
1

Effective Search Strategies for
Application-Independent Speedup in

UDP Demultiplexing

Joseph T. Dixon and Kenneth L. Calvert
{jdixon,calvert}@cc.gatech.edu

GIT-CC-97-02

Networking and Telecommunications Group
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

Abstract

We present UDP datagram demultiplexing techniques
that can yield potentially substantial application-
independent performance gains over BSD-derived UDP
implementations.  Our demultiplexing strategies exploit
local host and UDP implementation features -- (1) how
UDP processes connection-less datagrams, (2) local host
application as client or server, and (3) local host
application “density” -- resulting in straight-forward
hash-based search strategies that caused demultiplexing
speedups as high as 24-to-1 over BSD’s one-behind
cache.  Furthermore, while past researchers have shown
that cache-based schemes yield little performance benefit
for UDP, we show that cache-based implementations can
actually degrade demultiplexing performance. Finally, we
recommend simple, non-protocol altering local host
modifications for existing and future UDP
implementations.  We used four server traffic traces and
eight algorithms in our trace-driven simulations, and
executed more than 60 simulations to obtain our results.

1. Introduction

1.1 Background
The recent Internet explosion has placed greater demand
on TCP/IP’s performance.  As a result, several works have
presented implementations that can yield significant
TCP/IP performance gains over BSD-derived
implementations. [Clark89, Part&Pink93, Dix&Cal96]  A
common strategy is to speed up specific processing steps
that are potential performance bottlenecks.  In this paper,
we show how unicast datagram demultiplexing -- the
successful delivery of a datagram to its intended
communication end-point/process -- can be improved so
that overall packet processing improves.  In particular, we

analyze UDP’s1 unicast datagram demultiplexing, which
can bottleneck packet processing when a large end-point
store is searched to find the destination end-point and
when datagram/end-point matching rules allow exhaustive
store searches.  UDP performance gains are of particular
interest because UDP’s transport services are utilized by
some of the Internet’s most heavily used
applications.[Com&Stev91, Wri&Stev95]

We describe UDP’s unicast datagram demultiplexing
using the destination host model shown in figure 1.

...

...
Arriving Datagram Stream

Kernel Space

User Space

User Processes

Communication End-point Store

UDP/IP

Figure 1.  Destination host model for UDP datagram demultiplexing.

Our model assumes the following:
• UDP/IP performs UDP datagram demultiplexing and

is implemented in the operating system kernel.
• Each active network application in user space is

represented by a user process and has an associated
kernel level “end-point” that UDP/IP uses to maintain
the process’ network related kernel resources.  We
make this end-point/process association one-to-one;
therefore, the end-point is UDP/IP’s identifier for the
user process.

• Each arriving datagram contains a “tag” that UDP/IP
uses to correctly identify a datagram’s correct
destination end-point.

• Each arriving datagram is destined for a single user
process.

• UDP/IP keeps end-points in a store that must be
searched in order to find a datagram’s correct
destination end-point.

Thus, UDP/IP receives an arriving datagram, determines
its tag, searches the store for the end-point identified by
the tag, and delivers the datagram payload to the end-

                                                          
1 UDP, or User Datagram Protocol, is the Internet suite’s
unreliable, datagram-oriented transport protocol.



2

point associated user process.  (We assume that all other
typical UDP/IP datagram processing also takes place.)

1.2 BSD’s PCB and UDP Implementations
BSD-derived UDP implementations use protocol control
blocks (pcbs) as communication end-points and manage
the pcbs using a circular linked list store combined with a
one-behind cached pcb pointer.2 [Wri&Stev95]
Traditionally, in_pcblookup is the kernel function that
performs the pcb list search.  This function matches the
source (or foreign) and destination (or local) IP addresses
and port numbers of a just-arrived packet with the
foreign/local sockets of a pcb (foreign and local sockets
make up the tag); the latter may include wildcard
addresses, indicating that the pcb can accept packets with
any value in that field.  The only mandatory value
specified in a wildcarded pcb is the local port number;
any combination of  foreign IP address, foreign port and
local IP address may be unspecified.  When an inbound
packet is received, the in_pcblookup function
searches through a circular linked list of pcbs (a pointer to
which is passed as an argument) and identifies the pcb
with the fewest wildcard matches.  A NULL value is
returned when no pcb matching the packet can be found.

