Georgia Institute of Technology,

Technical Report,

GT-GOLEM-2011-001, 2011

Ach: IPC for Real-Time Robot Control

Neil Dantam and Mike Stilman

Abstract—We present a new Inter-Process Communication
(IPC) mechanism and library. Ach is uniquely suited for coor-
dinating perception, control drivers, and algorithms in real-time
systems that sample data from physical processes. Ach eliminates
the Head-of-Line Blocking problem for applications that always
require access to the newest message. Ach is efficient, robust,
and formally verified. It has been tested and demonstrated on a
variety of physical robotic systems. Finally, the source code for
Ach is available under an Open Source BSD-style license.

I. INTRODUCTION

Real-time control of physical processes presents a special
set of requirements and constraints on computerized control
systems. Typically, scientists and engineers view physical
processes as a set of continuous, time-varying signals. To
control this physical process with a digital computer, one
must sample the signal at discrete time intervals and perform
control calculations using the sampled value. To achieve high-
performance control of a physical system, we must process
the latest sample with minimum latency. This differs from the
requirements of general computing systems which focus on
throughput over latency and favor prior data over latter data. To
address these concerns, our library, Ach!, provides robust and
efficient communication between software components such as
userspace device drivers and control algorithms in real-time.

There are three goals and assumptions that guide the design
of Ach. First, to utilize decades of prior development and
engineering, we choose to implement our real-time system
on top of a POSIX-like Operating System (OS) [7]. This
provides us with high-quality open source platforms such as
GNU/Linux and a wide variety of compatible hardware and
software. Second, because safety is a critical issue for physical
processes, we must make our system robust. Therefore, we
assume that a multiple process approach will be more robust
than a single-process or multi-threaded application. Processes
include device drivers and algorithms for perception and
control. This implies sampled data must be passed between
OS processes using some form of Interprocess Communication
(IPC). The penalty for this choice is the overhead of additional
context-switching which is justified by increased robustness
and modularity. Our results with Ach verify that the overhead
is acceptable for robot control applications [2], [3]. Finally, we
favor Open Source Software since it maximizes flexibility and
control in applying the IPC to new systems. This is important
both in research and development of novel devices where some
requirements may be unknown from the start. These initial

The authors are with the Robotics and Intelligent Machines Center in
the Department of Interactive Computing, Georgia Institute of Technology,
Atlanta, GA 30332, USA. email: ntd@gatech.edu, mstilman@cc.gatech.edu

'Ach is available at http://www.golems.org/node/1526. The name “Ach”
comes from the common abbreviation for the motor neurotransmitter Acetyl-
choline and the computer networking term “ACK.”

Mountain of
Shogi Pieces

(c¢) Yama Grammar

(a) Golem Krang

(b) Chess Motion Grammar

Fig. 1. Robotic Systems where Ach provided all communications between
hardware drivers, perception, planning and control algorithms. [2], [3], [14].

considerations motivate our development of an open source
IPC to efficiently pass sampled data.

POSIX provides a rich variety of IPC mechanisms, but none
of them fully satisfy our requirements. An overview of these
mechanism is given in [13]. The fundamental difference is
that as soon as a new sample of the signal is produced, nearly
everything in our system no longer cares about the old sample.
Thus, we want to always favor new data over old data whereas
nearly all POSIX IPC favors the old data. This problem is
typically referred to as Head of Line (HOL) Blocking. The
exception to this is POSIX shared memory. However, it is
difficult for programmers to manually manage synchronization
and guarantee performance. This makes the typical and direct
use of POSIX shared memory unfavorable for developing
robust systems. Furthermore, some parts of the system, such
as logging, may need to access older samples, so this also
should be permitted at least on a best-effort basis. Since no
existing standardized and open source implementation satisfied
our requirements for low-latency exchange of most-recent
samples, we have developed a new open source IPC library.

