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SUMMARY 

 
 
First-principles calculations such as density functional theory (DFT) employ numerical 

approaches to solve the Schrodinger equation of a system. Standard functionals employed 

to determine the cohesive system energy, specifically the local density and generalized 

gradient approximations (LDA and GGA), underestimate the correlation of 5f electrons to 

their ions in AO2 systems (A=U/Pu/Np). The standard correction, the “Hubbard +U,” 

causes the multidimensional energy surface to develop a large number of local minima 

which do not correspond to the ground state (global minimum). Because all useful energy 

values derived from DFT calculations depend on small differences between relatively 

large cohesive energies, comparing systems wherein one or more of the samples are not 

in the ground state has the potential to introduce large errors. 

 

This work presents an analysis of the fundamental issues of metastable states in both pure 

(e.g. UO2) and binary (e.g. U0.5Pu0.5O2) AO2 systems, investigates novel methods of 

handling them, and describes why current literature approaches which appear to work 

well for the pure compounds are not well-suited for systems containing multiple actinide 

species. 

 
 
 



 

1 

CHAPTER 1: INTRODUCTION 

 

1.1 Overview of Work 

A theoretical background regarding first-principles calculations, in particular density 

functional theory, is given. The incomplete description of highly-correlated systems such 

as actinide oxides is explained, as is the problem of metastable states, the fundamental 

disadvantage to the Hubbard +U correction, the prominent current solution employed for 

such systems. A literature review is presented, outlining existing work done concerning 

the modeling of nuclear ceramic oxide (AO2, A=U, Pu, and/or Np) fuels. The use of a 

volume-energy curve is proposed as not only as a tool to derive a material’s elastic 

properties, but also as a litmus test for the effectiveness of any attempted approach in 

solving the issue of metastable states. Current literature approaches to the metastable 

issue for pure actinide oxides (i.e. UO2, PuO2, and NpO2) are described, and simpler 

solutions are presented and tested using the volume-energy curve approach. The methods 

introduced are then shown to fail for systems containing multiple actinide species (e.g. 

U0.25Pu0.75O2), and problems with the existing methods to approach such systems are 

discussed. 

1.2 Motivation 

Uranium dioxide, UO2, is the predominant fuel component in modern nuclear power 

reactors1. The presence of transuranics in spent fuel, most notably plutonium, neptunium, 

americium and curium, represent both proliferation and storage concerns. An alternative 

to on-site storage or repository disposal is the recycling of these “waste” products and 
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inserting them into the fuel cycle for the purposes of breeding or transmutation2. In MOX 

fuel, some fraction of the uranium in the crystal matrix is replaced by plutonium and/or 

other minor actinides. Even in pure urania, by far the most extensively-studied of the 

actinide oxides, the driving mechanisms behind phenomena such as oxygen diffusion and 

fission product/gas retention remain poorly understood. To this end, multi-scale modeling 

can be a powerful tool. 

 

Computational materials simulations can be performed at many scales of time and length 

resolution, as illustrated in Figure 1, and can be used effectively in combination with one 

another. A kinetic Monte Carlo (kMC) simulation investigating oxygen diffusivity may 

set its defect concentrations based on a molecular dynamics (MD) result, while the 

parameters for the semi empirical inter-atomic potentials used in the MD simulation are 

heavily based on energies calculated from first principles. 

 

Figure 1: Time and length scales of modeling and simulation of materials3 
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At the smallest length scales and shortest time scales, quantum mechanical effects can be 

treated directly. This high-resolution approach to modeling systems is referred to as 

“first-principles” or “ab-initio,” and calculates a system’s electronic wavefunction ( )r
v

ψ  

explicitly. A first principles simulation calculates the total energy of the system, though 

in all practical applications, it is not this total energy but rather the energy differences 

between similar systems which are most important. When implemented effectively, the 

energy differences can be used to derive formation energies of defects, migration 

energies, and even certain bulk properties such as the equilibrium lattice constant (and, 

thereby, the density) or the bulk modulus. 

1.3 Actinide Dioxides 

Urania, plutonia, and neptunia are chemically very similar. Each is a fluorite-structured 

ceramic1 with a melting point exceeding 2400°C, well above operating temperatures 

found in any nuclear reactor. 

 

Figure 2: The fluorite structure of AO2 
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The fluorite structure represents the actinides on an oversized FCC lattice, with eight 

oxygen ions per unit cell located at the tetrahedral holes, effectively forming a simple 

cubic sublattice. Table 1 lists the experimentally measured lattice parameter and bulk 

modulus of each actinide oxide at room temperature. 

