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SUMMARY

With the ubiquity and widespread use of mobile devices such as laptops, smartphones,
smartwatches, and IoT devices, large volumes of user data are generated and recorded.
While there is great value in collecting, analyzing and sharing this data for improving
products and services, data privacy poses a major concern.

This dissertation research addresses the problem of privacy-preserving data collection
and sharing in the context of both mobile trajectory data and mobile Internet access data.
The first contribution of this dissertation research is the design and development of a sys-
tem for utility-aware synthesis of differentially private and attack-resilient location traces,
called AdaTrace. Given a set of real location traces, AdaTrace executes a four-phase pro-
cess consisting of feature extraction, synopsis construction, noise injection, and generation
of synthetic location traces. Compared to representative prior approaches, the location
traces generated by AdaTrace offer up to 3-fold improvement in utility, measured using a
variety of utility metrics and datasets, while preserving both differential privacy and attack
resilience.

The second contribution of this dissertation research is the design and development
of locally private protocols for privacy-sensitive collection of mobile and Web user data.
Motivated by the excessive utility loss of existing Local Differential Privacy (LDP) pro-
tocols under small user populations, this dissertation introduces the notion of Condensed
Local Differential Privacy (CLDP) and a suite of protocols satisfying CLDP to enable the
collection of various types of user data, ranging from ordinal data types in finite metric
spaces (malware infection statistics), to non-ordinal items (OS versions and transaction
categories), and to sequences of ordinal or non-ordinal items. Using cybersecurity data and
case studies from Symantec, a major cybersecurity vendor, we show that proposed CLDP
protocols are practical for key tasks including malware outbreak detection, OS vulnerability

analysis, and inspecting suspicious activities on infected machines.
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The third contribution of this dissertation research is the development of a framework
and a prototype system for evaluating privacy-utility tradeoffs of different LDP protocols,
called LDPLens. LDPLens introduces metrics to evaluate protocol tradeoffs based on fac-
tors such as the utility metric, the data collection scenario, and the user-specified adversary
metric. We develop a common Bayesian adversary model to analyze LDP protocols, and
we formally and experimentally analyze Adversarial Success Rate (ASR) under each proto-
col. Motivated by the findings that numerous factors impact the ASR and utility behaviors
of LDP protocols, we develop LDPLens to provide effective recommendations for finding
the most suitable protocol in a given setting. Our three case studies with real-world datasets
demonstrate that using the protocol recommended by LDPLens can offer substantial reduc-

tion in utility loss or in ASR, compared to using a randomly chosen protocol.
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CHAPTER 1
INTRODUCTION

In recent years, Big Data has become ubiquitous thanks to advancements and widespread
use of electronic and mobile devices such as laptops, smartphones, smartwatches, and
Internet-of-Things (IoT) devices. Users interact with dozens of smart electronic devices
and software apps every day, which leads to massive amounts of data to be generated.
Companies and stakeholders want to make use of such data by promoting big data-driven
analytics, machine learning, and business intelligence. One example is Netflix, a popu-
lar media-services provider and production company, which estimates that 75% of what
people watch on Netflix is determined by recommendation algorithms that are powered
by past viewers’ and customers’ data [1]. Another example is the banking sector, which
uses customer data to determine credit and loan approvals, reduce customer churn, design
personalized offerings and individualized services, and so forth [2]. Furthermore, with
the increasing amounts of online shopping and e-commerce on the Internet, web users’
browsing, search and shopping histories have become lucrative sources for trend predic-
tion, personalized ads, and even product price optimization [3].

While there is great value in collecting, analyzing and sharing user data for improving
products and services, data privacy poses a major concern. According to a survey reported
by the Mobile Ecosystem Forum, privacy (or the lack of it) is the number one concern of
consumers when envisioning a world of connected devices [4]. Privacy concerns are further
aggravated due to privacy scandals and data mishandlings, including the recent Facebook -
Cambridge Analytica scandal [5], fitness app Polar revealing where U.S. military person-
nel worked and lived, and the Exactis data exposure scandal [6]. Data privacy and data
protection concerns have grown so rapidly over the last years that new laws and regulations

are now being implemented, a popular example being Europe’s General Data Protection



Regulation (GDPR).

This dissertation contributes formal and technical solutions to the problem of data pri-
vacy in modern computerized systems, e.g., mobile, IoT, and Internet-based systems. In
particular, we consider two research settings within the umbrella of data privacy: privacy-
preserving data collection and privacy-preserving data sharing.

In the data collection setting, each user has some privacy-sensitive data recorded and
stored on their personal device. Examples include web browsing histories in browsers such
as Chrome, application telemetry and usage statistics on smartphones, and so forth. The
data collector (aggregator) would like to collect relevant information from users’ devices;
however, doing so directly and naively would violate users’ privacy. Hence, the research
challenge is to design and develop protocols that enable privacy-conscious collection of
user data that offer formal privacy guarantees to users while simultaneously allowing the
data collector to infer accurate population-level statistics.

In the data sharing setting, the data collector already has potentially sensitive data per-
taining to individuals. This is the case with U.S. Census database, NYC Taxi and Limou-
sine Commission’s database of taxi trips in New York City [7], and Uber Movement [8], to
name a few. In order to facilitate analytics and learning, the data collector wants to share
the data with third parties such as Machine Learning as a Service providers (MLaaS), city
officials and policymakers, university researchers, or even the general public. However,
straightforward sharing of privacy-sensitive data with untrusted third parties may lead to
attacks such as re-identification, record linkage, and membership inference attacks [9, 10,
11, 12]. Consequently, the research challenge in the data sharing setting is to design and
develop methods to ensure that the data shared with third parties will ensure formal privacy
and attack-resilience guarantees.

In order to provide formal and provable privacy guarantees in the data collection and
data sharing settings, we build on top of the notion of differential privacy, among other

privacy and security metrics. Differential privacy is a well-known notion that is being used



increasingly in different academic communities as well as the industry [13, 14, 15, 16]. It
has several desirable properties, including the ability to: (i) provide a mathematically prov-
able privacy guarantee, (ii) compose multiple differentially private building blocks and still
satisfy differential privacy with the same privacy budget or a relaxed budget, and (ii1) post-
process differentially private outputs without hurting the differential privacy guarantee. Yet,
differential privacy is not a magic bullet — it does not necessarily protect against all types
of adversaries and it does not necessarily provide sufficient data utility in all applications.
To address protections that fall outside the scope of differential privacy, we propose com-
plementary security metrics appropriate for the setting and data type under consideration,
e.g., in case of location traces, we additionally promote resilience to partial trace sniffing
attacks against adversaries who may track users’ movements in areas under surveillance. In
data collection scenarios, we observe that existing local differential privacy protocols pro-
vide sufficient utility when data is collected from a large population, but their utility suffers
when the population size is small. We therefore propose an alternative privacy notion and

protocols targeting data collection in smaller population sizes.

1.1 Dissertation Statement and Contributions

This dissertation research makes the following contributions to address privacy-preserving
data collection and sharing in the context of both mobile trajectory data and mobile Internet

access data.

1.1.1 Differentially Private and Attack-Resilient Location Trace Synthesis

The first contribution of this dissertation research is the design and development of a sys-
tem for utility-aware synthesis of differentially private and attack-resilient GPS location
traces, called AdaTrace. Individuals’ location traces are highly sensitive, and sharing loca-
tion trace datasets with unauthorized third parties may disclose individuals’ travel records,

home and work locations, or visits to sensitive locations such as hospitals or religious



events. It is therefore imperative to take appropriate measures to protect individuals’ pri-
vacy when sharing location traces. To this end, we design and develop AdaTrace, a scalable
and quantitative framework that synthesizes location traces while providing three desir-
able features: (i) differential privacy, (ii) resilience against relevant location trace attacks,
(iii) strong preservation of trajectory utility and authenticity. AdaTrace builds a generative
model from a given set of real traces through a four-phase synthesis process consisting
of feature extraction, synopsis learning, privacy and utility preserving noise injection, and
generation of synthetic location traces. The location traces synthesized by AdaTrace bear
a statistical resemblance to real traces, but they do not leak sensitive information about any
individual due to the enforcement of differential privacy and attack-resilience guarantees.
We validate the effectiveness of AdaTrace by comparing it with three state of the art ap-
proaches using three datasets (Geolife, Taxi, Brinkhoff) and seven trajectory utility metrics.
Our results show that AdaTrace provides up to 3-fold improvement in trajectory utility, and

is significantly faster than prior art.

1.1.2  Secure and Utility-Driven Data Collection

The second contribution of this dissertation research is the design and development of lo-
cally private protocols for privacy-sensitive collection of mobile and Web user data. While
Local Differential Privacy (LDP) is popularly used in practice for privacy-preserving data
collection, we find that existing LDP protocols offer high utility only when data is collected
from large enough user populations, but they perform poorly in terms of utility when the
population size is small. Motivated by the excessive utility loss of existing LDP protocols
under small populations, this dissertation introduces the notion of Condensed Local Dif-
ferential Privacy (CLDP) and a suite of protocols satisfying CLDP to enable the collection
of various types of user data, ranging from ordinal data types in finite metric spaces (mal-
ware infection statistics), to non-ordinal items (OS versions and transaction categories),

and to sequences of ordinal or non-ordinal items. Extensive experiments are conducted



on multiple datasets, including datasets that are an order of magnitude smaller than those
used in existing approaches, which show that proposed CLDP protocols yield high utility.
In addition, case studies with Symantec datasets demonstrate that our protocols accurately
support key cybersecurity-focused tasks of detecting ransomware outbreaks, identifying

targeted and vulnerable OSs, and inspecting suspicious activities on infected machines.

1.1.3  LDP Protocol Analysis Through a Bayesian Lens

The third contribution of this dissertation research is the design of a principled framework
for privacy and utility analysis of LDP protocols, and a prototype implementation of this
framework called LDPLens. While the popularity of Local Differential Privacy (LDP) has
led to the development of several LDP protocols, few have engaged in analyzing the privacy
relationships of these protocols across different factors. In this dissertation, we propose a
Bayesian adversary model and perform mathematical and empirical analysis of six repre-
sentative LDP protocols under this adversary model (GRR, BLH, OLH, RAPPOR, OUE,
SS). Our analysis shows that the Adversarial Success Rate (ASR) changes from protocol
to protocol, and that there are multiple factors affecting ASR, including privacy budget ¢,
data domain, encoding parameters, adversarial background knowledge, and statistical data
distribution. Consequently, we find that no single protocol is consistently better than oth-
ers across all possible settings. We therefore develop a prototype system called LDPLens,
which considers the aforementioned factors through customizable modules, and enables
the selection of the most suitable LDP protocol for the given set of application-specific
settings. We perform three real-world case studies with LDPLens, showing that the best
protocol in each case is different, and using the protocol recommended by LDPLens rather

than a random protocol may yield substantial reduction in utility loss or ASR.



1.2 Dissertation Organization

The rest of this dissertation is organized into several chapters as follows. Chapter 2 presents
AdaTrace, our proposed location trace synthesizer with three features: differential privacy
guarantee, resilience against relevant location trace attacks, and strong utility preserva-
tion. Chapter 3 presents the notion of Condensed Local Differential Privacy (CLDP) and
its application to secure and utility-driven data collection through proposed CLDP proto-
cols. Chapter 4 presents LDPLens: our system for Bayesian analysis of LDP protocols and
optimized protocol and budget selection. Chapter 5 presents our concluding remarks and

discusses the ongoing and future research directions.

1.3 Bibliographic Notes

Chapter 2 of this dissertation contains material from our conference and journal publica-
tions [12] and [17]. Chapter 3 of this dissertation contains material from our publication
[18]. The implementations of the systems and protocols presented in each chapter are

available at https://github.com/git-disl.
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CHAPTER 2
UTILITY-AWARE SYNTHESIS OF DIFFERENTIALLY PRIVATE AND
ATTACK-RESILIENT LOCATION TRACES

As mobile devices and location-based services become increasingly ubiquitous, the privacy
of mobile users’ location traces continues to be a major concern. Traditional privacy solu-
tions rely on perturbing each position in a user’s trace and replacing it with a fake location.
However, recent studies have shown that such point-based perturbation of locations is sus-
ceptible to inference attacks and suffers from serious utility losses, because it disregards
the moving trajectory and continuity in full location traces.

In this chapter, we argue that privacy-preserving synthesis of complete location traces
can be an effective solution to this problem. We present AdaTrace, a scalable location trace
synthesizer with three novel features: provable statistical privacy, deterministic attack re-
silience, and strong utility preservation. AdaTrace builds a generative model from a given
set of real traces through a four-phase synthesis process consisting of feature extraction,
synopsis learning, privacy and utility preserving noise injection, and generation of differ-
entially private synthetic location traces. The output traces crafted by AdaTrace preserve
utility-critical information existing in real traces, and are robust against known location
trace attacks. We validate the effectiveness of AdaTrace by comparing it with three state of
the art approaches (ngram, DPT, and SGLT) using real location trace datasets (Geolife and
Taxi) as well as a simulated dataset of 50,000 vehicles in Oldenburg, Germany. AdaTrace
offers up to 3-fold improvement in trajectory utility, and is orders of magnitude faster than

previous work, while preserving differential privacy and attack resilience.



2.1 Introduction

A growing number of location-based services and applications, such as those offered by
Google, Uber, Lyft, and Waze, continue to collect users’ location traces in order to learn
about their spatio-temporal movement patterns and offer life enriching, real-time experi-
ences through location-based convenience and entertainment [8, 7, 19]. On the other hand,
the sensitive nature of location trace data raises legitimate privacy concerns. Unauthorized
exposure of users’ private location traces may disclose their travel records, home and work
locations, frequent meeting points, or visits to sensitive locations such as hospitals, health
clinics, and religious events.

Traditional location privacy protection techniques have mostly focused on point-based
location privacy, which is often achieved by perturbing or obfuscating each location point
in a user’s trace using a cloaked region or a fake location, with the goal of ensuring location
k-anonymity or geo-indistinguishability [20, 21, 22, 23, 24, 25, 26, 27]. However, these
point-based privacy mechanisms are insufficient for protecting the privacy of users’ tra-
Jectories, 1.e., spatially correlated, temporal sequences of locations. Several studies show
that independent perturbation of each point-based location in a trajectory suffers from fatal
shortcomings, including susceptibility to reverse engineering and inference attacks [28, 29].
In these attacks, adversaries observe a sequence of perturbed locations to infer a movement
pattern and then link specific movement patterns with specific users. Such perturbations
also suffer from acute spatial utility losses [30], and are vulnerable to known location trace
attacks.

The aforementioned shortcomings motivated recent interest in synthesizing privacy-
preserving, complete location traces [29, 31, 32]. These recent trace synthesis mechanisms
focus on either differential privacy [31, 32] or plausible deniability [29], and while they
offer desirable theoretical guarantees, they are limited by the extent of their chosen privacy

definitions. For example, Dwork showed the impossibility to achieve absolute disclosure



prevention [33]. A resulting limitation is that differential privacy cannot bound a// prior and
posterior knowledge distributions of an adversary, which sparked interest in augmenting a
Bayesian form of privacy with prior-to-posterior comparison [34, 35, 36]. This Bayesian
property is clearly useful for location privacy, e.g., even if we cannot bound all possible
knowledge that is disclosed to an adversary, a Bayesian formulation can be used to limit
disclosure specifically in sensitive zones such as hospitals or schools. Another example is
regarding outliers — it is well-known that differential privacy requires large noise amounts to
mask the existence of outliers. Location traces are typically high-dimensional and contain
diverse behavior. Hence, it is worthy to seek alternative attack resilience notions to combat
privacy leakages concerning numerous kinds of outlier traces.

We argue that a practical solution to synthesizing privacy-preserving location traces
should achieve three goals simultaneously: (i) robust, well-defined statistical privacy, (ii)
deterministic resilience against location privacy attacks, and (iii) strong preservation of
trajectory utility and authenticity. We present AdaTrace, a scalable and quantitative frame-
work that provides utility-aware synthesis of differentially private and attack resilient lo-
cation traces. AdaTrace builds a generative model over a dataset of real location traces
by performing feature extraction, noise injection, and feature synthesis throughout four
phases. In each phase, it first extracts utility-critical features and then allocates an adequate
differential privacy budget to inject sufficient perturbation (noise), while maintaining attack
resilience and preserving desired statistical and spatial utility. We guarantee that the syn-
thetic trajectory generation process is differentially private, i.e., the generation of synthetic
traces is not strongly dependent on any specific trace in the real trace dataset. This ensures
unlinkability between an output trace and any real trace (input), thus thwarting identity and
record linkage attacks. As such, although the location traces crafted by AdaTrace bear a
statistical resemblance to real traces, they do not leak information about any individual that
participates in the synthesis process.

We also ensure that the traces generated by AdaTrace are robust against three attacks:



Bayesian inference, partial sniffing, and outlier leakage. While the generation process
is probabilistic to satisfy differential privacy, we enforce attack resilience by imposing
deterministic constraints on the generated traces. Finally, by maintaining resemblance to
real traces, the crafted traces preserve many useful statistical features that are in common
with real traces, and therefore they can be effectively used in geo-spatial queries and geo-

spatial data mining tasks.

2.1.1 Contributions

The design of AdaTrace is novel in three aspects. First, we identify three privacy threats
that are relevant and common in trajectory data, and are neither addressed by differential
privacy nor by other existing trajectory generators. We formalize these threats as Bayesian
inference, partial sniffing, and outlier leakage attacks, and propose defenses for mitigation.
We show that in many cases, our defenses can be realized with little or no aggregate util-
ity loss, demonstrating their effectiveness. Second, we combine differential privacy with
attack resilience to offer a two-layer privacy approach. This allows us to integrate statis-
tical, algorithmic privacy with output privacy, enabling deterministic attack resilience in a
probabilistic trace synthesis setting. Third, we design a utility-aware trace synthesizer by
analyzing and categorizing various types of location trace utility and by devising noise-
resilient utility extraction and preservation techniques.

We validate the effectiveness of AdaTrace by comparing it with three representative
existing approaches (ngram [31], DPT [32], and SGLT [29]) using both real location trace
datasets (Geolife [37] and Taxi [19]), as well as a dataset simulated by Brinkhoff simula-
tor [38] of 50,000 vehicles in Oldenburg, Germany. We empirically measure how well each
utility type is preserved, and our results show that AdaTrace offers up to 3-fold improve-
ment in trajectory utility while preserving both differential privacy and attack resilience.
AdaTrace is also computationally more efficient, as it is on average 1.5x faster than DPT,

8x faster than ngram, and 1000x faster than SGLT.
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2.2 Related Work

We study the related work in three main directions: individual location perturbation, loca-

tion trace anonymization, and synthetic location and trace generation.

2.2.1 Location Perturbation

Research in location privacy started a decade ago with the notion of location k-anonymity
and two landmark results: uniform location k-anonymity [39] and user-defined, personal-
ized location k-anonymity [20]. After the proliferation of differential privacy (DP), two
stronger notions of location privacy were proposed based on statistical quantification of at-
tack resilience. The first one is geo-indistinguishability [21], which employs DP by measur-
ing the posterior information gain of an adversary based on the release of pseudo-locations
of mobile users. The second one is the expected inference error [22, 23], which proposes
a privacy notion powered by attack resilience to the prior knowledge of an adversary. A
number of location perturbation mechanisms have been developed to satisfy these privacy
notions [21, 24, 40, 23, 26]. However, these location perturbation mechanisms whose main
functionality is to perturb an individual location point of the user, were shown to be inef-
fective when the goal is to protect the privacy of users’ complete location traces, as they
tend to suffer from inference attacks [29] as well as temporal and sequential correlation

attacks [28, 41, 42].

2.2.2 Location Trace Anonymization

One approach to protecting users’ location traces is through location trace anonymization
and de-identification. Common approaches under this direction employ extensions of k-
anonymity and /-diversity. The (k, d)-anonymity notion introduced in [43] ensures that at
least k different trajectories exist in cylinders of radius §. (k,d)-anonymity is enforced

via clustering and space translation. [44] enforces trajectory k-anonymity using location
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generalization, and reduces the anonymization problem to time and space shifted align-
ment of location sequences. [45] introduces attack graphs to break traditional k-anonymity
on trajectories using timestamps as quasi-identifying information, and proposes a Hilbert
indexing method to circumvent such attacks. [46] applies (K, C')-privacy to thwart iden-
tity linkage and sensitive attribute disclosure attacks when trajectories contain sensitive
information. However, recent studies on human mobility patterns [47, 48] show that in-
dividuals’ location traces are highly unique and predictable, and location trace uniqueness
decreases only slightly despite spatial coarsening (e.g., generalization). Recent reports on
re-identification and de-anonymization attacks [49, 50, 51] further render the traditional
methods such as anonymization, generalization and spatial cloaking insufficient to provide

strong privacy protection.

2.2.3 Synthetic Location and Trace Generation

This line of work is inspired by the security research on generating fake or synthetic records
for privacy protection in web search, anonymous communication, and authentication sys-
tems [52, 53, 54]. The main challenge is to generate synthetic data in a manner that re-
sembles genuine user-produced data while offering practical privacy protection at the same
time. In the context of location-based systems, some work has been on generating and
injecting a synthetic location point within a user’s trajectory [22, 55, 56]. A few recent
projects studied the problem of generating synthetic trajectories [31, 32, 29]. ngram [31]
and DPT [32] proposed to generate fake trajectories with differential privacy. Although
offering strong statistical privacy guarantees, we argue that relying solely on differential
privacy has two shortcomings. First, its probabilistic nature does not allow determinis-
tic protection against targeted attacks such as those considered in this chapter. Second, it
places restrictions on the generation algorithm but not its output, and therefore sensitive
inferences remain possible [57, 58, 59]. In contrast to ngram and DPT, SGLT [29] enforces

plausible deniability to generate privacy-preserving fake location traces. It first introduces
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trace similarity and intersection functions that map a fake trace to a real trace under simi-
larity and intersection constraints. Then, it generates one fake trace using one real trace as
its seed. If the fake trace satisfies plausible deniability, i.e., there exist k other real traces
that can map to the fake trace, then it is said to preserve privacy of the seed trace. We
compare our AdaTrace system against ngram, DPT and SGLT in Section 2.6 and show that

AdaTrace provides superior trajectory utility across a variety of utility metrics of interest.

2.3 AdaTrace Overview

2.3.1 Problem Statement

Consider a database of real location traces (trajectories) collected from mobile travelers on
the road, denoted by D,..,;. We want to build a generative model over D,..,; using feature
extraction, noise injection, and synopsis formation while upholding statistical utility and
attack resilience. We then employ the generative model to output a set of synthesized traces,
denoted by Ds,,,. This probabilistic generative model should be differentially private such
that removing any real trace from D, ., has no significant impact on the outcome Dy,.
In addition, the synthetic traces D,,,, should collectively retain a high resemblance to the
real traces D, so that D, has many useful statistical and spatial features in common
with D,.,. Finally, both the generative model and the synthetic traces Ds,,, should be
robust against inference attacks, in order to strengthen privacy by maximizing attackers’
probability of error in estimating the true behavior of users over time.

We design and develop AdaTrace, a scalable and utility-aware trajectory synthesizer
with differential privacy and attack resilience. To demonstrate its feasibility and effective-
ness, we compare AdaTrace with existing state of the art mechanisms on both real and
simulated location trace datasets [19, 37, 38]. AdaTrace methodically unites statistical pri-
vacy (e.g., differential privacy) and syntactic privacy (e.g., attack resilience). It maximizes
privacy by mitigating location inference attacks, and minimizes utility loss by extracting

and upholding many useful types of statistical and spatial features of real location traces
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Figure 2.1: AdaTrace system architecture

throughout each phase of synthesis.

Figure 2.1 illustrates the system architecture of AdaTrace. First, AdaTrace analyzes
D,.q, the database of real location traces, to extract four spatial and statistical features
and establish them in its private synopsis. The features include a density-aware grid to
capture the complex spatial density and locality distributions; a Markov mobility model to
capture intra-trace mobility patterns; a trip distribution to learn the correlations between
trips’ pickup and destination locations; and a length distribution to capture travel distances
and durations. Each of the four features are perturbed by controlled noise under differential
privacy and attack resilience constraints. Although several mechanisms can be used to
add noise during each feature extraction and perturbation phase, in AdaTrace we carefully
choose the mechanisms such that: (i) we find a balance in the trade-off between privacy,
attack resilience and utility, and (ii) we maximize utility under a certain desired level of

privacy and robustness.

2.3.2 Differential Privacy

We adapt the well-known notion of differential privacy to achieve statistical privacy in
AdaTrace. We enforce differential privacy with respect to the complete location trace of
an individual. It was recently argued that such use of the differential privacy notion can

combat membership inference attacks relevant in machine learning as well as aggregate
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location statistics [60, 61].
For an actual database D,.,;, let nbrs(D,.q) denote the set of databases neighboring

D, ., such that for all D’

real

, € nbrs(Dyeq), itholds that (Dyeqy — D!, ) U (D). — Dreal) =
{T'}, where T denotes one user’s trajectory. Further, let .A be a probabilistic algorithm, ¢ be
the privacy parameter, and Range(.A) denote the set of A’s possible outcomes. A is said to
be e-differentially private [33], if for all D,y and D\, € nbrs(D,.q4), and for all possible
outcomes S € Range(.A):

Pr(A(Dyeq) = S) < e x Pr(A(D.,,;) = S)

real

A special case of this definition is when A is a synthetic trajectory generation process
and Range(A) = {D,,,, ..., D%, } is the set of all possible synthetic databases, yielding
AdaTrace’s differential privacy requirement. This requirement guarantees that the output
of a private algorithm does not enable an adversary to distinguish, beyond a probability
controlled by parameter ¢, between two input databases D,.,; and D), that differ in one
user’s GPS trace. Hence, an adversary observing Dy, or an intermediate product of Ada-
Trace, including the features of the private synopsis, will not be able to infer the existence
or content of a user’s location data in D,..,; with strong confidence. Smaller ¢ yields tighter
privacy [13].

We use two private building blocks in AdaTrace, namely the Laplace and Exponential
mechanisms, for numeric and categorical queries respectively. Let f be a real-valued func-
tion f : D,.,; — R™ that maps a database D, into a fixed-size vector of m real numbers.

The sensitivity of f, denoted Af, is defined as the magnitude of the maximum L;-norm

change in the result of the function on all possible neighboring databases:

Af = max Hf(Dreal> - f( ;'eal)H

/
l)realvl)

real

When answering a set of numeric (i.e., real-valued) queries, the Laplace mechanism re-
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trieves the true answers of these queries, and then perturbs each answer by adding random
noise scaled according to their sensitivity. That is, let Lap(a)) denote a random variable
sampled from the Laplace distribution with mean O and scale parameter «. The differen-

tially private algorithm A answers f by [62]:

A(fa Dreal) = f(Dreal) + (YL ceny Ym)

where Y; are i.i.d. random variables drawn from Lap(Af /e).

When the query is categorical instead of real-valued, the Exponential mechanism is
used. It selects a discrete output 7 from a domain of outputs R in a private manner [63]. It
employs a scoring function (i.e., quality criterion) ¢ that associates each output r € R with
a non-zero probability of being selected. Let ¢(D,.q, ) denote the quality of returning
output r given database D,..,;, and let Aq be the sensitivity of ¢, defined similarly to A f

above. Then, the Exponential mechanism returns output z € R with probability equal to:

€q(Dyegs®)
e 2Aq

Pr(A(q, Dyea) = x) =

€q(DyeqsT)

ZTER € 2aa

The composition properties enable us to combine the building blocks and generate more
sophisticated algorithms [64]. Because of the composition properties, ¢ is also called the
privacy budget. Given a total budget ¢, our goal is to create a sophisticated algorithm
by cleverly combining the building blocks according to the composition properties. We
employ three composition properties. First, for n algorithms A; ... A,, each satisfying
differential privacy with parameter ¢; . . . €,,, the sequential execution of these algorithms
on D,., consumes E?Zl g; from the budget. Second, if the algorithms are executed on
disjoint subsets of the database, the resulting execution consumes max (51) Third, post-
processing the output of a differentially private algorithm does not consume any budget or
deteriorate privacy. For example, modifying the output of .A; without accessing D,..,;, and

releasing the modified version still consumes €.
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2.3.3 Threat Model and Attacks

Differential privacy is regarded as the de facto standard for privacy-preserving data sharing
due to its provable privacy guarantees. However, like any other security mechanism, the
resilience of generic differential privacy against targeted, syntactic attacks has recently been
criticized [57, 58, 59, 34]. We describe three attacks which are highly relevant in sharing
sanitized location traces, but are beyond the scope of protection offered by differential
privacy. We describe AdaTrace’s threat model with respect to each attack and discuss why

differential privacy is not sufficient to solve the threats.

Bayesian Inference Threat

Certain geographic zones (regions) are sensitive by nature, e.g., hospitals, schools, health
clinics. Let Z denote a privacy sensitive zone. An adversary may have a prior belief
B(Z) regarding the users who visit these zones, e.g., where they live, work, or which other
locations they frequently visit. We allow informed and uninformed priors, but by default
address stronger adversaries with informed priors, e.g., knowledge obtained from publicly
available information such as census records and population averages. For example, if 10%
of the general population lives in a certain neighborhood, then B(Z) may assume that 10%
of the users who visit the hospital also live in that neighborhood.

The adversary formulates a posterior belief after observing the synthesized trajectories,
denoted by B(Z|Ds,,). If the difference between B(Z) and B(Z|Ds,,) is significant, we
assert that there is a privacy leakage. For example, the adversary observes from D, that
50% of the hospital’s visitors live in a certain neighborhood rather than the assumed prior of
10%, yielding the inference that there is a flu outbreak in that neighborhood. Differential
privacy is not sufficient to prevent this threat, because despite its noise injection, priors
and posteriors will be related. For example, if indeed 50% of the hospital’s visitors come
from a certain neighborhood in D,.,;, after Laplace noise we may have a 48% visiting

rate from the same neighborhood in D,,,,. This is still significantly higher than the 10%
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Figure 2.2: User’s actual trace 7;, drawn in black, synthetic traces passing through the sniff
region drawn in red. Synthetic #1 is closest to 7;, within the sniff region, hence it is labeled
7.

prior. A proper defense should ensure that the difference between B(Z) and B(Z|Dyy,,) is

sufficiently small, so that an adversary’s inference power is crippled.

