
Shortest Paths Through 3-Dimensional Cluttered Environments

Jun Lu1, Yancy Diaz-Mercado2, Magnus Egerstedt2, Haomin Zhou1 & Shui-Nee Chow1

Abstract— This paper investigates the problem of finding
shortest paths through 3-dimensional cluttered environments.
In particular, an algorithm is presented that determines the
shortest path between two points in an environment with
obstacles which can be implemented on robots with capabilities
of detecting obstacles in the environment. As knowledge of the
environment is increasing while the vehicle moves around, the
algorithm provides not only the global minimizer – or shortest
path – with increasing probability as time goes by, but also
provides a series of local minimizers. The feasibility of the
algorithm is demonstrated on a quadrotor robot flying in an
environment with obstacles.

I. INTRODUCTION

Path planning is one of the enabling technologies making
it possible for robots to successfully traverse cluttered envi-
ronments and, as such, it has received considerable attention
in the robotics community. (See for example the textbooks
[1], [2], [3] and the references therein for a comprehensive
treatment on robotic path planning.)

Since globally optimal path planning is hard, the compu-
tational solutions that have been proposed typically fall into
three different camps, namely (i) grid-based planners, such
as A* [4] and D* [5], [6], [7] , (ii) sample-based planners,
such as RRTs [8] or (iii) continuous deformations of locally
optimal plans, e.g., [9], [10], [11]. This does not mean that
global planners have not been developed, as was done for
example in [11], [12], [13], but what it means is that it is
in general quite hard to transition global planners from an
off-line setting to an on-line robotics implementation.

In this paper we focus on the problem of making an
aerial robot traverse an environment populated by obstacles
following the shortest path. Optimal planning for aerial
vehicles maneuvering environments with obstacles where
multiple waypoints must be achieved has been studied with
respect to the vehicle dynamics and other tactical constraints
[14], [15], however this often results in local minimizers
or it is constraint to two dimensions. In addition, many
existing planning algorithms either focus on finding a fea-
sible path (collision-free) [10] or optimizing a different
objective function rather than the length of the path [11],
[16]. In fact, finding the globally shortest path has been
proven to be NP-hard in 3-D with polyhedral obstacles in the

This work was supported by NSF Faculty Early Career Development
(CAREER) Award DMS-0645266 and DMS-1042998, and ONR Award
N000141310408

1 School of Mathematics, Georgia Institute of Technology, 686 Cherry
Street, Atlanta, GA 30332-0160 USA jlu39@math.gatech.edu,
hmzhou@math.gatech.edu, chow@math.gatech.edu

2 Department of Electrical & Computer Engineering, Georgia Institute
of Technology, 777 Atlantic Drive NW, Atlanta, GA 30332-0250, USA
yancy.diaz@gatech.edu, magnus@gatech.edu

framework known as configuration space by Canny and Rief
[17]. Approximation methods, which are the only practical
approaches, seek paths whose length is 1+ε times the actual
minimal path [18], [19], [20], [21]. However, those methods
are either only theoretical and only works for polyhedral
obstacles, or have high complexity which are unsuitable for
on-line implementation. In this paper, we will take advantage
of the recently developed method in [12], where intermittent
diffusion techniques are employed to get increasingly good
(short) paths in arbitrary dimensions. The resulting algorithm
has the following advantages over existing methods: (i) it is
able to find the globally shortest path with probability 1− δ
with complexity O(log 1

δ log 1
ε) for arbitrarily small δ, to the

best of our knowledge, this is the best complexity occurred in
the literature; (ii) the main computation in the algorithm lies
in solving initial value ODE’s or stochastic ODE’s, which is
very easy to implement; (iii) the algorithm can be adapted to
handle dynamic environments, in which some obstacles may
appear or disappear. These three features will allow us to
have an aerial quadrotor negotiate a cluttered environment
effectively and the main contribution of the paper should
be understood in terms of solving the 3-D shortest path
problem in an implementable, on-line manner, that is actually
deployed on a real robotic vehicle.