Table 1: Bulk Properties of Actinide Oxides 

 a0 (Å) B0 (GPa) 

UO2 5.474 2075 

PuO2 5.3986 1785 

NpO2 5.434 2005 

 

At temperatures below 200 K, a Jahn-Teller effect is observed in urania, displacing the 

oxygen sublattice from its idealized location by 0.014 Å in the <1 1 1> directions7. At 

temperatures below 30.8 K, AFM ordering causes the unit cell to deform from cubic to 

tetragonal8, with a0≈1.01c0. 
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CHAPTER 2: THEORY AND LITERATURE REVIEW 

 

2.1 Overview of Density Functional Theory 

Density Functional Theory (DFT) is so named for the modeling of “smeared” electronic 

wavefunctions as a gas. The density of this gas varies proportionally with the magnitude 

of the system’s electronic wavefunction. For a given geometric configuration of ions, a 

first-guess of the system’s wavefunction is generated by randomly generating a 

wavefunction for each of its N electrons. The individual wavefunctions ( )ri

v
Ψ  yield an 

effective charge distribution ( )rVext

v
defined by 

  ( )
( )

∑ ∫
=















−
⋅=

N

i

i

ext rd
rr

rn
rV

1

3

0

'
'

'

4
1 v

vr

v
v

πε
 (1) 

Where 

 ( ) ( ) 2
'' rrn ii

vv
ψ=  (2) 

represents the effective probability that an electron with the wavefunction ( )'ri

v
ψ will be 

found at location 'r
v

, and ε0 is the permittivity of free space. Because the N-electron 

problem may be formally rewritten as an exactly equivalent set of N one-electron 

equations9, the wavefunction for each electron is now solved for directly via the 

Schrodinger equation.  

 ( ) ( ) ( ) ( )rErrVr
m

iiiexti

vvvvh
ψψψ =+∇

−
,

2
2

2
 (3) 
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The external potential is slightly modified, to include Coulomb effects from the system’s 

ions, treated as simple point charges, and to remove the electron’s own contribution from 

the potential. 

 ( )
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=1 04
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Zk and kR
v

 denote the atomic number and position of the kth ion. The system’s energy 

eigenvalue E is calculated (see Section 2.3), and the electron’s wavefunction is 

determined. Once all electrons have been treated, the process of generating an external 

potential and solving the individual wavefunctions can be iterated until the wavefunctions 

have sufficiently converged. This is known as the “self-consistent” condition, referring to 

the physical implication that the converged spatial distribution of charges gives rise to an 

electrostatic potential which, if imposed artificially, would require a system populated by 

those charged particles to have that same spatial distribution. In practice, the ions are held 

in fixed geometric positions per the Born-Oppenheimer approximation (BOA) until the 

electronic wavefunctions have been converged. The ions are then allowed to relax 

according to any of multiple methods, and the electrons are again converged, using their 

most recent wavefunctions to initialize. The final system energy is calculated after each 

geometric relaxation step, and is given its own convergence criterion. 
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2.2 The Form of the Energy Functional 

The system’s wavefunction alone is sufficient to uniquely determine its cohesive energy, 

provided the electronic component is treated as a uniform electron gas with spatially 

varying density ( )rn
v . It is also the case that the density of the electron gas at any point is 

simply equal to the sum of the probabilities of finding each individual electron at that 

point. That is, from equation 2, 

 ( ) ( )∑
=

=
N

i

i rnrn
1

rr
 (5) 

Hohenberg and Kohn10 proved the existence of a universal functional ( )[ ]rnE
v

, which has 

as its global minimum the ground-state energy of the system. The form of the functional 

and, more importantly, tractable approximations to it, have been the subject of extensive 

research. Kohn and Sham11 expressed the functional as a simple summation of particle 

type interactions—electron/electron, ion/electron, and ion/ion—as well as the kinetic 

energies and exchange-correlation effect. The correlation energy arises from the fact that 

the energy limit of the iterative approach lies above the exact energy, and is a product of 

simplifying assumptions such as BOA12; the exchange energy is a quantum effect, and 

effectively increases repulsion between identical particles such as fermions (e.g. 

electrons)13. 

 

With the electrons’ wavefunctions determined and the ions’ motion neglected, the kinetic 

energy of the system is simply a summation of the individual electrons’ kinetic energies. 



 

8 

 ∑∫ ∇

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m
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2
2 ψψ  (6) 

The ion-ion repulsion, arising from M point charges, must be treated by counting each 

interaction explicitly, excluding self-interactions and correcting for double counting. 

 
( )( )

∑ ∑
= ≠
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eZeZ
PE

1 ' '

'

2

1
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The ion-electron potential energy is treated sweepingly, using the total electron density 

from equation 5 and the total effective ionic potential from equation 4a. 

 ( ) ( )∫=− rdrnrVPE ionelectronion

vvv 3  (8) 

Likewise, the electron-electron component is simply 

 
( ) ( )

∫ −
=− '

'
'

2
33

2

rdrd
rr

rnrne
PE electronelectron

vv
vv

vv

 (9) 

The only component not directly calculable from wavefunctions is the exchange-

correlation functional ( )[ ]rnEXC

v
. Although a multitude of approaches and specific 

models exist, the two most successful methods found in actinide-focused literature are 

also the simplest. They are briefly discussed in the following two subsections. 

