
SUPERVISED FEATURE LEARNING VIA SPARSE CODING FOR
MUSIC INFORMATION RETRIEVAL

A Thesis
Presented to

The Academic Faculty

by

Cian O’Brien

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Music Technology in the
School of Music

Georgia Institute of Technology
May 2015

Copyright c© 2015 by Cian O’Brien

SUPERVISED FEATURE LEARNING VIA SPARSE CODING FOR
MUSIC INFORMATION RETRIEVAL

Approved by:

Dr. Alexander Lerch, Committee Chair
School of Music
Georgia Institute of Technology

Dr. George Tzanetakis
Department of Computer Science
University of Victoria

Dr. Jason Freeman
School of Music
Georgia Institute of Technology

Date Approved: 24 April 2015

Dedicated to W

iii

ACKNOWLEDGEMENTS

First I would like to thank my advisor Dr.Alexander Lerch for his valuable help, advice

and patience throughout the last two years. With his support I have gained an incredible

amount from my time at Georgia Tech. Additionally, Dr.Jason Freeman and Dr.George

Tzanetakis for their feedback on this thesis.

My gratitude to my friends and family for putting up with me during this last semester

and especially my parents, without whom none of this would be possible.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . ix

I INTRODUCTION . 1

II SPARSE DICTIONARY METHODS AND FEATURE LEARNING . 4

2.1 Sparse Coding . 5

2.1.1 Sparsity and the `1-norm . 6

2.2 Feature Learning via Sparse Coding . 8

2.3 Solving the Objective . 10

2.3.1 Least Angle Regression and Shrinkage 10

2.3.2 Online Dictionary Learning . 11

2.4 Extensions of Sparse Coding . 12

2.4.1 Supervised Discriminative and Local Coding 12

2.5 Conclusion . 14

III FEATURE LEARNING FOR MUSIC INFORMATION RETRIEVAL 15

3.1 Feature Learning for Music Information Retrieval 15

3.2 Discussion . 20

3.3 Conclusion . 22

IV SPARSE CODING FOR MUSIC GENRE RECOGNITION 24

4.1 Related Work . 24

4.2 Implementation and Methodology . 26

4.2.1 Initial Implementation: Unsupervised Dictionary Learning 26

4.2.2 Discriminative Dictionary Learning 31

4.2.3 Two Layer Coding . 35

4.3 Discussion . 38

v

4.4 Conclusion . 40

V SPARSE CODING FOR MUSIC EMOTION RECOGNITION 41

5.1 Related Work: Quantifying and Predicting the Emotional Content of Music 41

5.2 Dataset . 43

5.3 Baseline Features . 45

5.4 Unsupervised Dictionary Learning . 45

5.5 Combined Regression and Dictionary Learning 46

5.6 Evaluation . 47

5.7 Results and Discussion . 49

5.8 Conclusion . 49

VI CONCLUSION AND FUTURE WORK 50

REFERENCES . 52

vi

LIST OF TABLES

1 Some examples of feature learning in Music Information Retrieval. 23

2 10-fold CV results using max pooling at various window lengths. 30

3 5-fold cross-validaiton results or MGR on GTZAN. 34

4 Accuracy on test set using sparse coding and sparse coding with a additional
discriminative layer. 38

5 MGR accuracies using GTZAN dataset. 39

6 Clusters and their associated mood adjectives used in the MIREX 2007 music
emotion task. 42

7 Results for Music Emotion Recognition. 49

vii

LIST OF FIGURES

1 Level sets of the `1 norm (polytope) and `2 norm (circle). Solutions of the
objective function lie on the tangent at their intersection. 7

2 Due to the shape of the `1 level set, points of intersection will tend to lie at
a ‘corner’ of the polytope where the solutions are sparse. Here the sparsity
penalty corresponds to the size of the polytope. 8

3 Probability Density Function for a Laplace Distribution. The pdf is highly
peaked around 0 which encourages many zeroed coefficients. The scaling
parameter λ controls the peak and spread of the distribution. 9

4 Spectrogram before (top) and after (bottom) local contrast normalization. . 28

5 System flow-chart for unsupervised sparse coding. 30

6 Examples of dictionary elements learned from music using sparse coding. . . 31

7 Activations for each genre in the testing set using a dictionary learned with
discriminative coding. 36

8 Ratio of activations within the correct genre versus all activations for each
dictionary item (testing set). 37

9 Activations for different 10 different classes using the extended YaleB image
dataset. 38

10 The Valence-Arousal plane. The emotional content of music is quantified by
its position in the 2 dimensions. 44

11 Feature aggregation for the music emotion task. Extracted spectrograms are
divided and pooled, with the final feature vector formed by concatenating
each segment. 46

viii

SUMMARY

This thesis explores the ideas of feature learning and sparse coding for Music In-

formation Retrieval (MIR). Sparse coding is an algorithm which aims to learn new feature

representations from data automatically. In contrast to previous work which uses sparse

coding in an MIR context, the concept of supervised sparse coding is also investigated,

which makes use of the ground-truth labels explicitly during the learning process. Here

sparse coding and supervised coding are applied to two MIR problems: classification of

musical genre and recognition of the emotional content of music. A variation of Label

Consistent K-SVD is used to add supervision during the dictionary learning process.

In the case of Music Genre Recognition (MGR) an additional discriminative term is

added to encourage tracks from the same genre to have similar sparse codes. For Music

Emotion Recognition (MER) a linear regression term is added to learn an optimal linear

regression model and dictionary pair jointly. These results indicate that while sparse coding

performs well for MGR, the additional supervision fails to improve the performance. In the

case of MER, supervised coding significantly outperforms both standard sparse coding and

commonly used designed features, namely MFCC and pitch chroma.

ix

CHAPTER I

INTRODUCTION

At its core, Music Information Retrieval (MIR) is concerned with learning and understand-

ing music. Combining aspects from engineering, computer science and musicology, MIR

seeks automatic methods of processing musical data in order to extract from it meaningful

information. MIR employs a variety of low level signal processing steps in order to extract

elements like pitch, rhythm, instrumentation and emotion. A key element in such analysis

is the idea of a ‘feature’. Given some music, we often extract some summary information

while discarding the rest – much of the data might not be relevant to our task. A good

feature then is one which compresses the input track while preserving some higher level

aspect of the music we care about.

The concept of a feature computed from some input data is used widely in Machine

Learning. For example, in the field of computer vision a clear trend is to take a hierarchal

approach to features where higher level concepts are represented as the amalgamation of

a series of lower-level atomic elements; a bicycle can be recognized by the presence of a

spoked wheel, which itself can be represented as a particular configuration of edges and

curves. Similarly for music the observed time domain signal can be represented in the

frequency domain as a superposition of sinusoids using FFT analysis. The FFT is at the

heart of many commonly used MIR features such as Mel Frequency Cepstrum Coefficients,

Pitch Chroma, Spectral Flux etc. By carefully designing various stages of processing (such

as filtering, dimension reduction and FFT analysis) algorithms for extracting information

of interest from music signals can be implemented.

An alternative approach – which is explored in this thesis – is to instead learn good

features from music automatically. Feature learning has shown promising results across

a range of tasks in Machine Learning. Standard MIR approaches require careful design

of task-specific features involving expert knowledge. In contrast, feature learning offers

1

a data-driven method, where useful features can be learned automatically. With a good

enough representation of the data, a wide range of problems may be tackled efficiently. The

focus of this work is on a technique called sparse coding which aims to learn a collection

of atomic elements which can be used to reconstruct unseen data. Similar to the bicycle

or FFT example, the core idea is that new data can be represented as a superposition of

these atomic elements and we can train a system to recognize certain configurations of these

learned features.

Much of the theory behind sparse coding is outlined in the field of Compressed Sensing

(CS). The well known Shannon-Nyquist sampling gives the conditions under which a contin-

uous signal can be reconstructed given a limited number of measurements – to reconstruct

the signal we need to sample it a rate greater than twice its highest frequency component.

This however is a sufficient but not necessary condition and under certain conditions we can

recover the signal using much fewer measurements than is dictated by Shannon-Nyquist.

When viewed from this angle, sparse coding can be seen as a method of cleverly sampling

from a distribution. By dictating that any reconstruction in the learned atomic elements

(samples) is sparse, each learned element needs to be as informative as possible.

In the context of a classification problem, sparse coding can be used by taking the ac-

tivation of each data point in the collection of learned atomic elements (i.e. by taking the

magnitude of contribution of each element in the reconstruction) and using these activa-

tions as a new feature representation. Recent developments have introduced approaches to

supervised coding, where we require that the learned atomic elements should be good at

distinguishing between items of different classes by incorporating the ground truth labels

into the learning process.

The goal of this thesis is to evaluate unsupervised sparse coding and supervised sparse

coding in the context of MIR problems. These methods were applied to two tasks: Music

Genre Recognition (MGR) and Music Emotion Recognition (MER). In MGR the aim is to

automatically assign a piece of music as belonging to one musical genre using only properties

of the signal. The problem of MER is to predict the emotional content of music as perceived

by human listeners. These tasks were chosen because (i) they are widely studied and difficult

2

problems in general which can potentially demonstrate the power of learned features over

designed ones and (ii) they represent different kinds of tasks (one classification and one

regression).

The main contribution of this thesis is the exploration of sparse coding for MIR and a

comparison between standard and supervised sprase coding in this context. While there

exist works which explore feature learning and sparse coding for MIR, none have explored

sparse coding formulations which make explicit use of the ground-truth labels during the

learning process. The problem of designing good features is time consuming and difficult,

requiring expert knowledge and experience to do well. Feature learning offers a data-driven

approach which can potentially surpass designed features by leveraging large amounts of

(potentially unlabeled) data.

The thesis is structured as follows: Chapter 1 introduces the idea of feature and dic-

tionary learning in general and sparse coding in particular, including some technical back-

ground. Chapter 2 gives a review of feature learning approaches applied to MIR problems,

of which sparse coding is a subset. Chapter 3 describes the application of sparse coding

to Music Genre Recognition while Chapter 4 deals with Music Emotion Recognition. The

final chapter consists of a conclusion and possible future directions.

3

CHAPTER II

SPARSE DICTIONARY METHODS AND FEATURE LEARNING

Sparse methods have seen much use in a variety of signal processing problems where we

wish to reconstruct a signal using as few measurements as possible. Sparse approaches are

concerned with finding or recovering a compressed representation of a given input, with

applications ranging from denoising [10, 23], computer vision [30, 24, 14, 61] and music

transcription [1]. In general, a sparse model assumes that the given input (which may be

of very high dimension) has much lower intrinsic dimension which can be recovered. In

such situations the observed data can be reconstructed from a linear combination of basis

or atomic elements while still retaining much of the important structure of the data. For

example, images of size m× n can be represented as a vector living in Rmn. However, the

affective dimension of natural images is vastly smaller since neighboring pixel values are

highly correlated and the majority of such images can be well-approximated by a combi-

nation of edges – the intuition behind the use of Haar wavelet basis for computer vision.

Another example of a sparse model is the use of the Discrete Fourier Transform (DFT).

Audio waveforms are in general extremely high-dimensional and non-sparse. By taking the

DFT of a periodic signal, we can represent it as a sparse combination of coefficients in the

frequency domain.

Sparse dictionary methods attempt to find a robust encoding of the input over some fixed

dictionary such that the original input can be recovered (up to some error) by representing

it as a linear combination of items from the dictionary. A sparse dictionary model therefore

consists of two parts: selecting a suitable dictionary, and then finding the encoding of each

input in that dictionary. Often the dictionary can be designed or chosen – for example using

an FFT or wavelet basis. Alternatively, a suitable dictionary can be learned from the data.