II. PLANNING APPROACH

A. Problem Statement

Consider N obstacles in R3, each of which is represented
by a connected and compact set Pk ⊂ R3 (1 ≤ k ≤ N).
We assume that all of the obstacles are pairwise disjoint
and their boundaries have certain regularities, for example
being piecewise C2. For convenience of computation, we
will represent each obstacle through the signed distance
function φk(x),

φk(x) =

{
−pk(x), x ∈ Pk
pk(x), x ∈ P ck

(1)

where P ck denotes the complement of Pk and pk(x) is the
Euclidean distance from x to ∂Pk (the boundary of Pk),

pk(x) = min
y∈∂Pk

‖x− y‖.

The signed distance function can be computed efficiently
through level set methods [22].

For any two points x, y ∈ ∂Pk, let dk(x, y) be the length
of the shortest geodesic (shortest path) connecting x and y
that remains entirely on the boundary. For special shapes of
obstacles such as cubes, cylinders and cones, dk(x, y) can
be computed analytically. For polyhedral obstacles, dk(x, y)

can be computed efficiently by the algorithms in [23], or
see Remark 2.2 for more information. The general, more
complicated cases can be handled by fast marching [24] or
fast sweeping [25], or approximated by polyhedrons, with a
trade off between accuracy and complexity. In this paper,
the planner will assume that dk(x, y) is given a priori.
The environment, however, is allowed to be adaptive, in
the sense that in the experimental implementation of the
planning algorithm, the environmental knowledge will be
incrementally updated.

The path we are interested in is a curve γ in R3, which is
a continuous map γ : [0, 1]→ R3. We let L(γ) be the length
of γ under the Euclidean metric.

A path with finite length is said to be rectifiable, and we
say a path is feasible, in a geometric sense, if γ does not
intersect with the interior of any obstacles. Formally, we
require

φk(γ(t)) ≥ 0, t ∈ [0, 1], 1 ≤ k ≤ N. (2)

As the quadrotors have a spatial footprint, we need to be
able to accommodate this situation as well. The problem
of how to consider the geometry of the robot is out of
the scope of this paper and has been addressed before [1].
However, since the spatial footprint of the quadrotor is quite
symmetrical, at least along certain dimensions, the robot’s
footprint can be approximated by a ball of radius r, such that
the robot can be treated as a ball robot. This is exemplified in
Fig. 8. The level set representation of obstacles in (1) enables
us to deal with ball robots in a straightforward manner. One
only needs to enlarge all obstacles by this radius r, which
boils down to a uniform decrease in the level set function.
We may restate the definition of feasibility to: a path is said
to be feasible for a ball robot with radius r if

φk(γ(t))− r ≥ 0, t ∈ [0, 1], 1 ≤ k ≤ N. (3)

It is noteworthy that this approach of wrapping the robot
inside a ball can be done even when the robot’s footprint
is not symmetrical. Even though it is possible to produce
better approximations for a given robot footprint, we use
this approximation for convenience.

Let F be the set of all feasible rectifiable paths for a
ball robot with radius r which starts from X and ends at
Y (γ(0) = X, γ(1) = Y). Our problem is to find a path in
F such that its length is minimized:

γopt = argmin
γ∈F

L(γ). (4)

B. Intermittent Diffusion Algorithm

As observed in [12], [26], the shortest path possesses a
special structure that can be harnessed for the purpose of path
planning: the optimal path γopt consists only of line segments
and geodesics on the boundaries of obstacles. Therefore we
can represent γopt by a sequence of junctions (special points)
that connect different line segments or obstacle boundary

(x0, x1, . . . , xn, xn+1), x0 = X, xn+1 = Y. (5)

Each xi connects to its neighbors xi−1 and xi+1 either
by a line segment or a curve on the boundary. Let xci be
the adjacent junction that connects to xi by a curve and xsi
the junction that connects to xi by line segment (xc0 = x0,
xcn+1 = xn+1), as shown in Fig. 1.

