
work. Current thinking favors explicit support for multi-casting at the network layer. In particular,
explicit support for multi-casting has been defined in the context of the Internet Protocol (IP) [69].
The presence of explicit support for multicast communication has allowed multi-casting to become
an efficient way to simultaneously communicate with multiple destinations.

Adequate support for multicast communication, while providing economy of scale, has the effect
of detaching a multicast source from the actual cost of the traffic it injects into the network 2. In
typical scenarios the effort a source exerts in generating a multicast packet is much smaller than the
cost incurred in transmitting and /or receiving this packet. It is this “lack of scale awareness” effect
that makes multicast communication such a desirable paradigm. It is also precisely this same effect
that has the potential of making large scale multicast communication hazardous to the network, to
the multicast source, to the destinations, or to all three. A good example of this is the implosion
problem where a multicast message to a large size group can result in a large number of returned
responses that can congest a network and flood the source’s receive buffer.

Another negative effect of multicast communication is its inability to respond to the individual
needs of specific members of a destination group. We would like to group various communication

2A good example of this in a different context is in the use of electronic mailing lists.
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needs to make use of the economies of scale ® provided by multicast communication. We are obliged,
however, to insist that all destinations share the same requirements and properties. An example of
this is the multicast of a video stream to receivers with heterogeneous capabilities and requirements.

Based on the discussion above, the multicast paradigm can be said to possess a “split personal-
ity.” On the one hand, it is a paradigm designed to offer immunity from scalability to its user, but
on the other hand, this immunity makes the network much more susceptible to being overloaded.
On the one hand, it allows for potential savings by providing economies of scale, but on the other
hand, this saving disallows any special treatment of a member of a destination group.

Our work in this area aims at understanding the two sides of this personality and the tradeoffs
that exist between the benefit of providing the economy of scale inherent in multicast communica-
tion and the negative effects this can have. We propose to study and apply a suite of techniques
designed to help understand and deal with the tradeoff discussed above.

Individualizing a multicast service. This technique encompasses procedures that can be used to
provide a certain level of individual treatment of a multicast destination while maintaining economy
of scale. We consider two approaches. Our first technique is dubbed destination set splitting where
it is allowable to split a single multicast group into several smaller subgroups. The source, then,
carries on multiple multicast conversations, one with each subgroup.

With this technique some economy of scale is sacrificed in order to ensure fairness of operation
and in order to deal with specific user needs. This technique introduces some added complexity
to a multicast source’s operation. Our second technique adds complexity and buffering to a mul-
ticast receiver to allow for individual receiver functionality. We apply these techniques to video
distribution and video-on-demand applications, an activity that will be prevalent in the distributed
laboratory environment. Examples of our work in this area can be found in [70, 71, 72, 73].

Multicast addressing. Multicast IP uses group addressing where nodes that belong to the same
multicast group are made to recognize a single multicast address. A source sending multicast
packets to the group uses the multicast group address as the destination address. Whereas the
multicast group concept is fundamental to multi-casting, group addressing is one alternative among
many for identifying and routing to multicast groups.

Many of the scenarios we envision in the distributed laboratory application require transaction-
oriented, short-lived multicast connections. In such an environment, the overhead of dynamic
multicast address assignment and routing cannot be tolerated. A preassigned addressing scheme is
required where multicast addresses are assigned to groups for prolonged periods of time. Clearly it
is not feasible to assign one address per subset of hosts, as the number of addresses required is 27,
where n is the number of hosts. We are studying alternative techniques for multicast addressing
that support short-lived connections with reasonable bounds on the size of the multicast address
space, and minimal additional bandwidth and processing overhead.

Multi-casting with application semantic knowledge. In some instances, knowledge of application
semantics ( i.e., knowledge of what the application is trying to accomplish with a particular mul-
ticast) can provide guidance in dealing with large scale multicast. Specifically this knowledge can
be used to avoid the aforementioned implosion problem. For example, multicast communication
can be used to provide an “Any-casting” service [74] where only one response from a potentially
large set of destinations is desired. Clearly this knowledge can help in limiting any negative effects

®That is, the cost per multicast receiver decreases from the source’s or the network’s viewpoint as the size of the

multicast group increases.
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associated with the size of the destination group. Probabilistic Multi-casting [75], is one technique
that we have developed in this context.