This approach is attractive because it provides a means of solving a large range of problems

by taking a data-driven approach to learn a dictionary which is adapted to the data.

4

2.1 Sparse Coding

Sparse coding is a technique for learning a dictionary and appropriate activation coefficients

which was initially proposed as a model for the activation of neurons in the brain [35].

Sparse coding leverages the concept of sparsity in order to learn a robust representation of

the underlying data. We say a given vector is sparse if all but a few of its entries are zero.

Given an f ×n matrix X with each column corresponding to one input, we assume that

each input can be represented as a linear combination of dictionary elements and activations

i.e. we have X ≈ Dα. Here D is the f ×m matrix whose columns correspond to dictionary

elements (where m is the number of dictionary elements) and α is the m× n matrix whose

columns give the activation of each dictionary element for the corresponding column in X.

Such a factorization is in general ill-posed since infinitely many solutions for D and α exist,

so in practice additional constraints are placed on D and α — for example Non-Negative

Matrix Factorization assumes that each of these matrices are positive. In sparse coding it

is required that the derived α should be as sparse as possible given X and D. The full

formulation is given by the following optimization problem:

minD,α ‖X −Dα‖22 + λ‖α‖1 (1)

such that ‖D(i)‖2 ≤ 1 ∀i

where λ is a regularization term to control the sparsity of the results. Equivalently this can

be written as

min
di,α

(j)
i

n∑
j=1

‖x(j) −
m∑
i=1

d(i)α
(j)
i ‖

2
2 + λ

m∑
i=1

|α(j)
i | (2)

such that ‖d(i)‖2 ≤ 1 ∀i

High values of λ will drive more of the activations in α to zero while lower values result in

less zero-coefficients. Hence this formulation balances two competing objectives: the learned

dictionary/activations should reconstruct the data well (we should observe small `2 error

between the original data and its sparse representation) and the activation matrix should

be sparse (each input should be represented by as few dictionary elements as possible).

5

In practice, the success of sparse coding often depends crucially on good selection of the

sparsity parameter λ. Note that we constrain the norm of each dictionary element d, since

we can always decrease the `1 penalty while leaving the reconstruction penalty unchanged

by increasing d without bound while decreasing α.

2.1.1 Sparsity and the `1-norm

A notable feature of the objective function given above is the use of the `1-norm penalty.

Since the goal is to recover the sparsest solution, a natural approach would be to penalize

each α(i) using the `0 pseudo-norm which counts the number of non-zero elements. This

quantity is difficult to work with in practice however since it is discontinuous and un-

differentiable. The `1-norm makes solving the optimization problem much easier while still

leading to sparse solutions.

To understand intuitively why the `1-norm induces sparsity, consider the nature of the

objective function: it is composed of a sum of a quadratic `2 reconstruction penalty and an

`1 sparsity penalty. The solution of such a system must lie on a tangent of both level-sets

(since otherwise we could decrease the objective function by following one of the level-sets

in the direction which decreases the other). Since the level-set of the `1-norm is a polytope

with corners on each axis and the level-set of the `2-norm is an ellipsoid, when the size of

the `2 error gets suitably big the tangent point will tend to lay at one the corners of the

polytope i.e. the points where the solution is sparse.

The objective function can be derived from a probabilistic interpretation [1]: we assume

a model where observations X are composed of a latent variable plus additive zero-mean

Gaussian noise:

X = Dα+ ε (3)

ε ∼ N (0, σ)

6

Figure 1: Level sets of the `1 norm (polytope) and `2 norm (circle). Solutions of the
objective function lie on the tangent at their intersection.

For fixed D and X the maximum a posteriori estimate α̂ for the activations is given by:

α̂ = argmaxα p(α|X;D) =
p(X|D;α)p(α)

p(X;D)
(4)

= argmaxα − log

(
p(X|D;α)p(α)

p(X;D)

)
(5)

= argmaxα − log
(
p(X|D;α)

)
− log

(
p(α)

)
(6)

Using Equation 3 and assuming the αi are independent we have

α̂ = argmaxα − log
(
p(X|D;α)

)
−

n∑
i=1

log
(
p(αi)

)
(7)

= argmaxα
1

2
‖X −Dα‖22 −

n∑
i=1

log
(
p(αi)

)
(8)

To ensure sparse solutions we need to choose p(α) such that its probability mass is highly

peaked around zero. A common choice is the zero-mean Laplace distribution given by

p(α|λ) =
1

2λ
exp
(
− |α|
λ′

)
(9)

and substituting this into equation 8 gives the final sparse coding objective function

α̂ = argminxα ‖X −Dα‖22 + λ
n∑
i=1

|αi| (10)

7

Figure 2: Due to the shape of the `1 level set, points of intersection will tend to lie
at a ‘corner’ of the polytope where the solutions are sparse. Here the sparsity penalty
corresponds to the size of the polytope.

Hence we find that the use of the `1-norm can be explained as being derived from the choice

of prior on the activations. Note that we could use other distributions for p(α) – for example

a Normal distribution which results in an `2 sparsity penalty (and non-sparse solutions). In

general the solutions will be sparse assuming −log p(α) is concave [1].

2.2 Feature Learning via Sparse Coding

Often we want to use the learned dictionary and activations in some kind of classification or

regression task. Normally the first step in such problems is to extract appropriate features

from the input. A feature can be thought of as a reduced or compressed representation

of the input data which preserves the important qualitative information we want to use

for the classification problem. Some commonly used audio features are Mel Frequency

Cepstrum Coefficients (MFCC), Zero-crossing Rate (ZCR), Spectral Centroid (SC) etc.

Each of these features capture some important quality of the input audio excerpt while

drastically reducing its dimension. Vectorized features can then be used as input to general

Machine Learning algorithms for model learning and classification.

8

Figure 3: Probability Density Function for a Laplace Distribution. The pdf is highly
peaked around 0 which encourages many zeroed coefficients. The scaling parameter λ
controls the peak and spread of the distribution.

To achieve acceptable performance, good features are crucial. Much time is spent de-

signing features using expert domain-knowledge and while such features can be effective

they are extremely difficult to design well. An alternative paradigm is to learn features

from data automatically, which can potentially lead to increased performance since the

learned features will be specifically adapted to the data at hand. Sparse coding and similar

methods have seen widespread use as feature learning approaches. Features can be learned

from data as follows: given input matrix X, solve the above optimization problem to find

D. Having learned the dictionary, new features for the input are generated by solving the

optimization problem for α using fixed D and taking the learned α as the new feature

representation, so that the learned representation for each input column of X is given by

the corresponding column in α. Intuitively this can be thought of as a change of basis and

by choosing a large dictionary size we effectively project the data into a higher dimensional

space where it is more likely to be linearly separable.

A strength of sparse coding under this paradigm is that it can learn meaningful represen-

tations using unlabeled data and the learned dictionary will be useful in classifying future,

9

unseen data. This is because the algorithm tends to learn a representative set of atomic

elements which, when summed, can be used to reconstruct data with similar structure as

the collection on which they were learned – for example when trained on natural images

sparse coding will learn a dictionary of edges with varying degrees of rotation and contrast.

This ability to leverage unlabeled data (which is much more easy to come by than labeled

data) motivates its use a self-taught learner [33].

2.3 Solving the Objective

The sparse coding objective function is non-convex in D and α simultaneously, however

it is convex for each one when the other is fixed. The strategy for solving the objective

therefore alternates between solving for α with fixed D, and D with fixed α. Both of these

sub-problems have been well studied and efficient methods for solving them exist. For

learning α we have Orthogonal Matching Pursuit (OMP) [38], Least Angle Regression and

Shrinkage (LARS) [8], Basis Pursuit (BP) [7] etc. Algorithms for finding D include K-SVD

[2], Online Dictionary Learning (ODL) [29] and Efficient Sparse Coding [26]. Here we give

special attention to ODL and LARS since they are the methods used for all experiments in

this work.

2.3.1 Least Angle Regression and Shrinkage

Least Angle Regression and Shrinkage (LARS) [9] is an algorithm for solving the so-called

LASSO, which stands for Least Absolute Shrinkage and Selection Operator. This problem

belongs to a family of regularized regression problems where we want to learn a mapping

from input to observed variables which minimizes the `2 error i.e. we want to solve

minW ‖Y −XW‖22 + λψ(W) (11)

where ψ is a regularization function. Choosing ψ = `2 results in a Ridge Regression model

[20] while ψ = `1 gives us the objective for LASSO regression (and the activation update

step in sparse coding):

minW ‖Y −XW‖22 + λ‖W‖1 (12)

10

Because the `1 induces sparsity, this algorithm performs a kind of variable selection – it

will attempt to model the responses using as few predictors as possible and this property

can be desirable when the relationship between input and output is important since it can

learn which variables are important for prediction.

Returning to sparse coding, the activation update sub-problem for fixed D is

minα ‖X −Dα‖22 + λ‖α‖1 (13)

For a given input xi the LARS algorithm starts with no variables (it has zeros everywhere).

From a fixed dictionary it then finds the dictionary item most correlated with xi by taking

the dot product of its residue with each dictionary item. Upon finding the most correlated

dictionary item d1, it proceeds in the direction of that dictionary item until it finds another

dictionary item d2 which is equally correlated with the residue of xi. This dictionary item

then gets added to the model and we proceed in such a way as to keep the residue of xi

equally correlated with d1 and d2. It iterates in this manner, gradually adding dictionary

items. By requiring that once an added variable goes to zero it remains zero throughout

the rest of the process, LARS will result in sparse solutions. A desirable feature of LARS is

that it provides us with the full regularization path i.e. it gives the solutions for all values

of regularization penalties up to and including λ.

2.3.2 Online Dictionary Learning

Online Dictionary Learning (ODL) [29] is a scalable method for sparse coding. By using

stochastic gradient descent with warm restart, a dictionary can be learned in an online

manner and can thus incorporate new training samples. At each step of the algorithm, the

activations α are updated via LARS using the dictionary Dt−1 learned at the previous step.

The updated dictionary Dt is then given by

f(D) =
1

t

t∑
i=1

‖xi −Dαt‖22 + λ‖αi‖1 (14)

The advantage of this approach is that Dt can be learned efficiently using gradient

descent since it will be close to the previous dictionary Dt−1. Another key point is that

the function f keeps track of the past through αi and the authors show that under mild

11

assumptions f converges to the true expected cost in the limit. To update the dictionary,

at each iteration ODL sets

At ← At−1 + αtα
T
t

Bt ← Bt−1 + xtα
T
t (15)

and then the update for the jth dictionary item of Dt is given by

uj ←
1

Ajj
(bj −Dαj) + dj

dj ←
1

max(‖uj‖2, 1)
uj (16)

which is the solution to

arg minD
1

t

t∑
i=1

‖xi −Dαt‖22 + λ‖αi‖1

= arg minD
1

t
(
1

2
tr(DTDAt)− tr(DTB)) (17)

2.4 Extensions of Sparse Coding

Under the standard sparse coding formulation given above the only terms which appear in

the minimization problem are the reconstruction error term ‖X − Dα‖22 and the sparsity

penalty ‖α‖1. In particular we find that any label information we might have for the input is

not included in the learning process. The ability for sparse coding to learn meaningfully from

un-labeled data is a desirable property, however recent works have investigated supervised

approaches where we make explicit use of the labels to learn a dictionary adapted for a

specific task.

