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SUMMARY

Currently, mitral valve repair techniques have shown substandard mid-term and long
term results. In order to improve the efficacy of these repair techniques, detailed
knowledge of normal mitral valve function and the alterations to the valvular and
subvalvular apparatus which occur under pathological conditions is required.
Furthermore, current techniques may be optimized through a better understanding of the
function and mechanics of the mitral valve after a particular repair.

The experiments which comprise this study were designed using an in vitro approach
since this technique has the clear advantage of isolating and independently controlling
specific parameters that are of importance to valvular mechanics and function. The
experiments were conducted in the Georgia Tech Left Heart Simulator using native
porcine and human mitral valves. The first set of experiments measured the chordal force
distribution and anterior leaflet strain of the mitral valve in its normal geometrical
configuration. Subsequent experiments measure mitral regurgitation volume and chordal
force distribution in conditions associated with ventricular dilation. The last set of
experiments simulated two commonly used mitral repair techniques. For the Alfieri stitch
experiments, the effects of mitral flow rate, transmitral pressure, and mitral annular area
on valve stenosis, mitral regurgitation and Alfieri stitch force were evaluated. For
annuloplasty, the effect of annular saddle curvature on anterior leaflet strain was
quantified.

In Conclusion, the normal geometry of the native mitral valve optimized its function and

mechanics. Under pathological conditions associated with ventricular dilation, significant

Xix



alterations to mitral valve function and mechanics were present. Although the studied
repair techniques may have significantly restored valve function, severe alterations to the

mechanics of the valve still persisted.

XX



CHAPTER 1

INTRODUCTION

Mitral valve (MV) malfunction both as a primary and secondary pathology is a major and
increasingly prevalent clinical problem which challenges cardiac surgeons and cardiologists
alike. Rheumatic disease, myxomatous degeneration and congenital abnormalities are
primary pathologies which directly affect MV function. As a result of the reduction in the
prevalence of rheumatic disease in the United States, the treatment of MV malfunction as
a primary pathology has been relegated in importance by its treatment when present as a
secondary pathology.

Ventricular dysfunction due to ischemic heart disease or dilated cardiomyopathy often leads

to MV insufficiency .

Though a secondary pathology resulting from ventricular
remodeling, associated MV malfunction significantly increases patient mortality. Patients
with dilated cardiomyopathy have a mortality of 50% five years after initial diagnosis and

75% after ten years !

; a significant contribution to these statistics being the associated mitral
insufficiency. In terms of the affected population, ischemic mitral regurgitation (MR) is the
most prevalent of the aforementioned clinical problems. Statistics by Grigioni ez. al. 2001
showed that patients with MR after myocardial infarction have a 23% reduced survival rate
after 5 years ). Therefore, from the 7 million patients in the United States which suffer

from myocardial infarction each year !, 1.6 million may die from conditions exacerbated by

MR. Because of the large population and significant mortality associated with MR as a



secondary pathology, treatment of MV insufficiency has become a major area of research and
innovation in recent years.

Mitral valve repair has been shown to have significant advantages over MV replacement.
Since heart valve replacement has a higher incidence of complications in the mitral position,
MV repair is becoming the procedure of choice when dealing with most MV related
pathologies ™!, Although recent statistics show a favorable trend towards repair, only 36% of

[6

mitral interventions are repair procedures, whereas 64% are replacements ) leaving

significant room for growth. The higher number of replacements is associated with the
technical complexity and level of surgical expertise needed to perform a successful mitral
repair.

The MV is the most complex and heavily loaded of the four valves in the heart. Its function is
characterized by the elaborate interplay of its different components, which are still not well

understood. Recent publications associated with MV mechanics have demonstrated that the

[9-11

geometry of the MV -*1_its constituent specific dynamics '), the material properties of its

12, 13 14-17

components "> 1 and the living elements of its structure !'*'” optimize its function and

mechanical configuration. In brief, normal valvular geometry and dynamics decreases leaflet

8] improves chordal force distribution "] enhances ventricular filling and reduces

stress
closing volumes ). Therefore, alterations to the normal MV will lead to substandard function
and unfavorable mechanics.

