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 SUMMARY 

Microscale features (or microfeatures) find application in several high-tech 

industrial sectors such as in the manufacture of biomedical, aerospace and consumer 

electronic components. Burrs severely inhibit the performance and aesthetics in these 

micromachined parts besides posing a safety risk to the user and manufacturer. 

Furthermore, machining of microfeatures in thin foils such as stents poses distinct 

challenges due to foil delamination and discontinuity at the foil-backing material 

interface. This makes it important to understand both the mechanics of burr formation in 

microparts as well as the methods and mechanisms by which they can be removed. 

Abrasive assisted brushing presents a fast and effective method for deburring these parts 

but is difficult to control. The dependence of deburring rate on the workpiece material, 

abrasive grit size, type and rotational speed of the brush is studied.  It is found that 

deburring rate is proportional to the initial burr height indicating fracture of the burr at 

the root. Deburring rate increases with spindle speed and is higher for diamond grits than 

SiC. The formation of burrs in micromilling of a thin nickel-titanium alloy (nitinol or 

NiTi) foil used in implantable biomedical device applications is analyzed as a function of 

micromilling process parameters such as spindle speed, feed, tool wear, backing material 

and adhesive used to attach the foil to the backing material. All factors except spindle 

speed are found to affect burr size. If initial penetration is sufficient to cause the foil to 

fail in tension, the foil tears with the crack starting closer to the upmilling side thereby 

resulting in larger downmilling burrs. If penetration is insufficient, the foil plastically 

deforms until it tears typically in the middle of the cutter tooth path. A kinematic model 

that captures this behavior is used to predict burr widths and is verified through 



 xxi 

experiments. The thesis also presents an investigation of the abrasive impregnated brush 

deburring process for thin NiTi foils. Models based on Hertzian indentation and fracture 

mechanics are proposed to predict the rates of indentation and deburring during brushing 

and are validated using experiments. Model predictions are found to be within the 

experimental variation. Burrs can be removed with this process within 12 minutes for a 6 

mm long groove with no more than a micron change in foil thickness. Knowledge of burr 

formation and deburring is applied to a novel micromilled thin shape memory based NiTi 

foil device used for the surgical correction of Age-related Macular Degeneration (AMD), 

a leading cause of blindness in the western world in those over age 50.  Burrs on the 

surface of the structure are used successfully to mechanically constrain and translocate an 

autograft to replace the diseased RPE-Bruch‘s membrane under the macula.   The shape 

memory device is analyzed using experiments and finite element analysis. It is found that 

the force generated by shape memory is negligible and tissue damage is minimal during 

thermal activation of the device.  
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CHAPTER 1 

INTRODUCTION 

 

Deburring of Micromilled Features 

Presence of burrs in micromilled parts is a major challenge that prevents their 

proper working, hinders part assembly, causes wear of other parts, leads to accumulation 

of dirt and poses a safety hazard to the operator. In micro fluidic channels they can 

increase the resistance to flow [1]. In biomedical applications, burrs increase the chance 

of autoimmune rejection of the inserted component [2]. It is impossible to machine burr 

free edges even with the best tool path planning [3, 4] necessitating a secondary edge 

finishing process. Deburring of micromilled features has distinct challenges over 

macromachined features since the size of the feature is comparable to the size of the burr 

(~30-100 μm). Techniques used at the macroscale, such as the use of deburring tools or 

grinding could be too aggressive, causing damage to the feature.  

Brush deburring is a popular technique in industry primarily because it is 

inexpensive, but it has several other advantages including the ability to deburr a wide 

variety of geometries and materials, low brushing forces leading to reduced distortion of 

thin walled parts, absence of  secondary burrs produced during deburring, ease of 

automation, low deburring time and the ability to accommodate inaccuracies in the set up 

due to the compliance of the brush [5]. Due to these benefits, this technique is 

recommended as the first option for deburring of microparts [6] but has not been studied 

for micromilled grooves. Consequently, this thesis focuses on a detailed study of the 

abrasive brush assisted deburring process. 
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Burr Formation in Thin Foils 

Microscale features in thin foils or laminates find applications in some well 

known products such as coronary stents, electronics and in compliant mechanisms and 

flexures. Micromilling has been used to create precision parts for biomedical 

applications, micro heat exchangers and microfluidics applications [7]. Micromilling of 

thin foils can offer a cost effective option to manufacture sheet metal based microparts 

such as coronary stents. It could also be used to fabricte flexible and wearable electronics. 

Currently, these parts are fabricated using femtosecond pulsed lasers and Electrical 

Discharge Machining (EDM)[8, 9]. However, cost and machining rate considerations 

generally favor micromilling.  For example, a typical femtosecond laser machining 

system can cost more than $300,000 [10]. On the other hand, a basic laboratory 

micromachining set-up can be built for about a tenth of the cost while a commercial 

micromachining system costs about $100,000 [11]. Typical processing speeds with 

femtosecond pulsed lasers are about 70 mm/min or lower to avoid a large heat affected 

zone (<5 µm) [8] while processing speeds for micromachining can be as high as 1000 

mm/min for a foil of similar material (e.g. stainless steel). Micromilling tools as small as 

5 µm in diameter are commercially available opening the possibility of extremely small 

feature sizes while still retaining the versatility of being able to manufacture larger 3D 

features in a wide variety of materials. Laser machining is typically limited to 2.5D 

features and may not be able to process some materials (e.g. aluminum) but allows for 

much smaller, submicron features to be created [12]. Moreover, one does not have to deal 

with tool breakage, which is quite common in micromilling. The major differences 

between the two processes are summarized in Table 1. 
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Table 1: Micromilling vs. laser machining  

 Micromilling Laser Micromachining 

Cost (USD) 30k-100k 250k+ 

Typical processing speed (mm/min) 1000 70 

Features 3D 2.5D 

Materials unlimited nonreflective 

Minimum feature size ~ 5 µm submicron 

Tool fracture present absent 

Edge defects burrs recast material 

 

Ploughing of material during micromilling cannot be neglected due to the larger 

tool edge and tip radii relative to the feed per tooth. It has been experimentally shown 

that burr size increases with a relatively larger edge radius in micromilling [3]. 

Micromachining of thin foils and laminates have distinct challenges in the form of foil 

deflection and delamination [13]. However, the study of burr formation in flexible foils 

has only focused on drilling and understanding of the mechanics of burr formation in 

these materials is absent. These aspects are investigated in this thesis. 

Medical Device Application 

Knowledge of burr formation and deburring obtained from this study is applied to 

the fabrication of a novel device used in the surgical correction of Age-related macular 

degeneration (AMD). This disease leads to the loss of central visual acuity from the loss 

of light-sensitive elements, known as photoreceptors (rods and cones) in a highly 

specialized region in the center of the retina referred to as the macula. The macula is a 5.5 

mm region of the retina with the fovea (central 1.5 mm, central 15-20 degrees of visual 

field) that has the greatest density of cones; the specific cells responsible for color vision 
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and fine discrimination [14]. The National Eye Institute and results from other studies 

have identified AMD as a significant cause of vision loss in Americans 60 years and 

above [14-17]. 

Degeneration of the macula is caused due to deposition of extracellular material 

or leakage of blood vessels in the retinal pigment epithelium (RPE) and Bruchs 

membrane which lies beneath the macula and transports nutrients to it. Surgical 

correction of AMD involves re-supplying the macula with a healthy RPE-Bruchs-choroid 

graft using 3-port par plana vitrectomy techniques. Development of a mechanical device 

to support this delicate tissue avoids folding, injury, or loss of polarity of the translocated 

tissue [18]. In previous efforts, such a graft has been translocated using a spatula or with 

forceps.  This often leads to damage and bleeding of the tissue [19]. Furthermore, studies 

have shown that the size of graft is limited by the size of the forceps used [18]. Therefore, 

the success of such a procedure would be increased by using a stable support structure 

that holds the tissue in its natural polarity and shape during translocation. The structure is 

also used to correctly orient the tissue under the fovea. The novel device used to perform 

this task is micromilled from 25 μm thick NiTi foil. Selective deburring is performed to 

remove the burrs on the areas that would cause inflammation while leaving them on areas 

where they can provide anchors to hold the tissue. The size of the anchor burrs are 

controlled within a range through the understanding of burr formation generated in this 

study. 

Research Objectives 

The focus of this research is to develop an improved scientific understanding of 

the brush deburring process for microscale features along with a fundamental 

understanding of burr formation in thin metal foils. The specific objectives of this study 

are: 
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• Evaluate abrasive slurry assisted brush deburring as a means to deburr 

microfeatures. 

• Understand the mechanics of burr formation in thin foils as well as the effect of 

process parameters on the process. 

• Understand the mechanics of material removal in brushing and abrasive 

impregnated brush deburring. 

• Apply and verify the generated knowledge to the manufacture of a tissue 

translocation device. 

These objectives are correspondingly broken down into four tasks which also 

form the framework of this document (Figure 1). A synopsis of prior research in the areas 

of burr formation, deburring of microparts and treatment of AMD is presented in Chapter 

2 and this study is positioned relative to the current body of knowledge. Chapter 3 

presents an experimental study of abrasive slurry assisted brush deburring of micromilled 

grooves in blocks of copper and tool steel. Burr height reduction rate, change in surface 

roughness and change in feature size are studied as a function of abrasive size, abrasive 

material, workpiece material and brush rotation speed. Chapter 4 focuses on 

understanding the effect of backing material, adhesive, tool wear and feed per tooth on 

burr height and a kinematic model is developed to predict burr width. The material 

removal mechanism in abrasive impregnated brushing of thin foils and deburring is 

investigated in Chapter 5 leading to a model to predict the penetration rates in the 

process. The shape memory foil based micromilled tissue support device for use in 

surgical correction of AMD is systematically designed in Chapter 6 using the Pahl and 

Beitz approach and evaluated with porcine in-vivo and ex-vivo studies. Finite element 

analysis (FEA) is used to estimate the clamping force generated by the shape memory 

effect, the maximum device deformation allowed and thermal gradients in the device 

during the surgery and the results are presented in Chapter 7. Tissue adhesion forces with 

and without burrs are also measured experimentally. Conclusions and original 
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contributions of these tasks are summarized and potential improvements are suggested in 

Chapter 8. 

 

Figure 1: Overview of research approach 
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CHAPTER 2 

LITERATURE SURVEY 

 

Burrs are defined as ―all material extending past the theoretical intersection of the 

two surfaces that surround the burr‖ [20]. Typically burrs are associated with plastic 

deformation during cutting or shearing in a machining operation. Sometimes the term is 

also used to describe flash and redeposited material in processes such as casting or 

electrical discharge machining respectively.  

Burr Formation 

Burr formation in conventional scale milling has been studied since the 1970s 

[21]. Based on formation mechanics, they have been classified into Poisson, entrance, 

rollover and tear burrs Figure 2.  Poisson burrs are caused due to unintentional lateral 

flow of material due to compression of the workpiece by the tool edge. Entrance burrs are 

similar except they form during the initial contact of the tool and the workpiece. Tear 

burrs occur when the material tears in tension rather than being sheared as a chip. 

Rollover burrs form at the exit of a cut where the chip bends rather than shears under the 

action of the tool.  

Burr Formation in Macroscale Machining 

Orthogonal cutting experiments were used to classify burrs on two alternate basis 

namely, the cutting edge and the mode or direction of formation [22]. Based on the 

cutting edge, the burrs are classified and indicated by a symbol as major (M) and minor 

(C), while based on the direction of formation they are classified into backward (B), 

sideward (S), forward (F) and leaning (L). The experiments also indicated that the size of 

sideward burrs (Figure 2d) decreased with decreasing undeformed chip thickness, 



 8 

decreasing shear strain, increasing the included angle and turning the cutting force 

direction towards the workpiece. Shear strain of the chip can be reduced by a high rake 

angle, high cutting speed, use of lubricant and coldworking of the workpiece. 

 

A model for describing the mechanics of material flow during formation of 

rollover burrs in soft materials (such as copper) in an orthogonal cutting process as the 

tool approaches the edge of the workpiece was developed based on the minimum energy 

principle [23]. As the tool approaches the edge of the workpiece, a negative shear zone 

develops between the tool and the workpiece edge and the material flow transitions from 

shear (causing chip formation) to plastic bending which causes the material to rollover 

and form a burr. An equation for the distance from the workpiece edge at which this 

transition takes place is developed based on measured initial negative shear angle, tool-

chip contact length, shear angle and cutting force and good agreement was found with 

Figure 2: Types of burrs (a) Poisson burr (b) Entrance burr (c) Rollover burr (d) 
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experimental values. The model indicates that burr size reduces with increasing cutting 

speed.  

Rigid-plastic finite element method (RPFEM) [24] was used to understand the 

effect of inclination angle on rollover burr formation in oblique cutting of mild steel. It 

was found that the chip forms a breakout region (fracture) in addition to a burr for high 

feed (50 μm for the tool and material used in the study) and that the exit burr size 

increased with increase in inclination angle. The orthogonal model in [23] was further 

extended to include oblique cutting by modifying Rubenstein‘s chip formation model [25, 

26] and found to be applicable to materials that do not show significant chip distortion. 

The model can be used to predict the extent of breakout region. Burr formation was 

studied both experimentally and using RPFEM implemented in ABAQUS for orthogonal 

cutting of ductile and brittle materials [27]. It was found that while crack formation and 

fracture in breakout occurs along the primary shear zone for ductile materials, it occurs 

along the negative shear zone for brittle materials. As a result, ductile materials form a 

positive burr while brittle materials form a negative burr. Video footage of burr formation 

on samples with a mesh pattern sputtered on them was recorded to observe the strain in 

the material as the burr formed. As feed into the workpiece increases, the plastic 

deformation zone lengthens and the pivot point moves deeper into the material. The depth 

also increases as the tool edge radius increases. Burr size also increases with feed and 

edge radius.  

Another finite element model of orthogonal cutting that included adiabatic heat 

generation during chip formation was implemented using the ductile failure criterion 

feature in ABAQUS-Explicit [28, 29]. The appropriate ductile failure criterion were 

identified for the different burr formation steps, namely steady state cutting, initiation to 

pivoting and pivoting to burr formation. It was found that reducing the exit angle and 

increasing the rake angle reduces the burr thickness. However, these criterion also lead to 

increased tool wear. This suggests that an optimum should be sought at which savings 
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due to reduced tool wear are balanced by expenditure on deburring. A thick backing 

material placed at the exit of the tool effectively reduces burr formation by causing a 

shearing (Mode II) fracture at exit although care should be taken to avoid a gap being 

formed between the backing material and workpiece. A detailed review and suggestion of 

future trends in modeling of burr formation can be found in [30, 31]. Material properties 

of burrs have received some attention in studies of exit burrs during grinding of A2 tool 

steel showing that the burr is harder at the root than the base material or the rest of the 

burr due to quenching [32]. The properties of burrs formed in milling, and for machining 

where there is negligible heat build-up and in materials that cannot be hardened by 

quenching, are yet to be studied. 