This structure enables us to search for the optimal path
through a sequence of junctions (x0, x1, . . . , xn, xn+1). Note
that the number of junctions n may vary in the algorithm.
Each xi (except x0 and xn) is the ending point of exactly
one line segment and one geodesic on the boundary. The
sum of their length is given by

J(xi) = ‖xi − xsi‖+ dni
(xi, x

c
i), (6)

where ni is the index such that xi ∈ Pni
. The length of γ

is then

L(γ) = L(x1, . . . , xn) =
1

2

n+1∑
i=0

J(xi). (7)

The factor 1
2 comes from the fact that each line segment or

geodesic is counted exactly twice.
The above formulation converts the original infinite di-

mensional problem of finding a path into the a finite dimen-
sional problem of finding the optimal junctions. Therefore,
we can apply gradient descent to find the minimizer. One
thing to notice is that the number of junctions may vary
following the gradient flow. This will be taken care of by
our algorithm automatically, in essence by inserting the inter-
section points when a line segment intersects an obstacle or
removing the common junction when two straight segments
share a common junction.

To overcome the challenge that gradient descent is only
able to find the local minimizer, we adopt a recently
developed global optimization strategy called intermittent
diffusion. The key idea of intermittent diffusion is that when
the gradient flow gets stuck at a local minimizer, we add
certain amount of noise to the flow which will kick the flow
out of the local trap. The perturbed gradient flow becomes
the following stochastic differential equation

dxi = −∇J(xi)dt+ σ(t)T(xi, x
c
i)dW (t), (8)

where W (t) is the standard Brownian motion and σ(t) is
a step function representing the magnitude of the noise we
add. Here

T(xi, x
c
i) = −∇dni(xi, x

c
i), (9)

xi xi+1 xi+2 xi+3 xi+4

xi+5

1

Fig. 1. xsi+1 = xi, x
c
i+1 = xi+2, x

s
i+2 = xi+3, x

c
i+2 = xi+1.

xc
i xi

T (xi, x
c
i)

1

Fig. 2. An illustration of T(xi, x
c
i).

i.e. T(xi, x
c
i) is the tangent direction at xi on the curve

belonging to the shortest path connecting xi and xci . The
tangent on this curve exists, even when xi is a critical point
of ∂Pni

, for example, at the tip of the cylinder in Fig. 1, as
long as xi 6= xci .

We also have that σ(t) is given by

σ(t) =

m∑
i=1

σi1[Si,Ti](t). (10)

Here t ∈ [0, T] and 1[Si,Ti](t) is the indicator function of
the interval [Si, Ti], i.e. one if t ∈ [Si, Ti], zero otherwise.
The parameters 0 = S1 < T1 < S2 < T2 < · · · <
Sn < Tn < Sn+1 = T and σi are randomly generated by
the algorithm and they represent the length of the nonzero
intervals and the magnitude of the noise to be inserted at the
time interval [Si, Ti]. Given a desired minimum probability
of obtaining the global optimizer, the parameters m and T
are then selected in order to comply with this probability.

The idea behind the choice of σ is that when σ(t) = 0,
xi converges to a local minimizer following the negative
gradient flow and jumps out of a local trap when σ(t) > 0
with certain probability. Moreover, we will be able to obtain
not only the global optimizer but also a series of local
minimizers. This is useful when limited time is allowed for
the algorithm to run.

The following theorem captures how the intermittent dif-
fusion algorithm works:

Theorem 1: Given any real number δ > 0, there exist
τ > 0, σ0 > 0 and integer m0 > 0 such that if Ti −Si > τ ,
σi < σ0 (for i = 1, 2, · · · ,m), then equation (8) converges
to the global minimizer of equation (7) with probability at
least 1− δ.

This theorem is a direct application of intermittent diffu-
sion and for a detailed description, including details on how
to select τ, σ0 and m0, we refer readers to [27].