Studies have also shown how the mechanics of different components of the MV are altered in
instances of ventricular remodeling. Several studies have reported changes in mitral
annulus geometry and dynamics in patients with dilated cardiomyopathy and ischemic

[11, 18, 19

heart diseases I In all these studies, geometrical and dynamic changes on the MV



annulus were associated with different degrees of mitral malfunction, characterized by
the presence of clinically significant levels of MR. Complementary studies have shown

191 and

how dilated cardiomyopathy reduced papillary muscle (PM) contractility
increased endocardial radius of the left ventricle **!. Additionally, Gorman III et. al. 1997
showed using an ovine model how the PMs lost contractility and became displaced under
ischemic conditions *'!. During pathologies associated with ischemic heart disease and
cardiomyopathy such as ischemic MR and functional MR, changes in annular geometry,
annular dynamics, PM function and location have been identified "% '**!1. Although the

primary pathology is a ventricular disease and should be addressed biochemically,

subsequent MR may be addressed surgically through repair or replacement.

Currently most repair procedures address individual components of the MV leading to
abnormal interactions and mechanics after the repair. Since the MV is a structural entity,
successful repair procedures should address the valve as a whole, by addressing all its

components and their interaction:

“Identification of the malfunction 0[[2 each of the components of the mitral valve apparatus
is essential for a successful repair” “*

For the past three decades, MV repair has been centered on resizing the mitral annulus
through annuloplasty. Although annuloplasty has shown good results for some pathologies

and is the standard for MV repair, long term results in conditions associated with continual

23, 24

ventricular remodeling or dilation require improvement *> *. Additionally, studies have

shown that annuloplasty, even with flexible rings, severely restricts annular dynamics ',

Annular dynamics have been shown to improve MV function ! and mechanics 7!,



As leaflet coaptation is the endpoint through which MR occurs, more recent approaches are
aimed directly at correcting systolic leaflet coaptation. The Alfieri stitch is a commonly used
adjunctive procedure which restores leaflet coaptation through a stitch joining the tips of the

posterior and anterior leaflets %]

An advantage of this procedure is its feasibility for less
invasive approaches. Midterm studies *”! have shown positive results for the Alfieri stitch in

conjunction to annuloplasty, but substandard results when performed alone **.. Although this

procedure may restore coaptation it results in abnormal diastolic and systolic MV mechanics

[29-31]

Recently clinicians have started to acknowledge the necessity of addressing the subvalvular

apparatus, especially for those pathologies associated with ventricular remodeling or dilation.

“Finally, if we can break through our denial, which is always tough for a surgeon, and
accept that simple ring annuloplasty is not enough for patients with IMR, is there anything
we can add to a ring at the ventricular level to improve things, such as a Coapsys device or
other method of LV reshaping? ™

As previously described, ventricular remodeling or dilation repositions the PMs and
therefore alters the chordal force distribution resulting in leaflet malcoaptation. Chordal
replacement and transposition will address failure of the chordal apparatus, but currently
there is no widely accepted procedure which restores PM position and chordal force
distribution. Ventricular reconstruction procedures have been proposed but are rarely used
because of their invasiveness °>. Recently, as a result of the need for addressing the
subvalvular apparatus, devices such as the Coapsy system have been developed with the
intent of repositioning the PMs %, but currently these devices have not been approved by the

FDA.



The development of new techniques such as those mentioned above has improved patient
survival and quality of life, yet current repair procedures are far from perfect. Recent studies
have shown that within 5 years after the initial repair, significant levels of MR recur in most

23,24 These studies have also shown that most of the failures are due to a lack of

patients !
durability of the initial repair (i.e. procedural related factors). In order to increase the efficacy
and long term durability of the initial repair, improved post interventional mechanics of the

MV are essential. The clinical community has started to understand that optimizing

mechanics by minimizing abnormal or residual stresses should improve repair durability:

“The aim of mitral repair is not only to obtain a valve that no longer leaks, but also to
achieve anatomical restoration of all components of the mitral apparatus, so thazt the
mechanical stress on the valve, whose tissue is abnormal, is reduced to a minimum.” L

The overall objective of the research presented here is to better understand normal MV
mechanics and function and how alteration due to ventricular remodeling and subsequent
repair procedures may affect this function and dynamics. The research presented in this
thesis initially studies MV function, leaflet strain and chordal stress distribution under
normal conditions. Additionally, changes in MV function and chordal stress distribution
are also studied for different PM positions associated with ventricular dilation. Finally,
alterations to valvular mechanics and function after two commonly used repair
procedures are also addressed. For the Alfieri repair different variables of both diastolic
and systolic function and stitch force are studied for different configurations of the MV.
For annuloplasty, the effect of ring saddle height to commissural diameter on MV

function and leaflet strain was also studied.