2.2.1 Local Density Approximation (LDA) 

Kohn and Sham also proposed an approximate form for the exchange-correlation 

functional, based solely on the local value of the electron gas density multiplied by an 

exchange-correlation function ( )nXCε . 
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 ( )[ ] ( )( ) ( )∫ ⋅= rdrnrnrnE XCLDAXC

vvvv 3
, ε  (10) 

Early forms of ( )nXCε  focused on the Dirac-Gasper-Kohn-Sham potential11 

 ( ) ( ) ( )3 2
2

3 rn
e

rn
x

XC

vv
π

π
µε ⋅−=≡  (11) 

Slater14 proposed scaling this by a constant factor α, and Gunnarsson and Lundqvist15 

further refined it by replacing α with a semiempirically fitted scaling factor β(n). The 

startling success of such a simple approximation has been found to at least partially arise 

from a fortunate offsetting of errors: an overestimation of the exchange energy, and an 

underestimation of the correlation energy16. 

2.2.2 The Generalized Gradient Approximation 

If the LDA is considered a “zeroth order” approximation, then the generalized gradient 

approximation (GGA) can be said to include first-order expansion terms. The exchange-

correlation functional here has the form 

 ( )[ ] ( ) ( )∫ ⋅∇= rdrnnnrnE XCGGAXC

vvv 3
, ,ε  (12) 

A GGA functional may be developed ab-initio, or through empirical parameterization, 

being fitted to a reference set16. Any work described in this thesis which employs a GGA 

functional has always used the PBE instantiation of the method, in which all parameters 

involved are derived from first-principals constraints17. Other unfitted functionals include 

BLYP18 and PKZB19, with the latter incorporating some semi-local properties. In general, 

GGA surpasses LDA in calculations of absolute binding energies, but not in calculations 

of structural properties such as the equilibrium lattice constant, which is determined by 
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comparing energy differences as opposed to absolute energies. There is no systemic GGA 

advantage in the calculation of bulk properties, though select formalisms such as PBE 

definitively surpass established LDA methods over a broad range of crystals and 

molecules16. 

 

LDA and GGA may each be modified to include a term accounting for spin interactions. 

However, prior publications have shown that spin corrections do not appreciably affect 

bulk properties of either UO2
20 or PuO2

21. Some of the original work to be presented here 

employs the spin correction, but those portions are isolated and the general conclusions 

drawn do not depend on use of the spin correction. 

2.3 Periodicity and Supercells 

Including a sufficiently large number of ions within an isolated system to model a bulk 

crystal is computationally intractable within DFT. And while reducing an N-electron 

system to a set of N noninteracting one-electron systems is trivial, defining a periodic 

crystalline system effectively yields an infinite number of electrons interacting with one 

another, as well as with an infinite number of ions. Because the system also extends 

infinitely into space, each wavefunction would also require expansion in an infinite 

number of plane waves. Unlike the fundamental intractability of a large isolated system, 

however, each of these computational roadblocks in periodic systems has a well-

established method suited to overcome it. 
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2.3.1 Bloch’s Theorem 

Bloch’s theorem addresses the issue of infinite spatial expansion, noting that the 

wavefunction of each electron may be rewritten as a periodic component, needing 

definition on only the domain of the unit cell, and a wavelike component22. 

 ( ) ( ) ( )rkirfr ii

vvvv
⋅= expψ  (13) 

The now-finite periodic component can now be expanded using standard techniques, 

choosing the basis set to have its wave vectors G
v

 defined as the reciprocals of the unit 

cell’s lattice vectors al
v

, bl
v

, and cl
v

. That is, 

 ( ) ( )∑ ⋅=
G

Gii rGiarf
v

v
vvv

exp,  (14) 

Where mlG q π2=⋅
vv

, and m is an integer.  The rewritten wavefunctions now have the 

form 

 ( ) ( )[ ]∑ ⋅+=
+

G
Gkii rGkiar

v

vv
vvvv

exp,ψ  (15) 

The Bloch theorem transforms the problem of calculating an infinite number of electrons’ 

wavefunctions into one requiring calculation of a finite number of wavefunctions, albeit 

each wavefunction requiring evaluation at an infinite number of k-points, each k-point 

encompassing an infinite number of basis plane waves. 

2.3.2 Selection of Sample k-points 

The k-points populate the Brillouin zone, effectively defined as the periodic cell in 

reciprocal space. Since the wavefunctions represented by nearby k-points are very 
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similar, results of high accuracy may be obtained with tractable computational effort by 

choosing an appropriate subset of k-points, an acceptable granulation of reality not unlike 

approximating the area under a curve as a series of rectangles. The problem has therefore 

been reduced to a finite number of wavefunctions, each evaluated at a finite number of k-

points, leaving only the infinite number of basis plane waves to be addressed. The 

algorithm used to select k-points for this work was developed by Monkhorst and Pack23. 

2.3.3 Cutoff Energy 

The magnitudes of the coefficients 
Gki

a vv
+,  in equation 15 diminish rapidly with increasing 

kinetic energy (given by ( )
22 2 Gkm

vv
h +⋅ ). The periodic component, then, need only be 

expanded in basis waves representing kinetic energies below some ceiling, or “cutoff,” 

energy. 