Now, one challenge associated with the theorem is that
it is not particularly user-friendly. It deals with a stochastic
differential equation which needs to be solved. However, this
can be alleviated by performing some manipulation to obtain
a difference equation, which we can then used to obtain a
solution numerically. In fact, equation (8) can be discretized
by many well established schemes. In this paper, we use the
Euler scheme in which the noise term dW (t) is discretized
in time as

dW (t) =
√

∆tξ, (11)

where ξ ∼ N(0, 1) is a standard, normal random variable
and ∆t is the step size. By introducing (6) into (8) we have
that

dxi = − xi − xsi
‖xi − xsi‖

dt+ (σ(t)dW (t) + dt)T(xi, x
c
i). (12)

Combining all the terms together, the temporal discretization
is

xk+1
i − xki

∆t
= − xki − (xki)s

‖xki − (xki)s‖

+ (
σ(k∆t)ξ√

∆t
+ 1)T(xki , (x

k
i)c). (13)

When solving (13), we need to deal with appearing and
disappearing junctions. New junctions are generated when a
straight line segment of the path intersects with an obstacle
in the flow (8). The proposed algorithm simply inserts the
intersections points into the sequence of junctions, as in Fig.
3. On the other hand, when two straight components xiz, xjz
share a common junction z, the path can be shortened by
connecting xixj directly, as long as this straight line does
not intersect another obstacle. We hence remove z from the
set of junctions. If xixj does intersect another obstacle, then
new junctions must be added as previously described. See
Fig. 4.

Remark 2.1 (Dynamic Environments): The approach de-
scribed above can also be used when the environment is not
fixed but changes over time. When obstacles appear, it is only
necessary to introduce the new junctions as described above
if an obstacle instersects with the current path. Likewise,
when obstacles disappear, the path can be shortened as
described above.

Remark 2.2 (Polyhedral Obstacles): For polyhedral ob-
stacles, the proposed method can be equally applied to
computing the geodesics on the surface. More specifically,
for any two points x, y ∈ Pk, there exists a sequence of
junctions

(z0, z1, · · · , zl), z0 = x, zl = y, (14)

such that each zi is on some edge of Pk and

dk(x, y) =

l−1∑
i=0

‖zi − zi+1‖. (15)

xi xi+1 xi+2
xi+3 xi+4

xi+5

xi+6

xi+7

1

Fig. 3. The initial path is (· · · , xi, xi+1, xi+2, xi+3, · · ·). As the
path changes, xi+2xi+3 intersects with the obstacle in between. We
add the intersections points as junctions and the new path becomes
(· · · , xi, xi+1, xi+2, xi+6, xi+7, xi+3, · · ·).

xi xi+1 xi+2
xi+5 xi+6

xi+7

xi+3 = xi+4

1

Fig. 4. The initial path is (· · · , xi, xi+1, xi+2, xi+3, xi+4, xi+5, · · ·).
At some time during the path change, xi+3 = xi+4. The path can
be shortened by connecting xi+2 and xi+5. The new path becomes
(· · · , xi, xi+1, xi+2, xi+5, xi+6, · · ·).

To determine the zi’s, it suffices to optimize (15) over all
possible (14). For more details, especially how to handle the
topological changes of the path during evolution, we refer
readers to [28].

III. ROBOTIC IMPLEMENTATION

In this section an algorithm is proposed to find the set
of junctions that represents the shortest path between two
points in an environment with obstacles. The feasibility, in a
dynamical sense, of the algorithm is then demonstrated when
it is implemented on a Parrot AR.Drone quadrotor robot, seen
on Fig. 11 and Fig. 12.

A. Algorithm

We present our algorithm below.

Input: level set function φk(x)
the distance function dk(x, y),
starting and ending points X and Y ,
number of intermittent diffusion intervals m.

Output: The optimal set Uopt of junctions.

1 Initialization. Find the initial set U of junction points.
2 Select duration of diffusion ∆Tl, l ≤ m
3 Select diffusion coefficients σl, l ≤ m.
4 for l = 1 : m
5 Ul = U ;
6 for xi ∈ Ul
7 for j = 1 : ∆Tl
8 Update xi according to (13)
9 with σ(t) = σi
10 Update set Ul, i.e. remove junctions
11 from or add junctions to Ul;
12 end
13 while ‖xk+1

i − xki ‖ > ε
14 Update x according to (13)
15 with σ(t) = 0
16 Update set Ul;
17 end
18 end
19 end
20 Compare Ul’s and set Uopt = argmin

l≤m
L(Ul).