The one-behind cached pointer always points to the pcb
that was referenced by the last arriving UDP packet.
When reference locality is high, i. e., when a single or
small set of pcbs is preferentially referenced, one would
expect the cached pointer to avoid potentially many
otherwise costly linear list searches to find matching pcbs.
(TCP benefits from this search strategy.)  However, well
documented investigations show that this cached pointer
yields practically no UDP demultiplexing performance
benefits.[Part&Pink93]  This one-behind cache is not
effective as a performance enhancer, even when pcb
reference locality is substantial, primarily because fully
specified UDP pcbs (i. e., ones with specific values for
foreign and local address and port) seldom exist: the one-
behind cache saves a linear list search only for cached
fully specified pcbs.  This condition results from several
UDP implementation characteristics:
• A list search’s goal is to produce a “best” match,

which may result in an exact match with a fully
specified or a partial match with a wildcard pcb,
whichever pcb yields the most matching fields and
least wildcarded ones.  A partially specified pcb has
wildcarded (i. e., don’t care) local address or foreign
address or port values.

                                                          
2 This investigation focuses entirely on existing BSD-
derived UDP implementations (such as BSD Net/3 and
SunOS 4.1.X).  Other UDP implementations may deviate
from the packet processing behavior we describe herein
(e. g., Solaris 2.X).

• Wildcard pcbs are typical for UDP because UDP is
primarily used as a connection-less transport -- pcbs
that always have specific IP addresses and service
ports are generally associated with connection-
oriented communication.  In practice, UDP pcbs are
fully-specified only long enough to successfully send
an outgoing datagram.3

• The objective of caching is to find only an exact
match.  Caching a wildcard pcb for the last arriving
packet is useless because a better match for the
current packet may exist further in the list, even when
the cached wildcard pcb and current packet partially
match.

1.3 Solution Requirements
We propose a pcb search strategy that significantly speeds
up UDP packet demultiplexing over the implementation
described in section 1.2.  Our solution is a BSD Net/3
UDP re-implementation.  Since our goal to  make
modifications that have a high benefit-to-effort ratio, our
solution conforms to specific requirements:
• UDP is not altered from its specification;
• Changes are isolated to individual hosts;
• Impact on system resources is not altered

significantly;
• Code changes are straight-forward and sparse.

In an earlier paper, we asserted that TCP and UDP packet
demultiplexing may warrant separate solutions.
[Dix&Cal96]    In this paper, we investigate UDP to
determine more precise features of effective pcb search
strategies. While arriving UDP packets can be unicast,
broadcast, or multicast, we focus on unicast packet
demultiplexing because broadcast and multicast UDP
packets always require an exhaustive list search: a
packet’s payload must be delivered to all matching pcbs.

1.4 Previous Work
Several researchers have investigated TCP demultiplexing
efficiency. [Clark89, McK&Dove92, Dix&Cal96, GIT-
CC-96-08]  Fewer, however, have addressed UDP
demultiplexing:
• Mogul, who investigated persistence and temporal

locality at the process level, showed traffic traces in
which half of all datagrams received are replies to the
last datagram that was sent.  He suggested that a last-
sent pcb cache might result in UDP demultiplexing
speedup.[Mogul92]

                                                          
3 The Sockets API bind function sets local IP address
and port, while connect or sendto set the foreign IP
address and port.  In practice, UDP clients that utilize an
actual connection (via connect) are optional; such UDP
server implementations are rare. [Wri&Stev95]



3

• Partridge and Pink observed that the one-behind
cache yielded little performance benefit for UDP.
They also tested a last-received and last-sent pcb
cache UDP implementation on a general purpose
system and showed a cache hit rates of up to 57% and
30%, respectively.[Part&Pink93]

Our UDP research differs from past investigations in
several important ways:
1. We investigate local host and UDP implementation

characteristics as search algorithm design factors
rather than pcb reference locality;

2. We quantify execution cost at a lower granularity --
instruction counts rather than cache hit rate.

3. We offer specific implementation recommendations.

Subsequent sections present our work in detail:
experiments, simulation results, implementation
recommendations, and conclusions.