Burr formation in drilling with a backup material using a 3D model in the 

commercial FEA package ABAQUS-Explicit showed that the use of a bushing reduced 

burr size in drilling while the use of a solid backing material was not as effective [33]. 

The model can also be used to predict the drilling forces and torques and demonstrate that 

lower forces cause lower delamination and reduce the burr size. A study of burr 

formation of drilling through stacked sheets of aluminum resulted in the design of a 

spring loaded pad to prevent gap formation during drilling [34]. A model was developed 

based on Sofronas model for burr formation and predicts the trend of change in burr 

height with feed. 

Burr Formation in Micromachining 

There is no clear consensus of what size marks the transition from macroscale to 

microscale tools. Tools as large as 1 mm have been reported in micromachining literature 

[35] while tool manufactures include tools up to 2 mm in their micro-tool catalogs [36]. 

In this study, tools less than 1 mm are treated as microscale tools. Burr formation in 

microdrilling of materials with different grain structure indicates that single crystal 

materials show large burrs because of higher ductility while materials with large grain 
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size (few grains in the drilled area) have smaller burrs probably because of reduced 

ductility at the grain boundaries [37]. Another study showed that burr height in 

microdrilling of 304 stainless steel reduced with feed until a feed of 12 μm per revolution 

and then increased [38]. Burr height also increased with reduced exit angle and increased 

speed and tool wear (measured by the number of holes drilled by a particular tool).  

A qualitative study using SEM images of burrs produced in micromilling of 

aluminum and copper indicated that burr size increases with feed and a lesser extent with 

depth of cut [39]. It was suggested that the tool initially compresses the material due to its 

finite radius and then begins to cut the material once the major cutting edge contacts the 

workpiece. Burrs are larger on the downmilling side because the material flow direction 

is towards the downmilling side. The entrance and exit burrs are larger than those at the 

macroscale in comparison to the groove width. Flat ended blind holes were milled in 304 

stainless steel with a 254 micron tungsten carbide tool and the effect of cutting speed, 

feed  and cutting edge radius on burr height was studied [3]. The comparatively larger 

burrs at the microscale than at the macroscale (with respect to feature size) is attributed to 

ploughing caused by the substantial size of the edge radius with respect to the feed per 

tooth. Burr height increases as feed per tooth increases. It also increases as cutting speed 

increases at higher feeds. At lower feeds (3.2 microns per tooth), the burr height reduces 

as speed increases. This reduction is explained by showing that at high speeds a built-up 

edge is formed on the tool that reduces wear of the tool and causes metal flow around the 

tool to become more laminar and results in a smaller chip height. As the ratio of axial 

feed to cutting edge radius increases, burr height increases and there is a sudden increase 

in burr height before the tool fails. Empirical equations were arrived at to relate burr 

height and tool life (described as number of holes drilled before tool breakage) with 

cutting speed and feed per tooth.  

Another qualitative study was conducted on milling of grooves in aluminum with 

40 μm laboratory manufactured, semicircular, zero rake angle endmilling tools and a 
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hypothesis was suggested that burrs are formed as material is plastically deformed to 

produce a ridge in front of the tool which fractures in the middle of the groove to form 

burr on either side [40]. If these fracture, thin feathery burrs are formed. In some cases 

the burrs formed on the downmilling side may be removed along with the chips. It was 

also noticed that at feeds greater that 5 μm/tooth, fracture does not occur. It is unclear 

whether in this case only plastic deformation was observed which would lead to tool 

breakage. While this study provides insight into burr formation mechanics at low feeds 

for a zero rake angle tool and highlights the distinct nature of burr formation in 

micromachining in comparison to marcoscale machining, it does not explain the 

dependence on burr height on feed. The study emphasizes the need for a quantitative and 

rigorous study of burr formation at the microscale for popular commercially available 

negative rake tools.  

Micromachining differs from macroscale machining in that the chip thickness is 

comparable to the tool cutting edge radius resulting in increased ploughing and higher 

specific cutting energy at low uncut thickness values (size effect) [39, 40]. In cases where 

the cutting velocity is low, the tendency for built-up edge formation and ploughing 

increases. Another phenomenon noticed in micromachining is the minimum chip 

thickness effect, which is observed when the undeformed chip thickness (determined by 

the feed per tooth) is less than a critical value for the material. This effect is characterized 

by ploughing of material instead of chip formation via shear [41]. In slot/groove milling, 

the chip thickness varies from zero at tooth entry to a maximum at the center and then 

back to zero at exit. As a result, there is significant ploughing at tooth entry and exit. The 

increased tendency for ploughing due to the aforementioned causes results in the material 

being pushed over to form a rollover burr instead of forming a chip. 
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Burr Formation in Micromilling of Thin Foils 

As discussed in the preceding sections, research has been conducted on the related 

field of drilling of sheets however, literature on micromachining of sheets and foils is 

sparse. The industrial convention, though not completely consistent is to label as foils 

material thinner than 0.8 mm [42]. A study of microdrilling of printed circuit boards 

suggested that burr size increased with feed. It was suggested that a hard backing 

material, reduced machining temperatures and forces would result in smaller burrs. An 

experimental study of 0.35 mm thick M-19 electric steel micromilled with 1.5 mm 

nominal diameter tools used peak burr height and percentage of edge that have burrs as 

metrics of the quality of the machined grooves [35]. It was found that higher feeds 

(7 μm/tooth) and speed (80,000 rpm) produce smaller burrs and this was attributed to 

reduced ploughing.  

Milling of thin foils is often performed by sticking the foil to a backing material 

[43]. Hence, milling of these laminate structures differs from machining of homogeneous 

materials due to the possibility of delamination of the foil from the backing material. 

Moreover, the flow of chips is discontinuous at the foil-backing material interface. While 

shearing is the primary mode of material removal in homogeneous materials, it is 

expected that the foil would have a tendency to tear due to the machining forces. The 

review of published research presented above suggests that while the dependence of burr 

formation on machining parameters has been observed and explanations for some of 

these phenomena proffered, a more comprehensive understanding of burr formation in 

micromilling of thin foils is absent. 

Machining of Nitinol 

An experimental study of high speed milling of an Ni50.6Ti49.4 alloy indicated that 

increased cutting speed, lower depth of cut and lower feed per tooth reduced work 

hardening of the material [44]. However, beyond a cutting speed of 200 m/min tool flank 
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wear (measured using SEM images) increases. There is no significant change in phase 

during machining. The study concludes that the hardened layer induced in the material 

during high speed milling is shallower than that induced during conventional milling, 

EDM or laser machining. Another experimental study evaluated the performance of an 

austenitic and a martensitic NiTi alloy during lubricated conventional turning, drilling 

and deep hole drilling [45]. It was found that chip breakage and burr formation are 

significant challenges in machining NiTi due to its high ductility and that subsurface 

hardening is more evident in the martensitic alloy because of the lower plateau stress of 

twinned martensite. The influence of lubrication on subsurface hardening was not 

specified although it was stated that the use of lubricant reduces cutting forces and wear 

and it may be deduced that this would reduce hardening.  

Micromachining of austenitic Ni50.8Ti49.2 with and without lubricant indicated that 

a feed of 12 μm/tooth, radial feed of 40 μm and depth of cut 10 μm provides the best tool 

life, surface and edge conditions [46]. It was reported that there is a strong tendency of 

adhesion of NiTi to the TiAlN coated solid carbide tool and that burr formation is 

unavoidable. A comparison between three axis and five axis milling with a chip-grid 

method to optimize chip load while machining Ni50.2Ti49.8 showed that a tool inclination 

of 50° was optimum [47]. Drill wear in deep hole drilling was primarily due to adhesion 

and wear was exacerbated in single lip drills due to asymmetric forces causing the drill to 

rub against the drill pad. Twist drills were reported as the preferred tool for drilling NiTi 

from wear considerations. 

It can be concluded from these studies that while NiTi has typically been 

machined using EDM and laser machining, micromachining could result in faster 

material removal while inducing strain hardening to a lower depth. Burr formation during 

this process however, is a serious challenge and identifying machining process 

parameters which reduce burr formation as well as appropriate deburring techniques is 

important. 
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Abrasive Impregnated Brush Deburring 

Analysis of abrasive impregnated brush deburring can be split into two areas: 

analysis of the brush characteristics (including interaction of workpiece with brush) and 

analysis of interaction of grits with workpiece. The research in each of these fields is 

presented in the subsequent sections. 

Analysis of Brush Characteristics 

An expression for stiffness of a filament of a wheel brush was derived based on 

large displacement analysis [48]. The filament was modeled as clamped at the hub and 

having zero moment at the other end. The equation for the moment in the beam was 

solved numerically, assuming that the length of the beam does not change (no axial 

deformation) to obtain the displacement of the filament, the force at the end of the 

filament, the release angle of the filament, the contact zone (the length along which the 

filament is in contact with the workpiece) and the total number of filaments in contact 

with the workpiece. Knowing the total number of filaments in contact with the workpiece 

and the stiffness of each filament, the force at the end of each filament and the deflection 

of each filament, the total stiffness of the brush was calculated. A rapid decline of the 

initial stiffness was noted for each of the response curves. At larger penetration depths, 

however, approximately constant brush stiffness was obtained. The deformed 

configuration of the filament was reported to be independent of the flexural rigidity EI 

(probably a consequence of the way the boundary conditions were specified); filament tip 

force, however, is noted to vary in direct proportion with the flexural rigidity.  

An idealized geometry of a radial brush was created by calculating the total 

number of filaments in the brush [49]. Experiments were conducted to measure the 

normal and shear forces of the carbon steel brushes on a flat plate to calculate the 

coefficient of friction between the plate and the brush. An equation for the ratio of normal 

forces for the two brushes was derived based on the assumption that the normal forces are 
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proportional to the number of filaments in contact with the surface and the moment of 

inertia of the filaments. Normal force increased with penetration depth and speed.  Shear 

force increased with penetration depth, but actually reduced at high speeds. A comparison 

was made with forces obtained from a mechanics model in [50] and [51]. The coefficient 

of dynamic friction between the brush and the surface was between 0.15 and 0.45. The 

actual geometry of the contact zone was found out experimentally and was to be 

symmetric about the center of the width of the brush. Converse to the assumption, the 

filaments bend out of the plane of the wheel brush and hence the penetration depth 

reduced. The effect of this non planar motion on the ratio of shear force and normal force 

was captured by a brush width distortion parameter.  

The geometry of the contact area in wheel brushing was described using shape 

functions and measurements of the contact zone including brush distortion were made by 

brushing a flat polymeric plate [52]. The contact zone was assumed to be symmetric 

about the vertical axis. Nodal points were selected around the boundary of the profile and 

incomplete polynomial shape functions were used to interpolate the contact shape. At 

high speeds, the width distortion reduced. As penetration depth increased, the height of 

the contact zone increased.  

A dynamic model for the bristles was formulated using a lumped viscoelastic 

model to capture the response of a nylon/SiC abrasive brush to a burr modeled as a step 

input and an ARMA model to capture the brush response to a random penetration [53]. 

The inputs to these models were found out experimentally for cases with and without 

material removal and the poles of the system obtained by both methods. Burr height 

reduction calculated by the ARMA model matched well with experimental results. There 

was a decay in the force over time due to reduction in burr height. The viscoelastic time 

constants for the brush were observed to decrease with speed. It was conceded that an 

understanding of the material removal mechanism does not exist although it is suggested 

that it was due to the interaction of the grits with the material.  
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A similar dynamic model of a honing tool was developed consisting of a wheel 

brush with abrasive spheres at the end [54]. The filament was discretized into linear rigid 

elements with torsion springs at the interfaces. Interface forces, moments and centrifugal 

forces were included and solved for the force exerted by the sphere on the interface, 

torque and maximum stress in the fibers. It was found that for low penetration the stress 

gradient at the tips was high and at low speeds the increase in torque with speed was low 

but no comparisons were made with experimental data. The need for an understanding of 

mechanics of material removal was emphasized.  

The effect of centrifugal force on filament spacing and flaring for a cup brush was 

analyzed [55]. The filaments were again modeled as rigid links with torsion springs at the 

interface. The model predicted high stresses at the root of the bristles, retraction of the 

bristles and changes in bristle spacing that could lead to a non-planar working surface. A 

Lagrangian discretized model of rotating bristle contacting a flat rigid workpiece was 

used to study the initial impact of the filament on the workpiece and their subsequent 

contact mechanics [56]. The model predictions for average brush force were compared 

with experimental data and found to be in good agreement. It also predicts infinite forces 

at the tip during impact for a high level of discretization which suggests plastic 

deformation and fracture of the tips which is however not captured in the model. Five 

nondimensional parameters are suggested to capture the behavior of the bristle.  

The viscoelastic equation from [53] was used to characterize the nylon/abrasive 

deburring process experimentally (Master Curves) [57] . The inverse time constant 

parameter was then used to calculate the brush feed along the edge required for complete 

burr removal. (Brush feed is analogous to the inverse of deburring time for a given 

section of a groove). The force variation along the contact region of a steel wheel brush 

was analyzed by gradually feeding the brush past a force sensor and measuring the force 

profile [58]. The force increased at contact and then remained constant. It then reduced 

gradually as the brush moved off the sensor. The contact forces between the filaments 
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and the workpiece were highest at the point of initial contact of the filaments with the 

workpiece. This force reduced gradually until the filaments lost contact with the 

workpiece. Plots of force gradient along the contact length were shown to indicate that 

the point of maximum gradient is close to entry of filaments. The population density of 

the filaments was maximum at the point of entry. Average coefficient of friction (ratio of 

shear force to normal force) was almost constant because a hard workpiece is used. 

Material removal depends on both maximum force magnitude and rake angle. Hence, the 

point of maximum material removal is closer to the middle of the contact region for 

lower brush speeds (< 3000 rpm) and not at the point of maximum force (entry region). 

However at higher speeds, the point of maximum material removal moves closer to the 

entry region. The reason for this shift was stated as unclear. 

Analysis of Interaction of Grits with Workpiece  

An optical microscope study was conducted on the effects of attack angle on the 

transition from rubbing to cutting with a single point carbide tool, lead workpieces under 

constant load and traverse velocity [59]. The mean pressure required to displace material 

and the coefficient of friction on the surface was evaluated by the Eldredge-Tabor 

method. The critical attack angle was found to be about 60° but takes place over a range 

of angles. Forces in these two regions were calculated using Merchant‘s equations for 

cutting and Bowden-Tabor‘s equation for ploughing. A case was made for mechanical 

abrasion as the mode of material removal in polishing [60]. The abrasive gets embedded 

in the cloth and scratches the surface. Factors that affect the material removal rate were 

identified as the force which is applied to contacting abrasive particles, the number of 

contacting abrasive particles, the shape of their contacting points, the critical attack angle 

for cutting, and the proportion of contacting points that are oriented with a favorable 

attack angle and the coefficient of friction between the specimen and the contacting 

points but a model was not attempted.  
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A review of fundamental research on the mechanics of friction with a brief outline 

on the major views of mechanics of wear and lubrication was presented [61]. It was 

suggested that friction is caused due to adhesion and ploughing, depends on the load and 

is independent of the size of the bodies. For purely plastic deformation, the area of 

contact is proportional to the load w, while for purely elastic deformation it is 

proportional to w
2/3

. In reality it will be in between those two values.  