2.4.1 Supervised Discriminative and Local Coding

Jiang et al. [24] a modified version of sparse coding with two additional error terms: a

“discriminative” term given by ‖Q−AX‖22 and a classifier term ‖H −WX‖22. Here Q is a

binary matrix which encodes the class information of each column of the data matrix X and

A is a linear transformation which maps the original sparse codes to be more discriminative

in the new feature space. Unlike standard sparse coding, each dictionary item has a class

label so that for each a given input and dictionary item, the corresponding term in Q will

12

be 1 if they belong to the same class and 0 otherwise, which means examples which share

a class label will be mapped to be ‘close together’ by A. The matrix H corresponds to

the true class information for each input and W is a linear classifier. Each column of H

corresponds to an input and each row corresponds to a class. For a given input which is a

member of class c the cth row of the column correspondong to the input in H will be 1 and

the others 0. The full problem is given by

minD,W,A,α ‖X −Dα‖22 + γ‖Q−Aα‖22 + β‖H −Wα‖22 + λ|α| (18)

such that ‖Di‖0 ≤ T ∀i

where T is a “sparsity constraint factor (each signal has fewer than T items in its

decomposition)”[24]. An advantage to this approach is that it learns a dictionary and clas-

sifier jointly. In order to classify new points they are encoded in the learned discriminative

dictionary and use the linear predictive classifier W for classification, using the index of the

maximum value of Wαi as the label for the activation vector αi. The system was tested

on face and object recognition tasks. A similar approach was was used in [61] without the

discriminative term and applied to face recognition.

A problem with standard sparse coding is that similar input data may end up getting

dissimilar sparse codes which degrades the performance of the system. In some situations

then it can be desirable to preserve the ‘local’ information of each input so that similar

items have similar sparse codes. This is a similar idea to discriminative methods except

that the idea of similarity is given by distance in the original space. An example of such a

‘local coding’ method is Laplacian Sparse Coding [14]. A Laplacian matrix L is often used

in studying graphs comprised of nodes and edges and is given by L = D − A where D is

the degree matrix (which contains the degree of each node) and A is the adjacency matrix

(which contains the edge information). Using a Laplacian L constructed from training data

using local similarity information the Laplacian Sparse Coding problem is given by

13

minD,α ‖X −Dα‖22 + λ‖α‖1 + αtr(αLαT) (19)

such that ‖D(i)‖2 ≤ 1 ∀i

This approach has shown good performance in image classification where local spatial

information is important.

Mairal et al. used a logistic loss penalty to incorporate the labels in the learning pro-

cess [32]. Under this approach a classifier is learned jointly with the dictionary during

training which makes the optimization procedure more difficult. To deal with this their

approach consists of two stages: a supervised sparse coding stage (where the activations αi

are updated) and a supervised dictionary update step (where the dictionary D and model

parameters θ are updated for fixed αi). Formulations such as this where the dictionary and

classifier model are updated separately can suffer from poor convergence and local minima.

2.5 Conclusion

In this chapter, the concept of sparse dictionary learning for feature learning has been in-

troduced. In particular the details of the sparse coding algorithm and its application to

feature learning has been discussed. An iterative method for solving the accompanying

optimization problem was given using the LARS and ODL algorithms to solve the activa-

tion and dictionary learning sub-problems. Additionally, extensions of sparse coding which

incorporate label ground-truth as well as other information were described.

14

CHAPTER III

FEATURE LEARNING FOR MUSIC INFORMATION RETRIEVAL

Music Information Retrieval (MIR) is concerned with extracting meaningful information

out of musical signals. Some common problems in this field are chord detection, genre

recognition, mood estimation, song similarity and automatic transcription. Given the high

dimensionality of musical signals, a wide variety of features have been designed to cap-

ture important information while reducing the dimension to a reasonable size. Timbral

information can be captured using Mel Frequency Cepstrum Coefficients (MFCC) for ex-

ample, which have seen widespread use in genre and instrument recognition where the

timbral characteristics of the signals are a distinguishing factor. Pitch Chroma are a 12-

dimensional feature derived from the Fourier Transform, which group the magnitudes into

bins corresponding to each note. This feature is therefore mostly independent of the timbre

and instead captures tonal and pitch information.

As discussed previously, designing good features is extremely important and not an easy

task. Several works have investigated approaches to learning good features automatically

using Machine Learning techniques. Here several examples are reviewed.

3.1 Feature Learning for Music Information Retrieval

Humphrey et al. argue for the usefulness of feature learning and Deep learning in the

context of MIR [21]. They argue that current MIR approaches are hitting a “glass-ceiling”

in terms of performance across a range of tasks. They present a two-stage conception of

how most MIR research is carried out – the first stage consists of transforming the data

such that “its defining characteristics are made invariant across multiple realizations” which

amounts to feature-encoding of the input. The next stage is semantic organization where

“semantic meaning can subsequently be inferred and used to assign labels or concepts to

it”, which corresponds to designing some model to meaningfully interpret it (for example

a classification or regression algorithm). The authors observe a trend in MIR to design

15

more sophisticated classifiers (stage two) to the same set of features, which they evidence

by the fact that 19 out of 20 submission to the International Society for Music Information

Retrieval Conference (ISMIR) dealing with chord recognition used chroma features.

Hamel et al. trained a Deep Belief Network (DBN) to recognize music genre [17]. A Deep

Belief Network is a Neural Network consisting of an input layer, a series of “hidden” layers

and a final output layer. An interesting aspect of their approach is that instead of using the

output of the DBN directly for prediction as would normally be the case, they experimented

with using the output of the intermediate hidden layers as features. The output of each

layer can be taken as higher level representation of the input data. The features learned

in this way were used as input to a non-linear Support Vector Machine (SVM) classifier.

They compared several systems: using the output of the DBN directly, using the outputs

of the intermediate layers and finally using the mean and standard deviation of MFFCs. It

was found that using the activations of each layer lead to better performance than taking

the final output activations alone. They showed that learned features on Discrete Fourier

Transforms of patches outperformed traditional MFCC features, achieving an accuracy of

84.42% on the genre classification task using the GTZAN genre dataset. One issue is that

their system was evaluated without cross-validation: for their experiments the data set was

divided in to a 50/20/30 train/test/validation split and as such direct comparison with

other systems is not possible. This was due to the extremely large training time of 104

hours for the DBN.

Wulfing et al. used Constant-Q transforms as input features convolutional k-means for

feature learning [54]. First, extracted patches were normalized to have zero mean and

unit variance before being processed using Principal Component Analysis (PCA). Then

k-means was used to learn a series of clusters in feature space. Clusters were learned

using a bootstrapping technique whereby clusters are first learned on the space spanned by

the first p principal components, with the entries corresponding to the other dimensions

set to zero. These centroids were then used as a warm-start for the full learning process.

This collection of centroids plays an equivalent role to the dictionary used in sparse coding –

unseen items are encoded in this “dictionary” by soft thresholding based on distance to each

16

centroid. They also noted the importance of feature pooling before the classification stage,

whereby adjacent short-time frames are pooled over several seconds. Final classification was

performed using a linear SVM resulting in an accuracy of 85.25% ± 3.5% on the GTZAN

data set.

Henaff et al. used Predictive Sparse Decomposition (PSD), also for genre recognition

[18]. PSD overcomes one of the challenges in using sparse coding where fast encoding is

required, for example with extremely large data sets. Given a new input, sparse coding

requires the optimization of the objective function using the given dictionary making it

computationally expensive. PSD adds an additional term to the objective function, which

learns a linear classifier to predict the encoding of each input in the learned dictionary.

Items can then be encoded very quickly using matrix multiplication with the learned linear

transformation.

They found a significant increase in performance by learning separate octave-specific

dictionaries. Instead of learning one dictionary on the full spectrum, the input is split into

four octaves and separate encoders were trained on each. Learned feature were then given

by concatenating the activations in each dictionary. An accuracy of 83.4% ± 3.1% was

reported using the GTZAN dataset. They note that their system is a “tranductive learner”

since the dictionary is learned on all the input items. Performing 10-fold cross-validation

when strictly separating the dictionary learning and testing resulted in an accuracy of 80%.

Traditional sparse coding is an unsupervised algorithm. Yeh et al. introduced a super-

vised sparse coding scheme for genre recognition [60]. Given a training split, ten different

dictionaries were learned on each genre and the final dictionary was given by combining

them into a single unified dictionary. They found that this approach significantly outper-

formed k-means for feature learning and report 84.7% classification accuracy on the GTZAN

dataset using 10-fold cross-validation. This however represented only a small increase over

traditional sparse coding, which they report at 83.4%.

Humphrey et al. demonstrated the potential of feature learning in the context of cover-

song detection [21]. Given a large music corpus, the goal was to retrieve likely covers of

a query track. This problem is most commonly tackled as ranking problem, where each

17

potential track in the library is ranked according to its perceived similarity to the query.

First, pitch chromagrams were taken and pooled and aligned over each beat. Then a

2D Fast Fourier Transform was calculated to summarize each song and after some pre-

processing k-means clustering was used to learn clusters which could be used as a feature

dictionary. Next they describe a process to “semantically organize” the space. For good

performance, song/cover-song pairs should be close together (in the Euclidean distance

sense) and song/non-cover pairs should be far apart. Supervised dimensionality reduction

was performed using large scale Linear Discriminant Analysis, where each “clique” of cover

songs was taken as one class. Evaluation was performed using the SecondHandSongs subset

of the Million Song Dataset [5] resulting in a Mean Average Precision score of 13.4% − a

significant improvement in the MAP score of 2.95% reported in [11] which used the same

raw features without any feature learning.

Features for sound effect ranking, mood classification and Classical composer classifica-

tion where obtained by Ness and Lyon [34] using k-means clustering on Stabilized Auditory

Images (SAI). SAI are features inspired by the auditory processing of the human ear. They

found that features learned in this way perform similarly or better than established MFCC

features, which were also coded using k-means. Unlike sparse coding, their algorithm used

hard assignment of inputs to each learned cluster – a process known as vector quantization.

The resulting feature vector then contains all zeros except at the index corresponding to

the cluster to which it was assigned.

Unsupervised sparse coding using convolution was explored by Grosse et al., along with

an efficient method for solving the optimization problem [16]. Convolutional methods may

be more suitable when dealing with music since it is highly temporally dependent, where

each state in the signal is depends on the on previous states. Under standard schemes basis

elements can potentially be ‘wasted’ learning redundant features (for example multiple

dictionary items learning the same feature shifted in time). Convolutional approaches are

robust against such errors since they find common activation patterns in the whole input

at once.

The algorithm was tested on speaker identification and music genre detection, finding

18

that the learned features performed on-par with traditionally designed features. A similar

idea appears in [6] where shift invariant sparse coding is used for blind source-separation

and identifying individual notes in polyphonic mixtures.

The use of sparse coding as a self-taught learning algorithm is investigated by Markov

et al. in the context of music genre detection [33]. Here the idea was to examine the sparse

coding algorithm’s ability to leverage large amounts of unlabeled data to learn good features

for genre recognition. Often large amounts of good training data can be difficult to come

by so having the option to make use of both labeled and unlabeled data can be very useful.

The GTZAN data set was split into a series of smaller sets consisting of 50, 100, 250 and

500 examples per genre. Additional, several sizes of dictionary were tested:100, 200, 300

and 500. Evaluation was performed using a SVM trained on labeled examples taken from

another data set. In order to isolate the effect of additionally unlabeled data, a baseline

system learned purely on a labeled set was learned. They concluded that in situations where

small amount of labeled data are available, sparse coding on unlabeled data can be used to

learn good features for genre detection.