Partial (Subtrajectory) Sniffing Threat

Assume that an adversary can track users when they are in certain regions, such as grocery
stores or airports. We call these regions sniff regions. Tracking in sniff regions can be
enabled via surveillance cameras, biometric scanners, or simply by following users’ loca-
tion check-ins on a social network. The sniffed locations constitute a subtrajectory (i.e.,
portion) of the user’s full trajectory. Armed with subtrajectory knowledge, if the adversary
can infer which trajectory belongs to the user with high probability, the adversary can learn
the remaining locations visited by the user outside the sniff region, such as home and work
locations. Let u denote the sniffed user and 7, € D,..,; denote her trajectory. Even when
Dy, 1s shared in place of D,.,, an adversary can launch this attack by linking the sub-
trajectory T € D,,, which is geographically most similar to 7, in the sniff region. This
inference process is illustrated in Figure 2.2. The threat is especially acute if T and 7,

share points in one or more sensitive zone.
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Outlier Leakage Threat

A trajectory database may contain outliers that are unique in one or more ways such as
the locations they visit, their start/destination points, and their time of travel. It is these
outlier trajectories that are often hunted by adversaries. For example, while a $15 taxi ride
in downtown Manhattan may not reveal much, a $125 trip from an isolated location to the
airport leaks the identity and travel plans of a particular individual — note that this attack
has actually been successfully exercised using NYC Taxi data [65].

We argue that relying solely on differential privacy cannot combat outliers for two rea-
sons. First, since trajectories are often high-dimensional and unique [47, 48], there may
exist skewed instances that are easily singled out and mapped to particular users with high
confidence. Differential privacy needs to inject large noise amounts to hide such skewed in-
stances. Second, even when large noise amounts are added, an outlier may still result from
the probabilistic nature and algorithmic randomness of differential privacy. We should
therefore place deterministic constraints to combat outliers. We combat an outlier trajec-
tory 7T,,;’s leakage threat by ensuring that it plausibly blends into a crowd of x users’
trajectories. This guarantees that 7, can at best be associated with a group of users (of

size k), and does not disclose the identity or secrets of any one user.

2.3.4 Utility Reference Model

The utility reference model used in AdaTrace is primarily designed based on the common
utilities of location traces used in many geo-spatial data analysis and mining tasks, such
as: users’ frequency of visiting popular semantic locations, location entropy calculation,
spatial decomposition, aggregate human mobility modeling (e.g., spatial, temporal and se-
mantic mobility mining), and training predictive models for next location and destination
inference. We identify the following three core utility notions as the prominent categories
of trajectory utility in our reference model.

(1) Spatial density and locality distribution, e.g., for analyzing where users visit and
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their popular points of interest. This can have various commercial benefits, including
choosing ideal geographic placement for advertisements or retail stores, spatial hotspot
discovery, and recommendation in location-based social networks.

(2) Spatio-temporal travel metrics, e.g., correlations between users’ trip start and des-
tination locations, how long their trips take, etc. Since real datasets often consist of trips
such as taxi and Uber rides, trajectories have well-defined pickup and destinations. The
commercial benefits of preserving the correlations and related statistics include taxi service
prediction and passenger demand analysis, as well as governance benefits such as emer-
gency response planning.

(3) Frequent and representative travel patterns, e.g., commonly preferred routes of
travel. Preserving this information helps discover associations or sequentiality between
road segments, ultimately benefiting road network performance analysis, traffic flow con-
trol, and path recommendation in navigation services.

Although these utility categories are listed separately, they can be used in conjunction
to enable more sophisticated geo-spatial data analysis and machine learning tasks, some
of which are mentioned above. A natural question here is what if instead of synthesizing
privacy-preserving traces, we kept the original traces without modification but governed
data analysts’ access with a differentially private querying interface? This interactive ap-
proach suffers from several drawbacks. First, it places an additional burden on the data
owner to create, maintain, and enforce a privacy-preserving querying interface. Second,
it jeopardizes the analysts’ ability to apply off-the-shelf ML tools or libraries, since these
tools assume availability of raw records and are not compatible with noisy query interfaces.
Third, our generated traces can be used in arbitrary tasks, including those that were unfore-
seen at time of generation. In contrast, the querying interface is an ad hoc solution whose
functionality must be enhanced each time a new type of query or analysis is desired. Due
to these factors, our non-interactive trace generation strategy has much higher benefit and

convenience for all parties.
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2.4 Synthetic Trajectory Generation

In this section, we will describe the features in AdaTrace’s private synopsis, as well as its
trajectory synthesis algorithm. For each of the features, we will discuss how noise and
perturbation is injected so that privacy is preserved. A central privacy parameter here is
¢, the differential privacy budget. Since AdaTrace’s synopsis consists of four features as
shown in Figure 2.1, ¢ is divided into four sub-budgets ¢, to £4, one for each feature, such

that 7 & =e.

2.4.1 Density-Aware Grid

Effective discretization of Q(D,.q), the geographic location space of D,..,;, constitutes
the first step towards preserving spatial densities. Without discretization, (2(D,.q) is con-
tinuous and we have an unbounded number of possibilities to simulate a move from one
location to another when generating a trajectory. To develop an efficient and accurate syn-
thesis algorithm, we need to bound such transition possibilities by high utility choices. This
motivates our design of a grid structure for space discretization. Although grids have been
previously used in the location privacy literature [66, 67, 68], choosing an appropriate grid
size and structure is not trivial under our privacy and utility constraints. If the grid is too
coarse (e.g., 2x2), then each grid cell covers a large spatial area, and knowing that 7" visited
a certain cell is uninformative. If the grid is too fine-grained (e.g., 50x50), we risk having
many empty cells in which there are very few or no visits, and more additions of Laplace
noise to each cell leads to higher inaccuracy as well as inefficiency.

We therefore implement a grid with density-adaptive cell granularity [68]. That is,
for low density regions in 2(D,.,) we place large, coarse cells; whereas for high density
regions we divide the region into smaller cells with finer granularity. The grid is built in
two levels. In the top-level, we lay an N x N grid with uniform cells. Depending on

the density of these cells, in the bottom-level, we subdivide each cell into varying sizes
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Figure 2.3: Two-step grid construction, top-level with N = 2 on the left and density-aware
bottom-level on the right.

to reflect the density distribution of D,.,;. This allows us to selectively zoom into dense
regions of (D, ., ) only when the need arises, which saves us from redundant computation
and noise addition to sparse regions.

First, the grid is initialized with N x N identical cells, according to an input parameter
N. This produces N? cells in the top-level, which we denote by C;, Cs, ..., Cy2. Then, we
encode each trajectory in D,..,; as a list of cells, e.g., observe the trajectory 7" : C} — C5 —
Cy in Figure 2.3. We denote by |T'| the number of cells 7" contains. Next, for each cell C;,

where 1 < i < N2, we count the normalized number of visits in that cell as follows:

# of occurrences of C; in T’
T

g(Dreah C@) - Z

TeDreal

We say that g is normalized since occurrences are divided by trajectory lengths. We need
to find how much noise should be added to the query answers to satisfy differential privacy.

In Theorem 1 we show that the sensitivity of the set of queries:

W = {g(Dreala Cl)vg(Dreala C?)a ---vg(Dreala CNQ)}

is AW = 1, therefore it suffices to add Lap(1/e1) to each query answer to obtain the noisy

answers. That is, the noisy ¢;-differentially private answer §(D,.cq;, C;) is computed as:
Q(Dreah Cz) = g(Dreah Cz) + Lap<1/51)
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Theorem 1. The sensitivity of the query set W = {g(D, C}), g(D,C5), ...,g(D,Cnz)} is
AW = 1.

Proof. For the real trajectory dataset D, recall that a neighboring dataset D’ implies ei-
ther D = D' U{T} or D' = D U{T'}, where T denotes a single user’s location trajec-
tory. Without loss of generality we assume D' = D U {r}. We need to show AW =

maxp p ||W(D') — W(D)|| = 1. The derivation follows:

|W(D") =W (D)|| =) (9(D',C;) = 9(D. Cy))

:i((z.+ Z .)_Z.)

;  TeD  Te{r} TeD

B Z Z # of occurrences of C; in T’

C; Te{r} |T‘
B Z Z # of occurrences of C; in T’
TG{T} Ci |T|

1
= Z ] Z (# of occurrences of C; in T)
Te{r} C;

]

In the definition of g, we had normalized cell visits via dividing them by |T|. The
intuition behind this can be observed from the above derivation. Without normalization,
the last step reduces to ) .. () |T|. In the general case this quantity cannot be bounded,
leading to unbounded sensitivity AW. Previous works facing this problem resort to: (i)
truncation, i.e., keep only the first 7,,,, points of trajectories and remove the remaining
points (where 7},,,, 1S an input parameter), or (ii) random sampling, i.e., randomly choose
Tmae points from each trajectory and remove the rest [69, 70]. Both approaches yield
AW = T,,... However, we argue that our normalization approach is more appropriate

for our density measurement goal. The problem with truncating is that by removing all

23



points after 7},,,, we lose significant portions of trajectories that are much longer than
Tnae- This can be circumvented by having a high 7,,,,., but doing so increases sensitivity,
beating the purpose of bounding AW in the first place. The problem with sampling is that
a sample will randomly throw away many locations that could significantly contribute to
spatial densities. Our approach ensures that all entries are properly considered in density
calculation.

The final step in grid construction is to subdivide C; using the noisy visit counts §(D;ca,
C;). Each C; is independently divided further into M; x M; cells, where M; is proportional
t0 §(Dyear, C;) and a grid constant. This achieves our goal of zooming into dense regions
with large visit counts. For example, in Figure 2.3, we have densities Cy > C =~ Cy > Cj,
hence My = 3, My = My = 2 and M3 = 1. The grid constant acts as a balancing factor to
determine the highest and lowest possible value of M, so that both M remains sensitive to
changes in spatial density and the total number of cells resulting from this procedure is not

excessively large.

2.4.2 Markov Chain Mobility Model

To generate high utility and realistic synthetic trajectories, we need to mimic actual intra-
trajectory mobility. AdaTrace employs Markov chains for mobility modeling. A Markov
chain of order r asserts that the next location in a trajectory depends on the previous r
locations instead of all previous locations. Our grid-based discretization allows us to build
a discrete state space Markov chain as follows. We map each cell in the adaptive grid to
a state in our Markov chain. We assume each trajectory is represented as a time-ordered
sequence of cells, and denote by 7°[j] the jth entry in 7". Following the order » Markov

property, we find the transition probability of 7" to a next cell C,,.,; having observed its
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previous n locations T[1]7'[2] ... T'[n]:

Pr (T[n+1] = Chpewt | TI1].. .T[n])

= Pr <T[n+1] = Cheut | TIn-t+1]T[n-r42] . .T[n])

B Number of sequences in 7" containing 7' [n-r+1]7'[n-r+2] ... T[n]C)ert

Number of sequences in 7" containing 7'[n-r+1]7'[n-r+2] ... T'[n]

We say that the trajectory-specific mobility model, I1(7"), is the collection of such prob-
abilities Pr (T [n+1] | 771]...T [n]). The trajectory-specific model captures the mobility
of a single user in D,..,;. An aggregate mobility model for the whole D,..,; can be found
by averaging the individual mobility models of each user. We slightly abuse notation and
write I1(D,..,;) to denote the aggregate mobility model.

Similar to noise addition during grid construction, the aggregate model I1(D,.,;) is also
perturbed with Laplace noise to satisfy differential privacy. We add noise to the Markov
probabilities. Since Markov probabilities are computed using a ratio of sequence counts,
and since these counts have sensitivity equal to 1, the required noise amount is limited.

Hence, [1(D,..q;) can remain robust to noise.

2.4.3 Trip Distribution

Real life trace databases often consist of trips, such as taxi trips, Uber trips, home-work
commutes, etc. The trip distribution aims to preserve the association between the start-
end points of these trips when generating Dy,,,. This trip distribution is also useful from
a technical sense to guide a random walk on the Markov model, because although we
have a mobility model II for intra-trajectory movement, we need a start state and an end
state for specifying the two endpoints of our walk. Without the trip distribution we can
assume a uniform distribution of start and end states, however, as Figure 2.4 shows, the
trip distributions of real datasets are often heavily skewed. Thus, assuming a uniform

distribution in place of the actual distribution is far from ideal, and will result in bogus
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Figure 2.4: Cumulative Distribution Function (CDF) of the trip distribution R of 3 datasets,
compared with the CDF of uniform distribution. For consistency we enforced a 3x3 uni-
form grid on all datasets and ordered the cell pairs on x-axis in non-decreasing trip fre-

quency.

synthetic trips that jeopardize utility and authenticity.

Assume that we discretize Q(D,..;) using grid A. We denote a trip using its start cell
Cyiare and destination cell Cepg, as: Cyyart ~> Ceng. Let h(Dyears Cstart ~ Ceng) be a
function that computes the number of trips Cypry ~> Cepng in database D,..,;, and h denote
its private noisy version. For brevity we drop D,., from the notation and simply write
h(Cstart ~> Ceng). Then, treating X as a random variable over the domain of the trip

distribution A x A, the entries in the trip distribution denoted R are calculated as:

il(cstart“")cend) f
- or C' Ceng € A
Zci ch h(Ci~Cy) start; “end

Pr (X = (Ostartacend)> =
0 otherwise

Note that our definition ensures R is a probability mass function (pmf) since its entries sum
to 1.

In the case of a two-layer grid where one GPS location is indexed by both a top-level
and bottom-level cell, we can use constrained inference for improved accuracy and consis-
tency [71, 68, 72]. In particular, we employ the following linear Ordinary Least Squares
(OLS) approach. We denote by C; a cell in the top-level of the grid, and by C; ; a cell in
the bottom-level of the grid where 1 < j < M? (see the notation in Figure 2.3). We use

budget f=; when obtaining top-level trip counts i(C; ~» C}), and budget (1 — #)e5 when

26



obtaining bottom-level counts ﬁ((],k ~» (). Note that if we had no privacy or perturba-
tion requirement, and we simply used the noise-free counts h instead of h, the following
would hold: h(C; ~ C;) = >, >, h(Ciy ~ C;;). However, this may not hold after each
h is perturbed with random noise. To re-establish consistency and minimize noise impact,
OLS asserts that given the noisy values of h, we can obtain optimized trip counts, denoted

~

B (C; ~ C;), as:
-, 0> M7 M? .
W (C;~ Cj) = 07 1 A h(Ci ~ C;)
i

(1—0)? .
T op T eMEM? 2D MG~ Ciy)
L ko1

When optimizing the counts for the bottom-level, differences in optimized top-level counts
calculated above are distributed equally among the bottom-level cells:

R(C;~> Cf) = 3250, (i~ Ciy)

iLl(Ci,k ~ Cj,l) = iL(Cz,k M CjJ) + M-QM-Q
? J

Finally, optimized trip counts R are used in place of h in the definition of R.

Example: We now demonstrate the intuition behind our OLS approach and illustrate
it with a worked example. Let C; and (5 be two grid cells in the top-level of AdaTrace’s
adaptive grid. Let M; = 2 and M, = 3, i.e., in the bottom-level, C is divided into 4
cells (denoted C 1, C 2, Ci 3, Ci4) and Cy is divided into 9 cells (denoted Cy ; ... Cy ).
Without noise, we trivially have: h(Cy ~ Cy) = S i S0 h(Cyx ~» Cay). That is, the
total is consistent, and equals the sum of its parts. For example, observe the trip counts in
Figure 2.3: h(C; ~» C) = 1 at the top-level (LHS), and h(C; ; ~» C; 3) = 1 at the bottom-
level (RHS). However, with random Laplace noise, consistency is no longer guaranteed,
and for noisy counts we may have: 1(Cy ~ Cy) # S p_, S0 h(Cyy, ~ Cay).

Our goal in using OLS is to re-establish consistency by post-processing h and obtaining

1, which denotes a consistent and optimized trip count. R’ values are then used in the
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definition of the trip distribution R, in place of h. We establish consistency by defining
B/ (Cy ~~ Cy) as a linear combination of h(Cy ~ Cy) and Yp_, 570 A(Chy ~ Coy). A

natural first attempt towards linear combination is averaging:

4

9
Z Z iL(Cl,k ~ OQ,Z)

k=1 l=1

~

h’(Cl S Cg) =

~

h(01 ~ 02) —|'

DN | —

1
2

However, observe that the noise variance in this case is Var(h') = 1aVar(h) + 36(1/4)
Var(h) = 37/aVar(h), significantly higher than Var(h), which means using the original
value £ is better than computing R'. This is caused by two factors. First, averaging does not
take into account the possibly uneven privacy budget assigned when retrieving top-level
counts versus bottom-level counts. (Recall that top-level counts are retrieved with budget
fe3, whereas bottom-level counts are retrieved using budget (1 — 6)e3.) Second, averaging
does not take into account the difference in the number of times noise is added to each of
the two parts — according to the properties of variance, the sum of 36 i.i.d. Laplace random
variables has higher variance than 1.

The following OLS approach addresses these shortcomings and calculates R as follows:

~ 360?
4 ~ =
(Cr—~ ) (1 —6)2 + 3662

. H(Cl ~ Cg)

4

(1—6)? .
ey AD D) DLETEeY)

k=1 I=1

It can be verified that Var(h'(Cy ~ Cy)) < Var(h(Cy ~ Cb)), which improves
accuracy. This computation is bottom-up in nature, since top-level count is optimized using
bottom-level counts. As a final step, consistency requires that the sum of the bottom-level
counts equals the top-level count. To achieve this, we employ a top-down approach by
distributing the acquired difference dprs = % (Cy ~ Cy) — an:l 22:1 fL(Cl,m ~ Cop)

equally among all bottom-level counts. The resulting post-processed bottom level counts
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in our example become:

dors
36

B,(Cl,k s Oy) = h(Cyy, ~ Cyy) +

2.4.4 Route Length Distribution

The final component in AdaTrace’s private synopsis consists of fitted distributions of route
lengths. We fit a different theoretical distribution for each different trip C's;4t ~> Cepg. The
distribution is learned based on observed route lengths in D,.,; that make this trip. Our
rationale in enforcing trip-specific length distributions is that trajectories travelling between
certain regions may take more indirect routes than others, for reasons such as unavailability
of roads, traffic avoidance, and so on. Hence, trip-specific length distributions will be more
accurate than global distributions (learned using whole D,.,;) used in previous works [73,
74].

We treat observed route lengths as a histogram. We consider multiple well-known dis-
tributions with different shapes, such as uniform, exponential and Poisson distributions, as
candidates to capture the shape of our histogram. An example is shown in Figure 2.5. The
candidate distributions have one characteristic in common: Their parameters are directly
related to aggregate summary statistics that can be privately and accurately obtained from
D,cq. For example, the Poisson distribution has a single parameter that is equal to the
mean length, whereas the A parameter of the exponential distribution is related to the me-
dian length med as: A = "2/;med. We then use the Laplace and Exponential mechanisms
to privately fetch statistics such as means and medians. A private mean can be fetched by
decomposing it into a noisy sum divided by a noisy count, where the Laplace mechanism
is used to inject noise. A private median can be fetched using Cormode et al.’s adaptation
of the Exponential mechanism with scoring function q := —|rank(z) — rank(med)| [72].
The mechanism returns noisy median x instead of the actual median, and the intuition be-

hind this particular ¢ is that if x is close to the actual median, then its rank will be similar to
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Figure 2.5: Comparing frequencies of observed route lengths (histogram) with candidate
distributions.

the median’s rank. Thus, the score of each candidate is negatively impacted by how much
its rank deviates from rank(med).

After building multiple candidate distributions as above, we select one distribution as
the best fit for trip C'syqrt ~ Ceng, store it in AdaTrace’s memory, and drop the remaining.
We use a goodness of fit test to determine which distribution is the best fit. While there are
several tests to measure goodness of fit, we use the value of the x? test statistic since its
differentially private implementation is well known [75]. For example, in Figure 2.5 the
goodness of fit test would select the exponential distribution as the best fit, since its shape

is closest to the shape of the histogram.

2.4.5 Trajectory Synthesis Algorithm

AdaTrace’s synthesis algorithm combines the four features in its private synopsis: the
density-aware grid A, the mobility model I1(D,..;), the trip distribution R and the col-
lection £ of length distributions for each trip. It outputs synthetic trajectories based on the
skeleton presented in Algorithm 1.

The algorithm can be studied in four steps. First, it determines the start and end points
of the synthetic trajectory 7T, by sampling from the trip distribution. Second, it deter-
mines the length of T, by sampling from the appropriate route length distribution in L.

Third, it initializes 7,,, with first location as the starting cell of the trip, and last location
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Algorithm 1: Trajectory synthesis algorithm
Input : Grid A, trip distribution R, mobility model I1, length distributions £
Output: A candidate synthetic trajectory T,

1 Pick a random sample (Ciqpt, Ceng) from pmf of R

2 Retrieve from L the fitted probability distribution P D for trip Cyyqrt ~ Cena
3 Pick a random sample ¢ from PD

4 Initialize Ty, with Ty, [1] = Cstere and Ty, [0] = Cepng
sfori=2t0ol—1do

6 for C,,,c € A do

. Retrieve from IT: w; = Pr <T[i] = Chuna | TI1] .. .T[i-l]) and

wy = Pr (T[Z] = Cona | TN .. T[i-l]cmd)

8 Set the weight of C,,,,q equal to wy - wo

9 end

10 Sample Cppsen from A with probability proportional to its weight calculated

above

1 Set Tsyn[l] = Cchosen
12 end

13 return 7V

as the destination cell of the trip. Fourth, given the two endpoints of 7, intermediate
locations are found using a random walk on the mobility model II. When determining the
¢’th position of Ty, considering the cells of grid A as candidates, each candidate is given a
weight that consists of two sub-weights denoted w; and w,. w; performs a look-back and
finds the probability that the next location is C.,,4 given the previous locations, as in the
straightforward application of the Markov assumption. This is essentially a one-step tran-
sition probability. On the other hand, ws performs a look-ahead and finds the probability
that the final location is C.,4 given the previous locations and assuming the current loca-
tion is set to Cgpg. This is an (¢ — 7)-step transition probability, which is computed using
a combination of 1-step transition probabilities. To improve efficiency, we pre-compute
multiple-step transition probabilities after learning II so that the same computation is not
repeated for different 7.

The above generates a trajectory for a single trip between well-defined start and end

locations. This is sufficient when each user’s GPS record in D,..,; corresponds to a short-
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term trip, such as an Uber or taxi ride. However, if D,.,; is collected over long periods
of time (e.g., several days), then a user’s record may contain multiple trips. In this case,
the synthesis algorithm can be run multiple times per user, such that in each iteration, the
starting location of the next trajectory is equal to the last known location of the previous
trajectory. Then, these trajectories can be stitched together to form the final GPS record of

the user with a desired number of trips.

2.5 Privacy Analysis

AdaTrace has differential privacy and attack resilience as its two privacy goals. In this
section we give concrete definitions and privacy parameters with which AdaTrace fulfills
these goals. Our definitions are parameterized to enable the data owner to explicitly control

the leakage potential of synthetic trajectories by specifying the desired privacy parameters.

2.5.1 Differential Privacy Preservation

AdaTrace satisfies e-differential privacy as a whole. Recall that we treat € as the total pri-
vacy budget and distribute it to four sub-budgets (one for each feature in the synopsis) such
that Zle g; = €. Learning and perturbing a feature consumes the ¢; allocated to it, thus
depleting the total ¢ after the perturbation phase is complete, according to the sequential
composition property. Then, any additional data-independent perturbation performed to
satisfy attack resilience counts as post-processing. Note that sequential composition holds
even when subsequent computations incorporate the outcomes of preceding computations
[64], hence the fact that AdaTrace uses the perturbed grid in subsequent steps (Markov
chain, trip distribution) does not violate e-differential privacy. Also note that AdaTrace’s
synthesis algorithm performs sampling and calculation on perturbed features without ac-
cessing the actual database D,..,;. As a result, AdaTrace remains e-differentially private.
Distribution of ¢ into ¢; can be done either by AdaTrace automatically or according

to the specifications of the data owner. The current implementation of AdaTrace comes
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with a default budget distribution, which we empirically determined to yield high average
utility: €; = ¢/o for the grid, e, = 4¢/9 for the Markov mobility model, €3 = 3¢/9 for
the trip distribution and £, = ¢/9 for the length distribution. We can observe from this
that not all features require high budgets to be accurate, and allocating an unnecessarily
high budget to such features will negatively impact utility since it would steal from those
features that do require high budgets to remain accurate. For example, the grid and length
distribution components need lower budgets in comparison to others. One way to further
optimize budget distribution is to leverage regression-based learning on D, and ¢, a plan
for future work.

Although the above strategy is beneficial from a utility maximization perspective, we
should also discuss its privacy implications. Since each individual feature will satisfy e;-
differential privacy, a higher ¢; will cause the feature to be accurately preserved, whereas
a lower ¢; will cause it to be more perturbed. A variable budget distribution allows the
data owner (e.g., service provider) to distribute € in a way that reflects which artifact he
perceives is more sensitive and should thus be more perturbed to protect its privacy. For
example, if the data owner feels that spatial densities are more sensitive, then a lower ¢
can be assigned to grid construction. If trip distributions are sensitive, a lower €3 can be
assigned, causing a more perturbed trip distribution. This provides flexibility with respect

to different perceptions regarding what needs to be protected.

2.5.2 Enforcement of Attack Resilience

We now discuss how AdaTrace ensures attack resilience against the 3 privacy threats listed

in Section 2.3.3.

Bayesian Inference Threat

Recall that we denote by Z a sensitive zone such as a hospital, health clinic or religious

place, by B(Z) the prior belief of an adversary regarding the users who visit Z, and by

33



B(Z|Dyyy) the posterior belief having observed D;,,,. The threat stems from B(Z|Djy,,)
being significantly different than B(Z). To combat the threat, AdaTrace enforces the fol-

lowing defense.

Defense 1 (V). Denoting by EMD the Earth Mover’s Distance, we say that D, is attack-

resilient if the following holds, and susceptible otherwise.

EMD(B(Z),B(Z|Dyy)) <9

Intuitively, the privacy guarantee is that upon observing D, an adversary’s belief
regarding users visiting Z does not change significantly, where the level of significance
is controlled by parameter ). This prohibits both positive and negative disclosures, i.e.,
the adversary is prohibited not only from learning that significantly higher than 10% of
Z’s visitors live in a certain neighborhood, but also that significantly lower than 10% of
Z’s visitors live in a certain neighborhood. The latter is useful when, for instance, Z is a
university and the adversary may infer the lack of education.

AdaTrace follows an iterative perturbation strategy to implement Defense 1. Let Dy
denote the subset of trajectories that visit zone Z. We perturb the features concerning D, in
the private synopsis, e.g., II(Dz), R(Dz), L(Dz). In the most relaxed setting of ¥ = 400
no perturbation is necessary; whereas in the strictest setting ¥ = 0, the features must be
maximally perturbed so that they exactly equal population averages. For any 1} in between,
we perturb the features iteratively, converging to population averages in each iteration, until
Defense 1 is satisfied. After the defense is satisfied, we plug the perturbed features back to

the private synopsis.

Fartial (Subtrajectory) Sniffing Threat

Armed with user u’s subtrajectory from the sniff region, the adversary aims to link v with a

synthetic trajectory T € Dy,,. Since the user’s actual trajectory 7T;, is not in D, the link-
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age is not genuine, however the threat stems from two cases: (i) 7 sufficiently resembles
T, thus the adversary can still make correct inferences using 7. (ii) T contains visits to a
sensitive zone Z — although v may or may not have visited Z in reality, such an inference

can have discriminating or harmful impact on u, and therefore should be prohibited.

Defense 2 (p, ). Let SR denote the sniff region, T,;ffeq denote the sniffed subtrajectory,
Z denote a sensitive zone, and visit(T, Z) denote the number of times trajectory T visits

zone Z.

1. Find the matching synthetic trajectory:

Ty = argmin DTW((T N SR), Tsniffed)
TGDsyn

2. If |intersection(Ts, T,)| > @, mark as susceptible.
3. Ifvisit(Ts, Z) > o, mark as susceptible.
4. If no susceptibility is found in the above steps, mark as attack-resilient.

AdaTrace enforces the above defense to thwart the partial sniffing threat. Its first step
is to identify 7§ using Dynamic Time Warping (DTW) as the geographical distance metric,
which is a prominent method for measuring trajectory distance [76, 77, 78]. Then, in step
2, we prohibit correct location disclosures. Since exactly matching GPS coordinates and
trajectories are rare, we allow for inexact intersections within a small error margin. ¢ is
a threshold controlling the maximum amount of intersection allowed between 7 and 7,.
It can be defined using absolute length (e.g., 100 meters, 1 kilometer) or using percent-
age of relative trajectory length (e.g., 10% of T%). In step 3, we prohibit sensitive location
disclosures. To prohibit any sensitive disclosure, we set o = 0, which is suitable when tra-
jectories are short, e.g., corresponding to taxi trips or home-work commutes. If trajectories

are collected over long periods of time such as one month, it is advisable to set higher o.
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Outlier Leakage Threat

In the outlier leakage attack, the threat stems from an adversary’s ability to make sensitive
inferences from atypical, outlier trajectories. To combat this threat, we must first identify
and detect outliers. We adapt the most popular distance-based outlier definition [79, 80]:
Outliers are those trajectories that have highest distance to their respective k’th nearest
neighbor. It remains to define an appropriate distance function d so that distances between
trajectories can be measured, and the nearest neighbors of each trajectory (according to d)
can be identified. AdaTrace considers three distance functions, each of which corresponds
to a different type of outlier:

(1) Trip outlier: Trajectories with non-traditional trip start and end locations. In this
case, d is set as the geographical distance between trajectories’ trip start and end locations.

(2) Length/duration outlier: Trajectories with unusually long or short lengths. In this
case, d is set to measure the difference between two trajectories’ route lengths.

