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SUMMARY

When people utilize social applications and services, their privacy suffers

potential serious threats. In this work, we present a novel, robust, and effective

de-anonymization attack to mobility trace data and social network data. First, we

design a Unified Similarity (US) measurement which takes into account local and

global structural characteristics of data, information obtained from auxiliary data,

and knowledge inherited from on-going de-anonymization results. By analyzing the

measurement on real datasets, we find that some datasets can potentially be de-

anonymized accurately and the others can be de-anonymized in a coarse granulari-

ty. Utilizing this property, we present a US based De-Anonymization (DA) frame-

work, which iteratively de-anonymizes data with an accuracy guarantee. Then, to

de-anonymize large scale data without the knowledge of the overlap size between

the anonymized data and the auxiliary data, we generalize DA to an Adaptive De-

Anonymization (ADA) framework. By strategically working on two core matching

subgraphs, ADA achieves high de-anonymization accuracy and reduces computation-

al overhead. Finally, we examine the presented de-anonymization attack on three

well known mobility traces: St. Andrews, Infocom06, and Smallblue, and three social

network datasets: ArnetMiner, Google+, and Facebook. The experimental result-

s demonstrate that the presented de-anonymization framework is very effective and

robust to noise.
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CHAPTER I

INTRODUCTION

Social networking services are a fast-growing business nowadays. The development of

smart phone technologies further advances the proliferation of social applications and

services, such as instant messaging (e.g., IRC, AIM, MSN, Jabber, Skype), sharing

sites (e.g., Flickr, Picassa, YouTube, Plaxo), blogs (e.g., Blogger, WordPress, Live-

Journal), wikis (e.g., Wikipedia, PBWiki, Wolfram MathWorld), microblogs (e.g.,

Twitter, Jaiku), social sites (e.g., Facebook, MySpace, Ning, Google+), and collab-

oration networks (e.g., DBLP, ArnetMiner). Due to the big commercial value to

businesses and huge impacts to the society, social networks and data analysis have

attracted more and more research interests [2][18][26][11][12][13].

When users participate in online social network activities, e.g., create personal

portfolios and connect to friends, or utilize social network functions, e.g., post current

location or share information with virtual social friends, people’s privacy encounters

potential serious threats. On the other hand, to utilize the huge amount of users’

data for commercial or academic purposes, social network owners usually release social

network data for research (data mining) or transfer data to business partners for target

advertising [18]. Furthermore, the advance of mobile computing and communication

enables devices such as smartphones to gather user information [26]. For example,

users can easily update location, and share posts through Twitter/Facebook on their

smartphones.

To protect user privacy, social network owners and services providers usually

anonymize data by removing “Personally Identifiable Information (PII)” before re-

leasing the data. However, this anonymized data is still vulnerable to social auxiliary
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information based data de-anonymization attacks [2][18][26]. The the vulnerability

is the results of two fundamental facts. First, when network owners and services

providers publish data, only naive anonymization techniques are applied to remove

basic PII. For example, the carefully processed and anonymized Netflix Prize dataset,

which contains anonymous movie ratings of 500,000 subscribers of Netflix and was re-

leased for the research contest purpose, had enough information in the data’s structure

that the user’s privacy were breached [17]. The second fact is the wide and common

availability of social auxiliary information [2][18][26]. As indicated in [18][26], adver-

saries can obtain social auxiliary information easily or with small efforts through mul-

tiple channels, e.g., academic and government data mining, advertising, third-party

applications, data aggregation and inferring, privacy attack and acquiring, smart

sensing and collection. Even if the availability of large scale auxiliary information

is unlikely, a small amount of auxiliary knowledge is usually enough for a successful

privacy breach.

A few de-anonymization attacks have been designed for social network data [2][18]

or mobility trace data [26]. However, existing works are limited due to one or sev-

eral reasons, e.g., scalability, generality, and robustness. Our work improves existing

works in some or all of the following aspects. First, we significantly improve the

de-anonymizaiton accuracy and decrease the computational complexity by proposing

a novel Core Matching Subgraphs (CMS) based adaptive de-anonymization strategy.

Second, besides utilizing node’s local property, we incorporate node’s global property

into de-anonymization without incurring high computational complexity. Further-

more, we also define and apply two new similarity measurements in the proposed

de-anonymization technique. Finally, the de-anonymization algorithm presented in

this work is a much more general attack framework. It can be applied to both mo-

bility trace data and social network data, directed and undirected data graphs, and

weighted and unweighted datasets.
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In summary, our main contributions in this thesis are as follows.

1. We analyze three de-anonymization metrics, namely structural similarity, rel-

ative distance similarity, and inheritance similarity. By structural similarity,

we consider both the local and the global topological characteristics of a node

and then quantify the similarity between two nodes with respect to their struc-

tural properties. By relative distance similarity, we measure how two nodes

are similar from the perspective of auxiliary seed information. By inheritance

similarity, we quantify the similarity between two nodes in terms of the knowl-

edge given by nodes who have already been de-anonymized. We also examine

how the three measurements function on real datasets. By conducting exper-

iments, we find that some anonymized nodes are significantly distinguishable

with respect to some metrics, which suggests that these nodes are potentially

easy to de-anonymize. On the other hand, for the other nodes with indistinc-

tive characteristics, they can also be de-anonymized, but with a more coarse

granularity.

2. Toward effective de-anonymization, we define a Unified Similarity (US) mea-

surement by synthetically considering the defined structural similarity, rela-

tive distance similarity, and inheritance similarity. Subsequently, we propose

a US based De-Anonymization (DA) framework, by which we iteratively de-

anonymize the anonymized data with accuracy guarantee provided by a de-

anonymization threshold and a mapping control factor.

3. To de-anonymize large-scale data without the knowledge on the overlap size

between the anonymized data and the auxiliary data, we generalize DA to

an Adaptive De-Anonymization (ADA) framework. ADA adaptively conduct-

s data de-anonymization starting from two Core Matching Subgraphs (CMSs),

which are defined to estimate the overlap size between the anonymized data and
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the auxiliary data. By strategically working on CMSs, the de-anonymization

in ADA is limited in two relatively small subgraphs with more information

confidence, and thus the de-anonymization accuracy is improved and the com-

putational overhead is reduced. In addition, we also extend DA/ADA to the

scenario that the anonymized data or the auxiliary data cannot be modeled by

connected graphs.

4. We apply the presented de-anonymization framework to three well known mo-

bility traces: St. Andrews [3], Infocom06 [21], and Smallblue [24]. The experi-

mental results demonstrate that the presented de-anonymization attack is very

effective and robust. With only the knowledge of one seed mapping, 57.7%,

93.2%, and 78.3% of the data in St. Andrews, Infocom06, and Smallblue can be

successfully de-anonymized, respectively. Furthermore, even when 20% of noise

is added into the anonymized data, 80.8%, 50.7%, and 60.8% of the data in

St. Andrews, Infocom06, and Smallblue can still be successfully de-anonymized

(with five seed mappings).

5. We also examine the presented de-anonymization attack on social network

datasets: ArnetMiner (a weighted coauthor dataset consists of 1,127 authors

and 6,690 coauthor relationships) Google+ (two datasets with one consists of

5,200 users and 7,062 connections and the other consists of 5,200 users and

7,813 connections), and Facebook (63,731 users and 1,269,502 “friendship” re-

lationships). Again, the experimental results demonstrate the effectiveness and

robustness of the presented de-anonymization framework. Based solely on the

knowledge of five seed mappings, 96% of users in ArnetMiner (with 4% noise)

and 58% of users in Google+ can be successfully de-anonymized. More im-

portantly and surprisingly, even the overlap between the anonymized data and

the auxiliary data is just 20% in Facebook, 90.8% of the common users can
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also be successfully de-anonymized with false positive error of 8.6% according

to 20 seed mappings. Furthermore, we also analyze the impact of leaf users

(users with one connection) on the de-anonymization performance according to

experiments on real data.

The rest of this thesis is organized as follows. In Chapter 2, we survey the most

related work. In Chapter 3, we give the preliminaries and considered data model. In

Chapter 4, the de-anonymization framework is presented. In Chapter 5, the proposed

de-anonymization framework is refined and extended to general large scale social

network datasets. We illustrate and discuss the results from extensive experiments

on real social and mobility datasets in Chapter 6. Finally, we conclude this thesis in

chapter 7.
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CHAPTER II

LITERATURE REVIEW

In this chapter, we survey the related work. We first review the specific de-anonymization

attacks on and defenses for social and mobility datasets. Then, we discuss the dif-

ferences that distinguish the proposed de-anonymization attack from existing de-

anonymization attacks.

Social and mobility trace data are now easily obtainable and available through

multiple channels, e.g., academic and government data mining, advertising, third-

party applications, data aggregation and inferring, privacy violating attacks [2][18][26].

To protect the privacy of publicly released data, a common method is to anonymize

data by removing PII, e.g., names, age, social security number, before releasing data.

However, this naive data anonymization is usually vulnerable to de-anonymization

attacks [4][9][15]. Therefore, several further strategies are proposed with the main

idea of perturbing the raw data by increasing the automorphism of the data itself,

which could make the released data non-distinguishable and thus defend against the

de-anonymization attacks. In the following section, we will survey existing anonymiza-

tion and de-anonymization solutions followed by presenting the merits and differences

that distinguish our method from existing works.