2. Experiment Overview

2.1 Network Server Traces
Four network server traces drive our analysis.  They were
collected from 4:35PM to 6:19PM, April 7, 1995 (during
peak usage) using the UNIX tcpdump(1) command.
The servers were directly attached to the Georgia Institute
of Technology College of Computing’s 100Mbps FDDI
backbone and provided a variety of TCP and UDP
services to both on and off-campus hosts.  Table 1 shows
total incoming packets, number of UDP lookups
performed, and percent of all UDP lookups in which a
server application is bound to the destination pcb.

Server
Name

Primary
UDP

Services

Total
Incoming
Packets

Total
UDP

Lookups

% UDP
Server

Lookups
cleon xterm, other 183462 85975 85%
gaia xterm, other 190564 106969 99%
lennon nfs, smtp, other 174949 61437 96%
siwenna nfs, nntp 1222643 143830 99%

Table 1. Summary of the four network server traces, number of UDP
lookups, and the percentage of UDP lookups to server applications.

2.2 Demultiplexing Algorithms
We targeted local host and UDP characteristics rather than
pcb reference locality to devise search algorithms that
avoid unnecessary packet-to-pcb comparisons.  Each
characteristic we considered has search strategy
implications:
1. How UDP processes connection-less datagrams - We

mentioned earlier how UDP pcbs are generally
wildcarded and how delivering a packet payload to
such pcbs is different than fully-specified pcbs.

Given these observations, we separate fully specified
pcbs from wildcarded pcbs for separate processing.

2. Local host application as client or server - UDP
server applications (and their pcbs) tend to remain in
the pcb list longer than client applications.  How long
a pcb remains in the pcb list directly affects search
cost because longer lists make exhaustive pcb list
searches more expensive – a critical issue for UDP
server applications.  We partition the pcb search
space into many shorter lists rather than a single long
one to reduce the search cost of long-lived wildcard
pcbs.

3. Local host application “density” - Several of our
servers support a diverse set of UDP server
applications, which implies potentially many long-
lived wildcard pcbs.   Intuitively, the larger the pcb
search space, the greater the speedup potential when
the search space is partitioned.  We partition the pcb
search space by service type (i. e., port number).
Service-based partitions turn out to be an effective
strategy for servers that support a variety of
applications.

2.2.1 Linear Search - in_pcblookup
We measured in_pcblookup performance to serve as
a benchmark.  Recall that in_pcblookup performs a
linear search of a circular linked list.  All other algorithms
implemented for this study eventually invoke
in_pcblookup.

2.2.2 One- and Two-entry Pcb Cache
The BSD 4.3-Reno UNIX release was the first to include
a single cached pointer to the last pcb referenced (i. e.,
one-behind cache).  If the next packet that arrives is
destined for the pcb that the cache identifies, then a list
search is avoided; otherwise, in_pcblookup is invoked
to find the best match pcb.  We simulated this algorithm
and measured its performance to “sanity check” our
experiment methodology.

P C B  L is t

M R U

< I3 ,P 3>  < I4 ,P 4>

L R U

(O n ly  o n e  p o in te r is  u sed  in  th e  B S D -R en o  o n e -b eh in d  a lg o rith m )

< I 1 ,P 1>  < I2 ,P 2>

Figure 2. Diagram of one-behind and 2-cache algorithms.



4

We also devised a novel two-cache algorithm that
attempts to exploit pcb reference locality. Though
conceptually simple, multi-entry cache algorithms have an
inherent complexity: more than one element in the  cache
requires policies governing access order and replacement.
Our two-cache implementation enforces most-recently-
used (MRU) access and least-recently-used (LRU)
replacement policies. Figure 2 shows the structures used
in the 2-cache algorithm after packets destined for pcbs
<I1,P1><I2,P2> and <I3,P3><I4,P4> are demultiplexed.  The
2-cache algorithm executes the following steps when a
received packet is demultiplexed.

Check the MRU cache;
If !(MRU cache hit) {

Check the LRU cache;
If !(LRU cache hit)

LRU cache =
in_pcblookup(PCB_list, ...);

swap(MRU cache, LRU cache);
}

Return MRU cache as the destination PCB;

This algorithm accesses the MRU cache first, but replaces
it last; it accesses the LRU cache last, but replaces it first.
We examined cache-based demultiplexing algorithms
mainly to corroborate past researchers’ findings.