(3) Mobility outlier: Trajectories with unusual mobility patterns, in which case d is
set to measure the Jensen-Shannon Divergence (JSD) between the mobility models of two
trajectories: d(77,Ty) = JISD(II(17), [1(73)).

The distance functions above allow us to compute distances between pairs of trajecto-
ries and detect whether a trajectory is a certain type of outlier based on distance to its £’th

nearest neighbor. After detecting outliers, AdaTrace enforces Defense 3.

Defense 3 (3, k). Let Ty € Dsy, be a distance-based outlier, and d be the distance

function used in detecting T,;.

1. Find the trajectory in D, that is most similar to T,,; with respect to d:

Tokin = argmin d(Tpy:, T')
TEDreal
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2. Let y be the number of trajectories 1y;y, € D,eq that satisfy:

d(Touty Tszm) - d(Touta Tak:in) S B

3. Ify > K, mark as attack-resilient, otherwise susceptible.

The intuition behind this defense is as follows. We first identify 7};,, the real trajectory
most similar to 7,,,;. We then check how many real trajectories exist which have distance
similar to T,;;,’s distance to 7,,;, and denote this quantity by y. This effectively searches
for a crowd of y trajectories with maximum distance /3 to the candidate outlier. Note that
we always have y > 1 due to Ty, = Tukin 1In step 2. Finally, if y > k, where & is
the privacy parameter enforcing a minimum crowd size, we conclude that 7}, plausibly
blends in a crowd of actual trajectories. Hence, the trajectory is similar to a group of actual
users’ trajectories, it cannot be conclusively linked to a particular user, and outlier leakage
is not a concern. However, if y < &, i.e., T,,; does not blend into a group of trajectories,

then 77, must be discarded and replaced with a non-outlier trajectory.

2.6 Experimental Evaluation

2.6.1 Experiment Setup

Implementation Details and Competitors: We implemented AdaTrace in Java. We compare
it with 3 state of the art location trace generators: ngram, DPT and SGLT. We obtained
their implementations from the respective authors [29, 31, 32]. In our comparison we use
the parameters recommended by the authors when applicable, otherwise we experiment
with different parameter values and report only the best results. Since all generators are
probabilistic, each experiment is repeated 5 times and results are averaged.

We note the configuration used for ngram and SGLT: For ngram, although it is orig-
inally designed for sequential data generation, it has been used in [32] for comparison

against DPT and in our experiments we adopt their setting, i.e., we discretize trajectories
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Table 2.1: Datasets used in our experiments (;:mean, o:stdev)

|Dyreat] | Q(Dyear) IT| (u+ o) GPS sampling rate
Geolife | 14,650 | Beijing | 931.4 + 1602.5 ~ 2.5 sec
Taxi | 30,000 Porto 43.1 £33.5 ~ 15 sec
Brinkhoff | 50,000 | Oldenburg 64.6 +£ 359 ~ 15.6 sec

at different granularities, run ngram on discretized sequences and convert output synthetic
sequences back to trajectories. We repeat this process at different granularities of dis-
cretization, and use the results of the granularity that yields highest accuracy. For SGLT, it
is required that the input set of trajectories must be of same duration. In real life and in our
datasets, trajectories vary in duration and sampling rate. To be able to run experiments with
SGLT, we repeated the last known locations of shorter trajectories several times so that all
trajectories would have equal duration.

Datasets: We used three datasets in our experiments: Geolife, Taxi and Brinkhoff. Ge-
olife and Taxi are real datasets, whereas Brinkhoff is simulated. Information regarding the
datasets is given below and in Table 2.1. Geolife was collected and released by Microsoft
as part of the Geolife project [37]. It contains GPS traces of 182 users over 5 years. Major-
ity of the data is from Beijing, China, with few outliers in other cities in China, Europe, etc.
We pre-processed the data to remove these outliers and obtain a more even data distribution
and well-defined (2(D). The resulting dataset contained 14,650 trajectories. Taxi contains
GPS traces of taxis operating in the city of Porto, Portugal. We extracted 30,000 trips
from the denser areas in the dataset made available as part of the Taxi Service Prediction
Challenge at ECML-PKDD 2015 [19]. Brinkhoff contains trajectories of vehicles simu-
lated using Brinkhoff’s network generator for moving objects [38]. The map of Oldenburg,
Germany was used to simulate movements of 50,000 vehicles. Locations were sampled at

equal time intervals.
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2.6.2 Evaluation Metrics

We generated synthetic databases Dy, with cardinality |Dy,,| = | D;cq, and used the fol-
lowing metrics to quantify the difference (or resemblance) between D,..,; and Ds,,,. When
keeping the privacy level constant, lower difference (resp. higher resemblance) is desired
for improved utility. According to Section 2.3.4, the three trajectory utility categories we
aimed to preserve in AdaTrace were spatial densities and localities, frequent travel patterns,
and spatio-temporal travel metrics. The evaluation metrics we present in this section fall

under these categories, as described below.

Spatial Density and Locality Metrics

A large number of geodata analysis tasks, including Pol and popular location extraction,
hotspot discovery, heatmaps and recommendation engines rely on spatial densities. We
employ the following two metrics to measure the quality of spatial density and locality
resemblance.

Our first metric is query error, which is a popular measure for evaluating data synthesis
algorithms ranging from tabular data to location and graph data [31, 81, 82]. We consider
spatial counting queries of the form: “Retrieve the number of trajectories passing through
a certain region R”. Let () denote a query of this form, and (D) denote its answer when

issued on database D. The relative error (RE) of () is defined as:

|Q(Dreat) = Q(Dsyn)|

RE = maz{Q(Dyrear), b}

where b is a sanity bound to mitigate the effect of extremely selective queries. We set

b = 1% x |D|. We generate 500 random queries by choosing their regions R uniformly at

random and compute average relative error (AvVRE) by averaging the RE of all queries.
Our second metric is for measuring the discrepancies in locations’ popularity rank-

ing. Let Ly, ..., L, be a list of locations and let pop(D, L;) measure the popularity of L;,
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i.e., number of times L; is visited by trajectories in D. We compute pop(D,cq, L;) and
pop(Dsyn, L;) for all L;. Then, we say that a pair of locations (L;, L;) are concordant if

either of the following hold:

(pop(Dreala Lz) > pop(Dreala LJ)) A (pop(Dsyna Lz) > pop(Dsyna L]))

(pop(Dreala Lz) < pop(Dreala LJ)) A (pop(Dsyna Lz) < pop(Dsyna L]))

That is, their popularity ranks (in sorted order) agree. They are said to be discordant if their

ranks disagree. The Kendall-tau coefficient can then be applied as:

_ (# of concordant pairs) — (# of discordant pairs)

KT n(n—1)/2

In our experiment, we determine the locations L4, ..., L,, using a fine-grained grid and use

n = 400 locations.

Frequent Travel Pattern Metrics

Mining popular travel patterns has also received significant attention from the geodata anal-
ysis community, for understanding traffic flows and road network performance, and pro-
viding better navigation services. The following two metrics measure resemblance with
respect to frequent patterns (FPs). For both metrics, we project trajectories on a uniform
grid U, thus obtaining the sequence of cells they pass through. We define a pattern P as an
ordered sequence of cells, e.g., P : Cy — C; — (3. We define the support of a pattern,
supp(D, P), as the number of occurrences of P in database D. We mine the top-k patterns
in D, i.e., the k patterns with highest support, denoted by F/5(D).

Our first metric measures difference in patterns’ support. We calculate the relative

difference between supp(D;cq, P) and supp(Dy,,, P) for each frequent pattern P € F.
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Formally, the FP average relative error is:

Z ‘Supp(DrealuP)_Supp(DSynvp)‘
PeF,

FP AURE — ZI;(Dreal) supp(D,.eahP)
k

Our second metric measures the set similarity between the top-£ patterns in D,.,; and
the top-k patterns in D,,,,. Following the F1-measure, i.e., harmonic mean of precision and

recall, we define the FP similarity metric as:

FP F1 Similarity = F1(F(Dyear), FL(Deyn))

FP similarity score is between 0 and 1, where higher score implies better set preservation,
and is therefore more desired. For the AvRE metric, lower error values are more desired. In
our experiments we use k£ = 100, as higher k returned patterns with insignificant support.
Also, we assume a 6x6 uniform grid for ¢/ and only consider patterns that are at least 3

cells long.

Spatio-Temporal Travel Metrics

Since many trajectory databases consist of taxi/Uber rides or daily commutes, analysis of
spatio-temporal features of these trips becomes critical. We employ 3 evaluation metrics
for trip and travel analysis.

Our first metric, called trip error, measures how well the correlations between trips’
start and end regions are preserved. We make use of the empirical trip distribution R
defined in Section 2.4.3. Given the grid /, we compute the trip distributions of the real and
synthetic databases, denoted R(D,,) and R(Ds,,) respectively. The trip error is defined
as: JSD(R(Dyear), R(Dsyn)) where JSD is the Jensen-Shannon divergence.

Our second metric, called length error, measures the error in trip lengths (i.e., distances
travelled in each trip). We calculate the total distance travelled in a trip by adding up the

distance between each consecutive GPS reading. Upon learning the maximum length from
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D, a1, we quantize trip lengths into 20 equi-width buckets: {[0, z), [z, 2z), ..., [19z, 20z]},
where 20z is the longest length present in D,..,;. For each bucket we determine how many
trips’ length fall into that bucket, thereby obtaining a histogram of lengths. Let N'(D,.cq1)
and NV (Dy,,) denote this empirical, bucketized histogram of real and synthetic databases
respectively. The length error is calculated as: JISD(N (Dyear), N (Dsyn))-

Our final metric, called diameter error, is adopted from [32]. The diameter of a tra-
jectory 7' is defined as the maximum distance between any pair of its GPS readings (not
necessarily consecutive). Similar to length error, we learn the maximum diameter from
D;cq1, perform equi-width bucketing and histogram extraction. Let £(D;¢q) and E(Dyyy,)
denote the diameter distributions of the real and synthetic database respectively. The diam-

eter error is calculated as: JSD(E(Dyear), £(Dsyn))-

2.6.3 Comparison with Existing Generators

In this section we compare AdaTrace with ngram, DPT and SGLT. Since all generators ex-
cept SGLT have ¢ (differential privacy budget) as a parameter, we perform our comparison
by varying €. Results are summarized in Table 2.2. We make two general observations.
First, AdaTrace provides superior utility when subjected to the same level of privacy: Out
of 63 total comparison settings, AdaTrace outperforms its competitors in 53 cases. In cer-
tain settings, AdaTrace’s utility improvement is significant (2-3 fold or more). In addition
to a utility advantage, AdaTrace also has a privacy advantage over its competitors due to
its attack resilience property. Second, we observe that errors decrease and utility increases
when higher ¢ is used. As such, we can conclude that data quality is responsive to changes
in the privacy parameters, making AdaTrace flexible.

Next, we perform an in-depth analysis by studying the results under each utility cate-
gory one by one, starting with spatial density and locality. We expect that Query AvRE is
heavily related to the spatial distribution of trajectories. Hence, upon observing the numeri-

cal results in Table 2.2 we performed the visual comparison illustrated in Figure 2.6, where
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(a) Actual (b) DPT (¢) SGLT

(d) ngram (e) AdaTrace

Figure 2.6: Visual density distributions of synthetic databases generated by various gener-
ators, using Brinkhoff as their D,..;.

we compare the density distributions of synthetic databases produced by various trajec-
tory generators using Brinkhoff as input. Figure 2.6 validates the finding in Table 2.2 that
AdaTrace does better in terms of spatial density. DPT and SGLT’s errors stem from low-
density or medium-density regions becoming exceedingly dense, and ngram’s errors stem
from medium-density regions becoming exceedingly sparse. AdaTrace’s density-adaptive
grid plays an important role in density preservation, which we show in more detail in the
next section. Another interesting note is that although Query AvRE and location Kendall-
tau metrics have a positive correlation, they do not necessarily agree in all settings. For
example, observe that SGLT’s AvRE is lowest on Geolife, however, AdaTrace performs
better than SGLT in terms of Kendall-tau. This demonstrates that there can be benefit in
using multiple evaluation metrics for measuring one type of trajectory utility.

In terms of frequent travel patterns, there is correlation between FP AVRE and F1 simi-
larity metrics, but also some discrepancies. AvRE indicates that there is 30-40% error in FP
support when using AdaTrace which might seem high, but we observed that this is caused
mostly by FPs with highest support not having as high support in synthetic data. That is,

even though an actually frequent FP is correctly identified as frequent in synthetic data,
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Table 2.3: Execution time measurements

ngram DPT SGLT | AdaTrace
Geolife | 7mins | 1.9 mins | 11 hrs 0.7 mins
Taxi | 12 mins | 2.3 mins | 2.4 days | 1.7 mins
Brinkhoff | 18 mins | 3.5 mins | 6.9 days | 2.2 mins

since its frequency is not as high, considerable support error is incurred. This explains the
competitive F1 scores despite high error in AvVRE.

In terms of spatio-temporal travel metrics, we first note that AdaTrace is significantly
superior in terms of trip error. Second, we notice that although AdaTrace’s length errors
are similar to its competitors, its diameter errors are much smaller. This is surprising, given
that the two metrics are clearly related. To better understand this behavior, we individually
studied some trajectories from each generator. We observed that DPT and ngram are bi-
ased towards generating trajectories with low displacement. For example, their trajectories
contain loops and U-turns, which means that although they travel long distances, their total
displacement is not large. In contrast, AdaTrace’s synthesis algorithm prevents unrealistic
loops and U-turns by guiding a trajectory’s random walk with its final destination. That is,
at each step of the random walk AdaTrace considers the final destination that the trajec-
tory will eventually reach and how many steps are left to reach there. Hence, the resulting
trajectory becomes goal-driven, which realistically captures the mobility of human beings
since humans often travel with a destination in mind.

Finally, we comment on the efficiency of AdaTrace versus ngram, DPT, and SGLT. We
performed our experiments on a high-end laptop with Intel i7 CPU, but since all generators
are single-threaded, they utilized a single 2.8 GHz CPU. Also, 16 GB main memory was
sufficient for the computation performed by all generators. In terms of execution time,
we obtained the results given in Table 2.3. Overall, AdaTrace is very efficient — it is able
to process and generate 50,000 trajectories in slightly longer than 2 minutes. ngram and
DPT are also reasonably efficient since they finish in several minutes, but not as efficient

as AdaTrace. On the other hand, SGLT is significantly slower, as it takes several days to
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produce the same number of trajectories AdaTrace can produce in 2 minutes. This greatly
hinders its use on commodity hardware or mobile devices. Note that this observation is
consistent with the authors’ claims in their paper [29], as they also report up to 2 minutes
per generated trajectory. This has not caused problems in their experiments since their
datasets consisted of < 100 users, but our datasets were several orders of magnitude larger

(15-50k trajectories), surfacing an inefficiency problem.

2.6.4 Usefulness of Density-Aware Grid

To illustrate the usefulness of our density-aware adaptive grid, we compare it with a uni-
form grid with and without privacy constraints. We run an experiment similar to the spa-
tial query experiment using D,..,; = Brinkhoff. We first find how many times each cell in
Brinkhoff’s grid is visited. Then, we issue random counting queries of the form: How many
times was region R visited?, where R typically spans portions of multiple cells. Queries
are answered assuming locations are uniformly distributed within each cell, e.g., if query
region R contains !/2 of C; and /3 of Cy, and (Y is visited 10 times and C5 is visited 12
times, the query answer would be computed as 5 + 4 = 9. We find the relative error in
the query answer by comparing this computed answer with the actual answer (i.e., if the
query was answered using D,..,;). While the above procedure is followed for non-private
grids, for private grids, an additional step is taken before the query answers are computed:
Appropriate Laplace noise is added to the visit count of each cell, and queries are answered
using noisy counts instead of actual counts.

We give the results of the above experiment in Figure 2.7. We make three observations.
First, by analyzing the private and non-private versions of the uniform grid, we observe the
two sources of error in {2(D) discretization. When grid granularity is too low, the domi-
nating error is the coarse granularity. This is confirmed by the observation that increasing
the grid granularity will almost always decrease error in the non-private case. However,

in the private case, after the grid granularity exceeds 14x14, query error starts increasing.
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Figure 2.7: Comparing private and non-private versions of uniform grids versus our
density-aware adaptive grid. Results are obtained using the Brinkhoff dataset and ¢ = 1.0.
Grid granularity (x axis) controls the granularity of the uniform grid, e.g., a value of 10
means the uniform grid is 10x10.

This is caused by the Laplace noise, which explains the inverse bell-shaped readings for the
private uniform grid. Second, we observe that the non-private adaptive grid is as good as
a high-granularity uniform grid (e.g., 16x16). The uniform grid performs better only after
its granularity exceeds 19x19. Thus, the adaptive grid is useful and efficient even when no
noise is present. Third, upon observing that non-private and private versions of the adap-
tive grid perform similarly, we can conclude that our process of building the grid is not too
negatively impacted by Laplace noise, as opposed to the uniform grid where Laplace noise

destroys utility when grid granularity is high.

2.6.5 Impact of Attack Resilience on Utility

We now analyze the impacts of the attack resilience parameters used in Defenses 1-3 on

various forms of utility.
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Figure 2.8: (a) Impact of ¥/ on aggregate trajectory utility. (b) The size of sensitive zone
Z is positively correlated with error amounts. Both experiments are performed on the Taxi
dataset.

Defense 1: Bayesian Inference

Our defense asserts that the difference between priors and posteriors must be < /. When
¥ = 0 the defense is strictest, and it is relaxed as ¥ increases. In Figure 2.8a, we initially set
¥ = 0, increase it gradually, and report the percentage improvement (decrease) in Query
AvRE and FP AvRE. We only report these metrics since the remaining metrics are non-
linear, involving the likes of F1 or JSD calculation, hence percentages are not meaningful.
The results show the expected trait that both spatial densities (implied by Query AvRE)
and frequent patterns (implied by FP AvRE) are positively impacted when 9 is relaxed.
We observed that this is mostly caused by queries and FPs involving the sensitive zone 7,
which is central to Defense 1. When the privacy setting is stricter, trajectories visiting Z
are more random, hence FPs including Z will not be preserved.

An implicit parameter here is the choice (size and density) of Z. In the extreme case
where Z = Q(D,.q), Defense 1 dictates that the adversary should gain no knowledge that
adds to his prior belief. In this case the trajectories in Dy,,, will be most random, and their
features will converge to population averages rather than capturing the utility in D,..,;. To
experimentally confirm this, in Figure 2.8b we perform an experiment in which we vary

the size of Z. (In the previous experiment, size of Z was fied to be roughly 3% of D,.,;.)
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Results indicate that there is indeed a positive correlation between error amounts and the

size of 7.

Defense 2: Partial Sniffing

The defense is based on two parameters: (o that bounds the intersection between a sniffed
actual trajectory and its counterpart synthetic trajectory, and o that limits the possibility
that the counterpart visits a sensitive zone. For both parameters, lower values imply stricter
privacy. We set a fixed sniffing region that is visited by 4% of the actual trajectories, and
assume all trajectories in this region have been sniffed by the adversary. We set o = 0 which
is the strictest privacy setting, and vary ¢ to observe its utility impact. In Figure 2.9a and
2.9b we illustrate the utility impact with respect to 3 metrics. Although one could expect
utility to decrease as privacy becomes stricter, this does not appear to be the case — we
observe that aggregate utility stays constant despite changes in ¢. Upon further analysis
with more data points and remaining utility metrics, we confirm that the impact of ¢ on
overall utility is negligible. This is because our utility metrics are aggregate metrics, taking
whole D, and Dy, into consideration rather than comparing individual trajectories one
by one. This is also the case in many machine learning tasks and real-life uses of trajectory
data. Thus, although an actual trajectory and its synthetic counterpart do not closely match,
utility can be re-injected by implicitly adding the mismatched part into a different trajectory

that 1s not sniffed.

Defense 3: Outlier Leakage

The two parameters in this defense are [ and . « dictates that a synthetic outlier must
blend into a crowd of x actual trajectories. [ dictates the uniformity of the crowd: When
B = 0 all trajectories in the crowd must appear exactly the same (in terms of the trajectory
feature considered), whereas a large [ allows the crowd to have higher non-uniformity. The

privacy requirement becomes stricter when [ decreases and « increases.
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Figure 2.9: Impact of ¢ on aggregate trajectory utility.

We first analyze the behavior of Defense 3 with respect to parameters /3 and « in Fig-
ure 2.10a. Here, we set (3 normalized after observing the maximum possible distance in
the database, e.g., if the max distance is 100, 5 = 0.1 implies that the allowed distance
in forming the crowd is 10. When the privacy requirement is stricter, we indeed observe
that there are more outlier trajectories failing the defense, with a notable increase when x
becomes > 25. We attribute this to the curse of dimensionality: Crowd-blending notions
of privacy, such as k-anonymity and our defense, rely on the ability to find a crowd com-
prised of similar records. While this is easier for low-dimensional data, trajectory data is
inherently high-dimensional, and typically no two trajectories are alike. Hence, forming a
similar crowd is difficult, and while higher x values can be suitable for low-dimensional
databases, the same x may yield an excess number of outliers on a high-dimensional or
trajectory database.

Nevertheless, we are interested in measuring the utility impact of arbitrary ((,x) pairs,
and wish that our system preserves utility even in the strictest cases. We therefore design
the experiment in Figure 2.10b. Instead of trying to isolate S and x, we take a holistic
approach and base our utility analysis on the number of outliers failing the defense. Note
that outliers failing the defense cannot be released, and must be perturbed or regenerated.
We observe from the experiment results that this perturbation or regeneration process has

little to no impact on aggregate trajectory utility. Despite different privacy settings, Query
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Figure 2.10: (a) Analyzing the outlier behavior with respect to parameters /3, . (b) Utility
impact of executing Defense 3. Both experiments are performed on the Taxi dataset.

AvVRE, Trip Error and Length Error do not seem to be impacted. Hence, we can conclude
that we are able to protect against outlier leakage with no additional utility cost. In addition
to the visual results in Figure 2.10b, we computed the correlation between the privacy
settings and the error amounts. Results indicate weak correlations at most (+0.2), but are

often closer to 0 and sometimes even negative.

Summary of Findings

Under reasonable privacy parameters, Defenses 2 and 3 can be implemented with little or
no observable impact on aggregate trajectory utility, because they are concerned with indi-
vidual trajectories that often constitute a small portion of the whole database. The impact
of small perturbations on individual trajectories are either negligible on aggregate utility,
or they can be counterbalanced by injecting the lost utility in the remaining trajectories. On
the other hand, Defense 1 is directly connected to the aggregate information that is obtained
from D, hence a stricter privacy parameter ¢ or an increased geographic size of sensitive

zone Z negatively impacts aggregate trajectory utility.
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2.7 Conclusion

In this chapter we presented AdaTrace, a utility-aware location trace synthesizer with dif-
ferential privacy guarantee and attack resilience. AdaTrace performs feature extraction,
learning, and noise injection using a database of real location traces. It then generates syn-
thetic traces while preserving differential privacy, enforcing resilience to inference attacks,
and upholding statistical and spatial utility. Our experiments on real and simulated datasets
show that AdaTrace is highly effective. Compared to ngram, DPT, and SGLT [29, 31, 32],
AdaTrace provides up to 3-fold improvement in trace utility. At the same time, AdaTrace is
computationally more efficient, and on average 1.5x faster than DPT, 8x faster than ngram,
and 1000x faster than SGLT. An open research direction is to investigate the feasibility of
extending AdaTrace to handle incremental updates, in order to make AdaTrace compatible

with growing and streaming location trace datasets.
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CHAPTER 3
SECURE AND UTILITY-AWARE DATA COLLECTION WITH CONDENSED
LOCAL DIFFERENTIAL PRIVACY

Local Differential Privacy (LDP) is popularly used in practice for privacy-preserving data
collection. Although existing LDP protocols offer high utility for large user populations
(100,000 or more users), they perform poorly in scenarios with small user populations
(such as those in the cybersecurity domain) and lack perturbation mechanisms that are ef-
fective for both ordinal and non-ordinal item sequences while protecting sequence length
and content simultaneously. In this chapter, we address the small user population problem
by introducing the concept of Condensed Local Differential Privacy (CLDP) as a special-
ization of LDP, and develop a suite of CLDP protocols that offer desirable statistical utility
while preserving privacy. Our protocols support different types of client data, ranging from
ordinal data types in finite metric spaces (numeric malware infection statistics), to non-
ordinal items (OS versions, transaction categories), and to sequences of ordinal and non-
ordinal items. Extensive experiments are conducted on multiple datasets, including datasets
that are an order of magnitude smaller than those used in existing approaches, which show
that proposed CLDP protocols yield high utility. Furthermore, case studies with Symantec
datasets demonstrate that our protocols accurately support key cybersecurity-focused tasks
of detecting ransomware outbreaks, identifying targeted and vulnerable OSs, and inspect-

ing suspicious activities on infected machines.

3.1 Introduction

Organizations and companies are becoming increasingly interested in collecting user data
and telemetry to make data-driven decisions. While collecting and analyzing user data is

beneficial to improve services and products, users’ privacy poses a major concern. Re-
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cently, the concept of Local Differential Privacy (LDP) has emerged as the accepted stan-
dard for privacy-preserving data collection [83, 14, 84]. In LDP, each user locally perturbs
their sensitive data on their device before sharing the perturbed version with the data collec-
tor. The perturbation is performed systematically such that the data collector cannot infer
with strong confidence the true value of any user given their perturbed value, yet it can still
make accurate inferences pertaining to the general population. Due to its desirable proper-
ties, LDP has been adopted by major companies to perform certain tasks, including Google
to analyze browser homepages and default search engines in Chrome [14, 85], Apple for
determining emoji frequencies and spelling prediction in iOS [86, 16], and Microsoft to
collect application telemetry in Windows 10 [15].

While LDP is popularly used for the aforementioned purposes, one domain that is yet
to embrace it is cybersecurity. It can be argued that this nuanced domain has the potential
to greatly benefit from an LDP-like protection mechanism. This is because many secu-
rity products rely on information collected from their clients, with the required telemetry
ranging from file occurrence information in file reputation systems [87, 88, 89] to hetero-
geneous security event information such as system calls and memory dumps in the context
of Endpoint Detection and Response systems (see [90] for a survey on core behavioral de-
tection techniques used by such systems). Nevertheless, clients are often reluctant to share
such data fearing that it may reveal the applications they are running, the files they store, or
the overall cyber hygiene of their devices. Offering formal privacy guarantees would help
convince clients that sharing their data will not cause privacy leakages.

On the other hand, existing LDP protocols suffer from problems that hinder their de-
ployment in the cybersecurity domain. First, although they are accurate for large popula-
tions (e.g., hundreds of thousands of clients), their accuracy suffers when client populations
are smaller. Population size is not necessarily a problem for the likes of Google Chrome
and Apple iOS with millions of active users, but it does cause problems in a domain such as

cybersecurity where small population sizes are common. For example, if a security analyst
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is analyzing the behavior of a particular malware that targets a certain system or vulnerabil-
ity, only those clients who are infected by the malware will have meaningful observations
to report, but the number of infections could be limited to less than a couple of thousand
users globally due to the targeted nature of the malware. In such cases, we need a new
scheme that allows the security analyst to make accurate inferences while simultaneously
giving adequate privacy to end users. Second, existing protocols consider a limited set of
primitive data types. To the best of our knowledge, currently no protocol supports pertur-
bation of item sequences (with either ordinal or non-ordinal item domains) to offer privacy
with respect to sequence length and content simultaneously. Sequences are more difficult
to handle compared to the data types of singleton items or itemsets since they are not only
high-dimensional, but also contain an ordering that must be preserved for tasks such as pat-
tern mining. Yet, sequential data is ubiquitous in cybersecurity, e.g., security logs, network
traffic data, file downloads, and so forth are all examples of sequential data.

In this chapter, we propose the notion of Condensed LDP (CLDP) and a suite of proto-
cols satisfying CLDP to tackle these issues. In practice, CLDP is similar to LDP with the
addition of a condensation aspect, i.e., during the process of perturbation, similar outputs
are systematically favored compared to distant outputs using condensed probability. We
design protocols satisfying CLDP for various types of data, including singletons and se-
quences of ordinal and non-ordinal items. We show that CLDP can be satisfied by a variant
of the Exponential Mechanism [63], and employ this mechanism as a building block in our
Ordinal-CLDP, Item-CLDP, and Sequence-CLDP protocols. Our methods are generic and
can be easily applied for privacy-preserving data collection in multiple domains, including
but not limited to cybersecurity.

We consider a Bayesian adversary model for privacy-preserving data collection, which
enables us to establish a formal connection between LDP and CLDP and ensures that they
provide the same protection against this common adversary. The Bayesian model measures

the adversary’s maximum posterior confidence (MPC) in predicting the user’s true value
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over all possible inputs and outputs of a perturbation mechanism, where higher adversar-
ial confidence implies lower privacy protection for users. We derive how the parameters
of CLDP protocols can be selected to give as strong protection as LDP protocols under
this Bayesian model. Experiments conducted using this parameter selection show that our
CLDP protocols provide high utility by yielding accurate insights for population sizes that
are an order of magnitude smaller than those currently assumed by state-of-the-art LDP
approaches.

We also perform extensive experiments to evaluate the effectiveness of our protocols on
real-world case studies and public datasets. Experiments show that proposed CLDP proto-
cols enable accurate frequency estimation, heavy hitter identification, and pattern mining
while achieving strong protection against the adversary model considered. Using data from
Symantec, a major cybersecurity vendor, we show that CLDP can be used in practice for use
cases involving ransomware outbreak detection, OS vulnerability analysis, and inspecting
suspicious activities on infected machines. In contrast, existing LDP protocols can either
not be applied to these problems or their application yields unacceptable accuracy loss. To
the best of our knowledge, our work is the first to apply the concept of local differential

privacy to the nuanced domain of cybersecurity.