2.1 Anonymizing Social and Mobility Data

To preserve the privacy of sensitive relationships in graph data, Zheleva and Getoor

designed five different privacy preservation strategies depending on the amount of data

removed and the amount of privacy preserved [32]. However, the common availability

of auxiliary information for an adversary is not taken into account in the designed

strategies.
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In [9], Hay et al. introduced k-anonymity to social network data anonymization.

An assumption made on adversary’s information is that the attacker only has the de-

gree knowledge about the target or partial structural knowledge on the neighborhood

of the target. Nevertheless, in reality, the adversary has much more auxiliary infor-

mation available easily or with a small effort (e.g., through academic and government

data mining, advertising, third-party applications). On the other hand, the designed

k-anonymity scheme is applicable to low-average-degree social graphs [18]. Neverthe-

less, the fact is, social graphs’ average degree tends to be large and still increasing

[16][8]. For instance, the numbers of nodes and edges in a connected component of

Google+ are 69,501 and 9,168,660 respectively, which implies a large average degree

of 263.8.

In [4], Campan and Truta extended the k-anonymity scheme in [9] by defining an

information loss measure that quantifies the amount of structural information loss

due to edge generalization. A similar k-anonymity approach is also applied towards

ID-anonymization on graphs by Liu and Terzi in [15], where the priori knowledge

of adversaries is assumed to be the degree of certain nodes only. As we pointed out

before, adversaries can obtain much richer auxiliary information easily or with a small

effort. More importantly, as indicated in [18], the cornerstone of k-anonymity is based

on data’s syntactic property, which may not work on protecting actual data privacy

even been satisfied.

2.2 De-anonymizing Social and Mobility Data

The most closely related work to this thesis are [2][18][26][11]. In [2], Backstrom

introduced both active attacks and passive attacks to de-anonymize social network

data. For the active attack, the adversary should create a number of Sybil nodes

and build relationships between Sybil nodes and target nodes before data release

(practically and intuitively, it is not straightforward to know when and which part
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of social data will be released, as well as when to implant Sybil nodes). As analyzed

in the subsequent work [18], many reasons limit the practicality of the active attack.

A direct limitation is that the active attack is not scalable and difficult to control

because the amount of social network data continues to increase [16][8]. To execute

an active attack, many Sybil nodes and relationships/ties should be created which

is not practical. Furthermore, Sybil defense schemes [1][30][29][31] make this even

more difficult. On the other hand, in real online social networks, target nodes have

no reason to respond to the connection requests from strange Sybil nodes. For the

passive attack in [2], the adversary can breach the privacy of users whom they are

linked, which is again suitable for small social networks and difficult to extend to

large scale social network data.

In [18], Narayanan and Shmatikov extended the de-anonymization attack to large-

scale directed social network data, i.e., the social network data carries direction in-

formation which can be used as auxiliary knowledge. The designed de-anonymization

algorithm including two phases: seed identification and propagation. In the seed iden-

tification phase, a set of seed mappings are identified between the anonymized graph

and the auxiliary graph. In the propagation process, the identified seed mappings

are propagated to general mappings between the anonymized graph and the auxiliary

graph by employing several heuristic metrics, including eccentricity, edge direction-

ality, node degrees, revisiting nodes, and reverse match. The time complexity of the

propagation phase in [18] is O((|E1|+ |E2|)d1d2) = O(n4), where |E1| and d1 (respec-

tively, |E2| and d2) are the edge set cardinality and degree bound of the anonymized

graph (respectively, auxiliary graph), respectively, and n is the number of nodes in

the anonymized graph or auxiliary graph (same from the order perspective).

In [26], Srivatsa and Hicks presented the first de-anonymization attack to mobility

traces while using social networks as a side-channel. The de-anonymization process

also consists of two phases: landmark (seed) selection and mapping propagation. In
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the landmark selection phase, k landmarks with the highest betweenness scores will

be selected in the anonymized graph and the auxiliary graph respectively as seeds.

In the propagation process, three schemes are developed for graph matching (de-

anonymization), namely distance vector, randomized spanning trees, and recursive

sub-graph matching. To give a high graph matching (de-anonymization) accuracy,

the mapping propagation process will be repeated for each of all the k! possible

landmark mappings between the anonymized graph and the auxiliary graph, which is

very time-consuming (for example, to de-anonymize the Smallblue dataset which has

125 nodes [24] with 5 landmarks, it takes the designed mapping propagation schemes

6.7 hours, 6.2 hours, and 0.5 hours, respectively). Therefore, scalability could be a

significant limitation of the work in [26].

In [11], Ji et al. studied the de-anonymizability of graph data. Specifically,

they quantified the structural conditions for perfectly or partially de-anonymizing

an anonymized graph. Furthermore, according to the quantification, they proposed a

seed-free de-anonymization attack, which is suitable for dense and large-scale graphs.

Subsequently, Ji et al. further theoretically studied the de-anonymizability of social

networks with seed-knowledge in [12]. They also provided the conditions for perfectly

or partially de-anonymizing social networks with seed knowledge. Recently, Ji et al.

developed SecGraph, a uniform and open-source platform for graph data anonymiza-

tion and de-anonymization [13][22]. In SecGraph, they implemented and evaluated 11

graph anonymization schemes, 12 graph utility metrics, 7 application utility metrics,

and 15 modern graph de-anonymization attacks (including the two attacks proposed

in this thesis). They found that existing anonymization schemes are still vulnera-

ble to one or several de-anonymization attacks. The degree of vulnerability of each

anonymization scheme depends on how much and which data utility it preserves. In

[20], Nilizadeh et al. studied how to use the graph’s community information to en-

hance existing seed-based de-anonymization attacks, e.g., [18][26]. They proposed a
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community-based de-anonymization framework, which de-anonymizes a graph first at

the community-level and then at the user-level.

2.3 Remark

Some or all of the following aspects distinguish this work from existing techniques.

First, when de-anonymizing large datasets, we define CMS in both the anonymized

graph and the auxiliary graph according to seed information. Based on CMS, we

propose a novel adaptive de-anonymization strategy which is quite suitable for large

scale data de-anonymization. Following this strategy, we de-anonymize the nodes in

CMS first and then propagate the de-anonymization by spanning CMS in both graphs

adaptively. In this manner, we can significantly improve the de-anonymization ac-

curacy and decrease the computational complexity. Second, the degree centrality

can only indicate the local property of a node in a graph. In some anonymized

data, the fact that many nodes with similar degrees blurs or even invalidates the

effectiveness of using degree to match/distinguish nodes. Therefore, we include met-

rics indicating global properties of a node in a graph into our consideration, e.g.,

closeness centrality, betweenness centrality. Furthermore, besides utilizing structural

knowledge, we also define and apply two similarity measurements in the proposed

de-anonymization technique, namely the relative distance similarity and the inheri-

tance similarity. This increases the de-anonymization efficiency and accuracy. More

importantly, the computational cost induced by including new global metrics can be

overcome through the CMS-based adaptive de-anonymization in large scale datasets.

Third, the de-anonymization attack presented in [18] applies to social network data

that can be modeled by directed graphs, where the direction information is assumed

to be free auxiliary information for adversaries. In this work, we consider a more gen-

eral scenario by removing the direction limitation. Our de-anonymization algorithm

works for undirected graphs as well as directed graphs by incorporating the direction
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heuristic in [18]. Finally, we also consider the potential weight (relationship strength)

information on edges of anonymized graphs. Therefore, our de-anonymization algo-

rithm is also effective on weighted graphs. In summary, the de-anonymization attack

presented in this work applies to large scale social network data, mobility trace data,

directed/undirected data graphs and weighted/unweighted data graphs, and is more

general than previous works.
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CHAPTER III

PRELIMINARIES AND SYSTEM MODEL

3.1 Anonymized Data Graph

In this thesis, we consider the anonymized data which can be modeled by an undi-

rected graph1, denoted by Ga = (V a, Ea,W a), where V a = {i|i is a node} is the node

set (e.g., users in an anonymized Google+ graph), Ea = {lai,j|i, j ∈ V a, and there

is tie between i and j} is the set of all the links existing between any two nodes

in V a (a link could be a friend relationship such as in Google+ or a contact rela-

tionship such as in the mobility trace St Andrew), and W a = {wai,j|i, j ∈ V a, lai,j ∈

Ea, wai,j is a real number} is the set of possible weights associated with links in Ea

(e.g., in a coauthor graph, the weight of a coauthor relationship could be the number

of coauthored papers). If Ga is an unweighted graph, we simply define wai,j = 1 for

each link lai,j ∈ Ea.

For ∀i ∈ V a, we define its neighbor set as Na(i) = {j ∈ V a|laij ∈ Ea}. Then,

∆a
i = |Na(i)| represents the number of neighbors of i in Ga. For ∀i, j ∈ V a, let

pa(i, j) be a shortest path from i to j in Ga and |pa(i, j)| be the number of links on

pa(i, j) (the number of links passed from i to j through pa(i, j)). Then, we define

Pai,j = {pa(i, j)} the set of all the shortest pathes between i and j. Furthermore, we

define the diameter of Ga as Da = max{|pa(i, j)|∀i, j ∈ V a, pa(i, j) ∈ Pai,j}, i.e. the

length of the longest shortest path in Ga.

