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SUMMARY

The objective of this research is to evaluate and develop new forensic techniques for

use in honeynet environments, in an effort to address areas where anti-forensic techniques

defeat current forensic methods. The fields of Computer and Network Security have ex-

panded with time to become inclusive of many complex ideas and algorithms. With ease,

a student of these fields can fall into the thought pattern of preventive measures as the

only major thrust of the topics. It is equally important to be able to determine the cause

of a security breach. Thus, the field of Computer Forensics has grown. In this field, there

exist toolkits and methods that are used to forensically analyze production and honeypot

systems. To counter the toolkits, anti-forensic techniques have been developed. Honeypots

and production systems have several intrinsic differences. These differences can be exploited

to produce honeypot data sources that are not currently available from production systems.

This research seeks to examine possible honeypot data sources and cultivate novel methods

to combat anti-forensic techniques.

In this document, three parts of a forensic framework are presented which were devel-

oped specifically for honeypot and honeynet environments. The first, TimeKeeper, is an

inode preservation methodology which utilizes the Ext3 journal. This is followed with an

examination of dentry logging which is primarily used to map inode numbers to filenames

in Ext3. The final component presented is the initial research behind a toolkit for the ex-

amination of the recently deployed Ext4 file system. Each respective chapter includes the

necessary background information and an examination of related work as well as the ar-

chitecture, design, conceptual prototyping, and results from testing each major framework

component.

xi



CHAPTER I

INTRODUCTION

1.1 Computer Forensics

1.1.1 The Importance of Computer Forensics

To state that computers are ubiquitous in modern society is an understatement of monstrous

proportions. There are many occasions in daily life where a typical individual encounters

computing devices. These occurrences include encounters with automated teller machines,

modern cash registers, gas pumps, desktops, laptops, and the myriad of servers across

intranets and the Internet. What also must be accounted for is the increasing number of

digital devices that consumers either ignorantly or knowingly interact with on a regular

basis. These devices cover a range from those that may be more apparent such as digital

cameras, music players, cellular phones and GPS systems to those which are more obscure

due to a computer being included in more complex machines such as automobiles, heating

systems, and in some cases household appliances. The existence of modern society in an

environment immersed with computers almost guarantees that when an unexpected event

happens, be it a crime or failure of a some sort, a digital device may be present recording

some form of data. It is for this reason that the field of digital forensics is becoming

increasingly important.

If computer forensics is defined as a subset of digital forensics specifically dealing with

general purpose machines such as personal computers, Macs, and servers; then it can be

seen that there is a need for investigating the events that transpire on these platforms

as various forms of nefarious software exist which subvert a user’s security. However, the

process does face one serious limitation as stated in [8]. Even if the data from a device can

be retrieved, computer forensics cannot definitively state who placed the data on the device.

In fact there exists methods, discussed further in section 1.1.4, which can prevent data from

ever being stored to a computer. In [8], Caloyannides details these methods and goes so far
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as to state that computer forensics is really only useful in the apprehension of “small-time

crooks or to harass political dissenters.” His basic premise is that only the technically inept

perpetrators will be caught while the more organized and possibly dangerous targets will

be unaffected as they are already using counterforensics.

This viewpoint is countered by Carrier in [11]. In that article, he concedes some points

to Caloyannides in stating that it is true that computer forensics will not work if no data

is left behind on the storage media. However, Carrier goes on to state that it is acceptable

to not create a trail of data for privacy concerns. Furthermore, the list of ways to defeat

computer forensics provided in [8] demonstrates the great lengths one must go to in order

to cover their tracks. This means that an attacker could miss areas leaving behind other

evidence that a forensic analyst could use. To the point of catching less valuable targets,

Carrier draws a parallel to that of real-world investigations catching low-level criminals.

Although the target may not be a mastermind, it is not acceptable to ignore the threat

that they pose. From this standpoint digital forensics is seen as way to obtain data from

a system and determine what may have transpired on that system. The techniques used

should draw from multiple data sources to reduce doubts about the creator of the data.

For example, if a file is saved in several places and backed up to other digital media such

as USB drives or recordable CDs; it becomes difficult for the primary user of that system

to use the “Trojan defense.” (That the computer was compromised somehow and they did

not create the data.)

In [43], Schneider states that seeking perfection from software systems is a lofty goal

that technology is currently unable to achieve. However, this lack of perfection can be

supplemented by adding accountability. Thus audit logs and computer forensics are vital

when it comes to determining the at-fault party. Even though digital forensics has some

limitations, there are many cases where it has helped solve real-life crimes. The need

and importance of this field will continue to grow as computer systems become even more

ubiquitous and the general public continues to store personal and professional information

not only on traditional computers but portable digital devices as well.
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1.1.2 The Forensic Model

Scientifically determining what events have transpired is the primary purpose of performing

a forensic investigation, but how this process is undertaken has been the subject of much

discussion. In [40], several models were examined in an attempt to develop a generalized

digital forensic model. The model developed draws both from the framework of the Digital

Forensics Research Workshop (DFRWS) and protocols followed by the Federal Bureau of

Investigation (FBI). As such, the final version includes steps that are not strictly technical,

since portions of the digital forensic process are an abstraction of practices used in physical

or real life investigations. Their proposed investigation model is detailed below:

1. Identification – detection of the occurrence of an incident prompting an investigation.

2. Preparation – collection of the articles and approvals necessary to perform the inves-

tigation.

3. Approach Strategy – formulation of a strategy that maximizes evidence collection

while reducing the effect an investigation has on the victim.

4. Preservation – protection of the device in question from further tainting or destruction

of evidence.

5. Collection – documentation of the scene and duplication of the device.

6. Examination – finding evidence on the device while maintaining detailed logs. This

step requires technical knowledge of the device in question.

7. Analysis – development of theories based on the evidence and determining the signif-

icance of certain pieces of data. This step does not require the technical knowledge

possessed in the previous step.

8. Presentation – summarization of the conclusions with explanations written in non-

technical terminology that reference specific details.

9. Evidence Return – return of property to owner after it has been cleared for release.

3



In this model, the steps that are primarily followed by forensic investigators are 1-2

and 5-8. Peisert et al. examine several different common forensic techniques and tools in

[37]. This leads the authors to develop the following principles which they state should be

followed in a computer forensic investigation:

1. Consider the entire system.

2. Assumptions about expected failures, attacks, and attackers should not control what

is logged.

3. Consider the effects of events, not just the actions that caused them, and how those

effects may be altered by context and environment.

4. Context assists in interpreting and understanding the meaning of an event.

5. Every action and result must be processed and presented in a way that can be analyzed

and understood by a human forensic analyst.[37]

The first principle requires that a system designed to perform forensic analysis or collect

forensic evidence have the ability to access multiple layers of abstraction. For memory

analysis, the system should not only consider events that have transpired in kernel space,

but what has taken place in user space as well. This principle also extends to file systems as

the authors state forensic methods that only consider file system events while not capturing

actions that write directly to a device can be subverted.

The second principle is aimed more at network and system administrators than at the

developers of forensic tools. It is here that improper identification of potential threats

could lead to a lack of forensic evidence for post attack analysis. For example, if it is

assumed that the system will be attacked remotely, then mechanisms may not be set in

place to handle improper actions by local users. It is not enough to depend on the default

logging mechanisms or one particular evidence collection tool, administrators must use some

combination of tools and not allow prior assumptions to taint a current investigation.

Principles three and four relate to context which the authors define as the environment

in which a program executes including its input arguments. Depending on how an attacker

4



modifies his environment, an action can have a multitude of results. This requires an in-

vestigator to not only have the ability to track keystrokes, but also detect environmental

changes. The last principle is about information presentation. The importance of informa-

tion presentation cannot be stressed enough. Even if it were possible to log every event on

a system in a scalable manner, unless the data is presented in a way that an investigator

can properly interpret what has transpired, it may be useless.

1.1.3 Forensic Tools and Techniques

There exist many open source and commercial tools and techniques developed for conducting

forensic investigations. Among forensic toolkits, The Coroner’s Toolkit (TCT) [22] [23] can

be thought of as the starting point which has been improved upon by The Sleuth Kit

(TSK) and its graphical user interface the Autopsy Browser [14]. As a matter of course,

the Autopsy Browser has been improved upon through the development of PTK1 [16].

These open source tools are mirrored by commercial products such as EnCase by Guidance

Software [26] and the Forensic Toolkit (FTK) by AccessData [1].

Although most of the aforementioned sets of tools have been well tested and enjoy

widespread use in the forensic community, they are mostly used in what is known as dead

forensics. Dead, static, or quiescent forensics is the practice of analyzing a system after it

has been halted. This usually involves literally pulling the plug on a device to prevent any

logs or other files from being further altered during the regular shutdown process. In [27],

some of the positive and negative aspects to this approach are summarized. The conclusion

drawn is that live or non-quiescent analysis is the next logical step in the evolution of the

digital forensic practice. To that end, in the same document a brief survey of the current

live analysis techniques is presented.

As stated in [27], static forensics is the most mature type of analysis; however, it also

presents the examiner with only a partial view of a target system’s state. The analysis of a

file system will not likely reveal information such as the names and number of the processes

that were running, information about network connections, as well as other memory resident

1No definition for “PTK” was readily available at the time of this writing.
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data such as encryption keys. This information can be vital due to the fact that encryption

schemes for partitions and entire disk drives are becoming more common. Thus live analysis

techniques are being researched and developed such that a more complete picture of what

has transpired can be obtained.

In [27], Hay et. al. list several types of live analysis which include:

• Directly accessing a target system

• Using trusted imported binaries

• Software modification for monitoring

• Hardware modification for monitoring

• Live virtual machine analysis

• Analysis through virtual machine logging and replay

Each of these categories has strengths and weaknesses which range from the limited

applicability of virtual machine techniques to problems with the integrity of the system

being analyzed. One major problem with several of the techniques listed above is that

while investigating the target system, the analyst is also altering the state of the memory

on the system. This means that the results of a query cannot be reproduced in the same way

that they are in static analysis. Although repeating the steps performed in the examination

of a memory dump will probably yield the same results, a result of operating in the dynamic

environment of a live system is that running the same command twice (i.e., to obtain the

memory dump) can yield different results.

The last two categories warrant further discussion as the use of virtual machines as a

subject of forensic investigations has and will continue to increase. Virtual environments

provide several benefits such as the rapid deployment and reproducibility of entire systems.

For example, if a company is running a server in a virtual environment, it may be easier to

redeploy a clean copy of the virtual machine instead of troubleshooting a potential problem.

For that matter, it may be even more advantageous to do both tasks in parallel. Because
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the virtual machine runs on top of a physical environment, it introduces another security

profile as an attacker must compromise the virtual machine and possibly the virtual machine

monitor to gain complete control of physical resources. The focus now becomes securing the

virtual machine. As a virtual machine can be paused, virtual machine introspection provides

viewpoints into VMs that are difficult to achieve in real machines such as detailed memory

analysis and the tapping of I/O devices. VMware’s VMsafe and the XenAccess library,

are examples of projects and products that can be extended to build more complicated

introspection tools. For example, the Virtual Introspection for Xen (VIX) project has

yeilded several command-line tools. Still, as pointed out in [27], obtaining raw memory

dumps and interpreting them are two separate tasks. Furthuremore, VMs are becoming

more common, but they are not everywhere. Other benefits and drawbacks to virtual

machine introspection are discussed in [37].

1.1.4 Anti-Forensics

The state of computer forensics has shifted from a period of discovery to an arms race. Just

as techniques have been developed to obtain forensic evidence from current technology,

anti-forensic techniques have been employed to obfuscate an attacker’s actions. In [23], the

authors note how modification, access, and inode change timestamps for files can be used

to assemble a timeline of events which have transpired on a compromised system. This

publication also mentions how vulnerable these timestamps are to tampering. In Linux,

utilities such as touch can be used to change this metadata and a tool known as TimeStomp

is available to manipulate metadata times in NTFS [35]. Garfinkel discusses several anti-

forensic techniques in [24] which include but are not limited to the manipulation of data and

metadata, data hiding, cryptographic techniques and a number of other observed behaviors.

Anti-forensics is further discussed with comments from several forensic professionals in [4],

while [20] specifically discusses techniques for data hiding.

In [8], Caloyannides lists several counter forensic techniques. They range from physical

considerations such as tilting monitors and using of shrouds to avoid cameras to more

technical aspects like reducing the risk of the interception of Van Eck radiation, encrypting
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network traffic, and using trusted proxies to anonymize IP addresses. Clearly, the type of

anti-forensics a person can employ is highly dependent upon the amount of control they have

over their environment. One thing that Caloyannides points out in his discussion is that

since there are multiple techniques used to collect evidence, several anti-forensic techniques

must be combined to balance the risk of a forensic attack.

1.1.5 Legal Considerations

As the target systems in this thesis are honeypots, the legal aspects of computer forensics are

not a focus of the research which is presented in the subsequent chapters. However, a brief

overview of some of the more important issues is provided here for the sake of completeness.

As summarized in [33], the rules for admissibility of digital evidence in court are influenced

by the Federal Rules of Evidence (FRE), the Daubert standards, and case law. These three

sources do not make up an iron clad set of standards, therefore rules can vary from state

to state. However, as more states begin to align themselves with federal practices, these

(especially the FRE) should be considered sources for best practices. Other issues include

the licensing and certification of forensic examiners.

There exists no nationally recognized license for digital investigators. In most states,

the analyst must obtain a license as a private investigator. Although this may seem sim-

ple enough, it is complicated by the fact that the license from one state is probably not

acceptable in a different state. Also, the agencies that administer the licenses vary from

state to state. It is pointed out by Manes and Dowing that this situation is similar to

how the medical profession is licensed. Licensing is a necessary evil as the organizations

which administer the licenses can penalize and fine individuals who do not follow proper

procedures. The penalties are not limited to just the analyst but can extend to the hiring

attorney in some instances.

As with licenses, there is no one major certification for forensic analysts. According to

[33], this has been the topic of much debate since the mid 1990s. Currently the landscape

is littered with certifications provided by vendors, trade schools, and degrees from various

institutes. The problem that arises is that no consistent set of core knowledge or skills
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is guaranteed in this environment. Therefore customers must consider reputation, experi-

ence as well as academic qualifications. As the field is relatively young and the laws and

requirements regarding digital evidence are literally being shaped case by case, it is the

responsibility of the examiner to familiarize themselves with the appropriate laws of each

state in which they collect and/or process data.

1.2 Production Systems and Honeypots

Overall, existing forensics toolkits are used to determine the transactions that have taken

place on a production, or production-like, system. They offer many utilities that aid in

accessing the multiple layers of abstraction to retrieve data. They can also greatly reduce

the labor required when examining many logs by gathering and presenting data in a way

that is useful to investigators. These toolkits, however, are made to analyze production

systems.

One major difference between honeypots and production systems is that honeypots serve

as reconnaissance mechanisms while the function of a production system is user defined.

This division in usage leads to the realization that resource consumption for the two types

of systems can also differ, giving a honeypot the leeway to use a greater percentage of its

resources toward security monitoring than would be practical for production systems.

While a production system may be utilized by one or more parties and usually stores

some set of data that may be important, a honeypot has no actual users nor does it contain

important production data. After an attack, data recovery may be attempted if a production

system is compromised, but on a honeypot the hard disk could be taken out for analysis,

possibly stored, and then eventually formatted and reused. Data existing before an attack

is inconsequential.

In a honeynet environment, all network activity produced by a honeypot is monitored

and stored as any traffic, especially inbound, is suspicious. Traditional forms of information

such as packet captures and flow logs can be stored for a relatively long period of time

depending on the amount of attack traffic. Production systems differ in that regular user

activity can possibly generate far more network traffic over the same amount of time than
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a honeypot. This massive volume of data limits the amount of state that a production

environment can keep.

In general, resource usage on production systems is geared toward increasing the per-

formance of that system for some application. This need not be the case for honeypots.

Although honeypots need to mimic production systems to entice attackers, more resources

can be geared toward the monitoring of the honeypot than that of the production system.

With that in mind, more processor cycles and memory can be used to log incremental events

such as the tracking of changes in file metadata to aid in the forensic analysis of attacks.

