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Abstract— We propose a nonlinear observer framework in
which the state estimate x̂k of a discrete time dynamical
system is chosen to simultaneously minimize the final output
residual yk − h

`
xk, uk, t) while at the same time remaining

close to the predicted apriori estimate x̂−k . This latter constraint
regularizes the problem of trying to instantaneously invert
an overdetermined system with more states than outputs by
putting a cost on the difference between the predicted and
final state estimates. As the the apriori estimates used to
regularize the inversion process are obtained from the modelled
system dynamics, we refer to this approach as regularized
dynamic inversion. We discuss a class of nonlinearities for which
this style observer yields a computationally feasible filtering
algorithm with significantly superior performance compared
with its Luenberger style counterparts (EKF) in two scenarios.

I. INTRODUCTION

The problem of inversion of a mapping from a high
dimensional to a low dimensional space is ill-posed. The
problem has a long history, dating back to Legendre (1805)
and Gauss (1809). In the linear case the problem reduces
to finding a ‘solution’ to an inconsistent overdetermined set
of equations: We want to find a vector x so that for given
H and y, both Hx and y are equal. However, unless y is
in the range space of H equality is impossible. Hence one
searches then for a ‘solution’ x such that Hx and y are close
in some sense. In the nonlinear overdetermined problem, we
want h(x) and y to be close, If we restate the problem
as y = h(x) + v then, it may be interpreted as having
the result of some nonlinear measurements of x where v
is the associated measurement error (this need not have a
stochastic model). One simply associates a misadjustment
with the measurement and, assuming that the measurement
model is correct, determines a solution of the ‘doctored’
measurement y − v. Obviously, our belief in the validity of
the measurement dictates that one should keep the amount
of doctoring minimal. We are then led to put a metric
on the measurement space, which in principle may also
depend on the measurement itself. A Riemannian metric,
W (·) : TyY × TyY → IR induces the norm ‖v‖2

W (y) on
the perturbations v in the tangent space TyY at y in the
measurement space Y . A necessary condition for x∗ being
a minimizer of the misdajustment is

∇xh(x∗)W (y)(y − h(x∗)) = 0.

In general, when the equations are made consistent by
a suitable perturbation of the measurement, many (in fact
infinitely many) solutions may be possible. This situation is

not very favorable in problems of tracking, i.e., when actual
dynamics are involved. Such is for instance the case when
a moving or rotating object is to be tracked against some
background, or in the problem of tracking a signal that is
known to evolve continuously. This is the typical filtering
problem. In these cases the resolution as a unique solution
is important, and can be accomplished by regularization.
Here some prior information about the variable x, say x is
assumed. Then rather than minimizing just ‖y − h(x)‖, one
incorporates also the misadjustment in the prediction with
some suitable weight in the space where x lives. The most
general case involves thus a minimization of

J(z; y, x) = ‖y − h(z)‖2
W (y) + ‖x− z‖2

Π(x).

which yields the best trade-off between the misadjustments
of the predicted value and the measurements. This idea was
already explored in ([2]).

Note that the use Riemannian metrics has also been
implemented in minimum sensitivity design problems, which
may be seen as a dual to the present problem [7]. In
principle the above step is a corrector-step. Many estimation
algorithms indeed follow an ubiquitous predictor-corrector
scheme. See for instance [1]. As shown in the next section, in
the linear case both the predictor and corrector step are linear
operations. The equivalence with the Kalman filter follows
from an judicious choice of the weights, and are shown to
be associated with the exact optimal least squares filter in
the linear Gaussian case.

II. LINEAR CASE

For the sake of completeness as well as in the interest
of presenting a self-contained work, we begin with the
presentation of the regularized dynamic inversion observer
in the linear case. We see that in this special case, while
appearing to have a different structure than the classical
Luenberger style observer [3], it is actually equivalent. We
note though, that this relationship between the two observers
in the linear case is discussed in the book of Kailath, Sayed,
and Hassibi [6] where the regularized dynamic inversion
method is referred to as regularized least squares.