1Note that, the de-anonymization algorithm designed in this thesis can also be applied to directed
graphs directly by overlooking the direction information on edges, or by incorporating the edge-
direction based de-anonymizatoin heuristic in [18].
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3.2 Auxiliary Data Graph

As in [18][26], we assume the auxiliary data is the information crawled in current

online social networks, e.g., the “follow” relationships on Twitter [18], the “contact”

relationships on Flickr, the “friend” relationships on Facebook, the “circle” relation-

ships on Google+. Furthermore, similar as the anonymized data, the auxiliary data

can also be modeled as an undirected graph Gu = (V u, Eu,W u), where V u is the

node set, Eu is set of all the links (relationships) among the nodes in V u, and W u

is the set of possible weights associated with the links in Eu. As the definitions on

the anonymized graph Ga, we can define the neighborhood of ∀i ∈ V u as Nu(i),

the shortest path set between i ∈ V u and j ∈ V u as Pu(i, j) = {pu(i, j)}, and the

diameter of Gu as Du = max{|pu(i, j)|∀i, j ∈ V u, pu(i, j) ∈ Pu(i, j)}.

In addition, we assume Ga and Gu are connected. Note that this is not a limitation

of our scheme. The designed de-anonymization algorithm is also applicable to the case

where Ga and Gu are not connected. We will discuss this in Chapter 5.

3.3 Attack Model

Our de-anonymization objective is to map the nodes in the anonymized graph Ga to

the nodes in the auxiliary graph Gu as accurate as possible. Then, adversaries can rely

on the auxiliary data such as the portfolio created by users in online social networks

to breach users’ privacy. Formally, let γ(v) be the objective reality of v ∈ Ga in

the physical world. Then, an ideal de-anonymization can be represented by mapping

Φ : Ga → Gu, such that for v ∈ Ga,

Φ(v) =

 v′, if v′ = Φ(v) ∈ V u;

⊥, if Φ(v) /∈ V u.
(1)

where ⊥ is a special not existing indicator. Now, let

M = {(v1, v
′
1), (v2, v

′
2), · · · , (vn, v′n)}
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be the outcome of a de-anonymization attack such that vi ∈ V a,∪vi = V a, n = |V a|, i = 1, 2, · · · , n;

v′i = Φ(vi), v
′
i ∈ V u ∪ {⊥}, i = 1, 2, · · · , n.

(2)

Then, the de-anonymization on vi is said to be successful if Φ(vi) = γ(vi), if γ(vi) ∈ V u;

Φ(vi) =⊥, if γ(vi) /∈ V u.
(3)

or failure if  Φ(vi) ∈ {u|u ∈ V u, u 6= γ(vi)} ∪ {⊥}, if γ(vi) ∈ V u;

Φ(vi) 6=⊥, if γ(vi) /∈ V u.
(4)

In this thesis, we are aiming to design a de-anonymization framework with a high suc-

cess rate (accuracy) while a low failure rate. In addition, the designed de-anonymization

algorithm is expected to be robust to noise and scalable to large scale datasets.

3.4 Datasets

In this thesis, we employ six well known datasets to examine the effectiveness of the de-

signed de-anonymization framework: St. Andrews/Facebook [3][26], Infocom06/DBLP

[21][26], Smallbule/Facebook [24][26], ArnetMiner [27], Google+ [8], and Facebook

[28]. St. Andrews, Infocom06, and Smallbule are three mobility trace datasets. The

St. Andrews dataset contains WiFi-recorded mobility trace data of 27 T-mote users

through 30 days deployed in the University of St. Andrews. The Infocom06 trace

includes Bluetooth sightings by a group of 78 users carrying iMotes for four days in

IEEE INFOCOM 2005 in the Grand Hyatt Miami. The Smallbule dataset consists of

contacts among 125 instant messenger users on an enterprise network. An overview

of the three mobility traces is shown in Table 1. We employ the exact same tech-

niques as in the previous work [26] to preprocess the three mobility trace datasets

to obtain three anonymized data graphs. To de-anonymize the aforementioned three

14



Table 1: Overview of St. Andrews, Infocom06, Smallblue, and associated social
networks.

St. Andrews Infocom06 Smallblue

Comm. network type WiFi Bluetooth IM
Comm. nodes No. 27 78 125
Duration (days) 30 4 30

Granularity (secs) 300 120 300
Contacts No. 18,241 182,951 240,665

Social network type Facebook DBLP Facebook
Social nodes No. 27 616 400

anonymized mobility data traces, we employ three auxiliary social network datasets

[26] associated with these three mobility traces. For the St. Andrews dataset, we have

a Facebook dataset indicating the “friend” relationships among the T-mote users in

the trace. For the Infocom06 dataset, we employ a coauthor dataset consisting of 616

authors obtained from DBLP which indicates the “coauthor” relationships among all

the attendees of INFOCOM 2005. For the Smallblue dataset, we have a Facebook

dataset indicating the “friend” relationships among 400 employees from the same

enterprise as Smallblue. Note that, the social network datasets corresponding to

Infocom06 and Smallblue are supersets of them.

We also apply the presented de-anonymization attack to social network datasets:

ArnetMiner [27], Google+ [7], and Facebook [28]. ArnetMiner is an online academic

social network. In this thesis, the employed data is extracted from ArnetMiner in 2011

on topic “Database Systems / XML Data” which consists of 1,127 authors and 6,690

“coauthor” relationships. For each coauthor relationship, there is a weight associated

with it indicating the number of coauthored papers by the two authors. Consequently,

the ArnetMiner data can be modeled by a weighted graph. Furthermore, we know

the ground truth of the ArnetMiner data. When using it to examine the presented

de-anonymization attack, we will anonymize it first by adding different levels of noise.

Then, we apply our method to de-anonymize it. As a new social network, Google+

was launched in early July 2011. We use two Google+ datasets which were created
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on July 19 and August 6 in 2011 [7], denoted by JUL and AUG respectively. Both

JUL and AUG consist of 5,200 users as well as their profiles. In addition, there

were 7,062 connections in JUL and 7,813 connections in AUG. By insight analysis

[7], some connections appeared in AUG may not appear in JUL and vise versa.

This is because a user may add new connections or disable existing connections.

Furthermore, the two datasets are preprocessed as undirected graphs. Since we know

the hand labeled ground truth of JUL and AUG, we will examine the presented de-

anonymization framework by de-anonymizing JUL with AUG as auxiliary data and

then de-anonymizing AUG with JUL as auxiliary data. The Facebook dataset consists

of 63,731 users and 1,269,502 “friend” relationships (links). To use this dataset to

examine the presented de-anonymization attack, we will preprocess it based on the

known hand labeled ground truth. For more detailed experimental settings and data

processing, we will describe them in the experimental chapter (Chapter 6).
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CHAPTER IV

DE-ANONYMIZATION

From a macroscopic view, the designed de-anonymization attack framework consists

of two phases: seed selection and mapping propagation. In the seed selection phase,

we identify a small number of seed mappings from the anonymized graph Ga to the

auxiliary graph Gu serving as landmarks to bootstrap the de-anonymization. In the

mapping propagation phase, we de-anonymize Ga through synthetically exploiting

multiple similarity measurements. Since seed selection can be implemented by many

existing strategies and will not be our primary technical contribution, we will discuss

it briefly and focus on how to design an effective mapping propagation scheme.

4.1 Seed Selection and Mapping Spanning

The rational and feasibility of seed selection in our de-anonymization framework (as

well as other de-anonymization attacks) lies in three realities. The first is the common

availability of huge amounts of social network data, which is an open and rich source

for obtaining a small number of seeds. For instance, (i) for the data published for

academic and government data mining, some auxiliary information may be released

at the same time or can be obtained easily [17]; (ii) the social network data (e.g.,

Facebook, MySpace, Google) shared with advertising partners by social network op-

erators may cause some information leakage, which could be used as auxiliary seed

data for de-anonymization attacks [18]; (iii) online social network operators (e.g.,

Facebook, Twitter) and researchers (e.g., Stanford SNAP Datasets [25], Dartmouth

CRAWDAD [5]) publish many kinds of anonymized/unanoymized social network da-

ta periodically; etc. The second reality is the existence of multiple effective channels

to obtain a small number of seed mappings (actually, we can obtain much richer
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auxiliary information). Some example channels are as follows: (i) seed mapping in-

formation could be acquired due to data leakage, e.g., some data may be leaked in

data release for academic and government data mining with the original purpose of

assisting research [18][17]; (ii) auxiliary information can be collected by launching

third-party applications on online social networks (many successful examples are sur-

veyed in [18]); (iii) considering the common availability of huge amounts of social

network data, another effective method to infer auxiliary information is by data ag-

gregation. Especially in current online social networks, the degree distribution of

nodes (corresponding to users) has been shown to follow the power law distribution

in many cases. Therefore, important nodes could be inferred easily and accurately

in terms of their centrality [26]; (iv) it is also possible to obtain a small number of

seed mappings in a human-assisted semi-automatic manner. Adversaries can crawl

some data first and then relies on human-assisted semi-automatic analysis to obtain

some auxiliary information [17]; etc. The third reality is that a small number of seed

mappings is sufficiently helpful (or enough depends on the required accuracy) to our

de-anonymization framework. As shown in our experiments, a small number of seed

mappings (sometimes even one seed mapping) are sufficient to achieve highly accurate

de-anoymization.