1.3 Statement of Research

Existing forensic methodologies are very useful when attempting to determine the transac-

tions that have taken place on an enterprise production system. They offer many techniques

that aid in accessing multiple layers of abstraction to retrieve data. They also ease the pain

of going through a multitude of logs. These methodologies, however, are made to analyze

enterprise production systems. Enterprise production systems are characterized by having

very limited resources to dedicate purely to security. Therefore, the persistence of journals

and log files vary depending on hardware and software implementations and limitations.

Honeypots differ in that they offer the advantage of not having to provide any enterprise

network or database production value.

Honeypots and enterprise production systems are two fundamentally different types of

systems with completely unrelated purposes. For example, while there are many valid

transactions that take place on enterprise production systems, any transaction that takes

place on a honeypot is subject to suspicion. Because of these differences, many assumptions

made about enterprise production systems do not hold true for honeypots. There is no

universally applicable methodology for the forensic analysis of all types of systems; this

creates an opportunity to research honeynet forensic methodologies that take advantage of

the unique honeypot characteristics. This research investigates methodologies for enhancing

honeypot forensics.

The hypothesis investigated in this research is that with forensics enhancements built
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directly into the operating systems, additional data may be harvested which will increase

the probability of a successful forensic examination of a honeypot. The research can be

separated into the three distinct areas summarized below.

TimeKeeper

In the field of Computer Forensics, gathering file metadata times such as the modi-

fication, access, and inode change times (MAC-times) can be very useful. This source of

information can be used to build a timeline of the events which have transpired on a system.

One problem with relying on this as a primary source of information is that an attacker can

alter these times. This research seeks to increase the robustness of MAC-times by investi-

gating a methodology for preserving them. In particular, the Ext3 journal was examined

and used as a source of information for gathering the timestamps soon after they have been

updated.

Dentry Logging

While investigating timestamp preservation, it was observed that the basic unit of work

in the Ext3 journal was a file system block. Although this is very useful when processing

timestamp information as locality can be exploited when examining inode structures, it

presents a problem when attempting to perform an inode number to filename translation.

This is primarly due to fact that the design of the Ext3 filesystem uses one way pointers to

translate from a filename to a particular inode number. This research investigates a method

to enable inode number to filename translation by taking advantage of the Virtual Filesys-

tem (VFS) Layer in the Linux kernel as well as a historical cache of MAC-time information.

Ext4

Although Ext3 has traditionally been the default file system for many Linux distribu-

tions, it has certain limitations in terms of scalability that resulted in significant changes

when compared to Ext4. This has resulted in Ext4 becoming the default file system for

several major Linux distributions and created a need for the forensic community to have
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methods for the examination of file systems in this format. In this research, Ext4 is thor-

oughly examined and it is demonstrated how methods used to analyze Ext3 can result in

inaccurate information when performed on an Ext4 partition. It is further shown that due

to preallocation, there exists a danger of data persistence within sparse files.
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CHAPTER II

TIMEKEEPER

Production systems, when compared to honeypots, are characterized by having very lim-

ited resources to dedicate purely to security. Therefore, the persistence of journals and log

files vary depending on the hardware and software implementations and/or limitations of a

particular system. Honeypots differ in that they offer the advantage of not having typical

production system constraints. These differences can be leveraged to create a richer set

of data for honeypot forensics than what is capable for production systems. This chap-

ter presents the concept of a honeypot targeted journal monitoring methodology named

TimeKeeper [21].

2.1 Background

Although Computer Forensic techniques can be generalized into the steps detailed in Section

1.1.2 that are independent of a particular file system, each file system is implemented with

a particular goal or set of goals in mind. Therefore, each file system presents its own unique

set of problems and opportunities. This means that understanding the details of the file

system in question is a key component in gathering forensic evidence. This is directly

reflected in step 6 of the forensic model presented in Section 1.1.2.

When undertaking a digital forensic analysis on a file system, a key step is the develop-

ment of a timeline to discern when certain events took place. Obtaining the modification,

access, and change times of a file can be valuable in this process [23]. When examined with

a trained eye, this data source can not only reveal intrinsic information about a file, but

also give details about intrusions. However, this data source is temporary and there exist

anti-forensic techniques to corrupt this information [24]. As a response to these techniques,

a methodology has been investigated to track file metadata times in honeypots to produce

a reliable source of information for forensic analysis.

The Third Extended File System (Ext3) was a prime candidate for this research as
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Figure 1: File System Layout 2

it is open source and was the default option for most major Linux Distributions1. In

addition, due to its compatibility with the Second Extended File System (Ext2) while

adding journaling capabilities, the file system has amassed a significant following.

This chapter presents a methodology which has been investigated and deployed that

successfully tracks modification, access, and change times in a way that makes malicious

modification of timestamps originating from the target file system difficult to hide. The

benefit of this approach is that it makes forensics using metadata times more reliable and

useful in honeynets. The metadata time information is harvested from the Ext3 journal.

This design choice allows for the identification of suspicious file modifications that attackers

may attempt to conceal through the altering of metadata. It can also serve as a starting

point for a full forensic investigation, or yield more insight into an ongoing one. With these

circumstances in mind, first a discussion of the Ext3 file system is provided as background

before presenting the methodology and results.

2.1.1 ExtX

In [13], Brian Carrier discusses Ext2 and Ext3 together using the term ExtX because Ext3

can be thought of as an extension of Ext2. Both file systems share the same basic data

structures and a key factor in the development of Ext3 is its backward compatibility with

the already popular Ext2. For these reasons, this discussion serves as an introduction to

both file systems with any key differences between them further explained.

The basic unit of work for most hard disks is the sector which is usually 512 bytes

1This research was performed before the adoption of Ext4, but the concepts presented are still valid.
2Adapted from [5]
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in size. File systems, on the other hand, tend to operate on units that are comprised of

multiple sectors. In ExtX, these are called blocks. ExtX supports 1024, 2048, and 4096 byte

block sizes. As displayed in Figure 1, these blocks are organized into units appropriately

called block groups. Each block group, with the possible exception of the last, has an equal

number of data blocks and inodes. An inode stores basic metadata information about a

file such as timestamps, user and group permissions, as well as pointers to data blocks. As

every file must have a unique inode, the number of files that a system can support is limited

by the total number of inodes. In ExtX, not all blocks are equal. Along with data blocks,

the file system uses group descriptors, inode and data block bitmaps, inode tables, and a

file system super block.

The ExtX super block is a metadata repository for the entire file system. It contains

information such as the total number of blocks and inodes in the file system, the number

of blocks per block group, the number of available blocks in the file system, as well as

the first inode available. A group descriptor contains meta information about a particular

block group such as the range of inodes in the group, the blocks included in the group, and

the offset of key blocks into the group. Originally, the super block and group descriptors

were replicated in every block group with those located in block group 0 designated as the

primary copies. This is no longer common practice due to the Sparse Super Block Option

[12]. The Sparse Super Block Option only replicates the file system super block and group

descriptors in a fraction of the block groups. This can allow for a significant amount of

space savings on larger partitions that can have a multitude of block groups and therefore

a larger set of group descriptors.

Each group has an inode bitmap and a data block bitmap that is limited to the size of

one block. These bitmap blocks limit the number of inodes and data blocks of a particular

group. As the maximum block size currently supported in ExtX is 4096 bytes, the maximum

number of inodes or blocks in a group is 32k. In the bitmaps, a 1 is used to identify an

unavailable object and a 0 denotes that the object is unused. If the number of objects that

a group can theoretically contain is greater than the number that it actually contains, the

corresponding bitmap spaces are set to 1.
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Figure 2: Inode Data Block Pointers 3

In ExtX an inode is 128 bytes in size. Inodes are stored sequentially in a structure called

the inode table that is present in each group. The size of the inode table is related to the

block size the file system uses. For example, using a 4096 byte block, the maximum number

of inodes per a group is 32k inodes. As each block can hold 32 inodes, the maximum size

of the inode table in this example would be 1024 blocks.

In Figure 2, the almost ubiquitous diagram portraying the inode data block pointer

system can be seen. In an effort to keep the inode structure from becoming too large while

giving it the ability to support large file sizes, different types of pointers were implemented.

The most straightforward method uses single indirect pointers which are stored inside of the

inode structure. These point directly to file data. The double indirect pointer, on the other

hand, points to a file system block which acts as a repository for single indirect pointers. The

triple indirect pointer adds another level of indirection onto this scheme. More advanced

file systems, such as Ext4 in section 2.1.3, may use structures known as extents to denote

sections of contiguous data blocks, but Ext3 uses the pointer system described above for

compatibility reasons [19].

The primary intention of this detailed explanation of the pointer system is to bring

attention to how Ext2 and Ext3 handle inode structures differently. Upon file deletion,

Ext2 marks the inode associated with the deleted file as available by editing its inode and

data block bitmaps. This practice makes it possible to recover a deleted file if its contents

3Adapted from [13]
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have not been overwritten, as the inode structure will contain pointers to the data blocks.

Ext3, in contrast, performs the additional step of overwriting block pointers in the inode

structure upon deletion. This increases the difficulty of file recovery and requires the use

of the technique known as data carving, further explained in section 2.2, to reconstruct the

file. A more complete description of ExtX can be found in [13] and [5].

2.1.2 Journaling

Journaling is a technique employed by file systems in crash recovery situations. This method

offers reduced recovery time at the cost of additional file system overhead in terms of time

and/or space. The journal, in Ext3, takes on the form of a fixed size log that regularly

overwrites itself. Actions are recorded to the journal and either replayed in their entirety

or not at all during file system recovery. This feature, called atomicity, allows Ext3 to come

to a consistent state more quickly than through the use of a file system check program such

as e2fsck.

With Ext3, the actual journaling action is handled separately from the file system by

the Journal Block Device. The Ext3 file system is used to identify transactions which are

then passed to the Journal Block Device to be recorded. A transaction is a set of updates

sent to the device which are uniquely identified by sequence numbers. The transaction

sequence number is used in descriptor and commit blocks to denote the start and end of a

transaction respectively. The data that is being journaled is nested between the descriptor

and commit blocks. The descriptor block also contains a list of the file system blocks that

are updated during a transaction. It is important to note that the commit block is only

created once the file system data has been recorded to the disk to ensure atomicity.

There also exists a revoke block. This, like the descriptor prevent, has a sequence

number and a list of file system blocks, but its purpose is to block changes during the

recovery process. Any file system block listed in the revoke block, that is also in a non-

committed transaction with a sequence number less than that of the revoke block is not

restored.

The next structure that the journal uses is probably one of the most important: the
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Figure 3: Ext3 Journal Blocks 3

Figure 3 Key

Abbreviation Meaning

JSB Journal Super Block
D[X] Descriptor Block X
FSM File System Metadata
C[X] Commit Block X
R[X] Revoke Block X

superblock. This should not be confused with the file system superblock, as this is specific

to the journal. This structure has the task of identifying the first descriptor block in the

journal. The usage of the journal as a circular log makes this task necessary, as it cannot be

assumed that the beginning of the journal is located at the beginning of its physical storage

space [13]. This relationship between the different types of journal blocks is displayed in

Figure 3. In this figure, transaction 55 is complete as the set of metadata blocks associated

with it are enclosed with a descriptor block and commit block. However, transaction 56

was not completed so no commit block was created. When the file system is mounted

again and the journal checked, a revoke block will be created. Since transaction 56 has no

commit block and it has a sequence number less than 57, the changes associated with this

transaction will not be replayed.

The three documented modes of journaling are Journal, Ordered, and Writeback [5].

Journal mode, while certainly being the safest method, is the most costly of the three in

terms of performance. It writes both file data and metadata to the journal and then copies

the information to the actual file system area on the disk. To avoid writing everything twice,

Ordered mode only writes metadata to the journal. In this mode, care is taken to write to

the file system disk area before writing to the journal area. In most Linux distributions, it
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is the default mode in which the journal operates. In Writeback mode, only the metadata

is journaled, but no precaution is followed to insure data is written to the file system area

first.

The difference between the Ordered and Writeback modes is a tradeoff between perfor-

mance and safety. If the data is written to disk first but the metadata is not journaled before

a system crash, then the system will come to a consistent state under the assumption that

the last transaction did not take place. If the crash occurs while in the process of writing

to the journal then the transaction will be revoked. Writeback mode can result in writes

to the journal area and the actual disk blocks being interleaved. If this is the case, upon a

system crash, neither the journal nor the disk blocks will be consistent resulting in the file

system being left in a corrupt state.

The modes of journaling are a compromise between the impact a journal has on sys-

tem performance and the ability that the mode has to recover in reaction to an unclean

unmounting of the file system. These modes also have an effect on the amount and types

of forensic evidence that can be gathered from the journal as well as the rate with which

the journal overwrites itself.

2.1.3 Ext4

Although most of the research presented in this document was designed with the Ext3 file

system in mind, the recent adoption of Ext4 as the default file system for several major Linux

distributions makes a discussion of the differences between it and the preceding versions of

ExtX necessary. In 2006, a series of patches to extend the capabilities of Ext3 was developed;

however, complete compatibiltiy could not be maintained as on-disk structures needed to

be changed resulting in a branch from the stable code. Thus, Ext4 can be best thought of

as an evolution of Ext3 rather than a mere extension. It leverages the previous knowledge

gained through the development of Ext3 while adding the benefits of more recent file system

management techniques. The releases of Fedora 11 [45], Ubuntu 9.10 [9], and OpenSuse

11.2 [36] in June, October, and November of 2009 respectively, have Ext4 as the default file

system choice for new installations. This move ensures that forensic investigators will have
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to analyze hard disks formated with the new file system. Also, as honeypots must resemble

production systems, having Ext4 installed on honeypots is an inevitable occurence. More

detail about the file system and the forensic implications of certain changes are included in

chapter 4.

2.1.3.1 Topology

Although Ext4 has the same basic data structures as its predecessors, there are differences.

Some of the more in-depth differences will be covered below, but one major difference that

should be immediately addressed here is the organization of the block groups. In [34], it is

stated that the 128MB block group size limit has the effect of limiting the entire file system

size. This is due to the fact that only a limited number of group descriptors can fit into

the span of one block group. In the literature, there have been two solutions mentioned for

this problem: the meta-block group feature and the flex block group feature.

The meta-block group feature was first mentioned in [52]. There it is stated that a meta-

block group consists of a series of block groups that can be described by a single descriptor

block. More detail is given in [34] as backups of the meta-block group descriptors are said

to be located in the second and last group of each meta-block group.

Figure 4 graphically demonstrates how the flex block group feature extends the previous

notion of creating large contiguous swaths of block groups by moving the block and inode

bitmaps as well as the inode tables to the first block group in a flex block group along with

the group descriptors [30]. With the sparse superblock feature being enabled by default some

block groups may contain backup copies of the superblock. This centralization of metadata

blocks from different groups creates a virtual block group which allows free contiguous spans

of blocks to be allocated across group boundaries. On the development mail list archives,

there can be observed discussions about whether the two options should have different

feature flags. It was agreed that this was necessary so that a clear definition of META BG

and FLEX BG is maintained. In the end, it seems that the FLEX BG feature is the most

important to understand as it is selected by default in the mke2fs.conf file.
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Figure 4: Flex Block Group Layout

Figure 4 Key

Abbreviation Meaning

SBC Super Block Copy
GDT Group Descriptor Table
GDG Group Descriptor Growth Blocks

FGBBM Flex Group Block Bitmap
FGIBM Flex Group Inode Bitmap
FGIT Flex Group Inode Table
DB Datablock

2.1.3.2 Scalability

Setting aside the physical topology of the file system, one of the most noticeable features

that Ext4 introduces to users over Ext3 is its ability to support very large file systems.

Ext3 is limited to maximum of file system size of 16 terabytes (TB), because there are only

32 bits available to address data blocks which have a 4 kilobyte (KB) default size. This

limit is exceeded by increasing the block number space to 48 bits. When combined with

default block size, this yields a maximum file system size of 1 exabyte4. This change in the

block number field has caused new fields to be introduced in the file system super block

41exabyte = 1000petabytes = 106terabytes = 109gigabytes = 1018bytes
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and block group descriptor structures so that they can accommodate values up to 64 bits

while maintaining backward compatibility with the preexisting 32-bit structures.

Along with a drastic increase in maximum file system size, the maximum individual file

size has been increased. While in Ext3 the maximum size of a file is 2 TB, an Ext4 file

reaches its limit at 16 TB. This increase is acheived by adding a flag (HUGE FILE) to the

file system and in some of the inodes to denote that the files they represent are very large.