3.2 Background and Problem Setting

We consider the data collection setting, where there are many clients (users) and an un-
trusted data collector (server). Each client possesses a secret value. The client’s secret
value can be an ordinal item (e.g., numeric value or integer), a categorical item, a non-
ordinal item, or a sequence of items. The server wants to collect data from clients to derive
useful insights; however, since the clients do not trust the server, they perturb their secrets
locally on their device before sharing the perturbed version with the server. Randomized
perturbation ensures that the server, having observed the perturbed data, cannot infer the

true value of any one client with strong probability. At the same time, the scheme allows the
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server to derive useful insights from aggregates of perturbed data by recovering statistics
pertaining to the general population.

In Section 3.2.1, we start by introducing the threat and Bayesian adversary models we
consider for measuring privacy protection in the above data collection setting. In Section
3.2.2, we define LDP as the current popular solution to privacy-preserving data collection.
In Section 3.2.3, we describe the utility model and provide preliminary analysis that shows
LDP’s utility loss under small user populations. Section 3.2.4 contains our problem state-

ment.

3.2.1 Adversary Model

We use a Bayesian approach to measure privacy in the local data collection setting. Our
Bayesian adversary model is similar to the Bayesian adversary formulations for member-
ship privacy and location privacy in [26, 34, 91, 92]; but differs in the sense that the main
goal of local privacy schemes is to offer confidentiality and plausible deniability for each
individual user’s secret. Higher plausible deniability implies lower adversarial prediction
confidence and consequently higher privacy protection.

The threat stems from an untrusted third party (e.g., the data collector) inferring the true
value of the user with high confidence from the perturbed value (s)he observes. Then, the
goal of randomized perturbation is to stop an adversary A4, even if they can fully observe
perturbed output ¥, from inferring the user’s true secret v. Given y, the optimal attack

strategy for A is:

A(y) = argmax Pr[0]y] (3.1)

g ") PO = o
e Xy () - P/ (2) = o]

(3.2)

where 7(0) denotes the prior probability of v, f denotes a perturbation function, and U de-

notes the universe of possible items. Then, worst-case privacy disclosure can be measured
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using the maximum posterior confidence (MPC) the adversary can achieve over all possible

inputs and outputs:

MPC — masx Pruly] = max — L P/ (W) = y] (3.3)

velly velly 3. m(2) - Pr{f(2) = y]

This establishes a mathematical framework under which we can quantify worst-case ad-
versarial disclosure of perturbation protocols, for both informed adversaries (with prior
knowledge 7) and uninformed adversaries (e.g., by canceling out the 7 term, or equiva-
lently, setting m(x) = 1/|U| for all x € U). When MPC is high, the adversary can more
easily predict the true input of the user, hence f yields lower privacy. Thus, lower MPC is

desired.

3.2.2 Local Differential Privacy (LDP)

The state-of-the-art scheme currently used and deployed by major companies such as
Google, Apple, and Microsoft in the data collection setting is LDP [14, 85, 16, 86, 15].
In LDP, each user perturbs their true value v using an algorithm ¥ and sends V(v) to the

server. LDP can be formalized as follows.

Definition 1 (¢-LDP). A randomized algorithm V satisfies c-local differential privacy (e-

LDP), where ¢ > 0, if and only if for any inputs vy, vy in universe U, we have:

Pr{W(vy)
Pr{W(vy)

Vy € Range(V) : < ef

)
Y]
where Range(V) denotes the set of all possible outputs of algorithm V.

Here, ¢ is the privacy parameter controlling the level of indistinguishability. Lower
¢ yields higher privacy. Several works were devoted to building accurate protocols that
satisfy e-LDP. These works were analyzed and compared in [84], and it was found that the

two currently optimal protocols are based on: (i) OLH, the hashing extension of the GRR
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primitive; and (i1) RAPPOR, the Bloom filter-based bitvector encoding and bit flipping
strategy. Next, we briefly present these protocols.

Generalized Randomized Response (GRR): This protocol is a generalization of the
Randomized Response survey technique introduced in [93]. Given the user’s true value v,
the perturbation function W rr outputs y with probability:
p= # ify=v

q:m ify #wv

where |U/| denotes the size of the universe. This satisfies e-LDP since g = €. In words,
Vorr takes as input v and assigns a higher probability p to returning the same output
y = v. With remaining 1 — p probability, W;rr samples a fake item from the universe
U \ {v} uniformly at random, and outputs this fake item. Note that an equal probability ¢
is assigned to all fake items, i.e., there is no preference towards sampling a fake item that
is similar to or distant from v.

Optimized Local Hashing (OLH): When the universe size || is large, it dominates
the denominator of p and g, thus the accuracy of GRR deteriorates quickly. The OLH
protocol proposed in [84] handles the large universe problem by first using a hash function
to map v into a smaller domain of hash values and then applying GRR on the hashed value.

Formally, the client reports:

Voru(v) = (H,Vgrr(H(v)))

where H is a randomly chosen hash function from a family of hash functions. Each hash
function in the family maps v € U to a domain {1...g}, where g denotes the size of the
hashed domain, typically g < |U|. We use g = [e® + 1] as the optimal value of ¢ found in
[84].

Randomized Aggregatable Privacy-Preserving Ordinal Response (RAPPOR): RAP-
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POR was developed by Google and is used in Chrome [14]. In RAPPOR, the user’s true
value v is encoded in a bitvector B. The straightforward method is to use one-hot encoding
such that B is a length-|{/| binary vector where the v’th position is 1 and the remaining po-
sitions are 0. When |U/| is large, both communication cost and inaccuracy cause problems,
hence RAPPOR uses Bloom filter encoding. Specifically, B is treated as a Bloom filter and
a set of hash functions H is used to map v into a set of integer positions that must be set to
1. Thatis, VH € H, B[H(v)] = 1, and the remaining positions are 0.

After the encoding, RAPPOR uses perturbation function ¥z 4ppor on B to obtain per-
turbed bitvector B’ as follows:

e€/2A
es/2A 11

if Bi] =1
Pr| B'[i] = Yrappor(Bli]) = 1] =
: if B[i] =0

65/2A+1

where 2A is analogous to the notion of sensitivity in differential privacy [94], i.e., how
many positions can change in neighboring bitvectors at most? In one-hot encoding, A = 1;
in Bloom filter encoding, A = |#|. Then, the perturbation process considers each position

in B independently, and the existing bit B]i] is either kept or flipped when creating B’[i].

3.2.3 Utility Model and Analysis

The most common use of LDP is to enable the data collector learn aggregate population
statistics from large collections of perturbed data. Much research has been invested in tasks
such as frequency estimation (identify proportion of users who have a certain item) and
heavy hitter discovery (identify popular items that are held by largest number of users) [84,
95, 96, 97]. Utility is measured by how closely the privately collected statistics resemble
the actual statistics that would have been obtained if privacy was not applied.

Frequency estimation and heavy hitter discovery are important tasks in the cyberse-
curity domain as well. For example, by monitoring the observed frequencies of different

malware using aggregates of privatized malware reports, a cybersecurity vendor such as
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Figure 3.1: Measuring relative error in item frequency estimation by calculating L1 dis-
tance between actual and estimated frequencies. L1 distance of d means 100 - d % estima-
tion error.

Symantec can identify large-scale malware outbreaks and create response teams to address
them. Furthermore, analyzing the heavy hitter operating systems that are most commonly
infected by the malware will enable Symantec understand OS vulnerabilities as well as the
fraction of clients in its user base that are impacted. Relevant findings may also be used by
Symantec when developing its next-generation anti-malware defenses.

A novel challenge posed by the cybersecurity domain, however, is accurately support-
ing small user populations. Typically, existing LDP literature assumes the availability of
“large enough” user populations in the order of hundreds of thousands or millions of users
[14, 84, 86, 97]. Yet, population sizes in the cybersecurity domain are typically much
smaller. For example, consider a security analyst analyzing the behavior of a specific mal-
ware by studying infected user machines. It is often the case that malware targets a specific
computing platform or software product, limiting the total number of infections to less than
a couple of thousand users globally. We designed the frequency estimation experiment in
Figure 3.1 to illustrate how the utility of existing LDP protocols suffer under such small
populations. We sampled each user’s secret value from a Gaussian distribution with mean
1 =50 and standard deviation o = 12, and rounded it to the nearest integer. The goal of the
data collector is to estimate the true frequency of each integer. We run this experiment for

varying number of users between 1,000 and 100,000 and graph the error in the frequency
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estimations made by the data collector.

We observe from Figure 3.1 that although more recent and optimized protocols improve
previous ones by decreasing estimation error (e.g., OLH outperforms RAPPOR, which out-
performs GRR); in cases with small user populations (e.g., 1000, 2500, or 5000 users) the
improvements offered by more recent LDP protocols over previous ones are only 10-20%,
whereas our proposed CLDP approach provides a remarkable 60-70% improvement. Fur-
thermore, with 2500 users, estimation error is larger than 80% even for the state-of-the-art
OLH algorithm, which is optimized for frequency estimation [84]. In contrast, our pro-
posed CLDP solution is able to handle small user populations gracefully, with estimation

errors lower than half of OLH’s errors.

3.2.4 Problem Statement

As our analysis shows, low utility levels of existing LDP protocols under small user pop-
ulation sizes constitute an important obstacle towards their deployment in the cybersecu-
rity domain. This motivates us to seek alternative approaches and protocols for privacy-
preserving data collection in this challenging scenario. The problem we study in this chap-
ter is to design a data collection scheme such that: (i) it gives at least as strong privacy
protection as existing LDP protocols under the MPC adversary model, (i1) while doing so,
it provides higher accuracy and data utility compared to existing protocols especially for
small user populations, and (iii) it offers extensibility and generalizability to support com-
plex data types such as different types of singleton items, itemsets, and sequences that are

present in the cybersecurity domain.

3.3 Proposed Solution

In this section, we introduce our proposed solution aproach to the problem stated above.

We start with the notion of Condensed Local Differential Privacy (CLDP).
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3.3.1 Condensed Local Differential Privacy

Let U denote the finite universe of possible values (items) and let d : U x U — [0, 00) be
a distance function that takes as input two items vy, v, € 4 and measures their distance.
We require d to satisfy the conditions for being a metric, i.e., non-negativity, symmetry,

triangle inequality, and identity of discernibles. Then, CLDP can be formalized as follows.

Definition 2 (a-CLDP). A randomized algorithm ® satisfies a-condensed local differential

privacy (a-CLDP), where o > 0, if and only if for any inputs v,,vy € U:

Pr|® =
Yy € Range(®) : r®(v1) = y] < evdvie:)
Yy

Pr[®(ve) = y]

where Range(®) denotes the set of all possible outputs of algorithm .

LDP and CLDP follow a similar formalism, but differ in how their privacy parameters
and indistinguishability properties work. Similar to e-DP, a-CLDP satisfies the property
that an adversary observing y will not be able to distinguish whether the original value
was v; or vy. However, in a-CLDP, indistinguishability is controlled also by items’ dis-
tance d(-, -) in addition to a. Consequently, as d increases, o must decrease to compensate,
i.e., we have o < ¢. By definition, CLDP constitutes a metric-based extension of LDP.
Metric-based extensions of differential privacy have been studied in the past under certain
settings such as aggregate query answering in centralized statistical databases [98], geo-
indistinguishability in location-based systems [21, 24], and protecting sensitive relation-
ships between entities in graphs through k-edge differential privacy [99]. In contrast, we
propose the metric-based CLDP extension in the data collection setting. Our data collec-
tion setting poses novel challenges due to: (i) the local privacy scenario, unlike centralized
DP assumed in aggregate query answering and graph mining in which user data is col-
lected in the clear first and privacy is applied after the data has been stored in a centralized

database, (ii) data types that are different than tabular datasets, locations, and graphs, and
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(111) establishing relationships and comparison between CLDP and LDP under the assumed
adversary and utility models.

Since existing LDP protocols do not satisfy CLDP, we need new mechanisms and proto-
cols supporting CLDP. We show below that a variant of the Exponential Mechanism (EM)
[63] satisfies a-CLDP. EM is used in the remainder of the chapter as a building block for
more advanced CLDP protocols.

Exponential Mechanism (EM). Let v € U be the user’s true value, and let the Expo-
nential Mechanism, denoted by ®5,,, take as input v and output a perturbed value in U,
1e., Py : U — U. Then, ®gy, that produces output y with the following probability

satisfies a-CLDP:

—ad(v,y)
(& 2
VyelU: Pr®py(v) =y = —ovd(v.2)

Zzeu € 2

Theorem 2. Exponential Mechanism satisfies c-CLDP.

Proof. We start by applying the definition of EM and breaking the odds ratio into two

terms:
—a-d(vy,y)
e 2
—a-d(vy,z
Pr[®EM(U1> — y] — ZZEMG é 1 (3 4)
Pr[® g (v2) = v s s '
—a-d(vg,2)

Zzeue 2

—od(vy,y) —od(vg,2)
€ 2 Zzeu € 2

= —a-d(vg,y) ’ —a-d(vy,2) (35)
\6 2 s ZZGU € 2 .,
* pe
For *, we observe that:
—a-d(vy,

6# a- (d(vz gu)*d(vpy))
e = € 2 3.6)
e 2

Since d is a metric, it satisfies the triangle inequality. Therefore, it holds that: d(ve,y) —
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d(vy,y) < d(vy,vy). Combining this with the above, we conclude for *:

—a-d(vy,y) (
(& 2 a-d(vy,v9)
— iy e 2 (3.7)
e 2
Next, we study the second term **:
—a-d(vg,z) —a-d(vg,z)+a-d(vy,z)—a-d(vy,z)
ZZEZ/[ € _ ZZEM € 2 (3 8)

—a-d(vy,z)

Zzeu € 2

—ovd(vy,2)

Zzeu € ?

Again by triangle inequality: d(vy, z) —d(vs, z) < d(v1,v2). Applying this to the numerator

we get:

—a-d(vg,z)

a-d(vy,vg)—a-d(vy,z)

e 2 e
Zzeu _ < Zzeu (39)
—a-d(vy,z) — —a-d(vy,2)
D eu® Dceu®
a-d(vy,vg) —a-d(vy,2)
e Deu®
< U (3.10)
ZZEZ/{ € ?
a-d(vy,v9)
<e 2 (3.11)
a-d(vy,v9) a-d(vy,vg)

We established that x < e and xx < e~ 2 . Plugging them into Equation 3.5

concludes our proof:

PI‘[(I)EM(’Ul)
PI‘[CI)EM(UQ)

] a-d(vy,vg) a-d(vy,vy)

yge 2 .e 2 =e
Yl

a-d(v1,v2)

3.3.2 Privacy Protection of LDP and CLDP

We wish to find the appropriate « value to be used in CLDP so that the MPC under a-CLDP
will be equal to or lower than the MPC under e-LDP, which ensures that CLDP gives equal
or better protection than LDP against the adversary we consider.

Question: Let U/, d and 7 be given. If there is an LDP protocol currently in place with
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privacy budget € and we are interested in switching to a-CLDP, how should the value of «
be selected to achieve equal or better protection than LDP according to the MPC adversary
model? Answer: Based on the quantification of the adversary’s maximum posterior confi-
dence in Equation 3.3, the requirement to have the MPC of CLDP less than or equal to that

of LDP can be written as:

m(v) - Pr[®(v) = y] m(v) - Pr[¥(v) = y]
S () PrR(s) — g - S (o) P =g O

where U denotes LDP perturbation and ¢ denotes CLDP perturbation. Using U, d, =
and e, we can compute the right hand side, and then search for the largest v such that
the left hand side remains smaller than the right hand side, iteratively by incrementing «
in each iteration and re-computing the left hand side in each iteration. The complexity
of computing the right hand side (left hand side is analogous) is O(|U|?) - O(¥), where
O(¥) is the complexity of the perturbation mechanism, often linear or sublinear in I/ or
constant time. This is assuming access and querying of m(v) and d(v;,v;) are constant
time operations, as they can be pre-computed in O(|U/| + |U/]?) time and stored in a form
that supports efficient access, which does not affect overall complexity. In deployment, the
computation to convert € to « is a one-time cost performed at protocol setup time, therefore
it does not have a negative impact on real-time user experience.

An alternative to solving Equation 3.12 could be to obtain a closed-form relationship
between « and ¢ given U, d, and 7. We found that such a closed-form relationship can
be established under particular cases such as when 7 is uniform or when d satisfies certain
properties. However, the closed-form relationships require constructing and solving a high
degree polynomial, which has higher execution time in practice than the iterative solution to
Equation 3.12 which we presented above, due to the inherent hardness and time complexity
of solving high degree polynomials. Hence, we give the current version of Equation 3.12

for wider practical applicability and more efficient implementation than the closed-form
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relationships we could derive. One of our ongoing future work directions is considering
the derivation of efficient closed-form relationships.

Roles of Relevant Factors: Among the relevant factors, ¢/ impacts not only the out-
come of € to « conversion, but also the computational complexity. This is because U/ is a
relevant factor in the Pr|-] calculations in both LDP and CLDP. For example, the size of the
bitvector in RAPPOR is affected by |/|. EM of CLDP is also affected by |U/|, as each ele-
ment in I/ must be assigned a score and the scores are then normalized. d has no impact on
the behavior of LDP, but it affects CLDP. Since our conversion aims to achieve equivalent
protection in CLDP compared to LDP against the Bayesian adversary from Section 3.2.1,
it is expected that larger the max,, ., d(v;, v;), smaller the a value under the same ¢. This
can be explained via the fact that under fixed ¢, according to the exponent in Definition
2, when d is larger, then o must be lowered to counter-balance the impact of increased d
to still achieve equivalent protection. 7 is also a relevant factor in Equation 3.12. As we
will exemplify in the upcoming practical analysis, when 7 is skewed (rather than uniform)
it becomes the dominating factor in both the right and left hand sides of Equation 3.12;
therefore under the same ¢, typically larger « is obtained when 7 is skewed compared to
uniform. Finally, the number of users does not appear in Equation 3.12 or play a role in
the conversion, since the same ¢ is used across all users in LDP and similarly the same « is
used across all users in CLDP.

Practical Analysis: To demonstrate the practicality of the relationship we establish
above and derive insights, we solve Equation 3.12 under three example 7 settings. In all
settings, we assume U is the set of integers between [0, 99] and d measures absolute value
distance between two integers. We use m = Uniform, Gaussian and Exponential distribu-
tions with the corresponding distribution parameters given in Figure 3.2. Our rationale is
that each 7 represents a different type of skewness: Uniform has no skewness, Gaussian is
symmetrically skewed around the mean, and Exponential has positive skew. Users’ secrets

are samples from these distributions rounded to the nearest integer. Distribution parameters
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Figure 3.2: Exemplifying the relationship between ¢ in e-LDP and « in a-CLDP according
to Equation 3.12, with |/| = 100 and 7 = Uniform, Exponential, Gaussian.

are chosen so that users’ secrets fall within the universe of [0, 99] with non-negligible tail
probabilities. In Figure 3.2, we provide the results of our study for a wide range of ¢ values
used in the literature: 0.25 < ¢ < 4. Note that this figure is obtained purely by solving
Equation 3.12, and does not require a real simulation or execution of the protocol involving
end clients, i.e., the solution can be used in setup time before any data collection occurs.
Figure 3.2 allows us to derive several interesting insights. The first important conclusion
is that € and « are positively correlated — as the privacy requirement of LDP is relaxed, we
can also relax that of CLDP. Second, it is often the case that LDP and CLDP give equivalent
protection when o < ¢ holds. This is because in order to compensate for the added term
of d(+, -) decreasing indistinguishability of distant items under CLDP, we have to use much
smaller o in CLDP compared to € of LDP. Third, we observe that the relationship between
¢ and « depends on T, e.g., if the data follows a Uniform distribution, CLDP must use a
stricter v than the other two distributions. The reason is because there are two determining
factors in calculating adversarial confidence: 7 and Pr[f(v) = y|. For skewed distributions,
7 becomes the dominating factor and since the same 7 is shared by LDP and CLDP, the
behavior of perturbation functions have relatively less impact on adversarial confidence. In
contrast, for the Uniform distribution, since Pr[f(v) = y| becomes the dominating factor

and its value is high for the tail-ends of the domain in the case of CLDP, we must use lower
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(stricter) o in CLDP to match the adversarial confidence in LDP. Based on our findings and
observation that the Uniform 7 setting causes lowest a under the same € compared to other
7 settings, in the remainder of the chapter (including our experiments and case studies) we
assume the Uniform 7 setting. This helps demonstrate CLDP’s utility benefit in the strictest
and most challenging setting.

Note on Alternate Threat and Adversary Models: The analysis perform in this sec-
tion and the rest of this chapter is under the Bayesian adversary and measurement of MPC
described in Section 3.2.1. Since Bayesian methods were previously used in the literature
for evaluating DP variants and relaxations in different domains, we argue that the Bayesian
adversary model is relevant and representative [26, 34, 91, 92]. Yet, we acknowledge that
under different adversaries, the protection offered by LDP and CLDP could be different,
and thus, a different conversion between ¢ and « could be needed. For example, one al-
ternative method to compare LDP and CLDP is hypothesis testing [100, 101, 102]. We
leave comparison between LDP and CLDP under such different protection models to fu-

ture work.

3.4 CLDP Mechanisms and Protocols

In this section, we present protocols that can be used in practice to collect data while achiev-
ing CLDP. We present three protocols: Ordinal-CLDP, Item-CLDP, and Sequence-CLDP,

to address different types of client data.

3.4.1 Ordinal-CLDP for Ordinal Items

Our first protocol is Ordinal-CLDP, which addresses data types that stem from finite metric
spaces, i.e., U is discrete and finite, and there exists a built-in distance metric d : U x U —
[0,00). This setting covers a variety of useful data types: (i) discrete numeric or integer
domains where d can be the absolute value distance between two items, (ii) ordinal item

domains with total order, e.g., letters and strings ordered by dictionary order A < B < C

69



Algorithm 2: Ordinal-CLDP using EM
Input : o: CLDP privacy parameter, {{: item universe,
d: distance metric, wv: user’s true value
Output: v' € U: perturbed value

1 for eachy € U do

2 Assign score(y) = e
3 end

—a-d(v,y)
2

score(v')

4 Pick a random sample v’ from U, where Pr[v’ is sampled] = S, score(2)
z€

s return v’

< ..., and (ii1) categorical domains with tree-structured domain taxonomy where distance
between two items can be measured using the depth of their most recent common ancestor
in the taxonomy tree [103, 104]. In these scenarios, item order and d are naturally defined
and enforced.

In Ordinal-CLDP, each client locally applies the Exponential Mechanism (EM) imple-
mentation shown in Algorithm 2, and uploads the perturbed output to the server. Notice
that o, U, d, and user’s true value v are all inputs to the algorithm. The algorithm’s output v’
is sent to the collector, thereby concluding the protocol in a single round without blocking.

Algorithm 2 has some desirable utility properties. First, since d is a metric, it holds
that d(v,v) = 0 for all v € Y. As a result, each invocation of Algorithm 2 is unbiased
since Pr[®orp(v) = v] > Pr[®orp(v) = y] where y # v and Porp denotes Algorithm
2. Furthermore, when d is selected with the property that d(v;,v;) = ¢ for all v;,v; € U
where v; # v; and c is a constant such as ¢ = 1, then the aggregation of the outputs of
Algorithm 2 on the server side preserves the relative frequency relationship between v;
and v; in expectation. In other words, if the true frequency of v; is larger than v; [resp.
smaller than], after each client uploads perturbed items resulting from Algorithm 2 and
the counts of the perturbed items are computed on the server side, the observed frequency
of v; is expected to be larger than the observed frequency of v; [resp. smaller]. Given
that frequency relationships between individual pairs of items are preserved, general item

frequency rankings are also preserved.
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In order to prove this claim, we first introduce some notation. Let v; € U be an item,
let true(v;) be the true count of v; in the population, and let obs(v;) be the observed count
of v; from the aggregation of perturbed outputs of Algorithm 1. Then, the above claim
is equivalent to the statement that iff true(v;) > true(v;), then E[obs(v;)] > E[obs(v;)].
Given this holds for all v;, v; € U, the converse follows trivially that iff true(v;) < true(v;),
then E[obs(v;)] < E[obs(v;)]. Also, if the relative frequency rank relation between all pairs
of individual items are preserved in expectation, it implies that that the complete ranking
is also preserved. Thus, it suffices to prove the initial statement. We begin the proof by

expressing E[obs(v;)]:

E[ObS(Ui)} = twe(vl-) . Pr[(I)ORD(vi) = Ui] -+ true(vj) : PI'[(I)ORD<Uj) = U,‘]

+ Z true(vy) - Pr[@orp(v) = v4
v €UN{vi,v; }

Similarly, E[obs(v;)] can be expressed as:

Elobs(v;)] = true(v;) - Pr[®Porp(v,) = v;] + true(v;) - Pr[@orp(vi) = vj]

+ > true(vy) - Pr[@ogp(vg) = v)]
o U\{vi,v;}

For the special case choice of d that d(v;,v;) = ¢ for all v;,v; € U where v; # v; and ¢
is a constant such as ¢ = 1; we observe by construction of ®orp that Pr[®orp(v;) = v;] =
Pr[®orp(v;) = vj], Pr[®orp(v;) = v;] = Pr[®orp(vi) = v;], and Pr[@orp(vi) = v;] =
Pr[®orp(vi) = vj]. Let constants ¢, co, and c3 denote these three quantities respectively.

Then, E[obs(v;)] — E[obs(v,)] can be written as:
E[obs(v;)] — E[obs(v;)] = ¢; - (true(v;) — true(v;)) — ¢ - (true(v;) — true(v;))

+ ¢y - Z(true(vk) — true(vy,))

v €U\{vi,v; }
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which can be simplified to:

E[obs(v;)] — E[obs(v;)] = (1 — ¢2) - (true(v;) — true(vy)) (3.13)

By construction of ®orp, we know that ¢c; > ¢,. Then, Equation 3.13 shows that E[obs(v;)]
— Elobs(v,)] and true(v;) — true(v,) are directly positively correlated. In other words, iff
true(v;) > true(v;), then E[obs(v;)] > E[obs(v;)] and vice versa. This proves the intended

statement.

3.4.2 Ttem-CLDP for Non-Ordinal Items

Our second protocol is Item-CLDP in which each user still holds a singleton true item, but
the items come from an arbitrary ¢/ with no pre-defined d or total order. For example, if
U consists of OS names, an order of MacOS < Ubuntu < Windows is neither available
nor initially justifiable. This non-ordinal item setting has been assumed in recent LDP
research for finding popular emojis, emerging slang terms, popular and anomalous browser
homepages, and merchant transactions [14, 84, 86, 16, 96]. We propose Item-CLDP in
a generic way to maximize its scope and cover such existing cases. Parallel to previous
works, our goal is to uphold relative item frequencies to learn popularity histograms and
discover heavy hitters. To this end, we propose that a desirable perturbation strategy should
replace a popular item with another popular item, and an uncommon item with another
uncommon item. This achieves our goal of upholding relative item frequencies, as the
expected behavior (conceptually) will be that popular items and uncommon items will be
shuffled among themselves, and relative frequencies will be preserved.

The proposed Item-CLDP protocol is given in Figure 3.3. In Item-CLDP the server
communicates with each client twice, hence the protocol consists of two rounds. The first
round contains steps 1-3 and the second round contains steps 3-5. The server executes the

first round with each client in parallel (without blocking). At the end of the first round, the
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Client (v, a, L) Server (U)
Assume a random total order
in U such that {x;}e U: x, < 9
X < .o <xpand d(x; X)) =1
Sendd, U
@ Runv'=Alg. 1 (aL, U, d, v)
Send v’

Aggregate results from all clients, 9
apply denoising to infer refined d’

Send d’
@ Runv'=Alg. 1 (a(1-L), U, d', v)
Send v"

Aggregate results from all clients, e
obtain final frequency estimations

Figure 3.3: Item-CLDP protocol to report non-ordinal items.

server performs the aggregation and de-noising step (Step 3). Then, the server executes the
second round of communication. Next, we explain each step in detail.

Step 1: When the protocol starts, the server knows universe ¢/ and each client has a
true value v. The value of the privacy budget o and budget allocation parameter 0 < L < 1
can be publicly known. (The role of L will be explained later.) A random total order is
constructed among all items in ¢/ such that for {z;} € U, d(z;,z;41) = 1. The server
advertises U and d to all clients.

Step 2: Each client runs Algorithm 2 with budget « - L to obtain a perturbed value v’
locally on their device. Then, the clients send their v’ to the server.

Step 3: Due to the utility-unaware choice of d in Step 1, the absolute item frequencies
discovered at this step contain significant error. A second round is desirable to reduce error.
We found that although the server does not accurately learn absolute item frequencies by the
end of Step 2, it can learn frequency ranking of items after applying a de-noising strategy.
A key aspect is how de-noising is performed. Let y € U be an item, let true(y) be the true
count of y in the population, which we are trying to find, and let obs(y) denote the observed

count of y following the first round of client-server communication (i.e., by the beginning
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of Step 3). The following holds in expectation:

obs(y) = true(y) - Pr[®pu(y) =yl + > true(z) - Pr[0py(z) = y]
zeU\{y}
Our goal is to solve for true(y), but we cannot do so since true(x) is also unknown.
Hence, in our de-noising strategy we make the heuristic decision of plugging obs(x) in

place of true(z), thereby obtaining true’(y) as follows:

0bs(y) — > e () 0b8(2) - Pr[@par(z) = y]
Pr[®pn (y) = v

true’ (y) =

We apply this to all y’s in U and rank them according to their true’(y). The distance function
d' is set to reflect this new ranking instead of the original d from Step 1.

Step 4: After the clients receive d’, each client runs Algorithm 2 with d’' to obtain v”
and sends v” to the server. This invocation of the algorithm is with budget (1 — L) - .

Step 5: Upon receiving the v” values from all clients, the server aggregates all results
and obtains the final frequency estimates.