In our de-anonymization framework, we can select a small number of seed map-

pings by employing multiple seed selection strategies [2][18][26] individually or col-

laboratively. Some candidate seed selection strategies are as follows. (1) One method

to obtain a small number of seed mappings can be implemented by a Sybil attack [2],

in which some Sybil nodes will be implanted into the target social network. Then,

we can use the social neighbors of the Sybil nodes or the Sybil nodes themselves

as seeds. Although large-scale Sybil attack to a network is difficult [29][31], local

or small scale Sybil attack to obtain some seed mappings is practical. (2) Another

applicable method to obtain a small number of seed mappings is by compromising
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nodes [2][18][26]. An adversary could collude with some users in the anonymized data

to obtain some seed mapping information. In addition, the adversary himself could

be some node in the anonymized graph. In this case, it is even easier to obtain seed

mapping information. (3) As we analyzed before, seed mappings can also be obtained

by launching third-party applications on the target network (e.g., Facebook, Twitter).

Again, it may be impossible to collect auxiliary information in large scale, however,

small scale of auxiliary information collection for seed mapping is practical [23][10][6].

(4) Some other existing attacks and seed identifying algorithms can be employed for

seed selection, e.g., the seed selection used in [2] for active and passive attacks, the

clique based seed identification in [18].

Since seed selection is not the primary contribution in this thesis, we assume we

have identified κ seed mappings by exploiting the aforementioned strategies indi-

vidually or collaboratively, denoted by Ms = {(s1, s
′
1), (s2, s

′
2), · · · , (sκ, s′κ)}, where

si ∈ V a, s′i ∈ V u, and s′i = Φ(si). In the mapping propagation phase, we will start

with the seed mapping Ms and propagate the mapping (de-anonymization) to the

entire Ga iteratively. LetM0 =Ms be the initial mapping set andMk (k = 1, 2, · · · )

be the mapping set after the k-th iteration. To facilitate our discussion, we first define

some terminologies as follows.

Let Ma
k =

|Mk|⋃
i=1

{vi|(vi, v′i) ∈ Mk} and Mu
k =

|Mk|⋃
i=1

{v′i|(vi, v′i) ∈ Mk} \ {⊥} be

the sets of nodes that have been mapped till iteration k in Ga and Gu, respectively.

Then, we define the 1-hop mapping spanning set of Ma
k as Λ1(Ma

k ) = {vj ∈ V a|vj /∈

Ma
k and ∃vi ∈ Ma

k s.t. vj ∈ Na(vi)}, i.e., Λ1(Ma
k ) denotes the set of nodes in Ga

that have some neighbor been mapped and themselves not been mapped yet. To be

general, we can also define the δ-hop mapping spanning set of Ma
k as Λδ(Ma

k ) = {vj ∈

V a|vj /∈Ma
k and ∃vi ∈Ma

k s.t. |pa(vi, vj)| ≤ δ}, i.e., Λδ(Ma
k ) denotes the set of nodes

in Ga that are at most δ hops away from some node been mapped and themselves not

been mapped yet. Here, δ(δ = 1, 2, · · · ) is called the spanning factor in the mapping
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Figure 1: A weighted graph.

propagation phase of the proposed de-anonymization framework. Similarly, we can

define the 1-hop mapping spanning set and δ-hop mapping spanning set for Mu
k as

Λ1(Mu
k ) = {v′j ∈ V u|v′j /∈ Mu

k and ∃v′i ∈ Mu
k s.t. v′j ∈ Nu(v′i)} and Λδ(Mu

k ) = {v′j ∈

V u|v′j /∈Mu
k and ∃v′i ∈Mu

k s.t. |pu(v′i, v′j)| ≤ δ}, respectively.

Based on the defined δ-hop mapping sets Λδ(Ma
k ) and Λδ(Mu

k ), we try to seek a

mapping Φ which maps the anonymized nodes in Λδ(Ma
k ) to some nodes in Λδ(Mu

k )∪

{⊥} iteratively in the mapping propagation phase of our de-anonymization frame-

work. To make the mapping propagation phase effective and controllable, we define

several important measurements according to nodes’ local properties, global proper-

ties, relative global property as well as inheritance properties in the following sections

before giving the de-anonymization framework.

4.2 Structural Similarity

In graph theory, the concept of centrality is often used to measure the topological

importance and characteristic of a node within a graph. In this thesis, we employ

three centrality measurements to capture the topological property of a node in Ga or

Gu, namely degree centrality, closeness centrality, and betweenness centrality. In the

case that the considering data is modeled by a weighted graph, we also defined the

weighted version of the employed three centrality measurements.
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Figure 2: Degree centrality.

4.2.1 Degree Centrality and Weighted Degree Centrality

The degree centrality is defined as the number of ties that a node has in a graph, i.e.,

the number of links with this node as an endpoint. For instance, in the considering

anonymized data graph, the degree centrality of v ∈ V a is defined as dv = ∆a
v =

|Na(v)|. Similarly, for v′ ∈ V u, its degree centrality is dv′ = ∆u
v′ = |Nu(v′)|. We

calculate the degree centrality of the nodes in St. Andrews, Infocom06, and Smallblue,

as well as their counterparts in the corresponding social graphs (Facebook, DBLP,

and Facebook), and the results are shown in Fig.2. From Fig.2, we observe that

the degree centrality distributions of the anonymized graph and auxiliary graph are

similar, which implies that degree centrality can be used for de-anonymization. On

the other hand, multiple nodes in both graphs may have similar degree centrality,

which suggests that degree centrality as a structural measurement can be used for

coarse granularity de-anonymization.

When the data being considered is modeled by a weighted graph as shown in Fig.1,

which consists of 6 nodes and 7 links, the weights on links provide extra information

in characterizing the centrality of a node. In this case, the degree centrality defined

for unweighted graphs cannot properly reflect a nodes’ structural importance [19].

For instance, dv2 = dv4 in Fig.1. However, the links associated with v2 and v4 have

different weights or sum weights, which cannot be reflected by dv2 and dv4 . One naive

idea is to define the degree centrality of a node in a weighted graph as the sum of
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Figure 3: Closeness centrality.

the weights on the links associated with that node [19]. Nevertheless, this definition

overlooks the information about the number of links associated with a node on the

other hand. As shown in Fig.1,
∑
j 6=1

w1,j =
∑
j 6=3

w3,j = 12 while dv1 6= dv3 (as defined

in Chapter 3, wi,j is the weight on the link from i to j or 0 if there is no link). To

consider both the number of links associated with a node and the weights on these

links, we define the weighted degree centrality for v ∈ V a as

wdv = ∆a
v · (

∑
u∈Na(v)

wav,u

∆a
v

)α, (5)

where α is a positive tuning parameter that can be set according to the research

setting and data [19]. Basically, when 0 ≤ α ≤ 1, high degree is considered more

important, whereas when α ≥ 1, weight is considered more important. Similarly, we

can define the weighted degree centrality for v′ ∈ V u as

wdv′ = ∆u
v′ · (

∑
u′∈Nu(v′)

wuv′,u′

∆u
v′

)α. (6)

4.2.2 Closeness Centrality and Weighted Closeness Centrality

From the definition of degree centrality, it indicates the local property of a node s-

ince only the adjacent links are considered. To fully characterize a node’s topological

importance, some centrality measurements defined from a global view are also im-

portant and useful. One manner to count a node’s global structural importance is by

closeness centrality, which measures how close a node is to other nodes in a graph
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and is defined as the ratio between n − 1 and the sum of its distances to all other

nodes. In the definition, n is the number of nodes and distance is the length in terms

of hops from a node to another node in a graph. Formally, for v ∈ V a, its closeness

centrality cv is defined as

cv =
|V a| − 1∑

u∈V a,u6=v
|pa(v, u)|

. (7)

Similarly, the closeness centrality cv′ of v′ ∈ V u is defined as

cv′ =
|V u| − 1∑

u′∈V u,u′ 6=v′
|pu(v′, u′)|

. (8)

Fig.3 demonstrates the closeness centrality score of the nodes in St. Andrews,

Infocom06, and Smallblue, as well as their counterparts in the corresponding social

graphs (Facebook, DBLP, and Facebook), respectively. From Fig.3, the closeness

centrality distribution of nodes in the anonymized graph generally agrees with that

in the auxiliary graph, which suggests that closeness centrality can be a measurement

for de-anonymization. In the case that the data being considered is modeled by a

weighted graph, we define the weighted closeness centrality for v ∈ V a and v′ ∈ V u

as

wcv =
|V a| − 1∑

u∈V a,u6=v
|paw(v, u)|

(9)

and

wcv′ =
|V u| − 1∑

u′∈V u,u′ 6=v′
|puw(v′, u′)|

, (10)

respectively, where paw(·, ·)/puw(·, ·) is the shortest path between two nodes in a weight-

ed graph.

4.2.3 Betweenness Centrality and Weighted Betweenness Centrality

Besides closeness centrality, betweenness centrality is another measure indicating a

node’s global structural importance within a graph, which quantifies the number of
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Figure 4: Betweenness centrality.

times a node acts as a bridge (intermediate node) along the shortest path between

two other nodes. Formally, for v ∈ V a, its betweenness centrality bv in Ga is defined

as

bv =

∑
x 6=v 6=y

σa
xy(v)

σa
xy(|V a|−1

2

) =
2

(|V a| − 1)(|V a| − 2)
·
∑
x6=v 6=y

σaxy(v)

σaxy
, (11)

where x′, y′ ∈ V a, σaxy = |Pa(x, y)| is the number of all the shortest paths between

x and y in Ga, and σaxy(v) = |{pa(x, y) ∈ Pa(x, y)|v is an intermediate node on path

pa(x, y)}| is the number of shortest paths between x and y in Ga that v lies on.

