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Summary 

The purpose of this work was to investigate the feasibility of using 

the noise radiation from turbulent flames, such as in a gas turbine 

combustor, to a non-intrusive diagnostic tool. In particular, it was sought to 

non-intrusively measure the heat release rate spatial distribution by 

monitoring the acoustic output, in an appropriate manner. 

Two experimental configurations were investigated. The first was an 

open, premixed turbulent flame burning in an anechoic chamber. Here the 

near pattern sound field was monitored. The second configuration was a gas 

turbine combustor, modified to burn on gaseous propane, where flush wall-

mounted pressure transducers monitored the pressure fluctuations. 

Analytically, there exists a relationship between the spectral sound 

output and the spectral content of the heat release rate fluctuation. The 

relationships are different in the two experimental configurations, but they 

exist. However, to obtain the heat release rate fluctuation, a difficult 

inverse problem must be solved. The result requires either a) inversion of an 

integral equation of the first kind or b) experimentally determining a second 

derivative in space of the fluctuating pressure. Both of these problems 

require extreme experimental accuracy. 

Verification of the acoustic results was carried out by optical 

emissions (in the case of the open flame) and ionization measurements (for 

both flame types). The ionization measurements were made with intrusive 

probes, whereas the optical emission measurements were non-intrusive. In 

both cases there exists relationships between the signal measured and the 

heat release rate fluctuation. 



For both flame types the spatial resolution was found to be 

insufficient to obtain pointwise heat release rate fluctuation spectra. The 

fundamental reason is that the sound wavelength was long compared with 

the integral scale of turbulence. Under certain circumstances it was found 

possible to measure the following quantity: the cross section average heat 

release rate spectrum times an axial correlation length scale of the 

turbulence. However, in the practical case of the gas turbine combustor, 

the inversion process was simply too sensitive to experimental errors to 

guarantee success on every configuration tested. It is concluded that this 

diagnostic tool is not feasible, in general. 
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Introduction 

In all turbulent flames noise is radiated from the combustion region, 

and there is usually a range of frequencies where this noise is dominant over 

other flow noises. This noise is called direct combustion noise (I)  and is of 

interest in its own right as a noise pollution problem. This program, however, 

asks the inverse question. Is it possible that appropriate sampling of the 

noise can tell something about the combustion process? Since the sampling 

of the pressure fluctuation field may be made nonintrusively, the acoustic 

radiation may be thought of as another diagnostic comparable with 

electromagnetic radiation. The issues are a) what does the noise measure 

about the combustion process, and b) is the measurement feasible? 

For all flames the author has encountered an equation may be 

derived, under fairly weak approximation, that relates the sound field to the 

local heat release rate fluctuation. Specifically, if p and Q are the 

Fourier transforms of the acoustic pressure and heat release rate per unit 

volume, respectively, the general form of the equation is 

z(p
w

) = — Q
w 
	

(1) 

Here 	is some linear operator, depending on the particular configuration. 

Equation (1) may be used outright by measuring the left hand side, thereby 

measuring Q
ua 
 . Alternatively, Eq. (1) can be solved through a Green's 

function, G, (sometimes analytical but in general numerical) to yield 

pw = f G(r,r ) Q (r 
o  ) dV(r 

o
) 	 (2) 

V 

1 



where V is the volume where combustion occurs. Equation (2) is an integral 

equation of the first kind. In principle the left side of Eq. (2) may be 

measured and there are techniques to solve this integral equation for Q . 

What is fine in principle is not so in practice. The operator is Eq. 

(1) is a differential operator of at least second order. Consequently, a second 

derivative measurement is called for, if Eq. (1) is used. If Eq. (2) is used it is 

well known that difficulties in inversion will occur. The problem here is that 

the integration process smooths out the integrand so that small errors in 

measurement of p w  can translate into large errors into the deduced Q
w 

. 

The two problems, with either Eq. (1) or Eq. (2), are actually equivalent; 

they are inescapable in this inverse problem. 

These difficulties were known in advance. However, the attempt to 

use the acoustic radiation as a Q
w 

diagnostic was considered desireable for 

several reasons. First, the acoustic radiation is not affected by optical 

opacity due to soot or smoke. Second, knowledge of the distribution of Q to 

 would be useful as a diagnostic for pollution production, liner heat transfer 

and length requirements for complete combustion. Third, the acoustic 

measurement can be made nonintrusively. Consequently, the program 

attempted the measurements. One configuration was the test bed of the 

method -a simple premixed turbulent flame burning in an anechoic chamber. 

Some success here led to the practical configuration of an actual gas turbine 

combustor. 