2.2.3 Hashing to Multiple Pcb Lists
McKenney and Dove introduced a demultiplexing
algorithm that combines caching with multiple hash
chains.[McK&Dove92]  The algorithm maintains a linear
list of pcbs for each of several hash chains.  Each hash
chain has an associated cache that points to the last pcb
found on that chain.  When a packet arrives, it is routed to
a hash chain via a hash function.  The packet is then
assigned to its pcb via a cached pcb comparison or linear
hash chain search if the cache comparison fails.  Figure 3
shows the structures used in this algorithm after packets
destined for pcbs tagged with <I1,P1><I2,P2> and
<I3,P3><I4,P4> are demultiplexed.

H a sh  C h a in  [1 ]

C a ch e  [1 ]

< I1 ,P 1 >  < I 2 ,P 2 >

H a sh  C h a in  [R ]

C a ch e  [R ]

< I3 ,P 3>  < I 4 ,P 4>

1

R

N -1

0

H a sh e d
P o in ters

(N o  o n e -b e h in d  c a c h e  is  u se d  fo r  w ild c a rd  P C B  lis ts .)

Figure 3. Diagram of an N hash chain algorithm with 1 cache per
chain.

The 1-cache/multiple hash chain algorithm we used
executes the following steps when it demultiplexes a
packet identified by <I1,P1><I2,P2>.

R = hash(<I1,P1><I2,P2>), R ∈ [0,(N-1)];
Check cache[R];
If !(cache hit)

cache[R] =
in_pcblookup(hash_chain[R], ...);

Return cache[R] as the destination PCB;

In our TCP work, we showed that this algorithm was
extremely effective on pcb lists that had a large fraction of
fully-specified pcbs.  For UDP, however, we know the
one-behind cache is ineffective because of UDP’s large
fraction of wildcard pcbs; thus, we used a multiple hash
chain without the single entry cache per chain on wildcard
pcbs in our final UDP algorithm.

2.2.4 Hashing to Separate Wildcard and Fully-
specified Pcb Lists
We designed a two-stage multiple hash chain algorithm to
capitalize on pcb reference locality for local hosts with
two features:  (i) the host’s supported applications consist
of a large fraction bound to fully specified pcbs and (ii) a
sufficient fraction of its arriving packets is destined for
those pcbs.  We have not been able to identify such
applications but, since UDP client applications may be
implemented optionally with sendto or connect, we
felt compelled to address this case.  (We show later that
this algorithm can perform well, even in the absence of
fully-specified pcbs.)

The two-stage UDP demultiplexing algorithm has several
notable features:
1. Wildcard pcbs and fully-specified pcbs are managed

in separate stores, since searching for each is
inherently different.

2. The fully-specified pcb store is searched before the
wildcard pcb store so an exact match (if one exists)
can be found early in the search.

3. Fully connected pcb searches (possibly for UDP
client applications) use the McKinney and Dove type
multiple hash chain algorithm we described earlier.

4. Wildcard pcb searches (primarily from connection-
less server applications) use a multiple hash chain
algorithm without the one-behind cache per chain,
since we know the cache is not effective on them.

5. We chose a simple, “cheap” hash function that
partitioned each search space so that no single hash
chain per store was inordinately longer than another.



5

The two-stage multiple hash chain algorithm executes the
following steps:

Let the arriving packet be identified by
the foreign and local socket pair
(<I1,P1><I2,P2>).

R = hash(<I1,P1><I2,P2>), R ∈ [0,(N-1)];
Check f_cache[R];
If !(cache hit){

inp = in_pcblookup(f_chain[R], ...);
If (inp == NULL)

inp = in_pcblookup(w_chain[R],
...);}

else
f_cache[R] = inp;

Return inp as the destination PCB;

Our multiple hash chain algorithm is consistent with our
TCP recommendations[GIT-CC-96-08];
• We only use 64 hash chains for each store.  (We

showed that additional performance speedup may not
justify system resource costs when more than 64 hash
chains are used.)

• We use a straight-forward and efficient hash chain
function.   Hash is merely the destination/local host’s
service port modulo-64. It requires only four to six
assembly language instructions (depending on code
optimization) and, as will be shown later, yields
impressive results.

Note that pcbs must be hashed to their respective chains
as they are bound.  Note also that w_hash segregates
wildcard pcbs by port number; this is intuitively
appealing,  since it reduces the chances of any single hash
chain on a UDP hosts that serves many applications  of
becoming inordinately long.