 

Convergence tests must be run for any application, to determine the k-point mesh density 

and cutoff energy necessary for convergence. The loss of precision caused by a coarsened 

k-point mesh should be negligible compared to any energy values or differences which 

are being investigated. Choices found in representative publications investigating actinide 

compounds include mesh densities ranging from 4x4x4 to 8x8x8, and cutoff energies 

ranging from 400-900 eV24,25,26,27,28,29. This work uses a 4x4x4 k-point mesh and a cutoff 

energy of 700 eV (see Subsection 4.1.2). 

2.3.4 Supercells 

In many DFT applications, it is the formation or migration energy of a defect which is 

being investigated. Because a defect-containing periodic system consisting of only a 
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single unit cell would force the defect to interact with its own “mirrors,” a larger system 

is often used, such as a 2x2x2 system of 8 unit cells, which drastically reduces the 

magnitude of self-interaction. This is only due to the isolated nature of defects; in a pure 

bulk system, a 1x1x1 cell is sufficient.  

2.4 Pseudopotential Approximations 

Interactions between atoms depend much more strongly on valence electrons than on core 

shell electrons. This fact can be exploited to drastically reduce the computational demand 

of the simulation. The all-electron wavefunction oscillates rapidly near the atomic 

nucleus, and a very high cutoff energy is needed to follow its variation. If the critical 

properties of the all-electron potential are replicated with a more slowly-varying 

pseudopotential, a much lower cutoff energy can suffice. 

 

Figure 3 shows an example of such a pseudopotential, and the electrostatic potential it 

effects. Past some “core” radius rc, the pseudopotential matches the all-electron potential 

exactly. Within the core radius, its behavior is chosen such that specific properties of the 

all-electron potential are replicated; scattering properties, phase shifts, and norm 

conservation (preservation of total core charge) are universal targets. The pseudopotential 

in Figure 3 is nodeless, a desirable feature when seeking a function easily expandable in 

low-energy eigenfunctions9. 
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Figure 3: A pseudopotential compared to the all-electron potential 

For a more technical discussion of pseudopotential theory and construction, see “Theory 

of Pseudopotentials” by David Vanderbilt, and [9]. 

2.5 Hubbard +U Correction and the Origin of Metastable States 

Despite the general success of LDA and GGA, actinide oxides are a well-documented 

example of their shortcomings. In particular, both functionals drastically underestimate 

the correlation of the 5f electrons to their host actinide ion, modeling those electrons as 

highly delocalized30; in UO2, 5f electrons behave as if the system were pure metallic α-

uranium. In reality, those electrons are strongly correlated to one specific uranium ion, 

and the system is not a metallic conductor but an insulator with a bandgap of 1.3 eV31. 

The delocalization manifests itself as an abundance of partial atomic orbital occupancies 

in the ground state; the degree of occupation of an orbital is calculated by taking the inner 
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product of the electron’s wavefunction and the given orbital. As shown in a very 

conceptual sketch in Figure 4, the global energy minimum lies at a state involving a non-

integral occupation of the atomic orbital denoted on the horizontal axis. 

 

Figure 4: Global energy minimum at a partial occupancy of an atomic orbital 

 

 

Figure 5: Multiple local energy minima at integral orbital occupations 

To address this issue, seen in both LDA and GGA, the Hubbard approach32 effectively 

imposes an energy penalty on electrons which attempt to partially occupy an atomic 

orbital. This energy penalty, imposed to a sufficient degree, requires valence electrons to 
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integrally occupy states which more closely resemble the atomic orbitals of their native 

ion33. The modified energy surface now conceptually resembles the sketch in Figure 5. 

After  the +U modification has been implemented, the energy surface becomes convex, 

and develops local minima. 

 

Local minima which are not also the global minimum are referred to as “metastable 

states” because the energy minimization scheme will converge to their location under 

certain initial guesses, but they are not the ground state. Because all predictions of 

physical properties by DFT are dependent on the relatively small energy differences 

between systems, comparing one system’s ground state to another system’s metastable 

state can dramatically skew the results. 

 

Figure 6: Effects of the initial guess on the final converged state 

Figure 6 illustrates the sensitivity of the converged state to the initial conditions. A DFT 

simulation probes not simply a one-dimensional energy curve but a highly dimensional 

energy surface; the initial conditions include not only the electronic wavefunctions but 
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the volume of the system and the positions of the ions. UO2 is a cubic fluorite structure 

(high symmetry) at room and reactor temperatures, but at the 0 K conditions present in 

DFT calculations, both the Jahn-Teller distortion of the oxygen sublattice and the unit 

cell transformation to tetragonal act to subvert this symmetry. 

2.6 Current Approaches to Metastability 

Understanding and avoiding the metastable states created by the necessary +U correction 

is a central issue in any DFT study of actinide dioxides. Successful approaches have been 

published for pure UO2 by Dorado30 and Meredig33. Neither approach has been extended 

to pure PuO2 or NpO2, or to any mixed oxide (MOX) systems. In fact, to date no 

literature has taken a close look at bulk MOX systems at all from a DFT perspective. 