We will also show that when the regularizing term is
weighted optimally (for minimal error variance), the observer
is equivalent to the Kalman filter. While this is not a standard
Kalman filter derivation, we are aware of at least one similar
development [1].
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A. Observer structure
Assume we start with an unbiased estimate x̂k of the state

xk for the process whose state and ouput are modelled by

xk+1 = Axk + Buk + wk (1a)

yk = Hxk + vk (1b)

where wk and vk represent independent, zero-mean model
and measurement white noise with covariance matrices Qk

and Rk respectively. Our goal is to arrive at an unbiased min-
imum variance estimate x̂k+1. We start in the standard way a-
priori predicted estimate x̂−k+1 using the previous estimate x̂k

and input uk combined with the modeled system dynamics.
We then attempt to invert the new measurement yk+1, which
may not be instantaneously, directly invertible, by using
this a-priori estimate x̂−k+1 as a regularizer. This regularized
inversion is carried out by minimizing a quadratic energy
consisiting of two terms, the first of which is simply the
residual between the system modelled and actual measured
outputs, the second of which is the discrepancy between the
predicted and final state estimates. As such, the resulting a-
posteriori estimate x̂k+1, unlike the a-priori estimate, will
depend upon the new measurement.

x̂−k+1 = Ax̂k + Buk (2a)

x̂k+1 = arg min
z

‖yk+1 −Hz‖2 + ‖z − x̂−k+1‖
2
W (2b)

The matrix W denotes a positive definite matrix which
weights the norm in the second term according to the level
of confidence we have in the predicted state x̂−k+1. Note that,
in this linear case, the minimizer of the quadratic energy has
a unique and closed form solution.

x̂k+1 = (HT H + W )−1(Wx̂−k+1 + HT yk+1) (3)

B. Choosing the optimal prior weight W

Note that unlike the traditional gain matrix of the Luen-
berger style observer, which maps the error of the system
output estimate into a correction to the system state estimate
(an ill-posed problem when the state space has higher dimen-
sion than the output space), the prior weighting matrix W
has a very clear and natural interpretation. Namely, it reflects
how much we trust the various components of the a-priori
estimate x̂−k+1.

Given its straighforward interpretation, a number of
heuristics may be derived to select reasonable choices of
W from application specific considerations. However, in the
event that the system and measurement noise covariances Qk

and Rk are known (allowing us to compute the covariance
Pk+1 of our state estimate x̂t1), then the natural approach
would be to choose W to yield a minimum variance estimate
at time k+1 (in the same way that the gain matrix is chosen
in the Kalman filter).

1) Some notation:

M
.= HT H + W,

x̃−k+1
.= x̂−k+1 − xk+1, P−

k+1
.= E{x̃−k+1x̃

−T
k+1},

x̃k+1
.= x̂k+1 − xk+1, Pk+1

.= E{x̃k+1x̃
T
k+1}

2) Some expressions:

x̃−k+1 = Ax̃k − wk,

P−
k+1 = APkAT + Qk,

x̃k+1 =
(
I −M−1HT H

)
x̃−k+1 + M−1HT vk+1

P+
k+1 = P−

k+1 − 2M−1HT HP−
k+1 (4)

+M−1HT (HP−
k+1H

T + Rk+1)HM−1

3) Differentiating in W: We now choose W to minimize
the trace of the aposteiori error covariance matrix as is
normally done with the gain K in the Luenberger observer
to derive the Kalman filter. We compute the derivative of
Tr

{
P+

k+1

}
, using expression (4), with respect to W .

d

dW
Tr

{
P+

k+1

}
= 2M−1P−

k+1H
T HM−1

− 2M−2HT (HP−
k+1H

T + Rk+1)HM−1

Setting this result equal to zero yields

HT HP−
k+1 = HT (HP−

k+1H
T + Rk+1)HM−1

HP−
k+1 = (HP−

k+1H
T + Rk+1)HM−1 (5)

where (5) follows under the assumption that H has full rank.
Now substituting M = HT H + W we get

HP−
k+1(H

T H + W ) = (HP−
k+1H

T + Rk+1)H

HP−
k+1W = Rk+1H. (6)

C. Relationship to the Kalman filter

We now show that in this linear case, regularized dynamic
inversion with optimally chosen prior weighting W is equiv-
alent to the linear Kalman filter.

First, note that expression (3) for the closed form regular-
ized inverted output measurement may be rewritten as

x̂k+1 = x̂−k+1 + M−1HT (yk+1 −Hx̂−k+1), (7)

allowing us to replace the minimization step (2b) with the
standard Luenberger correction step where M−1HT plays
the role of the gain matrix. Next, if instead of simplifying
(5) to obtain the optimality condition (6) for W , we simply
rearrange its terms, we obtain the traditional Kalman gain.