Similarly, the betweenness centrality bv′ of v′ ∈ V u in Gu is defined as

bv′ =

∑
x′ 6=v′ 6=y′

σu
x′y′ (v

′)

σu
x′y′(|V u|−1

2

) =
2

(|V u| − 1)(|V u| − 2)
·
∑

x′ 6=v′ 6=y′

σux′y′(v
′)

σux′y′
. (12)

According to the definition, we obtain the betweenness centrality of nodes in St.

Andrews/Facebook, Infocom06/DBLP, and Smallblue/Facebook as shown in Fig.4.

From Fig.4, the nodes in Ga and their counterparts in Gu agree highly on between-

ness centrality. Consequently, betweenness centrality can also be employed in our

de-anonymization framework for distinguishing mappings. For the case that the con-

sidering data is modeled as a weighted graph, we define the weighted betweenness

centrality for v ∈ V a and v′ ∈ V u as

wbv =

∑
x 6=v 6=y

σwa
xy (v)

σwa
xy(|V a|−1

2

) =
2

(|V a| − 1)(|V a| − 2)
·
∑
x 6=v 6=y

σwaxy (v)

σwaxy
(13)
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and

wbv′ =

∑
x′ 6=v′ 6=y′

σwu
x′y′ (v

′)

σwu
x′y′(|V u|−1

2

) =
2

(|V u| − 1)(|V u| − 2)
·
∑

x′ 6=v′ 6=y′

σwux′y′(v
′)

σwux′y′
, (14)

respectively, where σwaxy and σ
wa(v)
xy (respectively, σwux′y′ and σ

wa(v′)
x′y′ ) are the number of

shortest paths between x and y (respectively, x′ and y′) and the number of shortest

paths between x and y (respectively, x′ and y′) passing v (respectively, v′) in the

weighted graph Ga (respectively, Gu), respectively.

4.2.4 Structural Similarity

From the analysis on real datasets, the local and global structural characteristic-

s carried by degree, closeness, and betweenness centralities of nodes can guide our

de-anonymization framework design. Following this direction, to consider and uti-

lize nodes’ structural property integrally, we define a unified structural measurement,

namely structural similarity, to jointly count two nodes’ both local and global topolog-

ical properties. First, for v ∈ V a and v′ ∈ V u, we define two structural characteristic

vectors Sa(v) and Su(v′) respectively in terms of their (weighted) degree, closeness,

and betweenness centralities as follows:

Sa(v) = [dv, cv, bv, wdv, wcv, wbv] (15)

Su(v′) = [dv′ , cv′ , bv′ , wdv′ , wcv′ , wbv′ ]. (16)

In Sa(v), if Ga is unweighted, we set wdv = wcv = wbv = 0; otherwise, we first count

dv, cv, and bv by assuming Ga is unweighted, and then count wdv, wcv, and wbv in

the weighted Ga. We also apply the same method to obtain Su(v′) in Gu. Based on

Sa(v) and Su(v′), we define the structural similarity between v ∈ V a and v′ ∈ V u,

denoted by sS(v, v′), as the cosine similarity between Sa(v) and Su(v′), i.e.,

sS(v, v′) =
Sa(v) · Su(v′)
‖Sa(v)‖‖Su(v′)‖

, (17)

25



0 5 10 15 20 25 30

0.3

0.4

0.5

0.6

0.7

0.8

0.9

St
ru

ct
ur

al
 S

im
ila

rit
y 

Sc
or

e

Node ID

 Counterpart
 Min
 Max
 Avg

(a) St. Andrews vs Facebook

-10 0 10 20 30 40 50 60 70 80

0.4

0.5

0.6

0.7

0.8

0.9

St
ru

ct
ur

al
 S

im
ila

rit
y 

Sc
or

e

Node ID

 Counterpart
 Min
 Max
 Avg

(b) Infocom06 vs DBLP

0 20 40 60 80 100 120 140

0.4

0.5

0.6

0.7

0.8

0.9

St
ru

ct
ua

l S
im

ila
rit

y 
Sc

or
e

Node ID

 Counterpart
 Min
 Max
 Avg

(c) Smallblue vs Facebook

Figure 5: Structural similarity.

where · is the dot product and ‖ · ‖ is the magnitude of a vector.

The structural similarity between the nodes in St. Andrews, Infocom06, and Small-

blue and their corresponding auxiliary networks is shown in Fig.5, where Counterpart

represents sS(v, v′ = γ(v)) indicating the structural similarity between v ∈ V a and

its objective reality γ(v) in Gu, Min represents min{sS(v, x′)|x′ ∈ V u, x′ 6= γ(v)}, Max

represents max{sS(v, x′)|x′ ∈ V u, x′ 6= γ(v)}, and Avg represents 1
|V u|−1

∑
x′∈V u,x′ 6=γ(v)

sS(v, x′).

From Fig.5, we have the following two basic observations.

• For some nodes with distinguished structural characteristics, e.g., nodes 2, 16,

24 in St. Andrews, nodes 10, 40 in Infocom06, and nodes 19, 54, 64, 72, 111,

115 in Smallblue, they agree with their counterparts and disagree with other

nodes in the auxiliary graphs significantly (actually, they also show the sim-

ilar agreeableness and disagreeableness with respect to degree, closeness, and

betweenness centralities). Consequently, this suggests that these nodes can be

de-anonymized even just based on their structural characteristics. In addition,

this confirms that structural properties can be employed in de-anonymization

attacks.

• For the nodes with indistinctive structural similarities, e.g., nodes 7, 10, 22, 26

in St. Andrews, nodes 16, 73, 78 in Infocom06, and nodes 4, 40, 86, 102, 124 in

Smallblue, exact node mapping relying on structural property alone is difficult

or impossible to achieve from the view of graph theory. Fortunately, even if
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this is true, structural characteristics can also help us to differentiate these

indistinctive nodes from most of the other nodes in the auxiliary graph. Hence,

structural similarity based coarse granularity de-anonymization is practical.

4.3 Relative Distance Similarity

In Section 4.1, we select an initial seed mappingM0 =Ms = {(s1, s
′
1), (s2, s

′
2), · · · , (sκ, s′κ)}.

This apriori knowledge can be used to conduct more confident ratiocination in de-

anonymization. Therefore, for v ∈ V a \Ma
0 , we define its relative distance vector 1,

denoted by Da(v) to the seeds in Ma
0 = {s1, s2, · · · , sκ} as

Da(v) = [Da
1(v), Da

2(v), · · · , Da
κ(v)], (18)

where Da
i (v) = |pa(v,si)|

Da is the normalized relative distance between v and seed si.

Similarly, based on the initial seed set Mu
0 = {s′1, s′2, · · · , s′κ} in Gu, we can define the

relative distance vector for v′ ∈ V u \Mu
0 to the seeds in Mu

0 as

Du(v′) = [Du
1 (v′), Du

2 (v′), · · · , Du
κ(v′)], (19)

where Du
i (v′) =

|pu(v′,s′i)|
Du is the normalized relative distance between v′ and seed

s′i. Again, we can define the relative distance similarity between v ∈ V a \Ma
0 and

v′ ∈ V u\Mu
0 , denoted by sD(v, v′), as the cosine similarity between Da(v) and Du(v′),

i.e.,

sD(v, v′) =
Da(v) ·Du(v′)

‖Da(v)‖‖Du(v′)‖
. (20)

For St. Andrews/Facebook, Infocom06/DBLP, and Smallblue/Facebook, by as-

suming Ms = {(i, i)|i = 1, 2, · · · , 6} (which implies Ma
0 = Mu

0 = {1, 2, 3, 4, 5, 6}), we

can obtain the relative distance similarity scores between the nodes in V a \Ma
0 and

1Note that, the relative distance vector can also be defined using the Multidimensional Scaling
(MDS) theory [14]. To consistent with existing anonymization/de-anonymization literature [9][11],
we still use the “relative distance (similarity)” term. Mathematically, the used relative distance
similarity can be considered as a special case/application of MDS.
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Figure 6: Relative distance similarity.

the nodes in V u \Mu
0 as shown in Fig.6. From Fig.6, we can observe the following

facts.

• Some anonymized nodes (which may be indistinctive with respect to structural

similarity), e.g., nodes 14, 19, 23 in St. Andrews, nodes 28, 31, 37, 54 in In-

focom06, and nodes 46, 63, 75, 98, 105 in Smallblue, highly agree with their

counterparts and meanwhile disagree with other nodes in the auxiliary graph,

which suggests that they can be de-anonymized successfully with a high prob-

ability by employing the relative distance similarity based metric.

• For some nodes, e.g., nodes 11, 21, 26, 27 in St. Andrews, nodes, 56, 69 in Info-

com06, and nodes 12, 13, 26 in Smallblue, they are indistinctive on the relative

distance similarity with respect to the initial seed selection {1, 2, 3, 4, 5, 6}. To

distinguish them, extra effort is expected, e.g., by utilizing structural similarity

collaboratively, employing another seed selection.