The simple flame work is now in the archival literature,
(2) 

so that 

only the main results will be covered here. The gas turbine work has not yet 

been reported upon in the literature, so more detail will be given in this 

report. 

2 



Results 

Premixed Turbulent Flame 

The form of Eq. (1) used for the premixed propane-air jet flame 

burning in an anechoic chamber was 

V
2

p
w 

+ k
2

p
w 

= 	(y - 1 ) ia) Qw 	
( 3 ) 

Here w is radian frequency y is the ratio of specific heats, k is the 

- -  
wavenumber, w/c, c is the speed of sound in the free field surroundings, and i 

= (-1) 1/2 . The form of the solution was as in Eq. (2) where the free space 

Green's function is 

G(r,r ) 
_40 	471 r - r

o 
 I 

e -ik r - ro  I 

(4) 

Near field microphone data were taken, as reported in Ref. (2) and auto-

spectral densities were constructed through Fourier analysis. A fundamental 

problem was encountered in the inversion of Eq. (2) that the wavelength 1 

ft) of sound was so long compared with the integral scale of turbulence that 

length details on this scale could not be discerned. As a consequence the 

quantity finally sought was 

co 

F 
 =f

" 	* 

-co Q

w (xi ) Qui  (xi  + §) d§ (5) 

Here Q is the cross section average of Q and § is a space separation 

distance. F may be viewed as an autospectrum of Q times an integral length 

scale of the turbulence. 

3 



Inversion of the integral equation was carried out, with difficulty, 

using an augmented Galerkin method. (3) Verification of the results was 

carried out by C 2  radical emission studies
(2) 
	and ionization 

measurements. (4) Good agreement was found between all methods, but there 

was one important qualifier with the acoustical method. That was that the 

empirical visual flame length had to be input to the computer for the 

inversion method to give good results. That is, if the experiment 

inversion method were asked to yield the flame length, poor results were 

obtained. Since this was part of the information sought for practical 

application of the method, some trouble was anticipated in the gas turbine 

application. Nevertheless, the partial success led to an attempt at the gas 

turbine problem. 

Gas Turbine Application  

Facility  

The facility used was a modified version of a gas turbine combustor 

facility described in Ref. (5). The combustor is shown in Fig. 1. The 

combustor was modified to burn gaseous propane by construction of three 

different injectors of the general form shown in Figs. 2 and 3. For later 

designation,DS refers to diffusion injector with a short flame, DM refers to 

a diffusion injector with a medium length flame, PS refers to a premix 

injector with a short flame and PM follows with a similar designation. For 

verification of results, a cross-section averaging ionization detector was 

used as shown in Fig. 4. Wall acoustic pressures were taken with water 

cooled pressure transducers, five at a time, mounted in any of seventeen 

4 
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access holes shown in Fig. 5. Since it was found necessary to measure the 

axial speed of sound distribution in the combustion chamber, a pulse 

technique was developed, as shown in Fig. 6, and this was verified by 

thermocouple measurements. A typical comparison of the cross-section 

average speed of sound as obtained by the two methods is shown in Fig. 7. 

Analysis  

The equivalent of Eq. (1) for the gas turbine combustor is 

-  d 	 Q -2  %  1 -2 dA  	2 . c c 
+ 	c 	 + Tiw 	- ILL) Ts. 	= - iw(y  - 1) =21 	(6) 

dx 	dx 	A 	dx dx 

This is the plane wave version of the acoustic problem since experimentally 

all of the combustion noise spectral content lies at frequencies well below 

the cut-on frequency of the first transverse mode. New symbols appearing 

in Eq. (6) are '1)w  = Pw/13- with P the mean operating pressure, A is the 

combustor cross section area, C is the circumference and t is the wall liner 

impedance defined by = pu  /u_.w )wall and u n is the Fourier transform of 
Li  

the velocity component normal to the wall. This impedance is taken from a 

prior program ())  to be approximately 0.06. 

Several methods were looked at in order to put Eq. (6) into a form for 

experimental determination of Quj  . These included an integral equation 

formulation with numerical determination of the Green's function for the 

problem and direct measurement of the left hand side of Eq. (6). As in the 

open flame problem the determination of Q w  was found extremely sensitive 

9 
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to experimental errors in measurement of TI ti)  . An empirical fact, however, 

aided in the choice of method. Two space-separated ion probes showed a 

rapid drop in coherence with only short space separation as shown in Fig. 8. 

This means that the axial correlation length scale is short compared with the 

combustor length, as was found in the open flame problem as well. 

Consequently, consider the solution of Eq. (6) in the form of Eq. (2) and 

consider this solution multiplied by the right hand side of Eq. (6) 

t. 