To independently analyze the variables of interest, in vitro experiments were utilized. In

vitro experimental capabilities have a clear advantage of focusing on and independently



controlling parameters that are of importance to MV mechanics and function. These
experiments will provide detailed quantitative information on function and mechanics in
the normal, pathological and repaired MV. Qualitative and quantitative information from
the experiments presented here may provide a bases or guide which may lead to

improved long term results for mitral repair interventions.



CHAPTERII

BACKGROUND

2.1 The Heart
Aorta
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Aortic valve
. Left atrium
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Left ventricle
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Figure 2.1 Diagram of the heart and its components. (http://www.nlm.nih.gov/
medlineplus/ency/imagepages/1056.htm)

The human heart is a hollow, cylindrical shaped muscular organ, that constitutes the
driving force for the circulatory system. The heart to some extent may be considered to
be two independent pumps. Each separate pump is comprised of two separate chambers,
a superior atrium and a lower ventricle. These chambers are separated by atrio-ventricular

(A-V) valves, which control flow between the chambers. Semilunar valves in the



ventricles control backflow from the arteries. Pump synchronicity is controlled by
electrical potentials originating at the sinus node and traveling through the atrio-

ventricular bundle %,

Therefore, the heart is comprised of four valves and four
chambers, which pump non-oxygenated blood through the lungs, and then, newly
oxygenated blood into the systemic circulation (Figure 2.1).

The function of the right side of the heart is to pump blood returning from the circulatory
system into the lungs. The right side of the heart is considered a low-pressure system, as
its function only requires pressures up to 40mmHg gauge . Right heart dysfunction is
normally associated with congenital or pulmonary pathologies, which may be caused by
idiopathic mechanisms or thromboembolic events.

Sustaining pressures of up to 150mmHg, the left side of the heart pumps blood into and
through the systemic circulation. The left atrium has a volume of approximately 45ml and
works at pressures up to 25mmHg. The left ventricle has an approximate volume of
100ml and works normally at a pressure of 120 mmHg, although pressures may increase
to 150mmHg under pathological conditions. Left heart dysfunction can be associated
with ischemic heart disease, hypertension, cardiomyopathy, valvular pathology,
congenital defects, bacterial and infectious processes, and other pathological factors.
Valvular pathologies are predominant in the left side of the heart, a fact which has been
thought to be associated with increased mechanical loads.

The heart as a whole is a complex and synchronized mechanism. Between its four
chambers it holds around 350ml of blood, which is approximately 6.5% of the total blood
volume of a typical individual ®®. Because of its limited volume, the heart must

cyclically pump to ensure continual renewal of oxygenated blood in the tissues.



Underlying these functional characteristics, the heart hosts several electrical, chemical
and biological events, which also characterize this highly complex life sustaining

pumping system.

2.2 The Mitral Valve
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Figure 2.2 Sketches of the human heart by Leonardo Da Vinci and Andreas
Vesalius (Jensen et. al. 2000)

Because of its life sustaining function, its complexity, and its multiple components,

371 Within valve

extensive research on the heart has been performed for centuries
function, special emphasis has been placed on the mitral valve since it is the most heavily
loaded and complex of the four valves present in the heart. As shown in these sketches by
Leonardo Da Vinci and Andreas Vesalius (Figure 2.2), the basic structure and function of
the mitral valve has been known for centuries. But only until recently have researcher

begun to understand the detailed mechanics and individual function and interaction of its

components.