The mechanics of material removal in polishing and lapping both in terms of 

mechanical and chemical effects was approached in terms of the interactions between the 

four components of the process, namely the lap, fluid, grits and workpiece as pairs and 

triplets [62]. It was proposed that if the loads are such that the yield stress is not exceeded 

during workpiece-grit interaction then only elastic deformation occurs while if it exceeds 

the yield stress then the material is either ploughed, forms a chip, forms a wedge or 

initiates fracture. Low penetration and high negative rake increased ploughing and hence 

thrust force. In the case of soft pads touching the workpiece, the contact area was 

proportional to the applied load and effective pressure at the contact junctions was 

constant. In general, in polishing increasing the concentration reduces the load per grit 

and the polishing rate was independent of grit concentration and size. For small grit size 

and low concentrations material removal was proportional to size and concentration. 

Large grits under low load tended to roll, reducing material removal. High concentration 

resulted in material removal being proportional to the load. In lapping very small 

particles (< 3 μm) removed material in the form of platelets instead of ribbons. Transition 

from cutting to ploughing depended on penetration depth and the ratio of penetration to 

contact radius but was independent of shear strength.  

The only study of material removal during brushing studied short (< 4 inch) 

bristle brushes and developed an analytical equation for qualitative understanding (Eq. 1) 

where Z is the material removal rate, Fc is the tangential cutting force, V is the surface 

cutting speed, υt is the specific cutting energy for the workpiece and C is a constant of 
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proportionality, but did not verify the equations experimentally [63]. While this is the 

only attempt to model material removal in brushing, it does not capture the effect of 

material properties and brushing parameters separately but lumps them into a 

proportionality constant and specific cutting energy and also lacks experimental 

verification. Centrifugal stiffening is factored in as a coefficient which is also left 

unquantified. It was found that rise in temperature (to about 150°C) reduces stiffness of 

the brush. Also, increasing brush pressure beyond 2.5 psi reduces material removal rate 

due to heating and out of plane deflection of bristles.  

   
(1) 

From the preceding discussion it can be concluded that while there is a fairly large 

body of literature on brush dynamics, the need for an understanding of the mechanics of 

material removal is quite rudimentary while the need for such a study has been 

underscored often. The dynamic models do not take into consideration the initial contact 

force of the bristles while experiments suggest that the maximum force and hence, the 

maximum force would be at this point. Furthermore, these models require considerable 

experimentation to obtain the viscoelastic damping parameters required as inputs. A 

strong case can be made for the dominance of mechanical material removal during the 

abrasive impregnated brushing of metals over chemical phenomena and that the Hertzian 

2/3
rd

 power law can be used to model the interaction of the grit with the workpiece.  

Biomedical Device Design and Analysis 

As mentioned in Chapter 1, the knowledge of burr formation and deburring is 

applied to a biomedical device made from the shape memory NiTi alloy that is used in 

the surgical correction of Age-related Macular Degeneration (AMD). This section 

presents a review of the state of the art of treatment of this disease as well as a review of 

devices using thermal adhesion to manipulate tissue and modeling techniques for shape 

memory properties NiTi required to characterize the device. 
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Age Related Macular Degeneration 

Age-related macular degeneration is commonly referred to as either ―dry‖ or 

―wet‖. Dry AMD or atrophic AMD (aAMD) occurs when there is a loss or attrition of the 

retinal pigment epithelium (RPE), Bruch's membrane, and the inner choroid (Figure 3). 

Wet AMD or exudative AMD (eAMD) leads to a more rapid decrease in macular 

function by the leakage or exudation of fluid from neovascularization (new blood vessel 

growth) originating in the choroid, and developing in the sub-retinal space.  These blood 

vessels are fragile, may break or bleed, thus leading to photoreceptor damage and 

dysfunction along with scarring and inflammation. The RPE is a key monocellular layer 

under the retina and is responsible for transporting nutrients from the blood vessels in the 

choroid to the photoreceptors.  In addition, the RPE is also responsible for transporting 

waste-products from the photoreceptors, re-processing the material, and moving the 

waste products away from the region via the choroidal circulation. Bruch's membrane is a 

thin, semi-permeable membrane that separates the RPE from the inner choroid. 

Therefore, damage to the RPE under the macula interferes with both the supply of 

nutrients to the macula, as well as waste-removal. The loss of both critical functions leads 

to clinical AMD. 
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Wet AMD is currently treated using direct injections of anti-angiogenic 

medications, but this treatment is extremely expensive.  The on-label use of current 

treatments costs approximately $2,000 per vial of drug plus the clinic, imaging, and 

injection fees.  This therapy needs to be repeated monthly, and is estimated to cost the US 

economy about $10 billion annually [64]. No effective therapies are available for aAMD 

[65].  Finally, many eyes continue to deteriorate despite therapy and 20-30% do not 

respond to medical treatment. The proposed surgical correction of AMD offers a 

possibility of a treatment for both eAMD and aAMD [18, 66-68]. The procedure usually 

involves re-supplying the macula with healthy RPE-Bruchs-choroid using 3-port par 

plana vitrectomy techniques [69]. The damaged tissue under the macula is replaced with 

a healthy tissue. This graft typically originates from another portion of the eye although it 

could theoretically be derived from a human donor, a synthetic graft, or even from animal 

source. An objective of the surgical procedure is for the neurosensory retina and 

photoreceptors of the macular region to remain in their original position. Only the sub-

retinal tissues are replaced.  Details of the surgical technique can be found in [70].   
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Figure 3: Cross section view of macular tissue (a) Normal eye (b) Dry AMD or 

aAMD (c) Wet AMD or eAMD 
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Development of a mechanical device to support the delicate tissue avoids folding, 

injury, or loss of polarity of the translocated tissue [18]. In previous efforts, such a graft 

has been translocated using a spatula or with forceps.  This often leads to damage and 

bleeding of the tissue [19]. Furthermore, studies have shown that the size of graft is 

limited by the size of the forceps used [18]. Therefore, we predict that the success of such 

a procedure would be increased by using a stable support structure that holds the tissue in 

its natural polarity and shape during translocation. The structure is also used to correctly 

orient the tissue under the fovea. 

Shape Memory Effect 

Shape memory structures require heat to transform them from a deformed shape 

to the shape that they have been taught. This transition occurs due to a diffusionless phase 

transformation occurring in the material. In a stress free, high temperature state, the 

structure consists of an austenitic phase. When the structure is deformed, the induced 

stresses cause a phase transformation to martensite. This process takes place by a process 

of twinning rather than by other modes of deformation such as slipping as long as the 

strains are below about 6 to 8%. Since the deformation mechanism is twinning, removal 

of the load causes the transformation back to austenite and the original, undeformed 

crystal structure to be regained. This phenomenon allows SMA materials to demonstrate 

the ability to recover from large strains (6-8%) and ability regain its undeformed shape.  

The start temperature for austenite to form is referred to as As while the 

temperature at which the microstructure is completely austenite is referred to as Af.  

Similarly, the temperature at which the material begins to transform to martensite is 

referred to as Ms while the temperature at which it is converted completely to martensite 

is referred to as Mf. In order to cause recovery of the trained shape, the structure needs to 

be heated beyond Af. The difference between the start and end temperatures is typically 



 24 

about 10⁰C. Transformation from the deformed shape to the trained shape is achieved by 

heating the structure above Af.  

Shape memory alloys were discovered in the 1970s and models of the behavior of 

these materials have been studies since the 1980s [71, 72]. Tanaka developed a model 

describing the stress-strain behavior of SMA materials based on phase transformation 

kinetics of the material due to temperature and stress. Brinson and Lammering developed 

a one-dimensional finite element model for shape memory alloys and used it to calculate 

the stresses induced in simple structures such as rings and to find the frequency response 

of a composite structure embedded with SMA wires [73]. SMA structures have also been 

modeled using hyperelastic material models for rubber [74]. However, these models do 

not capture the temperature dependence of the material properties or the directionality of 

the loading (i.e. whether the material is being loaded or unloaded). Gong et al. modeled a 

superelastic stent in ABAQUS based on the model developed by Aurichio [75, 76]. 

Terriault et al. modeled a linear shape memory wire embedded in an aerofoil using a user 

defined material model algorithm in ANSYS [77]. This model based on the work of 

Müller and Xu [78] captures both temperature based effects as well as directionality of 

loading. The effect of temperature is captured by changing the material properties as a 

function of temperature. These properties are the elastic modulus of austenite (EA), direct 

transformation modulus (Etd), martensite start transformation stress (σMs), martensite 

finish transformation stress (σMf) and austenite start transformation stress (σAs). Three 

zones are defined in the model, namely, elastic, direct transformation and inverse 

transformation (Figure 4). The model identifies the direction of transformation based on 

the stress state in the prior iteration. 
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Thermal Adhesion 

Thermal adhesion of tissue has been utilized in direct and indirect heat induced 

attachment and detachment (HIAD) devices [79, 80]. With direct HIAD, adhesion is 

achieved by passing high frequency AC through the tissue. Vankov et al. [79] measured 

the force and extension after adhesion of chicken tissue to a 50 µm diameter wire with 

direct HIAD and found it to be on the order of about 30 to 40 mg (300 to 400 µN). Tissue 

damage was limited to a 10 µm region around the electrode. With indirect HIAD, short 

DC pulses are applied to a molybdenum resistance element to cause it to stick to the 

tissue. Tissue damage due to this device was not evaluated. Knulst et al. [80] studied the 

amount of energy required for attachment and detachment of pieces of chicken tissue 

using an indirect HIAD with a 50 µm molybdenum wire.  

The mechanism of adhesion between the metal and tissue is unclear. However, 

theories have been suggested to link the adhesion to hydrogen bonds, dipole interactions, 

Van der Waals forces and the presence of adhesive groups on denatured proteins [79-82]. 

These phenomena have been observed to take place when the electrode temperature is 

about 70°C. Tissue shrinkage has also been reported at temperatures between 55 and 
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65°C [83]. The bond between the tissue and metal is found to break down at about 100°C 

[84].  

Thermal models of a normal eye and the response of the eye to laser radiation 

have been developed [85, 86]. A review of research on experiments and modeling of 

radiofrequency ablation for several different organs and tissues was conducted by 

Berjano [87]. Temperature rise and electric field for a ring electrode used for reshaping 

the cornea due to a short electric pulse has been studied [88]. It was seen that current 

density is the main determinant of tissue temperature rise and that there is a high current 

density at the edges of the electrode. There was also an increase in tissue temperature as 

the area of contact between the electrode and the cornea was reduced. Factors considered 

in the simulation were electrode thickness, diameter and conductivity. Dehydration of the 

tissue at ≈ 100°C was used as the criterion to evaluate lesion depth. In-vitro tests with 

radiofrequency resistive heating showed a lesion depth of about 360 µm in 20 seconds.  

Summary 

From the above discussion, the following can be concluded: 

 While brush deburring has been successful and some of its aspects studied 

in detail at the macroscale, its applicability to the microscale has never 

been formally evaluated. This is piquant given that it has been suggested 

as the first process to be attempted while deburring microfeatures,  

 Mechanics of burr formation in micromilling of thin foils and is 

significantly different from both macromilling and micromilling of bulk 

materials and understanding of this process is important for all materials 

but more so for NiTi due to its propensity to form burrs. However the 

present grasp of the subject is mostly speculative. 

 While a large body of literature is present on brush dynamics, the need for 

understanding of the mechanics of material removal in abrasive 
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impregnated or assisted brush deburring is noted as an important and 

mostly unaddressed area of research. An experimentally verified model 

that captures the effect of material properties and brushing parameters 

would be a significant addition to the current knowledge in this field. 

 There is a need for a minimal invasive device that facilitates tissue 

translocation for surgical correction of Age-related Macular Degeneration. 

 Finite element analysis with a bilinear kinematic model is a potential 

method of analyzing unidirectionally loaded shape memory devices. 

These potential areas of significant contribution to the current knowledge 

motivate the current study and are addressed in the following chapters. In the next 

chapter abrasive slurry assisted brush deburring is experimentally evaluated for its 

applicability to micromachined grooves in bulk materials.  
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CHAPTER 3 

ABRASIVE SLURRY ASSISTED DEBURRING 

 

In this chapter, we seek to deburring rate in abrasive assisted brush deburring is 

experimentally characterized as a function of the process parameters. The process 

parameters considered in this study are the abrasive grit size, abrasive type and spindle 

speed. A previous study of the process focused on the time taken for complete deburring 

of micromilled grooves [89]. Since the time for complete deburring varies with process 

parameters, their effect on surface finish and change in groove depth is confounded with 

deburring time. This difficulty is overcome in the current study by keeping the deburring 

time constant. Moreover, the present study takes into account the effect of initial burr 

height on the deburring rate and examines two different workpiece materials.  

 

Experiment Design 

A full factorial experiment was conducted to quantify the effects of abrasive grit 

type, size and spindle speed. The brush was rotated at a spindle speed that is limited at 

the lower end by machine capability and the desired burr removal rate. It is limited at the 

higher end by flaring of the bristles, which also reduces burr removal rate and damages 

the brush. When abrasives are used, high rotational speeds result in the particles being 
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Figure 5: Schematic of abrasive assisted brush deburring process. Brush 

reciprocation in z direction. 
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swept away from the area where burrs need to be removed. The lowest spindle speed 

possible in the setup used is 5,000 rpm, while the highest speed recommended by the 

brush manufacturer is 15,000 rpm. Hence, the three speeds chosen for the experiment 

were 5,000 rpm, 10,000 rpm and 15,000 rpm. 

Abrasive slurry was applied to the groove to increase the deburring rate. 

Commonly used abrasives are diamond, silicon carbide and alumina. Alumina is usually 

used for very small amounts of material removal in polishing operations [90]. Diamond 

slurries have long life and usually yield a much better surface finish. However, they are 

expensive. In this study, silicon carbide (Black SiC, Washington Mills) and diamond 

(Advanced Abrasives Corp.) abrasive particles were used to assist the brushing process. 

Two nominal grit sizes (1.25 µm and 3 µm) were considered for the process. The slurry 

consisted of one part by weight of abrasive powder in 10 parts by weight of de-ionized 

water. This ensured that the material removal is by purely mechanical means and not by 

chemical action. The de-ionized water also helps to cool the brush and extend brush life. 

Burr properties and removal rates vary with the hardness of the work material. 

Hence, burr removal in copper alloy 110 (99.9% Cu, 95 HV) and A2 tool steel (215 HV) 

are studied in this paper. All experiments were replicated three times.  