M−1HT = P−
k+1H

T (HP−
k+1H

T + Rk+1)−1 (8)

Therefore, in the linear case, simply solving (8) for
K

Kalman
= M−1HT and subsituting into (7) bypasses

the need to solve for W directly. Further, substitution into
expression (4) for P+

k+1 gives the standard Kalman update.

III. THE GENERAL CASE

A. Observer structure

We now consider a more general nonlinear process for
which we have an initial estimate x̂k as whose dynamics are
governed by the following equations.

xk+1 = f(xk, uk) + wk (9a)

yk = h(xk) + vk (9b)
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Our observer model starts as before using the modelled
dynamics together with the present state estimate x̂k to
obtain the a-priori predicted estimate x̂−k+1, independent of
the new measurement. Then as before, we attempt to invert
the new measurement yk+1, using this a-priori estimate x̂−k+1

as a prior in order to regularized what may be an ill-posed
inversion problem. The same type of quadratic energy is
employed, but in this general case, there is not necessarily a
closed form unique solution.

x̂−k+1 = f(x̂k, uk) (10a)

x̂k+1 = arg min
z

‖yk+1 − h(z)‖2 + ‖z − x̂−k+1‖
2
W (10b)

B. Implementation Advantages and Practicalities

Note that in the nonlinear case, the observer (10) has
the exact same interpretation as in the linear case (2).
Namely, the goal is to invert the measurement function h
in a least squares sense using the apriori prediction based on
the system dynamics as a regularizing factor to render the
problem well posed. There is no need to linearize or compute
Jacobians of h as in the EKF. However, the cost of this is
solving a minimization problem each iteration of the filter.

Solving the minimization problem (10b) is practical in two
different scenarios. One scenario is that h has a specific ana-
lytic structre which admits computable closed form solutions
for the minimizers. We will explore such an example in the
following section for the case of a quadratic measurement
equation.

The second practical scenario occurs when the structure
of h admits easily computable expressions for minimizing
values of most of the state vector as a function of only
a few key states. In such cases, even when no simple
closed form expressions are available for these key remaining
states, numerical search techniques may be used to carry out
the minimization in a reasonable amount of time. We will
follow the quadratic example with an example of this second
scenario for a infinite dimensiona visual tracking application
in computer vision.

IV. A QUADRATIC EXAMPLE

To illustrate the above ideas we consider in this section
a simple scalar linear stochastic dynamical system with a
noisy energy estimator. Let

xk+1 = fxk + guk + γwk (11)

where f, g and γ are constant. uk is the deterministic system
input, and wk a standard stationary gaussian white noise
sequence. Standard means: zero mean and unit variance. Let
the output be a noisy estimate of the signal power, i.e.

yk = x2
k + vk. (12)

where vk is a white noise sequence, independent of the
driving noise, and with zero mean and variance r.

A. Deterministic observability

In the noiseless case, and with zero input, the system
response is xk = fkx0 giving also yk = f2kx2

0. Obviously,
the initial state cannot be uniquely determined. Its magnitude
can be retrieved, but not its sign. However if an input can
be applied, the ambiguity disappears. Indeed, from y0 = x2

0

and y1 = (fx0 + gu0)2, we get

x0 =
y1 − f2y0 − g2u2

0

2fgu0

at the expense of an input and an additional time step.

B. Filtered estimate via optimization

Consider now the stochastic case. Assuming the filtered
estimate (using all data up to step k−1 is x̂k−1, the prediction
of the next state, given the deterministic input is

xk = fx̂k−1 + guk−1.

The new measurement update, x̂k, incorporating the mea-
surement yk, is obtained by minimizing

Jk = (yk − z2)2 + Wk(xk − z)2. (13)

Here W − k is a weight to be determined later. We find a
cubic equation as a necessary condition for the optimum

z3 −
(

y − W

2

)
z − Wx

2
= 0. (14)

The subscript k was suppressed for notational simplicity.
It is evident that if y < W/2, the cubic can only have one

real root. If y > W/2, there are three real roots if in addition

|x̂| < 1
3
√

3W

(
y − W

2

)3/2

.

In this case ambiguity remains as to which of the three
roots minimizes J . However, since J is quartic in z with
positive coefficient of z4, the middle solution may always
be excluded, as it corresponds to a local maximum in J . For
the special form of the cubic, the local minima are always
separated by zero. The global minimum of J is found by
evaluation and comparison. However note that a shortcut is
possible in this computation. Indeed

J = (y − z2)2 + W (x− z)2

= y2 + Wx2 −
(

y − W

2

)
z2 − 3Wx

2
z,

by using (14). It follows that for given y and x and
W , the minimizing root z is the one that maximizes((

y − W
2

)
z + 3Wx

2

)
z, i.e. the root closest to the value

z0 =
3x

1− 2y
W

.