The mitral valve is a complex unit comprising the annulus, the leaflets, the chordae

381 The mitral valve is

tendineae, and the underlying left ventricular myocardium
attached to the left atrium and ventricle through its annulus, while the papillary muscles
extend from the anterolateral and posteromedial sections of the ventricle. The PMs are
named according to their location within the ventricle, as the anterolateral papillary
muscle (APM) and posteromedial papillary muscle (PPM). The PMs communicate to the

leaflet by the way of the chordae tendineae (Figure 2.3). These chords extend from the

bellies of the PMs and insert relatively symmetrically to both leaflets and the annulus.

(A) i (B)
Anterior leaflet
Anterior marginal chord it
H—ﬁp Mitral Annulus .

“\ Posterior leaflet

Anterior strut chord

Postero-medial papillary

Al " -
muscle T:! e Posterior marginal chords ;n‘c )
T b T
R Posterior Intermediate chord
Basal chord

Antero-lateral papillary
muscle

Figure 2.3. (A) Anterior view of microCT reconstruction of a porcine mitral valve.
(B) Posterior view of microCT reconstruction of a porcine mitral valve.

The mitral valve is separated from the aortic valve by the intravalvular curtain. Under
normal conditions these valves maintain a 135-degree angle between them. The section
of the annulus adjacent to the aortic valve holds the anterior leaflet, which is the largest
leaflet by area. The mitral valve uses residual tissue on the tips of its leaflets as sealing or

coaptation surfaces. To accomplish its purpose under complex conditions, the mitral
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valve is redundantly designed, having on average a leaflet surface area two times larger

than the area of the mitral orifice %,

2.2.1 Mitral Valve Leaflets

Although there is large valve to valve anatomical variability in the mitral leaflets, several

features are consistently observed in all normal specimens. The leaflet section of the

K]

mitral valve consists of a continuous veil of tissue *¥ which inserts into the annulus

around the entire circumference of the mitral orifice.

Anterior Leaflet Posterior Leaflet

Commissural Chords

\ Papillary Muscle

Figure 2.4 a) Diagrammatic representation of the mitral valve with fan-shaped
commissural and cleft chordae tendineae attached.

As shown in Figure 2.4, two major leaflet sections may be identified regularly, and
because of their location within the valve, they have been named the anterior and the
posterior leaflets. These leaflets are separated by two commissural sections located in the

anterolateral and posteromedial sections of the ring. As observed, the commissural
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sections of the annulus are characterized by fan-like chordae tendineae insertions. The
commissural sections of the valve are part of the posterior system; therefore, the mitral
valve generally (92% of cases) °*! contains three scallops in its posterior section. The
major central scallop is usually called the posterior leaflet, while the other two are
described as commissural scallops and identified by location (postero-medial
commissural scallop and anterolateral commissural scallop).

Three major zones can be identified in both leaflets: 1) a rough zone in its distal section,
2) a clear zone proximal to this, and 3) a basal zone. Both, the rough and basal zones
receive chordae tendineae insertions, while the clear zone is membranous and relatively
smooth P%,

The posterior leaflet, scallops included, attaches to the larges section of the mitral orifice
perimeter. The posterior leaflet is characterized by its dense insertion of chordae
tendincae. Because of this dense insertion of chords, the ventricular surface of the
posterior leaflet is extremely wrinkled and dominated by ridges. During coaptation, the
central scallop of the posterior leaflet tends to be stretched out and in contact with the
anterior leaflet, while the commissural scallops cover the limiting sections between the
two leaflets.

The anterior leaflet has a significantly larger area than the posterior leaflet, and during
coaptation covers most of the mitral orifice. As the anterior leaflet covers most of the
mitral orifice, it is subject to a larger load due to pressure. The anterior leaflet is also
subject to a significantly lesser insertion of chords. Two major strut chords insert into the
midsection of the leaflet while several marginal chords insert into its tips. Because of the

larger orifice area covered by the leaflet and the chordal insertion pattern, the anterior
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leaflet billows during coaptation. The curvature generated by billowing has been shown
to be of mechanical importance, as it reduces the stress on the anterior leaflet material 1**).
Because of its size and function, the anterior leaflet is considered the most important
scallop on the mitral valve.