The abrasives used for deburring were characterized in a dynamic light scattering 

system (Zetasizer Nano, Malvern Instruments) yielding the measurements listed in Table 

1. The mean sizes are close to the specified grit sizes. Polydispersity index measures the 

dispersion of particle sizes. Values above 0.7 indicate a broad distribution of particle 

sizes. Note that larger particles have a much higher dispersion than smaller particles. The 

zeta potential measures the likelihood of the grits agglomerating. Potentials whose 

absolute values are above 30 mV are considered stable and hence less likely to 

agglomerate. Diamond shows much better stability than SiC. The SiC grits exhibit a mild 

tendency to agglomerate.  
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The normal force applied by the brush was limited at the lower end by very low 

burr removal rates leading to long process times. It was also limited at the higher end by 

excessive buckling of the nylon bristles of the brush and damage to the workpiece. The 

buckling of the bristles causes the sides of the bristles instead of their ends to come into 

contact with the workpiece. A prior study [89] indicated that deburring time is more 

sensitive to changes in speed than changes in the normal load. Hence, in this study, the 

normal load was fixed at 1N. 

Table 2: Characteristics of abrasive grits used for deburring 

  

  

SiC Diamond 

3µm 1.25µm 3µm 1µm 

Zeta potential (mV) -29.8 -26 -31.1 -35.5 

Mean size (µm) 2.93 1.08 2.16 1.22 

Polydispersity Index 0.628 0.244 0.698 0.305 

Experimental Procedure 

Sample Preparation 

Micro-grooves were milled using a micro milling machine designed and built in-

house and are shown schematically in Figure 6a. The artifact to be deburred consists of a 

5 mm long groove that is 50 µm deep and is cut in a single pass by a 500 µm diameter, 

two flute carbide end mill (PMT, TR-2-0200-S) spun at 60,000 rpm with a feed rate of 

500 mm/minute. The entry and exit portions of the groove and associated burrs are 

affected by tool entry and exit dynamics. Hence, entry and exit sections are provided in 

the grooves to allow the 5 mm section being studied to remain unaffected by entry and 

exit transients. Since groove depth can be affected by workpiece positioning errors and 

surface irregularities, the grooves were produced on a pre-milled reference surface.  

The burr removal rate was evaluated by partially deburring the grooves for a fixed 

time. The difference in burr height before and after deburring was then calculated. Since 
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the deburring time is fixed, the difference in burr height can be used to calculate the burr 

reduction rate.  

 

 
Abrasive assisted brush deburring is a fairly quick process. Hence, if the burrs 

produced in micro milling are small, they will be removed in a very short time and the 

difference in burr height reduction due to change in the process parameters cannot be 

easily measured. In order to accentuate the effects of these parameters, it was necessary 

to produce fairly large burrs. Burr height generally increases with tool wear and feed [3, 

21]. Hence, the tool used for machining the reference surface was also used for 

machining the grooves at a high feed, thus wearing-in the tool. This resulted in much 

larger burrs than would be seen if a new tool was used at feeds recommended by the tool 

manufacturer. 

Burr Measurement 

Nominally, the calculation of burr removal rate requires the volume of the burr to 

be known. Typical approaches for burr measurement include optical, tactile and 

destructive methods [91]. Optical methods include the volume under the rollover burrs 

commonly seen in micromilling [40], leading to an error in the calculated volume. Tactile 

measurement devices give line traces of the surface and hence, cannot be used to 

calculate the burr volume but can quantify burr height. Destructive methods such as 
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sectioning [91], makes subsequent deburring impossible. Hence, there is no reliable 

method to calculate burr volume. Material removal rate in macroscale deburring has been 

calculated by measuring the weight of the sample before and after deburring [92]. The 

abrasive assisted brush deburring process also involves a polishing process. Hence, 

measuring the sample weight yields a measure of the total material removed by polishing 

and deburring. 

A metric often used to characterize burr size [21, 93] and burr reduction rate [53, 

94] is the burr height, which can be measured accurately by a profilometer or a laser 

scanner either in-process or off-line. This feedback can then be used in the subsequent 

deburring operation to predict deburring time. Hence, in this study, deburring rate has 

been characterized by the change in burr height during the operation.  

The initial burr height in turn depends on tool wear. Consequently, there will be 

some variation in burr height from the first groove to the last groove machined using the 

same tool. Hence, subsequent grooves in the order of machining are deburred at different 

spindle speeds. Thus, any variation in burr height due to tool wear is distributed more or 

less equally over all speeds. Moreover, the model used to evaluate the effect of speed 

separates the effects of burr height from the effects of spindle speed. 

Burr height is measured before and after deburring using a surface profilometer 

(Taylor-Hobson, Form Talysurf) with a 397 µm diameter spherical sapphire stylus. The 

large size of the stylus tip makes it easier to pick out the high points of the burr in a small 

region. The stylus was aligned with the length of the groove and positioned on top of the 

burr using a microscope under 50X magnification.  

The burr height at any point along the groove length varies in the direction of the 

groove width. Hence, in order to find the highest point of the burr at any point along the 

length of the groove, three traces offset 10 µm from each other in the direction of the 

groove width were taken. The burr height at any point was taken as the highest value for 

that point among the three scans (see Figure 6b). Burr heights were measured on both the 
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upmilling and downmilling sides of the groove. Similarly, groove depth was measured 

before and after deburring with the same profilometer but with a 2 µm effective diameter 

diamond stylus tip.  

Deburring 

The micromilled grooves were deburred using a nylon end brush (Dremel, Bristle 

brush 405) mounted in a Dremel spindle (Dremel 4000). The brush had a diameter of 3.5 

mm and 50 µm diameter bristles. It was positioned above the artifact to be deburred and 

spun at the required speed and reciprocated along the groove length at 300 mm/min. A 

few drops of abrasive slurry were applied on the artifact. The normal force exerted by the 

brush was kept constant at 1 N using a counterbalance weight system. The spindle is free 

to move vertically in a lubricated bushing. The spindle weight is balanced by the 

counterbalance and the normal force between the workpiece and the brush. Hence, the 

normal force between the brush and the surface can be controlled by changing the 

counterbalance weight. The normal force was monitored using a piezoelectric force 

platform (Kistler MiniDyn 9256C2).  

Deburring experiments were carried out for a constant duration of 65 seconds in 

all experiments reported here. This duration was selected such that deburring was stopped 

before complete burr removal, thus allowing for the estimation of burr height reduction. 

The burr reduction rate was calculated by dividing the burr height reduction by the 

deburring time. The effects of spindle speed, grit size and abrasive type on burr height 

reduction rate were then evaluated. 

Experimental Results 

Burr Types 

Figure 7 and Figure 8 shows the typical burrs observed in micromilling of tool 

steel and copper respectively. The burr size seen in copper is much larger than that seen 
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in tool steel because copper is more ductile [20]. The burrs in the grooves can be 

categorized as tear and Poisson burrs. Tear burrs are caused when material tears apart 

instead of being sheared by the tool [20]. Poisson burrs form where the material is 

plastically ploughed up near the edge instead of being sheared to form a chip. Typically, 

in both materials the burr is a combination of tear and Poisson burrs. The tear burr is 

attached to the groove edge at the burr root. At the root, the burr is formed by material 

being ploughed by the tool edge. As a result, the root is much thicker than the rest of the 

burr and also the toughest to remove. The root region gets exposed during deburring and 

can be seen clearly on partially deburred edges. Since tool steel is harder and less ductile 

than copper, the tool steel burrs have a much more well defined shape than the copper 

burrs. It can also be seen that burrs on the downmilling side of the groove are larger than 

burrs on the upmilling side. This is because the torn burr gets cut on the upmilling side 

and is swept towards the downmilling side. On the upmilling side, the burrs are mostly of 

the Poisson type, although a few small tear burrs are also present. 

Visual Inspection of Deburred Grooves 

Figure 7 shows images of a groove in tool steel deburred with 3 µm SiC grits at 

15 krpm for 65 seconds. It can be seen that burrs on the down milling side are larger than 

on the up milling side. The burrs are feathery with a mostly thin cross section except at 

the root. It can be seen that machining marks on the top surface of the groove have been 

removed by the deburring process. However, machining marks on the groove base are 

still present after deburring. Note that, prior to imaging, any residual abrasives on the 

deburred surfaces were removed using isopropyl alcohol and a light brush (Crayola 

3515).  



 35 

 
Figure 8 shows a groove in copper before and after deburring with 3µm SiC grits 

at 15krpm rpm for 65 seconds. A much larger residual burr is seen in this case because 

the initial burrs were fairly large. The downmilling side burrs have a smoother surface 

after deburring. This suggests that while the slender burrs are removed by breaking or 

tearing, thicker burrs and burr roots are gradually removed by abrasive action of the grits. 

The upmilling side burrs are removed quickly due to their slender shape to give a well 
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defined edge. Machining marks have been removed from the top and bottom surfaces of 

the groove. However, unlike tool steel, scratch marks on the surface due to action of the 

abrasive grits are much more pronounced. This is due to the fact that copper is softer than 

tool steel. 

 
Figure 9 a shows an unbrushed area next to the burrs (Region I). This can be 

explained by noting that in the presence of a large burr, the bristle follows the trajectory 

shown in Figure 9 c. When it contacts the burr it bends and travels along the top of the 

burr. When the tip of the bristle reaches the end of the burr it is released and follows a 

curved path until it contacts the workpiece again at the start of Region II. Hence, there is 

Figure 8: Burrs in milling of copper before and after deburring with 3 µm SiC 

grits at 15,000 rpm (a) both sides (b) down milling side (c) up milling side 
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a small region near the burr that is shielded from action of the abrasives embedded in the 

bristles. A consequence of this is that the unshielded region gets abraded more than the 

shielded region. This causes a depression in the top surface from the groove edge towards 

the outer edge of the brushed area. This incline can be seen in a fully deburred groove 

shown in Figure 9 b. It is also seen that Region II is abraded more than Region III edge 

although both surfaces are exposed to abrasives for the same time. The bristle in Figure 9 

b behaves like a bent cantilever spring that is released from the burr. It is hypothesized 

that the excessive abrasion in the unshielded region is due to the impact of the bristles 

against the surface after being released from the burr. For the section shown in Figure 9 

b, bristle impact causes a depression about 5 µm in depth.  
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Burr Reduction Rate 

A trace of a downmilled tool steel edge deburred with 3μm SiC grits and 15 krpm 

spindle speed is shown in Figure 10. It can be seen that there is significant reduction in 

burr height in a very short time. While the initial burr height varies significantly, the 

height of the residual burr is fairly constant. Hence, for the same deburring time, the 

height reduction is greater for tall burrs than for short burrs. Hence, it is inferred from the 

plot that burr height reduction is proportional to initial burr height.  

This behavior can be explained by examining the shape of the burrs shown in 

Figure 7. The burrs in A2 tool steel tend to be slender and tear-off or break upon contact 

with the bristles and/or abrasive leaving only the burr root behind. If the burr root height 

is nearly the same for both large and small burrs, then when a tall burr is broken by the 

combined action of the bristles and abrasives it results in a larger burr height reduction 

than when a small burr breaks. Hence, tall burrs show a higher burr reduction rate than 

short burrs. However, it is expected that this trend will change when the burr root is 

removed. In this case, the deburring rate will be proportional to the area of the root in 

contact with the brush.  
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Figure 10: Sample trace of groove edge before and after deburring of A2 tool steel 
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These findings are consistent with the work of other researchers [95] who suggest 

that there are two types of burr removal mechanisms: extensive yielding (Type 1) and 

abrasive wear (Type II). Extensive yielding occurs for thin sheet-like burrs that bend 

under the action of the deburring force and undergo failure at the root when the stress 

exceeds the failure stress of the burr material. For an average pressure P0  acting on a burr 

of height x, thickness tb and inclined to the reference surface at an angle θ, the stress σ  

generated at the root during Type 1 mechanism is given by Eq. 2. It can be seen that the 

stress is proportional to the burr height x when all other factors are constant. For Type II 

mechanism, it is suggested in [95] that the burr root material is plastically deformed 

without any material removal by stress concentration beyond yield. The abrasion marks 

on the surface of the material seen in Figure 7 and Figure 8 however seem to suggest that 

material is removed by chip formation. In this case, the proportionality between burr 

removal rate and initial burr height will not hold. Furthermore, it has been observed in the 

present study that removal of sheet like burrs occurs due to mode I and III fatigue fracture 

at the burr root. 

   
(2) 

Statistical Model for Burr Reduction Rate 

A quantitative evaluation of deburring speed can be obtained by fitting a linear 

regression model to the burr reduction rate y in µm/min. It is to be noted that this is by no 

means a ‗model‘ in the sense of a physical explanation based on first principles but rather 

a ‗regression model‘ in the sense of a statistical description of the effect of factors that 

would be expected to affect burr reduction rate. The factors in the statistical model given 

by Eq. 3 are the initial burr height x in µm, spindle speed N in krpm, abrasive grit size a 

in µm and abrasive grit type b [96]. The effect of grit type is captured by setting b to 0 if 

SiC grits are used and to 1 if diamond grits are used. Since the burr height reduction rate 

at every point along the groove edge depends on the initial burr height at that location and 



 41 

the initial burr height cannot be chosen apriori, the initial burr height is a covariate for 

burr height reduction rate.  

y = α0 + α1 x + α2N + α3a + α4b + α5N·a + α6 N·b + α7 a·b + є (3) 

 

A comparison between the regression fit to the experimental data for deburring of 

A2 tool steel with 3µm SiC abrasives at 15krpm is shown in Figure 11 a. An almost 

linear dependence of burr reduction rate on the initial burr height can be observed. A 

cursory look at Figure 11 may suggest that the model does not fit the data accurately. 

However, note that the linear model is fitted to the data for the entire experiment design 

while the 2D plot in Figure 11 allows for only one subset of the data. The fitted equation 

has an R
2
 value of 0.76. This value is low probably due to the uncontrolled nature of the 

free abrasives based process. A possible remedy to this problem is to use abrasive 

impregnated brushes for better process control. 

The regression analysis in Table 3 indentifies initial burr height x, brush rotational 

speed N and grit type b to be statistically significant at a 10% level. Similar results are 

presented for copper in Table 4. It is interesting to note that the coefficient of the initial 

burr height α1 is about 0.5 for both copper and tool steel. This is explained by the typical 

shape of the burrs, which tend to be thick at the root and thin away from the root. 

Therefore, they are more prone to bend and/or break right above the root. The value of 

the coefficient α1 seems to suggest that the burr either breaks or bends at about half its 

initial height. The analysis also indicates that diamond abrasives have a higher burr 

reduction rate than SiC. Changing from SiC to diamond grits causes an increase in 

deburring rate of about 13µm/min in tool steel and of about 19µm/min in copper. This 

can be explained by noting that diamond grits are harder than SiC grits and maintain their 

sharpness longer than SiC.  