 

2.6.1 Electronic Orbital Control (EOC) 

Dorado’s method amounts to a combinatorial search of initial conditions to uncover the 

ground state through brute force. A computational protocol is established, requiring the 5f 

electrons to occupy particular atomic orbitals during the first 10 electronic iterations 

before any geometry relaxation is allowed. Subsequently, the controls are released and 

the simulation converges with no further restrictions. After running a series of 7C2 = 21 

simulations imposing various orbital restrictions (valence electrons occupying two of 

seven 5f orbitals), the lowest energy observed was reached by four of the simulations, 

each showing the same final occupation matrix. It was put forth that this occupation 

matrix could be imposed at the outset of the calculation, and if the same occupation 

existed after final convergence, the results must represent the ground state. 
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2.6.2 Hubbard Parameter Ramping 

The approach by Meredig seeks to exploit the qualitative nature of the energy surface. As 

was shown in Figure 4, the presence of the Hubbard correction has introduced 

convexities. The convexity is amplified for larger Hubbard parameters, and for 

sufficiently small values the surface remains concave at all points. Intermediate values 

are represented by the multiple dashed curves. 

 

The results of a DFT simulation include the system’s converged electronic 

wavefunctions, charge densities, and ion positions. In the Meredig protocols, a first 

simulation is run with no Hubbard correction. The three output files listed are then used 

to initialize a second simulation which is identical to the first save for the introduction of 

the Hubbard +U parameter, at a small fraction of its actual value. If the established value 

of Ueff is 4 eV, this second run may use 0.25 eV or 0.50 eV. The energy surface is slightly 

less concave, and the fractional orbital occupation converges to an intermediate value 

between the lowest-energy states indicated by Figures 4 and 5. The process is iterated, 

incrementing Ueff to its full value with the expectation that the fractional orbital 

occupation will gradually “slide” to the lowest-energy integral occupation for the final 

simulation. It should be stressed that these figures are qualitative, and the ground state of 

DFT+U simulations found by Dorado does not show integrally occupied orbitals. 

 

The ramping scheme was tested against the EOC combinatorial search for a 1x1x1 UO2 

system, and its proposed ground state lay roughly 0.06 eV above that found by EOC’s 
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enumeration. For another system, distorted CoO, it revealed a state lying below EOC’s 

prediction33. 
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CHAPTER 3: THE VOLUME-ENERGY CURVE 

 

As briefly mentioned in Section 1.2, DFT can be used to derive a prediction for the lattice 

constant of a system. More typically, the plot is unit cell volume, rather than lattice 

constant, versus energy. The concept is now illustrated in Figure 7. The energies are 

fitted to a known theoretical “equation of state,” the fitting parameters of which are 

physical properties of the material such as the equilibrium unit cell volume V0 (lattice 

constant a0=V0
1/3), the equilibrium cohesive energy E0, and the bulk modulus B0. 

 

Figure 7: Generic volume-energy curve 

The broad range of system volumes in Figure 7 is shown to illustrate the asymptotic 

behavior of the curve at small and large volumes; only a very narrow range of system 

sizes near the equilibrium need be computed to fit a reliable curve, representing a strain 

on the order of ±1%. Such a deformation is unlikely to be exceeded in real solids, 

especially ceramics such as actinide dioxide fuels. 
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3.1 Equation of State 

The equation of state chosen to fit the data done by this work is simplified one which 

assumes a constant bulk modulus B0. 
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0
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If we are careful to normalize our volumes to Å3, we can separate the ratio within the 

logarithm to yield a three-parameter model which can be easily fit to a data set using 

multiple linear regression. 

 ( ) ( )[ ] ( )[ ] VBVBVVBVBEE ⋅+⋅+⋅++= 0000000 lnln  (17a) 

 ( )[ ] VcVVbaE ⋅+⋅⋅+= ln  (17b) 

The fitted parameters are functions of the predicted properties V0, B0, and E0, and can be 

solved for simultaneously with little effort. In this work, all data sets are normalized with 

respect to the lowest energy found in the set, and so any value of E0 is relative to this 

point; in any case, it is not used in analysis. 

 

Although more sophisticated models do exist, most notably those developed by 

Murnaghan34 and Birch35, the computational effort involved in fitting them to data does 

not yield a noticeable improvement over the volume ranges which are considered by this 

work. Using the experimentally known lattice parameter4, bulk modulus5, and variation in 

the bulk modulus due to stress5 for UO2, the three models are compared over relevant 

system volumes in Figure 8. 
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Figure 8: Comparison of Various Equations of State 

Experimental information regarding stress-dependence of the bulk modulus is not 

available for PuO2 or NpO2, or for any mixed composition. Based on their similarities to 

UO2, it is reasonable to assume the model used in this work is equally as valid for those 

oxides as well. 