The contribution of this paper is a POSIX Interprocess
Communication library for the real-time control of physical
processes such as robotic systems. This library, called Ach,
provides a message-bus or publish-subscribe communication
semantics, an approach taken by other real-time middleware
and robotics programming systems [10], [11], [8], [9]. Ach
provides numerous advantages making it suitable for real-time
control of physical systems. In particular, Ach is formally
verified, it is efficient, and it always provides processes with
the most recent data sample. To our knowledge, these benefits
are unique among existing communications software.

This paper is organized as follows: Sect. II reviews the
various types of POSIX IPC and explains why they do not
meet our needs. Sect. III explains the ach algorithm and
implementation. Sect. IV discusses the numerous advantages
and few faults of ach, and provides some quantitative perfor-
mance benchmarks. Finally Sect. V summarizes the paper and
describes some possible future directions.

http://www.golems.org/node/1526

II. REVIEW OF POSIX IPC

POSIX provides three main types of general IPC: streams,
datagrams, and shared memory. We review each of these types
and consider why they do not satisfy our requirements for
real-time control of physical processes. A thorough survey of
POSIX IPC is provided in [13].

A. Streams

Stream IPC includes pipes, fifos, local-domain stream sockets,
and TCP sockets. These IPC mechanisms all expose the File
abstraction: a sequence of bytes accessed with read and
write. All stream-based IPC suffers from the HOL blocking
problem; we must read all the old bytes before we see any
new bytes. Furthermore, if we do not wish either the reading
or writing process to block, then we must resort to rather more
complicated Nonblocking or Asynchronous IO approaches.

B. Datagrams

1) Datagram Sockets: Datagram sockets perform somewhat
better than streams in that they are less likely to block the
sender. However, they give a variation on the HOL blocking
problem where newer messages are simply lost if a buffer fills
up. This is unacceptable since we require access to the most
recent data.

2) POSIX Message Queues: While similar to Datagram
sockets, POSIX Message Queues include the feature of mes-
sage priorities. The downside of this is that it is possible to
block if the kernel runs out of space to buffer messages. In
Linux, this is a global rather than a per-queue limit. Consider
a process that gets stuck and stops processing its message
queue. When it starts again, the process must still read/flush
old messages before getting the most recent sample.

C. Shared Memory

POSIX shared memory is very fast and we could, by simply
overwriting a variable, always have the latest data. However,
this provides no recourse for recovering older data that may
have been missed. In addition, general use of shared memory
presents synchronization issues which are notoriously difficult
to solve. For these reasons, we consider direct use of shared
memory inappropriate.

D. Further Considerations

1) Nonblocking and Asynchronous 10 approaches: There
are several approaches that allow a single process or thread
to perform IO operations across several file descriptions.
Asynchronous 10 (AIO) may seem to be the most appropriate
for this application. However, the current implementation
under Linux is not as mature used as other [IPC mechanisms.
Methods using select/poll/epoll/kqueue are widely used for
network servers. Yet, both AIO and select-based methods only
mitigate the HOL problem, not eliminate it. Specifically, the
sender will not block, but the receiver must read/flush the old
data from the stream before it can see the most recent sample.

2) Priorities: To our knowledge, none of the stream or
datagram forms of IPC consider the issue of process priorities.
Priorities are critical for real-time systems. When there are
two readers that want the next sample, we want the real-time
process, such as a motor driver, to get the data and process it
before a non real-time process, such as a logger, does anything.

E. Real-Time and Robotics Middlewares

In addition to the core POSIX IPC mechanisms, there exist
various messaging middlewares; however, these are either
not Open Source or not suitable for our real-time domain.
Data Distribution Service [10] lacks compatible open source
implementations. Aware2.0 [8] is not open source. Microsoft
Robotics Studio is not open source and does not run on POSIX
systems [9]. NAOqi [1] is a behavior-based architecture which
does not meet our requirements for flexible IPC. ROS [11]
provides open source TCP and UDP message transports, which
suffer from the aforementioned HOL blocking problem.