 

 

 



 42 

 

Table 3: Coefficients for linear regression model for burr reduction rate for tool 

steel  

  Symbol Coefficients p-value 

Intercept  α0 -7.68 0.28 

Initial burr height (μm) α1  0.49 0 

Speed (krpm) α2  1.02 0.1 

Size (μm) α3 -1.54 0.59 

Type  (SiC=0, Dia=1) α4  13.05 0.05 

Speed*Size  α5 0.3 0.23 

Speed*Type α6 -0.79 0.11 

Size*Type α7 0.03 0.99 
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Figure 11: Burr height reduction rate as a function of initial burr height for deburring at 

15krpm with 3 μm SiC grits (a) A2 tool steel (b) copper 
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Table 4: Linear regression model coefficients for burr reduction rate in copper  

 
Symbol Coefficients p-value 

Intercept  α0 -41.89 0 

Initial burr height  (μm) α1 0.53 0 

Speed(krpm)  α2  2.43 0.03 

Size (μm) α3  4.28 0.42 

Type   (SiC=0, Dia=1) α4 19.34 0.12 

Speed*Size α5 0.17 0.7 

Speed*Type α6 1.04 0.26 

Size*Type α7 1.81 0.64 

 

 

The deburring rate also increases with speed as indicated by the positive 

coefficient α2. A higher brush rotational speed implies a higher number of passes of the 

brush over the burr per unit time for a constant feed along the length of the groove. This 

implies a higher number of passes of the abrasives on the burr and hence a higher burr 

reduction rate. This increase in material removal sufficiently overcomes any reduction in 

material removal due to scattering of the grits by the centrifugal forces. In polishing 90% 

material removal is assumed to come from two body interaction and only 10% from three 

body interaction [97]. Hence, material removal is assumed to occur due to abrasives 

embedded in the bristles (Figure 12). The centrifugal forces are not strong enough to 

disengage the grits embedded in the bristles as observed from images of the bristles after 

deburring. Furthermore, the rotational kinetic energy of the grits should be high enough 

to overcome the resistance offered by the densely packed bristles. Since speed and type 

are significant, for tool steel the speed-type interaction term is also indicated as being 

slightly significant.  

Models used for polishing may be applied to analyze abrasive assisted brush 

deburring since both are free abrasive processes that use a soft backing media. It has been 

suggested in [60] that in polishing involving material removal (i.e. chip formation instead 

of bulk plastic flow), the Mulhearn model [97] used for polishing with emery paper may 

apply, which suggests that the material removal rate is proportional to the depth of 
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penetration of the abrasive. A similar microcutting model [98] based on Archard‘s wear 

equation is shown in Eq. 4, which shows that the material removal rate  is proportional 

to the relative velocity vr between the grit and the workpiece (L is the load on the 

abrasives, H is the hardness of the workpiece, and kw is a constant). This is in agreement 

with the experimental results presented in the present study. It is also suggested in [98] 

that the depth of penetration is proportional to hardness of the grit. Based on Mulhearn‘s 

model, increased penetration would also mean higher material removal rate, which 

supports the findings in the present study that the harder diamond grits yield a higher burr 

reduction rate than SiC. 

   
(4) 

 

 
It is surprising to note that the effect of grit size is not very significant. While this 

warrants further investigation, one probable explanation is that for a constant grit 

concentration by mass, smaller grits would have a larger number of abrasives in contact 

with the workpiece. However, larger grits also remove more material per pass for similar 

indentation depth. It has been shown that abrasion rate in polishing is independent of grit 

size up to a critical grit size below which abrasion rate is proportional to grit size [97]. 

For the experiments in [97] the critical value was 50µm. However, the load in this case 

SiC grits 

nylon 

bristle 

Figure 12: SEM image of a nylon bristle with 3µm SiC abrasive grits embedded 

in it 

10 µm 
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was much higher than in the present study at (about 5N with SiC abrasives paper on a 

cold-drawn steel workpiece). Another possibility for the insignificance of grit size could 

be the narrow range of sizes used in the experiment. Note that a wider range of abrasive 

grits sizes cannot be used in this study due to excessive damage caused to the micro-scale 

feature by larger grit sizes under the deburring conditions used. It has been observed that 

6 µm diamond grits can cause over 50% reduction in the groove depth, which is clearly 

undesirable.  

A comparison between the regression model coefficients for tool steel and copper 

shows that the coefficients for copper are much higher than tool steel for all the factors. 

The effect of speed is much more pronounced in copper as indicated by the much lower 

p-value for copper.  The higher sensitivity of copper to the deburring parameters is 

attributed to the lower hardness of copper. A regression fit for only the significant factors 

is performed on the data and the resulting equations are shown in Eq. 5 for tool steel and 

Eq. 6 for copper. The speed-type interaction factor has been retained for copper for the 

sake of consistency. Surface roughness in all cases improves by at least 100 nm and the 

mean change in depth is usually about 2 μm with a maximum of 4 μm for 3 μm diamond 

abrasives used on a copper workpiece at 15 krpm. 

y = -10.45 + 0.49 x + 1.62 N + 13.04 b - 0.79N·b + є (5) 

y = -33.72 + 0.54 x + 2.78 N + 22.86 b + 1.04 N·b + є (6) 

Verification 

The deburring rate predicted by the model in Eq. 3 is verified experimentally for 

tool steel and copper. The conditions chosen for this experiment are 3μm SiC grits with a 

spindle speed of 15krpm. The deburring rate for these conditions is given by Eq. 5 for 

tool steel and Eq. 6 for copper. A trace of the burr height for a groove is taken and the 

time t in minutes required for complete deburring of the edge is obtained by dividing the 



 47 

burr height x by the deburring rate as shown in Eq. 7 and 8. The grooves are deburred for 

the highest value of time obtained from these equations. For tool steel, this time comes to 

be 107 seconds while for copper it is 81 seconds. Note that even though the burr 

reduction rate y is always proportional to the initial burr height x, deburring time t may 

have a positive or negative exponential relationship with initial burr height depending on 

the values of the coefficients in the model. However, in both cases, the quantity of 

interest is the maximum time required to deburr a particular edge i.e. the maximum value 

of t from Eqs. 7 or 8 given the values of x along the edge.  

   (7) 

   (8) 

 

The burr height before and after deburring is shown in Figure 13 for the 

downmilling side of the groove, which is generally characterized by larger burrs. It can 

be seen that most of the groove has been completely deburred. There is a significant 

residual burr at the beginning and end of the groove where the tool rounds the corner of 

the entry and exit section (see Fig. 2a). The model drastically underestimates the time 

taken to deburr this region (Figure 13a and b). This can be explained by the fact that the 

portion of the burr at the corners is heavily strain hardened and hence the root of the burr 

for this region is much thicker than the straight portion of the groove. In calculating the 

coefficients of the model, about 80% of the data comes from the straight portion of the 

groove instead of the corner. Hence, the model predicts the time for deburring the straight 

portion of the groove much better than the corners. Unlike tool steel, the copper specimen 

shows an almost uniform and complete removal of the burrs. Some small residual burrs 

of the order of 3µm are visible at the ends of the groove for reasons similar to those 

discussed for tool steel. 
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Figure 13: Verification of model: Full deburring with 3 µm SiC grits at 15krpm for 

predicted time. (a) burr height before and after deburring for tool steel (b) burr 

height before and after deburring for copper 
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Note that the straight portion of the groove lies between 1 and 4 mm of the trace 

along the groove edge. This portion is almost completely deburred. Table 5 summarizes 

the characteristics of the burrs in this region before and after deburring. It can be seen 

that there are a few residual burrs in this region with a maximum height of about 3.5 μm 

for tool steel (Figure 14 a and b). Thus, the model for tool steel slightly underestimates 

Figure 14: Verification of model: Edge condition after full deburring with 3 µm SiC 

grits at 15krpm for predicted time. (a)  tool steel groove cross section profile after 

deburring (b) copper groove cross section profile after deburring 
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the burr reduction rate in this region. This is due to the fact that the burr root is much 

more difficult to remove than the feathery burr. It is interesting to note that even though 

the burr root was not explicitly considered by the model, most of the root has been 

removed (the standard deviation of the edge height is about 1μm). The edge condition 

after deburring for copper in the straight portion (between 1 and 4 mm) of the groove 

length has undulations of the order of a few microns which is about half the size of the 

abrasive grit used for deburring and may be because of abrasive marks. Both copper and 

tool steel show a slight dip in the profile towards the center due to less strained material 

and smaller burrs towards the center. SEM images scan of the groove are shown in Figure 

15. The burrs in copper have been completely removed from both edges. Irregularities 

along the edge are mostly due to irregularities along the wall of the groove. The mean 

change in groove depth is 1.3 μm for tool steel and 3.4 for copper.   

Table 5: Burr characteristics for region between 1 and 4 mm of trace length  

 
tool steel copper 

  before after before after 

mean  (μm) 173 1.3 143 1.24 

standard dev.  (μm) 23.6 1.1 31.1 0.6 

max  (μm) 234.5 3.5 239.6 3.04 

 

As mentioned earlier, the brush is much larger than the groove and the burrs on 

the downmilling side are larger than on the up milling side. Hence, the upmilling side is 

deburred for a longer period than required. The edge radius was measured by taking four 

profilometer traces across the groove width (Figure 13 c and d) and the results are 

summarized in Table 6. 

The residual burr size was measured from the zero datum, which is the level of 

the unbrushed region. The surface to the right of the residual burr drops below this datum 

because of material removal from the top surface as discussed earlier (Figure 9). It can be 

seen from Figure 15 that the radius is about 6 µm and is fairly constant. The maximum 

initial burr height on this edge is about 90 µm, which gives a predicted deburring time of 
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60 seconds. The groove was deburred for 132 seconds. Hence, in the remaining 72 

seconds, the edge radius obtained is about 6 µm. Unlike the tool steel specimen, both 

edges in the copper specimen show edge radii. Table 6 indicates that the edge radius on 

the upmilling side is larger than on the downmilling side because it has smaller burrs.  

Table 6: Residual burr and edge radius for region between 1 and 4 mm of trace 

length along the straight portion of the groove 

material tool steel copper 

groove side downmilling upmilling downmilling upmilling 

radius/residual burr  residual burr radius radius radius 

mean (µm) 2.2 6.1 6.1 5.8 

standard dev. (µm) 1.3 0.5 1.6 3.6 
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Figure 15: Burrs in milling of before and after full deburring time predicted by 

model for 3 µm SiC grits at 15,000 rpm. Before deburring: (a) A2 Tool steel, 

down milling side (b) A2 Tool steel, up milling side, (c) Copper, down milling 

side (d) Copper, up milling side. After deburring: (e) A2 Tool steel, down milling 

side (f) A2 Tool steel, up milling side, (g) Copper, down milling side (h) Copper, 

up milling side 
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CONCLUSIONS 

This chapter focused on experimentally evaluating the applicability of abrasive 

assisted brush deburring to micromilled grooves and quantifying the effects of material 

hardness, spindle speed, grit size and type on the rate of burr height reduction. From this 

study, the following conclusions can be drawn: 

 A linear regression model can be used to predict the time required for completely 

deburring a micromilled groove based on the maximum initial burr height present, 

brush rotation speed and grit type. In these experiments, the model slightly 

underestimates the deburring time for the harder material (tool steel) and slightly 

overestimates the time for the softer material (copper). 

 The deburring rate is proportional to the initial burr height with an almost 

constant proportionality for the conditions chosen in this study. An inference 

drawn from this is that the burrs either bend or break at about half the initial burr 

height. Deburring rate increases with spindle speed and is higher for diamond 

than SiC. No clear trend is evident for the influence of grit size.  

 Groove depth change was small for all conditions examined in this study and was 

maximum for the largest diamond grit at the highest speed. The edge of the 

groove on the upmilling side exhibits a small radius due to the action of the 

abrasives.  

 Large burrs shield some of the area next to them from the action of bristles 

resulting in a slope in the surface and a depression in the unshielded region.   

 The study showed that brush deburring can effectively remove large burrs in a 

few minutes with improvements in surface finish but the precision of the process 

is adversely affected by the large brush-workpiece interaction area and lack of 

control of the number of grits interacting with the workpiece.  
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The regression model can be further improved by considering Type I and II 

phases separately and developing a regression equation for each. The process can also be 

improved by concentrating the action of abrasives to the burrs and using brushes with 

impregnated abrasives to achieve better process control. These improvements and further 

mechanistic modeling are incorporated in Chapter 5 and applied to thin foils. The study 

of the deburring mechanism would benefit from an understanding of the properties of 

burrs produced during micromilling of thin foils and mechanisms of their formation and 

this is undertaken in the next chapter.  
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CHAPTER 4 

BURR FORMATION IN THIN FOILS 

 

In this chapter a detailed experimental study is conducted on the effects of spindle 

speed, feed per tooth, backing material and epoxy used to attach a thin nickel-titanium 

alloy (Nitinol) foil to the backing material on the burr size. This knowledge can be used 

to either reduce burr size or generate burrs of a particular nominal size to serve as micro-

hooks for tissue manipulation applications. 

Experiment Design 

Table 7 summarizes the experimental plan. A feed per tooth below the tool cutting 

edge radius will tend to cause significant rubbing and generate large burrs. A new micro 

endmill has a typical cutting edge radius of 1-5 μm [39]. The tools used for these 

experiments were measured using a microscope (Nikon Microphot) and the cutting edge 

radius was found to be about 2.5 μm. Hence, a feed of 1 μm/tooth was chosen as the 

lower level of feed while the higher feed was limited by the tool strength to 10 μm/tooth. 

The backing material affects the burr size due to its deformation under the cutting 

forces and also due to the interaction of chips with the tool (e.g. built-up edge and chip 

ejection). The adhesion strength of the glue can also vary with the backing material used. 

Aluminum 6061-T6 and PMMA were chosen as the two backing materials because of 

significant differences in their rigidity and adhesion strength.  

The adhesive used to bond the foil to the backing material forms a thin interlayer 

between the two. It is expected that cyanoacrylate glues would bond much more strongly 

to PMMA than to aluminum and reduce delamination, thus resulting in smaller burrs. On 

the other hand a two part epoxy made for metal bonding applications can prevent 

delamination from aluminum. These epoxies also tend to be harder and form a thicker 
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interlayer than cyanoacrylates, which can affect the mechanics of cutting at the interlayer. 

Hence, a cyanoacrylate glue (Gorilla Super Glue) and a two-part epoxy (DP-420, 3M 

Corp.) were used to evaluate the effects of epoxy and delamination on burr height. 

Table 7: Experimental plan 

Factor Levels 

Speed (rpm) 30,000 60,000 

Wear new worn 

Backing material PMMA aluminum 

Adhesive cyanoacrylate epoxy 

Feed (μm/tooth) 1 10 

 

The spindle speed was varied to study the effect of strain rate. The maximum 

spindle speed possible on the micromilling set up used in this work is 60,000 rpm. Hence, 

this waschosen as the high speed while 30,000 rpm waschosen as the low speed. Tool 

wear increases the cutting edge radius. Hence, the tool was worn by touching it with240 

grit emery paper for 3 seconds while spinning at 60,000 rpm. This tool was then used to 

machine groovesin the foil to evaluate the effect of wear on burr size. 