Clearly, this means that if z0 < 0, we take the leftmost root
of (14), and the rightmost if z0 > 0. For W = 1, Figure 1
shows a plot of the optimal estimate, zopt for various values
of y − 1/2 as function of x. Note the middle (red) line, for
y = 1/2, corresponding to the transition where the criterion
(14) has only a single real root. The graphs correspond to
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Fig. 1. Measurement update for m = 1

y−1/2 from −2 to 2 in steps of 1. For y > 1/2 the optimal
estimate is discontinuous at x = 0.

It follows from the state equation that

xk − xk = f(xk−1 − x̂k−1) + γwk−1.

Hence, with P+
k−1 is the variance of the filtered estimate at

time k − 1, and P−
k the variance of the predicted estimate

at time k, we get the time update by ‘squaring up’

P−
k = f2P+

k−1 + γ2.

The measurement updated variance equation is a lot more
complicated considering the nonlinearities.

C. Extended Kalman filter

This follows the exposition in [1, p.374]. The filter is
‘designed’ as a generalization of the linear case, with Hx
replaced by ∂h

∂x (x̂). Since, the resulting update formulas for
P+ and P− are now not exact covariances, we use M for
P− and P for P+ in the recursions instead.

x̂k = xk + Kk(yk − x2
k), xk+1 = fx̂k + guk,

Kk = 2
r Pkxk, Pk = Mk − 4x2

kMk
2

4x2
kMk+r

,

Mk+1 = f2Pk + γ2.

D. Choice of weight

The weight W for the regularized dynamic inversion
follows from the optimality condition as explained in section
II.B, for which the recursions for P and M in the extended
Kalman are instrumental. Summarizing, the proposed non-
linear filter for the power measurement system is given by

xk = fx̂k−1 + guk−1, x̂k = argminz Jk(z; yk, xk,Wk),
Pk = Mk − 4x2

kM2
k

4x2
kMk+r

, Mk+1 = f2Pk + γ2,

Wk = M−1
k

where argminJk(z; ·) requires the solution of a cubic (ex-
plicit formulas exist) as described above.

E. Simulation results

Preliminary results have indicated that for certain values
of the parameters, substantial improvement is obtained over
the extended Kalman filter solutions. In Figure 2a , the
performance of the two estimators for the system with

xk+1 = 0.9xk + 1 + γwk and yk = x2
k +

√
rvk, and

initial condition equal to the (noiseless) steady state value
x0 = 10 is compared. The sequences wk and vk are
standard white noise (zero mean and unit variance). The
initial uncertainty M0 was taken to be 100 in both cases.
The graphs show the (empirically estimated) filtered error
covariance E(x− x̂)2 for the extended Kalman filter and the
regularized dynamic inversion in function of γ, ranging from
0 (no driving noise) to 2 and for fixed r. The different curves
in Figure 2 correspond to r from 0.2 to 2 in steps of 0.1.
We observe that for small values of γ (up to about 0.5), the
EKF and the regularized dynamic inversion have comparable
performance. The sharply rising curves for γ > 0.5 are the
ones for the EKF. The two curves with the larger initial
covariance correspond to r = 10, while the lower ones
have r = 0.2. For much larger values of γ the nonlinear
filter substantially outperforms the extended Kalman filter.
Besides the predicted state error covariance, other measures
of performance may be looked at. We computed the resid-
uals, y − h(x̂), and found that both filters have a bias. The
empirical average for this bias, denoted 〈y − h(x̂)〉 under the
same steady state conditions as discussed above is displayed
in Figure 2b. For the nonlinear filter, the bias is remarkably
insensitive to process and measurement noise covariance, and
remains in fact close to zero. The EKF shows a bias that is
quite sensitive to the driving noise covariance, but not the
observation noise covariance. In addition, Figure 2c gives the
empirical RMS value of the fluctuation around the bias, of
these residuals. We discover that these fluctuations increase
with increasing measurement noise, but for the EKF, they
increase also sharply with increasing driving noise once γ
exceeds 1. On the other hand, for the nonlinear filter, the
RMS values are quite insensitive to the driving noise.