2.3 Metrics
We measure performance in terms of assembly language
instructions required per lookup.  We used the following
procedure to determine the number of instructions
executed by each algorithm:
1. Implement a C-language version of the algorithm.
2. Generate an optimized assembly language version of

the C program using the gcc compiler.
3. Determine the correct mapping between the assembly

language instructions and  the C program instructions.
(This step determines the exact cost of each logical
processing path.)

4. Imbed the code to compute instruction counts for
each lookup (from step 3) in the C program.

We also report UDP demultiplexing speedup for each
algorithm relative to the original in_pcblookup using
the simple ratio [Hen&Pat96]:

Speedup
Avg InstructionCostLinearSearch
Avg InstructionCostNewAlgorithm

=
(

(

)

)

2.4 Assumptions
We made several assumptions so our simulation results
would be as realistic as possible.  (Some were also
necessary to overcome packet traces limitations.)
• All arriving packets will be delivered to a valid pcb.
• The local host is a server for application L, where L is

a well-known port, if L is specified as the local port in
an arriving trace packet.

• The local host is a client for application F, a well-
known port, if F is specified as the foreign port in an
arriving trace packet and L, not well-known, is
specified as the local port.

• The local host’s function, as client or server for an
application, is undetermined for arriving packets that
have non-well-known local and foreign ports.

• Each local host application binds to an existing
wildcard pcb when it sends a datagram.

• Undetermined applications are assumed to be clients
and are bound to fully-specified pcbs. (Still, less than
one percent of all arriving packets in our traces are
delivered to fully specified pcbs.)

• All server application processes are invoked at system
startup.  (i. e., the server’s wildcard pcb is in UDP’s
pcb store at simulation startup and exists for the
entire trace.)

• Once a single datagram is delivered to a client
application, its pcb is removed from the pcb list.

• Client applications bound to fully-specified pcbs exist
from first to last trace packet destined to that pcb.

These assumptions follow directly from various well-
documented discussions concerning BSD-derived TCP/IP
implementations. [Wri&Stev95,Stevens90,Com&Stev91]

3. Results

3.1 Caching can  add cost to demultiplexing.
We expected the cached pcb pointer to be ineffective
because the vast majority of arriving UDP packets are
delivered to wildcard pcbs. Our simulations show,
however, that caching can actually add cost to
demultiplexing because we consider assembly language
instructions executed rather than cache hit/miss rates.
While both the BSD 4.3-Reno one-behind cache and our
MRU/LRU 2-cache algorithm sped up TCP
demultiplexing, both performed worse than
in_pcblookup’s simple linear search for UDP. Table 2
shows the mean number of instructions executed per UDP
pcb lookup for the linear search, BSD 4.3-Reno



6

algorithm, and the 2-cache algorithms.  Table 2 also
shows the one-behind and 2-cache algorithms’ speedup
over a linear search.

Server linear
search

1-
behind

1-
behind

Speedup

2-
cache

2-cache
Speedup

cleon 886.1 905.7 0.98 913.3 0.97
gaia 839.2 858.2 0.98 865.2 0.97
lennon 1254.2 1273.3 0.98 1280.4 0.98
siwenna 91.4 110.5 0.83 117.5 0.78

Table 2. Mean instructions executed per UDP pcb lookup and
speedup for in_pcblookup, BSD 4.3-Reno, and 2-cache algorithm.

3.2 A multiple hash chain algorithm provides
substantial speedup.
We expected a multiple hash chain algorithm to speed up
UDP demultiplexing primarily because (1) the multiple
hash chain algorithm breaks a single pcb list into multiple
smaller lists (as long as the algorithm’s hash function
reasonably distributes pcbs) and (2) UDP demultiplexing
usually exhaustively searches its pcb list.  We simulated a
modified version of the multiple hash chain algorithm we
described in a previous section - we removed the one-
behind cache for each hash chain - and realized substantial
UDP demultiplexing speedup.  Table 3 shows various the
algorithm’s  instruction execution cost.

Server
Non-caching
Multi-Hash

Chain (Avg.)
90-percentile

Speedup over
linear search

cleon 45.0 46 19.6
gaia 45.1 46 18.6
lennon 50.8 52 24.7
siwenna 33.4 34 2.7

Table 3. Mean instructions per UDP pcb lookup, 90-percentile, and
speedup for the modified multiple hash chain algorithm.