• The nodes that are significantly distinguishable with respect to structural simi-

larity may be indistinctive with respect to relative distance similarity, and vice

versa. This inspires us to design a proper and effective multi-measurement

based de-anonymization framework.
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Figure 7: Mapping inheritance.

4.4 Inheritance Similarity

Besides the initial seed mapping, the de-anonymized nodes during each iteration, i.e.,

Mk, could provide further knowledge when de-anonymizing Λδ(Ma
k ). As shown in

Fig.7, if the current de-anonymization result is Mk = {(a, a′), (b, b′), (c, c′)}, then

Mk can serve as a reference in the next iteration of de-anonymization, i.e., Mk can

provide knowledge to de-anonymize Λ1(Ma
k ) = {v, x} (assume δ = 1). Therefore,

for v ∈ Λδ(Ma
k ) and v′ ∈ Λδ(Mu

k ), we define the knowledge provided by the current

mapping results as the inheritance similarity, denoted by sI(v, v
′). Formally, sI(v, v

′)

can be quantified as

sI(v, v
′) =


C

|Nk(v,v′)| · (1−
|∆a

v−∆u
v′ |

max{∆a
v ,∆

u
v′}

) ·
∑

(x,x′)∈Nk(v,v′)

s(x, x′), Nk(v, v
′) 6= ∅

0, otherwise

, (21)

where C ∈ (0, 1) is a constant value representing the similarity loss exponent, Nk(v, v
′) =

(Na(v)×Nu(v′)) ∩Mk = {(x, x′)|x ∈ Na(v), x′ ∈ Nu(v′), (x, x′) ∈ Mk} is the set of

mapped pairs between Na(v) and Nu(v′) till iteration k, and s(x, x′) ∈ [0, 1] is the

overall similarity score between x and x′ which is formally defined in the following

section.

From the definition of sI(v, v
′), we can see that (i) if two nodes have more common

neighbors which have been mapped, then their inheritance similarity score is high.

For example, in Fig.7, v has more inheritance similarity with v′ than with x′. It is

reasonable since v and v′ are more likely to be the same user in this scenario; (ii) we

also count the degree similarity in defining sI(v, v
′). If the degree difference between

v and v′ is small, then a large weight is given to the inheritance similarity; otherwise,

a small weight is given; and (iii) we involve the similarity loss in counting sI(v, v
′),
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Figure 8: Inheritance Similarity.

which implies the inheritance similarity is decreasing with the distance increasing

(iteration increasing) between (v, v′) and the original seed mappings.

Now, for St. Andrews/Facebook, Infocom06/DBLP, and Smallblue/Facebook, if

we assume half of the nodes have been mapped (the first half according to the ID

increasing order), then the inheritance similarity between the rest of the nodes in the

anonymized graph and the auxiliary graph is shown in Fig.8. From the result, we can

observe that under the half number of nodes mapping assumption, some nodes, e.g.,

nodes 16, 19, 24 in St. Andrews, nodes 40, 56, 64, 72 in Infocom06, and nodes 64, 65,

92, 96, 111, 115 in Smallblue, agree with their counterparts and meanwhile disagree

with all the other nodes significantly in the auxiliary graph, which implies that they

are potentially easier to be de-anonymized when inheritance similarity is taken as a

metric. Note that, in Fig.8, we just randomly assume that the known mapping nodes

are the first half nodes in the anonymized and auxiliary graphs. Actually, the accu-

racy performance of the inheritance similarity measurement could be improved. This

is because there are no necessary correlations among the randomly chosen mapping

nodes in Fig.8. Nevertheless, in our de-anonymization framework, the obtained map-

pings in one iteration depend on the mappings in the previous iteration. This strong

correlation among mapped nodes allows for the use of the inheritance similarity in

practical de-anonymizaiton.
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4.5 De-anonymization Algorithm

From the aforementioned discussion, we find that the differentiability of anonymized

nodes is different with respect to different similarity measurements. For instance,

some nodes have distinctive topological characteristics, e.g., node 16 in the St Andrew

dataset, which implies that they can be potentially de-anonymized solely based on

the structural similarity. On the other hand, for some nodes, due to the lacking of

distinct topological characteristics, the structural similarity based method can only

achieve coarse granularity de-anonymization. Nevertheless and fortunately (from the

view of adversary), they may become significantly distinguishable with the knowledge

of a small amount of auxiliary information, e.g., nodes 14, 19, and 23 in St. Andrews

are potentially easy to be de-anonymized based on relative distance similarity. In

summary, the analysis on real datasets suggests to us to define a unified measurement

to properly involve multiple similarity metrics for effective de-anonymization. To this

end, we define a Unified Similarity (US) measurement by considering the structural

similarity, relative distance similarity, and inheritance similarity synthetically for v ∈

Λδ(Ma
k ) and v′ ∈ Λδ(Mu

k ) in the k-th iteration of our de-anonymization framework as

s(v, v′) = cS · sS(v, v′) + cD · sD(v, v′) + cI · sI(v, v′), (22)

where cS, cD, cI ∈ [0, 1] are constant values indicating the weights of structural

similarity, relative distance similarity, and inheritance similarity, respectively, and

cS + cD + cI = 1. In addition, we define s(v, v′) = 1 if (v, v′) ∈ Ms. Now, we are

ready to present our US based De-Anonymization framework, denoted by DA, which

is shown in Algorithm 1.

In Algorithm 1, Bk = (Λδ(Ma
k ) ∪ Λδ(Mu

k ), Eb
k,W

b
k) is a weighted bipartite graph

defined on the intended de-anonymizing nodes during the k-th iteration, where Eb
k =

{lbv,v′|∀v ∈ Λδ(Ma
k ),∀v′ ∈ Λδ(Mu

k )}, and W b
k = {wbv,v′} is the set of all the possible

weights on the links in Eb
k. Here, for ∀(v, v′) ∈ Eb

k, the weight on this link is defined as
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Algorithm 1: US based De-Anonymization (DA) framework

input : Ga, Gu,Ms

output: de-anonymization of Ga

1 M0 =Ms, k = 0, flag = true;
2 while flag = true do
3 calculate Λδ(Ma

k ) and Λδ(Mu
k );

4 if Λδ(Ma
k ) = ∅ or Λδ(Mu

k ) = ∅ then
5 output Mk and break;

6 for every v ∈ Λδ(Ma
k ) do

7 for every v′ ∈ Λδ(Mu
k ) do

8 calculate s(v, v′);

9 construct a weighted bipartite graph Bk = (Λδ(Ma
k ) ∪ Λδ(Mu

k ), Eb
k,W

b
k)

between nodes Λδ(Ma
k ) and Λδ(Mu

k ) based on s(v, v′);
10 use the Hungarian algorithm to obtain a maximum weighted bipartite

matching of Bk, denoted by M′ = {(v, v′)|v ∈ Λδ(Ma
k ), v′ ∈ Λδ(Mu

k )};
11 for every (x, x′) ∈M′ do
12 if s(x, x′) < θ then
13 M′ =M′ \ {(x, x′)};

14 let K = max{1, d|ε · M′|e} and for ∀(x, x′) ∈M′, if s(x, x′) is not the
Top-K mapping score in M′ then

15 M′ =M′ \ {(x, x′)}, i.e. only keep the Top-K mapping pairs in M′;

16 if M′ = ∅ then
17 output Mk and break;

18 Mk+1 =Mk ∪M′;
19 k++;
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the US score between the associated two nodes, i.e., wbv,v′ = s(v, v′). Parameter θ is a

constant value named de-anonymization threshold to decide whether a node mapping

is accepted or not. Parameter ε ∈ (0, 1] is the mapping control factor, which is used to

limit the maximum number of mappings generated during each iteration. By ε, even

if there are many mappings with similarity score greater than the de-anonymization

threshold, we only keep the K = max{1, d|ε · M′|e} more confident mappings.

We give further explanation on the idea of Algorithm DA as follows. The de-

anonymization is bootstrapped with an initial seed mapping (line 1) and starts the

iteration procedure (lines 2-19). During each iteration, the intended de-anonymizing

nodes are calculated first based on the mappings obtained in the previous iteration

(lines 3-5) followed by calculating the US scores between nodes in Λδ(Ma
k ) and nodes

in Λδ(Mu
k ) (lines 6-8). Subsequently, based on the obtained US scores, a weight-

ed bipartite graph is constructed between nodes in Λδ(Ma
k ) and nodes in Λδ(Mu

k )

(line 9). Then, we compute a maximum weighted bipartite matching M′ on the

constructed bipartite graph by the Hungarian algorithm (line 10). To improve the

de-anonymization accuracy, we apply two important rules to refineM′: (i) by defin-

ing a de-anonymization threshold θ, we eliminate the mappings with low US scores

in M′ (lines 11-13). This is because we are not confident to take the mappings with

low US scores (< θ) as correct de-anonymizaiton, and more improtantly, they may

be more accurately de-anonymized in the following iterations by utilizing confident

mapping information obtained in this iteration (this can be achieved since we in-

volve inheritance similarity in the US definition); and (ii) we introduce a mapping

control factor ε, or K equivalently, to limit the maximum number of mappings been

recognized as correct de-anonymization (lines 14-15). During each iteration, only K

mappings with highest US scores will be taken as correct de-anonymization with con-

fidence even if more mappings having US scores greater than the de-anonymizaiton
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threshold. This strategy has two benefits. On one hand, only highly confident map-

pings are kept, which could improve the de-anonymization accuracy. On the other

hand, for the mappings been rejected, again, they may be better re-de-anonymized

in the following iterations by utilizing the more confident knowledge of the Top-K

mappings from this iteration (lines 18-19).
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CHAPTER V

GENERALIZED SCALABLE DE-ANONYMIZATION

In this chapter, we extend DA to more general scenarios such as large-scale data de-

anonymization including the situation that the anonymized graph and the auxiliary

graph are partially overlapped, and disconnected anonymized graphs or auxiliary

graphs.