Response measured was the burr height, which was  measured by a stylus 

profilometer (Talysurf 112, Taylor Hobson) with a sapphire sphere stylus (φ = 0.774 

mm). The large size of the stylus allows it to pick the highest points. The burr height 

varies along the width of the groove. Hence, three measurements were taken 50 µm apart 

along the width to locate the highest points of the burrs (Figure 16). Images of the burrs 

were also recorded with an SEM (S 3700N VP, Hitachi) to qualify the shape and type of 

the burr under different conditions. 
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Experimental Procedure 

Straight grooves nominally 500 µm in width and 6 mm in length were 

micromilled in 25 µm thick shape memory NiTi alloy foils (55% Ni, As=50°C) using a 

500 µm diameter, 2-flute, flat endmill (PMT TR-2-0200-S) on a custom-built desktop 

micromilling machine shown in Figure 17.The system consists of a high speed spindle 

(FS-33/60, SLF-Fraureuth) and nanopositioning stages (ALS-130, ANT-4V, Aerotech). 

The PMMA backing material deforms under machining forces. Hence, if insufficient 

axial depth of cut is used, the foil simply deforms along with the PMMA backing 

material and is not cut by the tool. Sufficient axialdepth of cut was experimentally found 

to be 300 µm and was used in all tests with PMMA backing. On the other hand, this 

depth of cut is too high for aluminum backing for which the tool undergoes catastrophic 

failure. Hence, in all experiments involving aluminum backing material, the axial depth 

of cut was limited to 100 µm. This difference in depth of cut for the two backing material 

cases does not affect the burr size because the effective depth of cut for the foil is always 

equal to its thickness (25 µm). A single tool pass was used for all the experiments 

because multiple passes tend to weaken the adhesive bond due to fatigue, which leadsto 

extensive delamination. 

50µm 

stylus burr 

foil 

Figure 16: Burr measurement 

backing material 

groove 

burr width 
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A block of backing material was mounted in the vice and a reference flat was 

machined with a 2 mm endmill to correct for any tilt errors. The surface was then hand 

polished without disturbing the setup with 240 grit emery paper to remove the machining 

marks and obtain a uniform, roughened surface parallel to the machine axes. The foil was 

then heated to about 150°C to remove,via the shape memory effect, any wrinkles in it. It 

was then glued to the backing material while taking care to avoid the formation of voids 

or bumps on the surface.  Grooves were then cut in the foil under the specified cutting 

conditions.  

SEM images were taken to study the burr shape and occurrence of delamination. 

The foil was debonded from the backing material using an appropriate solvent (Loctite 

X-NMS for cyanoacrylate and Hughes Attack
™

 for epoxy). During micromilling, the foil 

tends to delaminate and bend at the groove edges. This delamination introduces errors in 

the measurement of burr height. Hence, the foil was heated to remove this deformation 

from the unmachined portion of the foil by shape memory. The burrs are strained beyond 

the shape memory limits and are therefore not affected by this step. The foil is then 

Figure 17: Experimental set-up. 
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attached to a flat surface using double sided tape and the burr height and width are 

measured using the stylus profilometer.  

Experimental Results 

Tool Wear 

Figure 18 shows images of a new tool, a tool after cutting grooves in the foil with 

PMMA backing and cyanoacrylate adhesive, and a tool worn by usingabrasive paper. It 

can be seen that the used tool (Figure 18b) is chipped at the end. However, the portion of 

the edge that cuts the foil is higher up on the flute and is not chipped (Figure 18c). Built-

up edge from cutting the soft PMMA is seen in this region, which could lead to 

intermittent ploughing as the built-up edge is formed and removed by the foil. In contrast, 

the worn tool in Figure 18d and e exhibits a chipped edge all along the flute and would 

plough the material much more than the used tool.   

 

 

Figure 18: Tool wear (a) New tool (b) Used tool (c) Used tool (portion that contacts 

foil) (d) Worn (e) Detail view of worn tool 
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Adhesive Bond Strength 

The peel strength of the bond between the foil and the backing was tested in 

accordance with ASTM D903 [99] in order to determine the effect of the backing-

adhesive combination on burr height. The test procedure requires a 25 mm x 203.2 mm 

foil specimen, which is prohibitively expensive. Hence, a smaller 5 mm x 30.48 mm 

specimen was used in the tests. The foil specimens were glued to the aluminum and 

PMMA backing blocks whose surface was first milled flat and then polished with 240 

grit emery paper in a manner similar to the blocks used for the milling tests. The blocks 

were then held in a vice, which was mounted on a piezoelectric cutting force 

dynamometer (Kistler Model 9256C2). The assembly was clamped in a surface grinding 

machine (Figure 19a). The free end of the foil was gripped in a jaw attached to the 

grinding wheel spindle and the spindle was then moved up to create a separation rate of 

152 mm/min as per the ASTM D903 standard and the mean force was measured. This 

procedure was repeated four times for each combination of backing material and 

adhesive. 

The results of the peel test are summarized in Figure 19b. It can be seen that, for a 

given backing material, the cyanoacrylate has a stronger bond. Similarly, for a given 

adhesive, aluminum has a higher bond strength. It is expected that weaker bonds will 

result in larger burrs. 
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Burr Formation 

Figure 20 shows a high speed image of burr formation on the downmilling side 

when micromilling the nitinol foil with PMMA backing and cyanoacrylate glue with a 

two flute, 500 μm diameter end mill spun at 60,000 rpm and fed radially at 10 μm/tooth. 

It can be seen that the foil initially bends up and plastically stretches in front of the 

advancing tool to form a semicircular wall (Figure 20a). As the tool advances, the tensile 

strength of the foil is exceeded and it tears roughly in the middle of the groove (Figure 

20b). The tooth tends to rip the foil at the beginning of the cut at the upmilling side and 

sweep the material towards the downmilling side. This can be clearly seen from Figure 

20c, which shows the tool from the upmilling side. As a result, most of the burrs are 

found on the downmilling side while the upmilling side of the groove shows small or no 

burrs. Note that this mechanism of burr formation is significantly different from the side-

flow phenomenon responsible for burr formation in bulk materials.  

Sometimes, the burr on either side of the groove may get caught in the flute of the 

mill. This can cause the crack at the base of the burr to extend along the edge until it 

Figure 19: Measurement of peel strength (a) test set-up (b) comparison of peel 

strength, p= PMMA, a=aluminum, c= cyanoacrylate,  

e= epoxy 
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intersects with the other edge of the burr and the burr is removed from the base material. 

In this case, no burr is found on that side of the groove (Figure 20d and e). 

Foil delamination plays an important role in burr formation. If the bond between 

the foil and the adhesive is strong, chips are formed instead of tearing of the material 

(Figure 20f). In this case very small burrs were found on the edges, whichcan be 

explained by noting that the chip load in milling is small at the beginning and end of cut 

leading to more rubbing instead of cutting. 

 
 

Figure 20g shows the formation of a burr on the upmilling side for a feed of 1 

μm/tooth. As mentioned before, the material forms a plastically deformed wall in front of 

the tool and tears close to the upmilling side leaving behind a small burr. The material 

Figure 20: High speed video stills of burr formation(a)stage 1: foil pushed up (b) 

stage 2: foil tearing (c) stage 3:foil tearing closer to upmilling side (d) burr fracture 

(before) (e) burr fracture (after) (f) Foil machining by chip formation(g)burr 

formation with slow feed viewed from upmilling side  
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may also tear on both the upmilling and downmilling sides forming a large strip of 

material in front of the tool. The crack on the upmilling side then progresses towards the 

downmilling side and a burr significantly larger than the groove width is left on the 

downmilling side. 

Figure 21 shows the interaction of chips from the foil, adhesive and base material.  

Figure 21a shows a PMMA chip caught between the tool and the pushed up foil. The 

entrapped chip can potentially apply a tensile load to the foil and cause it to tear. Figure 

21b and c show larger chips of PMMA and aluminum, respectively, attached to the tool 

and being swung around by it. Such large chips could break-off any loosely attached 

burrs on the foil.  

 
 

Epoxy forms a much thicker layer between the foil and the backing material due 

to its higher viscosity in comparison to cyanoacrylate and hence, during cutting, chips of 

epoxy are formed. This is clearly seen in the case where aluminum is the backing 

material as in Figure 21d.  The chip being swung around by the tool shows a level of 

Figure 21: Chip formation: (a) PMMA chip, foil interaction (b) large, 

continuous PMMA chip (c) large continuous aluminum chip (d) epoxy chip and 

machined foil  
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flexibility and luster that cannot be attributed to the foil or the backing material and hence 

must be because of the epoxy. As mentioned in the previous discussion, this is also the 

case where the foil gets cut rather than torn. It is difficult to distinguish the foil and 

aluminum chips since they look very similar. It is reasonable to believe that the base 

material produces larger chips as seen in Figure 21c while the smaller chips in Figure 21d 

are from the foil. It may also be that the tool removes chips that are a combination of all 

three materials (i.e. without delamination). 

Factors Affecting Burr Shape 

SEM images of burrs formed under various machining conditions are shown in 

Figure 22. Three main shapes of burrs can be identified from the images, namely, 

rollover type, feathery type [40] and wall type (Figure 22a, b and c, respectively). 

Rollover type burrs are formed when the foil tears in front of the tool and gets deposited 

on either side of the groove (Figure 23a). These are the most commonly seen burrs in the 

present set of experiments.  

Formation of feathery burrs differs from rollover burrs in that they are chips cut 

from the foil rather than being parts of material that were torn. These chips are not 

completely cut off from the base material and remain attached to the downmilling side of 

the groove. This behavior can be explained by noting that ploughing dominates at the 

beginning and end of the cut and hence, towards the end of the cut, the material gets 

pushed and bent over rather than cut. There is a higher tendency for these burrs to form in 

micromilling of thin foils because of their flexibility. 
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In the present set of experiments, feathery burrs were seen almost exclusively on 

sections of the downmilling side of the groove when machining the foil with aluminum 

backing and using a new tool at 60,000 rpm and 10 μm/tooth with both adhesives. The 

only exception was a very short section of the groove machined with PMMA backing 

using a new tool at 60,000 rpm and 10 μm/tooth with cyanoacrylate adhesive. The 

presence of these burrs at higher feeds with a new tool is expected since these are the 

required conditions for cutting the material instead of tearing it.  

Figure 22: Burr shapes: (a) Rollover type (b) Feathery type (c) Wall type (d) Small, 

evenly spaced rollover type, 10 μm/tooth (e) Small, evenly spaced rollover type, 1 

μm/tooth 
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Wall type burrs are burrs where the foil is bent upwards on the side of the groove 

forming a continuous ribbon of material without any cracks or discontinuities (Figure 

22c). These are formed by foil tearing in front of the tool (Figure 23b). However, unlike 

rollover burrs, in this case, the foil always tears towards one side of the groove leaving a 

continuous wall of material along the other edge. Hence, these burrs are always 

accompanied by rollover burrs on the other side of the groove. In three of the 

experiments, these burrs were found to be exclusively on the downmilling side when 

using a worn tool at a feed of 10 μm/tooth. When using a worn tool at high feeds, the 

cutting forces are significantly higher causing more delamination along the edges as seen 

in Figure 22c where the base material is clearly exposed. Due to wear, the frictional 

forces are high leading to tearing of the foil closer to the upmilling side as mentioned in 

the previous section. However, due to high delamination, the foil does not tear along the 

width of the groove but rather along the length towards the upmilling side leaving a bent 

foil forming a wall on the downmilling side (Figure 23b). 
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Considering the application for tissue grasping and manipulation, one would 

prefer hook shaped rollover burrs with consistent spacing. These are formed with a new 

tool spun at 60,000 rpm and 10 μm/tooth feed with PMMA backing and cyanoacrylate 

adhesive on both the upmilling and downmilling side (Figure 22d). They are also formed 

on the upmilling side under the same conditions with both types of adhesives. At 1 

μm/tooth feed, only aluminum backing with epoxy adhesive produces these burrs on the 

upmilling side of the groove (Figure 22e). 

Factors Affecting Burr Height 

Burr height varies significantly along the length of the groove as seen in Figure 

22. Without loss of generality, histograms of burr height under various machining 

conditions are shown in Figure 24 to study the frequency distribution of burrs machined 

with PMMA backing using a new tool and cyanoacrylate glue. Since the burr height in 

these experiments can never be less than zero, the distribution is not symmetric. In some 

cases, two modes are present, which may be due to the presence of two types of burrs (as 

in the case of Figure 22b) or due to the burrs being broken off by the tool and leaving a 

gap (as in the case of Figure 22a). It is difficult to fit any of the standard distributions to 

the data, although they resemble a normal distribution with a positive or zero skew or a χ
2
 

distribution. The high speed, low feed burrs are the closest to a normal distribution. It is 

to be noted that for the positively skewed distributions, the range of burr sizes (x-axis of 

histogram) represented by the shift is much smaller than for the remaining portion of the 

plot. It is also seen from the histograms for other conditions (not shown for brevity), that 

the conditions which produce larger burrs (e.g. with a worn tool) are much more 

symmetric. For the application of gripping tissue with these burrs, it is reasonable to 

assume that the larger burrs would have a greater chance of snagging the tissue. Hence,in 

this case, the positive skewness may be assumed to be insignificant. 
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For this application, the information of most interest is the mean burr height and 

the variance. This is effectively shown using the boxplots in Figure 25. The top and 

bottom limits of the boxes are the 75% and 25% percentiles respectively, the line in the 

middle of the box is the median, lines at the end of the dashed line indicate 1.5 times the 

interquartile range (IQR) and the black boxes are outliers. These plots can alsobe used to 

compare the effect of change in machining parameters on the burr characteristics. Several 

outliers (black boxes) can be seen in these plots. However, they represent a very small 

percentage of the total number of data points (~ 5%). The entire experimental data 

produces 64 such plots, whichare not shown here for brevity. However, the main 

observations derived from them are discussed below. The effects of adhesive used (A), 

Figure 24: Histogram of burr height for grooves milled with PMMA backing, 

cyanoacrylate adhesive and a new tool 

 (N = spindle speed: - = 30,000 rpm, + = 60,000 rpm, fz = feed: - = 1 μm/tooth, + = 

10 μm/tooth, m= milling side: - =downmilling, + = upmilling)  
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spindle speed (N), feed per tooth (fz) and side of groove (m) (upmilling or downmilling) 

on the burr height are summarized in Figure 26. 

Effect of Milling Direction 

The largest change in burr height is noted for the side of groove. Burrs on the 

downmilling side (m-) are larger than those on the upmilling side (m+) in almost all 

cases. This is due to the foil being cut or torn closer to the upmilling side and remaining 

attached to the base material on the downmilling side as discussed earlier. It can be noted 

that the difference in mean burr heights for the two sides is much smaller at higher feeds. 

The maximum size difference between the downmilling and upmilling burrs is noted for 

cutting with a worn tool at 60,000 rpm and 1 µm/tooth feed with aluminum backing and 

epoxy adhesive. In this case, the foil rips very close to the upmilling side as seen in 

Figure 23b due to the strong bond between the epoxy and foil. 