It was also found by computing the power spectrum of the
residuals yk − x̂2

k that these residuals are ‘closer’ to a white
noise sequence for the nonlinear filter than for the EKF. This
is indicative of near optimality as would be obtained with the
exact least squares filter [5]. We experienced one problem
shared by both filters: If the filters are started near the zero
state, and the (deterministic) input is zero, then neither filter
may be able to discern between the state x or its mirror image
−x, as both are consistent with the quadratic observation and
time update. In fact such a dichotomy arises each time the
state passes close to zero. This is due to the non-observability
in the absence of an input. Note that in this case the residuals
y − h(x̂) are close to zero, whereas the estimation errors
‖x − x̂‖ are not. There is one exception: if the nonlinear
filter for the autonomous system starts exactly in the zero
state, it can never leave this state, whereas the EKF is able
to track ”half of the time” (the remaining half producing the
mirror state). It is debatable which is the better.

V. AN APPLICATION TO VISUAL TRACKING

We now apply the proposed observer to an infinite di-
mensional problem for which no closed form solution to the
minimization problem exists but where minimizing values of
almost all of the state vector can be written as a function of
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Fig. 2. (a) Filtered state - error covariance, (b) Bias in residuals, (c) RMS value of fluctuations in residuals about the bias

just a few key states. We procede to locate the minimum
numerically by searching over these key states. In particular,
we consider a computer vision application of tracking a
moving object within a video sequence.

A. Plant Descripton

1) Foreground-Background model: We consider a simpli-
fied model of a video sequence I which we treat as a time
indexed sequence of images (with infinite spatial resolution
for the moment), modelled as real-valued functions over the
plane Ik : Ω ⊂ <2 → <. Note that the image Ik at time k
represents the plant output, which is infinite dimensional as
it associates to each x ∈ Ω an itensity Ik(x). As such, x may
be interpreted as an index into the infinite dimensional vector
Ik, and no longer carries the usual interpretation of being the
state vector. To further discourage the misinterpretation of x
as the state vector, we have chosen to use the symbol I for
the plant output (the image sequence) rather than the usual
symbol y which will remain unused in this section.

We will utilize an infinite dimensional state vector as
well in our simplified video plant model. However, we will
divide the state into two infinite dimensional pieces and one
finite dimensional piece. We assume that the video sequence
describes a scene with an unchanging background and a
single rigidly moving foreground object which occludes
portions of the static background as it moves. We also assume
that the motion of the foreground object can be described by
a simple time varying 2D displacement (translation) dk ∈ <2

and that modulo this displacement and noise effects, the
appearance of the foreground object remains constant over
time (as do unoccluded portions of the background). The
displacement dk will constitute the finite dimensional part of
our state vector. The background and foreground appearances
(what we actually see in each image), however, will be
infinite dimensional, both modelled as real-valued functions
which we will call the background radiance bk : Ω → < and
the foreground radiance fk : Σ → < respectively. Notice that
the background radiance bk is defined over the same domain
Ω as the output image Ik based on our assumption of no

motion of the scene background1. The foreground domain Σ
is separate, and we will assume that Σ + dk ⊂ Ω for all k.

2) State equations: The assumption of constant appear-
ance of both the foreground and background yieds trivial
dynamics for their respective radiance functions. The dis-
placement signal dk, instead, would exhibit scenario depen-
dent dynamics. For now, we just assume constant velocity.
We therefore obtain the following linear dynamical equations
(note that there is no input u nor modelling noise wk).

bk+1 = bk, ḋk+1 = ḋk

fk+1 = fk, dk+1 = dk + ḋk
(15)

3) Output equation: While the state equations are rather
simple, the measurement equation

yk = h(bk, fk, dk) + vk,

where

h(b, f, d)(x) = (16)
f(x− d)χΣ(x− d) + b(x)

(
1− χΣ(x− d)

)
,

exhibits two difficult nonlinearities. Both nonlinearities are
in the displacement d. One is through the discontinuous
characteristic function χΣ : <2 → {0, 1} which is defined as
follows.

χΣ(x) =
{

1, x ∈ Σ
0 x /∈ Σ

The other nonlinearity in d is through composition with f ,
which could contain an even larger set of discontinuities than
χΣ since f is intended to represent the appearance of a
foreground object which may be highly textured (consider
a running zebra for example). As a result, it is rather useless
to linearize h (which precludes the extended Kalman filter),
and extremely difficult to approximate these nonlinearities
by any sort of polynomial or other truncated expansion over
common types of bases.