T(xi ) Pi- 1w (/::li 	* (x )1 _ 11)
2 

(y -1)  2  
to 	2 	-2 

P 	o 

-- 
tu

2 
(y 

2
- 1 )

2 
G(x1 ,x1 ) F -- 	- 

P 
(7) 

where F has exactly the same meaning as in Eq. (5) for the open flame 

problem. If the left hand side of Eq. (6) is also multiplied by TI: (x i ) and Eq. 

(6) is discretized, the left hand side consists of cross spectral densities of 
* 

11 cu 
 (x 1 ) and 111)  (xi) where the x i  are the descretization points. Hence F is 

determined by measurements of the necessary cross spectral densities, if the 

Green's function may be computed. 

As seen in Eq. (6) the distribution of c is needed, and that was the 

reason for the acoustic pulse test mentioned earlier. Also needed for 

construction of the Green's function are the acoustic impedance relations at 

the head end and open end of the combustor. That is, a is needed in 

13 
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relations of the form 

d 	 head 

dx 	+ 	= 0 tail 

These relations are discretized and multiplied by T(x 2) to obtain 

1* (x2) - 1](x2) 1* (x2 ) 

bix 

The necessary spectral densities are measured and a is computed. 

Experiments 

First consider some ion density measurements for a particular run in 

Fig. 9. The number following the injector specification refers to the pressure 

drop across the air metering orifice. A larger number indicates larger 

airflow rate. Shown are the mean and rms values of the local, cross-section 

averaged ion densities. The major point is that in all cases there is a 

general correspondence between the two. That is, the fluctuating rms gives 

a good indicator of the mean. The mean is what is really wanted, but 

acoustic measurements can only determine the fluctuating quantity. 

Consequently, it was imperative that this check came out positively. There 

were three injectors run at two fuel/air ratios each. In all cases there was 

good agreement between the mean and rms ion curve shapes. 

Consider now a selected set of pressure spectra in Fig. 10. Typically 

the combustion noise dominates the cold flow noise (and always dominates 

11 *(x2 )11(xl )  = 

15 
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the electronic noise) until frequencies of the order of 900 Hz. That this 

combustion noise is propagational in character is shown by the coherence 

between two space-separated transducers. In the frequency regime between, 

say, 200 Hz and 700 Hz the high coherence indicates a causal, fixed phase 

relation between the two transducers, which is the property of an acoustic 

motion. The frequency range of use can be extended by using only cross-

spectra as shown in Fig. 11. However, in measurement of the boundary 

conditions or for at least one location of pressure measurement it was found 

convenient to use at least one autospectrum in the data reduction. 

Consequently, only the frequency regime where the combustion noise 

autospectra were dominant were used. 

A typical generation of cross spectra between point x and a reference 

point R (SXR)  is shown in Fig. 12. These cross spectra, of course, have phase 

and magnitude. In this regard the Green's function in Eq. (7) has both phase 

and magnitude. But F has been constructed to be real and positive. 

Consequently, a first test from the experiment is to see if F is, in fact, real 

and positive. 

A typical result for the short flame premixed injector is shown in Fig. 

13. The solid curves are the ratio of 
Freal 

to its maximum value; the dashed 

lines are the imaginary part of F. Clearly, the method fails the first test. 

The imaginary part is not negligible compared with the real part. However, 

the second test, that the real part is generally positive, is in fact passed. 

The procedure chosen from here on is to accept the imaginary part problem 

and simply ignore it; only the real part of F is retained. 

18 
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In Figs. 14 and 15 are shown the main successes for all four runs. It 

was always found possible to select a frequency band for the acoustic 

measurement for which Freal matched the shape of the ion AC 

measurement. However, the method never worked for all frequency bands. 

Shown in these figures is that 800 Hz appears good for all cases. However, 

there are no grounds to suspect that 800 Hz is a number good for the general 

case and for other combustors. 
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Conclusions 

Use of the acoustic method for diagnosing the heat release rate 

distribution in both a laboratory flame and a gas turbine combustor has met 

with limited success. There are two fundamental problems. First, 

combustion noise wavelengths are so long that small length scale 

information is very difficult to extract. Secondly, the inversion method for 

this inverse problem is known to be highly sensitive to small experimental 

uncertainty. The method gave reasonably good results for the open flame but 

substantial input (the flame length) had to be given a priori  to the 

calculation. The gas turbine combustor results had to be heavily selected in 

order to provide good comparison of theory with experiment. It is concluded 

that it is not feasible to use this technique as a general developmental tool. 
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