When these flags are set, the 32 bit field that is normally interpreted as the number of 512

byte sectors, is instead interpreted as the number of file system blocks.

Another major feature in Ext4 is the use of extents rather than the indirect block

mapping method shown in Figure 2. Extents are more efficient at mapping data blocks of

large contiguous files as their structure generally consists of the address of the first physical

data block followed by a length. In Ext4, an unbroken span of up to 215 blocks can be

summarized with one extent entry. If the block size is 4KB, this is up to 128 MB of data.

In [34], it is stated that an inode can hold four extents. If a file is highly fragmented, very

large, or sparse then a tree of extent structures is constructed.

In the previous examinations of Figure 1 and Figure 4, one classification of blocks was

not discussed. These are the blocks reserved for the growth of the group descriptor table.

These blocks help to facilitate file system expansion as described in [10]. When the file

system is being expanded, and a new block group must be added, a new group descriptor

must be added accordingly. If there is no extra room at the end of the last group descriptor

block a new block can be allocated from the reserved area. This allows a file system to grow

over time rather than keeping it at a fixed size as would be the case in an Ext2 or Ext3

formated partition.

Another scaling problem with Ext3 is the 32000 limit on the number of subdirectories

which can be created. Ext4 has no subdirectory limit. When the link counter of a directory

overflows its 16bit space, the count is replaced with a 1 to denote that the directory is not

empty. The reason huge directories can be supported is due to the new way entries are

stored. In Ext2/3 a linked list was used by directories, with the Linux Virtual File System

(VFS) caching mechanisms helping ease the associated timing costs. Ext4 breaks with that
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tradition by using constant depth hash trees. These H-Trees decrease lookup times, thereby

helping to improve performance in large directories. Details about this design choice can

be found in [10].

2.1.3.3 Compatibility

One thing to note is that unlike the compatibility between Ext2 and Ext3, Ext4 is only

partially compatible with the older file systems. Ext3 partitions can be mounted using Ext4.

In this type of hybrid environment, older files will continue to use indirect block mapping

while newly created files will use the larger inode structure and extents. It is possible to

obtain some of the benefits of Ext4 by mounting an older partition without extent support.

However, due to the fact that the on-disk structures used by the older file systems and the

new one are different, Ext4 cannot be mounted by Ext3.

2.1.3.4 Block Allocation

Along with changes to improve scalability, the way that blocks are allocated by the file

system has been altered. Preallocation, one of the more interesting additions, is the process

of reserving blocks for a file before they are actually needed. More importantly, when these

blocks are allocated, they are not initialized with data or zeroed out. This is different

from the block reservation system proposed in [34] for Ext3. In that scheme, blocks were

allocated based on reservations that were stored in memory structures. This means that

across reboots the preallocated range could be lost. In Ext4, this is solved through the

use of extents. The most significant bit of the extent length field is used to denote a span

of blocks that contains uninitialized data. When the these spans are read from, they are

interpreted as zero-filled blocks. This allows an expansive collection of contiguous blocks

to be saved for a particular file while also saving time as large sparse files do not have to

initialize every block they reserve.

Another change that has sparked some debate is delayed allocation. The basic idea

behind this feature is that instead of the file system blocks being used one at a time during

a write, allocation requests are kept in memory. Blocks are then allocated when a page is
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flushed to disk. This saves time as what previously took multiple requests can be summa-

rized with one. Other benefits include not having to allocate blocks for short lived files and

a reduction in file fragmentation. In [30], it stated that delayed allocation is handled at the

VFS layer.

The Ext4 multiple block allocator is detailed in [30]. It is designed to handle large and

small files by using per-inode preallocation and per-CPU locality respectively. The strategy

that is used for a particular file depends on a tunable parameter that specifies the number

of blocks requested for allocation. The general idea is that smaller files using the same

CPU will be placed physically close together and larger files will achieve less fragmentation

through preallocation.

2.1.3.5 Reliability

The journaling used with Ext4 is a little different than what was previously described with

Ext3. [34] describes a CRC32 checksum being added to the commit block of a transaction.

The CRC is computed over all of the transaction blocks. During recovery, if the checksum

does not match, then that transaction and all subsequent transactions are treated as invalid.

The cost of computing a checksum for a transaction is offset by the fact that commit blocks

can now be written to the journal with the rest of the transaction as opposed to the two

stage commit process previously used. This can be done because the checksum can detect

blocks that are not written in the journal. In [34], it is stated that the end result is the file

system speed is actually increased by up to 20%.

Group descriptors are made more robust with the use of a CRC16 checksum. This is

used to verify that the unused inode count field in the descriptor is valid when a file system

check, done by e2fsck, occurs. This unused field along with new flags that denote whether

the bitmaps and inode table are uninitialized or not let e2fsck skip areas that have not been

used thereby reducing the time it takes for the file system to be examined. Furthermore,

there exists a lazy bg option for the mke2fs command which saves time when creating

large file systems by not writing the inode tables at the creation of the file system.

Fragmentation is one of the banes to performance in many file systems. As the file
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system ages and free space is depleted, the risk of fragmentation increases. This is especially

true for very large files. In [42], several techniques are discussed which combat this trend

while the file system is still mounted. The overall goal is reduce single file, relevant file,

and free space fragmentation. Generally, this is done by either moving fragmented data to

contiguous free space, or making uninterrupted space for larger files by moving the data

belonging to smaller files to another area. Online defragmentation patches are available,

but support has not been merged into the main line kernel yet [53].

2.1.3.6 Time Related Enhancements

As noted in [56], Ext3 is limited to second resolution at the file system level. This is

addressed in Ext4 by modifying and extending the inode structure. As opposed to the

default 128 byte inode previously used, newer structures will be 256 bytes. This space allows

Ext4 to support nanosecond timestamps. Also, a new timestamp field has been added to

document the file creation time. Each timestamp field in the inode has a corresponding

high 32 bit field. In this space, only 30 bits are used for nanosecond representation. The 2

remaining bits are used for the extension of the epoch, thereby delaying the 2038 problem

for 272 years5. This increase in time resolution from the file system perspective may help

future computer forensic and security research. All of these changes have affected journaling

as the JBD (section 2.1.2) has been branched into JBD2 which can support journaling of

32-bit and 64-bit file systems.

As Ext4 is fairly recent, some features may continue to be modified and added, however,

the on-disk data structures have become stable and should remain the same. This file system

is more greatly detailed in [30], [34], [42], and [52].

2.2 Related Work

2.2.1 Inotify

Inotify is a file monitoring system developed by Robert Love and John McCutchan that has

been integrated into the Linux kernel since version 2.6.13 [32]. It is a replacement for the

Dnotify file change monitoring system and offers several advantages over its predecessor. For

5January 19th, 2038 at 03:14:07 UTC is the latest time that can be represented by a signed 32 bit number
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example, Dnotify was limited to monitoring directories through the use of file descriptors.

Inotify, on the other hand, only uses one file descriptor and, as the name implies, is inode

based so it can monitor individual files giving it greater resolution to file system changes.

Inotify has system calls in the kernel giving it the ability to create an inotify instance

and watches. The instance uses a single file descriptor and can be associated with many

watches. It is the watch that actually does the work. In the creation of a watch, it is

specified with which inotify instance the watch is associated, what file or directory should

be monitored, and what events should be reported. Watches can be modified and removed

without having to create a new instance of inotify. Currently, notification for the following

events is supported:

• content access

• content modification

• metadata modification

• creation

• deletion

• moves

Inotify events can be received by reading them from a buffer, polling, or using the select

system call. The latter two options allow for none threaded applications to function in a

nonblocking manner. As kernel memory is limited, a restriction is placed on the number of

inotify instances and the watches per instance that are allowed. Also, if a great number of

events occur in close succession, it is possible for the inotify event queue to fill and drop new

events. In this case, an overflow event will be sent. The default values for these limiting

parameters are located and can be modified using procfs or sysctl. While Inotify works by

monitoring system calls, TimeKeeper uses the Ext3 journal as a source of information in

an effort to offer a more scalable solution. Inotify is discussed in greater detail with usage

examples in [32].

2.2.2 Sebek

According to [50] Sebek is the “primary tool to capture attacker activity on high interaction

honeypots.” As honeypots are “designed to be compromised by an attacker” [47], any

activity is subject to scrutiny which results in an incessant state of monitoring. In reaction

to the monitoring techniques, attackers have proceeded to conceal their actions through the
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use of techniques such as encryption. Sebek’s main purpose is to counter this behavior.

In [49], it is noted that honeypots can contain trojaned binary programs to obtain in-

formation about an attack. For instance, the user environment can be altered to reveal

every command that is entered by an attacker while making it a nontrivial matter to erase

any logs produced. This practice has resulted in attackers using tools of their own, which

they download after the initial compromise. Moreover, an attacker that has compromised a

remote machine may install some form of session encryption software. This will make net-

work activity between the compromised machine and the attacker virtually useless without

the session keys.

Sebek comes in the form of a client module and the Sebek server. The client, which

is based on a rootkit, is a Linux kernel module which places Sebek in privileged space.

Since it operates at kernel level, it has the ability to circumvent encryption schemes by

intercepting encrypted data as it is decrypted to be executed. Some of its touted features

include keystroke logging and the capture of passwords for encrypted programs such as

burneye binaries. To gain this functionality, the Sebek client actually replaces the read()

system call with its own which logs the interesting data before calling the original read()

system call. Not wanting to leave the data on a compromised box, the client then exports

the data to the Sebek server which resides on a completely different physical machine. It is

assumed that most of the attackers who are savvy enough to infiltrate a box remotely are

also able to detect network traffic exiting that box. Because of this, the Sebek client also

modifies the network protocol stack of the honeypot to conceal any Sebek data through

the use of a magic number in Sebek packets. If every honeypot in a honeynet has Sebek

installed, then no honeypot on the network would be able to detect Sebek generated traffic

[49].

It should be noted that Sebek is neither completely invisible nor invincible. Dornseif

et al. have used several techniques to detect earlier versions of the utility which include

monitoring network congestion due to heavy Sebek traffic and examining the location of

the read() system call to detect a modification [17]. They even went as far as to construct

Kebes, an anti-Sebek toolkit designed for the detection and disabling of the honeypot tool.
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Furthermore, there exist several documents detailing the detection of questionable environ-

ments such as in [28]. These documents demonstrate the need for continued research in the

area of honeypot evidence collection, which is one motivation for research presented in this

thesis.

2.2.3 Zeitline

In [7], the design and implementation of a graphical user interface specifically targeted at

the creation and editing of timelines is discussed. This open-sourced tool, implemented in

Java due to its platform independent nature, is called Zeitline. Unlike lower-level forensic

tools such as mactime or fls which focus on the retrieval of data, Zeitline is geared more

toward data analysis. Instead of retrieving data for forensic purposes, it is designed as

an aggregation mechanism for the event logs produced by other sources. Furthermore, it

displays events in a graphical tree and allows the simple events that are produced by one

or more logs to be grouped into what the authors call a complex event.

In order to import events from a variety of sources, Zeitline loads input filters at run

time. This allows a more technically savvy user to extend the InputFilter interface to

match their specific needs. Although this editor has great potential, the need for end users

to possess Java knowledge is somewhat limiting. Also, as of this writing, it seems that little

development has been accomplished since 2006 [6]. Zeitline is not presented as an alternative

technology to the TimeKeeper methodology investigated as a part of this research, but as

an example of an upstream consumer for the data TimeKeeper produces.

2.2.4 Other Forensic Tools

Building a timeline of events through the use of data available from the file system is a

technique that has been examined with many open source and commercial tools developed

for this purpose. Among the most well known are the toolkits mentioned in section 1.1.3:

The Coroners Toolkit (TCT) [22], The Sleuth Kit (TSK) [14], EnCase by Guidance Software,

and Forensic Toolkit (FTK) by AccessData .

TCT, developed by Farmer and Venema, uses the mactime tool, which in turn uses

the lstat() system call to access the metadata times stored in inodes. TSK was written
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by Carrier and is based on TCT [14]. It uses the mac-robber tool to retrieve the same

information from files. Details about similar features in the commercial products EnCase

and FTK can be found at [26] and [1] respectively. In [23], some UNIX commands are

discussed that allow access to file metadata such as ls -i, debugfs, and the stat command.

Each of the previously mentioned toolkits has limitations and certain anti-forensics

techniques have been developed to thwart evidence recovery. In an effort to cover their

tracks, an attacker may use tools such as TimeStomp [35] or the Defilers Toolkit [46]. It

has also been observed that the touch command can be used in an effort to cause confusion

[23] [24].

In [19], a comparison is given between what the author considers to be traditional

and advanced UNIX file systems. One of the main takeaways of this work is that the

forensic model for the two classifications of systems, although related, is quite different

when implemented due to the structure of the file systems.

In [23], the journal is mentioned as a source of time information and examples are shown

of the information that can be extracted. TSK includes the jls and jcat tools which allow

an investigator to obtain a listing of what is in the journal and a dump of a journal blocks

respectively. TimeKeeper differs from these tools in that it procures information from the

journal regularly, while the system in question is active, for forensic analysis after a security

incident.

Due to the nature of how Ext3 zeros inode information, section 2.1.1, data carving

cannot be ignored. In [13], data carving is defined as a process where a chunk of data is

searched for signatures that correspond to known file types. This technique is necessary when

investigating environments such as media that may not have file systems and unallocated

portions of disks. There are a variety of techniques and tools that can be used to perform

data carving, one of which is foremost [54] which does the operation in an automated

fashion. Scalpel [41], another open source file carving tool, aims to maximize file carving

performance through the use of various techniques. Although it is based upon a version of

foremost, scalpel has proven to be much more efficent. It is not uncommon for a collection

of the previously mentioned open source tools to be packaged together on a bootable CD

29



TimeKeeper

Super

Block

Group

Descriptors

Journal

Inode

Information

High Level Architecture of TimeKeeper

Figure 5: TimeKeeper Architecture

to create a forensic distribution such as the once open source Helix live CD [18].

2.3 TimeKeeper System Architecture

A major premise of this thesis is that because honeypots are different from production

systems, additional sources of information can be explored which will aid in the forensic

analysis of honeypots. File modification, access, and change (MAC) times are an example

of this information. The theory tested in this chapter is that timestamp information can

be made more reliable in investigations by devising new methods to log this data. In

particular, the TimeKeeper method hypothesizes that in a honeypot environment metadata

information can be extracted from the journal and stored for use in forensic analysis.

To test this hypothesis, a prototype has been developed based on the Ext3 file system

that is able to successfully identify and extract inode structures from journal data. This

is done by gathering the necessary data about the file system from the super block and

group descriptors, shown in Figure 5, and then continuously reading and parsing through

the journal data. From the inode structures, the metadata times are retrieved and exported

giving the honeypot administrator a history of timestamps that can be used do to the

following:
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• Build a profile of what files are regularly touched

• Determine any irregularities

• Compare the inode times lifted from the system in question by one of the previously

mentioned toolkits with those in the database to detect any nefarious changes that

did not produce journaling entries

2.4 Methodology

The TimeKeeper system, for rapid development purposes, has been prototyped using the

Python scripting language and makes use of a SQLite3 database for storage purposes. The

details of the system are displayed in Figure 6. It runs in user space as an application

and makes use of several well known file system tools. When initiated, the program first

checks to see if the calling user has root level privileges. If not, this is considered an error,

a message is displayed and the program exits. As displayed in Figure 6 beginning with the

“Check User” block, this operational model inherently assumes a certain amount of trust

in the administrative user. This trust may not always be present and a solution for this

situation is proposed in Chapter 3.

Command line options were necessary in order to increase usability across different ex-

periments. The arguments are parsed with the Python getopt.getopt() function. Currently,

the following options are available:

• -m, –memory

This sets a flag stating whether the database should initially be built in memory or

flushed to disk from the beginning of the program. The first version of the program

setup the database and flushed to disk every time the journal was checked. This pre-

sented a problem when the mechanism was combined with system call introspection

in [56]. During a flush to disk, the system call introspection output would be over-

whelmed with the data caused by TimeKeeper and effectively miss all other system

data. By keeping the database in memory until a prescribed time or number of polls,

the problem is avoided.
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Figure 6: TimeKeeper Flow Chart

• -o [filename], –output [filename]

This is the name of the database that will appear on disk. If this is not set, the

default behavior is to name the database “TimeKeeper”. If the memory flag is set,

the default behavior is to name the database “FromMemDB”.