III. THE AcH IPC LIBRARY

Ach provides a message bus or publish-subscribe style of
communication between multiple writers and multiple readers.
A real-time system has multiple Ach channels across which
individual data samples are published. The messages sent on
a channel are simple byte arrays, so arbitrary data may be
transmitted such as text, images and binary control messages.
Each channel is implemented as two circular buffers, (1) a data
buffer with variable sized entries and (2) an index buffer with
fixed-size elements indicating the offsets into the data buffer.
These two circular buffers are written in a channel-specific
POSIX shared memory file. Using this formulation, we solve
and formally verify the synchronization problem exactly once
and contain it entirely within the Ach library.
The Ach interface consists of the following procedures:

e ach_create: Create the shared memory region and
initialize its data structures

e ach_open: Open the shared memory file and initialize
process local counters

e ach_put: Insert a new message into the channel

e ach_get: Receive a message from the channel

e ach_close: Close the shared memory file

Channels must be created before they can be opened. Cre-
ation may be done directly by either the reading or writing
process, or it may be done via the shell command, ach -C
channel_name, before the reader or writer start. This is
analogous to the creation of FIFOs with mk £i fo called either
as a shell command or as a C function and is another example
of Ach’s flexibility. After the channel is created, each reader or
writer must open the channel before it can get or put messages.

A. Channel Structure

The core data structure of an Ach channel is a pair of circular
arrays located in the POSIX shared memory file, Fig. 2. The
data array contains variable sized elements which store the
actual message frames sent through the Ach channel. The
index array contains fixed size elements where each element

4 (? (?\

header |index_head | index_free | data_head | data_free
4111010
index_array
Iy | L1 | I2]| I3
O |a Jar |az|as | bo | O | O
data_array
k Do D1 Dy D3 Ds Ds Deg D7/
Fig. 2. Logical Memory Structure for an Ach shared memory file. In this

example, Ip points to a four byte message starting at D1, and I2 points to a
one byte message starting at Ds. The next inserted message will use index
cell I and start at Dg. There are two free index cells and three free data
bytes. Both arrays are circular and wrap around when the end is reached.

contains both an offset into the data array and the length of
that element in the data array. A head offset into each array
indicates both the place to insert the next data and the location
of the most recent message frame. This pair of circular arrays
allows us to find the variable sized message frames by first
looking at a known offset in the fixed-sized index array.

B. Core Procedures

Two procedures compose the core of ach: ach_put and
ach_get which we describe in pseudocode.

1) ach_put: The procedure ach_put inserts new mes-
sages into the channel. Its function is analogous to write,
sendmsg, and mg_send. The procedure is given a pointer
to the shared memory region for the channel and a byte array
containing the message to post. There are four broad steps to
the procedure:

(1) Get an index entry, lines 2-5. If there is at least one free index
entry, use it. Otherwise, clear the oldest index entry and its
corresponding message in the data array.

(2) Make room in the data array, lines 6-10. If there is enough room
already, continue. Otherwise, repeatedly free the oldest message
until there is enough room.

(3) Copy the message into data array, lines 11-16.

(4) Update the offset and free counts in the channel structure, lines
16-22.

2) ach_get: The procedure ach_get receives a mes-
sage from the channel. Its function is analogous to read,
recvmsg, and mg_receive. The procedure takes a pointer
to the shared memory region, a storage buffer to copy the
message to, the last message sequence number received, the
next index offset to check for a message, and option flags
indicating whether to block waiting for a new message and
whether to return the newest message bypassing any older
unseen messages. There are four broad steps to the procedure:

(1) If we are to wait for a new message and there is no new message,
then wait. If there are no new messages, return a status code
indicating this fact.