5.1 De-anonymization on Large-Scale Datasets

The proliferation of social applications and services has resulted in the production

of significant amounts of data. To de-anonymize large-scale data, besides the de-

anonymization accuracy, efficiency and scalability are also important concerns. An-

other predicament in practical de-anonymization, which is omitted in existing de-

anonymization attacks, is that we do not actually know how large the overlap between

the anonymized data and the auxiliary data even we have a lot of auxiliary informa-

tion available. Therefore, it is unadvisable to do de-anonymization based on the entire

anonymized and auxiliary graphs directly, which might cause low de-anonymization

accuracy as well as high computational overhead.

To address the aforementioned predicament, guarantee the accuracy of DA, and

simultaneously improve de-anonymization efficiency and scalability on large-scale da-

ta, we extend DA to an Adaptive De-Anonymization framework, denoted by ADA.

ADA adaptively de-anonymizes Ga starting from a Core Matching Subgraph (CM-

S), which is formally defined as follows. Let Ms be the initial seed mapping be-

tween the anonymized graph Ga and the auxiliary graph Gu. Furthermore, define

V a
s =

⋃
x,y∈Ma

0

{v|v lies on pa(x, y) ∈ Pa(x, y)}, i.e., V a
s is the union of all the nodes

on the shortest paths among all the seeds in Ga, and V a
c = V a

s ∪ Λδ(V a
s ), i.e., V a

c
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Figure 9: Core Matching Subgraph (CMS). Initial seed mappings are denoted by red
nodes.

is the union of V a
s and the δ-hop mapping spanning set of V a

s . Then, we define the

initial CMS on Ga as the subgraph of Ga on V a
c , i.e., Ga

c = Ga[V a
c ] (as shown in

Fig.9). Similarly, we can define V u
s =

⋃
x′,y′∈Mu

0

{v′|v′ lies on pu(x′, y′) ∈ Pu(x′, y′)} and

V u
c = V u

s ∪Λδ(V u
s ). Then, the initial CMS on Gu is Gu

c = Ga[V u
c ] (as shown in Fig.9).

The CMS is generally defined for two purposes. On one hand, we can employ a

CMS to adaptively and roughly estimate the overlap between Ga and Gu as shown

in Fig.9 in terms of the seed mapping information. On the other hand, we pro-

pose to start the de-anonymization from the CMSs in Ga and Gu, by which the

de-anonymization is smartly limited to start from two small subgraphs with more

information confidence, and thus we could improve the de-anonymization accuracy

and reduce the computational overhead.

Algorithm 2: Adaptive De-Anonymization (ADA)

input : Ga, Gu,Ms

output: de-anonymization of Ga

1 generate Ga
c and Gu

c from Gu and Ga respectively;
2 run DA for Ga

c and Gu
c ;

3 if Step 2 is ended on the condition that Λδ(Ma
k ) = ∅ or Λδ(Mu

k ) = ∅ then
4 if Λµ(V a

c ) = ∅ or Λµ(V u
c ) = ∅ then

5 return;

6 V a
c = V a

c ∪ Λµ(V a
c ), V a

c = V a
c ∪ Λµ(V a

c );
7 Ga

c = Ga[V a
c ], Gu

c = Gu[V u
c ];

8 go to Step 2 to de-anonymize unmapped nodes in updated Ga
c and Gu

c ;

Now, based on CMS, we discuss ADA as shown in Algorithm 2. In Algorith-

m 2, µ is the adaptive factor which controls the spanning size of the CMS during
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each adaptive iteration. The basic idea of ADA is as follows. We start the de-

anonymization from CMSs Ga
c and Gu

c by running DA (lines 1-2). If DA is ended

with Λδ(Ma
k ) = ∅ or Λδ(Mu

k ) = ∅, then the actual overlap between Ga and Gu might

be larger than Ga
c/G

u
c since more nodes could be mapped. Therefore, we enlarge

the previous considering CMS Ga
c/G

u
c by involving more nodes Λµ(V a

c )/Λµ(V u
c ) and

repeat the de-anonymization for unmapped nodes in the updated Ga
c/G

u
c (lines 3-8).

5.2 Disconnected Datasets

In reality, when we employ a graph Ga/Gu to model the anonymized/auxiliary data,

Ga/Gu might be not connected. In this case, Ga and Gu can be represented by the

union of connected components as
⋃
i

Ga
i and

⋃
j

Gu
j respectively, where Ga

i and Gu
j are

some connected components. Now, when defining the structural similarity, relative

distance similarity, or inheritance similarity, we change the context from Ga/Gu to

components Ga
i /G

u
j . Then, we can apply DA/ADA to conduct de-anonymization.
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CHAPTER VI

EXPERIMENTS

In this chapter, we examine the performance of the presented de-anonymization at-

tack on real datasets. Particularly, we will validate DA/ADA on mobility traces (St.

Andrews/Facebook, Infocom06/DBLP, Smallblue/Facebook), weighted data (Arnet-

Miner), as well as social network data (Google+, Facebook).

6.1 De-anonymizing Mobility Traces

By utilizing the corresponding social networks as auxiliary information, we employ

the presented de-anonymization algorithm DA to de-anonymize the three well known

mobility traces St. Andrews, Infocom06, and Smallblue. The results are shown in

Fig.10 (a)-(c), where DA denotes the presented US-based de-anonymization frame-

work, and DA-SS, DA-RDS, and DA-IS represent the de-anonymization based on

structural similarity solely (by setting cS = 1 and cD = cI = 0 in US), relative dis-

tance similarity solely (by setting cD = 1 and cS = cI = 0 in US), and inheritance

similarity solely (by setting cI = 1 and cS = cD = 0 in US), respectively. From

Fig.10 (a)-(c), we can see that (i) the presented de-aonymization framework is very

effective even with a small amount of auxiliary information. For instance, DA can

successfully de-anonymize 93.2% of the Infocom06 data just with the knowledge of

one seed mapping. For St. Andrews and Smallblue, DA can also achieve accuracy

of 57.7% and 78.3% respectively with one seed mapping. Furthermore, DA can suc-

cessfully de-anonymize all the data in St. Andrews and Smallblue and 96% of the

data of Smallblue with the knowledge of 7 seed mappings; and (ii) the US-based de-

anonymization is much more effective and stable than structural, relative distance, or

inheritance similarity solely based de-anonymization. The reason is that US tries to
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Figure 10: De-anonymization performance versus Similarity measurements, seed se-
lection, and noise. Default parameter settings: C = 0.9, cS = 0.1, cD = 0.8, cI = 0.1,
θ = 0.6, δ ∈ {1, 2}, ε = 0.5, and seed number is 5.
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distinguish a node from multiple perspectives, which is more efficient and comprehen-

sive. As the analysis shown in Chapter 4, the nodes can be easily differentiated with

respect to one measurement but might be indistinguishable with respect to another

measurement. Consequently, synthetically characterizing a node as in US is more

powerful and stable.

We also examine the robustness of the presented de-anonymization attack to noise

and the result is shown in Fig.10 (d) (on the knowledge of 5 seed mappings). In the

experiment, we only add noise to the anonymized data. According to the same argu-

ment in [18], the noise in the auxiliary data can be counted as noise in the anonymized

data. To add p percent of noise to the anonymized data, we randomly add p
2
· |Ea|

spurious connections to and meanwhile delete p
2
· |Ea| existing connections from the

anonymized graph (a node may become isolated after the noise adding process). For

instance, in Fig.10 (d), 20% of noise implies we add 10% spurious connections and

delete 10% existing connections of |Ea| from the anonymized data. From Fig.10 (d),

we can see that the presented de-anonymization framework is robust to noise. Even

if we change 20% of the connections in the anonymized data, the achieved accuracies

on St. Andrews, Infocom06, and Smallblue are still 80.8%, 50.7%, and 60.8%, respec-

tively. Note that, when 20% of the connections have been changed, the structure of

the anonymized data is significantly changed. In practical, if the anonymized data

release is initially for research purposes, e.g., data mining, this structural change may

make the data useless. However, by considering multiple perspectives to distinguish a

node, the anonymized data can still be de-anonymized as shown in Fig.10 (d), which

confirms the assertion in [18] that structure change may not provide effective privacy

protection.
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Figure 11: De-anonymize ArnetMiner. Default parameter settings: α = 1.5, C = 0.9,
cS = 0.2, cD = 0.6, cI = 0.2, θ = 0.6, δ ∈ {1, 2}, µ ∈ {1, 2, 3}, and ε = 0.5.