Since Item-CLDP is a two-round protocol, each client sends perturbed information
twice. Hence, we need to quantify the total disclosure by the end of two rounds. We intro-
duce the parameter L, which takes values between 0 and 1 and determines how the CLDP
privacy budget will be allocated to the two rounds of Item-CLDP. Denoting Item-CLDP by

®;rEa, we can show that for any two possible inputs vy,v, of a user:

Pr[® gy (v1) = (v, 0")]

< ea-L-d(vl,vz) . ea-(lfL)-d’(vl,vz)
PI'[(I)[TEM<U2) = <U’,U">] B

< eormax{d(vi,v2).d’ (v1,v2)}

This follows from the fact that the first round satisfies (« - L)-CLDP with d, and the second
round satisfies « - (1 — L)-CLDP with d’. We choose the value of L by finding which L

yields minimum frequency estimation error by the end of the second round of Item-CLDP.
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According to our experiments with different L, we recommend L = 0.8 as it often gives
best results, which indicates that finding an accurate preliminary ranking in the first round
of Item-CLDP is indeed important to obtain a good final result. An important property
enabling the composition of Item-CLDP in above fashion is the fact that by construction of
d and d' as metrics, max{d(vy, vs),d (v1,v9)} is also a metric. This enables composition
of the two individual CLDP rounds, and ensures their composed outcome achieves CLDP.

We provide the proof of this factor enabling the composition of Item-CLDP below.

Lemma 1. Given that d(v;,v;) and d'(v;,v;) are metrics, d*(v;,v;) = max{d(v;,v;),

d'(v;,v;)} is also a metric.

Proof. First recall the properties of being a metric, which are satisfied by d and d'. We

write these properties for d, as d’ is analogous:
L. d(v;,vj) > 0, Vv, €U
2. d(v;,vj) = 0if and only if v; = v;
3. d(v;,vj) = d(vj,v;), Vo, v; €U
4. d(vi,v,) < d(vi,v5) + d(vj, vg), Yo, vj, 0 €U

To prove that d* is also a metric, we must show that d* satisfies the four properties above.
We prove each property one by one.

Property 1: We know already that d(v;, v;) > 0and d'(v;, v;) > 0for all v;, v;. d*(v;, v;)
takes the maximum of these two non-negative values, which must also be non-negative.
Thus, d*(v;, v;) > 0.

Property 2: There are two directions to prove. First, when v; = v; then d(v;,v;) = 0
and d'(v;,v;) = 0. As a result, d*(v;,v;) = max{0,0} = 0, which concludes the first
direction.

For the second direction, we prove by contradiction. Assume that d*(v;, v;) = 0, but

contrary to expectation v; # v;. If v; # v;, by the first and second properties satisfied by
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d and d', either d(v;,v;) > 0 or d'(v;,v;) > 0 must hold. However, if either holds, the
maximum of d(v;,v;) and d'(v;, v;) cannot be zero, since at least one of them is positive.
Thus, the initial assumption of d*(v;,v;) = 0 is violated, which yields a contradiction. It
must be that v; = v;.

Property 3: The symmetry property of d* follows from the individual symmetry prop-

erties satisfied by d and d'.

d* (v, v5) = max{d(v,v;),d (vi,v;)}
= max{d(vj,v;),d (vj,v;)}

- d*(vj> Ui)

Property 4: By definition of d*, d*(v;, v ) is either equal to d(v;, vy) or d'(v;, vy ). With-
out loss of generality assume d*(v;, vy,) = d(v;, vy ); the case with d*(v;, vx) = d'(vy, v,) is

identical. Using the fourth property of d, we can derive:

d*(vy, vg) = d(vy, vg,)
< d(v;,v;) + d(vj, vg)

< d*(vi,v;) + d*(vj, vg)

since for each individual term on the right hand side, it is guaranteed by definition of d*

that d* (v, v;) > d(vs, v;) and d*(v;, vg) > d(vj, vg). O

3.4.3 Sequence-CLDP for Item Sequences

In Ordinal-CLDP and Item-CLDP, each user reports a single item. We now study the
case where each user reports a collection of items. We give our Sequence-CLDP protocol
assuming this collection forms a sequence and later show the applicability of Sequence-

CLDP to set-valued data. Sequential data arises naturally in many domains, including
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Algorithm 3: Sequence-CLDP randomization
Parameter: Probabilities halt, gen, maximum length allowed max_len
Input : Client’s private sequence X, privacy budget «, item universe U,
distance metric d
Output : Randomized sequence S

1 while X is shorter than max_len do
‘ Pad X with stop sign L // Dummy symbol
end
Initialize empty sequence S
for i = 1 to max_len do
if X[i] # L then
With probability halt, stop here and return S
With probability (1 — halt), run Alg. 2 with inputs (o, U, d, X [i]) to obtain
v’, and append v’ to S

0 N A U e W N

9 end
10 else
1 With probability gen, randomly pick an item from U/ and append it to S
12 With probability (1 — gen), stop here and return S
13 end
14 end
15 return S

cybersecurity (log files), genomics (DNA sequences), web browsing histories, and mobility
traces; thus, a protocol for privacy-preserving collection of item sequences holds great
practical value. We denote by X a user’s true sequence, and by X [i the i’th element in X.
Each element X [i] is an item from universe /. We assume the distance metric d between
individual items is known apriori, e.g., for ordinal &/ we can use built-in d as in Ordinal-
CLDP; otherwise, we can infer d using a process similar to the first round of Item-CLDP.

We measure distance between two sequences ds.q(X,Y") as

|X|

ey (X,Y) = Zd

In Sequence-CLDP, each client runs the sequence randomization procedure given in
Algorithm 3 to locally perturb their X. The procedure has two probability parameters: O

< halt, gen < 1, and a length parameter max_len denoting the maximum sequence length
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allowed. Given true sequence X, the algorithm returns a perturbed sequence .S. Our goal in
Sequence-CLDP is to hide two complementary types of information: the length of X and
the contents of X. For example, let X consist of a sequence of security events observed
on a machine. Hiding the length of X is useful because it disables the adversary from
learning that many security events were observed on this machine, hence that the machine is
probably infected. Hiding the contents of X is useful because it disables the adversary from
learning which security events were observed, hence the adversary cannot infer which types
of problems exist on the machine, which attacks are successful, and so forth. Denoting

Sequence-CLDP by ®srq, we formalize these privacy properties as follows.

Definition 3. Let Pr(®spo(X) ~» (] denote the probability that ®spo(X) produces a
perturbed sequence of length { given input sequence X. We say that ®gpq satisfies a-
length-indistinguishability if for any pair of true sequences X, Y :

Pr{®spq(X) ~ (] < poeabs((X|-|Y))
PF[CI)SEQ(Y) ~ é] -

Definition 4. Let Pr(®spq(X) = S| denote the probability that ®spq(X) produces per-
turbed sequence S given input sequence X. We say that ®sgq satisfies o-content-indistin-

guishability if, for any pair of true sequences X, Y of same length, it holds that:

PI’{CI)SEQ(X)

S] S ea-dsgq(X,Y)
Pr[CI)SEQ (Y)

5]

It can be observed that both properties are adaptations of CLDP for hiding the two types
of sensitive information relating to sequences: length and content. Definition 3 is analogous
to CLDP with metric d being the absolute value difference between sequence lengths. It
ensures that an adversary observing the length of the perturbed sequence ¢ cannot infer the
length of the user’s true sequence with high confidence. Definition 4 is analogous to CLDP
with metric d being dy.q, i.€., item-wise difference in sequences’ contents. It ensures that an

adversary observing the contents of the perturbed sequence S cannot infer the contents of
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the user’s true sequence with high confidence. The combined privacy protections offered by
Definition 3 and Definition 4 can be best explained from the following perspective: Given
that the adversary observes a perturbed sequence S with length ¢ = |S| that a user sends
to the data collector, can the adversary reverse-engineer the length or the contents of the
user’s true sequence? If the perturbation satisfies Definitions 3 and 4 simultaneously, then
the answer is negative, since both sequence length and content are protected analogously

to the protection offered by CLDP.

Theorem 3. Algorithm 3 satisfies a-length-indistinguishability and o-content-indistingu-

ishability simultaneously if halt, gen are chosen either symmetrically as:

1
e*+1

halt = gen =

or asymmetrically within the ranges:

1 halt
and 1—ea~halt§gen§1—i
e +1 e

0 < halt <

Proof. We first prove that Sequence-CLDP, denoted here onwards by ®gp(, satisfies a-

length-indistinguishability for the given parameter choices. Observe from Algorithm 3 that

given a true sequence X of length | X |, ®gp¢ produces an output sequence of length ¢ with

probability:

halt - (1 — halt)* when ¢ < | X|
PI‘[CI)SEQ<X) ~o g] =

(1 — halt) X! (1 — gen) - gen"~1X| when ¢ > | X|

We consider several disjoint cases depending on the length of true sequences X, Y. The
parameters must be chosen so that all cases are simultaneously satisfied.

Case 0: |.X| = |Y|. This case is trivial since ®gp( treats their length equally, resulting
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in:
Pr[@gpg(X) ~ ] =1=¢*0 if [ X] = [Y|
Pr[@spq(Y) ~ (]

Remaining cases fall under | X | # |Y|, and are analyzed case-by-case below.

Case I: / < |X|and ¢ < |Y|

Pr[(bSEQ(X) ~ é] _ halt' (1 - halt)g _ 1 < ea-abs(\X|f|Y|)
PI'[(I)SEQ(Y) ~ g] halt - (1 — halt)f -

Since abs(|X| — |Y]) > 0, we trivially have ¢®®sIXI=¥') > 1 hence this case is satisfied
without placing constraints on the values of halt, gen.

Case2: ¢ > |X|and ¢ > |Y|

Pr(Pspo(X) ~ 1 _ (1- halt) X! - (1 — gen) - gen* X

o
Pr(®spq(Y) ~ €] (1 — halt)l¥!- (1 — gen) - gen* 1Y

— (1 — halr)XIIY1 . gep1-1X]

Divide this into two subcases:

2a: | X| < |Y'|: When this holds, the requirement that
(1 — halt)XI=IY1 . genlY1=IX1 < gaabs(IX|=[Y)

can be written as:

gen" "X < oo (IY]-IXD)
(1 — hale)V =11 = °

8N \|y|-I1X| » e (]Y]-|X])
(——) <e
1 — halt

Thus, we have the constraints for parameters halt, gen as:

gen
< e 14
1— halt =€ (3.14)
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2b: | X| > |Y'|: When this holds, the same requirement can be written as:

X|-Y
(L= hal) ™ 1w

genXI-17]

(L haltxv1 ¢ -
gen -

resulting in the parameter constraints:

1 — halt
gen

<e” (3.15)

Case3: ¢ < |X|and ¢ > |Y|

Pr(®spo(X) v £ _ sansqii v
Pr[@SEQ(Y) ~ f] -
halt - (1 — halt)* < grabs(IXI-I¥)
(1 — halt)m . (1 — gen) -genf—w\ -
( ) e
1 —gen gen -

Since the assumption in this case is | Y| < ¢ < | X|, we can rewrite the RHS as:

halt 1 — halt

: . )f*IY\ < e (=YD | g (IX]=0)
— gen gen

Given the constraint we established in Equation 3.15 holds, the following is a sufficient

condition to satisfy the above:

halt _ o(x1-0)
1—gen —

Notice that, by assumption, | X| > ¢ and both | X | and ¢ are integers representing sequence

length. Then, | X | — ¢ > 1, making the following parameter constraint sufficient:

halt (3.16)
1 — gen
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Case4: (> |X|and ¢ < |Y|

Pr{®gpq(X) ~ /] < pevabs(X|-|Y])
Pr[®spq(Y) ~ (] —
X —|X
(1 — hal) X1 - (1 — gen) - gen" X1 _ peeabs(|X|-|Y1)
halt - (1 — halt)* N

1- gen . ( gen )£7|X| < €a~abs(|X\f\Y|)
halt 1 — halt

Since the assumption in this case is | X| < ¢ < |Y'|, we can rewrite the RHS as:

1 — gen 8Ny iX| — a(lY]|-0)  a-(t—|X])
. < .
atr Toma) =€ ‘

Given the constraint we established in Equation 3.14 holds, the following is a sufficient

condition to satisfy the above:

1=gen . aqvip
halt —

Since |Y| > ¢ and both |Y'| and ¢ are integers, we have |Y'| — ¢ > 1, making the following

parameter constraint sufficient:

1 — gen
halt

< e (3.17)

Combine all cases: Finally, we combine the parameter constraints we identified at the

end of each case (Equations 3.14, 3.15, 3.16, and 3.17) to obtain a system of equations:

gen o 1 — halt o halt o 1— gen
<e <e <e
1 — halt gen 1 — gen halt

Given the privacy parameter «, the values of halt, gen satisfying all four equations simul-
taneously satisfy a-length-indistinguishability. If we set halt=gen and solve this system

of equations, we observe that the following is a solution (which we call the symmetric
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parameter choice):
1
e*+1

halt = gen =

Another solution to the same system of equations, which we call the asymmetric parameter
choice, is desirable when input sequences X, Y are longer and therefore a smaller halting

probability is preferable:

halt
and l—ea-haltggengl—i

e*+1 ex

0 < halt <

Next, we prove that for the above choices of parameters, ®sp satisfies a-content-
indistinguishability. We divide into 3 possible cases depending on how |S]| relates to | X | =
Y.

Case 1: |S| = | X| = |Y|. In this case, Algorithm 2 must have behaved as follows. Upon

reaching its main loop (lines 5-14), it must have run lines 6-9 for i = 1 to max_len and, in
each iteration, the event with probability (1 — halt) must have occurred such that X [i| was
perturbed and the perturbed item was appended to .S. The perturbation is performed by the
function call to Algorithm 2, which we denote by ® ;. Then, in iteration ¢ = max_len+1,
the event with probability (1 — gen) must have occurred so that a sequence S with length
exactly equal to | X| = |Y'| = n was returned. The odds-ratio probabilities of the overall

run can be computed as:

(
( ]
(1 —gen) - T,y (1 — halt) - Pr(®par (X[d]) = S[] 2 oaeyxvy
(1 —gen) - [[i (1 — halt) - Pr[®py (Yi]) = S[]] —
H?:l Pr[(bEM(XM) = S[ZH ; e dseq(X,Y)
L=y Pr(®en (Yi)) = Sl —
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By Theorem 2, for any index i:

(3.18)

Applying Equation 3.18, we obtain:

n

H o d(X[i,Y1i) % (odeg(X,Y)

=1

60"2?:1 d(X[lLYM) < 60“dseq(X7Y)

which holds by definition of d,,, completing the proof for Case 1.

Case 2: |S| < | X| = |Y]. In this case, Algorithm 3 must have run lines 6-9 for |S| + 1

iterations; in the first | S| iterations, the event with probability (1 — halt) must have occurred
to build the perturbed sequence .S, and in the last iteration the halting event must have oc-
curred so that the sequence of length |.S| = m was returned without adding more elements.

The odds-ratio becomes:

(
( ]
halt - T[;Z, (1 — halt) - Pr[@pa (X[i]) = S[]] 2 qagxy)
halt - TT%, (1 — halt) - Pr[®ppy (Yi]) = S[i]] —
ITZ, Prl®pur (X[i)) = S[E]] 2 aaeyoxy)
[T, Prl®@pa (Yi]) = S[il] —

Notice that this case is different than Case 1 in the bounds of the product—the product goes

from i = 1 to length of |S/|, which is shorter than | X'|. Applying Equation 3.18:

(O ST dXL YD) & gardug(X,Y)

Distance metric d satisfies the non-negativity property by definition. Therefore, for m <
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n = | X|, we have:

completing the proof for Case 2.

Case 3: |S| > | X| = |Y|. In this case, Algorithm 3 must have run lines 6-9 for | X|

iterations, and in each iteration the event with probability (1 — half) must have occurred.
Then, for |S|— | X| iterations, lines 10-13 must have run, and the item generation event with
probability gen must have occurred in these iterations. Finally, to return .S, a final iteration
must have occurred with the stopping event having (1 — gen) probability. Let m = |S| and

n = | X|. The odds-ratio is:

PI'[(PSEQ(Y) = S] -

(1 —gen) - [1:2," gen - Prirandom = S|[i]

[Ti= (1 = halt) - Pr{® g (X i]) = S]]

(1 —gen) - [12," gen - Prirandom = S|[i]

1= (1 = halt) - Pr(® gy (Y]i]) = S[i]]
where Pr[random = S[i]] denotes the probability that the random sampling on line 11

of Algorithm 3 returns item S[i]. Note that the random sampling does not depend on the

properties of inputs X, Y, therefore we can safely cancel most terms. We end up with:

[Tz Prl@pur (X[i)) = Sl 2 ey
[Lizy Pr(®par (Y[i]) = ST} —

Applying Equation 3.18 and continuing in the same fashion as Case 1, it is straightforward

to complete the proof. 0

In Algorithm 3, high halt causes the algorithm to terminate early for a long sequence,

causing the perturbed sequence S to be much shorter than X. High gen adds random items
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to S, thus it causes .S to be much longer than X; in addition, since the added items are sam-
pled uniformly at random, S will contain bogus elements. If we consider only the utility
perspective, simultaneously decreasing the values of halt and gen yields higher sequence
utility. However, Theorem 3 places bounds on the values of halt and gen; we cannot ar-
bitrarily decrease them, otherwise we will not satisfy the indistinguishability properties.
Among the given choices, asymmetric parameter choice is preferable when we expect
users’ true sequences to be long, since it assigns a lower halting probability compared
to the symmetric case, thereby decreasing the probability that the algorithm is terminated
early. This is done at the cost of increased gen, which implies that the asymmetric case will
more likely add synthetic elements to S. Since this is detrimental to utility especially when
users’ true sequences are short, for short sequences, we recommend using the symmetric
parameter choice.

Application to set-valued data: Although Sequence-CLDP is designed for sequences,
it can be applied to set-valued data without information loss as follows. First, each user
enforces a random ordering among the items in their itemset, to convert the itemset to a
sequence. Second, the user runs Sequence-CLDP on this converted sequence to obtain a
perturbed sequence. Third, the user removes the ordering from the perturbed sequence to
obtain a perturbed itemset. Finally, the perturbed itemset is sent to the server. On the other
hand, we cannot use existing set-valued LDP protocols [97, 105] on sequences without
losing their sequentiality (ordering) aspect. Hence, we believe Sequence-CLDP has wider

applicability than existing set-valued protocols.

3.5 Experimental Evaluation

We compare our proposed CLDP protocols against the existing LDP protocols on real-
world cybersecurity datasets provided by Symantec as well as on public datasets. In sin-
gleton item comparison, we use RAPPOR (proposed and deployed by Google [14]) and

OLH (recent protocol with improved utility over prior works [84]). In set-valued setting,
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we use SVIM as the current state-of-the-art LDP protocol [105]. In each experimental
dataset and setting, given U, d and ¢, we freshly execute Equation 3.12 and the process in
Section 3.3.2 to obtain the appropriate o parameter for CLDP to ensure a fair comparison
under each individual setting. Uniform 7 is used in each execution of Equation 3.12 since
it is the most challenging 7 setting for CLDP to demonstrate its utility.

To ensure our experimental comparison between LDP and CLDP is fair with respect to
the level of privacy protection under the Bayesian adversary model, we perform the follow-
ing steps. First, we simulate data collection with LDP protocols and chosen €, and measure
the utility loss and privacy protection in terms of MPC. Second, we use the technique in
Section 3.3.2 to determine the « that should be used for CLDP to match the protection
achieved by LDP. Third, we simulate data collection with CLDP protocols and « from the
previous step. Finally, we compare the utility loss caused by CLDP versus the utility loss
of LDP.

In Section 3.5.1, we consider cybersecurity use cases that reflect the limitations of ex-
isting LDP protocols, e.g., user populations are small and sequential datasets cannot be
handled. In these experiments, our results show that LDP protocols do not yield sufficient
utility while our CLDP protocols offer satisfactory utility in most cases, hence their use
in corresponding security products is practical and preferable. In Section 3.5.2, we experi-
ment on public datasets which differ from the above since they do not reflect the limitations
of LDP protocols, e.g., user populations are sufficiently large (over half a million). Even so,
we show that our CLDP protocols perform at least comparable to, or in many cases better
than, existing LDP protocols. An interesting result is that while LDP protocols are capable
of finding the frequencies and ranking of heaviest hitter items with good accuracy (e.g., top
5-10% of the universe), CLDP protocols’ accuracy is similar for these few heavy hitters,
but they significantly outperform LDP protocols for remaining items (medium frequency

and infrequent items).
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3.5.1 Case Studies with Cybersecurity Datasets

Cybersecurity datasets provided by Symantec allowed us to test the accuracy of our pro-
tocols on pertinent real-world use cases and assess their practical applicability. We report
three case studies: ransomware outbreak detection, ransomware vulnerability analysis, and

inspecting suspicious activity.

Case Study 1: Ransomware Outbreak Detection

Setup: We consider the case where Symantec collects malware reports from machines run-
ning its anti-malware protection software. Each machine sends a locally private malware
report to Symantec daily, containing the count of malware-related events observed on that
machine during that day. Privacy is injected into malware reports by modifying the actual
counts with LDP/CLDP.

For our experiments, we obtained the daily infection counts of two ransomware variants
within those time periods in which we already know there were global outbreaks. Specif-
ically, we considered the infections reported for Cerber between March 22 and April 21
in 2017 with the outbreak happening on April 6, and those reported for Locky between
February 11 and March 13 in 2018 with the outbreak happening on February 26. We evalu-
ated how accurately the total number of daily infections for these two ransomware variants
can be estimated using our Ordinal-CLDP approach versus LDP approaches RAPPOR and
OLH. The goal of our experiment is to retroactively test whether LDP/CLDP could identify
if and when a ransomware outbreak happened.

Results: We illustrate the results in Figures 3.4 and 3.5 for Cerber and Locky respec-
tively. If we use RAPPOR or OLH to perform detection, we obtain many false positives
(days on which RAPPOR/OLH claim there was an outbreak, but in fact there was not)
and false negatives (days on which RAPPOR/OLH claim there was no outbreak, but in
fact there was). Some important examples are marked on the graphs, e.g., in Figure 3.4,

RAPPOR raises false positives on March 23-24 as well as April 12-13. In addition, OLH
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Figure 3.4: Monitoring the infections of ransomware Cerber for one month to detect a
potential outbreak. Illustrated in the graphs is the actual number of infections versus in-
fections reported by LDP protocols RAPPOR and OLH, and our Ordinal-CLDP protocol
(¢ = 1). Ordinal-CLDP enables accurate recovery of daily infection counts and detection
of outbreaks without major false positives or negatives.
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Figure 3.5: Monitoring the infections of ransomware Locky for one month to detect a
potential outbreak. Refer to Figure 3.4 for a similar experiment with a different ransomware
(¢ = 1.0). Same conclusions apply to this figure.

misses the onset of the outbreak happening on April 5 by reporting 0 observed infections
whereas in reality there are 16,388 infections. False positives are costly to Symantec since
they cause the company to devote resources and response teams to combat a malware out-
break that does not exist. False negatives are also costly since Symantec will not react
to an outbreak in a timely manner, losing customer trust. Observing this many false pos-
itives and false negatives with LDP methods raises serious concerns. In contrast, using
Ordinal-CLDP, Symantec can obtain daily infection counts with high accuracy. Note that
in Figures 3.4 and 3.5, there are small discrepancies between the actual infections versus
CLDP’s predicted infections, which demonstrates that CLDP is not error-free. Neverthe-
less, using CLDP ransomware outbreaks can be detected in a privacy-preserving manner

without major false positives or negatives.
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Case Study 2: Ransomware Vulnerability Analysis

Setup: Next, we ask the question: Can we find which operating systems were most infected
by ransomware? This would assist Symantec in discovering vulnerable or targeted OSs.
When performing this analysis, we focus specifically on the day of outbreak (April 6, 2017
for Cerber and February 26, 2018 for Locky) and the machines reporting infections on this
day. We assume Symantec obtains a locally private malware report from these machines
including the vendor, specs, and OS version. Upon collecting reports from all machines,
Symantec infers how frequently each OS was infected in the population, and ranks OSs in
terms of infection frequency.

We conduct two experiments. In the first experiment, we find the actual (non-private)
infection frequency of each OS, and compare actual frequencies with the frequencies that
would be obtained if RAPPOR, OLH, or Item-CLDP were applied, using L1 distance as
measurement of error. We vary € between 0.5 < ¢ < 4. In the second experiment, we fix
¢ =1, rank the OSs in terms of infection frequency (highest to lowest), and study the top-10
most infected OSs. Due to ethical considerations, we anonymize OS names by renaming
according to their actual rank, e.g., top-ranked OS is named os1, 2nd ranked OS is named
0s2, and so forth. If a lower-ranked OS is a different version of a higher ranked OS, we add
the version information to the name, e.g., os1 v2.

Results: We report the results of these experiments on Cerber and Locky in Figures
3.6 and 3.7, respectively. In the tables on the right, those OSs that are correctly discovered
by RAPPOR, OLH, and Item-CLDP with correct ranks are depicted in bold. OSs that are
correctly discovered but have incorrect rank are depicted in regular font. OSs that privacy
methods claim to be among top-10 but in reality are not are depicted with strike-through.
We first observe from the tables that the heaviest hitters are correctly discovered in the
correct order by all privacy solutions, e.g., top-3 in Cerber. However, as we move lower
in the ranking, LDP/CLDP methods start making errors. Particularly for Cerber, RAPPOR

and OLH correctly identify only 4 and 5 out of 10 most frequent OSs, respectively, whereas
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Figure 3.6: Analyzing OS vulnerability for ransomware Cerber. Left: L1 distances between
actual OS counts versus locally private counts reported by RAPPOR, OLH, and our Item-
CLDP protocol. Right: Actual and locally private top-10 OS rankings when € = 1. Bold =
OS with correct rank, regular font = OS with wrong rank, strike-thresgh = OS not in actual
top-10. Item-CLDP better preserves relative rankings and generally has lower L1 errors.

Item-CLDP can identify 9 out of 10. Note that Item-CLDP is missing only the lowest
ranked OS (10th), which is arguably the least significant among all ten.

L1 errors in the graphs on the left show that when ¢ is small (0.5 or 1), LDP is compet-
itive against CLDP in this case study. When ¢ is higher, CLDP clearly dominates in terms
of accuracy. Comparing tabular rankings with L1 scores, we see that CLDP can preserve
relative rankings even when its L1 errors are similar to those of LDP. For example, the L1
errors of RAPPOR, OLH, and Item-CLDP are similar when € = 1. However, studying the
top-10 tables shows that Item-CLDP is better at identifying frequent OSs than RAPPOR
and OLH.

Case Study 3: Inspecting Suspicious Activity

Setup: In this case study, we consider the sequences of security-related event flags raised
by Symantec’s behavioral detection engine on each client machine. There are 143 differ-
ent flags signalling various forms of suspicious activity, ranging from process injection to
load point modification. When a flag is raised, it is logged on the client machine with a

timestamp, as such the collection of the flagged events constitute a sequence over a time
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Figure 3.7: Analyzing OS vulnerability for ransomware Locky. Refer to Figure 3.6 for a
similar experiment with a different ransomware, same details apply to this figure.

period. We investigate the accuracy of collecting these event sequences using Sequence-
CLDP. We focus on the same 31-day periods we considered in Case Study #1, and collect
locally private event sequences from the same set of machines infected by ransomware
Cerber/Locky. Longitudinal analysis of these event sequences enables Symantec to inspect
suspicious activities possibly related to the ransomware infection, e.g., chain of anomalous
events leading to the infection. This helps in inferring the precursors or consequences of
the infection, and Symnatec can update its detection engine based on the findings. In to-
tal, we have 23,558 and 5,717 sequences for Cerber and Locky, respectively, with lengths
between 2 to 30.

We use n-gram analysis by mining the top-k popular bigram and trigram patterns from
the sequences [106, 88]. We mine the actual patterns that would be obtained if no privacy
were applied, and the patterns obtained after Sequence-CLDP is applied. Let A denote the

set of actual top-k patterns and B denote the set of top-k patterns mined from perturbed

_ |AnB]|

= [A0B|" Jaccard

data. We measure their similarity using the Jaccard index: Jaccard(A, B)

similarity is between 0 and 1, with values close to 1 indicating higher similarity. We do not
compare against RAPPOR, OLH or SVIM in this case study, since they are not compatible
with sequence perturbation.

Results: The results are shown in Figure 3.8. We make two important observations.
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Figure 3.8: Utility preservation of Sequence-CLDP in mining top-k n-gram patterns from
security event sequences obtained from ransomware infected machines. Sequence-CLDP
allows discovery of a high fraction of frequent patterns, which are useful to analyze suspi-
cious activity on the machines.

First, as we relax the privacy requirement by increasing «, n-grams mined from perturbed
sequences become more accurate, as implied by the increase in Jaccard similarity. Second,
mining fewer top-k patterns is easier than mining many patterns in general. For exam-
ple, top-20 in Locky has higher Jaccard similarity score than top-30 and top-50. Similar
observation applies to Cerber. This shows Sequence-CLDP preserves the heaviest hitters
best, and has higher probability of making errors as n-grams become less and less frequent,
which agree with our intuition from Case Study #2. Note that we mine more patterns in
the case of Cerber (up to top-200 as opposed to top-50 for Locky) since the Cerber dataset
has more input sequences, thus we can find more n-grams with significant support and

confidence.

3.5.2 Experiments with Public Datasets

Datasets: We also experimented on two public datasets: POS and Retail. Both are set-
valued datasets. We use them to run singleton non-ordinal item experiments as well as
set-valued experiments. For the former, we randomly sample an item from each itemset
to create a singleton item dataset. For the latter, we run the set-valued adaptation of our
Sequence-CLDP protocol and compare it against SVIM, the state-of-the-art set-valued LDP

protocol [105].
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POS contains several years of market basket sale data from a large electronics retailer
[107]. It consists of a total of 515,596 transactions with 1,657 unique items sold.

Retail contains transactions occurring between January 2010 and September 2011 for
a UK-based online retail site [108]. After cleaning empty entries, this dataset consists of a
total of 540,455 transactions with 2,603 unique items.