The multiple hash chain algorithm, in its original form (i.
e., with a one-behind cache per hash chain), performed
substantially better than in_pcblookup, but not as well
as the non-caching hash chain algorithm.

3.3 If the search space is partitioned by service
port, then pcbs are effectively distributed across
multiple hash chains.
The speedups in Table 3 result mainly from our simple,
low-cost hash function, destination service port-modulo-
64, which effectively distributes pcbs across the
algorithm’s 64 hash chains.  Hashing on local service port
is attractive because well-known services (assigned local
port numbers up to 1024) will be evenly distributed when
bound to wildcard pcbs with only local port number
specified.  Clearly, TCP/IP hosts that provide UDP-based
services will benefit from this scheme; other TCP/IP hosts
can also benefit, depending on their network applications’

bindings.  Table 4 summarizes single list versus multiple
hash chain lengths at simulation start up.

Server Single List
length

Min. chain
length

Max. chain
length

cleon 327 1 8
gaia 266 2 7
lennon 414 4 8
siwenna 17 1 2

Table 4.  List vs. chain lengths (using 64 hash chains) at simulation
start up.

3.4 As demultiplexing gets faster,
in_pcblookup   overhead becomes significant.
Each in_pcblookup call requires 12-14 assembly
language instructions for parameter setup and a sub-
routine jump (depending on optimization).  When
execution costs are as low as those shown in Table 3, the
function call becomes substantial overhead.  For example,
on our lennon server, when a simple linear list search is
the chosen demultiplexing algorithm, the
in_pcblookup call overhead is less than 1% of total
demultiplexing cost; call overhead accounts for as much
as 27% of total cost when the multiple hash chain
algorithm is used instead.

Greater efficiency can be obtained via in-line iteration
through the pcb list(s).4  Thus, all averages we report may
be further reduced by 12-14 assembly language
instructions for each in_pcblookup invocation if in-
line list/chain iteration is implemented.

3.5 The two-stage algorithm can speed up
demultiplexing, but results are not consistent.
The two-stage algorithm separates fully specified pcbs
from wildcard pcbs so separate lookup strategies can be
applied.  Recall that this algorithm had the following
features:
1. The wildcard pcb store uses a non-caching multiple

hash chain algorithm.
2. The fully-specified pcb store uses a 1-cache multiple

hash chain algorithm.
3. The fully-specified pcb store is searched before the

wildcard pcb store so an exact match (if one exists)
can be found early in the search.

4. We only use 64 hash chains for each store and use a
local service port modulo-64 hash function.

Table 5 shows that the two-stage algorithm can also speed
up UDP demultiplexing substantially, though not without
exception and not as much as the simple non-caching hash

                                                          
4 The precedent is already set: Net/3 and SunOS 4.X
demultiplex arriving multicast and broadcast packets
using an in-line  while-loop rather than a function call.



7

chain solution discussed in the previous section.  The
primary additional cost this two-stage algorithm incurs is
(1) cache management cost, (2) a NULL pointer test for
entering the second stage, and (3) an additional
in_pcblookup invocation.  Thus, little can be done
about (1) and (2), but in-line list iteration of the two-stage
algorithm can reduce the instruction cost averages shown
in Table 6 by as much as 28 instructions.

Figures 4 through 7 compare (for each server trace) the
two-stage algorithm’s cumulative distribution curve with
those of in_pcblookup, one-behind cache, and the
non-caching multiple hash chain algorithm.  The hash
chain algorithms clearly out-perform typical UDP
implementations with one exception. In Table 5 and
Figure 7, our siwenna server results show that the search
space partitioning benefit is overwhelmed by the two-
stage algorithm’s overhead liability.  This results when a
host, siwenna in this case, has few pcbs, wildcard or
otherwise.  Thus, one or more pcb hash chains (especially
one that is preferentially referenced) and the original
single list may be close in length.  In such cases, hash
function execution, address indirection, and
in_pcblookup function invocation liabilities may
exceed  shorter pcb list benefits.  (Note, however, that a
two-stage algorithm using in-line hash chain iteration may
reverse this result.)