6.2 De-anonymizing ArnetMiner

ArnetMiner is a coauthor dataset consisting of 1,127 authors and 6,690 coauthor re-

lationships. Consequently, ArnetMiner can be modeled by a weighted graph where

the weight on each relationship indicates the number of coauthored papers by the two

authors. To examine the de-anonymization framework, we first anaonymize Arnet-

Miner by adding p percent noise as explained in the previous section. Furthermore,

for each added spurious coauthor relationship, we also randomly generate a weight

in [1, Amax], where Amax is the maximum weight in the original ArnetMiner graph.

Then, we de-anonymize the anonymized data using the original ArnetMiner data and

the result is shown in Fig.11.

From Fig.11, we can observe that the presented de-anonymization framework is

very effective on weighted data. With only knowledge of one seed mapping, more

than a half (53.9%) and one-third (34.1%) of the authors can be de-anonymized even

with noise levels of 4% and 20%, respectively. Furthermore, when adding 20% of noise

to the anonymized data, the presented de-anonymization framework achieves 71.5%

accuracy if 5 seed mappings are available and 92.8% accuracy if 10 seed mappings

are available; (ii) the presented de-anonymization framework is robust to noise on
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Figure 12: De-anonymize Google+. Default parameter settings: C = 0.9, cS = 0.2,
cD = 0.6, cI = 0.2, θ = 0.6, δ ∈ {1, 2}, µ ∈ {1, 2, 3}, and ε = 0.5.

weighted data. When we have 10 or more seed mappings, the accuracy degradation

of our de-anonymization algorithm is small even with more noise, e.g., the accuracy

is degraded from 99.7% in the 4%-noise case to 96% in the 20%-noise case; and

(iii) if the available number of seed mappings is 10, the knowledge brought by more

seed mappings cannot improve the de-anonymization accuracy significantly. This is

because the achieved accuracy on the knowledge of 10 seed mappings is already about

95%. Therefore, to de-anonymize a data set, it is not necessary to spend efforts to

obtain a lot of seed mappings. As in this case, to de-anonymize most of the authors,

5 to 10 seed mappings are sufficient.

6.2.1 De-anonymizing Google+

Now, we validate the presented de-anonymization framework on the two Google+

datasets JUL (5,200 users and 7,062 connections) and AUG (5,200 users and 7,813

connections). We first utilize AUG as auxiliary data to de-anonymize JUL denoted

by De-JUL, i.e., use future data to de-anonymize historical data, and then utilize JUL

to de-anonymize AUG denoted by De-AUG, i.e., use historical data to de-anonymize

future data. The results are shown in Fig.12 (a). Again, from Fig.12 (a), we can see

that the presented de-anonymization framework is very effective. Just based on the

knowledge of 5 seed mappings, 57.9% of the users in JUL and 61.6% of the users in
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AUG can be successfully deanonymized. When 10 seed mappings are available, the

de-anonymization accuracy can be improved to 66.8% on JUL and 73.9% on AUG,

respectively.

However, we also have two other interesting observations from Fig.12 (a): (i) when

the number of available seed mappings is above 10, the performance improvement is

not as significant as on previous datasets (e.g., mobility traces, ArnetMiner) even the

de-anonymization accuracy is around 70% for JUL and 75% for AUG; and (ii) De-

AUG has a better accuracy than De-JUL, which implies that the AUG dataset is easier

to de-anonymize than the JUL dataset. To explain the two observations, we assert

this is because of the structural property of the two datasets. Follow this direction,

we investigate the degree distribution of JUL and AUG as shown in Fig.12 (b). From

Fig.12 (b), we can see that the degree of both JUL and AUG generally follows a

heavy-tailed distribution. In particular, 38.4% of the users in JUL and 34.3% of the

users in AUG have degree of one, named leaf users. This is normal since Google+

was launched in early July 2011, and JUL and AUG are datasets crawled in July and

August of 2011, respectively. That is also why JUL has more leaf users than AUG (a

user connects more people later). Now, we argue that the leaf users cause the difficulty

in improving the de-anonymization accuracy. From the perspective of graph theory,

the leaf users limit not only the performance of our de-anonymization framework but

also the performance of any de-anonymization algorithm. An explanatory example is

as follows. Suppose v ∈ V a is successfully de-anonymized to v′ ∈ V u. In addition,

the two neighbors x and y of v and the two neighbors x′ and y′ of v′ are all leaf users.

Then, even x′ = γ(x), y′ = γ(y), and v has been successfully de-anonymized to v′, it

is still difficult to make a decision to map x (or y) to x′ or y′ since s(x, x′) ≈ s(x, y′)

from the view of graph theory. Consequently, to accurately distinguish x, further

knowledge is required.

To support our argument, we take an insightful look on the experimental results.
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Figure 13: De-anonymize Facebook. Default parameter settings: C = 0.9, cS = 0.2,
cD = 0.6, cI = 0.2, θ = 0.8, δ ∈ {1, 2}, µ ∈ {1, 2, 3}, and ε = 0.5.

For each successfully de-anonymized user in JUL and AUG, we classify the user in

terms of its degree into one of two sets: leaf user set if its degree is one or non-leaf

user set if its degree is greater than one. Then, we re-calculate the de-anonymization

accuracy for leaf users and non-leaf users and the results are shown in Fig.12 (c),

where De-JUL-Leaf/De-AUG-Leaf represents the ratio of leaf nodes that have been

successfully de-anonymized in JUL/AUG while De-JUL-NonLeaf/De-AUG-NonLeaf

represents the ratio of non-leaf users that have been successfully de-anonymized in

JUL/AUG. From Fig.12 (c), we can see that (i) the successful de-anonymization ratio

on non-leaf users is higher than that on leaf users in JUL and AUG. This is because

non-leaf users carry more structural information; and (ii) considering the results

shown in Fig.12 (a), the de-anonymization accuracy on non-leaf users is higher than

the overall accuracy and the de-anonymization accuracy on leaf users is lower than

the overall accuracy. The two observations on Fig.12 (c) confirms our argument that

leaf users are more difficult than non-leaf users to de-anonymize. Furthermore, this

is also why De-AUG has higher accuracy than De-JUL in Fig.12 (a). AUG is easier

to de-anonymize since it has less leaf users than JUL.

44



6.3 De-anonymizing Facebook

Finally, we examine ADA on a Facebook dataset, which consists of 63,731 users and

1,269,502 “friendship” users. Based on the hand labeled ground truth, we partition

the datasets into two about-equal parts utilizing the method employed in [18], and

then we take one part as auxiliary data to de-anonymize the other part. When the

two parts only have 10% and 20% users in common (i.e., only 10% and 20% overlap

between the anonymized graph and the auxiliary graph), the achievable accuracy

and the induced false positive error of ADA are shown in Fig.13. As a fact, most of

the existing de-anonymization attacks are not very effective for the scenario that the

overlap between the anaonymized data and the auxiliary data is small or even cannot

work totally. Surprisingly, for ADA, we can observe from Fig.13 that (i) based on

the proposed CMS, ADA can successfully de-anonymize 62.4% of the common users

with false positive error of 34.1% when the overlap is 10% and 71.8% of the common

users with false positive error of 25.6% when the overlap is 20% with the knowledge

of just 5 seed mappings; (ii) the de-anonymization accuracy is improved to 81.3%

(respectively, 85.6%) and the false positive error is decreased to 16.8% (respectively,

13%) when the overlap is 10% and 10 (respectively, 20) seed mappings available,

and the de-anonymization accuracy is improved to 87% (respectively, 90.8%) and the

false positive error is decreased to 11.6% (respectively, 8.6%) when the overlap is

20% and 10 (respectively, 20) seed mappings available, which demonstrate that ADA

is very effective in dealing with the partial data overlap situation; and (iii) ADA

has a higher de-anonymization accuracy and lower false positive error in the 20%

data overlap scenario than that in the 10% data overlap scenario. This is because a

larger overlap size implies a common node will carry much more similar structural

information in both graphs. From Fig.13, we can also see that 10 seed mappings

are sufficient to achieve high de-anonymization accuracy and low false positive error.

Therefore, ADA is applicable with efficiency and performance guarantee in practical.
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CHAPTER VII

CONCLUSION

In this thesis, we present a novel, robust, and effective de-anonymization attack

to both mobility trace data and social network data. First, we design three de-

anonymization metrics which take into account both local and global structural char-

acteristics of data, the information obtained from auxiliary data, as well as the knowl-

edge inherited from on-going de-anonymization results. When analyzing the three

metrics on real datasets, we find that some data can potentially be de-anonymized

accurately and the other can be de-anonymized with coarse granularity. Subsequent-

ly, we introduce a Unified Similarity (US) measurement which synthetically incorpo-

rates the three defined metrics. Based on US, we propose a De-Anonymization (DA)

framework, which iteratively de-anonymizes data with accuracy guarantee. Then, to

de-anonymize large scale data without the knowledge on the overlap size between

the anonymized data and the auxiliary data, we generalize DA to an Adaptive De-

Anonymization (ADA) framework. ADA works on two Core Matching Subgraphs

(CMSs) adaptively, by which the de-anonymization is limited to the overlap area of

the anonymized data and the auxiliary data, followed by improving de-anonymization

accuracy and reducing computational overhead. Finally, we apply the presented de-

anonymization attack to three mobility trace data sets: St. Andrews/Facebook, In-

focom06/DBLP, and Smallblue/Facebook, and three relatively large social network

datasets: ArnetMiner (weighted data), Google+, and Facebook. The experimental

results demonstrate that the presented de-anonymization framework is very effective

and robust to noise.
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