An interesting (and only) exception to this rule is the burrs produced when milling 

with aluminum backing, cyanoacrylate adhesive, and a worn tool spun at 30,000 rpm and 

fed at 10 µm/tooth. In this case, the rollover burrs formed on the upmilling side are 

consistently much larger than the wall type burrs formed on the downmilling side.  The 

mechanism of burr formation in this case is depicted in Figure 23c. Ploughing forces at 

the tool tip are much higher on the upmilling side because the workpiece is moving 

against the tool. Hence, it is suggested that the foil delaminates more on the upmilling 

side than on the downmilling side. It is also suggested that the foil will tear along the 

shortest path from the point where the tool contacts the foil to where it contacts the 

backing material. In this case, the path would be along the downmilling side rather than 

the upmilling side (compare Figure 23b and 7c).Hence, the foil tears closer to the 

downmilling side leaving a large rollover burr on the upmilling side with a smaller wall 

burr on the downmilling side. This mechanism does not occur at the higher spindle 

speeds because the high feed rate (mm/min) does not allow enough time for the foil to get 



 70 

sufficiently delaminated. It is also seen only when using aluminum with cyanoacrylate 

adhesive because the bond strength is significantly lower in this case. 

 

Effect of Tool Wear 

Another significant factor affecting burr size is tool wear. Burrs formed by a worn 

tool are much larger than those formed with a new tool. This is to be expected since a 

worn tool will typically cause material removal by tearing rather than chip formation via 

shear. In addition, the cutting forces will also increase significantly due to the higher 

frictional forces obtained with a worn tool. This in turn would lead to increased 

delamination and the formation of large wall or rollover type burrs.   

Figure 26 indicates that the overall effect of increasing the feed is to increase burr 

height. However, further insight is obtained by considering the interaction of wear and 

feed (Figure 27). It can be concluded that increasing the feed when machining with a new 

Figure 25: Boxplot of burr height for grooves milled with PMMA backing, 

cyanoacrylate adhesive and a new tool 

 (N = spindle speed: - = 30,000 rpm, + = 60,000 rpm, fz = feed: - = 1 μm/tooth, + 

= 10 μm/tooth, m= milling side: - =downmilling, + = upmilling) 
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tool actually reduces the burr size. This behavior is expected because if the feed per tooth 

is smaller than the tool cutting edge radius, the foil is torn rather than cut and this leads to 

large burrs. In groove milling, the undeformed chip thickness starts at zero at the 

beginning of cut and increases to a maximum at the center of cut and then reduces to zero 

at tooth exit. Hence, for higher feeds, ploughing occurs only at the beginning and end of 

cut to form burrs. In the portion of cut where the undeformed chip thickness is higher 

than the tool edge radius, a conventional chip is formed and the material is removed 

leaving comparatively small burrs along the edges (Figure 22d). This also explains why 

the difference in burr heights for upmilling and downmilling are smaller at higher feeds. 

For a worn tool, however, material removal by conventional chip formation never occurs 

and hence this behavior is not observed. Furthermore, as the feed increases, the 

machining forces obtained with a worn tool increase, which causes increased 

delamination and hence, larger burrs via the mechanisms illustrated in Figure 23b and 7c. 

 

Figure 26: Mean effects plot (A = adhesive: - = cyanoacrylate, + = epoxy, M: 

backing material: - = PMMA, += aluminum, W= tool wear: - = new tool, + = worn 

tool, N = spindle speed: - = 30,000 rpm, + = 60,000 rpm, fz = feed: - = 1 μm/tooth, + 

= 10 μm/tooth, m= milling side: - =downmilling, + = upmilling) 
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Effect of Cutting Speed 

Figure 26 indicates that lower cutting speeds produce larger burrs. This may be 

explained by noting that slower speeds allow for longer time for delamination and 

bending of the foil resulting in larger burrs similar to the mechanism in Figure 23c. This 

theory is supported by the wear-speed interaction shown in Figure 27. It can be seen that 

for a worn tool, the effect of speed is considerably pronounced. On the other hand, for a 

new tool, the effect is not very significant. This suggests only a minor effect of strain 

rate. This is to be expected since even at high angular velocities, the peripheral velocity 

of the tool is low (1.57 m/s) due to the small tool diameter.  

Effect of Backing Material 

From the main effects plot, it is noted that the PMMA backing material results in 

larger burrs. PMMA is much softer than aluminum and has a lower melting point 

(~150°C).As a result, it tends to soften and flow due to the heat generated at the tool tip. 

Figure 18b shows a built-up edge on the tool used to machine the foil with PMMA 

backing. This can lead to increased ploughing. Figure 21b also shows that PMMA forms 

much larger chips which would further impede cutting of the foil.  

Effect of Adhesive 

Epoxy results in larger burrs than if cyanoacrylate was used as the adhesive. This 

suggests that cyanoacrylate adheres better to the foil. Another factor that needs to be 

considered when using epoxy as the adhesive is that it forms a much thicker layer 

between the foil and backing material due to its higher viscosity.  As seen in Figure 21 

chips of epoxy are formed during milling, which may interfere with cutting of the foil. 

Typically, the bond strength is a function of the material being bonded. Hence, it is 

reasonable to expect an effect of the adhesive-backing material interaction (Figure 27). 

For any given backing material, changing from cyanoacrylate to epoxyproduces an 
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increase in the burr height. Changing from PMMA to aluminum with cyanoacrylate does 

not change the mean burr height. Changing from PMMA to aluminum with epoxy 

reduces the mean burr height. Comparing these trends with those for the adhesive peel 

strength in Figure 16b, it can be seen that a lower peel strength results in a larger burr 

height. This supports the statement that increase in foil delamination leads to larger burrs. 

 
 

These trends are further quantified by conducting an ANOVA including up to 

three-factor interactions with α=0.05. The p-values indicate that all interaction terms are 

significant except the material-speed and adhesive-speed-feed terms.This suggests that 

strain rate effects when machining the backing material do not significantly affect the 

burr height. The adhesive-speed-feed term may be interpreted as the interaction between 

the adhesive and feed rate (mm/min) and is shown to be insignificant in these 

experiments 

The boxplots in Figure 25 can also be used to study the variation in burr height for 

each case represented by the distance between the dashed lines. The highest variation 

(700 µm) is noted for the burrs on the downmilling side of grooves cut with aluminum 

backing, cyanoacrylate adhesive and a worn tool at 60,000 rpm and 10 µm/tooth feed, 

which also has the highest mean burr height for the present set of experiments. The 

Figure 27: Interaction effects plot 
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smallest variance is observed for the burrs on the upmilling side of the groove cut with 

PMMA backing, cyanoacrylate adhesive with a new tool spun at 60,000 rpm and 10 

µm/tooth feed. From a practical standpoint, one would want the variance to be as low as 

possible while still achieving the target burr height.  

Effect of Feed 

The change in burr height with feed is studied over a range of feedsfrom 1 

µm/tooth (120 mm/min) to 100 µm/tooth (12,000 mm/min). Grooves were milled with a 

new tool on foil attached to PMMA backing with cyanoacrylate adhesive at 60,000 rpm 

and the burr height was measured. Figure 28 a and b show the change in burr height with 

feed. It can be seen that initially the burr height on the downmilling side is high until the 

feed reaches 5µm/tooth (600 mm/min). At this point the burr height decreases until the 

feed reaches 10 µm/tooth (1200 mm/min) and  then increases until the burr height 

reaches a mean value of about 500 µm, which is the width of the groove. This trend can 

be verified by the SEM images in Figure 29a to h. Visual observation suggests that below 

5µm/tooth and above 10 µm/tooth the sum of the length of the burrs on both sides of the 

groove is greater than the width of the groove. This suggests that the foil tears instead of 

forming chips. At 5 µm/tooth and 7.5 µm/tooth feeds the burr lengths are much smaller 

than the groove width implying material removal via chip formation. Above 50 µm/tooth, 

the foil tears on the upmilling side. The crack propagates along the length of the 

grooveand terminates on the downmilling side leaving a large patch of foil while hardly 

any burrs are formed on the upmilling side. For high feeds (beyond 50 µm/tooth in these 

experiments), this explains the presence of small burrs on the upmilling side and the less 

pronounced effect of feed on burr height. 
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Figure 28: Effect of feed on burr height (a) upmilling side (b) downmilling side  

(a) 

(b) 
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Burr Formation Model 

A kinematic model has been developed to predict the burr widths (Figure 16) in 

micromilling of thin foils. Figure 35a and b show the tooth at the beginning of cut while 

Figure 35c shows the geometry at the tool tip. The tip with  radius r begins to penetrate 

the foil, which is a circular arc with radius R. The tip initially ploughs into the foil, which 

deforms to accommodate the tool geometry inducing a tensile stress ζt in the foil that is 

Figure 29: Effect of feed on burr height (a) 1 µm/tooth (b) 2.5 µm/tooth (c) 5 

µm/tooth (d) 7.5 µm/tooth (e) 10 µm/tooth (f) 25 µm/tooth (g) 50 µm/tooth (h) 100 

µm/tooth. Images oriented with upmilling side towards the top. 

 

(c) 

(j) (i) 

(h) (g) 

(f) (e) 

(d) 
500μm 500μm 

500μm 500μm 

500μm 500μm 

500μm 500μm 

upmilling sde upmilling side 

upmilling side upmilling side 

upmilling side upmilling side 

upmilling side upmilling side 

large 

burrs 

small 

burrs 

wall 

burrs 



 77 

balanced by the adhesive forces between the foil and the backing material. The force Ft 

due to the stress ζt in the foil can be resolved into components perpendicular to the edge 

Fp and along the edge of the foil Fs. The force Fp induces a force per unit length ζp in the 

adhesive along the edge of the foil, which causes the foil to peel from the backing 

material. The force Fs causes the foil to shear from the backing material. Experimental 

tests show that the foil fails by peeling from the backing. If ζp is greater than the peel 

strength ζpf of the adhesive, the foil delaminates. The delaminated foil subtends an angle γ 

with the undeformed foil. As delamination progresses, γ becomes smaller which in turn 

reduces Fp until equilibrium is reached when ζp is equal to ζpf. The stress ζtis associated 

with a strain εt in the foil. If εt reaches the tensile failure strain of the material εf  the 

material fails and the foil begins to tear. The associated stress at failure is ζf. 
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Figure 30: Burr formation model (a) schematic of tooth engaging with foil (b) 

enlarged view of tooth before penetration into foil (c) kinematics of foil at tooth tip 

(d) force balance in foil (e) undeformed length and strained length at failure when 

εt <εf (f) Foil failure at initial penetration when εt>εf. 
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At low feeds, εt is less than εf  and the foil merely deforms but does not tear. The 

cutting tooth proceeds along the circular path with radius Rand delaminates the entire foil 

along the tooth path. For the delaminated foil to fail in tension, the strain in the entire 

delaminated length should reach the failure strain εf . Comparing Figure 35c with Figure 

35d, it can be noted that the initial undeformed length l0 is much greater in the low feed 

case. Hence, the tooth progresses through multiple rotations before the strain in the foil 

reaches εf. The foil fails at its weakest point, which is dictated by microcracks that are 

produced by the previous pass and forms burrs on either side of the groove. For 

simplicity, it is assumed in this model that the foil cracks at the midpoint of the tooth path 

giving a burr width equal to half the strained length l of the foil at failure. For higher 

feeds, εt is greater than εf  and the foil fails in tension at the tooth tip. It leaves a small 

burr on the upmilling side with a width equal to the delaminated length l (Figure 35e) 

while removing the rest of the foil as a chip. Hence, no significant burrs are found on the 

downmilling side at high feed (Figure 28e and f). 

Mathematical treatment of this phenomenon is based on the following 

assumptions: 

1. Deformation of the delaminated foil at the tool tip equals the feed per 

tooth. 

2. Foil is thin and has negligible bending stiffness. 

3. Stress in the cross-section of the ploughed foil is assumed to be constant 

and directed along the top edge of the delaminated foil (Figure 31a).  

4. Compressive stresses due to the tool tip are negligible compared to the 

tensile stresses induced by stretching of the foil thereby implying a plane 

stress condition (Figure 31b). 

5. The foil fails at the middle of the delaminated region (Figure 30c, Figure 

31b). 

6. Material is homogeneous and isotropic. 
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Assumption 1 and 4 are based on the absence of wrinkling of the foil as examined 

by high-speed video (see Figure 20a). Assumption 2 limits the validity of the model 

developed here to thin foils that on delamination bend upwards as seen in Figure 20a and 

20b. Assumption 3 is an approximation that is valid given that the foil is ploughed up by 

a few microns, which allows the variation of stress over this distance to be neglected. 

Assumption 5 is a simplification required in the absence of a model that would predict 
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crack initiation during burr formation, which would require a crack-free material with no 

surface defects.  

The burr width is calculated by first estimating εt for a given feed per tooth d 

using Eq. 9 to 18, which are obtained from the geometry shown in Figure 30c (refer 

Figure 32). If εt<εf, then Eq. 18 to 20 are used to calculate the number of tooth passes n 

before εt>εf  (Figure 30e) and the burr width is given by 0.5l. If on the other hand, for a 

given d, εt>εf  then the burr width is given by Eq.15. Equation 16 is obtained by a force 

balance between Ft and Fp. Equations 19 and 20 represent a system of implicit equations 

and are solved numerically. The developed model is applied to the case of milling NiTi 

foil using the values in  

Table 8. Grooves were milled in a foil with PMMA backing and cyanoacrylate 

adhesive at feeds shown in Figure 33. The burrs were then flattened and their width 

measured in a microscope. Figure 33 shows that the measured and predicted mean burr 

widths are in good agreement.   
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Figure 32: Schematic explaining the modeling methodology for burr formation. 
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   (16) 

   (17) 

   (18) 

   (19) 

   (20) 

 

Table 8: Values used for burr prediction model 

Property Value Source 

R (μm) 250 Measured 

r (μm) 2 Measured 

σpf(N/mm) 0.1 Measured 

σf (MPa) 1400 [100] 

εf 14 [100] 

υ 0.33 [101] 

t (μm) 25 Manufacturer 

 

 
 

The developed model is tested for generalization and scalability by varying one 

input while keeping the others (shown in Table 8) constant as shown in Figure 34. The 

model suggests that as foil thickness increases, burr width also increases. This is a 

Figure 33: Predicted vs. experimental burr width 

 * model 

 ◊  measured 
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consequence of the model requiring the force due to failure stress in the foil to be 

balanced by the adhesive bond. As the foil thickness increases, the force in the foil also 

increases leading to increased delamination and larger burrs. This behavior is physically 

valid so long as the foil has negligible bending stiffness as stated in Assumption 2. As the 

thickness increases, however, a point is reached where this assumption becomes invalid 

and the foil no longer bends as in Figure 20a. This limiting thickness is expected to 

depend on the machining forces involved as well as the material of the specimen. For 

NiTi the value could be less than 150 μm based on available foil specimens, however, 

verification of this value is left to future work. 