Server
2-stage Multi-
Hash (Avg.) 90-percentile

Speedup over
linear search

cleon 114.7 122 7.7
gaia 117.9 122 7.1
lennon 123.4 125 10.2
siwenna 106.7 107 0.86

Table 5. Mean instructions per UDP pcb lookup, 90-percentile, and
speedup for the modified multiple hash chain algorithm.

cleon.cc.gatech.edu

Instructions per UDP lookup

Fr
ac

tio
n 

of
 A

ll U
DP

 L
oo

ku
ps

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

linear
1-behind
multi-hash
2-stage

Figure 4 Cumulative distribution of various algorithms’ for cleon
(xterm & other services).

gaia.cc.gatech.edu

Instructions per UDP lookup

Fr
ac

tio
n 

of
 A

ll U
DP

 L
oo

ku
ps

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5 Cumulative distribution of various algorithms’ for gaia
(xterm & other services).

lennon.cc.gatech.edu

Instructions per UDP lookup

Fr
ac

tio
n 

of
 A

ll U
DP

 L
oo

ku
ps

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6 Cumulative distribution of various algorithms’ for lennon
(nfs, smtp,  & other services).

siwenna.cc.gatech.edu

Instructions per UDP lookup

Fr
ac

tio
n 

of
 A

ll U
DP

 L
oo

ku
ps

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7 Cumulative distribution of various algorithms’ for siwenna
(nfs  & nntp services).



8

4. How does demultiplexing speedup impact
overall in-bound UDP packet processing?
We attempted to speed up UDP demultiplexing because
we ultimately wanted to make overall datagram processing
more efficient than current BSD derived implementations.
We define overall datagram processing as the kernel
actions necessary to deliver a UDP datagram’s payload
from kernel buffers (copied there by the network interface
card) to the correct destination process’ buffer.  Figure 8
shows the primary Net/3 function calls that make up total
packet processing, given an Ethernet NIC. [Wri&Stev95]
Many function calls are not shown; they do not represent
major processing steps.

Datagram

(Data Link)

(Network)

(Transport)

(Application)

*i ne tsw[].pr_input

ip in tr

sc he dn et is r

et he r_ in pu t

le re ad

le in tr

in _p cb lo ok up

ud p_ in pu t =
ip in tr q:

sb ap pe nd ad dr

so wa ke up

so _r ec vso re ce iv e

ui om ov e

re c vfr o m, e tc.
USER

KERNEL

(Physical)

Figure 8.  Net/3 functions executed to deliver an arriving UDP
datagram to its destination pcb.

A natural “next step” for our work (a step we have not
completed) is to apply our experimental process to Figure
8’s routines to obtain precise results.  In the interim, we
can make a few simple assumptions and use past findings
to extrapolate overall in-bound packet processing
improvements.  While informal, this approach puts
demultiplexing speedup in the overall packet processing
context.

Partridge and Pink showed that the checksum calculation
(in_cksum in Net/3) accounted for 8.4% of total IP and
UDP packet processing time for a 512-byte UDP
datagram. [Part&Pink93]  This includes four in_cksum
invocations (for the IP header and the entire datagram on
send and receive.)  Our experiments show that, when
optimally compiled on a SPARC architecture, the four
in_cksum invocations require 1680 assembly language

instructions to process a 512-byte UDP datagram.5
Therefore, if we assume:
• the fraction of process time is equivalent to fraction

of instructions executed;
• a UDP datagram send and receive require an equal

number of instructions;
then total packet processing requires approximately
10,000 instructions for an arriving 512-byte UDP
datagram.  Thus, we obtain the overall packet processing
speedups shown in Table 7.

Server
No-cache
savings

over Net/3
(Avg Instr)

No
cache multi-

hash
speedup

2-stage
savings

over Net/3
(Avg Instr)

2-stage
multi-
hash

speedup
cleon 861 1.094 792 1.086
gaia 813 1.088 740 1.079
lennon 1222 1.139 1150 1.129
siwenna 77 1.007 4 1.000

Table 6.  Overall packet processing speedup when using the multiple
hash chain algorithms versus Net/3’s one-behind cache.

Though informal, the Table 7 results suggest that in-
bound packet processing processing cost would be
reduced by more than 12% for 512-byte UDP datagrams
arriving at our lennon server (if packets were
demultiplexed using the non-caching multi-hash algorithm
rather than the Net/3 one-behind cache.)  This
performance gain is particularly important, since lennon is
primarily used as a server.  (More than 96% of its arriving
UDP datagrams are destined for server applications.)