3.2 Using the Volume-Energy Curve to Detect Metastable States 

Figure 9 is a volume-energy plot of eight simulations, with the systems’ lattice constants 

ranging from 5.18 Å to 5.32 Å, incremented by 0.02 Å. Because total energies mean 

little, the results were normalized, treating the lowest energy as the zero point. The 

functional used was GGA-PBE, and did not employ the Hubbard +U correction, and so 

the energy surface was concave, devoid of potential metastable states. The equilibrium 
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values predicted by the curve are a0=5.25 Å and B0=221 GPa. This underestimation of 

the lattice parameter is typical of actinide DFT calculations with no +U considerations. 
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Figure 9: Sample volume-energy curve from Pu0.5Np0.5O2 using GGA 

Note the energy differences between consecutive system sizes are on the order of several 

hundredths of an eV. This is small compared to other energy differences looked at in 

literature—primarily defect formation and migration energies—which are on the order of 

1-10 eV1,8,27. If there were any metastable states represented by these converged systems, 

they would have to lie much less than 0.01 eV above their ground state, and would have a 

negligible influence on DFT predictions. Using formation/migration energies themselves 

as a proxy for ground states, however, carries risk. The method under investigation may 

leave the systems in metastable states lying several tenths of an eV above their ground 
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states but result in an energy difference which is within the acceptable range of error. 

Because metastable states have been observed (though infrequently) which lie several eV 

above their ground state30, such a method could pass a spot check and later give very 

wrong results. By vetting the method using a volume-energy curve, it is required to 

successfully converge to a ground state in every system, and if one or more systems 

become stuck in any metastable state, the deviation will be readily apparent. If a method 

can converge a system to any metastable state, even if that state lies not far above the true 

ground state, then it is likely susceptible to much larger deviations as well. 

3.3 Magnitude of Metastable States 

By running a series of systems similar to those in Figure 9 through a DFT+U functional, 

we can gain some insight into exactly how high above the ground state a metastable state 

can lie. Figure 10 shows the collective results of two sets of runs: one ranging from 5.1-

5.7 Å in increments of 0.1 Å, and one much more densely spaced—from 5.35-5.45 Å in 

increments of 0.01 Å. 

 

The energy differences between widely-spaced systems are on the order of several eV. 

The metastable states are clearly visible near the minimum of the curve, and are roughly 

one order of magnitude smaller. They may be present in the extreme system sizes, but are 

masked by the larger inherent energy differences. The energy differences between 

narrowly-spaced systems, from which the bulk properties must be derived, are an order of 

magnitude smaller still, and all information in this region of the curve is lost amidst 

metastable noise. 
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Figure 10: Finely and coarsely spaced system sizes for U0.5Pu0.5O2 
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CHAPTER 4: METHODOLOGY AND APPROACHES TO 

METASTABILITY 

4.1 Vienna Ab-initio Software Package (VASP) 

4.1.1 General Parameters 

All simulations were done using VASP36,37. System cell volume and shape were kept 

rigid, with one exception noted in Section 4.2. Ion positions were allowed to relax in all 

cases, and were typically initialized as ideal fluorite. Exceptions to this are limited to the 

distorted structure referenced in Figure 16, and all structures in Section 4.5 which took as 

their initial structure the final structure from a prior simulation. The unit cell chosen was 

a 1x1x1 12-atom supercell, containing 4 actinide ions and 8 oxygen ions. 

4.1.2 Convergence Considerations and Determination of Parameters 

The electronic convergence criterion was set to 0.1 meV. A cutoff energy of 700 eV was 

chosen. Convergence tests were run at this cutoff for various k-point mesh densities and 

compared with a computationally taxing “benchmark” simulation using hundreds of k-

points. Results are shown in Figure 11. The 4x4x4 mesh showed a deviation of just over 

1 meV per UO2, or 0.05 eV per 12-atom unit cell. This is sufficient for ground state 

calculations. Applicable Hubbard parameters, listed in Table 2, were taken from Kotani 

and Yamazaki’s experimental data38. The Dudarev39 implementation of +U, which 

considers only the quantity U-J rather than their distinct values, was used for calculations. 
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Table 2: Choice of Hubbard Parameters 

Element U (eV) J (eV) Ueff = U-J (eV) 

U 4.5 0.51 3.99 

Pu 4.0 0.75 3.25 

Np 5.0 0.61 4.39 

 

 

Figure 11: K-points convergence test 

4.2 Ideality of the Solid Solutions 

Because there is minimal experimental data regarding the lattice constants and bulk 

moduli of mixed actinide oxides, it is necessary to estimate their values from the known 

properties of the pure compositions. Published values are limited to lattice constants of 

urania-plutonia40 and urania-neptunia4 systems, which were found to obey Vegard’s law. 
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Vegard’s law states that, for ideal solid solutions, the elastic properties and equilibrium 

lattice constant should vary linearly with composition for mixtures41. As chemically and 

physically similar compounds, the actinide dioxides are prime candidates to form solid 

solutions. A litmus test for a solid solution is the cohesive energy of the system; if it is 

linear with respect to composition, the solution is ideal. 