In [1] sparse coding is used to learn a dictionary of spectral characteristics of short-term

Fourier spectra. They note “the ability to learn a dictionary of atomic spectra (most of

which converge to harmonic spectral profiles associated with specific notes) from polyphonic

examples alone−no separate training on monophonic examples is required” [1] as a key fea-

ture in their implementation. This ability of sparse coding to learn robust atomic elements

from mixtures and in the presence of noise is one of its main strengths.

Scmidt et al. learned features for music mood recognition using a Deep Belief Network

(DBN). Predicting the mood of a piece of music amounts to a regression task; songs are

represented as a vector in 2-D “Arousal-Valence” space [40]. Arousal corresponds to the

energy in a song, while valence measures the emotional content in terms of positive or

negative emotions. As the authors note, many mood identification systems rely on a large

amount of designed features involving loudness, rhythm, timbre and harmony together with

dimensionality reduction techniques. Similar to the work of Hamel et al. they tested the

performance of the features learned on each layer as well as the final output. They also tested

19

the addition of a linear regressor layer, to learn a feature set and classifier jointly. They

found that the best performing learned features outperformed traditionally used features

such as MFCC, Spectral Contrast and chroma in terms of Average Mean Distance and

Average KL Divergence.

The highest published results for genre recognition on the GTZAN data set were pre-

sented by Panagakis et al. [37]. Their approach consisted of two stages: a biology inspired

acoustic feature and a spare-representation based classifier. They calculate 2D auditory

representations for each input which model the auditory processing of the primary audi-

tory cortex. First auditory spectrograms are calculated, which emulate the early auditory

system. This stage consists of the calculate of Constant-Q tranforms using a bank of 96

filters. Next, “derivatives with respect to the logarithmic frequency are taken”, followed

by half wave rectification. The modeling of the later stage auditory processing consists a

“multi-resolution wavelet analysis” using a bank of Gabor filters.

To perform classification, a dictionary and projection matrix are learned using sparse

coding. The projection matrix here serves the purpose of dimensionality reduction, effec-

tively projecting the coded data into a smaller subspace. Dictionaries are learned on each

class separately and the final classification is given by the dictionary which minimizes the

`2 reconstruction error. They report a significant improvement over other methods: 91%

and 93.56% on the GTZAN and Ismir2004Genre data sets respectively.

An attempt at replicating the results of Panagakis et al. was made by Bob Sturm [49].

Using the same methodology outlined by Panagakis [37] he obtained an accuracy of 68%

on GTZAN, noting that the only way he found comparable performance to Panagakis et

al. was to limit the amount of genres to five. Elsewhere, of the results of Panagakis et al.

the author say the are due to “... accidentally using the true labels in classification (private

correspondence with Y. Panagakis)”[46].

3.2 Discussion

As we can see, learned features can outperform traditional features like MFCC and chroma

in a variety of MIR tasks. In reviewing these approaches we find many similarities:

20

• Approaches tend to use features derived from the Discrete Fourier Transform such

Constant-Q transforms or raw spectra as input [21] [54] [18] [18]

• These input features are computed over short time frames such as 50ms Predictive

Sparse Decomposition [60] [33]

• Often a pre-processing step such as whitening, Principal Component Analysis or

feature-standardization/normalization is used [54] [18]

• A suitable dictionary is learned on these short time features, often using k-means or

sparse coding dictionary learning [18] [60] [33] [37] [54]

• Items are encoded in this dictionary using vector-quantization (hard assignment), k-

means with soft-assignment, LASSO regression (sparse coding) or others [54] [60] [33]

[18]

• Encoded data are pooled over a perceptually-relevant timescale (typically 1 to 5 sec-

onds) [18] [60] [33]

• These pooled features are used to train a classifier [60] [33]

The approach outlined in this thesis builds from the ideas discussed so far, in particular

sparse coding and dictionary learning approaches ([60] [33] [18] [37]). Similar works can

be divided into two categories: unsupervised ([33], [18]) and supervised ([60], [37]) sparse

coding. Of the supervised works, we note that in none of these examples are the ground

truth labels explicitly used during learning. When supervision is employed the labels are

used only weakly or implicitly by learning separate dictionaries on each class independently

before combining them into one final dictionary, with the hope that examples from a given

class will show more activation in their exemplar dictionary. The goal of this work is

to explore methods of using the ground-truth information explicitly during the dictionary

learning stage, in order to learn a dictionary with both reconstructive and discriminative

power.

21

3.3 Conclusion

In this chapter, on overview of the use of feature learning in MIR was given. Several different

approaches for feature learning such as soft k-means, vector-quantization and sparse coding

were discussed. Examining the similarities between these approaches, we find a general

pipeline for feature learning in a musical context which includes pre-processing, dictionary

learning, encoding and feature pooling. Table 1 summarizes the approaches outlined above,

including information on whether they are supervised or unsupervised during the feature

learning stage.

22

Table 1: Some examples of feature learning in Music Information Retrieval.

Reference Feature Learning Task Supervised

[17] Deep Belief Network
Genre

Recognition
Yes

[54]
Convolutional
k-means

Genre
Recognition

No

[18]
Predictive Sparse

Decomposition
Genre

Recognition
No

[60] Sparse Coding
Genre

Recognition
Yes

(multiple dictionaries)

[22]
k-means

(centroid distance)+LDA
Cover-Song
Detection

Yes
(LDA dim. reduction)

[34]
k-means

(vector quantization)

Mood,
Composer,

sound-ranking
No

[16]
Convolutional
Sparse Coding

Speaker ID,
Genre Recognition

No

[6]
Shift Invariant
Sparse Coding

Blind Source
Separation,

Note ID

Yes
(musical priors)

[33] Sparse Coding
Genre

Detection
No

[1] Sparse Coding
Note Feature Learning

from
Polyphonic Audio

No

[42] Deep Belief Network
Music Emotion

Recognition
Yes

[34]
Sparse Coding on
Auditory Features

Genre
Recognition

Yes

23

CHAPTER IV

SPARSE CODING FOR MUSIC GENRE RECOGNITION

In this chapter the use of sparse coding for the problem of Music Genre Recognition (MGR)

is investigated. While the concept of genre is in general not well-defined, most popular music

can be said to belong to a specific genre such as pop, rock, jazz, classical etc. The goal

of a MGR system is to assign a genre label automatically to an input audio signal. MGR

systems are an extremely popular area in Music Information Retrieval (as is revealed in

Table 1). For an extensive overview of MGR systems and their evaluation, see the work of

Sturm [48].

The goal of this chapter is to explore the use of features learned using standard sparse

coding and supervised sparse coding for MGR. For supervised feature learning, an ap-

proach based on Label Consistent K-SVD [24] was used to learn a discriminative dictio-

nary. Sparse coding and Label Consistent K-SVD have primarily been used in the context

of computer vision, and their application to music signals presents many challenges related

to pre-processing and feature representation. First an overview of some related work in

the area of MGR followed by an outline of the implementation and methodology used for

evaluating both approaches.

4.1 Related Work

One of the first works which explored MGR was done by Tzanetakis and Cook [51]. Here

several features were used such as Spectral Centroid, Spectal Rolloff, Spectral Flux, Zero

Crossing Rate and Mel Frequency Cepstrum Coefficients. Additionally, beat features were

calculated from a beat histogram. An important consideration introduced by Tzanetakis

is the concept of a texture window. Many of the above mentioned features are derived

from short-time Fourier Transforms divided into so called analysis windows. As the authors

note, these analysis windows need be short so that the “the frequency characteristics of

the magnitude spectrum are relatively stable”. However, much of the perceptual content

24

of music is found over long time scales which motivates the use of a texture window – a

longer time block in which short term features are aggregated. In their work, Tzanetakis

and Cook used a texture window of 1 second over which means and variances of the short

time features were calculated. For classification, they used Gaussian Mixture models and

k-Nearest Neighbor to predict the genre label using features calculated both over the whole

file and in sub-segments.

Tzanetakis et al. introduced the idea of a pitch histogram for MGR using audio and

symbolic (e.g. MIDI) data [53]. Pitch Histograms aim to capture the melodic information

contained in a piece of music consisting of a list of 128 numbers (indexed by MIDI note)

which give the number of occurances of that note in the piece. In the case of MIDI infor-

mation, this information is easily calculated using note-on and note-off events. In the case

of audio data, the authors used a polyphonic pitch detection scheme to estimate the pitch

content. The inevitable error introduced in the pitch detection algorithm is estimated by

comparing the performance of MIDI to audio-from-MIDI. They concluded that the pitch

content contained valuable genre-related information. Using audio derived from MIDI and

a selection of timbral features [51] they achieved 75± 6% accuracy on a dataset consisting

of five genres; Electronica, Classical, Jazz, Irish Folk and Rock.

Bergstra et al. used a large number of features and an Adaptive Boosting framework for

MGR, achieving the highest reported accuracy at the MIREX 2005 MGR task [3]. Given

a collection of features, the AdaBoost algorithm [13] iteratively builds a strong classifier

out of a series of weaker classifiers. At each step of the algorithm, training examples are

weighted according to the error of their classification with the current classifier. At each

stage an optimal weak classifier is learned and added to the ensemble with an appropriate

weighting. In this way, one can construct a classifier which exhibits very strong performance

by systematically combining the output of a group of simple classifiers. The authors used a

simple decision stump as the weak learner at each stage, which is basically an axis-aligned

separating hyperplane. As input features they took many common timbral features such

as FFT coefficients, MFCCs, zero-crossing rate, spectral spread, spectral centroid, spectral

roll-off and auto regression coefficients.

25

They compared three different strategies for classification: using the derived short time

features, using features aggregated over the whole song and features aggregated over seg-

ments. They found that taking features over segments lead to the best performance, similar

to the findings of Tzanetakis with respect to texture windows.

Feature learning based approaches for MGR have been discussed in the previous chapter,

using unsupervised ([16, 33, 18]) or some manner of supervised ([60, 37]) learning where

separate dictionaries are learned on each genre and then combined. However, the examples

listed here do not incorporate the ground truth in the learning process explicitly in the

optimization problem as is the goal of this work.

4.2 Implementation and Methodology

The data set used for experiments was the GTZAN collection consisting of 1000 clips of

music. Each clip is 30 in duration and belongs to one of 10 genres: blues, country, classical,

rock, reggae, jazz, disco, metal, pop and hip-hop. Each genre has 100 examples. As veri-

fication, first unsupervised sparse coding was implemented with the dictionary learned on

the full data set. Admittedly this dataset has some problems (see for example the analyses

by Sturm [45][47]) however its use here is justified by the fact that (i) it is widely used

throughout the literature and (ii) we are more interested in the comparative performance

of standard versus supervised sparse coding. After achieving satisfactory results unsuper-

vised and discriminative coding were implemented with proper cross-validation (i.e. the

dictionary was learned only on the test set).

4.2.1 Initial Implementation: Unsupervised Dictionary Learning

The full sparse coding process can be very slow when the dataset is large. As an initial

implementation unsupervised sparse coding was used, with the dictionary being learned on

the full data set. Classification was performed using a Linear Support Vector Machine and

stratified 10-fold cross validation: first the dataset was split into 10 subsets such that each

set had the same number of tracks from each genre. Each set was used as a testing set once,

with the remaining data being used to train the SVM. The final accuracy was taken as the

average across each set.