The initial set U of junctions consists all the intersec-
tions points of line segment XY and the obstacles. This
initialization gives initial path similar to those generated by
bug algorithms [10], and in many cases is already close
enough to the global optimizer. It should be noted that
good initialization is not required for the proposed algorithm.
Given enough time to run the algorithm, the global minimizer
will still be obtained even starting from a far initial path.

Both the duration of diffusion ∆Tl and diffusion coef-
ficients σl are randomly selected in intervals [0, Tmax] and
[0, σmax] respectively. Experiments show that Tmax = 20 and
σmax = 2 are often adequate. Depending on whether one
wants to record local minimizers, line 20 can be replaced
by keeping track only of the best minimizers at current
realization. This will save storage dramatically.

We now give a brief analysis of the algorithm

1) Completeness: Since we assume all the obstacles are
bounded and disjoint, and we start from a feasible path,
Theorem 1 guarantees the proposed algorithm is complete.

2) Complexity: Following [20], instead of discussing the
algebraic complexity of the algorithm, we will consider the
running time in order to achieve certain relative error ε.
We will compare our result with other approaches only for
polyhedral obstacles since most of the literature focus on
them.

1) The initialization can be done by a bisection line
search, which can be achieved in O(log 1

ε) time..
2) Line 2-3 takes O(m) time.
3) Inner loop line 7-12 takes O(∆Tl) time. This is

because equation (13) takes constant time, and so does
adding or removing junctions.

4) Inner loop line 13-17 takes T (ε) time where T (ε)
denotes the number of iterations required until the error
is less than ε. If we assume the Hessian matrix of the
gradient is nondegenerate, which is the case for all
polyhedral obstacles [18], then T (ε) = O(log 1

ε).

Let ∆T = maxi≤l ∆Ti. Then the total running time is
O(m(∆T +log 1

ε)). From [27], it can be shown that in order
to obtain the desired successful probability 1−δ, the number
of realizations must be of order O(log 1

δ). Therefore, the
complexity is O(log 1

δ log 1
ε). Table I shows a complexity

comparison with some existing methods.

TABLE I
COMPLEXITY COMPARISON TO OTHER ALGORITHMS

Algorithm Complexity

A∗ O((1
ε
)3 log 1

ε
)

Papadimitriou [20] O(1
ε
)

Choi, et. al. [18] (When the shortest path is
not unique.)

O(1
ε
)

Choi, et. al. [18] (When the shortest path is
unique.)

O(log 1
ε
)

TABLE II
IMPROVEMENT ON PROBABILITY OF OBTAINING SHORTEST PATH,

ENVIRONMENT A.

Minimizer Length (m) Times Obtained Out of
100 200 300

1 5.8660 48 103 159
2 5.9527 50 91 128
3 6.0403 1 4 6
4 6.0594 0 1 1
5 6.0919 0 0 1
6 6.2286 0 0 3
7 6.2305 1 1 2

B. Algorithm Implementation

The algorithm described above was implemented for sev-
eral environment definitions, as seen in Fig. 5 for environ-
ment A, and Fig. 6 and Fig. 7 for environment B. Fig.
5 presents several of the local minimizers found by the
algorithm for environment A. Table II shows how, out of
seven local minimizers found in environment A, the number
of times the shortest path was found improves as more time is
allowed for the algorithm to run, i.e. when more realizations
(outer-most loop of the algortihm) are permitted. The sorting
effect is also evident where the second and third shortest
minimizers also improve in probability of being obtained by
the algorithm. Fig. 6 and Fig. 7 are minimizers found for
environment B. In this case, the number of minimizers is less
than in environment A, however the total distance for each
minimizer is much closer together. The algorithm is still able
to discern between the local and global minimizer, as can be
seen in table III. It is noteworthy that even though these paths
are very close to each other in total length, their geometry is
very different. Depending on the scope of the application,
one may choose to follow a local minimizer rather than
the global minimizer, trading off distance for alternate path
geometry.