Evaluation Metrics: We use the following metrics to evaluate the accuracy of the
privacy protocols. Let x denote an item, true(z) denote its true frequency, and est(z)
denote its frequency estimated by the privacy protocol. Let X = {xy, %o, ..., x)} be the
ground truth top-k items where x; is the j’th most frequent item.

Average Relative Error (AvRE) measures the mean relative error in top-k items’ esti-

mated frequencies versus their true frequencies. Formally:

abs(est(x)—true(x))
erxgt

AVRE — true(x)
k

The Kendall-tau coefficient (KT) measures how well the rankings of heavy hitter top-k
items are preserved. A pair of items z, y € X are said to be concordant if their sorted

popularity ranks agree, i.e., either of the following hold:

true(z) > true(y) A est(x) > est(y)

true(z) < true(y) Aest(z) < est(y)

They are said to be discordant if neither holds. Then, the Kendall-tau coefficient of corre-

lation can be defined as:

_ (# of concordant pairs) — (# of discordant pairs)

KT Kk —1)/2

Results of Singleton Experiments: We run experiments in the singleton setting and

compare Item-CLDP with LDP protocols RAPPOR and OLH. Each experiment is repeated
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Figure 3.9: AVRE (lower is better) and Kendall-tau scores (higher is better) for singleton
experiments across all items in datasets Retail and POS. Item-CLDP provides high utility in
estimating item frequencies and rankings across a spectrum of privacy parameter settings.
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Figure 3.10: AVRE and Kendall-tau scores for top-k singletons in Retail and POS. ¢ fixed
to 2.5, varying k on x-axis. Item-CLDP’s accuracy is higher than LDP protocols especially
for medium-frequency and infrequent items, e.g., k > 256.

20 times and results are averaged. In Figure 3.9, we measure AVRE and Kendall-tau across
all items by setting k = |U|. Results show that as privacy is relaxed (i.e., € and « increase)
AVRE decreases and Kendall-tau increases. In most cases, Item-CLDP provides better ac-
curacy; most noticeably, Kendall-tau scores of Item-CLDP are much higher than those of
RAPPOR and OLH. When ¢ > 3.5, Kendall-tau scores indicate almost perfect correla-
tion between actual item rankings and rankings found by Item-CLDP, confirming its high
accuracy.

Next, we fix the privacy parameter to ¢ = 2.5 and vary the k£ (for top-k) to analyze
how the protocols behave with respect to varying popularities of items. The results of
this experiment are reported in Figure 3.10. For small k such as £ < 64, there is usually
one LDP protocol at least comparable to or better than Item-CLDP. Note that k£ = 64 is a

constrained setting covering less than only 6% of the items in the universe. LDP protocols
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Figure 3.11: AVRE (bars, left y-axis) and Kendall-tau scores (lines, right y-axis) for set-
valued experiments across all items. Sequence-CLDP preserves item frequencies and rank-
ings more effectively than SVIM.

are optimized to discover such heavy hitters and therefore, they deliver good results when
k is small. However, for larger k, we observe that Item-CLDP can significantly outperform
RAPPOR and OLH. In particular, for £ > 512, under LDP protocols there is almost no
correlation in frequency rankings (implied by Kendall-tau results near or below 0), whereas
in Item-CLDP, a strong correlation is maintained across all k. In short, if the goal is to
discover only the top few heavy hitters, LDP protocols offer sufficient accuracy. However,
if the goal is to find statistics regarding medium-frequency or infrequent items as well, LDP
protocols have inadequate accuracy and we recommend using Item-CLDP.

Results of Set-Valued Experiments: We compare the set-valued adaptation of Sequ-
ence-CLDP against the SVIM protocol satisfying LDP [105]. Similar to the singleton
experiment, we start by setting k& = |U/| and vary ¢ to study the impact of the privacy budget
on accuracy across all items. From the results in Figure 3.11, we observe that Sequence-
CLDP offers significant accuracy improvement in terms of both AVRE and Kendall-tau
score. For example, the accuracy improvement in terms of AvRE ranges between 30-90%
depending on the dataset and the value of the privacy parameter. In Figure 3.12, we fix € to
2.5 and vary k. As we increase k, the accuracy of the protocols generally decrease, since

making estimations regarding infrequent items is often more difficult than estimating only
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Figure 3.12: AVRE (bars, left y-axis) and Kendall-tau scores (lines, right y-axis) for set-
valued experiments over top-k items with ¢ = 2.5. Sequence-CLDP offers higher accuracy
in terms of AVRE and Kendall-tau for majority of & values.

the heavy hitters. For Sequence-CLDP, this accuracy decrease is linear or sub-linear; but
for SVIM, when k > 512, errors start increasing almost exponentially, reiterating that LDP
protocols can be poorly suited to estimate statistics regarding infrequent items. Studying
the Kendall-tau scores, for very small k, Kendall-tau of SVIM and Sequence-CLDP are
similar, whereas when k& > 128, Sequence-CLDP’s Kendall-tau scores are significantly

better.

3.6 Related Work

Differential privacy was initially proposed in the centralized setting in which a trusted cen-
tral data collector possesses a database containing clients’ true values, and noise is applied
on the database or queries executed on the database instead of each client’s individual value
[33, 94]. In contrast, in LDP, each client locally perturbs their data on their device before
sending the perturbed version to the data collector [83]. The local setting has seen practi-
cal real-world deployment, including Google’s RAPPOR as a Chrome extension [14, 85],
Apple’s use of LDP for spelling prediction and emoji frequency detection [86, 16], and
Microsoft’s collection of application telemetry [15].

LDP has also sparked interest from the academic community. There have been several
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theoretical treatments for finding upper and lower bounds on the accuracy and utility of
LDP [83, 95, 109, 110, 111]. From a more practical perspective, Wang et al. [84] showed
the optimality of OLH for singleton item frequency estimation. Qin et al. [97] and Wang et
al. [105] studied frequent item and itemset mining from set-valued client data. Cormode et
al. [112] and Zhang et al. [113] studied the problem of obtaining marginal tables from high-
dimensional data. Recently, LDP was considered in the contexts of geolocations [114],
decentralized social graphs [115], discovering emerging terms from text [116, 117], and
key-value stores [118].

However, there have also been criticisms and concerns regarding the utility of LDP,
which motivated recent works proposing relaxations or alternatives to LDP. BLENDER
[119] proposed a hybrid privacy model in which only a subset of users enjoy LDP, whereas
remaining users act as opt-in beta testers who receive the guarantees of centralized DP. In
contrast, our work stays purely in the local privacy model without requiring a trusted data
collector (necessary in centralized or hybrid DP) or opt-in clients. Personalized LDP, a
weaker form of LDP, was proposed for spatial data aggregation in [114]. Utility-Optimized
LDP (ULDP) was proposed in [120], which treats certain client data as more sensitive than
others and suggests adaptations of existing perturbation schemes (such as utility-optimized
RAPPOR and utility-optimized GRR) that specifically address the more sensitive data. In
contrast, our CLDP approach treats all users’ data as sensitive (parallel with LDP assump-

tions) and remains agnostic and extensible with respect to data types.

3.7 Conclusion

In this chapter, we proposed Condensed Local Differential Privacy (CLDP) for utility-
aware and privacy-preserving data collection, and developed three protocols: Ordinal-
CLDP, Item-CLDP, and Sequence-CLDP for handling a variety of data types prevalent in
the cybersecurity domain. Our protocols remain accurate for populations that are an order

of magnitude smaller than those required by existing LDP protocols to give adequate accu-
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racy. Case studies using Symantec datasets and experiments on public datasets demonstrate

the utility of our proposed approach.
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CHAPTER 4
ANALYZING LOCAL DIFFERENTIAL PRIVACY PROTOCOLS THROUGH A
BAYESIAN ADVERSARY LENS

Local Differential Privacy (LDP) is popularly used as a practical standard for privacy-
preserving data collection. Numerous LDP protocols have been proposed in the literature
which differ in how they provide higher utility in different settings. Yet, few have engaged
in analyzing and understanding the privacy relationships of the different protocols with
respect to different utility and security settings. In this chapter, we present a principled
framework for analyzing the privacy and utility properties of representative LDP proto-
cols with three original contributions. First, we introduce a common Bayesian adversary
model and a suite of metrics to formally analyze the privacy relationships of different LDP
protocols. We show that different LDP protocols have substantially different responses to
the attack effectiveness of a Bayesian adversary, measured in terms of Adversarial Suc-
cess Rate (ASR). Second, we provide a formal and empirical analysis on a set of privacy
and utility-critical factors such as encoding parameters, privacy budget ¢, data domain, ad-
versarial background knowledge, and statistical data distribution. We show that different
settings of these factors can have significant effects on the privacy and utility properties
of LDP protocols, and that no single protocol provides consistently high robustness (low
ASR) against Bayesian adversaries. Third, we develop LDPLens, a prototype implementa-
tion of our proposed framework, which can recommend an effective protocol when given
a data collection scenario, utility requirement and adversary metric; based on analyzing
the privacy-utility tradeoffs of candidate LDP protocols. We evaluate the effectiveness of
LDPLens using three case studies with real-world datasets. We show that: (i) LDPLens can
effectively recommend a different protocol from one case study to another, and no single

LDP protocol prevails over others across all three case studies. (ii) In each case study, the
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protocol recommended by LDPLens offers up to 2-fold reduction in utility loss or ASR,

compared to a random protocol.

4.1 Introduction

In recent years, Local Differential Privacy (LDP) has emerged as a popular notion for
privacy-preserving data collection in client-server settings [121, 86, 15, 14, 97, 84]. In LDP,
each client locally perturbs their sensitive data on their device before sending the perturbed
output to the data collector. Since privacy is achieved on the client device via randomized
perturbation, LDP enables privacy-preserving analytics in scenarios where clients do not
trust the data collector. LDP has received significant attention from the research commu-
nity as well as the industry, including Google’s RAPPOR for analyzing Chrome browser
settings [14], Apple’s implementation in iOS to collect popular emojis and trending words
for typing recommendation [122, 16, 86], and Microsoft’s implementation in Windows 10
for collecting application telemetry [15].

The popularity of the LDP notion has led to the development of several LDP proto-
cols. Common LDP protocols include GRR, BLH, OLH, RAPPOR, OUE and SS [95, 84,
14, 85, 123, 124]. New applications nowadays often use these LDP protocols as building
blocks for building more complex systems with richer capabilities. For example, among
recently developed applications, [125] uses GRR, RAPPOR and OUE protocols as build-
ing blocks, [105] uses GRR and OLH protocols as building blocks, [126] uses the OUE
protocol, and [117] uses GRR and OLH protocols. Yet, few have engaged in analyzing the
privacy relationships of these protocols across different factors. It is expected that differ-
ent applications will have varying settings in terms of privacy budget ¢, domain U/, data
encoding parameters, statistical data distribution, and so forth. While existing research has
recognized the utility impact of such factors on LDP protocols [84, 121, 105, 127, 126],
their privacy impacts have been relatively less studied.

In this chapter, we present a principled framework for analyzing the privacy and utility
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properties of LDP protocols and make three contributions. First, we introduce a Bayesian
adversary model to formally analyze the privacy relationships of LDP protocols under
varying settings. We show that different LDP protocols may have substantially different
responses to the attack effectiveness of the Bayesian adversary, measured in terms of Ad-
versarial Success Rate (ASR). Second, we provide a formal and empirical analysis of six
popular LDP protocols (GRR, BLH, OLH, RAPPOR, OUE, SS) using a set of privacy
and utility-critical factors including encoding parameters, privacy budget ¢, data domain
U, adversarial background knowledge, and statistical data distribution. We mathemati-
cally derive expected ASR under each protocol using expected value analysis and we also
perform experimental analysis using four datasets, including real-world URL page visit
datasets. Our mathematical derivations and experimental results show that: (i) For proto-
cols that have internal encoding and construction-related parameters, changing the values
of these parameters has substantial impact on ASR (3-4 fold or more). (ii)) ASR tends to
differ from protocol to protocol even with the same ¢ being used, due to changes in data
domain and encoding, protocol suitability, and statistical distribution. (iii) One protocol
may yield higher ASR than another protocol under a certain set of factors, but the opposite
may be true under a different set of factors. These findings show that no single protocol
yields optimal utility and lowest ASR consistently across different combinations of factors.

Motivated by the above findings, the third contribution of this chapter is the design and
development of LDPLens, a prototype implementation of our proposed framework. LD-
PLens leverages its privacy-utility tradeoff analysis to recommend an effective LDP proto-
col that is suitable under the given setting of factors. Concretely, LDPLens enables its user
to specify relevant factors through customizable modules. Its adversary module enables
specification of the adversary model and privacy metric (such as our proposed Bayesian
adversary and ASR metric). Its utility measurement module enables the specification of a
desired application-specific utility metric. Its data characteristics module enables the spec-

ification of factors such as data domain I/, encoding parameters, and statistical data distri-
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bution. Combining these modules and considering the privacy/utility constraints specified
by the user, LDPLens enables the user to explore the privacy-utility tradeoffs of each pro-
tocol under the chosen metrics, thereby assisting the selection of a suitable protocol under
the user’s specified setting. In addition to recommending suitable protocols, LDPLens can
also help users to select a good ¢ value that fits their desired privacy/utility constraint.

We demonstrate LDPLens through real-world case studies. For demonstration, we use
average [, norm error in item frequency estimation as our utility metric, and Bayesian
adversary’s ASR as our privacy metric. Upon executing LDPLens on the MSNBC dataset
with a utility constraint of maximum L, error < 0.002, we observe that the recommended
protocol achieving lowest ASR (highest privacy) is OLH. The recommended ¢ here is € ~
1. In contrast, upon executing LDPLens on the Kosarak dataset with a privacy constraint
of maximum ASR < 0.25, we observe that the recommended protocol achieving lowest L,
error (highest utility) is GRR. The recommended ¢ here is € ~ 2. In both cases, using the
protocol recommended by LDPLens rather than a randomly chosen protocol can yield up
to 2-fold reduction in utility loss or ASR, which demonstrates the benefits of our LDPLens
approach.

We conjecture that LDPLens can be useful for assisting non-expert application design-
ers in selecting LDP protocols and ¢ privacy budget values suitable for their application-
specific settings and privacy/utility constraints. LDPLens can also serve as a unifying plat-
form for evaluating LDP protocols under varying adversary models, privacy metrics, and
utility metrics.

The rest of this chapter is organized as follows. In Section 4.2, we review LDP back-
ground, briefly describe popular LDP protocols, and state our problem setting and adver-
sary assumptions. In Section 4.3, we formally define our Bayesian adversary .4 and math-
ematically derive the expected ASR of .4 under each protocol. In Section 4.4, we perform
experimental analysis with our adversary model. In Section 4.5, we describe the design

and development of LDPLens. We summarize related work in Section 4.6 and conclude in
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Section 4.7.

4.2 Background

4.2.1 Local Differential Privacy

Local Differential Privacy (LDP) is a popular notion for privacy-preserving data collection.
It has been deployed in consumer-facing products of companies such as Apple, Google
and Microsoft [15, 14, 122]. In a typical LDP scenario, there exist many clients (users)
and a data aggregator (server). To protect privacy, each client perturbs their true value on
their local device using a randomized algorithm W, and sends the perturbed output to the

aggregator.

Definition 5 (¢-LDP). A randomized algorithm V satisfies -local differential privacy (e-

LDP), where ¢ > 0, if and only if for any two inputs vy, vy in universe U, it holds that:

Privlv) =yl _ 4.1)

Yy € Range(V) : PriU(vy) = 4] =

where Range(\V) denotes the set of all possible outputs of V.

e-LDP ensures that given the perturbed value ¥y, an adversary will not be able to dis-
tinguish whether the original value was v, or v, with probability odds-ratio higher than e°.
Parameter ¢ is often called the privacy budget. Lower ¢ yields stronger privacy.

The popularity of the LDP notion has led to the development of several LDP protocols,
which implement the LDP notion in different ways. Let U/ denote the universe (domain) of
possible items, and let £ denote the client population. For client ¢ € £, we say that v, € U
is (’s true value. v, is encoded and perturbed by the LDP protocol, and the perturbed
output is sent to the server. Upon receiving perturbed outputs from many clients, the server
performs estimation to recover statistics pertaining to the general client population, by
applying a statistical estimator on the aggregate noisy data it has received. For a value

v € U, let C(v) the true count of v, i.e., total number of clients in £ who truly possess

104



v. We denote by C(v) the estimated count of v, i.e., the count estimated by the server
following the LDP protocol. Next, we give brief descriptions of popular and representative
LDP protocols that are commonly used in the literature. Each protocol is characterized
by its two main components: its client-side encoding and perturbation technique, and its

server-side estimation technique.

4.2.2 LDP Protocols

We briefly describe six representative LDP protocols: GRR, BLH, OLH, RAPPOR, OUE
and SS in terms of how they differ in (1) the mechanisms for encoding and injecting pertur-
bation to client data on client devices to achieve privacy protection, and (2) the mechanisms
for aggregating and estimating from perturbed data collected from population £ to recover
high-utility estimates.

Generalized Randomized Response (GRR) is a generalization of the randomized re-
sponse survey technique introduced in [93] to support non-binary {/ and arbitrary e. GRR
uses direct encoding such that ENCODEGgr(vs) = v,. The perturbation algorithm Wggrg

perturbs the encoded value and outputs y, € U with probability:

eE

D= == ify, = vy

4.2)
q = 65+|]Z-/[|—1 lf yf 7& /Uf

where [U/| denotes the size of the universe. This satisfies e-LDP since © = ¢°. The client
sends ¥, to the server.

Upon receiving perturbed responses from all clients, the server wants to estimate the
true number of clients who possess some value v € U. To do so, the server first counts
C (v): total number of clients who reported v as their perturbed output. Then, the estimate
C(v) is computed as:

A Clv)—I£] g

Clv) = 4.3
(v) p— (4.3)
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Binary Local Hashing (BLH) is inspired by [95], which uses random matrix projection
for building Succinct Histograms (SH). Instead of a random matrix projection that can
be expensive to construct and perform matrix multiplication, [84] proposed that using a
random hash function A from a universal hash function family H is logically equivalent.
It was noted in [127] that Hadamard transform is also similar in essence to BLH. It can be
used to speed up BLH in cases where evaluating a Hadamard entry is faster than evaluating
hash functions.

Let ‘H be a universal hash function family such that each hash function H € ‘H maps a
value from ¢/ into one bit, i.e., H : 4 — {0, 1}. Each client / first draws a hash function
uniformly randomly from H, i.e., H, <—g H. Then, bit b is computed as b, = H,(v,).
Encoding result is the tuple: ENCODEgy(vy) = (Hy, bs). Perturbation algorithm Wg; 4

perturbs b, to b, such that:

€

< ifh =1
Prfp,=1] =4 “ (4.4)
S ifb =0

The client sends tuple (Hy, b)) to the server.
The server receives tuples of the form (H,, b)) from all clients ¢ € L. To perform
estimation for value v, the server computes Sup(v): total number of clients whose reported

tuples satisfy the constraint: b, = Hy(v). Then, the estimate C(v) is computed as:

Oy = &1 -2 Sup(v) ~ I£) (4.5)

ec —1

Optimized Local Hashing (OLH) differs from BLH in that the output space of the hash
functions in family H is no longer binary. Instead, they are g-ary. That is, OLH allows the
client to encode v, into an integer in range [1, g] instead of a single bit, where g > 2 is an
adjustable parameter of the protocol. The rationale is to address BLH’s excessive utility

loss in cases where binary encoding is suboptimal. OLH’s approach was shown to yield
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substantial utility improvement compared to BLH when € and U/ are large [84]. The default
value of g is g = e® + 1 as derived and used in [84, 105].

Let H be a universal hash function family where each I € H maps a value from U
into an integer in [1, ¢, i.e., H : U — [1, g]. Each client ¢ randomly draws H; <—g H and
computes integer x, as: x, = Hy(v,). Encoding result is the tuple: ENCODEqpy(vy) =

(Hy, z¢). Perturbation algorithm Wy i perturbs x, to x; such that:

£

) effe——l lfl’g:Z
Viepg : Prlzp=i={""" (4.6)
$ lf[ﬁg#l

The client sends tuple (H,, x}) to the server.
The server receives tuples of the form (Hy, z;) from all clients ¢ € L. To perform
estimation for value v, the server computes Sup(v): total number of clients whose reported

tuples satisfy the constraint: ;, = H,(v). Then, the estimate C'(v) is computed as:

(e +g—1)-(g-Sup(v) —|L])
(es=1)-(g—1)

Cv) = 4.7
RAPPOR was developed by Google and implemented in Chrome [14, 85]. While the
original version of RAPPOR relies on Bloom filters for encoding string data, variants of
RAPPOR were deployed in follow-up works for binary, unary and complex data depending
on the application scenario [84, 18, 97, 115]. Here, without loss of generality, we give the
version with unary encoding.

Client ¢ initializes a bitvector B, with length |/|. The client sets By[v,] = 1, and for all
remaining positions j # vy, By[j] = 0. Then, the perturbation step of RAPPOR takes as

input By and outputs a perturbed bitvector Bj. Perturbation algorithm Wgsp considers each
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bit in B, one-by-one, and either keeps or flips it with probability:

ee/ . .
S B[] =1

Viepup © Pr[Bli] = 1] = (4.8)
: if By[i] =0

es/241

The client sends Bj to the server.
The server receives perturbed bitvectors B, from all clients ¢ € L. To perform estima-
tion for value v, Sup(v) is computed as the total number of received bitvectors that satisfy:

Bj[v] = 1. Then, the estimate C'(v) is computed as:

Sy Sup) 1] (@ =)

C 4.9
(v) 5 1 (4.9)
where « is the bit keeping probability: o = —ef/z/ : T

Optimized Unary Encoding (OUE) is an optimized version of RAPPOR, such that its
encoding phase is same as RAPPOR with unary encoding, but its bit keeping and flipping
probabilities are different. As opposed to RAPPOR, it treats the 0 and 1 bits asymmetrically
to improve accuracy of server-side estimation [84, 126].

Client ¢ initializes bitvector B, with length |I/| such that B,[v,] = 1, and for all re-
maining positions j # vy, By[j] = 0. Perturbation algorithm Woyg takes as input B, and

produces perturbed bitvector B, such that:

- if Bli] = 1
Viewuy + Pr[Byli] = 1] = (4.10)

if By[i] =0

N [—=

1
ef+1

The client sends Bj to the server.
The server receives perturbed bitvectors B, from all clients ¢ € L. To perform estima-

tion for value v, Sup(v) is computed as the total number of received bitvectors that satisfy:
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Bj[v] = 1. Then, the estimate C'(v) is computed as:

Clv) = 2 ((e° + 128- fulp(v) —|£]) @11

Subset Selection (SS) operates by having each client ¢ report a randomly selected subset
Zy of U to the server [123, 127]. Client’s true value v, has higher probability of being
included in their reported Z,, compared to other values in ¢/ \ {v,} which are sampled

uniformly randomly without replacement. The subset size k = |Z,| is a key parameter of

||
ecf+1°

the protocol. In [123, 127], it was noted that the default value of k is k =
The execution of the SS protocol starts by initializing an empty subset Z,. Algorithm

Wgg adds v, to Z, with probability k.esk' - It constructs the remainder of 7, as follows:

e
+U|-k"

* If v, was added to Z; in the previous step, then k£ — 1 items are sampled from U \ {v, }

uniformly randomly without replacement, and they are added to Z,.

* If v, was not added to Z, in the previous step, then k items are sampled from U/ \ {v, }

uniformly randomly without replacement, and they are added to Z,.

The client sends resulting Z, to the server.
The server receives randomized subsets Z, from all clients ¢ € L. The server defines
g and hy, as:

_ ke (= D(keT) + (U] - R)k
T ket + U —k (Ul = D) (ke + U| — k)

9k

To perform estimation for value v, Sup(v) is computed as the total number of clients in £
whose reported subset contains v. Then, the estimate C(v) is computed as:

_ _ Sup(v) — | L] - hg

C 4.12
) Ik — hi 12
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4.2.3 Problem Definition and Threat Model

As shown in the previous section, LDP protocols use different ways of encoding client
data and applying a randomized perturbation algorithm W, e.g., GRR uses direct encod-
ing, BLH and OLH use hash encoding, RAPPOR and OUE use bitvector encoding, and
SS uses subset construction. Studies have shown that protocols yield varying estimation
utility and efficiency under scenarios with differing ¢, U, encoding parameters, and auxil-
iary knowledge (incl. consistency requirements) [84, 121, 18, 127, 126]. However, what
remains unexplored is analyzing whether similar factors may impact the privacy and confi-
dentiality of client data under a fixed, common adversary model. To that end, we introduce
a Bayesian adversary model to analyze LDP protocols under the same adversary model
while one or more of the factors are varied. Our adversary model borrows ideas from
Bayesian techniques in orthogonal contexts such as membership privacy, location privacy,
and Bayesian DP on correlated data [91, 34, 92, 26]; but it is modified to adapt to LDP’s
untrusted client-server data collection setting.

Adversary capability: In LDP, each client perturbs their true data locally on their
device and sends the perturbed version to the server. Hence, the client’s trust boundary
is his/her own device. In accordance with this setting, we assume that the adversary’s
capability is to only observe the perturbed report sent from each client to the server (passive
adversary). The adversary can be the server itself, a man-in-the-middle who observes the
communication between the client and the server, or a third-party data analyst with whom
the server shares the collected data.

Adversary background knowledge: We consider two adversary flavors: without Back-
ground Knowledge (w/o BK) and with Background Knowledge (w/ BK). Adversary w/o
BK performs Bayesian inference using only the client’s perturbed output, without assuming
existence of any auxiliary knowledge. However, an adversary may often have prior knowl-

edge regarding the statistical distribution of client data. For example, node degrees in social
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networks and video viewings on Youtube follow power-law distributions [128, 129, 126],
browser, homepage, and password-related statistics are often published for research pur-
poses [130, 131, 132], and the likes of geolocation density and city traffic statistics are
either available or can be crawled on the Web [8, 26, 23]. The adversary may use such in-
formation sources to form his/her BK. Consequently, we assume that the adversary w/ BK
has prior knowledge of the statistical data distribution, but does not know the individual
true value v, of any /. It was shown recently that such prior statistical knowledge can be
used improve server-side estimation accuracy in LDP [127, 126]. We use it in the context
of adversarial power and privacy measurement.

Adversary goal: After observing the perturbed output sent from the client to the server,
the adversary’s goal is to predict the true value v, of client . The adversary can be executed
for all clients ¢ € L. Higher prediction success for adversary implies lower privacy for the

end clients.

4.3 Bayesian Adversary and Analysis

In this section, we formally describe the adversary model and analyze the six protocols
(GRR, BLH, OLH, RAPPOR, OUE, SS) under this adversary. In Section 4.3.1, we for-
malize the Bayesian adversary, its prediction strategy, and success measurement metric. In
Sections 4.3.2 to 4.3.7, we show how the adversary is applied to each protocol and mathe-
matically derive the adversary’s expected success rate under each protocol one-by-one. In

Section 4.3.8, we summarize and demonstrate the findings of our formal analysis.

4.3.1 Adversary Model A

Let A denote the adversary. We choose a Bayesian A to quantify the combined privacy
impacts of LDP protocol encoding and perturbation, due to the popularity of Bayesian
methods in different contexts such as measurement of membership privacy in centralized

databases, location privacy, and Bayesian DP on correlated data [91, 34, 92, 26]. For client
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¢, let O, denote the A’s observations of LDP protocol outputs sent from ¢ to the server,
e.g., in case of RAPPOR, O, = {By}; in case of OLH, O, = {(Hy, z})}. The goal of A
is to correctly predict v, given O,. Denoting by v} the adversary’s prediction, the optimal

Bayesian prediction strategy is:

v}y = argmax Pr[0|O/] (4.13)
oel
Pr[Oy|0] - Pr[0]
= argmax 4.14
%eu Pr{O] ( .
= argmax Pr[O,|?] - Pr[0] (4.15)
oel

The first step follows from Bayes’ theorem and the second step is because Pr[O,] is constant
as the adversary maximizes over variable 0. We say that .4 made a correct prediction if and
only if v, = v} and a false prediction otherwise. For the adversary w/ BK, we insert the
background knowledge into Equation 4.15 via Pr[?], i.e., by specifying an informed prior
in Bayesian inference.

We use the Adversarial Success Rate (ASR) metric for measuring A’s prediction suc-
cess. ASR can be defined as the probability that the adversary’s prediction is correct, i.e.,
Pr[v, = v}]. It can be measured both empirically and analytically. In a client population £,
ASR is empirically measured as the ratio of clients whose true value is correctly predicted

by A:
# of clients ¢ € L such that v, = v}
L]

ASR = Prlv, =v}] = (4.16)

In addition to empirical measurement, it is also possible to derive the expected ASR of A

formally through probabilistic expected value analysis:

E[ASR] = E[Pr[v; = v7]] (4.17)

In the remainder of this section, we perform expected ASR analysis using Equation 4.17,

by deriving expected ASR under each protocol one-by-one. We perform empirical ASR
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analysis in Section 4.4.

4.3.2 Applying A to GRR

The analysis of GRR is most straightforward among all protocols. Observe from Wggrg in
Equation 4.2 that Pr[y, = vy > Pr[y, = ¢'] forall v’ € U \ {wv,}. Thus, the Bayes-optimal

prediction strategy for A is to predict v} as: v) = y,. Then:

68

E[ASE] = EfPrluy = of]] = Prloe = ye] =

(4.18)

Since GRR uses direct encoding, expected ASR under GRR need not be conditioned on the
expected behavior of a hash function (as in BLH/OLH) or item sampling (as in SS). Hence,

its expected ASR behavior is closest to its empirical performance.