(2) Find the index entry to use. If we are to return the newest
message, use that entry. Otherwise, if the next entry we expected

Procedure achput (c,b,n)

Input: c : ach channel ;
Input: b : byte array ;

// shared memory file
// message buffer

Input: n : integer ; // length of message
Output: status : integer ; // status code

1 if n > length(c.data_array) then return OVERFLOW;

2 LOCK(c); // take the mutex
/* Get a index entry

3 if 0 = c.index_free then

4 chdata_free%ﬁz cindex_arraylcindex_head)].size;

5

cindex_free < 1;
/+ Make room in data array
i < (c.index_head + c.index_free) % c.index_cnt;
while c.data_free < n do
c.data_free += cindex_arrayli].size;

cindex_free ++;
10 | i+ (i+1) % cindex_ent;

*/

*/

R A

/* Copy Buffer x/
11 if c.data_size - c.data_head > n then

/% Simple Copy

12 MEMCPY (c.data_array + c.data_head, b, n);

13 else

*/

/* Wraparound Copy */
14 e < c.data_size — c.data_head;
15 MEMCPY (c.data_array + c.data_head, b, e);

16 MEMCPY(c.data_array, b+ e, n — e);

/+ Modify Counts
17 cindex_array(cindex_head).size = n;
18 c.index_array[c.index_head].of fset = c.data_head;
19 c.data_head <

(c.data_head + n) % length(c.data_array);
20 c.data_free —=n;
21 candex_head < (c.index_head + 1) % c.index_cnt;
22 candex_free —;
23 UNLOCK(c); // release the mutex
24 NOTIFY(c); // wake readers on cond.
25 return OK;

*/

var.

to use contains the next sequence number we expect to see, use
that entry. Otherwise, use the oldest entry.

(3) According to the offset and size from the selected index entry,
copy the message from the data array into the provided storage
buffer.

(4) Update the sequence number count and next index entry offset
for this receiver.

C. Formal Verification

We have formally verified the ach_put and ach_get
procedures using the SPIN Model Checker [6]. SPIN models
the operation of a computer program using the Promela
language, which is based on the Guarded Command Language
[4] and Communicating Sequential Processes [5]. Our model
for Ach checks the consistency of channel data structures,
ensures proper transmission of message data, and verifies
freedom from deadlock. Because model checking enumerates
all possible world states, we can verify these properties for all

Procedure achget (¢,bn,s,7,04,01)

Input: ¢ : ach channel ; // shared memory file

Input: b : byte array ; // storage for message
Input: n : integer ; // size of b
Input: s : integer ; // last seg. num. seen
Input: ¢ : integer ; // next index to read
Input: o, : boolean ; // wait for new message?
Input: o; : boolean ; // get newest msg.?
Output: integer X integer ; // size, status
Output: s : integer ; // new last seq. num.

Output: 7 : integer ; // new next index
1 LOCK(c); // take the mutex
2 if c.seq_num = s A o, then
3 LWAIT(C); // condition variable wait

4 if c.last_seq = sV 0 = c.last_seq then
5 UNLOCK(c);
6 | return (0x STALE); // no entries

/* Find index array offset, j %/
7 if o; then
/* newest index */
8 j

| (c.index_head + c.index_cnt — 1) % c.index_cnt;

9 else if —o; A c.index_array[i].seq_num = s + 1 then
10 L j+14; // next index

11 else
L/* oldest index */

12 J < (c.index_head+ c.index_free) % c.index_cnt;

/+ Now read frame from data array x/
13 x = candex_arrayljl;
14 if x.size > n then
15 UNLOCK(c);
16 L return (z.size x OVERFLOW);

17 if z.of fset + x.size < c.data_size then

18 ‘ MEMCPY (b, c.data_array + x.of fset, x.size);
19 else

20 e = c.data_size — x.of fset;

21 MEMCPY (b, c.data_array + x.of f set, e);
22 MEMCPY (b + e, c.data_array, x.size — e);
23 5+ s;

24 S <+ T.Seq_num,

25 UNLOCK(c);

26 i+ (i+1) % cindex_cnt;

27 if x.seq_num > s’ + 1 then

28 | return (z.size x MISSED);

29 else

3 | return (z.size x OK);

possible interleavings of ach_put and ach_get, something
that is practically impossible to achieve through testing alone.
By modeling the behavior of Ach in Promela and verifying its
performance with SPIN, we eliminated errors in the returned
status codes and simplified our implementation. Verification
enhanced both the robustness and simplicity of Ach.