−2

0

2 −2

0

2
0

1

2

North (Meters)

Minimizer 1, Length = 5.8660 meters

East (Meters)

U
p

(M
et

er
s)

−2

0

2 −2

0

2

0

1

2

North (Meters)

Minimizer 2, Length = 5.9527 meters

East (Meters)

U
p

(M
et

er
s)

−2

0

2 −2

0

2

0

1

2

North (Meters)

Minimizer 3, Length = 6.0403 meters

East (Meters)

U
p

(M
et

er
s)

−2

0

2 −2

0

2
0

1

2

North (Meters)

Minimizer 7, Length = 6.2305 meters

East (Meters)

U
p

(M
et

er
s)

Fig. 5. Three shortest and longest minimizers for environment A

TABLE III
IMPROVEMENT ON PROBABILITY OF OBTAINING SHORTEST PATH,

ENVIRONMENT B.

Minimizer Length (m) Times Obtained Out of
100 200 300

1 5.9204 52 104 158
2 5.9279 48 96 142

C. Environment Definition

Environment B is considered for the robotic implemen-
tation and experimental setup that will be the focus of the
next sections. As seen in Fig. 6 and Fig. 7, three obstacles
are considered, one cone with base center (0, 0.8, 0), base
radius 0.8m and height 0.8

√
3m; one cylinder with base

center (−1,−1, 0), radius 0.6m and height 2m; one cylinder
with base center (0.5,−0.5, 0), radius 0.5m and height 2m.
The starting and ending points are located at (−2,−2, 1)
and (2, 2, 0.1) respectively. The proposed algorithm is able
to find two minimizers as shown in Fig. 6 and Fig. 7. Fig. 7
is the globally shortest path whose length is approximately
5.9204m. This is in contrast to the distance between the
initial and final position which is approximately 5.728m and
the local minimizer length which is approximately 5.9279m,
with a difference of only 0.0075m between the local and
global minimizer.

D. Experimental Setup

For the environment described above the algorithm is run
on a quadrotor robot as seen in Fig. 12. The environment
was translated by 0.5m in the south direction to have the
origin coincide with the state coordinate frame. As described
in (3), the actual obstacles radii were originally increased in
order to accommodate for the spatial footprint of the robot r.
The footprint was increased further to r′ to compensate for
modeling errors, as can be seen in Fig. 8. Six-dimensional
state information, including the robot’s position in R3, its
pitch, yaw and roll orientations, is available through the
use of an Optitrack motion capturing system. This system
includes set of 10 Optitrack S250e motion capture cameras
and a central computer with tracking software, and is capable

−2

0

2

−2
0

2
0

1

2

East (Meters)

Local Minimizer, Length = 5.9279 meters

North (Meters)

U
p

(M
et

er
s)

Fig. 6. Local minimizer path with length of approximately 5.9279m for
Environment B.

−2
0

2

−2

0

2

0

1

2

East (Meters)

Global Minimizer, Length = 5.9204 meters

North (Meters)

U
p

(M
et

er
s)

Fig. 7. Global minimizer path with length of approximately 5.9204 m for
Environment B.

of providing state information at a rate of up to 250Hz with
millimeter accuracy.

Optitrack data is sent via TCP/IP over a 10/100 Ethernet
switch to a central control computer, a Dell Optiplex 745
with an Intel dual core 2.13GHz CPU and 4 GB RAM
running Ubuntu 11.04 Natty Narwhal, where every com-
putation takes place. The Robot Operating System (ROS),
Diamondback version, is used as the framework to: com-
pute the shortest path with the algorithm, to compute the
control signal and to send this control signal to the Parrot
AR.Drone quadrotor robot via a wireless router. The Parrot
AR.Drone quadrotor, which is equipped with an on-board
ARM GNU/Linux board running at 600MHz, front- and
downwards facing VGA cameras, a controller for a stabilized
hover and is capable of achieving 12-15 minutes of flight
from its 1000mAh battery, receives the control command
wirelessly and executes it.