• -P [number], –polling interval [number]

This option sets the number of seconds to wait between checking the journal.
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• -p [number], –polls [number]

This option sets the total number of times for the journal to be checked before exiting

the program. If not set, TimeKeeper will by default run in an infinite loop.

• -d [number], –delay [number]

This is the maximum number of seconds to wait before dumping to harddisk. This

option is necessary when the memory flag is set. If not provided, the in-memory

database will be flushed to disk after every poll. This makes the default behavior

equivalent to simply creating an on-disk database.

In Figure 6, the “Find Partitions” block makes use of the /etc/mtab file to determine

if any Ext3 partitions are mounted on the system. If more than one is present, the user is

prompted to select which partition to track. If the there is only one partition, it is selected

by default and the program continues. In the event there are no Ext3 formated partitions,

a message is displayed to the user and the application exits.

All of the preceding can be considered information necessary to identify and describe the

environment and mode of operation in which the monitoring is occurring. The next sequence

of steps form the core of the system. First, described by the “Process Group Descriptors”

block in Figure 6, the file system super block and group descriptors are parsed. This

information is obtained through the use of the dumpe2fs command. Examples of important

information in the file system super block include the block size, the number of blocks per

group, the number of inodes per group and the number of inode blocks per group. This

information is necessary to calculate inode numbers as the numbers are not stored anywhere

on the disk. Another thing to note is that the super block also contains the inode associated

with the journal and the size of the journal. Each group descriptor is examined to find the

offset into each block group, in terms of blocks, at which the inode table begins and ends.

This offset value varies as only a fraction of the block groups will contain backups of the

super block and group descriptors. This step only needs to happen once during a logging

session. For that matter, if the same partition is being monitored across multiple logging

sessions and no changes to the underlying file system structure have been made, then this
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information can be saved to the database and this step need not occur again.

The next major step is the creation of a SQLite3 database for information storage and

retrieval. It is at this point that the memory flag is checked and influences the flow of the

overall program. Either way database tables and indexes are created, but exactly when

the information gets written to disk is different. By default, the database gets dumped to

disk immediately, denoted by the “Flush” operation in Figure 6, and this file is updated

each time the journal is checked. If the database resides in memory, two counters are used

to determine whether it will be dumped to disk. The first counter uses the delay input

argument and the second uses the polls argument. Once the delay has been exceeded, the

memory database is flushed to the disk, the program then sleeps, and polls again reseting

the variables tracking the time since the last write. Once the user specified number of polls

has been exceeded, the database is dumped to disk and the program exits. These counter

operations are represented in Figure 6 by the “Flush Delay” and “Max Polls” decision

blocks respectively. The reason for this setup is that during an experiment, a person may

not want to write to disk until the completion of certain operations. In this instance, a very

large delay can be set and a maximum number of polls can be set so that the flush occurs

after these events. However, this mode of operation risks all historical data being lost if for

some reason the TimeKeeper application is stopped beforehand or the complete computer

system is reset.

After the database tables have been created, the “Poll” subroutine block in Figure 6 is

entered. In this process, the contents of the journal are acquired via the debugfs logdump

command. The output of logdump is parsed so that transaction sequence numbers are

obtained. These are not only useful in helping to identify the MAC times of a particular

inode at a moment in time, they also aid in processing the journal data. When the initial

dump happens, there is no information in the database so all of the output is parsed and

stored. However, after the initial dump the last sequence number that has been extracted

is stored in a variable. Unless the sequence restarts or rolls over, all transactions lower than

this sequence number have already been stored and can be ignored until fresh data is found.

Although this avoids the problem of reprocessing data that has already been gathered, it
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does not solve the problem of the journal wrapping around before the next polling cycle.

Next, in the Figure 6 “Get Block Num” block, the file system block number is parsed

from the output. The number is checked against the group descriptors to determine whether

the block is in the inode table. If not, the rest of the output is skipped until the next file

system block is encountered. Once a block that is in the inode table has been located, the

“Parse Inodes” process block is entered and the first inode number is calculated via the

following formulas:

GroupNum = BlockNum
BlocksPerGroup

BlockOffset = BlockNum − Group[InodeTableStartBlock]

InodeNum = (InodesPerGroup ∗ GroupNum) + BlockSize
InodeSizeBytes

∗ BlockOffset + 1

This initial number is incremented as each inode in the block is parsed. The advantage

of capturing information from the journal is that the journal stores information at block

resolution before it is transfered to the file system area. This means that if one inode in a

block gets updated, all of the other inodes in that block will get logged as well. This also

serves as a disadvantage as there is no rapid way to identify which particular inodes in a

block have been updated. One method to circumvent this problem is to query the database

for each inode that is discovered and compare the latest results returned with what has

been captured before inserting the information into the database. The method used by

the TimeKeeper protoype is to attempt a database insertion for every inode and discard

duplicate entry errors.

This process is repeated until the last block in the journal has been checked. After the

journal has been logged, the flush delay value is checked against the current time. If it is

not time to flush and the number of polls left is greater than zero, the program sleeps for

a time specified by user input before polling the journal again.

2.5 Testing

2.5.1 Experiment Setup

To test the TimeKeeper prototype, a loopback device was created and mounted as an Ext3

partition inside of a Ubuntu Linux virtual machine. TimeKeeper was executed outside of
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Table 1: Sequence of Events
Event Command Sequence

1 touch 21
2 edit (VIM) 23-26
3 touch 27
4 echo 28
5 mv 30
6 rm 31

this partition at the interval of 5 seconds between journal dumps, while various types of

file modifications were performed and tracked. It is very important that the database be

located outside of the file system that is being monitored to avoid a feedback loop.

2.5.2 Results

As a first test to show that historical modification, access, and change times could be

obtained, a file was created with the touch command. This created an empty file with the

modification, access, and inode change times set equal to each other. This was verified by

the stat command and may be seen in sequence number 21 in Table 2. This file was then

opened and edited by the VIM text editor. The text editor created a copy of the original

file that was then edited and saved as a different inode. When a file is saved in VIM, the

original file is deleted and the new inode assigned the filename. Table 1 shows the sequence

numbers that map to these events.

The stat command, after the editing of the file by VIM, showed that the filename is

associated with a new inode that had a new set of metadata times. When the TimeKeeper

database was queried based on the original inode number, it clearly showed the life span of

the first inode including its deletion time. A similar query based on the new inode number

showed a series of events that ends with all of the metadata times set to the same value

making it appear to be a new file. When these results are interspersed, a pattern between

the two inodes emerges and it becomes apparent that the deletion time of the first inode

corresponds with the change time of the second inode, yielding a more accurate picture of

the file history. This is shown in Table 2.

The file was then accessed again using the touch command which modified all of the
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Table 2: TimeKeeper: touch and vim output
Inode Seq Mtime Atime Ctime Dtime

12 21 t1 t1 t1 -
14 21 - - - -

12 23 t1 t2 t1 -
14 23 t2 t2 t2 t2
12 25 t1 t2 t3 -
14 25 t3 t3 t3 -
12 26 t1 t2 t3 t3
14 26 t3 t3 t3 -

metadata times by setting them to the same value. TimeKeeper also recorded this modifi-

cation.

Next, the word Hello was appended to the end of the file using the echo command.

This caused the inode modification and change times to be updated while the access time

remained the same. This happened because the file was never actually opened; instead the

bytes were added to the end of the file as denoted by the information stored inside of the

inode.

When the file was renamed using the mv command, the inode number remained unaltered

as well as the access and modification times, but the change time was altered. Finally the

rm command was used to delete the file, thereby causing an update to the deletion time

as well as the modification and change times. All of these incremental file changes were

detected and captured by TimeKeeper and are summarized in Table 3.

2.5.3 Conclusions

The results of section 2.5.2 show that the TimeKeeper method for MAC time preservation

is valid. The metadata timestamps were successfully harvested from the journal during the

experiment and provided a history of the events which transpired. Without this history,

Table 3: TimeKeeper: touch, echo, mv, rm output
Inode Seq Mtime Atime Ctime Dtime

14 27 t4 t4 t4 -
14 28 t5 t4 t5 -
14 30 t5 t4 t6 -
14 31 t7 t4 t7 t7
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the relationship between inodes 12 and 14 may not be readily apparent if an investigator

were only given the last two entries of Table 2. This is often the case when a hard disk

image is examined. Also, because all changes in metadata time recorded to the journal are

captured with this technique, usage of the touch command to reset MAC timestamps was

detected as shown in first line of Table 3. This counters the usage of the touch command,

and other similar tools, in anti-forensic techniques that seek to obfuscate an adversary’s

actions through timestamp manipulation.

2.6 Limitations

The current prototype is written in the Python scripting language. Although this provides

a means for rapid development for a proof of concept, it does have certain drawbacks. For

this technique to gather information, the program must constantly run in the background.

If an attacker is skilled enough and truly wants to hide any actions taken, the program can

be detected and stopped. For these reasons, a kernel patch or module might yield better

results as they operate closer to the file system. Some contemporary research along this line

of thought is breifly covered in Section 3.2.4. While the general technique covered in that

section uses modified system calls, a low level TimeKeeper implementation would instead

modify the journal block device.

Since this technique depends on the presence of the journal, it is also limited by the

information stored therein. This means that the data that can be obtained is directly

influenced by the mode of journaling supported. If an attacker wants to avoid any journal

probing device, then they could circumvent the file system writing directly to the raw device.

This technique, as mentioned in [23], may cause file system corruption if used incorrectly

which may be a tell-tale sign of suspicious activity.

Finally, the current work is limited to the Ext3 file system. This issue is not paramount

as the theory behind the technique can be extended to any journaling system and Ext3 is

pervasive in the Linux community. Even with the fairly recent adoption of Ext4, Ext3 file

systems should remain in use for some time.
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2.7 Futurework

Currently the proof of concept prototype is set to poll the journal at a predetermined

interval. The rate at which the journal overwrites itself is dependent upon the type of

journaling supported by the file system, the type of operations being performed, and the

rate at which file system operations are performed. This approach is not optimal as the rate

increases. A better solution would be to monitor a certain block in the journal such that

every time that the block is accessed for writing, the journal is automatically audited by

the monitoring program. This tactic would prevent missing journal data due to excessive

file operations between sampling times. Also, it would decrease the overhead required in

finding the synchronization point between the current and previous journal samples.

Since the data being gathered can become untrusted if it is stored on the same medium

that the attacker has access to, methods must be implemented to efficiently to protect

this history. Some of the proposed solutions include storing the data in hidden partitions

and writing to write once media such as CD-Rs and DVD-Rs. Furthermore, although this

method of gathering more insight leverages the honeypot characteristic of being free of pro-

duction constraints, the exact performance and storage penalties have not been calculated.

Although the idea proposed could be implemented on production systems, the benefits

gained would not justify the cost incurred. By obtaining performance measurements in a

honeypot, optimizations might be made so that similar systems could be developed to aide

in real-world situations where the environment cannot be controlled.

This method for building a metadata time history for a richer source of forensic infor-

mation is not intended to be a stand alone solution. It is a component and first step toward

building a forensic framework that specifically suits the honeypot environment which can

be further extended as these environments continue to evolve. In [55] a method is proposed

for the monitoring of system calls to determine whether an encrypted application can be

trusted. Combining the techniques discussed there with TimeKeeper could yield a system

that produces greater forensic evidence. This line of research was first explored in [56] and

can be continued. Furthermore, as Ext4, discussed in section 2.1.3, has made changes to

several on-disk structures in the file system as well as in the journal area, work should be
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done so that the TimeKeeper system will be compatible with the new file system.
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CHAPTER III

DENTRY LOGGING

Honeypots are currently deployed in a variety of networks as reconnaissance devices. Until

recently, Ext3 was the default file system for most Linux distributions; therefore, it is only

natural that it be fully examined as a potential environment. However, due to its design

Ext3 can inhibit an investigation under certain circumstances. In this chapter, the design

of a method for honeypots is presented that takes advantage of the Virtual File System

Layer in Linux to provide an additional source of information in forensic frameworks. This

new technique allows the translation of inode numbers to filenames in a historical context

thereby providing a forensic analyst with a better picture of what has transpired. This

work proposes monitoring low-level operating system functions as opposed to considering

information from the file system alone.

The mapping of filenames to inode numbers in the Ext3 file system is a unidirectional

operation consisting of locating a filename in a directory and determining the associated

inode number. This commonplace procedure is more than adequate when considering per-

functory user activities such as file creation, editing, saving, and deletion; however, certain

specialized usage cases benefit from a reverse translation being performed. The structure of

Ext3 inhibits the retrieval of a single or set of filenames given only an inode number. The

findutils and e2fsprogs suites along with system call monitoring [55] can be employed

to accomplish this task, but these utilities can only provide an inode to filename translation

at the time they are executed. This limited scope may obscure details which are pertinent

in a investigation. In this chapter, findutils, e2fsprogs, and system call monitoring are

examined to determine how they have historically been used to retrieve a filename given

only an inode number. The knowledge gained was used to develop a method for determining

a filename of a given inode. This increases the semantic meaning of the data produced by

a system that captures inode information alone.
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The proposed method takes advantage of the Virtual File System layer in Linux in order

to gain access to memory structures known as dentries. By exploiting the dentry caching

system, information can be logged in real-time. This data can then be correlated with

metadata that has been archived. This approach calls for insertion of code into the Virtual

File System layer which increases the difficulty of disabling any logging mechanisms in the

event that the target system is compromised.

The inode mapping system described in this chapter is designed specifically with hon-

eypot environments in mind. In these environments, attackers may escalate their privilege

level so that even administrators cannot be trusted. This requires the design of a logging

mechanism that cannot be easily circumvented or deactivated by the root user. When these

considerations are combined with the fact that honeypots are known for running customized

logging software and kernels, the argument for kernel modification is strengthened.

The remainder of the chapter is arranged as follows. Section 3.1 contains a brief overview

of the Linux Virtual Files System and the TimeKeeper metadata archival system is sum-

merized in section 3.1.2. In section 3.2, related work such as system call monitoring is

discussed. Sections 3.3 through 3.7 detail the architecture of the proposed method, dis-

play the procedure, and examine results of preliminary experiments respectively. Future

directions for this research are presented in section 3.8 before finally concluding in section

3.9.

3.1 The Virtual File System

As this chapter discusses a method of performing inode number to filename mappings for

forensic purposes, a basic understanding of the underlying technology is a necessity. The

following provides a brief discussion of the Virtual File System layer with the intent of

clearly presenting the problem faced. For the purposes of showing how the general technique

described could be used, the TimeKeeper architecture is briefly described as a consumer

of the inode to filename translation system. In order to fully appreciate the problem,

knowledge of the Extended File systems is necessary and was presented in section 2.1.1.
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In Linux, a parallel can be drawn between the Virtual File System (VFS), first intro-

duced to the UNIX world via SunOS2 in 1985 [29], and the Internet Protocol (IP). Like

IP, the VFS permits many processes to work above it by providing a common interface

through which they can perform I/O operations while hiding the details of the underlying

file system that is actually resident on the medium. This gives Linux flexibility in that it

can support any file system that is VFS compatible without having to make changes to

applications. So, like IP, a great amount of development can happen above and below the

VFS layer which makes changing the layer itself somewhat risky [31][5].

3.1.1 Dentries

The VFS is heavily UNIX influenced and thereby supports these UNIX-like file system

structures: the superblock, the inode, the dentry, and the file. Of these structures, the

dentry is unique in that it is not derived from an on-disk structure. It is created by

the VFS while performing directory operations. A dentry is a directory entry and not a

directory itself. A directory is simply viewed as a file. In the path /home/user/test.txt, the

components /, home, and user represent directory files while test.txt represents a regular

file. All of these objects have inodes which represent them on disk. When this path is being

resolved, a dentry is created for each component of the path.

The operations that can be performed on a dentry are defined by the dentry operations

structure which is included in the dentry structure as the d op field in the dentry. The

dentry operations structure contains a set of function pointers that can either be redefined

by the underlying file system implementation or left to perform the default VFS action.