D. Other Design Considerations

An important consideration in the design of Ach is the idea
of Mechanism, not Policy [12]. Ach provides a mechanism
to move bytes between processes and a mechanism to notify
callers should something go awry. It does not specify a policy
for serializing arbitrary data structures or a policy for how
to handle all types of errors. Such policies are application
dependent and even within our own research group have
changed across different applications and over time. Thus, by
adopting the mechanism design approach, we maximize the
flexibility and utility of our software.

IV. DISCUSSION OF ACH

Ach provides many advantages for real-time applications and
some potential faults. Here, we summarize our observations.

A. Advantages of Ach

1) Formally Verified: Ach is formally verified: we have
produced a Promela Modela of the core Ach functions and
verified it using the SPIN model-checker. Users of Ach do not
need to worry about the synchronization or data consistency
issues which are all handled by the library.

2) No HOL Blocking: Ach never has HOL blocking; it can
always give you the newest data. We can always compute
the newest message in the channel in O(1) time. Any process
which wants the latest data will always get it without having
to look at older messages.

3) Read Older Data: Ach will give you older data as best it
can. Any messages in the circular buffer which have not been
overwritten can still be read. Each reader tracks the offset of
the last message it read, so it can find its next message in O(1)
time. If the next message it wanted has been overwritten, then
we compute the oldest message in the buffer in O(1) time and
give that to the reader instead.

4) Efficiency: Ach is algorithmically fast. Each read and
write operation is O(n) where n is the number of bytes in the
message.

5) Multiple Senders and Receivers: Ach supports all com-
binations of communications between M senders and N
receivers with only M 4+ N file descriptors. Typical communi-
cation methods open sockets between every reader and writer.
They require M x N file descriptors. In Ach, we achieve
M x N communication lines with only M + N file descriptors.
Instead of representing these communications explicitly, each
Ach channel can have M readers and N writers. Reads and
writes can be arbitrarily interleaved by all processes. Each
process reading an Ach channel needs only to open one single
file descriptor for that channel’s shared memory area, resulting
in M + N file descriptors.

6) Priorities: Ach obeys real-time priorities. Each channel
is protected by a mutex and condition variable, thus the kernel
decides which process gets the next access to a given channel.
The kernel decides based on process priority, and therefore
higher priority processes gain first access to read and write to
an Ach channel.

Additionally, Ach properly performs priority inheritance so
that if, for example, the logger is reading some channel and

800 18000
700 16000
600 14000
12000
10000
8000
6000
4000
100 2000

0
0 5

500

count

400

count

300
200

0
0 10 20 30 40 50 60 70 80 90 100
microseconds

(b) daneel 8kHz

10 15 20 25 30 35 40
microseconds

(a) daneel 1kHz

3000 35000

2500 30000

25000
2000

20000
1500

count
count

15000

1
000 10000

500 5000

0

0
0 5 10 15 20 25 30 35 40 45 50 55
microseconds

5 10 15 20 25 30
microseconds

(c) daneel PREEMPT 1kHz (d) daneel PREEMPT 8kHz

7000 50000
45000
40000
5000 35000
4000 30000
25000
20000
2000 15000
10000
5000

[0
20 40 60 80 100 120 140 160 180 200 0 50 100 150 200 250

microseconds microseconds

(e) nibbler 1kHz (f) nibbler 8kHz

6000

count
count

3000

1000

Fig. 3. Histograms of Ach messaging latencies. Daneel is a Core 2 Duo
running Ubuntu 10.4. The PREEMPT version used the RT_PREEMPT kernel
patch. Nibbler is an 800MHz ARM CPU running Debian 6.0.

the motor driver starts a read, the logger will temporarily run
at the motor drivers priority until it exits the critical section
surrounding the channel read.

7) Access Control: Because Ach is implemented on top
of POSIX shared memory files, access to channels can be
controlled via the unix permission bits. This allows channel
access to be restricted on a per-user and per-group basis,
though callers of ach_get will still need the write bit enabled
in order to use the channel mutex and condition variable.