At a structural level, the MV leaflets are composed of three layers that may be observed
under the microscope, an endothelial layer on the atrial side, an intermediate layer of
fibrous material called spongiosa, and a ventricular endothelial layer. An important
characteristic of this arrangement is the underlying collagen microstructure in the
intermediate layer !'"*"'*]. Like some other collagenous tissues, the MV anterior leaflet
has been shown to be quasi-linear-elastic, and, because of the directionality of the
collagen fibers, it has been shown to be anisotropic [*'. Characteristics such as increased
surface area during closure, collagen fiber locking after valve coaptation and their
mechanical significance have revealed the specificity of mitral leaflet material to its
function.

In addition, mitral valve leaflets are not simple membranes. The presence of nerves,
vessels, and smooth muscle cells capable of contraction makes them complex biological
systems. Recent research has shown that smooth muscle cell contraction may contribute

16, 17

to the tone of the aortic leaflets ' '), As these cells are also present in the mitral valve,

the function of these leaflets may not be passive.

2.2.2 The Mitral Annulus

Although the mitral annulus has been described anatomically as an incomplete and

almost diaphanous structure, recent findings have enlightened it as a vital component of
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the mitral valve. The anterior section of the mitral annulus connects to the aortic valve
through the intra-valvular curtain and is delimited by two cartilaginous masses called the
annular trigones. In past years, researchers thought that this section of the annulus was
rigid, but a recent study has shown that it changes in length during the cardiac cycle [**!.
The sphincteric action of the annulus aids ventricular filling by expanding during
diastole, and facilitates leaflet coaptation by contracting during systole ). Because of its
fundamental function, several recent studies both in humans and animals have been
focused on describing annular dynamics. Annular area and its dynamics are important
parameter, not only for the understanding of mitral valve function but also for the design
of cardiac implants such as annuloplasty rings. Elaborate studies using invasive methods
in animals and non-invasive methods in humans have revealed important but sometimes
conflicting data on annular size. Initial measurements by Davids and Kinmonth **! using
radiopaque markers around the canine annulus revealed a 30% change in annular area,
with annular contraction beginning during atrial systole. Other studies in dogs using
radiopaque markers and echocardiography, in sheep using 3-D sonomicrometry, and in
pigs using echocardiography revealed annulus area reductions ranging from 34% to
12%". Although there was a significant disparity in the magnitudes of the measurement
and the exact timing of the onset of mitral annulus contraction, all of these studies
supported the idea of a pre-ventricular-systole mitral annulus contraction. Therefore,
animal studies support the hypothesis that the mitral annulus begins contraction during
atrial systole, and continues to contract through ventricular systole.

In humans, two-dimensional ** and three-dimensional echocardiography **! have been

the method of choice to study annular dynamics, although in recent years additional
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studies have been conducted using MRI ],

There is a large disparity in the
measurements of human annular size and dynamics. Using advanced imaging techniques,
researchers rely on their ability to identify anatomical markers to identify the annulus.
Therefore, all of these studies may be hindered by human judgment and error. As with
animal measurement, although there is disparity in magnitudes, human studies also agree
on the concept of annular contraction at the onset of left atrial systole, that continues
through ventricular systole. Systolic annular area in these studies varied from 4.5cm’ to
12¢m’, and diastolic annular area ranged from 5.2cm” to 12cm” ),

Another controversial characteristic of the mitral annulus is its shape. Initially, the
annulus ring was thought to be a flat structure, but imaging during the cardiac cycle
showed apical-basal flexing of the mitral annulus both in animals and in humans. Recent
studies have further elucidated the characteristics of annulus shape by demonstrating that
the three dimensional curvature of the mitral annulus persists during the whole cardiac
cycle '*1. Based on recent studies, the mitral annulus is described as a three-dimensional
saddle because it resembles a non-planar, three-dimensional ellipse. In addition to its
position, the area, the eccentricity, and the non-planarity or curvature of the mitral
annulus varies during the cardiac cycle describing a dynamic structure > 2! 47491 ‘Mitral
annular geometry and dynamics have been studied in vivo in animals 2" 14950 and

humans ['! [©5) [51-53

! both in normal and pathologic subjects. Three-dimensional
echocardiographic studies on the shape of the mitral annulus have proposed saddle
heights from 0.78+0.11cm to 1.2£0.2cm in humans "* "1 Another factor related to

annular shape that has been recently studied is the saddle height to commissural ratio.