 

The simulation parameters for this test were slightly different than the standard settings 

listed in Section 4.1. To achieve full relaxation, cell size and shape were allowed to 

change, in addition to the basic ion position relaxation. All binary MOX combinations 

were tested in a 1x1x1 system, and each pair returned results which strongly support the 

ideality of the solution. A sample of the data, the normalized energies of the U-Pu MOX 

systems, is included as Figure 12.   

 

Figure 12: The ideality of (U,Pu)O2 
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4.3 Establishing a Baseline Using Unmodified GGA 

A full set of energy-volume curves was generated for pure UO2, PuO2, NpO2, and for all 

binary combinations AxB1-xO2, using the GGA-PBE functional. Because only the 1x1x1 

unit cell was considered, with four actinide ions, composition resolution was limited to 

increments of 25%. An equation of state was fitted to each curve to derive predictions for 

the equilibrium lattice constant and bulk modulus. Those results were compiled into 

Figure 13 (lattice constant) and Figure 14 (bulk modulus), presenting those predictions 

alongside the experimentally known values. Again, most MOX systems have not been 

investigated experimentally; per the results discussed in Section 4.2, all intermediate 

compositions are assumed to be ideal solid solutions, whose bulk properties vary linearly 

with composition. 

 

Figure 13 exemplifies the tendency of GGA to underestimate the lattice constant of an 

actinide-bearing system (a failure of both GGA and LDA without the Hubbard 

correction), but to do so in a uniform manner. Each system’s lattice constant is 

underestimated by 0.15 Å, and the pure compositions are correctly ordered. 
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Figure 13: GGA lattice constant predictions of MOX fuels 
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Figure 14: GGA bulk modulus predictions of MOX fuels 
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In contrast to the well-behaved lattice constant results, Figure 14 displays a rather 

unordered set of predictions for the bulk moduli. The pure compositions are predicted to 

have virtually identical values, in contrast to the experimentally known 15% spread 

between UO2 and PuO2. The MOX compositions show no trends, contrary to the 

suggestion of ideal solid solutions by Figures 12 and 13. The only experimental data 

available on the topic regards the nonideality of the stoichiometric (U,Pu)O2 solid 

solution41, and indicates that ideality resumes at Pu content above 10%, and so no 

indications of it are likely to be seen with an initial jump from 0 to 25% Pu content. 

4.4 Reproducing Metastable States in Pure and Binary Actinide 
Oxides 

4.4.1 Influence of Initial Ion Structure on Metastable States in UO2 

Tests varying only the initial system geometry were run on UO2 using an LDA+U 

functional. The simulations plotted in Figure 15 were initialized as an ideal fluorite 

structure, and the simulations for Figure 16 were initialized with a distortion to the 

oxygen sublattice. Each oxygen atom was displaced from its idealized (0.25, 0.25, 0.25) 

fluorite position to the (0.24, 0.24, 0.24) or symmetry-equivalent position.  
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Figure 15: Volume-energy curve for UO2 +U initialized from ideal fluorite geometry 

The ideal initializations all converged to their ground states, while the distorted initial 

geometries converged to a variety of metastable states, clearly exhibiting the same order 

of magnitude inferred from Figure 10. Because the known differences for such a curve’s 

ground states are less than 0.1 eV, only the point at 147 Å3 point could potentially be in 

its ground state. If only two systems were being compared, the presence of metastable 

states could potentially go unnoticed and pass a standard spot “reality” check. The 

construction of a volume-energy curve yields the definitive verdict. 
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Figure 16: Volume-energy curve for UO2 +U initialized from distorted geometry 

4.4.2 Metastable States in Binary Actinide Oxide Systems 

To uncover metastable states in mixed oxide systems, the initialization with a distorted 

geometry is unnecessary. Figure 17 shows the result of replacing one of the four uranium 

ions in the ideal fluorite structure of the 1x1x1 unit cell with a plutonium ion, and re-

running the systems with sizes centered on the expected equilibrium size. 
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Figure 17: U0.75Pu0.25O2 DFT+U volume-energy curve 

The order of magnitude of metastable states is again several tenths of an eV. With their 

presence established and easily detectable in both pure and mixed oxides, we now move 

towards methods to avoid them altogether. 

4.5 Avoiding Metastable States with Continuation Files 

The existing literature methods are fairly time-consuming, requiring a combinatorial 

search30 or potentially dozens of consecutive runs for each system size33. This work 

primarily investigated methods involving continuation files, similar to the latter approach 

by Meredig. As mentioned previously, each simulation output includes not only the 

converged energy but also the final electronic wavefunctions, charge densities, and ion 

positions of the simulation. Chosen appropriately after a first iteration of system sizes, 

these files may initialize a subsequent iteration of systems using sufficiently identical 
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conditions to converge all systems to the ground state, or potentially to analogous 

metastable states, which while not ideal, would likely still represent an improvement over 

non-iterated results. Regardless, the construction of volume-energy curves will provide 

the insight necessary to classify the results. 