An Architecture for Providing Reliable Multi-casting. Reliable transport layer multicast commu-
nication is particularly troublesome in the context of existing Internet protocols. Although IP
supports multicast communication, TCP is an inherently single destination protocol. Most work
to date in this area has started from the premise that in order to perform reliable transport layer
multi casts, a new and somewhat different multicast transport protocol will need to be developed.

We propose an approach that would keep TCP as the heart of a multicast transport protocol.
A single connection emulation (SCE) protocol is introduced between TCP and (multicast) IP. It
mimics a single destination IP interface to TCP and use the multicast IP interface. The SCE will
also provide services to the application layer for the application to be able to control several aspects
of the multicast connection including security and reliability requirements.

There are several advantages to this approach. First, TCP is a well understood and mature
transport protocol and IP multicast is gradually gaining a level of maturity. This makes it highly
attractive to maintain them as components of a reliable multicast transport protocol. Second, the
modularity aspect of this architecture will allow any enhancements of TCP and multicast IP to be
automatically incorporated into the workings of the reliable multicast transport protocol.

The SCE layer is the place where we propose to include support for individualizing a multicast
conversation and incorporating application semantic knowledge. A preliminary discussion of this
concept can be found in [76].

Quality of Service Guarantees and Resource Management. Traffic measurements from
today’s medium speed networks and emerging high speed networks form the basis of our research
on resource management studies and quality of service guarantees for multi-media applications.
Recent studies have demonstrated that (i) actual network traffic over LANs and WANs exhibit long-
range dependence characteristics that cannot presently be accounted for by traditional modeling
approaches|78, 80, 82, 83, 85], (ii) the long-range dependence nature of network traffic can have
a dominant impact on network performance[77, 79, 81], and (iii) long-range dependence impacts
practically all aspects of network engineering and design. As an example, our results show that the
ratio of mean queue lengths from measured traces to that of an M/M/1 queue can be as large as
7500 for an utilization as low as 0.2, the actual numbers depending on the long-range dependence
parameters of the data set.

Computer and communication networks have traditionally been designed using Markovian mod-
els for buffer-sizing and capacity planning decisions. This is because of the well known theorem
that states that multiplexing a large number of independent “customers” leads to a Poisson arrival
process. In packet-networks, this is emphatically not true, even for large wide area multiplexors
such as NSFNET core switches: there do exist independent customers at the user level (or TCP
application level); however, each such “customer” produces a series of packets at a widely varying
rate before it is done.

This has serious implications to the overall arrival process, and the resulting performance.
Our measurements and analyses show that the primary cause of the extreme burstiness (and a
possible “self- similar” nature of traffic at different time scales) is the heavy tail in the probability
distribution of the number of packets transmitted, and the rate at which they are transmitted.
The first appears to match a stable Pareto distribution which has an infinite variance (“heavy
tailed”). The second variable is highly correlated with the first. Together, they create a burstiness
phenomenon that does not die out even in large multiplexors such as a router in the NSFNET
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backbone, where 1000+ simultaneous active flows are not uncommon[82].

Several first-generation ATM switches have been designed with Markovian input models, with
buffer sizes in the range 10-100, exactly as Markov-based models would recommend. However,
recent articles in the trade press (e.g., [79]) have made it clear that something must have gone
terribly wrong; when deploying these switches in the field and exposing them to “real” traffic, cell
losses far beyond normal were experienced and resulted in costly redesigns of the switches and loss
of market shares for the vendors. Knowing about the self-similar behavior of “real” traffic would
have largely prevented these vendors from going through this recent experience.

We have created a laboratory environment for collecting and studying traffic on campus LANs
and the NSFNET backbone (the latter in collaboration with Merit and IBM). Based on the statis-
tical properties of the NSFNET data, a packet-level simulation model for the NSFNET has been
created on top of a commercial simulation package (BONeS). Currently, this model can generate
temporal correlations in packet-level traffic on the NSFNET. A model with spatial correlations of
the NSFNET (suitable for studying routing issues) is currently in progress. Portions of this model
have now been realized on our distributed simulation system.