The interest in this parameter is that a computational model of the anterior leaflet showed
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that a saddle height to commissural ratio of 20%, (approximately what is present in
humans and other animals) will optimize mechanical performance by reducing the stress
on the anterior leaflet /.

The mitral annulus does not only contract and bend, but it also moves during the cardiac
cycle. The mitral annulus has been observed to displace across the apico-basal axis of the
left ventricle. During systole, the mitral annulus moves basaly 10+3mm "*! from its most
apical position during diastole.

As described above, the mitral annulus is not a simple rigid ring which holds the leaflets,
as proposed in the past **! but an important dynamic structure which aids the mitral

valve in its function.

2.2.3 The papillary muscles

Figure 2.5. Photographs of papillary muscles: A) Simple human papillary muscle B)
Complex human papillary muscle C) Porcine papillary muscle.

Two sets of papillary muscles extend from the left ventricle wall: the anterolateral and the
posteromedial. From the “bellies” of each papillary muscle, several chordae tendineae
extend, and may insert into the valves leaflets or near the annulus as well as into the left

ventricular wall. The tips of the papillary muscle usually point to their respective
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B4 sending their chords to relatively symmetrical insertions on the valve.

commissures
Papillary muscle bellies and chordal insertion patterns vary significantly between humans
and also between species. According to their complexity, human PMs have been divided
into four group types, type I being the simplest and type IV being the most complex.
Normal porcine PMs are anatomically simple, and therefore, may be compared to a type I
human PM (Figure 2.5).

From each PM belly individual muscle excursions hold individual chords. Even though
the PMs are geometrically complex, average lengths and dimensions have been recorded
in literature. In healthy sheep, sonomichrometry transducer studies have shown average
APM lengths of 23.2mm during diastole and 20.1mm during diastole. Simultaneously,
the lengths of the PPM were 25.2mm during diastole and 23.0mm during systole ',
Therefore, papillary muscle contractions on the order of 2-3mm are present in sheep
models. Transesophagic echocardiography (TEE) studies have been able to assess both
length and cross sectional area of the normal human PMs in vivo "% The average cross-
sectional areas were 1.3240.29cm’ for the APM and 0.99+0.18cm’ for the PPM at end
diastole. At end systole, these areas changed to 1.71+0.31cm® for the APM and
1.18+0.20cm” for the PPM. In the same study, end diastolic APM length was
3.55+0.33cm and end diastolic PPM length was 2.91+0.20cm. End systolic APM length
was 2.81+0.35cm and end systolic PPM length was 2.42+0.23cm. As these results show,
human PM contract during systole by approximately 4mm "%,

Although several studies have described their geometry, the actual dynamics of human

PM motion are still unknown, mostly because of limitations in the time resolution of the

imaging techniques.
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2.2.4 Chordae Tendineae

The main function of the chordae tendineae is to prevent leaflet prolapse during
ventricular systole. These chords, not only hold the leaflets in place during systole, but
are of great significance in the geometrical conformation of the mitral valve and play an
important role in left ventricular function. The chordae tendineae extend from both PMs
and insert into different sections of the leaflets. Several anatomical studies have been
conducted that characterized the chords in different groups. Normally, chords were
characterized by their insertion point in the leaflets. Raganathan ez. al. 1970 named the
chords according to the location of their leaflet insertion as rough, cleft and basal.
Recently simpler nomenclature has been used to characterize chords );
1. Primary or marginal: These chords extend from the PMs, and insert into the
free margin of the leaflets.
2. Secondary or intermediate: These chords originate in the PMs and insert into
the body of the ventricular surface of the leaflets.
3. Basal chords: These chords originate in the PMs and insert near or into the
mitral annulus.
This classification is not based solely on anatomical location, as differences in
composition, size, mechanical characteristics and function have been identified.
Marginal chords are significantly thinner than basal chords. Sedransk er. al. 2002
observed that on average the marginal chords were 68% thinner than the basal chords,
and that the chords on the posterior leaflet were 35% thinner that their counterparts on the

anterior leaflet of porcine mitral valves °°. Using a calibrated optical microscope on
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porci