8) Portability: The Ach library is implimented in C using
portable POSIX functions. It has been tested on GNU/Linux
and MacOSX operating systems, and on IA-32, AMD64, and
ARM CPUs.

9) Open Source: Ach is Open Source, available under a
BSD-style license. This includes the formal model, benchmark
code, and an example application.

B. Benchmark Results and Discussion

We provide benchmark results for Ach message latencies in
Fig. 3.

1) Benchmark Platforms: The benchmark data was col-
lected on the following platforms:

¢ daneel: Intel Core 2 Duo E7300, Ubuntu Linux 10.04
1386, Kernel 2.6.32-33-generic

o daneel PREEMPT: Intel Core 2 Duo E7300, Ubuntu
Linux 10.04 i386, Kernel 2.6.31-11-rt

o nibbler: Qualcomm MSM7230 Snapdragon 800 MHz,
Debian GNU/Linux 6.0 armel, Kernel 2.6.32.28-
cyanogenmod-g4fdee2e

2) Benchmark Procedure and Results: The benchmark ap-
plication performs the following steps.

1) Create and open an Ach channel

2) Fork a receiver process

3) Parent: post timestamped messages to the Ach channel at
the desired frequency

4) Child: Receive Ach messages from the channel and
compute the delay based on the message timestamp.

The plots in Fig. 3 show the message latencies for each of
the tested configurations. The daneel and daneel PREEMPT
configurations ran on a IA-32 CPU. For both these config-
urations and at both frequencies, we see a typical latency
of 10us. The worst case latency at 1kHz for these systems
was 30 — 40us. For the standard kernel, worst case latency at
8kHz was much worse, totaling 100us. By switching the fully
preemptible Linux kernel, we reduced that latency to 50us.
Nibbler, which used a much slower ARM CPU, had a typical
latency of 100us with worst case latency of 200 — 250us.
These results show the latency imposed by Ach still allows us
to operate robots at our desired rate of 1kHz.

C. Potential Error Modes

There are two theoretical failure modes we are aware of which
may arise with Ach. However, in our three years of active Ach
use, neither of these failure modes have occurred in practice.
They exist as theoretical vulnerabilities and we mention them
as areas for potential improvement.

1) Deadlock: Use of a mutex may result in deadlock if
reader or write dies, ie. with a ki1l -9, while holding the
lock. This may be mitigated by the use of robust POSIX
mutexes which will detect this condition. Additional code
could be added which would either reverse an interrupted write
or pass through on an interrupted read as reads do not modify
the channel data structures.

2) Corruption: Because all processes accessing the channel
must have read/write access to the shared memory region,
a rogue process could corrupt the channel data structures.
Currently, unintentional corruption is weakly detected with
guard bytes. This could be improved with better sanity checks
of the channel and automatic recreation of corrupted channels.
To make Ach truly impervious to this failure mode, though,
would likely require moving the channels into the kernel.

V. CONCLUSIONS AND FUTURE WORK

We have presented Ach, a new IPC mechanism specially suited
to real-time systems that sample physical processes. Compared
to standard POSIX IPC and other robotics middleware [13],
[11], [8], [9], [1], Ach provides unique message-passing
semantics which always allow the latest data sample to be
read. The algorithms and data structures are formally verified,
increasing both the robustness and simplicity of our imple-
mentation. Ach has been demonstrated to work effectively for
a variety of robot control applications over three years.

There remain a number of ways to improve the perfor-
mance and robustness of Ach. One shortcoming which may
particularly affect some is that Ach focuses on efficient
communication between proceses on a single host; network
communication is not addressed in any reasonable fashion.
It would be appropriate and desirable to pair Ach with some
suitable network transport such as SCTP or RDS. The synchro-
nization used by Ach is very simple and could undoubtedly
be improved, though care would need to be taken to maintain
proper priority inheritance. It should be possible to mmap the
data array twice sequentially into the process address space
to eliminate the double memcpy in the Ach procedures. This
would, more importantly, allow serialization formats such as
XDR and Protocol Buffers, to serialize directly to and from
the Ach channel, eliminating a redundant copy operation.
Finally, to maximize robustness against corruption, it may be
appropriate to move the channels into the kernel.