4.3.3 Applying A to BLH

BLH uses client-side hashing, hence our analysis must take into account the expected be-
havior of the hash function H. Since H is picked from a universal family, its average
behavior is to hash half of I/ into 0 bit whereas the remaining half of ¢/ is hashed to 1 bit.
Observe from Vg in Equation 4.4 that Pr[b, = by > Pr[b, = —b,]. Thus, the Bayes-
optimal prediction strategy for A is to predict vJ by random choice from subset of items
which hash to ¥, given H,. That is: vf g UHg,bg where L[HM;Z is the subset of U/ satisfying

the condition Up, y, = {v|v € U, Hy(v) = by}. From this, we derive expected ASR under
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BLH as:

E[ASR] = E[Pt{v; = +*]] = 1 — E[Pr{v, # o7]] (4.19)

€ EllUy, || — 1
_ 1 o € i [| HZ:b[H . 1 (4'20)

e 77 R
e ]

1 (& ) 5 1 _ 1
=1 m e 4.21)
Ceul-2 1 % w

(ef+1)- U e +1 (es+1)-U|

In BLH’s expected ASR, || is a multiplicative factor in the denominator as opposed to
GRR’s expected ASR in which |U/| is an additive factor. Consequently, |I/| plays a large

role in BLH’s expected ASR often being lower than GRR’s expected ASR.

4.3.4 Applying A to OLH

Recall that OLH uses g-ary hash encoding. Thus, in OLH, the average behavior of hash
function H is to hash |U/|/g values to each hash bucket x € [1, g]. By Equation 4.6, we
know that Pr[z), = x, > Pr[z;, = i] forall i # z,and 1 < i < g. Consequently, the
Bayes-optimal prediction strategy for A is to predict v} by random choice from subset of
items which hash to zj, i.e.: v) < UHg,mg where UH,_;,xg is the subset of I/ defined as:

Up, », = {vlv € U, Hy(v) = z;}. Expected ASR is derived as:

E[ASR] = E[Pr[v, = v7]] = 1 — E[Pr[v, # v}]] (4.23)
€ El|lUy, 1] — 1 _
ee+g—1 E[[Up, ] ee+g—1

To solve further, we must consider two cases.

Case 1: Ml/; < 1: In this case, E[[Uy, || = 1 since x} is reported. Then, continuing from
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Equation 4.24, E[AS R] becomes:

= 1-1 —1 ¢
E[ASR] =1- — % . S - (4.25)
e+g—1 1 e+g—1 e +g—1
Case 2: Ul/g > 1: In this case, E[[Un, ,|] = I/g. Then, continuing from Equation 4.24,
E[ASR] becomes:
€ l 1
e g—1
E[ASR] =1 — - — 4.26
| ] ec+g—1 M e +g—1 (4.26)
g
“(ju| — -1
-9 g o
Ul(es+g—1) e+g-1
ecg
- (4.28)
Ul(er +9—1)

We finish the derivation by combining the final steps of Case 1 and Case 2. By doing so,

we find that expected ASR under OLH overall is:

65

e —1). i
(ef+g—1) max{g,l}

E[ASR] = (4.29)
Note that expected ASR under OLH found in Equation 4.29 is also dependent on the pro-
tocol encoding parameter g. If the default value of g, which is g = e® + 1 [84, 105], is

plugged into Equation 4.29 we obtain:

1 1
— - (4.30)
2 max { el 1}
ec+17
From Equation 4.30, we observe that when ¢ is large enough that e + 1 > |U{|, then OLH’s

expected ASR will be upper bounded by % For smaller ¢, expected ASR under OLH will

be smaller than %
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4.3.5 Applying A to RAPPOR

RAPPOR uses bitvector encoding, and client ¢ sends perturbed bitvector B, to the server.
We define a set of pairwise disjoint events £y, F1, ..., Eyy as follows. Event Ej is the case
where the original 1 bit in the client’s bitvector is flipped to 0 in B;. For all remaining
events F; where i € [1,|U|], event E; is the case where the original 1 bit is kept and ¢ — 1
other bits that were O in the client’s original bitvector became 1 in B; due to bit flipping.
Then:

21

E[ASR] =) Prlo, = v} A E}] (4.31)

=0
Below, we calculate each entry in the right hand side summation in Equation 4.31 sepa-
rately. Finally, we sum them up.

E[ASR] with Event Ej:

Pr{v, = v A Ep] = Pr[v, = )| Ep] - Pr[Ey) (4.32)
1 es/2 N1 1

(T 433

U| <65/2—|—1> es/2 +1 ( )

The rationale is as follows. By definition of Wgap, we have: Pr[Ey| = To compute

1
/241"
Pr[v, = v}|Ey], we observe that given the original bit was flipped to 0, if any other bit is

flipped to 1, A’s optimal prediction strategy is to pick among the indexes with 1 bit. Thus,

the only way for A to predict v] = vy is if no original 0 bits are flipped to 1, which happens

/2

=1 . - .
m) , and under that scenario, the correct prediction probability

with probability (
i

is B = We combine them to arrive at Equation 4.33.

E[ASR] with Event E; where 1 < i < |[U|:

Pr{v, = v} A E;] = Pr[v, = )| E;] - Pr[E}] (4.34)
1 e? 1
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The rationale is as follows. To compute Pr[E;], we observe that the original 1 bit is kept
with probability % by Wrap. Among the |I/|—1 bits that were initially 0, the probability
of 7 — 1 of them being flipped to 1 by Wrap can be modeled by a Binomial distribution with

|U| — 1 trials, success probability and exactly ¢« — 1 successes. This is reflected in

the rightmost Binomial entry in Equation 4.35. To compute Pr[v, = v}|E;], we observe
that the Bayes-optimal prediction strategy for A is random guess among the indexes in B
that contain the 1 bit. By definition of F;, the original 1 bit is kept, and additionally 7 — 1
bits that were originally 0 were flipped to 1; thus there are a total of ¢ 1 bits. The success

probability of A’s guess is therefore % Combining all, we arrive at Equation 4.35.

Total E[ASR| under RAPPOR: To arrive at RAPPOR’s expected ASR, we plug Equation

4.33 and 4.35 into Equation 4.31 to sum up individual ASRs from all individual events.

The final result is:

1
E[ASH] NICEET (

4| /2
e° 1
——— . Bi <'—1;L{—1,—> 4.36
+;(65/2—|—1)i in{i =L -1 (4.36)

/2 \ul-1
es/2 + 1>

4.3.6 Applying A to OUE

While OUE uses the same bitvector encoding as unary RAPPOR, its perturbation algorithm
Uoug behaves differently. In particular, for any bit that is originally 1, ¥oyg keeps or flips

the bit with equal probability % In contrast, for any bit that is originally 0, it is kept with

1
ef+1°

65

] For this Vqyg, we establish

high probability

and flipped with smaller probability

that for any index j, if B)[j] = 0 is observed by .4, then in the original bitvector By, the
probability that B,[j] = 0 is higher than the probability that B,[j] = 1. Consequently, the
Bayes-optimal prediction strategy for A is picking among the indexes j in B that have:
Bilj] = 1.

Similar to RAPPOR, we define a set of pairwise disjoint events Ey, E, ..., Eyy as
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follows. Event Ej) is the case where the original 1 bit in the client’s bitvector is flipped to 0
in Bj. For all remaining events E; where ¢ € [1, |U{|], event E; is the case where the original

1 bit is kept and 7 — 1 other bits that were O in the client’s original bitvector became 1 in

Bj. Then:
|
E[ASR] =Y Prlo, = v} A E}] (4.37)
i=0
E[ASR] with Event Ej:
Pr{v, = v A Ep] = Pr[v, = v} | Ey| - Pr[Ey] (4.38)
1 1 s \ U1
=— - (—— 4.39
ul 2 (751) (4.39)
The rationale is as follows. By definition of Woyg, we have: Pr[Ey| = % To compute

Pr{v, = v}|Ey|, we observe that given the original bit was flipped to 0, if any other bit
is flipped to 1, A’s optimal strategy is to pick among the indexes with 1 bit. Thus, the

only way for A to predict v = v, is if no original 0 bits are flipped to 1, which happens

5

-1
with probability ( = > , and under that scenario, the probability that A’s prediction is

ef+1

successful is ﬁ

E[ASR] with Event F; where 1 < i < |U|:

Pr[v; = o A E;) = Prlv, = o} | Ey] - Pr[E; (4.40)

11
:—~§-Bin<i—1;lul—1,

—) (4.41)

The rationale is as follows. To compute Pr[E;], we observe that the original 1 bit is kept
with probability 3 by Woug. Among the |I/| — 1 bits that were initially 0, the probability of
1 — 1 of them being flipped to 1 by Woyg can be modeled by a Binomial distribution with

|U| — 1 trials, success probability and exactly 2 — 1 successes. Having established that

1
ec+1°
A’s Bayes-optimal prediction strategy is picking among the indexes that contain the 1 bit,

to compute Pr[v, = v}|E;], we observe that the original 1 bit is kept, and additionally 7 — 1
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bits that were originally 0 were flipped to 1; thus there are a total of ¢ 1 bits. The success
probability of A’s guess is therefore % Combining all, we arrive at Equation 4.41.

Total E[ASR] under OUE: To arrive at OUE’s expected ASR, we plug Equation 4.39 and

4.41 into Equation 4.37 to sum up individual ASRs from all individual events. The final

result is:

U

| AN VI
E[ASR]ZM-(eeJrl) +;Z-Bm<z—17\l/{\—1,

) (4.42)

et +1

While the analysis of OUE may seem similar to RAPPOR, the final result is seman-
tically very different. A key difference between OUE’s final result in Equation 4.42 and
RAPPOR’s final result in Equation 4.36 is that the latter contains the term (6‘32—;21)1 whereas
the prior contains the term 2% in its place. Ignoring 7 in both terms, as ¢ increases and
approaches +00, RAPPOR’s term increases and approaches 1. However, OUE’s term is al-
ways upper bounded by the constant % regardless of how large ¢ is. We will observe in our
analysis and empirical evaluation, that this is a key observation which helps explain why

ASR under RAPPOR may increase and approach 1 as € becomes larger, but ASR under

OUE increases very slowly after a certain ¢.

4.3.7 Applying A to SS

In SS, each client ¢ builds and sends a subset 7, with size k = |Z,| to the server. First,

recall that Wss adds vy to Z; with probability ;%77

veU\ {v} is added to Z, by Wgs with probability:

Second, observe that a fake value

ke k—1 U] — k k
hee + U] —k U -1 ke + U] —k U[—1

(4.43)

For this to be larger than the probability that v, is added to Z;, the following must be true:

k*e® — ket + kU| — k* - kes
(kes + U|— k) - (JU| —1) = ket +|U| -k

(4.44)
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However, if we solve Equation 4.44, we arrive at: k£ > |U| which yields a contradiction
because k is the size of a subset of U, thus k cannot exceed |U|. Therefore, we find that it
is not possible for any fake value’s probability of being added to Z, to be higher than the
probability that vy is added to Z,. Then, the prediction strategy of .4 has to be to predict v}
from reported Z,, since the probability of it being included in 7, is highest. .A’s prediction

strategy is therefore: v) <—¢ Z,. Expected ASR under SS can then be derived as:

E[ASR] = Prlv, = v}] = Pr[v, = v)|ve € Z] - Prlv, € Z)] (4.45)
e

ke® 1
- = 4.46
kee+ Ul —k k  kes+|U|—k (4.46)

€

which completes the derivation. Note that expected ASR under SS found in Equation 4.46

is also dependent on the protocol subset size parameter k. If the default value of £ = elfﬂl is

ec+1

plugged in to Equation 4.46, we get: o]

as the expected ASR. This confirms the intuitive
expectations that: (i) when € increases, ASR will increase since privacy becomes more
relaxed; and (ii) when |U/| increases, ASR will decrease since it is more difficult for A to

predict v, correctly from a larger domain.

4.3.8 Summary and Analysis of Expected ASR

We have now completed deriving the expected ASR of A under each protocol. Expected
ASR under GRR is given in Equation 4.18, BLH is given in Equation 4.22, OLH is given
in Equation 4.29, RAPPOR is given in Equation 4.36, OUE is given in Equation 4.42,
and SS is given in Equation 4.46. These capture how successful the Bayesian adversary’s
prediction is expected to be under each protocol.

We now perform a side-by-side comparison of each protocol’s expected ASR to analyze
their behavior with varying € and U/. Note that € and U are the two common factors that
appear in the expected ASR equations of all protocols. In Figure 4.1, we plot the expected

ASRs of each protocol: on the left, we fix [//| = 64 and vary ¢; on the right, we fix
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Figure 4.1: Expected ASR of A under all six protocols; across varying ¢ and |U|.

e = 2 and vary |U4|. The graphs show some general trends that are apply to all LDP
protocols, which agree with the intuitive expectations of the LDP setting. In particular,
with increasing ¢, the privacy achieved by randomized perturbation decreases, therefore
ASR values increase. Also, with a larger domain U/, we observe a decrease in ASR which
is intuitive given that a larger domain makes .4’s predictions more difficult (e.g., the ASR
of a completely random guess is !/ju|, which becomes smaller as |I/| becomes larger). The
results across all six protocols agree on these general trends.

A key observation is that different LDP protocols may yield substantially different ASR
values under the same ¢ and U/. For example, the expected ASR under GRR can be several
times higher than BLH under the same ¢ and /. This leads to our key finding that given a
fixed adversary notion and adversary success measurement metric, the adversary’s success
can be different from one LDP protocol to another. As such, we conclude that there can be
factors other than ¢ in the LDP setting that determine how much practical privacy the clients
get. One factor is the encoding type and parameters that the protocols use, which vary from
protocol to protocol. For example, GRR uses direct encoding whereas BLH uses binary
hash encoding. BLH’s mapping of v, to a binary hash output causes an additional privacy
benefit for clients because hash functions are many-to-one and non-invertible. Such added
privacy benefit is not applicable to a protocol such as GRR, which uses direct encoding.

Consequently, we observe in Figure 4.1 that GRR’s expected ASR values are consistently
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high whereas BLH’s expected ASR values are consistently low across varying € and U.
Another important observation is that one protocol may have higher ASR over another
protocol under certain € and U/ settings, whereas the other protocol may have higher ASR
under different € and U/ settings. For example, comparing OLH and RAPPOR in the first
figure, OLH’s ASR is higher than RAPPOR’s ASR when 2.5 < ¢ < 7, but RAPPOR’s ASR
exceeds OLH when € > 8. Another example is that SS has ASR close to OUE for small
g, but when £ > 5, SS becomes very different than OUE and more similar to GRR. These
observations are partly caused by OLH and OUE’s ASR being heavily impacted by the %
terms in their expected ASR, as discussed at the end of Section 4.3.4 and 4.3.6 respectively.
Altogether, these examples and observations show that no single protocol provides lowest
ASR across all settings and factors. Thus, the protocol recommended to minimize ASR in

one setting can be different than the recommended protocol in another setting.

4.4 Experimental Analysis

4.4.1 Setup and Datasets

We conduct experiments with the six LDP protocols under consideration (GRR, BLH,
OLH, RAPPOR, OUE, SS) and four datasets: MSNBC, Kosarak, Uniform, and Expo-
nential.

MSNBC contains logs from msnbc.com for the day of September 28, 1999 where each
row in the dataset corresponds to one user’s page visit sequence '. Visits are recorded at
the granularity of page category (news, tech, weather, sports, etc.). There are [U| = 17
categories and |£]| = 989, 818 users. A large number of users either visit one category of
pages, or for users that visit multiple categories, their visits are often dominated by one
category. Hence, for each user we determine the most visited category and assume the

user’s true value is equal to that category.

'http://archive.ics.uci.edu/ml/datasets/msnbc.com+anonymous+web+data
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Kosarak contains click stream data from a Hungarian online news portal 2. Each user is
associated with a set of clicked URL IDs. There are around one million users and 41,270
unique URL IDs. Since many URLs are visited few times (e.g., once or twice), we pre-
processed the dataset by identifying the top-128 most visited URLs across the whole dataset
and removing the remaining URLs from each user’s click stream. We discarded those users
whose resulting click stream was empty. For users who had more than one URL in their
resulting stream, we picked one URL as their true value v,. In the resulting dataset, we had
|U| = 128 and | L] = 929, 669.

Uniform: We create synthetic client populations consisting of |£| clients whose true
data, when aggregated, corresponds to a uniform distribution across domain /. Unless
otherwise noted, default values are |£| = 100, 000 and |U/| = 40.

Exponential: We use an Exponential distribution, which has probability density func-
tion f(z;3) = B~ ‘e */# where 3 is the scale parameter of the distribution, to generate
client data. Lower [ means the distribution is more skewed, i.e., denser in the characteris-
tic peak of the Exponential ®. By default we use 3 = 3, but when measuring the impacts
of data skewness, we create different client populations with varying data skewness by
changing the  parameter and using an Exponential with different 5 for each population.
Each client’s true value is a data point sampled from the corresponding Exponential, with

samples rounded to the nearest integer. By default, |£| = 100, 000 and |¢/| = 50.

4.4.2 Impact of Protocol Encoding Parameters

Recall that some protocols have internal encoding-related parameters, e.g.: OLH has the g
parameter which determines the output space of its hash encoding (OLH uses g-ary encod-
ing) and SS has the k£ parameter which determines the reported subset size (in SS, clients
report randomized subsets of size k to the server). Here, we study the impact of changing

g and k parameters on empirical ASR under the OLH and SS protocols, respectively.

nttp://fimi.uantwerpen.be/data/
Shttps://en.wikipedia.org/wiki/Exponential_distribution
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Figure 4.2: Adversarial Success Rate (ASR) changes substantially as OLH protocol’s en-
coding parameter g is varied.

In Figure 4.2, we show how empirical ASR changes under the OLH protocol when its
g parameter is varied between 2 and 16. While the differences between varying g values
is small for small ¢ budgets, for larger € budgets such as ¢ > 2, there starts to be large
discrepancies between the ASR values. For £ = §, the empirical ASR of OLH with g = 16
is almost 3-4 fold higher than ASR of OLH with g = 2. The results across all four datasets
agree with these trends.

The rationale behind observing different ASR under the same ¢ but different ¢ is as
follows. In OLH, the expected number of hash collisions due to g-ary hash encoding is
|UU|/g. When g is smaller, more collisions are expected. Increased number of collisions
provide an added amount of privacy (i.e., added on top of the privacy already achieved by
e-LDP perturbation), thanks to the irreversibility of hash collisions. Even in the extreme

case where ¢ = 400 in which no privacy is given by e-LDP perturbation, hash collisions
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Figure 4.3: Adversarial Success Rate (ASR) changes substantially as SS protocol’s subset
size parameter k is varied.

will still cause A’s prediction accuracy and ASR to go down, yielding some privacy to
clients. This supports the observation that especially for large € such as 8, ASR remains
low when g is small (many collisions) compared to g = 16 (fewer collisions).

In Figure 4.3, we perform a similar experiment for the SS protocol by varying its k
parameter between 1 and 8. The results for SS protocol show that varying £ values have
less observable impact on ASR when ¢ is small, but may cause 4-5 fold difference in ASR
when ¢ is large. In particular, for ¢ > 4, the ASR of SS with £ = 1 is several folds
larger than the ASR of SS with £ = 8. This can be intuitively explained through a crowd-
blending privacy perspective as follows. In SS, v, blends in a crowd of £ items (reported
subset). When £ is small, v, does not have a large crowd to blend in, making the adversary’s
prediction easier. In contrast, when £ is large, the crowd is larger therefore ASR can remain

low due to the existence of a large number of £ — 1 fake reported items.
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The take-away message from this set of experiments is that for both OLH and SS pro-
tocols, their internal parameters (g and k) have substantial impact on adversary’s empirical
ASR. Thus, when implementing LDP protocols in practice, one should pay close attention
to how the individual protocol parameters (such as g and k) are chosen when reasoning
about how much end privacy and adversary-resilience the clients will receive from that

protocol.

4.4.3 Comparison Between Protocols

Here, we assume that each protocol uses their default parameters that are found in the
respective papers and noted in Section 4.2.2. Under this setting, we compare all protocols
with one another to observe how ASR changes under different protocols, datasets, and ¢.

We give the results of this experiment in Figure 4.4. We first observe that these exper-
iment results agree with the theoretical derivations done in Section 4.3 and illustrated in
Figure 4.1. It is often the case that GRR’s ASR is higher than remaining protocols. SS
protocol has lower ASR than GRR for small ¢, but its ASR becomes very close to GRR
when ¢ is larger. BLH often has the lowest ASR among all protocols, due to many hash
collisions (on average |U/|/2 collisions).

Among the remaining protocols, RAPPOR has lower ASR than OLH and OUE when ¢
is small, but RAPPOR’s ASR exceeds OLH and OUE when ¢ is large. The ¢ value at which
RAPPOR’s ASR starts exceeding OLH and OUE changes from dataset to dataset due to
different |U/| in different datasets. In the MSNBC dataset in which |I/| is small, this ¢ value
is between 4 and 6. In the Uniform and Exponential datasets in which [¢/| is relatively
larger, this € value is between 6 and 8. In the Kosarak dataset in which |U/| is largest among
all our datasets, this € value is between 8 and 10. A key factor why RAPPOR’s ASR
exceeds OLH and OUE when ¢ is large is that OLH and OUE’s ASR increase very slowly
after they hit 0.5. This was observed as part of the theoretical expected ASR derivations, as

well as Figure 4.1. The experimental results in Figure 4.4 validate the theoretical finding.
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Figure 4.4: Empirical ASR of .4 under all six protocols. While the individual ASR values
may change from one dataset to another due to data domain and characteristics, overall
trends agree across multiple datasets. These empirical results also agree with the trends
observed in the theoretical analysis in Section 4.3 and in Figure 4.1.

Finally, Figure 4.4 shows that OLH and OUE’s empirical ASR are similar for various
values of ¢ although they differ slightly between 2 < ¢ < 6. This is also true for their
expected ASR, as illustrated in Figure 4.1. An interesting observation here is that OLH
and OUE, which use very different encoding styles (g-ary hash versus unary bitvector en-
coding), can have similar ASR; as opposed to two protocols which use similar encoding
principle having substantially different ASR behavior (such as BLH and OLH that both use

hash encoding, or RAPPOR and OUE that both use bitvector encoding).
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Figure 4.5: Comparison of adversary with and without background knowledge (w/ BK ver-
sus w/o BK). Experiments using two real datasets and six protocols agree that adversarial
knowledge of aggregate statistics improves ASR.

4.44 Impact of Adversary Knowledge

Recall from Section 4.2.3 and Section 4.3.1 that adversary A may inject his/her statistical
background knowledge (BK) into the Bayesian prediction process through informed priors.
We measure the impact of this by comparing the ASR without background knowledge (w/o
BK) and with background knowledge (w/ BK).

The results are given in Figure 4.5 for the two real datasets (Kosarak and MSNBC) and
for all six protocols. We compare the adversary w/ BK and w/o BK under each scenario in

which other factors such as ¢, dataset, and protocol are fixed. This comparison shows that,

128



while the individual ASR values may differ in different protocols and datasets, all protocols
and datasets agree that the adversary w/ BK outperforms the adversary w/o BK in terms of
ASR. We note that in protocols GRR and SS, the adversary w/o BK catches up with the
adversary w/ BK when ¢ is large such as 6 or 8. However, in the remaining protocols, there
remains a gap between the adversary w/ BK and w/o BK across varying ¢.

The take-away message from this analysis is that in a practical scenario with a realis-
tic adversary model and dataset, an adversary with statistical background knowledge may
achieve higher accuracy in predicting clients’ true values than an adversary without back-

ground knowledge, under the same ¢, dataset, and protocol.

4.4.5 Impact of Data Skewness

We now study the impact of data skewness, i.e., statistical distribution of client data. If
some values v € U are very frequently observed in the client population whereas other
values are rarely observed, we say that data distribution is skewed. If the observation
frequency of all values in U/ is roughly even, we say that the data is uniform (i.e., less
skewed or not skewed). We create synthetic client populations with varying data skewness
by changing the distribution scale parameter of the Exponential dataset as explained in
Section 4.4.1. We measure ASR under each dataset with two scenarios: adversary w/ BK
and adversary w/o BK.

The results are given in Figure 4.6. We first observe that varying data skewness does not
have observable impact on ASR when the adversary does not have BK. This is confirmed
by roughly constant ASR values for the adversary w/o BK while skewness is varied, in all
six protocols and € = 1 and 2. However, for the adversary w/ BK, ASR values change sub-
stantially with varying skewness. In cases where there is large data skewness (leftmost end
of each graph in Figure 4.6), ASR is much higher than cases that are not skewed (rightmost
end of each graph in Figure 4.6). The take-away message from this experiment therefore

is that skewness plays a role in ASR when the adversary has background knowledge of the
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Figure 4.6: Analyzing the impact of data skewness on ASR, for adversary with and without
background knowledge. The distribution scale parameter 5 on x axis controls data skew-
ness, where smaller 3 indicates skewness is higher according to Exponential distribution.
Results show that adversary w/o BK is not impacted by change in skewness, but adversary
w/ BK enjoys substantially higher ASR on more skewed datasets.

skewed statistics; otherwise, it does not impact ASR.

4.5 LDPLens

4.5.1 Motivation

We have established both mathematically and empirically that under a common adversary
model and measurement metric (e.g., our Bayesian adversary .A and ASR metric), different
LDP protocols may yield different results, according to factors such as: (i) LDP budget
g, (1) encoding type and parameters used by the protocol, (iii) the domain of user data,
e.g., U, (iv) background knowledge BK, and (v) statistical data distribution and skewness.

Furthermore, when these factors are set in a certain way, one protocol may yield lower
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ASR than the other; whereas for a different set of factors, the other protocol may yield
lower ASR and therefore become more preferable. For example, Figure 4.1 and Figure 4.4
agree that when ¢ = 4, the RAPPOR protocol has lower ASR compared to OUE, whereas
when € = 8, the OUE protocol has lower ASR compared to RAPPOR.

Since there is no single protocol that yields lowest ASR and highest utility simulta-
neously across all possible factors, the problem of profocol selection becomes an open
question: Given a certain setting with a certain set of factors, which LDP protocol is most
desirable to use? The protocol selection problem becomes even more challenging when
one considers the utility perspective, given the results in recent works showing that one
protocol may have higher utility than another for some ¢ and U/, whereas the opposite may
be true for other values of € and U/ [84, 105, 121].

In this section, we propose LDPLens to assist researchers and application designers in
analyzing the privacy-utility tradeoffs of LDP protocols, and therefore making informed
decisions regarding protocol selection and € budget selection. We outline two example use
cases for LDPLens:

(1) Let Alice be a researcher who wants to design a locally differentially private system
for her application domain, which could be healthcare, 10T, cybersecurity, etc. Alice knows
the data type and U/, as well as the statistical characteristics and suitable encoding types for
the data in her domain. She also knows the adversary metric and utility metric that are ap-
plicable to her domain. Under these settings, Alice wants to learn which LDP protocol and
¢ value would be most suitable to achieve a good tradeoff between privacy and utility. Alice
can provide these metrics and settings to LDPLens to analyze the tradeoff performances of
existing LDP protocols, which assists her in choosing a suitable protocol. Furthermore,
Alice can specify a utility loss constraint [resp. privacy loss constraint] that she believes is
the maximum utility loss [resp. privacy loss] that is tolerable in her application. Alice can
then learn from LDPLens which protocols and € budgets would satisfy her constraint, as

well as the € budget that would be appropriate for her constraint.
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Figure 4.7: Overview of LDPLens design

(2) Another researcher, Bob, may use LDPLens to benchmark existing LDP protocols
under various ¢, U, and encoding parameters. Bob’s results may indicate that existing
protocols provide sub-optimal utility under a certain choice of €, ¢/ and encoding parame-
ters. Bob can then design a new LDP protocol targeted to achieve higher utility under that
particular subset of parameters, and use LDPLens to evaluate his proposed protocol versus
existing protocols in terms of privacy and utility under various adversary metrics and utility

metrics.

4.5.2 Design of LDPLens

LDPLens is designed to be a customizable system that enables effective exploration of
privacy-utility tradeoffs of LDP protocols, according to the privacy and utility metrics spec-
ified by users. The design of LDPLens is summarized in Figure 4.7. LDPLens consists of
several modules as follows:

LDP Protocol Module: This module contains the implementations of available LDP
protocols, e.g.: GRR, BLH, OLH, RAPPOR, OUE, SS. A new protocol named PROT can
be added to LDPLens by implementing two functions of this module: one for implementing

the client-side encoding and perturbation process Wpror, and one for implementing the
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server-side estimation process.

€ Budget Module: This module specifies the allowed range of the LDP privacy budget
€. By definition, ¢ > 0 is a positive float. In the current implementation of LDPLens, we
allow ¢ between 0.01 and 16 as a wide range of possible values.

Adversary Module: This module contains: (i) the adversary or attack model, and
(i1) the metric for measuring how successful the adversary/attack is. Our Bayesian ad-
versary A and Adversarial Success Rate metric (ASR) from Section 4.3.1 constitute one
option that is currently implemented in this module. New adversary models and privacy
metrics may be added to LDPLens by implementing them in this module. For example,
there have been recent pre-prints which propose new attacks to LDP protocols, such as Cao
et al.’s data poisoning attacks [133] and Cheu et al.’s manipulation attacks [134]. (Note
that these works assume a different, stronger adversary model than ours. The adversary
in their attacks are capable of compromising a subset of clients’ devices.) Another work
by Lopuhaa-Zwakenberg et al. [135] propose information-theoretic metrics for measuring
privacy in LDP protocols. Given the recent interest in alternative adversary models and pri-
vacy metrics for LDP protocols, we believe that LDPLens can serve as a unifying platform
that integrates multiple adversary models and privacy metrics.

Utility Measurement Module: This module contains the metrics for measuring utility
loss. Since LDP relies on randomized perturbation, there will be some amount of utility
loss caused by the LDP protocol. Depending on the application domain and data type, the
utility metric can be different.

One metric that is currently implemented in LDPLens, which we use in our case studies
in the next section, is L, norm error in item frequency estimation. This is a fundamental
utility metric that has received significant attention in the LDP literature [84, 120, 118,
125, 18]. It can be formalized as follows. Recall from Section 4.2.2 that |£| denotes client
population size, C'(v) denotes the true count of item v, and C'(v) denotes the estimated

count of v, i.e., estimated count recovered by the server at the end of LDP protocol. Then,
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v’s true frequency is f(v) = C(v)/|£] and its estimated frequency is f(v) = C(v)/|L].