26

For input to the sparse coding algorithm, we first extract short-time features from each

input file. Both standard DFT and Constant-Q transform (24 bands per octave) were

tested, with the DFT performing slightly better. DFT were extracted over from audio files

downsampled to 10 kHz using a window size of 1024 frames and an overlap of 512 frames,

resulting in a feature vector of size 512 for each window.

4.2.1.1 Normalization

In general, dictionary learning algorithms do not require data to be standardizing via mean

subtraction and variance normalization (though it can help in some situations). However,

badly scaled features can degrade the performance of the final classifier – especially Support

Vector Machines. Experiments found that proper normalization and pre-processing had a

large effect on the final performance of the system. Looking at a typical magnitude spec-

trogram, we find that most of the energy of the signal is contained in the lower frequencies

with the result that the relative contribution of high and low frequency content may be

uneven during the learning. Additionally, it may be helpful to accentuate higher frequency

content which contains timbral information which could be important for recognizing genre

since instrumentation is often strongly discriminative.

As an initial step, each column of the input spectrogram was normalized to have unit

`2 norm. In order to obtain a more balanced spectrogram, Local Contrast Normalization

(LCN) was performed. LCN is a commonly used process in the field of computer vision,

where it is used to balance different lighting conditions. To apply LCN, each point in the

spectrogram is standardized by subtracting its local mean and dividing by its local standard

deviation. This “local region” is defined by the parameters ω1 and ω2 which set the window

sizes for the mean and standard deviation respectively. For a given window f its local

normalization is given by

f(x, y)−mf (x, y)

σf (x, y)
(20)

where mf (x, y) is the local mean of f and σf (x, y) is the local standard deviation. The effect

of LCN on an audio spectrograms is to attenuate the higher-magnitude low frequencies

while increasing the relative magnitude of upper harmonic information, leading to a more

27

balanced spectrogram. An example of a spectrogram before and after this processes is given

in Figure 4.

Figure 4: Spectrogram before (top) and after (bottom) local contrast normalization.

4.2.1.2 Feature Pooling

Tzanetakis et al. introduced the concept of a texture window for MGR [51]. As was shown

in Chapter 2, many systems start by extracting features over short time windows of around

50–100ms. Since this is not a perceptually meaningful amount of time, a common strategy

is to aggregate features over a longer time period. The importance of pooling was again

highlighted by Bergstra et al. [3] who found improved MGR performance by using features

extracted from segments of audio instead of the full track. For MGR two pooling strategies

were tested: max pooling and mean pooling. After the encoding stage, each input song is

represented by a matrix where each column corresponds to approximately 50ms of audio.

28

Given a window or pooling size (typically anywhere from 1 to 5 seconds), max pooling is

performed by taking the maximum value in each row, reducing the 512-by-n matrix into a

512-by-1 column vector. Mean pooling is similarly achieved by taking the mean over each

row. Essentially, max pooling selects the highest activation of each dictionary item in that

window and summarizes it using a histogram-like representation. Mean pooling can be seen

as a low pass filter. Max pooling was found to be superior to mean pooling in this context.

4.2.1.3 Classification

First, the full system pipeline is briefly outlined: spectrum are extracted from input audio

files using a window length of 1024 frames with an overlap of 512 frames. The extracted

spectrum are then normalized using Local Contrast Normalization. Dictionary learning

using sparse coding is performed on normalized magnitude spectra and the full dataset is

encoded in the learned dictionary. Encoded data is pooled using max-pooling over 1-second.

Pooled codes from the training set were used to train a Support Vector Machine, which was

used to classify the testing set. This process is outlined in Figure 11.

After pooling, each track is represented by a 512-by-m array with m depending on the

size of the pooling window. The SVM is trained on such windows taken from the training

set with labels given by their parent song. LibLinear [12] was used due to its increased

speed when compared with LibSVM with linear kernel.

To predict the genre of a new song we can extract the magnitude spectra, normalize,

encode in the learned dictionary and perform max pooling. We then use the trained SVM

model to predict each pooled frame and use majority vote over all frames as the prediction

for that song. The mean prediction accuracy was calculated for each fold and the final

accuracy is the average across all folds.

4.2.1.4 Results: Unsupervised Coding

Table 2 summarizes the 10–fold cross validation results using sparse coding (SC) and sparse

coding on normalized magnitude spectrum (N-SC) using different pooling window lengths.

The results show that proper normalization is extremely important for good accuracy. These

results verify that the normalization, dictionary learning and encoding implementations are

29

Figure 5: System flow-chart for unsupervised sparse coding.

Table 2: 10-fold CV results using max pooling at various window lengths.

0.5 sec. 1 sec. 2 sec. 5 sec.

SC 0.7337 0.7448 0.7468 0.7362

N-SC 0.7837 0.8128 0.7888 0.7588

performing correctly. For the next section, the best performing parameters found in this

section were used:

• λ = 0.8

• SVM hyperparameter C = 60

• LCN ω1, ω2 = 120, 20

30

Figure 6: Examples of dictionary elements learned from music using sparse coding.

4.2.2 Discriminative Dictionary Learning

Supervised sparse coding was performed using a variation of Label Consistent K-SVD [24].

This allows us to make explicit use of the label information of the training set during

dictionary learning. Given an input training set X ∈ R512×n consisting of n 512-point

spectra, we assign each column of X the same label as its parent song. The standard sparse

coding objective is given by:

minD,α ‖X −Dα‖22 + λ‖α‖1 (21)

such that ‖D(i)‖2 ≤ 1 ∀i

To incorporate the labels into the dictionary learning process, we additionally assign a genre-

label to each dictionary item. Given a new spectrum with label g, we can imagine its ideal

sparse code: it would be a vector consisting mostly of 0, with 1 in the rows corresponding to

31

dictionary items with the same class label. Define an “ideal sparse code” matrix Q whose

columns consist of the ideal code for each column in X, so Q will be a block-diagonal binary

matrix. Then the discriminative coding objective function is then given by

minD,A,α ‖X −Dα‖22 + γ‖Q−Aα‖22 + λ‖α‖1 (22)

such that ‖D(i)‖2 ≤ 1 ∀i

Here A is a linear transformation, whose purpose is to make the sparse codes α discrimina-

tive. Note that A is not used in the actually classification process i.e. we do not calculate

Aα during the future classification step. It’s purpose is to make the sparse codes “linearly

discriminative” which helps classification. Similar formulations of a discriminative objective

function have been used in image classification, usually by incorporating classifier learning

into the training stage [32, 28, 31]. Strategies for solving the optimization problem can

often suffer from local minima when the coding and classifier optimizations are distinct. An

advantage of the approach of Jiang et al. [24] is that it learns the dictionary and classifier

jointly and hence avoids this problem by concatenating {X,Q} and {D,A}. It is also pos-

sible to add an additional classification error term to the objective which allows us to learn

a linear predictive classifier at the same time. In practice however it was found that this

learned classifier was outperformed by Linear SVM so it was omitted.

The key idea in the discriminative formulation of Jiang et al. is the concatenation step,

which avoids the problem of local minima. The 2-norm of a matrix B can be written as

‖B‖22 = trace(B∗B) where B∗ is the conjugate transpose of B (and B∗ = BT when B is

Real). Therefore we can rewrite equation 22 as:

{D,A, α} = argmin ‖X −Dα‖22 + γ‖Q−Aα‖22 + λ‖α‖1

= argmin tr((X −Dα)T (X −Dα)) + tr((Q−Aα)T
√
γ(Q−Aα)) + λ‖α‖1 (23)

32

Since tr(A+B) = tr(A) + tr(B) we have

{D,A, α} = argmin tr((X −Dα)T (X −Dα) + (Q−Aα)T
√
γ(Q−Aα)) + λ‖α‖1

= argmin tr(XTX +XTDα+ αTDTX + αTDTDα+

QT
√
γQ+QT

√
γAα+ αTAT

√
γQ+ αTAT

√
γAα) + λ‖α‖1 (24)

= argmin tr(XTX +QT
√
γQ) + tr(XTDα+QT

√
γAα) + tr(αTDTX + αTQT

√
γA)+

tr(αTDTDα+ αTQT
√
γQα) + λ‖α‖1 (25)

= argmin tr((X ′)TX ′) + tr((X ′)TD′α) + tr(αT (D′)TX ′) + tr(αT (D′)TD′α) + λ‖α‖1 (26)

= argmin ‖X ′ −D′α‖22 + λ‖α‖1 (27)

Where

D′ =

(
D
√
γA

)
X ′ =

(
X
√
γQ

)

This expression is exactly the problem solved by sparse coding, so this problem can be

efficiently solved by suitable concatenations. To initialize D and assign a label to each

dictionary item, sub-dictionaries are learned on each class using standard sparse coding and

concatenated into one larger dictionary. Each dictionary item will then be associated with

the genre on which it was learned. Jiang et al. used the K-SVD algorithm to learn the final

dictionary based on this formulation, while here we use ODL.

The linear transformation A is initialized using Ridge Regression:

Ainit = arg minA ‖Q−Aα‖22 + β‖A‖22 (28)

which has solution given by

Ainit = (ααT + βI)−1αQT (29)

where α are the sparse codes learned on the initialized dictionary.

Recall that the dictionary learned in this way is given by

D′ =

(
D
√
γA

)
(30)

33

During learning the columns of the dictionary are constrained to have unit 2-norm (in

practice this constraint is always saturated). Hence, the dictionary D′ learned during dis-

criminative coding has columns of unit length. To recover the desired dictionary we first

need to scale each entry in D′ so that the desired Dnew is column normalized. The final

dictionary Dnew is obained by

Dnew =
(d1

‖d1‖2
d2

‖d2‖2
. . .

dk

‖dk‖2
)

(31)

where dn is the nth column of the submatrix D.

To evaluate the discriminative coding approach, 5–fold cross validation was used. Since

the ground-truth labels are used during the learning, the dictionary learning step was per-

formed on the testing set only. Parameters such as the sparsity constraint λ, pooling time,

normalization strategy and SVM parameters were set to the same values used in section

4.2.

4.2.2.1 Results: Discriminative Sparse Coding

Table 3: 5-fold cross-validaiton results or MGR on GTZAN.

SC 0.7970

D-SC 0.7945

Table 3 summarizes the results using sparse coding (SC) and discriminative sparse coding

(D-SC). These results show that adding the discriminative penalty fails to increase the

final accuracy. Looking at the accuracy per-fold, the discriminative coding scheme shows

more variance than unsupervised coding; for some folds significantly outperforming it while

for others badly under-performing. In order to verify the implementation, the results of

Jiang et al. were successfully reproduced using the extended YaleB image dataset [15]. To

examine the behavior of the learned discriminative dictionary we can plot the activation

profiles for each dictionary item. After encoding the testing set, we sum the activation

matrix α along each row to find the total activation of each dictionary item (recall that for

a given column of α each row represents the activation of one dictionary element for that

34

input spectrum). We perform this summation for each genre in the training set individually

to find the activation of each item in that specific genre. During the training phase each

dictionary element was assigned a class label, so we would therefore expect that each item

would show more activation it its corresponding genre than in others. Figure 7 shows

the activations in a discriminative dictionary for each genre in the test set. In the ideal

case, these figures should show peaked activations in one class with low activations in the

others. While this seems to be the case to some degree for certain genres, other dictionary

items seem to be highly active for many training items – even those with different genre

labels. Figure 8 shows the ratio of within-class activation to total activation for each item

in a learned dictionary of size 1000 – again we find that some dictionary items are more

discriminative than others.