As the produced path is purely geometric in that it does
not take into account the dynamics of the vehicle, we assume
that the quadrotor can follow the planned path sufficiently
well. In other words, single integrator dynamics are assumed
for the robot’s model, i.e. ẋ = u. This means that we have
direct control of the linear and angular velocities where x ∈
R6 corresponds to the state information available from the
Optitrack system and u ∈ R6 is the control signal to be
computed.

The control signal is computed as follows: the shortest

Fig. 8. A quadrotor robot taken as a ball robot of radius r. The robot may
be taken to be a ball robot of radius r′ instead to compensate for modeling
errors.

−1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

East (meters)

N
or

th
 (

m
et

er
s)

Shortest Path
Actual Path Run 1
Actual Path Run 2

Fig. 9. Shortest Reference Path and Actual Robot Paths, top view. The
clear circles are the cylinder whereas the darker circle is the cone.

path is first found for an environment with obstacles where
previous knowledge of obstacle sizes, shapes and locations
is assumed. The path is then discretized into a collection of
equally spaced points. A PID controller is used to minimize
the difference between a point in the set and the robot’s
position on the XY-plane whereas a proportional controller
is used for height control.

Once the robot is within a predefined small distance from
the point in the path a new point is selected and the new
difference is then minimized until the last point in the set is
reached. The actual path for multiple experiment runs of the
robot are shown in Fig. 9 and Fig. 10. Fig. 9 shows the top
view of the actual path followed by the robot whereas Fig.
10 shows an angled view of the data.

IV. CONCLUSION

The problem of having a robot traverse a 3-dimensional
environment with obstacles was considered. An algorithm
was presented that utilizes intermittent diffusion techniques

−1
0

1
2 −2

−1
0

1

0

1

2

North (meters)East (meters)

U
p

(m
et

er
s)

Shortest Path
Actual Path Run 1
Actual Path Run 2

−1012

−2

−1

0

1

0

1

2

East (meters)
North (meters)

U
p

(m
et

er
s)

Shortest Path
Actual Path Run 1
Actual Path Run 2

Fig. 10. Shortest Reference Path and Actual Robot Path, angled views.

Fig. 11. A third of the way: front, profile and back view.

Fig. 12. Two thirds of the way: front, profile and back view.

to provide the global distance minimizer, or shortest path,
with increasing probability as more time is allowed for
the algorithm to run. A series of local minimizers are also
provided for situations where more time is not possible. A
brief completeness and complexity analysis is provided for
the algorithm together with a comparison to other existing
algorithms. Furthermore, the presented algorithm is imple-
mentable in an on-line manner for robots with the capability
of detecting obstacles and approximating complex shapes to
composition of simpler shapes. The algorithm is validated
when it is successfully implemented in a quadrotor robot.

REFERENCES

[1] S. M. LaValle, Planning algorithms. Cambridge Univ Pr, 2006.
[2] J.-C. Latombe, Robot motion planning. Springer, 1990.
[3] F. Fahimi, Autonomous robots: modeling, path planning, and control.

Springer, 2008.
[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the

heuristic determination of minimum cost paths,” Systems Science and
Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, 1968.

[5] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in Robotics and Automation, 1994. Proceedings., 1994
IEEE International Conference on. IEEE, 1994, pp. 3310–3317.

[6] A. Stentz et al., “The focussed D* algorithm for real-time replanning,”
in International Joint Conference on Artificial Intelligence, vol. 14.
Lawrence Erlbaum Associates LTD, 1995, pp. 1652–1659.

[7] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” Robotics, IEEE Transactions on, vol. 21, no. 3,
pp. 354–363, 2005.

[8] S. M. LaValle, “Rapidly-exploring random treesz: A new tool for path
planning,” 1998.