The interpretation of (16) is straight forward. The role of
the characteristic function χΣ is to model the occlusion of the

1To keep the presentation simple we have not delinated all of the
additional assumptions necessary to render this model valid (e.g. no camera
motion, constant illumination, Lambertian reflection, no shawdow effects,
etc.) as this is not intended to be an article on computer vision but rather a
pratical application to illustrate the performance of the proposed observer.
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background by the moving foreground object. Thus, a point
x ∈ Ω in the image Ik will exhibit an intensity taken from
the foreground radiance function fk if, after adjusting for the
foreground displacement dk, the point is determined to fall
within the foreground domain Σ. Otherwise, it will exhibit
an intensity taken from the background radiance function bk.

B. Observer equations

Running the proposed observer for this video plant model,
despite its dimensionality and nonlinearity, is computa-
tionally efficient and simple. The prediction step (10a)
is carried out in the usual way by using equations (15)
to obtain apriori estimates b̂−k+1, f̂−k+1, and d̂−k+1 for the
background/foreground radiances and for the displacement
respectively.

The correction step (10b) involves minimizing the follow-
ing energy for all choices of zb, zf , and zd (representing
bk+1, fk+1, and dk+1 respectively) given the output image
Ik+1 and the apriori estimates.

J(zb, zf , zd, b̂
−
k+1, f̂

−
k+1, d̂

−
k+1, Ik+1) = (17)∥∥∥h(zb, zf , zd)− Ik+1

∥∥∥2

L2{Ω}
+ Wb

∥∥∥zb − b̂−k+1

∥∥∥2

L2{Ω}

+Wf

∥∥∥zf − f̂−k+1

∥∥∥2

L2{Σ}
+ Wd‖zd − d−k+1‖

2

The minimization of (17) is rendered computationally sim-
pler by the fact that globally optimal radiances z∗b and z∗f
(which comprise the two infinite dimensional parts of the
state vector) may be computed directly as a function of the
displacement zd. This is due to the fact that h, as given
in (16), is linear in the radiances b and in f . As such, we
need only minimize the following cost J∗ which is already
optimized in zb and zf and depends only upon zd:

J∗(zd, b̂
−
k+1, f̂

−
k+1, d̂

−
k+1, Ik+1) = (18)

J(z∗b , z∗f , zd, b̂
−
k+1, f̂

−
k+1, d̂

−
k+1, Ik+1)

where the optimal radiances z∗b and z∗f for a given zd are

z∗b (x) =


Wbb̂

−
k+1(x) + Ik+1(x)

Wb + 1
, x− zd /∈ Σ

b̂−k+1(x), x− zd ∈ Σ

(19a)

z∗f (x) =
Wf f̂−k+1(x) + Ik+1(x + zd)

Wf + 1
, (19b)

Now that the minimization step has been reduced to
two dimensions, a search is computationally feasible. In
our experiments, we perform this search by quantizing the
displacement state space for dk+1 to correspond with the
resolution of the video image Ik+1 such that only translations
in exact pixel units are considered (thereby avoiding the need
to interpolate when evaluating Ik+1(x + d)). The search
is limited to a rectangular window centered around the
apriori estimate. Since the global minimizer is expected to
lie somewhere in the vicinity of the predicted estimate, this

procedure typically locates the global minimum z∗d of (18) so
long as the window size is not too small. The final estimates
are then obtained by setting d̂k+1 = z∗d , b̂k+1 = z∗b , and
f̂k+1 = z∗f .

C. Experiments

In figure 3 we show the result of our nonlinear observer
in tracking a person walking in a parking lot with very high
additive image noise plus an additional black bar of missing
image information (simulating a partial sensor failure). Note
that the extremely high noise levels and the highly dis-
continuous nature of the vertical bar disturbance makes the
Extended Kalman Filter unsuitable for this application. How-
ever, the nonlinear regularized dynamic inversion observer
tracks very successfully as demonstrated. The top row shows
the image sequence without the noise, the middle row shows
the measured noisy output along with the displacement
estimate d̂k (the moving white box), and the third row shows
the estimated output based on the foreground and background
estimates f̂k and b̂k as well. In this experiment we just chose
fixed weights Wf =10, Wb=15, and Wd=1.

Fig. 3. Application of the nonlinear observer for visual tracking.
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