For comparison, Figure 9 shows the total activations using a discriminative dictionary

for 10 classes from the extended YaleB dataset. As we can see, the dictionary is much more

discriminative in this case with sharp peaks specific to each class. Increasing the size of the

discriminative term γ to increase the discriminative power of the dictionary badly degrades

the performance. The best performance was found using γ = 0.001 which is relatively small

compared to the sparsity parameter λ = 0.8 which was chosen using unsupervised coding

(outlined in section 4.2). These results indicate that the music data is much less separable

than the images in the YaleB dataset – at the scale of magnitude spectra all the genres

‘look alike’.

4.2.3 Two Layer Coding

Applying discriminative coding to the magnitude spectrum fails to meaningfully improve the

performance according to these results. It is possible that enforcing the label information

on this scale is not appropriate since we can’t expect any given 50ms spectrum to contain

meaningful information about the genre. In the case of unsupervised coding, it was necessary

to pool the learned codes over a perceptually meaningful amount of time (the so-called

texture window discussed in Section 4.1).

With this in mind, a two-layer scheme was investigated. In the first layer, sparse coding

35

Figure 7: Activations for each genre in the testing set using a dictionary learned with
discriminative coding.

was used to learn a suitable dictionary (see Section 4.2.1) and items from the test and

training sets were pooled as discussed in Section 4.2.1.2. Then an additional dictionary

was learned using discriminative sparse coding, using the pooled sparse codes as input. In

this case, the label information is being enforced at a level of 1–second (the length of the

window over which the sparse codes were pooled). This approach is similar in flavor to the

idea behind Spatial Pyramid Matching used in computer vision, where short time features

are pooled and taken as input for an additional feature learning step (for example, the

work of Yang et al. [56]). Learning and encoding using this approach is very slow, since

36

Figure 8: Ratio of activations within the correct genre versus all activations for each
dictionary item (testing set).

we need to perform both of these steps on each layer. To deal with this, instead of using

full cross-validation the data set was split into a training set of 500 songs, a testing set of

300 songs and a validation set of 200 songs. This meant that the process only needed to

be carried out once (and not multiple times as would be the case for cross-validation). The

settings used for the first layer were the same as found in Section 4.2. The discriminative

term γ and second-layer sparsity parameter λ was tuned using 5-fold cross-validation on

the validation set.

4.2.3.1 Results: Two Layer Coding

Table 4 shows the classification accuracy of sparse coding (SC) versus two-layer sparse cod-

ing (TL-SC). The results show that adding the second layer actually degrades the perfor-

mance. The drop in accuracy may be due to the additional reconstruction error introduced

in second layer coding. The accuracy using sparse coding is substantially lower than those

reported in Section 4.2.2 which can be explained by the fact that in this case the training

set is smaller and only one training set was used.

37

Figure 9: Activations for different 10 different classes using the extended YaleB image
dataset.

Table 4: Accuracy on test set using sparse coding and sparse coding with a additional

discriminative layer.

SC 0.7090

TL-SC 0.6689

4.3 Discussion

For the sake of completeness, Table 5 summarizes MGR accuracies of several other systems

in the literature using the same dataset. The system outlined here compares comparably to

similar systems. Note that the main aim of this section was to compare the performance of

supervised feature learning to unsupervised feature learning and as such the implementation

was kept relatively simple. Systems which outperform the ones described here tend to have

additional steps to improve the raw accuracy — for example non-linear instead of linear

38

Table 5: MGR accuracies using GTZAN dataset.

Reference Accuracy

[37] 0.92

[59] 0.857

[17] 0.843

[18] 0.834

[3] 0.83

SC 0.8128

D-SC 0.7945

[18] 0.794

[4] 0.77

[27] 0.71

[52] 0.61

SVM [60] or processing performed on separate octaves [18]. The results obtained using

sparse coding with a dictionary learned on the full set (SC) and discriminative dictionary

with cross-validation (D-SC) are highlighted in bold.

Overall the results indicate that the discriminative formulation does not improve the

performance of sparse coding for MGR. Each processing step was verified separately —

satisfactory results were achieved first using sparse coding with the dictionary learned on

the full data set. The implementation of discriminative coding was verified by successfully

reproducing the results on an image recognition task by Jiang et al. [24]. A range of

parameters for the discriminative term γ was tested, from 0.0001 to 100.

Using the idea that the time frame over which the input magnitude spectrogram fea-

tures were taken may be too short to meaningful enforce label information, the two layer

coding scheme learns an additional dictionary using the pooled first-layer sparse codes. It

should also be noted that two other approaches were also tested: in the first the magnitude

spectrograms were aggregated over a time interval of 1-second (see Section 5.4 for details of

a similar approach), with dictionary learning being performed on these pooled magnitude

spectra. The other approach used the bio-inspired features made available by Bob Sturm

in his work ([49]) which sought to replicate the findings of Panagakis ([37]). In both cases

the performance was in the range of 60% which is consistent with Sturm’s findings.

39

4.4 Conclusion

In this chapter, the performance of sparse coding for MGR was investigated. Initial results

were obtained using sparse coding with dictionary learned on the full data set and 10-

fold cross validation at the classification stage. A supervised sparse coding approach was

outlined using the ideas of Label Consistent K-SVD and Online Dictionary Learning to

incorporate the ground truth data during the dictionary learning step. To evaluate both

methods, cross-validation was performed using the GTZAN dataset with dictionary learning

on the training splits only, with final classification being preformed using linear SVM. It

was found that the supervised formulation failed to outperform the standard sparse coding

approach based on cross-validation accuracy.

40

CHAPTER V

SPARSE CODING FOR MUSIC EMOTION RECOGNITION

In this chapter we investigate the use of sparse coding and supervised sparse coding for the

task of estimating the emotion or mood of music. Music often contains a high amount of

emotional content, however unlike other MIR problems such as artist or chord identification

the perceived mood of a piece is necessarily subjective. As Kim et al. note: “there may be

considerable disagreement regarding the perception and interpretation of the emotions of

a song or ambiguity with the piece itself” [25]. While this problem can be examined from

a wide variety of approaches, here we are concerned with purely acoustic features derived

from the signal, as opposed to proposed holistic approaches incorporating metadata such

as lyrics or even social context.

5.1 Related Work: Quantifying and Predicting the Emotional Content
of Music

As a first step toward evaluation, a suitable representation of the emotional content of a

given song needs to be found. Heve conducted a study concerned with the “affective value”

and “expressiveness” of music [19]. Interestingly, the author notes that the notion that

music has consistent associated emotional content is taken as an assumption, noting that

this point is somewhat controversial. A list of 66 adjectives, arranged into 8 groups were

used by listeners to describe the music they heard. They found several correlations between

the music and their adjectives: major modes were described as “happy”, “merry” and

“playful”. Dissonant harmonies were found to be “exciting”, “agitating” and “vigorous”.

The Music Information Retrieval Evaluation eXchange (MIREX) ran a music emotion

task in 2007 and 2010. Here the task was to label a song using one of 5 “mood clusters”.

Each cluster was associated with a set of adjectives derived from mood-labels of popular

songs.

Many approaches for quantifying music emotion use discrete assignment of emotional

41

Table 6: Clusters and their associated mood adjectives used in the MIREX 2007 music
emotion task.

Cluster 1 passionate, rousing, confident, boisterous, rowdy

Cluster 2 rollicking, cheerful, fun, sweet, amiable

Cluster 3 literate, poignant, wistful, bittersweet, autumnul, brooding

Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry

Cluster 5 aggressive, fiery, tense, intense, volatile, visceral

labels to songs. An alternative approach is to use a continuous measure, as introduced by

Russell and Thayer in the Valence-Arousal (V-A) model [40]. Here the emotional content of

music is represented on a 2-dimensional plane, with one axis corresponding to arousal (the

energy or intensity of the music) and the other corresponding to valence (which is designed

to capture the ‘attractiveness’ or ‘averseness’ of an emotion).

Yang et al. used the Valence-Arousal formulation of Music Emotion Recognition (MER)

[57]. They extracted many standard acoustical features such as Spectral Centroid, Loudness,

Spectral Dissonance and others producing features of dimension 114. Noting that there

is often a dependency between the two dimensions in the Valence-Arousal model, they

attempted to by first reducing the data correlation using Principal Component Analysis

(PCA). Next a feature selection procedure [39] was used to find the most useful features.

For prediction they used Support Vector Regression (SVR) and Multiple Linear Regression

(MLR), finding best performance was achieved using PCA with feature selection and SVR.

In contrast to the continuous Valence-Arousal model, many works have used a discrete

space for MER. In their approach Yang et al. divided the V-A space into four quadrants

with each sample being given a fuzzy labeling corresponding to its membership in each

class [58]. Trohidis also used a multi-label system, where pieces of music could belong to

more than one class [50]. The 6 classes of emotions used were derived from the Tellegen-

Watson-Clark model [55]. Prediction again consisted of a host of low level audio features

(including Beats Per Minute and timbral features such as Spectral Centroid, Spectral Flux

and Spectral Kurtosis) combined with Support Vector Regression.

This approach of using a large number of standard features together with a feature

42

reduction step to train a regression model is common in MER. In comparison the learning

of features which are adapted to the problem of MER is a relatively unexplored topic. One

such system was developed by Schmidt and Kim [42]. Their work was concerned with pre-

dicting Valence and Arousal labels using features learned via a Deep Belief Network (DBN),

comparing it to standard acoustic features such as Spectral Contrast, Pitch Chroma and

Mel Frequency Cepstrum Coefficients. Raw spectrograms were used as input features to a

3-layer DBN. Similar to a neural network, DBNs allow for much improved training proce-

dure consisting of an unsupervised pre-training stage and a supervised ’fine tuning’ stage.

The outputs of each layer on the DBN were used as features, with the best performance

being achieved using the hidden layer. They employed 5-fold cross validation a dataset

consisting of 240 songs of length 15 seconds and reported the average mean distance as well

as the average KL Divergence between the predicted and ground truth values. They also

investigated the learned features by observing the activations, noting that the first layer

learns a sparse basis which is heavily dependent on certain frequency bands.

Pachet and Zils introduce an algorithm to learn high level features for music analysis

using Genetic Algorithms with application to predicting the perceived energy of songs [36].

In their systems, a high level representation is achieved by combining several atomic pro-

cessing elements such as taking FFT, mathematical operations like mean/max, temporal

operators like autocorrelation and more. The fitness of a given combination is evaluated

and new functions are produced through mutation and crossover. They found that descrip-

tors learned in this way out performed popular low level features. While their approach is

based on learning features, they rely on combining low level feature descriptors and using

evolutionary algorithms to produce the final high level feature. In contrast, sparse coding

is a low-level feature learner which uses traditional convex optimization methods based on

the reconstruction and sparsity errors.

5.2 Dataset

For this work, we deal with the Valence-Arousal model of music emotion. The V-A model

was chosen because as a regression problem it differs from the Music Genre Recognition task

43

Figure 10: The Valence-Arousal plane. The emotional content of music is quantified by
its position in the 2 dimensions.

which is a classification problem. Under the V-A model, the emotional content of music is

given by its position in the 2-dimensional Valence-Arousal space and we are concerned with

predicted these values. As ground-truth a data set consisting of Valence-Arousal values

for 1000 songs [44] was used. Due to the subjective nature of music emotion, the creation

of a good dataset requires human annotations. To achieve this the authors used Amazon

Mechanical Turk and the idea of a “musical game” to collect continuous V-A values for

1000 creative commons songs found in the Free Music Archive. While listening to each

song, subjects would move an on-screen ball whose position corresponded to either the

arousal or the valence of the currently playing track, resulting in continuous annotations

for each parameter.