Dentries have three states: used, unused and negative. A used dentry means that the

object has a valid inode and that it is in use. When unused, the dentry still has a valid

inode, but it is not being used. A negative dentry does not have a valid inode. This can

be the case if the inode is deleted or if the path provided for a lookup was incorrect. These

states control whether a dentry is retained or not. Used dentries cannot be discarded, while

unused dentries are only discarded in the case memory is needed. Negative dentries are

the first to be discarded when space is needed as they possess the least amount of priority
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because they are invalid anyway. Dentries are stored in the Dentry Cache (dcache) to

decrease the time it takes to resolve a path.

The dcache structure is comprised of lists of used dentries, least recently used dentries,

and a hash table. The lists of used dentries are connected to the VFS inode object’s i dentry

field. A list is necessary to account for the fact that an inode can have several links pointing

to it resulting in it having multiple dentries. The least recently used list is comprised of

valid unused and negative dentries that are reverse time sorted so that the oldest dentries

are toward the tail end and can be reclaimed as necessary. The hash table is an array of

pointers to lists which contain dentries that have equal hash values [31]. This structure

allows the VFS to quickly determine whether a dentry is cached by using its hashed value.

The dcache is important for the following reasons:

• It reduces the amount of time necessary to resolve frequently used paths by eliminating

the need for the VFS to manually resolve each path component starting at the root

directory entry (file system walking).

• The dcache helps to control the inode cache as, according to [31], the dentry maintains

a positive usage count over the inode. This means that as long as a dentry object

remains in the cache, the corresponding inode will also remain in memory in the form

of the inode cache. This eliminates the time necessary for the VFS to allocate and

instantiate that inode.

More information about the dentry cache can be found in [5].

3.1.2 TimeKeeper

TimeKeeper is an example of an application that can benefit immensely from the ability to

map inode numbers to filenames throughout a time period. Presented in [21], the metadata

archival system is designed for the purpose of addressing anti-forensic efforts on honeypots

by preserving file metadata such as the modification, access, and change (MAC) times in

the Ext3 file system. The anti-forensics efforts described in [24] include specific attacks on

metadata time information using known tools such as TimeStomp [35] which specifically
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targets timestamp information in the NTFS file system. As shown in Figure 3, the Time-

Keeper technique used to gather metadata takes advantage of the Ext3 journal. The super

block and group descriptor information is acquired as a means to identify a particular block

that is seen in the journal and determine what actions are to be taken. This method is not

intended to be a stand alone solution, but a piece in a larger forensic framework that has

the goal of providing a richer set of evidence when performing the analysis of a honeypot.

One of the limitations of this archival method is that it currently does not gather file-

names when extracting inode information from the journal. This lack of functionality is

mainly due to the fact that in Ext3 the filenames are stored in directory structures. Di-

rectory data is actually stored along with file data. Thus the only way to retrieve this

information is to first process an inode, detect its file type, and then gather a list of di-

rectory file system blocks. Otherwise, every file system block seen by the journal will have

to be processed. Also, if an attacker is skilled enough, he or she may be able to circum-

vent the generation of journal traffic by writing directly to the device. However, this may

produce inconsistent timestamp information as well as possibly damage the file system on

the disk. Attackers could also resize or remove journaling from non-root volumes to limit

the amount of information gathered. In this chapter, TimeKeeper output will be analyzed

in conjunction with logged dentry data to demonstrate the added value that VFS logging

provides.

3.2 Related Work

3.2.1 find and debugfs

As noted in [44] the find command, part of the findutils package, and the debugfs

utility, included in e2fsprogs, have the ability to translate an inode number to one or more

filenames. Through the use of the -inum option, the find command is able to walk down a

directory structure beginning at a location specified by the user. If it is assumed that the

user does not have root privileges, then certain areas of the file system will be off limits to

them. The debugfs environment, which is used to troubleshoot file system problems such

as corruption, can perform the same action through use of the ncheck command.
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It has been noticed that when attempting to do an inode to filename translation with

these utilities, the first operation can take a longer amount of time than subsequent map-

pings to the same inode number or closely located inode numbers. The observed speed

increase in the secondary lookups is most likely caused by the dcache having had entries

added during the initial search. If the inode data provided by a user or application needing

to perform a translation is ordered in such a way that queries are executed according the

layout of the directory structures, then the use of find or debugfs may present a valid

method to perform lookups. However, the tools only provide insight into the state of the

file system at the instant a command is executed. To overcome this limitation, a translation

attempt would need to be made every time an unknown inode number is seen. The inode

numbers produced in a short period of time may not belong to the same branch of the overall

directory tree. For example, a file on a user’s desktop may be opened with an application

located in the /usr/bin directory which may in turn depend on a number of libraries. Even

if physical locality is not exploited to save time when performing translations, the situation

is exacerbated by the effects that that real-time searches would have on the dentry cache.

Multiple searches for disparate inode numbers can cause valid dentries to be retired from

the cache early. This dentry churn will have the effect of slowing down the system as full

pathname resolutions must occur more often. Overall the find and debugfs commands

do not adequately meet the design requirements of providing inode number to filename

translations with historical context.

3.2.2 Virtual Machine Monitor Sensors

In [2], a technique is presented where virtual honeypots are monitored using sensors. The

sensors have the ability to transfer control from virtual kernel to the virtual machine monitor

where the data provided by the calling function can be used for further analysis thereby

classifying it as a type of virtual machine introspection. Of particular interest is the inode

access sensor which takes advantage of the VFS. The sensor obtains the directory entry

of a file that is being opened, which is used to obtain the absolute path of the file. The

purpose behind this design is to detect malicious activity affecting sensitive files. If an
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attacker wants to determine whether or not they are in a virtualized environment, methods

presented in [28] may be employed for detection. The approach taken in [2] verifies that

the VFS is a prime target to be exploited for file information.

3.2.3 System Call Modification

System call monitoring, replacement, or modification is a technique that has been used in

many applications. Sebek [48], for example, can be used on honeypots to capture encrypted

session keys and keystrokes. It works by modifying the behavior of the sys read function.

In [55], many different system calls are modified to monitor the behavior of encrypted

programs. This approach can have shortcomings as it has been noted in [25] and [2], that

system call monitoring can have potential path resolution problems. For example, it has

been observed that at the system call level one might see open(“./config”, O RDWR). The

difficulty that arises here is that there is uncertainty as to where this file truly is located. By

logging dentry information, uncertainty is overcome due to the fact that the parent dentry

can easily be identified. Thus starting at the file config, one can obtain a fully canonicalized

path by recursivly identifying parent dentries.

3.2.4 MAC Trail

The MAC Trail system [3] has a similar purpose to the previously mentioned TimeKeeper

system. It provides an enhancement to Ext2 in the form of a loadable kernel module

to preserve MAC times. The approach used implements a mechanism at the VFS layer

which augments the behavior of the sys open system call. Furthermore, the data collected

is hidden from system users through utilization of custom data structures that store the

information to the disk in random blocks.

One strength to this approach is that it can implemented on Ext2 and Ext3. Also,

by monitoring system call information, the filename and inode number may be retrieved

simultaneously. However, the model used assumes that the system administrator can be

trusted. This is not a safe assumption with honeypots. In addition, as it uses a form of

system call monitoring, it can fall prey to path resolution complications.

This technique is improved upon in [15]. Here, the authors are only concerned with
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monitoring a specific set of files and again choose to take advantage of the sys open call.

They obtain further information by monitoring the unlink system call. While allowing their

system to detect file deletion, this move also prevents the deletion of the log file. Instead

of taking the approach used in [3] to store the log file, they instead monitor the getdents()

system call to hide the presence of the log file. Clearly, this assumes a certain amount of

trust for the root user. However, if the admin account is compromised, the log file cannot

be easily found as the ls command depends upon the getdents() system call. As with the

MAC Trail system, this approach uses a loadable kernel module. Thus if module is detected

and unloaded, the technique becomes ineffective. This work further reinforces the benefits

of capturing data at the VFS layer.

3.3 Theory/Architecture

The translation of a filename to an inode number takes place at the VFS layer, making

this the primary target for gathering data to perform the reverse operation. When a path

is being resolved, dentries are created for each of its components. These dentries are held

in memory to form the dcache which increases the speed of frequently used searches. The

operations that can be performed on a dentry object are defined in the d op field of the

structure, which points to the dentry operations structure, as well as in the fs/dcache.c file

of the kernel source. The location of both dentry and dentry operations structures is in the

include/linux/dcache.h file.

The function pointers defined inside of the dentry operations structure can be redefined

by the implementation of a particular filesystem, which allows that file system to handle

any peculiarities the default VFS operations do not address. It is therefore necessary to

add a logging mechanism to the functions defined outside of this structure to make changes

more robust across differing file systems. As of June 2007, the dcache API consists the

following major functions:

• dget - increments the usage count of a dentry

• dput - decrements the usage count of a dentry
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Figure 7: Testing Architecture

• d drop - removes dentry from the parent hash list

• d delete - deletes a dentry

• d add - adds a dentry to the parent hash list

• d instantiate - adds dentry to the alias hash list and updates inode information

• d lookup - finds a dentry given the parent and path name

By adding logging mechanisms to one or more of these functions, a more detailed picture

of the events recorded in the Ext3 journal can be obtained. The basic operation of the

mapping system is displayed in Figure 7. This figure denotes the actions that take place

while the system in question is active versus the processing which should be handled offline.

The journal metadata archival system and dentry logger are executed in tandem so that

the journal data can serve as a starting point to identify a window of interest in the VFS
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data, which is much more extensive in comparison. Simultaneous execution also serves to

check the validity of the data received by the dentry logger.

3.4 Prototype

The dentry logging mechanism was prototyped through modification of the Virtual File

System kernel code. In particular, it was the d instantiate function which was altered for

experimentation because, generally, this is where the inode information is filled into a dentry

structure. The collected data was sent to the kernel message buffer and written to a log

file. The logs were parsed offline using python scripts and imported into SQLite3 databases.

This approach provides the following benefits over the use of a kernel module:

• As the changes have been made to the actual kernel code and compiled, there is no

need to take steps to hide a kernel module, which is the case in [48] and [15].

• By making changes to kernel code rather than implementing a kernel module, the

hidden module detection techniques discussed in [17] can be avoided.

• The use of a kernel module, as presented in [3], assumes that the administrator of a

system can be trusted. This assumption cannot be made when considering systems

such as honeypots. As a reconnaissance mechanism, the honeypot only gains value

after it has been compromised so that the exploits used to gain access can be studied.

Furthermore, over the course of an attack, an intruder may escalate their privilege

level. Therefore, an administrator cannot be trusted with the ability to disable this

logging mechanism.

The experiments made usage of the Linux 2.6.23 kernel. Based on its source code, a

library of functions with the primary one being the dentry print function was developed.

Dentry print() takes in as arguments a dentry object, an inode object, and a string which

denotes the name of the function from which is called. This is the only function call

which is inserted into the dcache.c file. The dentry print function then attempts to access

the filename associated with the dentry object before validating the the inode object and
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calling the print inode function. As each dentry object contains a pointer to its parent

dentry, this data structure is also accessed and recorded.

The print inode function accesses the VFS inode object and gathers the inode number,

inode mode, as well as the timestamp values. These timestamp values differ from the

values in the Ext3 inode object in that the VFS inode object does not have a dtime field.

However this drawback is balanced by the fact that VFS inodes contain time values that are

recorded in the subsecond range unlike their Ext3 counterparts. Once the information from

the dentry and the parent dentry have been recorded the control is returned to the calling

function. This form of implementation allows minimal changes to the actual kernel code

and while providing a method to quickly insert the logging function into multiple places to

determine the best vantage point given a set of objectives.

Due to the nature of the honeypot environment, the root account cannot be trusted.

This creates a need to export the logged information from the honeypot in question. Two

approaches have been examined in this effort. The first involves writing to a device from

within the kernel while the second uses a remote logging server.

In the prototype implementation, the dentry print() and print inode() functions have

the ability to export information via serial port. This allows information, a sample of which

is shown in Figure 8, to be gathered during the boot process and sent to a remote machine.

This method was successfully tested using a QEMU virtual machine which output the data

to a file. However, when tests where run using two real machines, a noticeable amount of

delay was introduced. Although exportation by means of the serial port proved not to be

a viable option due to the data rate limitation, the data gathered justifies the concept of

writing directly to a remote device. Going forward, data exportation through higher speed

ports and other techniques should be investigated.

In [38], it is recommended that a remote logging server be setup as one of the the more

important steps of pre-incident preparation. As honeypots need to mimic production sys-

tems, this procedure is valid as a means of information preservation. By using printk()

statements in the dentry print() and print inode() functions, data can be logged to the

kernel message buffer. This data will then be processed and appear in the system log files
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Caller: d instantiate
Inode Number: 1
Inode Mode: 41ED
1232681240l 84005250l (mtime)
1232681240l 84005250l (atime)
1232681240l 84005250l (ctime)
Filename: / , /

Caller: d instantiate
Inode Number: 1
Inode Mode: 41ED
1232681240l 88005500l (mtime)
1232681240l 88005500l (atime)
1232681240l 88005500l (ctime)
Filename: / , /

Caller: d instantiate
Inode Number: 1
Inode Mode: 4180
1232681240l 88005500l (mtime)
1232681240l 88005500l (atime)
1232681240l 88005500l (ctime)
Filename: bdev: , bdev:

Caller: d instantiate
Inode Number: 1
Inode Mode: 416D
1232681240l 92005750l (mtime)
1232681240l 92005750l (atime)
1232681240l 92005750l (ctime)
Filename: / , /

Figure 8: Serial Device Output

located in the /var/log/ directory. Although the syslog daemon that is installed by default

with Ubuntu 8.04 allows the configuration of remote logging, it currently only supports

transfer via the UDP protocol. As the primary purpose of a honeypot is to gather informa-

tion, more reliability is needed in order to prevent data loss. The solution chosen for this

problem was to install the rsyslog package on the honeypot and logging server. Rsyslog

provides many features such as database support and transportation via SSL, but for these

experiments only TCP was used. It should be noted that other software such as syslog-ng

could also be used for this functionality.

The logging server approach has the benefit of being easier to implement when compared

to investigating and implementing low-level data exportation via device drivers. Also, as
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Mar 16 14:52:42 Random mysqld_safe[11209]: ended

Mar 16 14:52:45 Random kernel: Kernel logging (proc) stopped.

Mar 16 14:52:45 Random kernel: Kernel log daemon terminating.

Mar 16 14:52:47 Random rsyslogd: [origin software="rsyslogd"

swVersion="1.19.12" x-pid="4820"] exiting on signal 15.

Mar 16 14:53:33 Random rsyslogd: [origin software="rsyslogd"

swVersion="1.19.12" x-pid="4316"][x-configInfo udpReception="No"

udpPort="514" tcpReception="No" tcpPort="0"]

restart

Mar 16 14:53:33 Random kernel: rklogd 1.19.12, log source = /proc/kmsg started.

Mar 16 14:53:33 Random kernel: nsec

Mar 16 14:53:33 Random kernel: [36.887286] ctime: 1237229613 sec 345744674 nsec

Mar 16 14:53:33 Random kernel: [36.887292] Caller: d_instantiate

Mar 16 14:53:33 Random kernel: [36.887294] Inode Number:13314

Mar 16 14:53:33 Random kernel: [36.887295] Inode Mode: 040755 0x41ED

Mar 16 14:53:33 Random kernel: [36.887297] File Type: Directory

Mar 16 14:53:33 Random kernel: [36.887299] mtime: 1237229613 sec 349746390 nsec

Mar 16 14:53:33 Random kernel: [36.887301] atime: 1237229613 sec 349746390 nsec

Mar 16 14:53:33 Random kernel: [36.887303] ctime: 1237229613 sec 349746390 nsec

Mar 16 14:53:33 Random kernel: [36.887305] Filename: queue, queue

Mar 16 14:53:33 Random kernel: [36.887307] Parent Inode:

Mar 16 14:53:33 Random kernel: [36.887309] Parent Filename: .udev, .udev

Mar 16 14:53:33 Random kernel: [36.887312] Parent Inode Number:1141

Mar 16 14:53:33 Random kernel: [36.887314] Parent Inode Mode: 040755 0x41ED

Mar 16 14:53:33 Random kernel: [36.887315] Parent File Type: Directory

Mar 16 14:53:33 Random kernel: [36.887317] Parent mtime: 1237229613 sec

349746390 nsec

Mar 16 14:53:33 Random kernel: [36.887319] Parent atime: 1237229612 sec

225652715 nsec

Mar 16 14:53:33 Random kernel: [36.887321] Parent ctime: 1237229613 sec

349746390 nsec

Figure 9: Rsyslogd Messages

the honeypot and the logging server have close physical proximity to each other, a local

area network can be established to reduce the delay caused by competing network traffic.