5. Conclusions
Recent proposals (including our own past work) have
focused almost exclusively on TCP demultiplexing speed
up.  Such approaches include passing 32-bit pcb
identification parameters as a TCP connect-time option
[Huitema95]; source hashing, which allows direct access
to various information associated with general packet
processing [Chan&Varg95]; Mentat, Inc.’s streams-
implemented TCP/IP, which demultiplexes incoming
packets in IP rather than TCP or UDP [Mentat93]; and
our own multiple hash chain recommendations
[Dix&Cal96].  We know of little else done recently to
address UDP demultiplexing efficiency since Partridge
and Pink’s effort. [Part&Pink93]

In this work, we turned our attention to UDP
demultiplexing.  We corroborated past findings when we

                                                          
5 A single 20-byte IP header checksum calculation
required 87 instructions while the 512-byte UDP datagram
checksum required 753 instructions.  We made two
simplifying assumptions: (1) No datagram word spans two
mbufs; (2) the buffered datagram always begins on a word
boundary.



9

showed that conventional UDP demultiplexing is
notoriously inefficient, even with the one-behind cache
strategy.  We also showed, however, that simple UDP and
host features could be used to design algorithms that result
in substantial application-independent speedup.  As a
result, we offer protocol implementers several
recommendations concerning UDP:
• Use a non-caching multiple hash chain solution if the

local host has few arriving packets destined for client
applications.

• If the fraction of UDP clients implemented with
connect (and their traffic) is high enough, then a
two-stage multiple hash chain solution may be most
suitable.

• When devising a multiple hash chain solution, use a
simple, “cheap” hash function and a relatively small
number of hash chains (e. g., 64).

• If optimum UDP performance is desired, use in-line
pcb list/chain iteration to save function call overhead
normally incurred when in_pcblookup is invoked.

The long-term solution for demultiplexing is not clear.
Meanwhile, our conclusions and recommendations
provide simple, server-independent solutions that yield
performance gains at such high levels that, for some
servers at least, additional enhancements may be
unnecessary.

Acknowledgment - The authors thank Dan
Forsyth for assisting with collecting the packet traces.

References
[Chan&Varg95] Girish P. Chandranmenon and George Varghese,

Trading packet Headers for Packet Processing,
SIGCOMM ‘95, 1995.

[Clark89] David D. Clark, Van Jacobson, John Romkey,
and Howard Salwen, An Analysis of TCP
Processing Overhead, IEEE Communications
Magazine, June, 1989.

[Com&Stev91] Douglas E. Comer and David L. Stevens,
Internetworking with TCP/IP Volume II: Design,
Implementation, and Internals, Prentice Hall,
Inc.,  1991.

[Dix&Cal96] Joseph T. Dixon and Kenneth L. Calvert,
Increasing Demultiplexing Efficiency in TCP/IP
Network Servers, International Conference on
Computer Communications and Networks,
October, 1996.

[GIT-CC-96-08] Joseph T. Dixon and Kenneth L. Calvert,
Increasing Demultiplexing Efficiency in TCP/IP
Network Servers, Technical Report #: GIT-CC-
96-08, Georgia Institute of Technology, 1996.

[Huitema95] Christian Huitema, Multi-homed TCP - IETF
Draft, Network Working Group, May, 1995.
This is a work in progress.

[Hen&Pat96] Hohn L. Hennessy and David A. Patterson,
Computer Architecture - A Quantitative
Approach 2nd Edition, Morgan Kaufman
Publishers, 1996.

[McK&Dove92] Paul E. McKenney and Ken F. Dove, Efficient
Demultiplexing of Incoming TCP Packets, ACM
SIGCOMM ‘92, August, 1992.

[Mentat93] Mentat TCP/IP Design Overview (extracted from
Mentat TCP/IP Internals Manual), Mentat, Inc.,
Los Angeles, CA., July, 1993.

[Mogul92] Jeffrey C. Mogul, Network Locality at the Scale
of Processes, ACM Transactions on Computer
Systems, May, 1992.

[Part&Pink93] Craig Partridge and Stephen Pink, A Faster UDP,
IEEE/ACM Transactions on Networking,
August, 1993.

[Stevens90] W. Richard Stevens, UNIX Network
Programming, Prentice Hall, Inc., 1990.

[Wri&Stev95] Gary R. Wright and W. Richard Stevens, TCP/IP
Illustrated, Volume 2: The Implementation,
Addison-Wesley Publishing Company, 1995.