Duplicates were later found in the collection, so a reduced data set consisting of 734

songs was also released. Since the collected V-A labels had sample rates which varied

according to the user’s browser and computer, the annotations were resampled at a rate of

2Hz. Each track consists of 45 seconds of music, with the annotations corresponding to the

first 15 seconds of music excluded due to “instability of the annotations at the start of the

clips”. Therefore the final data set used for these experiments consisted of 734 excerpts of

44

length 30 seconds with arousal and valence labels for every 500ms.

5.3 Baseline Features

Common methods for music emotion involve extracting a large amount of commonly used

audio features, performing dimension reduction and a regression step to predict the final

labels. As baseline comparison we use Mel-Frequency Cepstral Coefficients (MFCCs) and

pitch chroma features, which have been shown to work well for the task of music emotion

[43, 41]. Pitch chroma are a feature which measures the relative contribution of each pitch

class (note) in a given signal, by summing the magnitudes of the DFT centered around

bins corresponding to each note (and their octaves). These features were extracted for each

annotated 500ms section of audio (no significant difference was found by taking features

over shorter time scales and calculating statistical descriptors). The purpose of extracting

these baseline features is to compare the performance of the feature learning approach to

commonly-used MIR features.

5.4 Unsupervised Dictionary Learning

Unsupervised sparse coding was used to learn features from the audio data. Each input

track was first downsampled to 11050kHz. Then the DFT was taken using a window size

corresponding to 50ms with 25ms overlap. Each spectrum was then normalized using Local

Contrast Normalization. One problem was that the labels were quite coarse with respect

to the DFT window size. In the case of Music Genre Recognition this was irrelevant since

each song had only one genre label, so each constituent spectrum could be assigned with

that label and there was some freedom with regards to pooling. In this case however we

are attempting to estimate the dynamic V-A annotation which changes at a rate of 2Hz.

This means that if we were to proceed as before we would need to be extremely careful with

how the pooling is performed after encoded each 50ms window – for example the previous

strategy of 1-second windows with 50% overlap would not work since it will “spill over” into

the next annotated block.

Therefore a new approach was used: rather than encode the short time spectra and

pool the results using overlapping blocks, the input spectrum was pooled at different levels

45

and concatenated. First the spectrum is max-pooled in each annotated 500ms block. Next

we pool over each block twice: first over the initial 250ms and then over the remaining

250ms and concatenate the results into a single column vector. Finally we perform a similar

process using successive blocks of 125ms.With an initial DFT size of 512, this process results

in 512× (1 + 2 + 4) = 3584 dimensional column vector for each annotated 500ms section.

Figure 11: Feature aggregation for the music emotion task. Extracted spectrograms are
divided and pooled, with the final feature vector formed by concatenating each segment.

5.5 Combined Regression and Dictionary Learning

Predicting the continuous V-A labels amounts to a regression problem: given the input

features, find the relationship between those features and the observed labels. A usual

approach to such a problem is to first extract features from the data and then use the

training set to learn this relationship (using linear regression for example). So far 3 features

have been discussed: MFCCs, pitch chroma and features learned via sparse coding. Here

we investigate an approach to learn the linear regression parameters jointly during the

dictionary learning step. The discriminative approach discussed in Chapter 3 was framed

46

in terms of a classification problem: we attempted to learn a dictionary with more class-

discriminative power by adding an additional discriminative error term in the objective

function. Noting however that this was essentially a linear regression term (recall that

the role of the linear transformation A was essentially to regress the sparse codes onto the

“discriminative” vectors contained in Q) we apply the same idea here to jointly learn a

dictionary and linear regression model. In fact this setting may be more natural for this

approach since it is a pure regression problem (and not a classification problem being solved

by a linear predictive map).

Let X be the matrix of input training features, D the dictionary matrix and α the

matrix of sparse codes. Let L be the matrix of observed labels (in this case a 2-by-N

matrix consisting of an arousal and valence labels for each of the N 500ms blocks). W is a

linear transformation and we have the following objective function:

minD,W,α ‖X −Dα‖22 + γ‖L−Wα‖22 + λ‖α‖1 (32)

such that ‖D(i)‖2 ≤ 1 ∀i

Proceeding as before this can be rewritten as

‖X ′ −D′α‖22 + λ‖α‖1 (33)

Where

D′ =

(
D
√
γW

)
X ′ =

(
X
√
γL

)
D was initialized using an initial round unsupervised sparse coding on the training set.

After encoding the training data using Dinit the linear regressor W was initialized using

ridge regression as in Chapter 3. The final D and W were learned using ODL to solve the

optimization problem.

5.6 Evaluation

In order to evaluate the performance of each feature, 5-fold cross-validation was used. For

MFCC and pitch chroma, given the annotated training feature set X with annotations Y ,

ridge regression was used to learn a predictor W ′:

47

W ′ = argminW ‖Y −WX‖22 + β‖W‖22 (34)

which has solution

W ′ = (XXT + βI)−1XY T (35)

For unsupervised sparse coding, a dictionary was learned on the training data and used

for encoding and ridge regression was then used to learn the regression model. Additionally

a supervised dictionary and linear regression model were learned jointly using the training

data as outlined in Section 5.5. Parameters such as sparsity term λ and learning time were

kept the same for both methods. Items in the training set were then encoded and their V-A

labels predicted using the appropriate linear regression model.

Each feature was tested on the task of predicting the V-A annotation of each labeled

500ms block. To evaluate their performance Root Mean Square Error (RMSE) for both

the arousal and valence labels separately as well as the mean distance from the predicted

V-A vector to the actual was calculated. For a set of predictions xi and observations yi the

RMSE is given by √√√√ 1

n

n∑
i=1

(yi − xi)2 (36)

and for a set of V-A prediction vectors Xi and observed V-A labels Yi the mean distance is

given by

1

n

n∑
i=1

‖Yi −Xi‖2 (37)

48

5.7 Results and Discussion

Table 7: Results for Music Emotion Recognition.

Valence (RMSE) Arousal (RMSE) Mean Dist.

SC 0.2532 0.3087 0.3553

S-SC 0.2032 0.2500 0.2713

MFCC 0.2364 0.2502 0.3048

PC 0.2424 0.2857 0.3347

Table 7 shows the results using sparse coding (SC), supervised sparse coding (S-SC), Mel

Frequency Cepstrum Coefficients (MFCC) and Pitch Chroma (PC). For Arousal and Va-

lence the RMSE values are reported. Distance is given by the Euclidean distance in VA-

space. As can be seen, supervised sparse coding significatnly outperforms both normal

sparse coding and MFCC features. By combing the classifier and dictionary learning into one

optimization problem, supervised coding learns a dictionary and optimal classifier jointly.

5.8 Conclusion

Here the use of sparse coding for Music Emotion Recognition (MER) was discussed. Many

systems for MER consist of a feature extraction stage combined with linear regression. Ideas

from Label Consistent K-SVD were adapted for the purpose of learning audio features and

a linear classifier jointly. The results indicate that the combined dictionary/regression

framework significantly outperforms regular sparse coding for this task, as well as standard

features such as MFCC and pitch chroma together with linear regression.

49

CHAPTER VI

CONCLUSION AND FUTURE WORK

The goal of this work was two-fold: first investigate the use of sparse coding for Music

Information Retrieval (MIR). Second: compare the performance of supervised and unsu-

pervised sparse coding. To this end a feature learning framework using sparse coding and

a supervised sparse encoding approach based on the ideas of Label Consistent K-SVD (LC

K-SVD) was implemented and used to learn features for tasks of (i) Music Genre Recog-

nition and (ii) Music Emotion Recognition. The described approach aims to learn a single

dictionary with discriminative power, distinguishing it from previous work which used only

weak supervision where separate dictionaries are trained on each genre.

For the MGR task several approaches were tested: sparse coding with dictionary learn-

ing on the whole data set, sparse coding with dictionary learning on training sets (with

cross-validation) and a discriminative, supervised formulation which uses the labels during

dictionary learning (unlike previous related work which does not include the ground-truth

labels explicitly). Unsupervised sparse coding was found to perform well for MGR. How-

ever the discriminative formulation failed to improve the results, which is consistent with

some other related works ([60]). One finding was that the normalization and preprocessing

strategies are of great importance in sparse coding and it is possible that using a different

strategy might show improved performance for the discriminative formulation. It is also

possible that a better parameter search might help; parameters such as the sparsity penalty

and SVM slack variable were tuned using an unsupervised sparse coding stage and the best

performing values were used for the discriminative coding. This was done in order to make

computation time feasible – performing full cross-validation (with dictionary learning on

each test split) is already an extremely slow process and having to deal with additional

parameter tuning at this stage would make the computation time unmanageable. However

it is possible that the values obtained for the unsupervised approach are not optimal for

50

supervised sparse coding. For future work, different input features and pooling methods

could be looked at. Given the short time period over which FFTs are taken, it may not

make sense to enforce label consistency at this level. To try and account for this, an ap-

proach similar to those used in computer vision consisting of a two-coding scheme was also

implemented, which failed to show improvement over standard sparse coding.

For MER, the main contribution was the implementation of a system which incorpo-

rates learning of a linear regression model jointly with the dictionary. Since the Valence

and Arousal labels are continuous the input spectrograms were processed by aggregating

them over each labeled section. To evaluate supervised versus unsupervised coding, cross-

validation was used using Root Mean Square Error and Mean Distance in Valence-Arousal

space. The results show that combing the dictionary and classifier learning in one pro-

cess leads to significantly increased performance over standard sparse coding as well as

commonly-used designed feature like MFCC and pitch chroma

Overall, feature learning is a promising direction for MIR. However, the promise of

a purely data-driven pipeline for feature learning and classification failed to materialize.

Normalization and pre-processing proved to have a significant effect on the performance of

sparse coding – while the features themselves are learned automatically, the choice of input

is still left up to the user. This can clearly be seen by comparing the complicated features

used by Panagakis [37] – whose accuracy was found to be around 60% by Sturm [49] –

against the final system described in Chapter 4 – which achieved over 80%. Additionally

the temporal nature of music presents some unique complications not present in for example

computer vision: mainly the problem of how to summarize a piece of music before the sparse

coding algorithm can even begin. An interesting topic of future work would be to examine

this in more detail by comparing features learned from pooled magnitude spectra against

pooled features learned on short-time magnitude spectra.

Supervised sparse coding for the Music Emotion task showed more promise. Instead of

working on short-time FFT, here pooled magnitude spectrograms were used as input to the

sparse coding stage. To the authors knowledge, this is the first work which applies sparse

coding and supervised sparse coding ot the problem of MER.

51

REFERENCES

[1] Abdallah, S. A. and Plumbley, M. D., “Unsupervised Analysis of Polyphonic
Music by Sparse Coding,” IEEE Transactions on Neural Networks, vol. 17, no. 1,
pp. 179–196, 2006.

[2] Aharon, M., Elad, M., and Bruckstein, A. M., “K-SVD and its non-negative
variant for dictionary design,” in Optics & Photonics 2005, pp. 591411–591411, Inter-
national Society for Optics and Photonics, 2005.

[3] Bergstra, J., Casagrande, N., Erhan, D., Eck, D., and Kgl, B., “Aggregate
features and AdaBoost for music classification,” Machine learning, vol. 65, no. 2-3,
pp. 473–484, 2006.