These benefits are balanced by the fact that until the rsyslog daemon is started, no traffic

will be sent from the honeypot to the logging server. During this time period the kernel

message buffer can easily overwrite itself several times resulting in data loss. This can be

seen in Figure 9 which displays the messages in the /var/log/syslog file. In line 10 of Figure

9, the log file displays nsec as a message from the kernel. In line 6 of the log file, the entry

shows the rsyslog daemon restarting. To ease the task of parsing the log files and verify the

data produced by the dentry logging functions, headers are added to each data field. The
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first complete dentry record shown starts at line 12 with the heading Caller: and continues

until the last line of the figure. Lines 10 and 11 are the remnants of a logged dentry that

has been partially overwritten due the circular nature of the kernel message buffer.

As shown beginning with line 12, each complete dentry record contains the following

fields:

• Caller

Displays which function has been instrumented, thereby allowing the identification of

the type of information that can be retrieved from a given function. This field also

aids in calculating the frequency with which a function is called.

• Inode Number

Shows the VFS inode number to which the dentry is attached.

• Inode Mode

This is a numeric value corresponding to the file type of the VFS inode.

• File Type

Holds the decoded value of the Inode Mode field stating in plain text the type of file

with which the dentry is associated.

• mtime

Shows the seconds and nanoseconds from the epoch that the file was last modified.

• atime

Shows the seconds and nanoseconds from the epoch that the file was last accessed.

• ctime

Shows the seconds and nanoseconds from the epoch that the file metadata was last

changed.

• Filename

Displays the filename associated with the inode number.
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• Parent Inode

This is a marker heading denoting the start of data retrieved from the parent of the

current dentry. All of the Parent fields following this line have the same purpose of

their non-Parent counterparts.

3.5 Experiment

In order to test the implementation of this technique, the following experiment consisting

of several simple file operations was performed:

1. Experiment start time recorded

2. A test directory was made

3. A test file was created in the test directory with the touch command

4. The test file was edited using vim

5. A secondary test file was created from the first test file with the cat command

6. The inode numbers of the directory contents were recorded using ls -ali

7. The first test file was deleted using rm

8. The end time of the experiment was recorded

A five second pause was inserted between steps to ease the process of manual analysis.

3.6 Results

In Figure 10, the output of the experiment log file is displayed. The start and end times of

the experiment appear at the top and bottom of the file respectively. The timestamps are

1237237019
229380 .
229377 ..
229383 Test1.txt
229381 Test2.txt
1237237064

Figure 10: Condensed Log File Contents
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in the form of seconds since the UNIX epoch. This output is only a snapshot of the testing

directory immediately preceding the final two steps of the experiment. Using this as a guide

to start an analysis of the results, the data archived using the TimeKeeper technique was

examined.

As TimeKeeper is an existing system that archives journal data, it is used to provide

sample data, which can then be augmented using dentry logging. Since we are logging

information at the VFS level, similar output to the archived journal data can be produced

in a different manner. For example, by enduring a greater performance sacrifice through

implementing more taps, such as in the d hash function, a more complete picture of dentry

searches can be obtained. This will also create more extensive logs than those produced by

journal archiving. However, the scope in this research is inode to filename translation which

only requires modification of the d instantiate function. This imposes a limitation of not

being able to track incremental dentry changes which would be possible by instrumenting

other functions. If the Ext3 journal has not been archived, dentry logging will still provide

the benefit of enabling inode to filename translation of files that have been deleted whose

inode structures have yet to be recycled.

Figure 11 shows the abbreviated output of the archived journal data when it is imported

into a database and queried for events during the specified time period. The data fields

that are gathered from the journal but which are not shown here include the file system

block number, the journal sequence number, and the journal block type. To further reduce

the set of data returned by the query, the output is filtered for any inode in the 229000 to

229999 range. From left to right, the columns in the figure consist of the inode number,

file modification time (mtime), file access time (atime), file change time (ctime), and file

deletion time (dtime) recorded for an entry. The entries that correspond to the inodes listed

in the log file are in bold type. At this point, the filenames corresponding to inodes 229378,

229379, and 229382 are completely unknown. Although there is some insight into the

filenames of the bolded entries, it is not possible to say what filename maps to a particular

inode number at a given instance in time using the data gathered from the journal alone.

It will soon be shown that this is due to inode recycling.

56



inode Number|mtime|atime|ctime|dtime

229377|1237237019|1237237015|1237237019|0
229379|1237237019|1237237019|1237237019|0
229380|1237237019|1237237019|1237237019|0
229378|1237237007|1237237024|1237237007|0
229380|1237237024|1237237019|1237237024|0
229381|1237237024|1237237024|1237237024|0
229378|1237237007|1237237029|1237237007|0
229380|1237237030|1237237019|1237237030|0
229381|1237237024|1237237030|1237237024|0
229383|1237237030|1237237030|1237237030|1237237030

229382|1237237033|1237237030|1237237033|0
229380|1237237041|1237237019|1237237041|0
229381|1237237024|1237237030|1237237041|0
229382|1237237041|1237237030|1237237041|0
229383|1237237041|1237237041|1237237041|1237237041

229383|1237237041|1237237041|1237237041|0
229381|1237237024|1237237030|1237237041|1237237041

229378|1237237007|1237237044|1237237007|0
229380|1237237044|1237237019|1237237044|0
229382|1237237044|1237237030|1237237044|1237237044
229381|1237237049|1237237049|1237237049|0
229380|1237237059|1237237054|1237237059|0
229383|1237237059|1237237049|1237237059|1237237059

229378|1237237007|1237237064|1237237007|0
229379|1237237064|1237237019|1237237064|0

Figure 11: Condensed TimeKeeper Output

Next, the interesting inode numbers are extracted from the metadata archival output

and each of them is used to query a database created from the logged VFS data. This

action produces Figure 12. In this figure, the queried inode numbers are bolded with the

corresponding dentry data following. Indented underneath the dentry data is information

corresponding to the parent dentry. The dentry data consists of the filename, the file type,

and the max of the mtime, atime, and ctime at the time the dentry is instantiated. It can

be seen what filenames correspond to the unidentified inodes. Also in the case that an inode

number is recycled, the filenames are shown for each instance that it is used.

By using the data from Figure 11 and Figure 12 together, without considering the known

sequence of events, a reasonable scenario of what has taken place can be constructed. For

example, it is shown in Figure 12 that inode 229378 is only associated with the filename
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229377 1237237019
March-16-2009 Directory 1237236997

3900380 Directory Testing
229382 1237237044
.Test1.txt.swp Regular File 1237237030

229380 Directory Tests5
.Test1.txt.swp Regular File 1237237030

229380 Directory Tests5
229381 1237237049
Test2.txt Regular File 1237237049

229380 Directory Tests5
Test1.txt Regular File 1237237024

229380 Directory Tests5
229380 1237237059
Tests5 Directory 1237237019

229377 Directory March-16-2009
229383 1237237059
4913 Regular File 1237237041

229380 Directory Tests5
Test1.txt Regular File 1237237041

229380 Directory Tests5
.Test1.txt.swx Regular File 1237237030

229380 Directory Tests5
229378 1237237064
Test short.sh Regular File 1237237007

229377 Directory March-16-2009
229379 1237237064
Times5.txt Regular File 1237237019

229377 Directory March-16-2009

Figure 12: Condensed Correlation Output

Test short.sh. In Figure 11, it can be seen that this file is accessed repeatedly throughout

the experiment at time intervals ranging from 5 to 15 seconds. Although the file content

is unknown at this point, if it is assumed that Test short.sh is indeed a shell script file,

then this behavior is justified as the file is probably read from sequentially to fetch each

command. This claim can be bolstered by the fact that during the process, only the last

access timestamp of the inode is updated in the journal.

Another conclusion can be drawn by examining the inodes that have been deleted,

229381, 229382 and 229383. The dentry log output shows that these inodes were associated

the files Test1.txt, .Test1.txt.swp, .Test1.txt.swx, and Test2.txt. The conclusion that can
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be drawn is that these were backup files used by a text editor that eventually replaced the

original file, Test1.txt, which apparently started out associated with inode 229381 before

being reassigned to inode 229383 from which it was later deleted. In [21] and [56], the vim

program was documented as exhibiting similar behavior to that mentioned above. This

hypothesis can be verified by widening the scope of previous queries to show other inodes

accessed during the same period in question. After correlation, this action reveals filenames

specifically associated with the vim program.

Inode 229382 appears to have duplicate entries in that .Test1.txt.swp appears twice with

the exact same timestamp and parent dentry information. This is not a typo, d instantiate

was actually called twice. This behavior suggests that the previous dentry was deleted

and reinstantiated. To confirm this behavior, the d drop function would have to be instru-

mented.

In Figure 12, the time that appears next to each of the file types is the MAC-time. That

is to say, the mtime, atime, and ctime are all equivalent. This is caused by the experiment

creating and deleting files fairly rapidly and the information only being recorded when a

dentry is instantiated.

To prove the file system independent nature of dentry logging, this same experiment

was executed on a NTFS partition with similar results. No TimeKeeper-like system was

available to pull from the file system journal, or log file, in the NTFS experiment. In the

results that were obtained, all of the files created and even VIM library files could be found.

These results would be more meaningful if the MAC times were captured as each file was

modified instead of at each inode instantiation point.

3.6.1 d lookup Testing

In Figure 13, the output from the TimeKeeper database is shown when the previous ex-

periment was repeated in the same environment with the d lookup function instrumented

instead. These results represent a small fraction of the total inode activity that was ob-

served during the time period in question. Further narrowing was done based on the range

of inodes that were seen in the output of the experiment log, shown in Figure 14. As the
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in Tables 4 and 5. After five iterations, the standard deviation of each population was

fairly low in comparison to the mean of the set. This can seen in the percent column. By

comparing the means of the clean and dirty compile times using of the percent difference

formula, Table 6 was produced. It should be noted that honeypots do not provide produc-

tion computer system related services, but are instead used to gather security information

to assist in enhancing the overall safety of the production system and its operating environ-

ment. With the proposed additional logging functionality enabled on a honeypot, there is a

measured 8% performance penalty in order to gain increased visibility into system events.

Furthermore as this is a proof of concept system, no effort was made to maximize efficiency,

thus this performance impact could be reduced.

Table 6: Percent Differences

%Diff = 2∗|x1−x2|
x1+x2

∗ 100

Differences Percent Difference

Real 477.08 7.8

User 26.17 0.54

System 30.59 4.58

3.8 Futurework

Moving forward, more analysis regarding this technique and how it will fit together with

other systems such as the TimeKeeper journal monitoring system should be performed.

This would include experimentation and measurements to determine which function or

combination of functions yield the best logging data. Furthermore, rapid file creation and

deletion may not always be recorded in the journal due to higher level caching. The use of

this technique with metadata archival should yield insight into these occurrences which can

be leveraged to develop probability models about the effects of certain actions on the Ext3

journal.

Further experiments need to be conducted to determine the separate and cumulative

affects that the dentry logger and metadata archiving systems have on the performance

of a system. Given that the inode structure can be accessed from the dentry cache, it

may be possible to completely replace metadata logging with dentry logging. Although

this would create a great amount of data, dentry events can be viewed as atomic in nature
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making the data a great candidate for inclusion in projects such as Zeitline [7]. Finally,

the implementation of the techniques should be refined so that they work together in a less

disjointed fashion. Once a more polished implementation is available the tools should be

deployed in a large scale honeypot environment to collect realistic attack data.

3.9 Conclusions

This chapter presented a method for performing inode number to filename translations.

The approach used takes advantage of the dcache in the Linux Virtual File System layer.

This translation technique logs information in real-time, which is processed off-line and

can be used in conjunction with metadata archived by other forensic tools. The benefits

of this system are that it adds detail that would be very difficult to retrieve using the

journal data alone, while providing the functionality of logging across different file system

implementations. Also, by modifying the kernel code as opposed to using a kernel module,

the dentry logging has become difficult to subvert. This avoids issues that can arise when

the administrative user account cannot be fully trusted. By providing a richer dataset, this

technique signifies a step forward toward the goal of providing additional means to detect

and investigate anti-forensic attacks on honeypots.
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CHAPTER IV

EXT4

4.1 Motiviation

The fact that Ext4 is becoming the default file system on popular Linux distributions,

almost guarantees that it will be the subject of future digital forensic investigations. In this

chapter an investigation of how the differences between Ext3 and Ext4 affect file system

forensics is given. The new file system presents some unique challenges not only to digital

forensics but to privacy in general which will be identified. Therefore, strides must be made

in the open source forensic community for its support.

4.2 Introduction

As of the last half of 2009, Ext4 is the default file system for new installations of Ubuntu

9.10 [9], Fedora 11 [45], and openSuse 11.2 [36]. In fact, in the latest release of Fedora,

Ext4 is used not only in the primary volume as the file system but in the boot partition as

well [39]. Its predecessor, Ext3, is one of the most highly used Linux file systems but has

certain limitations that the developers of the file system sought to address as the size of

storage devices has and continues to increase.

Although Ext4 would seem like a relatively new file system, extensions to Ext3 have

been proposed by its maintainers since at least 2002 [52]. For the most part, Ext3 can be

seen as an extension of the previously popular Ext2. On the other hand, Ext4 can be best

viewed as an evolution of the file system rather than just Ext3 with new features.

Ext4 is backward compatible with Ext3, but Ext3 is not forward compatible with Ext4.

Unlike the nearly seamlessly transistions that can take place between Ext2 and Ext3, Ext4

is only partially supports the older file systems. This is due to the fact that some on-disk

structures have been changed in the development of the new file system. Ext3 partitions

can be mounted using Ext4. In this type of environment, older files will continue to use

indirect block mapping while newly created files will use the larger inode structure and
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extents. It is possible to obtain some of the benefits of Ext4 by mounting an older partition

with out extent support. This scenario may deliver the benefits of the Ext4 block allocation

algorithms, but without the use of extents the hybrid file system is somewhat handicapped.

Due to the fact that some of the structures used by the older file systems and the new one

are different, Ext4 cannot be mounted by Ext3.

Ext4 should not be thought of as a stopping point in Linux file system development. In

[51], Tso explicitly states that the long term plan was to have a next generation filesystem

for Linux with Btrfs being the best candidate. However due to Btrfs being in its early

stages and the amount of time it takes truly develop a new file system from scratch, the

decision was made to develop Ext4. This decision has the benefits of allowing developers

to capitalize on the knowledge gained from the work previously done in the development of

Ext3 while giving users the ability to upgrade their previously existing file system in steps.

By starting from the Ext3 code base and extending it, developers planned for Ext4 to gain

the capabilities of the previous version with the addition of new features in a relatively

short period of time [34].

As file systems can be the most abundant source of digital information in a forensic

investigation, the differences between Ext4 and Ext3 need to be examined and new methods

to explore Ext4 formatted disk images must be devised. The SleuthKit (TSK) [14], which

is based on the Coroner’s Toolkit, is one of the most documented and trusted open source

forensic toolkits. It is actively maintained and there are at least two extensions to the

command-line tools of which it is comprised. The most well known is the Autopsy Forensic

Browser which was developed by the creator of TSK, but PTK [16] provides a much more

advanced interface to aid forensic analysis.

Interfaces aside, the core of TSK is a set of Unix-based tools executed at the terminal. It

can be used to analyze FAT, NTFS, UFS, as well as the Ext2 and Ext3 file systems. As file

systems advance the forensic tools used to analyze them must advance as well. Even if Ext4

is only a temporary stop on the way to Btrfs, its adoption by major players in the Linux

community almost ensures that at some point the file system will fall under the scrutiny of

an digital investigation. To that end, this chapter presents initial research findings which
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are being used to develop a set of tools specifically for the forensic analysis of Ext4.

4.3 Background

Although Ext4 and its predecessors, Ext2 and Ext3, have some things in common there are

differences that must be taken into account when considering the forensic aspects of these

file systems. Most of the basics about these file systems have been discussed in Chapter 2.

Section 2.1.1 focused on Ext3 while section 2.1.3 provided details about Ext4.