Ach and sample code can be downloaded at http://www.
golems.org/node/1526. By providing this IPC open source
to the science and engineering community we hope that it
will be a useful tool to expedite the development of new
robust systems such as robot platforms. We aim to continue
improving the efficiency, robustness, and generality of Ach.

REFERENCES

[11 AGUERO, C., CANAS, J., MARTIN, F., AND PERDICES, E. Behavior-
based iterative component architecture for soccer applications with
the nao humanoid. In 5th Workshop on Humanoids Soccer Robots.
Nashville, TN, USA (2010).

[2] DANTAM, N., KOLHE, P., AND STILMAN, M. The motion grammar
for physical human-robot games. In IEEE Intl. Conf. on Robotics and
Automation (2011), IEEE.

[3] DANTAM, N., AND STILMAN, M. The motion grammar: Linguistic
planning and control. In Robotics: Science and Systems (2011), IEEE.

[4] DUKSTRA, E. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM 18, 8 (1975), 453—457.

[5] HOARE, C. Communicating sequential processes. Communications of
the ACM 21, 8 (1978), 666-677.

[6] HOLTZMAN, G. The Spin Model Checker. Addison Wesley, Boston,
MA, 2004.

[71 THE IEEE AND THE OPEN GROUP. [EEE Std 1003.1-2008, 2008.
http://pubs.opengroup.org/onlinepubs/9699919799/.

[8] TROBOT CORPORATION. Aware 2.0.
http://www.irobot.com/gi/developers/Aware/.

[9] MICROSOFT CORPORATION. Microsoft robotics studio.
http://www.microsoft.com/robotics/.

[10] THE OBJECT MANAGEMENT GROUP. Data Distribution

Service for Real-time Systems, 1.2 ed., January 2007.
http://www.omg.org/spec/DDS/1.2/.

[11] QUIGLEY, M., GERKEY, B., CONLEY, K., FAUST, J., FOOTE, T.,
LEIBS, J., BERGER, E., WHEELER, R., AND NG, A. Ros: an open-
source robot operating system. In Proc. of the IEEE Intl. Conf. on
Robotics and Automation (ICRA) Workshop on Open Source Robotics
(Kobe, Japan, May 2009).

[12] SCHEIFLER, R., CARVER, D., GEROVAC, B., GETTYS, J., KARLTON,
P., MCGREGOR, S., RAO, R., SUN, D., WINCHELL, D., ANGEBRAN-
NDT, S., ET AL. X window system protocol, version 11. Network
Working Group RFC 1013 (1987).

[13] STEVENS, W. R., AND RAGO, S. A. Advanced Programming in the
UNIX Environment, 2 ed. Addison Wesley, Boston, MA, 2005.

[14] STILMAN, M., OLSON, J., AND GLOSS, W. Golem krang: Dynamically
stable humanoid robot for mobile manipulation. In Robotics and
Automation (ICRA), 2010 IEEE International Conference on (2010),
IEEE, pp. 3304-3309.

http://www.golems.org/node/1526
http://www.golems.org/node/1526

	Introduction
	Review of POSIX IPC
	Streams
	Datagrams
	Datagram Sockets
	POSIX Message Queues

	Shared Memory
	Further Considerations
	Nonblocking and Asynchronous IO approaches
	Priorities

	Real-Time and Robotics Middlewares

	The Ach IPC Library
	Channel Structure
	Core Procedures
	ach_put
	ach_get

	Formal Verification
	Other Design Considerations

	Discussion of Ach
	Advantages of Ach
	Formally Verified
	No HOL Blocking
	Read Older Data
	Efficiency
	Multiple Senders and Receivers
	Priorities
	Access Control
	Portability
	Open Source

	Benchmark Results and Discussion
	Benchmark Platforms
	Benchmark Procedure and Results

	Potential Error Modes
	Deadlock
	Corruption

	Conclusions and Future Work
	References