4.5.1 Iterated System States 

To begin, a series of fixed-size simulations were performed. The volume-energy curve 

was constructed, and one of the results was chosen (visually) to represent the lowest-

lying state. For example, in Figure 16, the 147 Å3 point would be chosen; in Figure 17, 

the point at 155 Å3. The output file for ion positions was copied and scaled in size to 

represent all other system sizes, and was used, along with its corresponding charge 

density and wavefunction files, to initialize all system sizes for the second iteration. The 

process can be repeated multiple times, as shown conceptually in Figure 18, however in 

practice all compositions either converged after the second iteration or ceased to show 

progress after five iterations. In every case, the pure compositions converged and the 

mixed compositions did not.  



 

36 

 

Figure 18: A conceptual sketch of the method of iterated system states 

Table 3 lists the theoretical predictions derived for the pure oxides and compares them 

against known experimental values (Section 2.1) and to another effort from literature. 

Table 3: Results for pure actinide oxides using the “iterated system states” approach 

This Work Experimental Values Andersson1 
 

a0 (Å) B0 (GPa) a0 (Å) B0 (GPa) a0 (Å) B0 (GPa) 

UO2 5.45 221 5.47 207 5.448 218 

PuO2 5.35 223 5.398 178 5.354 226 

NpO2 5.41 216 5.43 200 5.398 228 

 

The results compare very favorably with both experimental values and existing literature 

predictions. The high correlation factor between the equation of state and the volume-
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energy plots—in excess of 0.99 for all cases—it is apparent that each of the pure actinide 

oxide systems did indeed reach its ground state. 

4.5.2 Cascading System States 

It is hypothesized that using the same input continuation files for all system sizes may 

cause the more sensitive MOX systems to fall into metastable states. A possible solution 

is to only iterate the continuation files into the most alike systems, i.e. adjacent system 

sizes. 

 

Beginning with a set of fixed-size systems to simulate, the smallest system was 

converged. The output file for its converged ion positions was proportionally scaled up to 

the next-smallest system size, which, along with its output wavefunction and charge 

density files, was used to initialize that system. The results of this second-smallest system 

were scaled up and used as initial conditions for the third-smallest system, effectively 

being “cascaded” from one system to the next, repeated up to the largest system size. 

 

Figure 19: The concept of cascading system states 
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In the event that metastable noise is present after the first pass, the option exists to then 

perform a reverse pass, starting with the largest system size and working back down to 

the smallest. An alternate scheme is to begin the entire process with an intermediate-sized 

system and cascade results towards both extremes independently. Either process should 

be terminated if either the volume-energy curve becomes smooth, or if two consecutive 

iterations fail to yield a lower energy for any system size. 

 

Figure 20: An alternate “cascading system states” scheme 

Both schemes were attempted for all systems; the pure AO2 results for the scheme with 

the stronger fit (measured by the regression’s R2 value) are shown in Table 4. 

Table 4: Results for pure actinide oxides using the “cascading system states” approach 

This Work Experimental Values 
 

a0 (Å) B0 (GPa) R2 value a0 (Å) B0 (GPa) 

UO2 5.46 110 0.71 5.47 207 

PuO2 5.35 336 0.94 5.398 178 

NpO2 5.51 704 0.41 5.43 200 
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Neither cascade scheme yielded progress for MOX systems, and, further, failed to 

achieve success with the more well-behaved pure compositions. The pure compositions 

showed too little improvement over naive +U results to recommend the method in any 

serious capacity. Neptunia failed to show any improvement, and although urania and 

plutonia improved sufficiently to adequately predict lattice parameters, the best-fit 

equations of state predicted bulk moduli with errors exceeding 50%. 
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CHAPTER 5: CONCLUSIONS 

Metastable states are a genuine challenge when probing nuclear oxide fuels via DFT 

calculations. Existing methods have been spot-checked in multiple cases, but a volume-

energy curve could provide a more rigorous test. With its small tolerance for metastable 

noise and abundance of similar but nonidentical systems whose ground states are very 

close in energy, it is well suited to do so; the small energy differences between adjacent 

systems are known to follow a particular trend, and the presence of metastable states 

introduces a pronounced disruption. 

 

There remains much work to be done in the DFT investigation of actinide oxides, in 

particular the MOX compositions, but it should prove fruitful. There already exist two 

well-established literature methods for overcoming metastable states in pure urania, and 

the method of iterated system states outlined in Subsection 4.5.1 looks to be a promising 

addition, although its approach may restrict it to the investigation energy differences 

between systems with a high degree of geometric similarity. Where it is valid, systems 

appear to converge to their ground states with considerably less computational cost than 

would be required with the combinatorial approach suggested by Dorado30 or the gradual 

parameterization outlined by Meredig33. 

 

MOX compositions remain especially resilient to all methods attempted here, and the 

combinatorial explosion which would emerge by applying the Dorado approach quickly 

makes it unrealistic. The Meredig method, although slightly more organic, now would be 
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tasked with the simultaneous ramping of multiple species’ Hubbard parameters. With the 

quantitative behavior of the energy surface still far beyond comprehension, a 

combinatorial approach may be required here as well for MOX systems, to determine 

whether species’ +U values should be ramped simultaneously, in sequence, or in parallel. 

Clearly, more effective methods are required in this realm. 
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