[4] Bergstra, J., Mandel, M. I., and Eck, D., “Scalable Genre and Tag Prediction
with Spectral Covariance.,” in ISMIR, pp. 507–512, 2010.

[5] Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P., “The million
song dataset,” in Proceedings of the 12th International Society for Music Information
Retrieval Conference, pp. 591–596, University of Miami, 2011.

[6] Blumensath, T. and Davies, M., “Sparse and shift-invariant representations of mu-
sic,” Audio, Speech, and Language Processing, IEEE Transactions on, vol. 14, no. 1,
pp. 50–57, 2006.

[7] Chen, S. S., Donoho, D. L., and Saunders, M. A., “Atomic decomposition by
basis pursuit,” SIAM journal on scientific computing, vol. 20, no. 1, pp. 33–61, 1998.

[8] Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., and others, “Least angle
regression,” The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[9] Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., and others, “Least angle
regression,” The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[10] Elad, M. and Aharon, M., “Image denoising via sparse and redundant represen-
tations over learned dictionaries,” Image Processing, IEEE Transactions on, vol. 15,
no. 12, pp. 3736–3745, 2006.

[11] Ellis, D. P. and Thierry, B.-M., “Large-scale cover song recognition using the 2d
Fourier transform magnitude,” in The 13th International Society for Music Information
Retrieval Conference, pp. 241–246, 2012.

[12] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J., “LIB-
LINEAR: A library for large linear classification,” The Journal of Machine Learning
Research, vol. 9, pp. 1871–1874, 2008.

[13] Freund, Y., Schapire, R., and Abe, N., “A short introduction to boosting,”
Journal-Japanese Society For Artificial Intelligence, vol. 14, no. 771-780, p. 1612, 1999.

52

[14] Gao, S., Tsang, I. W., Chia, L.-T., and Zhao, P., “Local features are not lone-
lyLaplacian sparse coding for image classification,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pp. 3555–3561, IEEE, 2010.

[15] Georghiades, A. S., Belhumeur, P. N., and Kriegman, D., “From few to many:
Illumination cone models for face recognition under variable lighting and pose,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 23, no. 6, pp. 643–660,
2001.

[16] Grosse, R., Raina, R., Kwong, H., and Ng, A. Y., “Shift-invariance sparse coding
for audio classification,” arXiv preprint arXiv:1206.5241, 2012.

[17] Hamel, P. and Eck, D., “Learning Features from Music Audio with Deep Belief Net-
works.,” in The 11th International Society for Music Information Retrieval Conference,
pp. 339–344, Utrecht, The Netherlands, 2010.

[18] Henaff, M., Jarrett, K., Kavukcuoglu, K., and LeCun, Y., “Unsupervised
learning of sparse features for scalable audio classification.,” in The 12th International
Society for Music Information Retrieval Conference, pp. 681–686, 2011.

[19] Hevner, K., “Experimental studies of the elements of expression in music,” The
American Journal of Psychology, pp. 246–268, 1936.

[20] Hoerl, A. E. and Kennard, R. W., “Ridge regression: Biased estimation for
nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[21] Humphrey, E. J., Bello, J. P., and LeCun, Y., “Feature learning and deep ar-
chitectures: new directions for music informatics,” Journal of Intelligent Information
Systems, vol. 41, no. 3, pp. 461–481, 2013.

[22] Humphrey, E. J., Nieto, O., and Bello, J. P., “Data Driven and Discriminative
Projections for Large-Scale Cover Song Identification.,” in ISMIR, pp. 149–154, 2013.

[23] Hyvrinen, A., Hoyer, P., and Oja, E., “Image denoising by sparse code shrinkage,”
in Intelligent Signal Processing, Citeseer, 1999.

[24] Jiang, Z., Lin, Z., and Davis, L. S., “Learning a discriminative dictionary for
sparse coding via label consistent K-SVD,” in Computer Vision and Pattern Recog-
nition (CVPR), 2011 IEEE Conference on, pp. 1697–1704, IEEE, 2011.

[25] Kim, Y. E., Schmidt, E. M., Migneco, R., Morton, B. G., Richardson, P.,
Scott, J., Speck, J. A., and Turnbull, D., “Music emotion recognition: A state
of the art review,” in Proc. ISMIR, pp. 255–266, Citeseer, 2010.

[26] Lee, H., Battle, A., Raina, R., and Ng, A. Y., “Efficient sparse coding algo-
rithms,” in Advances in neural information processing systems, pp. 801–808, 2006.

[27] Li, T. and Tzanetakis, G., “Factors in automatic musical genre classification of
audio signals,” in Applications of Signal Processing to Audio and Acoustics, 2003 IEEE
Workshop on., pp. 143–146, IEEE, 2003.

[28] Mairal, J., Bach, F., and Ponce, J., “Task-driven dictionary learning,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 34, no. 4, pp. 791–804,
2012.

53

[29] Mairal, J., Bach, F., Ponce, J., and Sapiro, G., “Online dictionary learning for
sparse coding,” in Proceedings of the 26th Annual International Conference on Machine
Learning, pp. 689–696, ACM, 2009.

[30] Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A., “Discrimina-
tive learned dictionaries for local image analysis,” in Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1–8, IEEE, 2008.

[31] Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A., “Discrimina-
tive learned dictionaries for local image analysis,” in Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1–8, IEEE, 2008.

[32] Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., and Bach, F. R., “Supervised
dictionary learning,” in Advances in neural information processing systems, pp. 1033–
1040, 2009.

[33] Markov, K. and Matsui, T., “Music genre classification using self-taught learning
via sparse coding,” in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on, pp. 1929–1932, IEEE, 2012.

[34] Ness, S., Walters, T., and Lyon, R., “Auditory Sparse Coding,” in Music Data
Mining (Li, T., Ogihara, M., and Tzanetakis, G., eds.), pp. 77–92, CRC Press,
2011.

[35] Olshausen, B. A. and Field, D. J., “Sparse coding with an overcomplete basis set:
A strategy employed by V1?,” Vision research, vol. 37, no. 23, pp. 3311–3325, 1997.

[36] Pachet, F. and Zils, A., “Evolving automatically high-level music descriptors from
acoustic signals,” in Computer Music Modeling and Retrieval, pp. 42–53, Springer,
2004.

[37] Panagakis, Y. and Kotropoulos, C., “Music genre classification via topology
preserving non-negative tensor factorization and sparse representations,” in Acous-
tics speech and signal processing (ICASSP), 2010 IEEE international conference on,
pp. 249–252, IEEE, 2010.

[38] Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S., “Orthogonal matching pur-
suit: Recursive function approximation with applications to wavelet decomposition,”
in Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-
Seventh Asilomar Conference on, pp. 40–44, IEEE, 1993.

[39] Robnik-ikonja, M. and Kononenko, I., “Theoretical and empirical analysis of Re-
liefF and RReliefF,” Machine learning, vol. 53, no. 1-2, pp. 23–69, 2003.

[40] Russell, J. A., “A circumplex model of affect.,” Journal of personality and social
psychology, vol. 39, no. 6, p. 1161, 1980.

[41] Schmidt, E. M. and Kim, Y. E., “Prediction of Time-varying Musical Mood Distri-
butions from Audio.,” in ISMIR, pp. 465–470, 2010.

[42] Schmidt, E. M. and Kim, Y. E., “Learning emotion-based acoustic features with
deep belief networks,” in Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2011 IEEE Workshop on, pp. 65–68, IEEE, 2011.

54

[43] Schmidt, E. M., Turnbull, D., and Kim, Y. E., “Feature selection for content-
based, time-varying musical emotion regression,” in Proceedings of the international
conference on Multimedia information retrieval, pp. 267–274, ACM, 2010.

[44] Soleymani, M., Caro, M. N., Schmidt, E. M., Sha, C.-Y., and Yang, Y.-
H., “1000 songs for emotional analysis of music,” in Proceedings of the 2nd ACM
international workshop on Crowdsourcing for multimedia, pp. 1–6, ACM, 2013.

[45] Sturm, B. L., “An analysis of the GTZAN music genre dataset,” in Proceedings of the
second international ACM workshop on Music information retrieval with user-centered
and multimodal strategies, pp. 7–12, ACM, 2012.

[46] Sturm, B. L., “Classification accuracy is not enough,” Journal of Intelligent Infor-
mation Systems, vol. 41, no. 3, pp. 371–406, 2013.

[47] Sturm, B. L., “The GTZAN dataset: Its contents, its faults, their effects on evalua-
tion, and its future use,” arXiv preprint arXiv:1306.1461, 2013.

[48] Sturm, B. L., “A survey of evaluation in music genre recognition,” in Adaptive Mul-
timedia Retrieval: Semantics, Context, and Adaptation, pp. 29–66, Springer, 2014.

[49] Sturm, B. L. and Noorzad, P., “On automatic music genre recognition by sparse
representation classification using auditory temporal modulations,” Computer music
modeling and retrieval, pp. 379–394, 2012.

[50] Trohidis, K., Tsoumakas, G., Kalliris, G., and Vlahavas, I. P., “Multi-Label
Classification of Music into Emotions.,” in ISMIR, vol. 8, pp. 325–330, 2008.

[51] Tzanetakis, G. and Cook, P., “Musical genre classification of audio signals,” Speech
and Audio Processing, IEEE transactions on, vol. 10, no. 5, pp. 293–302, 2002.

[52] Tzanetakis, G. and Cook, P., “Musical genre classification of audio signals,” Speech
and Audio Processing, IEEE transactions on, vol. 10, no. 5, pp. 293–302, 2002.

[53] Tzanetakis, G., Ermolinskyi, A., and Cook, P., “Pitch histograms in audio and
symbolic music information retrieval,” Journal of New Music Research, vol. 32, no. 2,
pp. 143–152, 2003.

[54] Wlfing, J. and Riedmiller, M., “Unsupervised Learning of Local Features for Music
Classification.,” in The 13th International Society for Music Information Retrieval
Conference, pp. 139–144, 2012.

[55] Yang, D. and Lee, W.-S., “Disambiguating Music Emotion Using Software Agents.,”
in ISMIR, vol. 4, pp. 218–223, 2004.

[56] Yang, J., Yu, K., Gong, Y., and Huang, T., “Linear spatial pyramid matching
using sparse coding for image classification,” in Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pp. 1794–1801, IEEE, 2009.

[57] Yang, Y.-H., Lin, Y.-C., Su, Y.-F., and Chen, H. H., “A regression approach to
music emotion recognition,” Audio, Speech, and Language Processing, IEEE Transac-
tions on, vol. 16, no. 2, pp. 448–457, 2008.

55

[58] Yang, Y.-H., Liu, C.-C., and Chen, H. H., “Music emotion classification: a fuzzy
approach,” in Proceedings of the 14th annual ACM international conference on Multi-
media, pp. 81–84, ACM, 2006.

[59] Yeh, C.-C. M., Su, L., and Yang, Y.-H., “Dual-layer bag-of-frames model for music
genre classification,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pp. 246–250, IEEE, 2013.

[60] Yeh, C.-C. M. and Yang, Y.-H., “Supervised dictionary learning for music genre
classification,” in Proceedings of the 2nd ACM International Conference on Multimedia
Retrieval, p. 55, ACM, 2012.

[61] Zhang, Q. and Li, B., “Discriminative K-SVD for dictionary learning in face recog-
nition,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on, pp. 2691–2698, IEEE, 2010.

56