4.4 Hypothesis

As Ext4 is based upon the Ext3 file system, certain assumptions have been made. Since

Ext3 zeros inode block pointers upon file deletion, one may assume that Ext4 would have

similar behavior. This assertion stems from the fact that the extents, either the root of a

tree or in-inode extents, are placed in the same location that the direct and indirect block

pointers are stored in when considering the previous version of the inode structure. This

may be a safe assumption, and gathering proof of this operation is but a simple step along

the way toward testing a the larger hypothesis of this chapter that preallocation in Ext4

can lead to an unintentional violation of privacy under certain conditions.

When large sparse files are created in Ext4, the entire space for the file will be reserved.

However, all of that area will not be initialized. The areas that are not immediately needed

will be allocated using an extent that has a flag set denoting that it is holding free space.

This saves time when huge files such as virtual machines are being created that actually have

data located sparingly around an image file. However, a certain danger exists in the fact

that when the VFS reads one of these place holding extents, it interprets it as representing

zeros. In a sense, the VFS is fibbing. This chapter proposes that from the sparse file,

actual data can be retrieved from files that have either been deleted or, in the case of

defragmentation, moved to make room for the large file. Furthermore, if there are multiple

users competing for space in the file system, the sparse file could possibly be allocated

blocks that once belonged to another user. Depending upon the length of the lifespan of

place holding extents, data from other users could possibly be retrieved from within the

sparse file.
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Finally it is theorized that the SleuthKit, a well accepted open source forensic toolkit,

and such other forensic toolkits will return inaccurate data when analyzing the an Ext4

partition. This is assertion is made knowing that the Sleuthkit was designed for systems such

as Ext2 and Ext3, however support for Ext4 will not be as simple as adding extra fields to

various data structures to support 64bit file systems. The fact that the relationship between

blockgroups and their associated metadata structures has been altered, means that certain

assumptions made when designing the Sleuthkit will not hold true in Ext4. This means

that data reported by the Sleuthkit may be inaccurate not only when dealing with extents

but when processing group descriptors and other fundamental file system components.

4.5 Experimentation

The experiments conducted in this research made use of Fedora 11 and Ubuntu 9.10 installed

inside of the Sun VirtualBox environment. Each virtual machine was mounted as a raw

image such that it could be analyzed from an outside source with relative ease.

To show an instance where the Ext4 filesystem can give a false sense of information

deletion to the user, a large file filled with null values was created in the same space where a

plethora of small files containing duplicate information were freshly deleted. In particular,

a small (500MB) Ext4 filesystem was created and filled to 100% utilization with 4KB files,

each filled with the word “TEST” or with other known contents equaling exactly 4KB.

This was done to eliminate any file slack space. The files were then unlinked (deleted)

from the filesystem. Then, a large file of null values was created to fill the entirety of the

available space using the dd command. The filesystem was then synchronized, unmounted,

and searched for traces of the “TEST” message. Surprisingly, there were 22MB of data that

remained untouched by the zeroing process. While inside of the file system, when the large

file is searched, there isn’t any of the TEST data. Hence, Ext4 tells us that the file is filled

with zeros, when physically, there is actually data remaining on the device.

The second experiment attempted to exploit online defragmentation, a process allowing

for smaller files to be moved to allow larger files to remain more contiguous. This could

cause sensitive files to be moved without securely deleting the source information. If the
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large file being written is sparse, then the sensitive data would not be overwritten. The

problem foreseen by this is a scenario where a user would perform a secure wipe of the data,

only to be undermined by the filesystem leaving a copy at an earlier location on the device.

To perform this experiment, a new 500MB file image was formatted with Ext4, files were

written to fill the device, some files were deleted, and a large file was written to try to force

the filesystem to move files around. To fill the device, 4KB and 16KB files were written

alternatively on the device until it was full. Then the 16KB files were deleted and the extents

for all the 4KB files were dumped into a text file. Next, a file of zeros was written to fill

the filesystem and the extents for all the 4KB files were dumped again and compared to

the first file. The two dumps were identical, indicating that online defragmentation did not

take place. Upon further investigation, it was discovered that the defragmentation feature

was not included in the version of Ext4 installed with the operating systems used for the

experiments. This security threat can not be fully analyzed until a stable implementation

of the online defragmentation algorithm is incorporated.

4.6 Results

4.6.1 Data Pointer Zeroing

In Ext2, the recovery of a deleted file was not exactly simple, but it was possible given

that the inode structure still contained pointers to the data blocks. Therefore, if a user

was lucky enough not to reuse a particular inode nor any of its data blocks, they could

reconstruct a file. Ext3 made this a little more difficult in that the data block pointers

for the inode structure were zeroed during deletion. This practice made file carving neces-

sary if one wanted to recover data. File carving is the practice of examining data blocks,

usually unallocated, and applying various algorithms to determine if they contain files. It

is analogous to examining a great deal of jigsaw puzzle pieces that are all cut into perfect

squares, thereby only giving the puzzle solver the images on the pieces (data in the blocks)

to determine which pieces belong together. The problem is exacerbated if multiple puzzles

(files) are mixed together. Ext4 continues the practice of zeroing out the data information

from an inode upon deletion.
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Inode 438 is part of block group 0
located at block 346, offset 0x0280

00056a80 a4 81 00 00 00 10 00 00 67 df 01 4b 67 df 01 4b
00056a90 67 df 01 4b 00 00 00 00 00 00 01 00 08 00 00 00
00056aa0 00 00 08 00 01 00 00 00 0a f3 01 00 04 00 00 00
00056ab0 00 00 00 00 00 00 00 00 04 00 00 00 a9 28 00 00
00056ac0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
∗
00056ae0 00 00 00 00 c5 84 58 dd 00 00 00 00 00 00 00 00
00056af0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Figure 16: Short Valid Extent Inode

Figure 16 shows the hexdump of an inode that was retrieved after the file system was

completely filled. The state of the inode after deletion can be seen in Figure 17. When

analyzing this output, we know that the inode is using extents and not direct blocks because

at the fortieth byte the magic number for the extent header, 0xf30a1, is present in both

figures. When the inode is allocated, timestamps can be seen at byte offsets 8, 12, and 16.

These are consistent with the timestamp locations in the second figure which has updated

values for the modification, change and deletion times for the inode.

00056a80 a4 81 00 00 00 00 00 00 67 df 01 4b 18 f3 01 4b
00056a90 18 f3 01 4b 18 f3 01 4b 00 00 00 00 00 00 00 00
00056aa0 00 00 08 00 01 00 00 00 0a f3 00 00 04 00 00 00
00056ab0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
∗
00056ae0 00 00 00 00 c5 84 58 dd 00 00 00 00 00 00 00 00
00056af0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Figure 17: Short Deleted Extent Inode

As the file’s size was 4096 bytes and the file system block size was 1024 bytes, the file

consumes 4 blocks. The starting data block for the file is 10409 (0x28A9). These values may

be found on the line beginning with 00056ab0 in Figure 16. After deletion, the entire line

is zeroed, affectively removing any chance to easily recover data. Because of this behavior,

data carving will continue to be necessary when performing the forensic analysis of an

1Note that in Figures 16 and 17 the values are stored in little endian format.
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Ext4 file system. However, as the Ext4 block allocation schemes do their best to prevent

file fragmentation, the data carving maybe more successful if it is initiated soon after the

original file has been deleted. Some adjustments to current data carvers and further testing

is necessary to confirm this suspicion.

4.6.2 Sleuthkit Testing

Figure 18: TSK Data Block Decision Chart

The Sleuthkit’s fsstat command is able to process the block groups and exit normally

when analyzing a non-64 bit Ext4 file system with 32-bit group descriptors. However, the

current version of fsstat will provide inaccurate information. The algorithm the Sleuthkit

uses to process block group descriptors is made for Ext2 superblocks, which have less features

than an Ext4 superblock. When comparing the output of the fsstat command, Figure 19,

to the output of the Ext4 version of the same command, shown in Figure 20, which was
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prototyped as a product of this research, it can be seen that the incompatible features

section for Ext4 has several more entries than that of its predecessor’s output. Also note

that the fsstat output displays every block group as containing a copy of the file system

superblock. Although the use of extents is an important concept, here focus is specifically

drawn to the Flex BG feature. Flex BG is enabled by default on fresh installs of Fedora

11 and Ubuntu 9.10. As was discussed in section 2.1.3.1 Flex BG changes the layout of

important metadata components inside of a file system.

An examination of TSK’s fsstat source code revealed that it assumes if the start of

a block group and its data block bitmap are not at the same block, the first block of that

block group must contain a backup of the file system superblock. Flex BG, along with

virtual blockroups, break this assumption. With Ext4 filesystems, the majority of the time

the datablock bitmap will not be the same as the start of the block group. In fact, the

block bitmap is not in located in its block group the majority of the time. This also affects

how data blocks are reported by the fsstat tool in TSK. If the block group base was equal

block group bitmap number, then the data block range is calculated using the inode bitmap

and inode table block numbers. Otherwise, the start is reported using the inode table

number augmented by the number of blocks it takes to store the table. The last datablock

is reported as either the last block mathematically or the last block in the filesystem if the

final block group is only partially filled. The TSK decision making concerning data blocks

is shown in Figure 18. In short, forensic researchers and toolkit designers must take virtual

block groups into account and be wary of the output of current forensic tools.

4.6.3 Data persistence in sparse files

After filling a small Ext4 partition with small files, deleting them, and creating a large file

with zero data, the next step was to attempt to retrieve the previous data. Although the

inode extents were zeroed out and the file system reported all of the blocks belonging to

the large file as zero, a hexdump of the unmounted file system image revealed otherwise. In

Figure 21 several important pieces of data are displayed. At the top, the filenames, which

are stored as data in directory structures, are stored. Then, in the middle starting at line
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4.7.2 Timestamps

One of the challenges of event reconstruction in the Ext3 file system has been the resolution

at which events are recorded. Considering the processing power of modern computers,

many different actions can take place in the span of a second. While in Ext3 they would all

appear to have happened simultaneously, Ext4 offers the promise of information necessary to

correctly sequence these events as the new larger inode structure has nanosecond resolution.

Also, the insertion of the creation timestamp into the inode structure will serve as another

source of forensic evidence.

4.7.3 Ext4 and TSK

While this research displays some of the shortcomings that the current incarnation of TSK

has with regards to Ext4, it must be noted that TSK was not designed for this file system.

Therefore this research serves as a starting point which should be completed when a full

set of open source Ext4 forensic tools similar to those of the TSK are made available.

Furthermore, one option would be the integration of the work done here into a future

release of the Sleuthkit. This approach would yeild the following benefits:

1. Open Source

TSK is an open source toolkit and studying its source code has aided the progression

of this research. By combining the work done here with TSK, the open source the

forensic community will have a chance to add on, correct, and make the code more

efficient.

2. Well Supported

TSK is well supported with an active developers mailing list. Thas has probably

resulted in an increased lifespan as overtime more file systems and different image

formats have become supported. By aligning with this community, the code will be

maintained and benefit from a fairly well established library of functions.

3. Wide Spread Adoption

As opposed to releasing the code into the wild and hoping that it catches on by being
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incorporated in popular forensic distribution releases, joining a project that is already

well known will increase its chances of being adopted by a wide number of digital

forensic practitioners.

4.7.4 Sparse File Analysis

More research must be done into the likelihood of sparse files overwriting either the data

meant for deletion or the data of other users. Although it has been shown that when

space is limited the deleted data of a higher privileged user may become compromised, it

is unknown how often these circumstances will occur. To this end, the development of a

method to rapidly analyze large sparse files for sensitive remnants would be of great use.

4.8 Conclusions

Ext4 has become the file system of choice on several popular Linux distributions. It offers

many benefits over its predecessors, but is only intended to be a stopping point until Btrfs

stabilizes. Some of the intrinsic behaviors in Ext4 present new challenges to the forensic and

security community while also providing better sources of data. One particular behavior of

Ext4 is how it handles large sparse files such as databases, drive images, and raw virtual

machine files.

The preallocation feature reserves space for these files, while not fully initialing all of

the extents. This supposedly leaves data, which was not being used on disk anyway. When

blocks belonging to the uninitialized extents are read from the disk, the VFS interprets

them as zeros although there may actually be valid file data underneath the sparse files.

Thus the file system provides and inaccurate picture to the user with respect to contents

on the disk in order to make gains in efficiency.

The upshot of this behavior is that when the file system becomes congested with users

competing for space, what one user thinks he has deleted may still actually be on the

disk incorporated into an uninitialized section of another user’s sparse file. This situation

can be further exacerbated by online defragmentation as a copy of a user’s file could exist

beneath a sparse file unbeknownst to that user. Thus the forensic community must not only

develop methods to analyze Ext4 by taking advantage of features such as high resolution
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timestamps, but also consider sparse files and other uninitialized structures as possible

sources of information.
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CHAPTER V

FUTURE WORK

As most of the ideas for future directions of the individual components presented in this

thesis are covered in sections 2.7, 3.8, and 4.7; this chapter discusses future directions for

the research in its entirety.

5.1 Visualization

Through experimentation it has been observed that archival of modification, access, and

change times produces a great amount of information. Using carefully constructed query

statements, a database consisting of these times may yield useful results, but this is not guar-

anteed. A major problem is that many inodes are accessed in the regular (non-malicious)

use of a system. One reason for these accesses is these inodes could potentially hold shared

libraries used by many programs. This makes the detection of anti-forensic techniques dif-

ficult. This difficulty is further compounded by the growth of modern operating systems,

the applications that are commonly bundled with them, and the ever increasing sizes of

modern hard disks.

Visual components would aid in the examination of data produced by archival compo-

nents. This would reduce the effort expended by the forensic analyst. Instead of finding an

anomaly among hundreds to thousands of lines of text, the task can be reduced to finding

an unexpected trend in a visual representation of the archived data. The theorized visual

component is not meant to completely replace the process of performing a detailed forensic

investigation. It is simply an aid with the purpose of reducing the amount of data that an

investigator may have to go through by drawing his or her attention to a particular area or

time period.
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5.2 Abstracted Query Language

Just as filenames have certain benefits over dealing with inode numbers directly, a filter

language could provide similar advantages. The amount of data generated in the day

to day functions performed by a modern operating system can be overwhelming. When

attempting to comprehend what has taken place, an analyst does not need to be encumbered

with the underlying details of complex data structures. Instead, an interface that rarely

changes but provides them with a great deal of flexibility and functionality would provide

more assistance. To this end, a standardized temporal query language would be a great

addition to this research. In time, this temporal query language can become as useful in the

establishment of time based events, as packet filter languages are when performing packet

inspection. It would also facilitate rapid analysis and comprehension of the data.

The storing of archived data in databases and the construction of SQL queries is a valid

method of analysis for retrieval of detailed information about the events that have tran-

spired. The drawback is that this limits the framework and the analyst to a language with

which they may not be familiar. Should the structure of the underlying database change,

the SQL queries needed to extract the same data would be affected. The filter language

will allow the user of tools based on the framework to employ a set of standard commands

without having to know the details of implementation. The language will also permit ana-

lyst to comb through the volumes of data without having to construct complicated query

statements. Furthermore, the development of a standardized temporal query language will

allow the underlying components of the framework to be modified and updated. This layer

of abstraction would allow further growth and development of the forensic framework.

5.3 Probabalistic Forensics

Further research should be conducted in the area deemed probabilistic forensics as pre-

sented in [56]. By developing and deploying systems which inspect memory structures and

can determine what affect certain actions have on memory and on a file system, a level

of confidence can be obtained as to what has transpired on a particular system. For ex-

ample, many programs written in C will share certain libraries and thus access the same
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files. However, if it is assumed that each program will possess behavior unique to itself,

then there exists an opportunity to build probability models about which programs have

been executed. Furthermore, different versions of the same program could possibly be dif-

ferentiated. Although it may currently be possible to say with confidence that a series of

events has transpired on a target computer, this particular line of research could lead to

quantifiable measurements.
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CHAPTER VI

CONCLUSION

In this thesis, the theory that additions to the operating system will yield better evidence

for the forensic analysis of honeypots has been explored. To this end, mechanisms that

have traditionally been used for other reasons have been thoroughly studied and adapted

for logging purposes. In each chapter, a theory was presented followed by an explanation

of a prototype, tests, and results to determine the viability of the theory. The fundamental

assertion under which most of the research was conducted states that because honeypots

differ from production systems, the forensic techniques traditionally used in enterprise en-

vironments do not adequately cover these reconnaissance purposed systems.