Average L, norm error in item frequency estimation is:

e (170) = 1)
U]

(4.47)

In our LDPLens demonstration in the next section, we use p = 1.

Data Characteristics Module: This module contains information regarding client
data, such as the data domain U/, suitable data representation and encoding methods (e.g.,
bitvector or hash), encoding parameters, and statistical distribution or skewness. These
factors can either be specified by the LDPLens user, or automatically parsed from sample
input data given to LDPLens.

Auxiliary Knowledge Module: This module captures any auxiliary knowledge or
background knowledge (BK) that may stem from domain semantics or characteristics. We
showed in Section 4.4.4 that such BK may be used by an adversary in increasing ASR. In
recent works, it was shown that similar auxiliary knowledge may also improve LDP proto-
col utility through consistency and non-negativity requirements [127] as well as estimation
calibration via post-processing [126]. Since auxiliary knowledge may have dual impact
(impacts both privacy and utility), we capture it in LDPLens using its own module.

It should be noted that while LDPLens modules come with default implementations
in place, they are extensible and customizable. It is possible to add new LDP protocols,

adversary models, utility measurement metrics, data types, and so forth into LDPLens.

4.5.3 Case Studies with LDPLens

We now demonstrate how an analyst or researcher may use LDPLens to explore the privacy-
utility tradeoffs of multiple LDP protocols, and find out which protocol is most favorable
under their choice of dataset and privacy/utility metrics. We perform three case studies

with Kosarak, MSNBC and Uniform datasets. We illustrate their results in Figure 4.8. We
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Figure 4.8: Exploring tradeoffs between Adversarial Success Rate and L; error (utility
loss) using LDPLens. Experiments show that for different datasets and privacy/utility
constraints, the protocol that yields the most favorable tradeoff may be different, e.g., in
Kosarak it is GRR, in MSNBC it is OLH, and in Uniform it is RAPPOR. LDPLens helps to
recommend a protocol under a given ASR or L error constraint, as well as to recommend
an appropriate € value for that constraint.

assume the adversary module of LDPLens is invoked with the Bayesian adversary .4 and
ASR metric from Section 4.3.1, and the utility module of LDPLens is invoked with I
norm item frequency estimation error from Equation 4.47. Each data point in the graphs
correspond to a protocol execution with one value of ¢, and different points are plotted for
¢ ranging between 0.1 and 4.0 in increments of 0.1. Since lower ASR means higher privacy
and lower L, estimation error means higher utility, the bottom-left corner of each graph is
most desirable. However, as expected, all protocols show tradeoffs between privacy and
utility: as L, errors decrease, ASRs increase. Yet, some protocols achieve more favorable
tradeoffs than others. Next, we analyze their tradeoff behaviors in each case study.

Case Study #1: Consider the comparison between GRR, BLH, OLH and SS protocols
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in Figure 4.8a on the Kosarak dataset. Say that Alice wants ASR to be at most 0.25,
and wants to choose the protocol and suitable ¢ value that minimizes L, error under this
constraint. We first represent Alice’s desired ASR constraint via the vertical dotted line
in Figure 4.8a. Under this constraint, we observe that the GRR protocol gives the most
favorable tradeoff, since for ASR = 0.25, GRR has the lowest L error. The utility loss
of all remaining protocols are 1.5-2x higher than GRR. In addition to showing that GRR
is the protocol achieving the most favorable tradeoff for this dataset and ASR constraint,
LDPLens can also recommend a suitable value of €, which happens to be ¢ ~ 2. Finally, we
observe that the selection of GRR as the most favorable protocol is robust to small changes
in ASR constraint. In fact, GRR is observed to be the most favorable protocol for all ASR
values ranging between 0.23 and 0.35.

Case Study #2: Consider the comparison between GRR, BLH, OLH and SS protocols
in Figure 4.8b on the MSNBC dataset. Say that Bob wants L, error to be at most 0.002, and
wants to choose the protocol and suitable € value that minimizes ASR under this constraint.
We represent Bob’s desired L, error constraint via the horizontal dotted line in Figure
4.8b. Under this constraint, we observe that the OLH protocol gives the most favorable
tradeoff since its ASR is lowest compared to other protocols. In addition, the recommended
value of € is € ~ 1. Similar to the previous example, the selection of OLH as the most
favorable protocol is robust to changes in the L, error constraint, since OLH remains the
most favorable protocol for values of L error between 0.001 and 0.0035.

Case Study #3: Consider the comparison between GRR, RAPPOR, OUE and SS pro-
tocols in Figure 4.8c on the Uniform dataset. Say that Charlie wants ASR to be at most
0.05, and wants to choose the protocol and ¢ value that minimizes L; error under this con-
straint. The most favorable protocol in this case becomes RAPPOR, with a recommended
e value of ¢ = 1.4.

Summary and Discussion: First, we observe that the most favorable protocol in each

case study is different. This supports the initial motivation of LDPLens that the most fa-
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vorable protocol can change from scenario to scenario, and thus finding the most favorable
protocol in a new scenario/dataset is a non-trivial problem. Second, we observe that the
choice of the most favorable protocol in a given scenario can be robust, i.e., even if there
are small changes in privacy or utility constraints for that scenario, the most favorable
protocol remains the same. Finally, there is substantial benefit in using the protocol rec-
ommended by LDPLens rather than a randomly chosen protocol. On the Kosarak dataset,
there is roughly 2-fold improvement in utility when the GRR protocol (recommended by
LDPLens) is used to achieve ASR = 0.25 rather than using BLH, OLH or SS to achieve the
same ASR. On the Uniform dataset, RAPPOR’s L, error is several folds better than GRR
under the given ASR constraint. These clearly demonstrate the benefit in using LDPLens
to discover a protocol that is “good fit” for a given scenario, rather than randomly choosing

a protocol.

4.6 Related Work

LDP has recently received significant attention from the research community as well as the
industry [121, 14, 122, 15]. Several LDP protocols were developed and deployed, such as
GRR, BLH, OLH, RAPPOR, OUE and SS [95, 84, 14, 85, 123, 124]. These protocols often
serve as building blocks for more advanced analytical tasks, e.g., heavy hitter identification
[96, 111, 117], mining frequent items and itemsets from set-valued data [97, 105], mining
key-value stores [118, 125], computing and releasing marginals from high-dimensional
data [112, 136, 113], answering multi-dimensional analytical range queries [137, 138],
mean estimation from numerical data [83, 139], privately analyzing decentralized social
graphs [115], monitoring evolving data [140], and discovery of frequent terms [116, 85].
There have also been theoretical studies to establish upper and lower bounds on the
accuracy of what can be learned in the LDP setting, as well as to study the importance of
client-server interactivity in learning [141, 142, 110, 111]. Other studies have shown that

estimation accuracy in the LDP setting can be improved via post-processing, such as non-
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negativity and consistency requirements [127, 116], prior statistical knowledge [126], and
the likes of expectation maximization or maximum likelihood estimation [143, 127, 85].
Recent pre-prints proposed measuring the privacy properties and adversarial resilience
of LDP protocols against adversaries with varying power and success metrics. [135] con-
siders information-theoretic metrics for measuring privacy. [133] and [134] study data
poisoning and manipulation attacks to LDP protocols, in which the adversary has the capa-
bility of compromising a subset of clients’ devices. This is a stronger adversary compared
to our work. While the adversary power and success metrics may be different, these types
of attacks may also be integrated into LDPLens so that LDPLens becomes a unifying plat-
form that integrates multiple adversary models and metrics for convenient benchmarking.
Finally, several relaxations and alternatives to LDP were proposed in the literature.
These include PLDP [114], CLDP [18], ULDP [120] and ID-LDP [144]; as well as BLEN-
DER in which only a subset of users enjoy LDP whereas remaining users act as opt-in beta
testers receiving the guarantees of centralized DP [119]. Since the mathematical formalism
and/or architectural setting of these relaxations are different than LDP, the current version
of LDPLens does not include these relaxations. In future work, we will explore principled

methods to integrate them into LDPLens.

4.7 Conclusion

In this chapter, we studied the privacy properties of LDP protocols through the lens of a
Bayesian adversary model, using both mathematical derivations and empirical measure-
ments. We showed that the Adversarial Success Rate (ASR) changes from protocol to
protocol, and that there are multiple factors affecting ASR, including privacy budget ¢, do-
main U/, encoding parameters, background knowledge, and data skewness. Consequently,
we argued that no single protocol is consistently better than others in terms of ASR and util-
ity across all possible settings. We then designed and developed a prototype system called

LDPLens, which considers the aforementioned factors through customizable modules, and
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enables the selection of the most suitable LDP protocol for the given set of application-
specific settings. We presented 3 case studies with real-world datasets, showing that the
best protocol in each case is different. Our results showed that one can gain substantial
utility improvement by using the protocol recommended by LDPLens rather than randomly
choosing one LDP protocol, which demonstrates the benefit of informed protocol selection

using LDPLens.
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CHAPTER §
CONCLUSION, ONGOING AND FUTURE WORK

In today’s world, individuals interact with numerous electronic devices and networked ser-
vices every day, ranging from smartphone apps to smartwatches and to smart home sensors.
These interactions lead to large amounts of sensitive data to be generated, including indi-
viduals’ location traces, web browser settings, and browsing and purchase histories. While
these datasets are lucrative sources for understanding and modeling human behavior, indi-
viduals’ privacy must be respected. This dissertation contributes algorithmic and practical
solutions to the problem of data privacy in modern computerized systems from two per-
spectives: privacy-preserving data collection and privacy-preserving data sharing. In this
chapter, we provide a summary of dissertation contributions, discuss our ongoing work,

and present directions for future work.

5.1 Summary

In summary, this dissertation makes the following contributions. First, in order to en-
able privacy-preserving sharing of individuals’ location traces, we designed and developed
a system for utility-aware synthesis of differentially private and attack-resilient location
traces, called AdaTrace. Given a set of real location traces, AdaTrace builds a genera-
tive model in four steps: feature extraction from real traces, synopsis construction and
learning, noise injection to achieve privacy protection, and generation of synthetic loca-
tion traces. The location traces synthesized by AdaTrace bear a statistical resemblance to
real traces, but they do not leak sensitive information about any individual, due to the en-
forcement of differential privacy and attack-resilience guarantees. Through experiments on
three datasets, we demonstrated that the location traces synthesized by AdaTrace preserve

aggregate location trace utility.
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Second, we designed and developed privacy-preserving algorithms and protocols for
collecting mobile and Web user data from users’ IoT devices. We showed that the exist-
ing protocols that implement Local Differential Privacy (LDP) for privacy-preserving data
collection perform poorly in terms of aggregate utility when data is collected from a small
population of users. Motivated by this, we introduced the notion of Condensed Local Dif-
ferential Privacy (CLDP) and a suite of protocols satisfying CLDP to enable the collection
of various types of user data with different syntax. We demonstrated the real-world applica-
bility and utility improvement of our CLDP protocols on real-world item purchase datasets
as well as cybersecurity case studies.

Third, we presented a formal and experimental analysis of the privacy properties of
LDP protocols through the lens of a Bayesian adversary. We analyzed a set of critical pa-
rameters that may cause diverse responses of different LDP protocols to the same Bayesian
adversary in terms of Adversarial Success Rate (ASR), including privacy budget ¢, data do-
main U, encoding parameters, data skewness, and background knowledge. We showed that
no single protocol is consistently better than others in terms of both ASR and utility across
all possible settings of parameters. We then designed and developed LDPLens, a proto-
type system which allows LDP users to customize and select one of the most suitable LDP
protocols for a given application scenario with a set of domain-specific privacy and utility
requirements. Tested with three case studies with real-world datasets, we showed that the
protocol recommended by LDPLens in each scenario is different, and it offers substantial

utility improvement compared to randomly choosing an LDP protocol.

5.2 Ongoing Research Directions

One of our ongoing research directions is the repeated and periodic collection of user data
with local differential privacy. Consider a client-server setting in which clients’ data is
perturbed with LDP before being collected by the server. In many real-world systems with

continuous software monitoring and telemetry monitoring goals, the server collects client
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Figure 5.1: Impact of increasing number of data collection rounds on empirical ASR of the
Bayesian adversary. The left graph is with the OLH protocol. The right graph is with the
RAPPOR protocol.

data repeatedly and periodically over time [145, 146], e.g., Apple’s collection of Safari
data twice every day and Health data once every day [147], and Microsoft’s collection
of telemetry statistics once every 6 hours [121]. Furthermore, in iterative and interactive
learning systems such as federated learning, clients contribute to the global model in mul-
tiple rounds of the learning process [110, 148, 149, 150]. In such scenarios, although a
single perturbed response from the client may not violate privacy by itself; accumulation of
perturbed responses across multiple rounds, originating from the client’s same underlying
data, may degrade privacy due to accumulating privacy loss.

We demonstrate the risk of privacy degradation in repeated data collection using the
Bayesian adversary A and Adversarial Success Rate (ASR) metric from Chapter 4. In
Figure 5.1, we show how ASR changes with varying number of communication rounds
between the client and the server. The number of communication rounds, which is equal to
the number of data collections, is denoted by R. The analysis is performed with two popular
LDP protocols (RAPPOR and OLH) with varying € values, using the Uniform dataset from
Chapter 4. The results clearly show that ASR increases as data is collected across more
rounds (R is increased). This is because increasing the number of observations available to
A also increases the success of Bayesian inference, resulting in higher ASR. Furthermore,

while there is positive correlation between ASR and R as well as ASR and ¢, the rate of
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increase in ASR is different for each protocol and €. For small € such as 0.5 or 1, ASR
increases either linearly (with small slope) or sub-linearly with respect to R. In contrast,
for high € such as 4 or 6, ASR increases super-linearly between 1 < R < 5 and becomes
equal to 100% after R > 6. This shows that the adverse impact of repeated collection on
longitudinal privacy with increasing R is also dependent on choice of protocol and €.

In our ongoing research, we are investigating defense strategies to the problem of pri-
vacy degradation in repeated data collection. In particular, we are considering two defense
strategies: Memoization (MEM) and Bagging (BAG).

Memoization (MEM) has two parameters: ¢, for controlling the permanent ¢,-LDP
guarantee that will hold despite arbitrary R, and ¢; for controlling the instantaneous &,-
LDP guarantee that will be achieved in each round 7 of data collection. In MEM, the
client device encodes and perturbs client’s true value with €,-LDP prior to the start of data
collection. This perturbed value is said to be securely memoized by the client device. Then,
at each collection round 7, the memoized value is re-perturbed with ¢;,-LDP. The output of
the second perturbation is sent to the server.

Since the outcome observed by the server is the result of two perturbations (one with
€,-LDP, one with £,-LDP), ASR is smaller. In fact, despite arbitrarily large 2, MEM can
be shown to uphold the €,-LDP guarantee. We exemplify this property in Figure 5.2. The
graph on the left of Figure 5.2 is with €, = 2 and the graph on the right is with €, = 4. The
dashed black lines represent the ASR in the scenario where €,-LDP is enforced but there is
no second perturbation. Each of the remaining lines denote MEM with different ¢, ranging
from ¢, = 0.5 to ¢, = 6. It can be observed that despite many rounds of communication
(R approaching 50), the ASR values do not exceed the dashed black line. The speed with
which they approach the dashed black line, however, changes according to the value of ¢;.
That is, with ¢, = 1 it takes around K = 30 rounds of communication for ASR to become
equal to that of the dashed black line; however with ¢, = 4, it takes only R = 5 rounds for

ASR to become equal to that of the dashed black line. Overall, the results here show that
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Figure 5.2: Behavior of the Memoization (MEM) defense strategy. In both graphs, RAP-
POR protocol and Uniform dataset are used for illustration. €, = 2 in the left graph, ¢, = 4
in the right graph. Results show that MEM can successfully achieve an upper bound on
ASR despite increasing number of communication rounds.

in MEM, the adversary resilience achieved by ,-LDP is upheld regardless of arbitrary 12
and ¢;; however, resilience will be higher (ASR will be lower) for lower 12 and &;.

On the other hand, the permanent ¢,-LDP guarantee achieved by MEM comes at the
cost of increased utility loss. Since data must be perturbed twice on the client device,
the expected utility loss in MEM becomes high. Motivated by the goal of achieving a
permanent €,-LDP guarantee without requiring two perturbations, we propose the Bagging
(BAG) strategy.

Bagging (BAG) has two parameters: ¢, for controlling the permanent ¢,-LDP guaran-
tee that will hold for arbitrary R, and x which denotes the bag size. By definition, & is an
integer k > 1. In BAG, client’s device memoizes « perturbed responses, each obtained by
perturbing the true value with budget %”, as opposed to one memoized response in MEM.
We say that these perturbed responses constitute a bag of noisy responses, where « is the
size of the bag. At each round 7 of data collection, the client randomly picks one element
from the bag and sends it to the server.

Note that in BAG, there is no second perturbation as opposed to MEM. Nevertheless,
since the obtainment of the bag of noisy responses satisfies €,-LDP, the permanent guaran-
tee of £,-LDP upholds. The « parameter serves to enable a tradeoff between instantaneous

privacy and utility. As x increases and approaches R, the utility of BAG decreases whereas

144



S

Empirical ASR
(=]

b

1 5 10 15 20 25 1 5 10 15 20 25
Rounds of Communication (R) Rounds of Communication (R)

6 k=1 B~ k=2 6 k=3 §— k=4 A k=5 —— k=7 —F k=10

Figure 5.3: Behavior of the Bagging (BAG) defense strategy. In both graphs, RAPPOR
protocol and Uniform dataset are used for illustration. €, = 2 in the left graph, ¢, = 4
in the right graph. Results show that BAG can successfully implement an upper bound on
ASR despite increasing number of communication rounds.

adversarial resilience increases. As k is closer to 1, utility becomes higher whereas adver-
sarial resilience becomes lower.

We demonstrate BAG’s behavior in Figure 5.3. Similar to Figure 5.2, the dashed black
line for the graph on the left is with €, = 2 and the graph on the right is with €, = 4. It can
be observed that with x = 1, the ASR of BAG is roughly equivalent to that of the black
dashed line, and it does not change despite increasing R. With k > 2, the ASR values
increase with increasing R, but they do not exceed the dashed black line. This behavior of
BAG empirically demonstrates that the permanent €,-LDP guarantee is achieved by BAG.

Given that there are two potential defenses (MEM and BAG), in our ongoing research,
we are aiming to identify those cases and factors when BAG becomes preferable to MEM
and vice versa. The first factor here is storage size. Since BAG memoizes a bag of re-
sponses with size k whereas MEM memoizes only one response, the storage requirement
of BAG is « times that of MEM. The second factor is the real-time computation require-
ment. MEM requires the client device to re-perturb the memoized response at each round
of data collection; thus, it incurs a real-time computation cost at each collection round.
This can be a problem for resource-constrained IoT devices which have to execute an LDP
protocol with a costly perturbation step, e.g., consider the bitwise perturbation of RAPPOR

protocol, which has complexity linear in the size of the bitvector. In contrast, BAG only re-
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quires the client device to pick among pre-computed noisy responses at each round of data
collection, which is a much simpler operation. The third and perhaps the most complex
factor is data utility. MEM’s utility depends on ¢, and ¢;, whereas BAG’s utility depends
on ¢, and x. In our ongoing research, we are looking for formal and empirical relationships

to relate the utility impact of MEM’s ¢, parameter to BAG’s « parameter.

5.3 Open Problems and Future Research Directions

Data privacy is an exciting and growing area of research. In the future, we are interested
in extending this dissertation research in several ways. We highlight some open problems

and future research directions below.

5.3.1 Scalable and Adaptive Synthesis of Privacy-Preserving Location Traces

In Chapter 2 of this dissertation, we developed AdaTrace for synthesizing privacy-preser-
ving location traces. There are multiple ways in which we are planning to extend AdaTrace
in future work. One of our future work directions is to extend AdaTrace to handle incre-
mental updates, to make it compatible with growing and streaming location trace datasets.
Currently, when the real location trace dataset changes (which is an input of the AdaTrace
system), AdaTrace has to re-execute its feature extraction and synopsis construction steps.
For large and/or frequently growing input datasets, re-executions of AdaTrace can be time
and resource-consuming. As a result, we are investigating the feasibility of applying in-
cremental updates to AdaTrace’s synopsis while still satisfying AdaTrace’s desired privacy
and attack-resilience guarantees.

Another future work direction for AdaTrace is to design a method for adaptive selec-
tion of AdaTrace input parameters for utility-optimized location trace synthesis. AdaTrace
has four budget distribution parameters, which determine how much privacy budget each
synopsis element is assigned. These budget distribution parameters have a high impact on

the privacy and utility level of each synopsis element. Currently, the budget distribution
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in AdaTrace is set empirically to give good average utility across several metrics of utility.
However, there can be situations in which the AdaTrace user thinks one particular utility
metric is more important than others for their end application. To address such situations,
in future work we will investigate automated and adaptive parameter selection strategies
for AdaTrace so that its synthesis can be optimized towards a user-defined choice of utility

metric.

5.3.2 Investigating Adversary and Attack Models in LDP

In Chapter 4 of this dissertation, we showed that different LDP protocols may yield differ-
ent resilience against a common Bayesian adversary. In practice, the adversary types may
differ according to the data type and application domain, e.g., the adversarial knowledge
and goal in the healthcare domain could be different from that in the Web log domain or
the machine learning domain. Consequently, one of our future work directions will be to
investigate the impacts of different adversary and attack types to LDP protocols. We plan
to extend the adversary module of LDPLens (Chapter 4) to incorporate new adversary and
attack types. The adversary and attack types can also become new benchmarks to establish

fair comparisons and relationships between CLDP (Chapter 3) and LDP.

5.3.3 Applying DP, LDP and CLDP to Combat ML Attacks

Machine learning (ML) is revolutionizing many sectors such as computer vision, health-
care, and natural language processing. Recent ML approaches powered by deep neural
networks require large training datasets to be successful. This increases the demand to
collect and process potentially sensitive subject-specific data such as photos, speech, elec-
tronic healthcare records (EHRs), and so forth. It is therefore desirable to apply appropriate
privacy countermeasures to ML training and testing processes in order to protect sensitive
subject-specific data, such as Differential Privacy (DP), Local Differential Privacy (LDP)

or Condensed Local Differential Privacy (CLDP) [151, 152, 153].
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Another future work direction is to investigate the impacts of DP, LDP and CLDP on
ML attacks. Several ML attacks have been reported in the literature. Popular training-time
ML attacks include data poisoning, label manipulation and gradient leakage attacks [154,
155]. Popular test-time ML attacks include membership inference, adversarial examples,
and model stealing attacks [156, 10, 157]. While these attacks have been shown to be
successful on vanilla ML models, we plan to investigate their success rates on ML models

that are protected by DP, LDP and CLDP.

5.3.4 LDP and Fairness

Algorithmic fairness has become an important research topic, following findings that real-
world algorithms and ML deployments may contain implicit or explicit biases which may
disproportionately impact minority groups in a population. However, currently in the LDP
literature, it is assumed that the same LDP protocol is executed on each client’s device
regardless of data skewness or whether the client belongs to a minority group or not. Thus,
there may be several research directions to pursue at the intersection of LDP and fairness.

First, our results in Chapter 4 show that adversarial knowledge of data skewness may
increase Adversary Success Rates of predicting clients’ true values. This may indicate that
skewed client populations or sub-populations may be at higher risk. In future work, we plan
to investigate adversary and utility metrics that are specialized towards measuring the LDP
protocol impact on skewed sub-populations or minority groups. One concrete approach
could be to adapt the ASR definition in Chapter 4 to measure ASR not over the whole client
population £, but instead over the skewed sub-population L., C L. Similarly, the utility
metric in Chapter 4 can be modified to measure utility for only some values v € Uspe
instead of the whole domain /. The modular and customizable nature of LDPLens design
enables the integration of such new adversary and utility metrics seamlessly, which makes
it easier to measure the impact of fairness in LDP protocols.

Second, a broader question at the intersection of LDP and fairness remains open: What
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is the “right” way of defining the adversary metric to measure the amount of disclosure,
i.e., should we measure average disclosure in a (sub-)population or should we measure the
worst-case disclosure for any one individual in the population? Our ASR metric in Chapter
4 is closer to the prior approach since it measures the adversary’s success across the whole
population £. Our Maximum Posterior Confidence (MPC) metric in Chapter 3 is closer
to the latter approach since it is measured as the maximum (worst-case) disclosure the
adversary can achieve across all inputs and outputs. In future work, we plan to investigate
and measure the difference between the average disclosure approach versus the worst-case
disclosure approach to enable clients compare the best-case, average-case, and worst-case

risks of different LDP protocols and ¢ budgets.

5.3.5 Support for Dynamic and Evolving Environments in LDPLens

The current prototype LDPLens system in Chapter 4 performs its tradeoff analysis and LDP
protocol recommendations in a static setting where the characteristics and properties of the
environment are fixed, e.g., the data domain ¢/ is constant, data distribution and encoding
are constant, and so forth. However, in scenarios such as smart cities, IoT, and sensor
streams, we may have dynamic and evolving environments in which the aforementioned
factors may change over time. In future work, we plan to extend LDPLens to support such
dynamic environments efficiently.

There are two current advantages regarding how LDPLens may support dynamic and
changing environments. First, our case studies in Chapter 4 show that the protocol recom-
mended by LDPLens remains robust despite small changes in ASR and/or L; utility loss
constraints. Thus, we would expect that even if there are small changes to the environment,
LDPLens would still make the same or similar recommendations. Second, in current real-
world LDP deployments, data is collected periodically every few hours, e.g., Apple collects
Safari data twice every day and Health data once every day [147], and Microsoft collects

telemetry statistics once every 6 hours [121]. If there are environmental changes from one
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collection to another, it is possible to re-execute the tradeoff analysis of LDPLens during
the time between consecutive collections (which is several hours) and obtain updated rec-
ommendations. For the representative datasets currently used in our case studies, LDPLens
takes less than a few hours to finish its analysis on a commodity laptop, which makes it
feasible to re-execute LDPLens in the time between one data collection and another.
Nevertheless, as LDP deployment becomes pervasive, there could be situations in which
data is collected frequently or continuously, and environmental changes are common. For
example, in a smart city environment, data can be continuously collected with LDP and
yet there may exist frequent concept drifts with large novelty. We may need to extend LD-
PLens to make it more effective and efficient in such situations. Towards this goal, there
are two future work directions. First, we plan to simulate concept drift and novelty using
skewed data subsets. By proactively simulating different scenarios with varying concept
drifts and pre-computing protocol recommendations in each condition with LDPLens, we
can ensure that when a concept drift eventually does happen in a real-time system, we can
use the pre-computed protocol recommendations and thereby minimize delay in adapting
to the new environment. Second, we plan to investigate the possibility of building a su-
pervised ML model using pre-computed recommendations of LDPLens. That is, we will
execute LDPLens many times to generate a dataset of diverse LDPLens recommendations
to formulate a training dataset, and then train a supervised ML model which mimics the
behavior of LDPLens using this training dataset. Then, one can query the ML model in a
real-time system to obtain protocol recommendations almost instantaneously, rather than
actually executing LDPLens. This strategy of mimicking the behavior of LDPLens us-
ing a supervised ML model is similar to the idea behind knowledge distillation and model
compression in machine learning [158, 159, 160], which aim to build simpler models that

behave similarly to larger, more complex and less efficient models.
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5.3.6  Support for Complex Query and Data Types in LDPLens

While the current implementation of LDPLens is a prototype, in future work we intend to
extend its scope and applicability. To that end, in future work we plan to perform research
in two directions: (1) supporting complex query types and query functionalities, and (ii)
supporting high-dimensional and complex data types.

Support for Range Queries: A range query is a popular database operation which re-
trieves records in a database that have value between the upper and lower bounds specified
by the range query. Range query functionality can be added to both the Bayesian adver-
sary model and the utility metric in Chapter 4. First consider the adversary model. Instead
of measuring ASR as the ratio of the client population whose true values v, are exactly
correctly predicted by the adversary (i.e., v) = v,), we can build a range metric such that
the adversary’s prediction is said to be successful if it is within a small range of vy, i.e.,
vy € [vg — k,vg + k] where k is a parameter controlling the size of the range. Next con-
sider the utility metric. Instead of measuring L, error in the frequency of each single value
v € U, we can measure errors in range query results such that ¢(v;,, vp;) where v, and
vp; denote the lower and upper bounds of the range query ¢. Note that both the adversary
model and the utility metric are meaningful only when the domain of values / is ordinal.
Adding support for such new adversary models and utility metrics is beneficial in extending
the scope of LDPLens to support diverse real-world data analytics functionalities.

Support for Complex Data Types: In our experiments in Chapter 4, we assumed each
client has one true value v,. In complex systems such as multi-dimensional tables, set-
valued datasets or key-value stores, the client may have multiple true values or a database
of true values following a certain organization (e.g., multiple tables with foreign key rela-
tionships or a key-value store). LDPLens can currently support such complex data types in
two ways. First, recent LDP applications for complex data types often use the LDP pro-
tocols in LDPLens as building blocks, e.g., the approach for handling key-value stores in

[125] uses GRR, RAPPOR and OUE protocols as building blocks, the approach for han-
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dling set-valued data in [105] uses GRR and OLH protocols as building blocks, and so
forth. Choosing a suboptimal building block to begin with would cause errors to propagate
to the next stages of a complex application. Thus, LDPLens can be used to recommend
suitable building blocks in such applications. Second, complex data types can sometimes
be encoded into simpler data structures using application-specific or novel encoding strate-
gies. For example, the neighbor list of a vertex in a graph can be represented as a bitvector,
which enables the application of bitvector perturbation protocols such as RAPPOR and
OUE. Strings and complex objects can be encoded into bitvectors using a Bloom filter ap-
proach [14, 85]. Set-valued data or key-value stores can be down-sampled into a singleton
and then a protocol such as GRR and OLH can be applied. In such cases, LDPLens can
be executed without further modification. In future work, we plan to investigate other new
ways to support complex data types in LDPLens, and/or develop versions of LDPLens tar-
geted towards certain complex data types, such as LDPLens for set-valued data, LDPLens

for key-value stores, and so forth.
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