As an example of the use of real traffic data for performance evaluation, an optimal, but NP-
hard, graph algorithm with application to networking had several heuristic alternatives. Spatial
data on a complete set of {(source, destination)} pairs was available to us from the NSFNET which
happened to be a potential application environment for the algorithm. We, therefore, used the
data to evaluate and compare the performance of alternative heuristics with the known optimal
(NP-hard) algorithm[84] and determined that one simple heuristic based on simulated annealing
could result in a performance close to the optimal for all traffic data sets that were available to us.

The proposed research will be concerned with investigation of (i) statistically accurate workload
models and (ii) algorithms for congestion-control and resource-management for providing guaran-
tees on quality of service to applications. The distributed laboratory applications that will run on
top of the proposed infra-structure will provide data on interactive, real-time, multi-media, multi-
cast applications. These will be valuable additions to the simulation model. The resulting platform
will enhance our studies on protocol performance in broadband networks.

Faster, Cheaper ATM. As mentioned above there are a number of open problems involved in
applying ATM technology, particularly in distributed laboratory applications. Here, we focus on
the cost of implementing the technology. Today the cost of a switch is approximately $1000 per
155Mb/s port for the switch alone for the latest generation of switch. On top of this there are
the processor interface costs and the optical communication costs. In conjunction with the new
NSF Engineering Research Center in Low-cost Packaging at Georgia Tech, we are exploring the
opportunities provided by multichip module (MCM) technology to implement switches with better
performance at lower cost. MCMs permit larger 1/O pin densities, higher speed and denser inter-
connect and the potential for lower cost than VLSI circuits mounted on printed circuit boards. We
are exploiting this work by tuning the architecture of an ATM switch to the inherent advantages
of MCMs. Our initial work indicates that a combination of bus based and memory based architec-
tures appears optimal for medium sized switches. We plan to extend the work to other elements
of ATM systems. The proposed virtual telecommunication network facility provides an excellent
platform for experimenting with such architectures because long simulations are needed to model
even modest sized switches.

Bringing It All Together. As the different networking research areas produce results they will be
brought together to provide an efficient, cost-effective network that provides a seamless framework
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that permits the distributed laboratory to be created wherever the researcher may be located. By
addressing the problems associated with multicast and multi-media service, by understanding, and
being able to accurately model the traffic, and by creating a ubiquitous network we are attacking
three fundamental problem areas that stand in the way of fully exploiting telecommunications.
In the longer run, however, the larger impact will likely be in the business environment where
executives, knowledgeable workers or sales representatives want their office to move with them,
whether it be to another company location, to a hotel room, or to their home.

3 Conclusion and Impact of Research

The proposed research program develops and integrates new technologies that span the range from
applications to middle-ware software tools to the required underlying system and communication
technologies. At the same time, we will experiment with these technologies in the context of a
computing/communication infrastructure spanning a wide range of computing capabilities (from
multiprocessors to individual CPUs) and communication speeds (high performance ATM LANs to
home computing environments). The resulting multi-granular nature of this infrastructure presents
unique opportunities concerning the development of effective techniques that can cover this broad
spectrum, particularly as distributed laboratory environments extend into the home, and must
necessarily contend with lower bandwidths and higher latencies. Equally important is the fact that
the proposed work is driven by large-scale applications that require the technologies we will be
developing. This enables us to test our ideas and promote our results in realistic settings.

There are numerous ties between the individual research projects, many of which have been
discussed throughout the proposal. A few of the these linkages include:

1. Mechanisms used for synchronization in the distributed simulation project are leveraged with
interactive steering research to provide sophisticated simulation environments for experiment-
ing with virtual instruments and yet-to-be-realized systems.

2. Research to develop effective implementations of shared state is leveraged in the collaborative
work project to realize flexible, extensible, system architectures for human-to-human com-
munication. Other linkages between the shared state and interactive steering and distributed
simulation projects explore human-to-computer and computer-to-computer interaction.

3. There is a natural synergy between the distributed simulation and networking research
projects. On the one hand, the distributed simulation project provides a suite of tools for re-
search in telecommunications through the virtual telecommunication network application. On
the other hand, it provides an application for evaluating the effectiveness of communication
mechanisms such as multicast and resource allocation algorithms for quality of service guar-
antees. Moreover, the entire distributed laboratory facility provides a challenging, concrete
test case to drive the networking research.

4. The ubiquitous network vision provides new challenges for systems and tool building projects
in exploring the feasibility of realizing distributed laboratory environments.
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