The value of a honeypot is only realized after it has been compromised, and that value

can be increased if the attacker elevates their privilege level to that of an administrator.

These actions allow honeypot researchers to examine the techniques with which an assailant

gains access to systems and observe how compromised systems are being used. Furthermore,

because honeypots do not host legitimate user activity, it is easier to discover malicious

actions and keep audit logs for long periods of time. With this set of circumstances in

mind, honeynet administrators cannot afford to entrust the administrative account with

the ability to disable logging mechanisms.

When conducting the forensic investigation of a file system, the value of using file times-

tamps to construct a timeline of events should not be underestimated. However, because

this source of information can be very important, there are documented techniques for alter-

ing timestamps. Chapter 2 detailed the TimeKeeper technique which uses the Ext3 journal

as a source of information. By default, the journaling system records file metadata to the

journal area of the disk before copying it over to the actual file system. This mechanism

ensures that if the file system is used, the inode structure, and the thereby the metadata

times, can be gathered from the journal. To test this theory, a prototype was constructed
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and a brief test was conducted. The results displayed a history of timestamps about inodes

that otherwise could have been considered unrelated. This shows that keeping a history

of metadata times makes the usage of timestamps in an investigation more robust against

tampering and that the file system journal is an excellent place to capture this information.

Although the TimeKeeper technique was a success, that line of research revealed another

issue in the area of digital forensics - inode number to filename translation. The journaling

system records information at block resolution and by default records metadata blocks.

The problem that arises from this behavior is that filenames are actually stored as data

the portion of a directory inode. Furthermore, filename to inode number translation is

unidirectional. Although the data from a directory inode may be journaled, the process

of capturing this data becomes very involved. For example, the monitoring system must

process every inode it detects, determine which inodes are directory inodes, locate the

data blocks from associated with those inodes, then parse the contents of those blocks. In

Chapter 3, a more elegant and file system independent solution to this issue was covered.

The technique makes use of the dentry cache, a part of the Virtual File System, in the Linux

kernel. By making changes to the operating system instead of using a kernel module, the

logging cannot be easily circumvented by an administrative account. This meets constraints

imposed by operating in honeypot environments while yielding information that provides a

history of what filenames have been associated with an inode number. This set of data can

either be used independently for translation in a historical context or correlated with other

data sets.

As time progresses, new technologies will continue to be introduced that present different

challenges to the digital forensics community. Because honeypots are suppose to resemble

production systems, these changes also have an impact on honeypot forensics. Since Ext4

has been adopted as the default file system by several major Linux distributions, it has an

influence on both production and honeypot environments. Chapter 4 presented the forensic

implications of the architectural differences between the Ext4 and Ext3 file systems. It was

shown that because the layout of important file system metadata structures are different,

current forensic toolkits can provide an analyst with inaccurate information. Experiments
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also showed that because Ext4 uses preallocation, under certain circumstances large sparse

files can contain remnants of older files that belonged to the owner of the sparse file or

another user altogether. These issues must be further explored to ascertain how often this

behavior can occur and whether methods can be devised in which this can be addressed.

This research has examined different levels of abstraction with respect to file system

forensics. At the lowest layer, file systems where analyzed in detail. At a higher level,

abstractions which file systems present to the Linux kernel were analyzed. Although tech-

niques must be developed to analyze the on-disk structures of current file systems after

an intrusion, audit logs gathered during an intrusion can be critical when conducting an

investigation. This research has presented three techniques that can be used in honeypot

forensics to provide additional detail about attacks. While the TimeKeeper and Dentry

Logging prototypes can be deployed while the system is active, the Ext4 toolkit prototypes

can be used after a compromise.

82



REFERENCES

[1] Access Data Corporation, “Forensic toolkit.” http://www.accessdata.com/

common/pagedetail.aspx?PageCode=ftk2test, 2007. Last Accessed: 11-19-2007.

[2] Asrigo, K., Litty, L., and Lie, D., “Using vmm-based sensor to monitor honey-
pots,” in Proceedings of the 2nd ACM/USENIX International Conference on Virtual
Execution Environments, pp. 13–23, 2006.

[3] Barik, M. S., Gupta, G., Sinha, S., Misra, A., and Mazumdar, C., “An efficient
technique for enhancing forensic capabilities of ext2 file system,” in Digital Forensics
Research Workshop, 2007.

[4] Berinato, S., “How online criminals make themselves tough to find, near impossible
to nab.” http://www.cio.com/article/114550, May 2007. Published 05-31-2007,
Last Accessed: 8-18-2009.

[5] Bovet, D. and Cesati, M., Understanding the Linux Kernel, Third Edition. Se-
bastopol, CA: O’Reilly Media, Inc., 3 ed., November 2005.

[6] Buchholz, F. and Falk, C., “Zeitline.” http://sourceforge.net/projects/

zeitline/. Last Accessed: 01-19-2010.

[7] Buchholz, F. and Falk, C., “Design and implementation of zeitline: a forensic
timeline editor,” in Digital Forensics Research Workshop (DFRWS), 2005.

[8] Caloyannides, M., “Forensics Is So “Yesterday”,” Security & Privacy, IEEE, vol. 7,
pp. 18–25, March-April 2009.

[9] Canonical Ltd., “9.10 Technnical Overview — Ubuntu.” http://www.ubuntu.com/

testing/karmic/alpha6, 2009. Last Accessed: 10-5-2009.

[10] Cao, M., Tso, T. Y., Pulavarty, B., Bhattacharya, S., Dilger, A., and
Tomas, A., “State of the art: Where we are with the ext3 filesystem,” in Proceedings
of the Ottawa Linux Symposium (OLS), pp. 69–96, 2005.

[11] Carrier, B., “Digital Forensics Works,” Security & Privacy, IEEE, vol. 7, pp. 26–29,
March-April 2009.

[12] Carrier, B., “An investigator’s guide to file system internals,” in FIRST Conference
on Computer Security, Incident Handling & Response, 2002. www.first.org/events/
progconf/2002/d1-02-carrier-slides.pdf Last Accessed: 11-16-2007.

[13] Carrier, B., File System Forensic Analysis. Upper Saddle River, NJ: Pearson Edu-
cation, Inc., 2005.

[14] Carrier, B., “The sleuth kit & autopsy browser.” http://www.sleuthkit.org, 2007.
Last Accessed: 11-18-2009.

83



[15] Das, S., Chattopadhayay, A., Kalyani, D. K., and Saha, M., “File-system in-
trusion detection by preserving mac dts: a loadable kernel module based approach for
linux kernel 2.6.x,” in CSIIRW ’09: Proceedings of the 5th Annual Workshop on Cyber
Security and Information Intelligence Research, (New York, NY, USA), pp. 1–6, ACM,
2009.

[16] DFLabs, “PTK an alternative computer forensic framework.” http://ptk.dflabs.

com/overview.php. Last Accessed: 11-18-2009.

[17] Dornseif, M., Holz, T., and Klein, C. N., “Nosebreak - attacking honeynets,”
in Information Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE
SMC, pp. 123–129, 2004.

[18] e-fense, “Helix.” http://www.e-fense.com/helix/. Last Accessed: 09-22-2009.

[19] Eckstein, K., “Forensics for advanced unix file systems,” in IEEE/USMA Informa-
tion Assurance Workshop, pp. 377–385, 2004.

[20] Eckstein, K. and Jahnke, M., “Data hiding in journaling file systems,” in Digital
Forensic Research Workshop (DFRWS), pp. 1–8, 2005.

[21] Fairbanks, K. D., Lee, C. P., Xia, Y. H., and Owen, H. L., “Timekeeper: A
metadata archiving method for honeypot forensics,” in Information Assurance and
Security Workshop IAW ’07, IEEE SMC, pp. 114–118, 2007.

[22] Farmer, D. and Venema, W., “The coroner’s toolkit.” http://www.porcupine.

org/forensics/tct.html, 1998. Last Accessed: 11-16-2007.

[23] Farmer, D. and Venema, W., Forensic Discovery. Upper Saddle River, NJ: Addison-
Wesley Professional, 2004.

[24] Garfinkel, S., “Anti-forensics: Techniques, detection and countermeasures,” in The
2nd International Conference on i-Warfare and Security (ICIW), pp. 77–84, 2007.

[25] Garfinkel, T., “Traps and pitfalls: Practical problems in system call interposition
based security tools,” in Proceedings of the 10th Annual Symposium on Network and
Distributed System Security (NDSS 2003), pp. 163–157, February February 2003.

[26] Guidance Software Inc., “EnCase Forensic.” http://www.guidancesoftware.

com/products/ef_index.asp, 2007. Last Accessed: 11-18-2007.

[27] Hay, B., Nance, K., and Bishop, M., “Live Analysis: Progress and Challenges,”
Security & Privacy, IEEE, vol. 7, pp. 30–37, March-April 2009.

[28] Holz, T. and Raynal, F., “Detecting honeypots and other suspicious environments,”
in Information Assurance Workshop, 2005. IAW ’05. Proceedings from the Sixth Annual
IEEE SMC, pp. 29–36, 2005.

[29] Kleiman, S. R., “Vnodes: An architecture for multiple file system types in sun unix,”
tech. rep., Sun Microsystems, 1985.

[30] Kumar, A., Cao, M., Santos, J., and Dilger, A., “Ext4 block and inode allocator
improvements,” in Proceedings of the Linux Symposium, vol. 1, pp. 263–274, July 2008.

84



[31] Love, R., Linux Kernel Development. Indianapolis, IN: Novell Press, 2nd ed., 2005.

[32] Love, R., “Kernel korner: Intro to inotify,” Linux Journal, vol. 139, no. 139, p. 8,
Nov. 2005.

[33] Manes, G. and Downing, E., “Overview of licensing and legal issues for digital
forensic investigators,” Security & Privacy, IEEE, vol. 7, pp. 45–48, March-April 2009.

[34] Mathur, A., Cao, M., Battacharya, S., Dilger, A., Tomas, A., and Vivier,

L., “The new ext4 filesystem: current status and future plans,” in Proceedings of the
Linux Symposium, vol. 2, pp. 21–33, June 2007.

[35] Metasploit Project LLC., “TimeStomp.” http://www.metasploit.com/

projects/antiforensics/, 2005. Last Accessed: 11-16-2007.

[36] Novell, Inc., “Opensuse 11.2.” http://en.opensuse.org/OpenSUSE_11.2, 2009.
Last Accessed: 11-17-2009.

[37] Peisert, S., Karin, S., Bishop, M., and Marzullo, K., “Principles-driven forensic
analysis,” in NSPW ’05: Proceedings of the 2005 workshop on New security paradigms,
pp. 85–93, 2005.

[38] Prosise, C. and Mandia, K., Incident Response: Investigating Computer Crime.
Berkeley, CA; London: Osborne/McGraw-Hill, 2001. Includes index.

[39] Red Hat, Inc., “Release Notes for Fedora 12.” http://docs.fedoraproject.org/

release-notes/f12/en-US/html-single/, 2009. Last Accessed: 11-17-2009.

[40] Reith, M., Carr, C., and Gunsch, G., “An examination of digital forensic models,”
International Journal of Digital Evidence, vol. 1, no. 3, pp. 1–12, Fall 2002.

[41] Richard, G. G. and Roussev, V., “Scalpel: A frugal, high performance file carver,”
in 2005 Digital Forensic Research Workshop (DFRWS), 2005.

[42] Sato, T., “ext4 online defragmentation,” in Proceedings of the Linux Symposium,
vol. 2, pp. 179–186, June 2007.

[43] Schneider, F. B., “Accountability for perfection,” Security & Privacy, IEEE, vol. 7,
pp. 3–4, March-April 2009.

[44] Siever, E., Linux in a Nutshell. Sebastopol, CA: O’Reilly & Associates, Inc., 2 ed.,
1999.

[45] The Fedora Project: Nalley, D., “Release notes for fedora 11: File sys-
tems.” http://docs.fedoraproject.org/release-notes/f11/en-US/, 2009. Last
Accessed: 10-5-2009.

[46] The Grugq, “Defeating Forensic Analysis on Unix,” Phrack Magazine, vol. 0x0b,
p. 0x06, July 2002. Released: 07-28-2002, http://www.phrack.org/issues.html?

issue=59&id=6#article, Last Accessed: 09-21-2009.

[47] The Honeynet Project, Know Your Enemy: Revealing the security tools, tactics,
and motives of the blackhat community. Boston, MA: Addison Wesley, 2002.

85



[48] The Honeynet Project in Know Your Enemy: Sebek, pp. 1–21, 2003.

[49] The Honeynet Project, “Know your enemy: Sebek,” in Technical Paper, pp. 1–21,
2003 November 17th.

[50] The Honeynet Project, “Tools for honepots.” http://www.honeynet.org/tools/

index.html, 2006. Last Accessed: 11-16-2007.

[51] Tso, T., “RE:[RFC] Btrfs mainline plans.” http://thread.gmane.org/gmane.

linux.filesystems/26246/focus=26492, 2008. Last Accessed: 11-17-2009.

[52] Tso, T. and Tweedie, S., “Planned extensions to the linux ext2/3 filesystem,” in
USENIX Technical Conference, 2002.

[53] Ubuntu Bugs, “ext4 defrag / defragment tool in jaunty -include.” https://bugs.

launchpad.net/ubuntu/+source/e2fsprogs/+bug/321528, 2009. Last Accessed: 11-
18-2009.

[54] United States Air Force Office of Special Investigations and The Center

for Information Systems Security Studies and Research., “Foremost.” http:

//foremost.sourceforge.net/, 2007. Last Accessed: 11-24-2007.

[55] Xia, Y., Fairbanks, K., and Owen, H., “Establishing trust in black-box programs,”
in IEEE SouthEast Conference, pp. 462–465, 2007.

[56] Xia, Y., Fairbanks, K., and Owen, H., “A program behavior matching architecture
for probabilistic file system forensics,” SIGOPS Oper. Syst. Rev., vol. 42, no. 3, pp. 4–
13, 2008.

86



PUBLICATIONS

• Sean Sanders, Kevin Fairbanks, Sahitya Jampana, Henry Owen III, “Visual Network
Traffic Classification Using Multi-Dimensional Piecewise Polynomial Models,” IEEE
SoutheastCon, 2010. March 2010. Accepted.

• Kevin D. Fairbanks, Ying H. Xia, Henry L. Owen III, “A Method for Historical Ext3
Inode to Filename Translation on Honeypots,” 33rd Annual IEEE International
Computer Software and Applications Conference (COMPSAC), International
Workshop on Computer Forensics in Software Engineering (CFSE) 2009. vol. 2, pp.
392-397.

• Kevin Fairbanks, Kishore Atreya, Henry Owen. “BlackBerry IPD Parsing for Open
Source Forensics.” IEEE SoutheastCon, 2009. March 2009. pp. 195-199.

• Ying Xia, Kevin Fairbanks, Henry Owen. “Visual Analysis of Program Flow Data
with Data Propagation.” Proceedings of the 5th international workshop on
Visualization for Computer Security. Cambridge, MA. September 2008, pp. 26-35.

• Ying Xia, Kevin Fairbanks, Henry Owen. “A Program Behavior Matching
Architecture for Probabilistic File System Forensics.” ACM SIGOPS Operating
Systems Review Special Issue on Computer Forensics. Vol. 42, Iss. 3. April 2008, pp
4-13.

• Kevin D. Fairbanks, Christopher P. Lee, Ying H. Xia, Henry L. Owen III.
“TimeKeeper: A Metadata Archiving Method for Honeypot Forensics.” 8th Annual
IEEE SMC Information Assurance Workshop. West Point, NY. 20-22 June 2007, pp.
114-118.

• Ying Xia, Kevin Fairbanks, Henry Owen. “Establishing trust in black-box
programs.” IEEE SoutheastCon, 2007. March 2007, pp. 462-465.

87



VITA

KEVIN D. FAIRBANKS

Kevin D. Fairbanks was born in Birmingham, Alabama in 1983. In May of 2005, he

received a B.S. in Electrical Engineering with a concentration in Computers from Tennessee

State University. In May of 2007, he received a M.S. in E.C.E. from the School of Electrical

and Computer Engineering at the Georgia Institute of Technology. On March 17th, 2010

Kevin successfully defended his thesis. His research interests include digital forensics, com-

puter security, network security, security visualization, reverse engineering, and malware

analysis.

88