[9] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in Robotics and Automation, 1993. Proceedings., 1993
IEEE International Conference on. IEEE, 1993, pp. 802–807.

[10] V. J. Lumelsky, “Algorithmic and complexity issues of robot motion
in an uncertain environment,” Journal of Complexity, vol. 3, no. 2, pp.
146–182, 1987.

[11] J. F. Canny and M. C. Lin, “An opportunistic global path planner,”
in Robotics and Automation, 1990. Proceedings., 1990 IEEE Interna-
tional Conference on. IEEE, 1990, pp. 1554–1559.

[12] S.-N. Chow, J. Lu, and H.-M. Zhou, “Finding the shortest path by
evolving junctions on obstacle boundaries (E-JOB): An initial value
ODE’s approach,” Applied and Computational Harmonic Analysis,
2012.

[13] J. T. Schwartz, Planning, geometry, and complexity of robot motion.
Ablex Pub, 1987.

[14] A. Richards and J. How, “Aircraft trajectory planning with collision
avoidance using mixed integer linear programming,” in American
Control Conference, 2002. Proceedings of the 2002, vol. 3, 2002, pp.
1936–1941 vol.3.

[15] G. Yang and V. Kapila, “Optimal path planning for unmanned air
vehicles with kinematic and tactical constraints,” in Decision and
Control, 2002, Proceedings of the 41st IEEE Conference on, vol. 2,
2002, pp. 1301–1306 vol.2.

[16] J. S. B. Mitchell and M. Sharir, “New results on shortest paths in
three dimensions,” in Proceedings of the twentieth annual symposium
on Computational geometry. ACM, 2004, pp. 124–133.

[17] J. Canny and J. Reif, “New lower bound techniques for robot motion
planning problems,” in 28th Annual Symposium on Foundations of
Computer Science. IEEE, 1987, pp. 49–60.

[18] J. Choi, J. Sellen, and C. Yap, “Precision-sensitive Euclidean shortest
path in 3-space,” in Proceedings of the eleventh annual symposium on
Computational geometry. ACM, 1995, pp. 350–359.

[19] J. Choi, J. Sellen, and C.-K. Yap, “Approximate Euclidean shortest
paths in 3-space,” International Journal of Computational Geometry
& Applications, vol. 7, no. 04, pp. 271–295, 1997.

[20] C. Papadimitriou, “An algorithm for shortest-path motion in three
dimensions,” Information Processing Letters, vol. 20, no. 5, pp. 259–
263, 1985.

[21] K. Jiang, L. Seneviratne, and S. Earles, “Finding the 3D shortest path
with visibility graph and minimum potential energy,” in Intelligent
Robots and Systems’ 93, IROS’93. Proceedings of the 1993 IEEE/RSJ
International Conference on, vol. 1. IEEE, 1993, pp. 679–684.

[22] S. Osher and R. Fedkiw, Level set methods and dynamic implicit
surfaces. Springer, 2003, vol. 153.

[23] Y. Schreiber, “Euclidean shortest paths on polyhedra in three dimen-
sions,” Ph.D. dissertation, Tel Aviv University, 2007.

[24] R. Kimmel and J. A. Sethian, “Computing geodesic paths on man-
ifolds,” Proceedings of the National Academy of Sciences, vol. 95,
no. 15, p. 8431, 1998.

[25] H. Zhao, “A fast sweeping method for eikonal equations,” Mathematics
of computation, vol. 74, no. 250, pp. 603–628, 2005.

[26] J. Hopcroft and G. Wilfong, “Motion of objects in contact,” The
International journal of robotics research, vol. 4, no. 4, pp. 32–46,
1986.

[27] S.-N. Chow, T.-S. Yang, and H. Zhou, “Global Optimizations by
Intermittent Diffusion,” Chaos, CNN, Memristors and Beyond, 2013.

[28] S.-N. Chow, J. Lu, and H. Zhou, “Shortest path amid 3-D polyhedral
obstacles,” submitted to SIAM multiscale modeling and simulation,
2013.