Burr width reduces as peel strength increases due to a reduced tendency for 

delamination. The burr width for a feed that causes chip formation (5-7.5 μm/tooth in this 

study), remains unaffected by the tool size as would be expected when the burr is formed 

due to material deformation at the tip of the tooth. For feeds less than the cutting edge 

radius (<5 μm/tooth), the burr size would be proportional to the tool radius since the foil 

rips in the middle of the groove with no chip formation (Figure 20b, Figure 23c). A 

material with a lower ultimate tensile strength of 300 MPa (material number 2) would not 

require a large force to cut as compared to NiTi (material number 1), leading to reduced 

delamination and smaller burrs while a highly ductile material with a failure strain of 0.3 

(material number 3) would result in much larger burrs because the material would deform 

more before it fails at the tooth tip (Table 9). The effect of using a material with a lower 

ultimate tensile strength and higher ductility (e.g. copper, material number 4) leads to 

almost similar sized burrs as NiTi due to a compensation caused by the opposite trends of 

these two material properties. 
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Table 9: Material properties used in generalization 

Material number σf (MPa) εf (%) 

1 1400 14 

2 300 14 

3 1400 30 

4 300 30 

 

 

 

Conclusions 

This chapter focused on presenting a fundamental understanding of the mechanics 

of burr formation in micromilling of a thin nitinol foil adhered to a backing material. The 

following conclusions can be drawn: 

 Burrs are formed due to ploughing as the tool initially penetrates the foil, 

delamination and insufficient chip thickness. If initial penetration is 

Figure 34: Effect of model parameters on burr size 
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sufficient to cause the foil to fail in tension, the foil tears with the crack 

starting closer to the upmilling side and thereby resulting in larger 

downmilling burrs. If penetration is insufficient, the foil plastically 

deforms until it tears typically at middle of the tool.  

 The kinematic model developed captures the effects of feed per tooth, tool 

tip radius and adhesive peel strength to predict the burr width and is 

shown to be in good agreement with experimental data.  

 At higher feeds, with a new tool and a strong adhesive bond, chips of the 

material are formed leading to very small burrs on either side of the 

groove.  

 Three types of burrs were identified: rollover, feathery and wall type. 

Feathery burrs are produced only on the downmilling side while cutting 

with sufficient chip thickness and moderate bond strength with a new tool. 

Wall burrs are formed with worn tools at higher feeds due to moderate 

delamination on the downmilling side. Rollover burrs were formed in all 

other cases. 

 The effects of spindle speed, feed, adhesive type, backing material, tool 

wear and side of groove (upmilling vs. downmilling) on burr height were 

studied. The effect of downmilling is most pronounced except in the case 

where there was significant delamination on the upmilling side.  

 Wear of the tool results in larger burrs. Increasing the feed from 

insufficient chip thickness (< 5 μm in these experiments) to sufficient chip 

thickness (5 to 10 μm in these experiments)reduces the burr height if the 

tool is new, whereas it increases the burr height if the tool is worn.  

 Spindle speed (strain rate effect) does not have a significant effect on the 

burr height for a new tool. For a worn tool, a lower spindle speed (more 

time for delamination) results in larger burrs.  
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 PMMA is softer and produces larger burrs and has a higher tendency for 

forming a built-up edge, which produces larger burrs.  

 A weak adhesive bond with the backing material also leads to larger burrs. 

 Variation in burr height is smallest for sufficient chip thickness, high bond 

strength and cutting with a new tool.  

It is also seen that burrs cannot be eliminated even by varying feed over a wide 

range and devices produced by micromilling of thin foils would need to be subjected to 

subsequent deburring. Abrasive impregnated brush deburring could be a potential 

improvement over the abrasive slurry assisted brush process studied in Chapter 3 and is 

applied to grooves machined in foils in the next chapter.  
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CHAPTER 5 

DEBURRING OF THIN FOILS 

 

In this chapter experiments are conducted to study the mechanics of material 

removal during removal of burrs produced during micromilling of 25 μm thick NiTi foil 

using abrasive impregnated nylon brushes. High speed video images are used to capture 

the interaction of the brush bristles with the workpiece surface and burrs. Scanning 

electron images show the deformation and removal of material from the workpiece. The 

effect of brush speed and penetration on deburring rate is quantified. Understanding 

obtained from these preliminary experiments is used to create a model based on Hertzian 

contact mechanics under the action of brush stiffness and impact forces that can be used 

to predict deburring rate. This model is also used along with fracture mechanics to predict 

the number of brush passes required to deburr a groove edge. The accuracy of these 

models are verified experimentally. 

Experiment Plan 

Experiment Design 

A schematic of the deburring process is shown in Figure 35. An abrasive 

impregnated nylon brush is spun while the workpiece is reciprocated with respect to it 

(Figure 35 a). The brush is positioned so that the bristles touch the burrs on the edge of 

the machined groove (Figure 35 c). Brush penetration Δn is defined as the distance the 

brush is moved normal to the workpiece surface after it touches it (Figure 35 d). The 

brushes used in this study are 0.75 inch, nylon brushes impregnated with FEPA grit 120 

(109 μm) ceramic aluminum oxide grits (Scotch-Brite Mini Brush, 3M Corporation). 
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Each brush has 30 curved bristles that taper from 0.020 inches at the hub to 0.018 inches 

at the tip and are arranged staggered on each side of the hub (Figure 35 b).  

 
The experiment plan is shown in Table 10. Factors that affect material removal 

rate are decided based on prior work in brush analysis and abrasive polishing as 

workpiece material, workpiece reciprocation speed, brush matrix material, abrasive grit 

size, concentration, shape and attack angle [58, 60]. Most researchers who have studied 

deburring brushes have typically focused on brush speed and penetration [52, 54, 58, 63]. 

Brush penetration affects the force between the bristles and the workpiece and therefore 

the indentation of the abrasive. Low penetration results in lower forces and would reduce 

brushing efficiency. Excessive penetration would lead to the sides of the brush contacting 

the workpiece rather than the tips. It would also lead to excessive deflection of the bristle, 
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causing it to stray from the intended path along the edge of the groove. The industry 

practice for macroscale deburring with relatively larger brushes (above 4 inch diameter) 

is to penetrate the brushes to a maximum of 0.125 inches (~ 3 mm) [5]. The brushes used 

in this study are much smaller and for the same penetration would deflect away from the 

groove much more than typical industry brushes. Hence, after preliminary tests, 

penetration values of 0.5 mm and 1 mm were chosen for this study.  

Bristle tip velocity affects the number of bristles passing over a particular region 

of the workpiece in a given time as well as the force on impact of the bristle tip on the 

workpiece and in turn, abrasive indentation. It is controlled by changing the brush 

rotation speed. The lowest speed in this study is 5000 rpm (2.36 m/s at bristle tip) and is 

set based on the lowest speed of the spindle used (Dremel 4000). The maximum spindle 

speed is limited due to excessive brush degradation at 15000 rpm (7.02 m/s at bristle tip). 

The workpiece material used in this study is a 25 μm thick, NiTi foil (55% Ni, 45% Ti, 

Johnson-Matthey Medical Components) with an austenite transition finish temperature of 

50 °C. Workpiece reciprocation speed is held at 100 mm/s. Variation of reciprocation 

speed changes the number of bristles that interact with a burr. However, since this is 

already controlled using the brush rotation speed, changing the reciprocation speed does 

not provide any additional information.  

Table 10: Experiment design 

Factors Levels 

Penetration (mm) 0.5 1 

Spindle speed (rpm) 5000 15000 

 

Experiment Procedure 

Microgrooves, 500 μm wide and 6 mm long are machined with a single pass in 25 

μm NiTi foil supported by gluing it to PMMA backing using cyanoacrylate adhesive 

(Figure 36a,b). The grooves are machined using a 500 μm, two-flute, endmill (PMT TR-
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2-0200-S) spun at 60,000 rpm in a high speed spindle (SLF Faureuth, FS33-60) and fed 

at 1 μm/tooth. This feed, speed, adhesive and backing material combination is selected 

based on results of a prior study [102] to achieve relatively large burrs that would help 

accentuate the effects of the deburring process parameters. The grooves are milled on a 

laboratory micromilling set-up (Figure 17) which consists of three stacked high precision 

linear motor stages (Aerotech ANT4V, ALS130) with submicron resolution and 

accuracy.  
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Burr height on both edges of the milled grooves is measured using a stylus 

profilometer (Taylor-Hobson, Tallysurf 112) using a 800 μm spherical sapphire stylus 

positioned on top of the groove edge using a 50x microscope (Edmund Optics). Three 

parallel traces are taken 50 μm apart to ensure that the high points of the burrs are 

captured (Figure 16).  

PMMA is a soft backing material and preliminary experiments showed that it 

deforms noticeably during deburring, warping the foil causing delamination and changes 

in the nominal penetration. Hence, the foil is then debonded from the PMMA backing 

using a solvent (Loctite XNMS), and bonded to an aluminum backing with cyanoacrylate 

adhesive in preparation for deburring. The spindle and spindle holder in Figure 17 can be 

removed to accommodate a horizontal spindle (Dremel 4000) held in a spindle holder 

(Dremel Workstation) for deburring with an abrasive impregnated nylon radial brush 

(Figure 36c and d). The brush is rotated at a speed to obtain the required tip velocity 

(Table 10). The brush is adjusted so that it just touches the workpiece and penetration is 

controlled using the nanopositioning stages. Upmilling and downmilling sides of the 

groove are deburred individually. 

Earlier studies [95, 103] showed that burrs are removed in two phases. The first 

phase involves burrs breaking off leaving a burr root which in the second phase is either 

flattened plastically or abraded away. Hence, the grooves in this study were deburred in 

two phases each involving one reciprocation of the workpiece at 120 mm/min (Figure 

35a). Preliminary experiments showed that the foil edge warps during deburring due to 

plastic flow of the material. The residual burr root at the end of the second phase was too 

small to be accurately separated by the stylus profilometer from the warpage but could be 

identified using a white light interferometer (Zygo NewView 200). Hence, interferometer 

measurements were taken after the first and second phase of deburring. Burr height after 

the first phase was also measured using the stylus profilometer to compare it with 

readings before deburring. It may be noted that reflectivity of burrs improves after 
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brushing making them detectable by interferometry. Unbrushed burrs have poor 

reflectivity and cannot be detected by white light or laser interferometry and need to be 

measured by a stylus profilometer. Burr height change at each point along the groove was 

calculated at the end of each phase for the different deburring conditions shown in Table 

10. Each condition was replicated three times. Scanning electron images (Hitachi S-

3700N) were also taken of the grooves before and after each phase. Foil thickness change 

in the brushed region at each phase was measured by placing the foil in between a ground 

tool steel block and an electronic indicator (Mhar Extramess 2001) with a 1 mm diameter 

spherical carbide ball tip. Surface roughness of the brushed region was also measured 

before and after each phase. 

High speed video recordings were used to capture bristle interaction with burrs 

and also with a flat surface. Material removal rate was quantified by running the brush on 

a foil strip without grooves adhered to an aluminum backing with cyanoacrylate adhesive 

at the different conditions in Table 10 and noting the time and location of complete 

penetration though the thickness of the foil. Red die was applied on the backing material 

to aid detection of penetration under a 50x microscope (Edmund Optics). The workpiece 

was not oscillated to capture and explain the behavior noted in [58] of the location of 

highest brush force shifting from the middle of the brush contact area to the beginning of 

the contact area with increase in brush rotation speed. Three replications were conducted 

in these experiments. 

Experimental Results 

Bristle Characterization 

Figure 37a shows a 3D confocal microscope (Olympus LEXT) images of a brush 

bristle that has been sliced in half along the length to expose the grits. It can be seen that 

there are only one or sometimes two large abrasive grits per section along the length of 
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the bristle. The grits are randomly shaped but have rounded points (Figure 37b). 

Although the brushes are specified as FEPA 120 (109 μm), abrasive grits as large as 180 

μm and as small as 40 μm are seen. Comparison of a bristle before and after brushing 

(Figure 37c and d) shows that the bristle contact area is on side that is closer to the hub at 

the region A shown in Figure 37a and c. The reason for this asymmetric tip wear can be 

understood from Figure 37d and e which show high speed images of the brush in contact 

with the foil. It is seen that the bristle not only deflects vertically in the plane rotation, but 

also laterally out of the plane, touching the foil only on the side close to the hub. Wear of 

the nylon exposes the embedded grits leading to material removal. Some of the nylon 

delaminates from the bristle but remains attached to it and can interfere with the grit 

contacting with the workpiece. The high speed images also show that there is no 

detectable bristle ‗bounce‘ [50] probably because the bristles in this study are thicker, 

shorter and therefore, stiffer than those typically seen in radial brushes for macroscale 

applications. No interaction between the bristles was seen as they traversed the foil 

surface due to the gap between them and the staggered configuration which improves the 

consistency of the process. 

The static stiffness of the bristle was measured by mounting a brush with only one 

bristle in the spindle (Figure 36d) with the bristle tip touching a precision weighing scale 

(AWS AMW-100) which has a least count of 10 milligrams (~0.1 millinewton). The 

stage is moved up in increments of 100 μm and the reading on the scale is noted and the 

stiffness calculated as a function of deflection (Figure 38). The plot shows a clear 

nonlinear trend as would be expected with a curved beam that is deflected over 15% of its 

length and allowed to deflect in the lateral direction. A third degree polynomial was fit to 

the data and is used to model the normal force F (in N) of the bristle (Figure 38a) as a 

function of penetration Δn (Eq. 21, Δn in mm).  
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and their means were calculated. Standard deviations of these mean values were 

calculated for each set of replications (Figure 38b). The normal force increases from 

about 0.1 N to 0.14 N when brush penetration increases from 0.5 mm to 1 mm at 5000 

rpm. From Figure 38a it can be concluded that the brush normal force due to the static 

stiffness would increase from 0.09 N to 0.11 N for the same change in brush penetration. 

Since both these values are close to eachother (especially given the standard deviation in 

Figure 38b), it may be concluded that at 5000 rpm, the normal force is determined mainly 

by static bristle stiffness. 

 The force values at 15000 rpm indicate that the force reduces with increase in 

speed. Although a probable explanation is that the reduction in force could be due to 

flaring of the bristles, this was not visible in the high speed video footage. A more likely 

explanation is that at higher speeds, impact forces dominate and excite the natural 

frequencies of the dynamometer (~4.6 kHz) leading to erroneous force measurements. 

F   (21) 
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Material Removal in Brushing 

A single bristle brush was used to brush a strip of foil that was polished with 

reducing abrasive size upto 50 nm alumina grits to remove the pickled surface finish 

which interferes with identifying the brush marks. Brush marks after 20 milliseconds of 

brushing at 15000 rpm and 1 mm penetration were observed under a SEM and show both 

ploughing marks and chip formation (Figure 39a and b). Shallow ploughing marks are 

Figure 38: Bristle stiffness (a) Normal force vs. penetration Δn (b) Normal force as a 

function of spindle speed and brush penetration Δn 
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seen which may be credited to the smaller grits in the bristle (Figure 37b) or to bristle 

wandering (Figure 37e) which would lead to a reduction in penetration of even the larger 

grits. Deeper ploughing marks from the larger grits in the bristle are also seen with 

ridges. Some brush marks are seen to be angled to the rest of the strokes indicating bristle 

wandering. Although few chips are seen attached to the brushing marks, it is difficult to 

conclude as to whether ploughing (with no material removal) or chip formation (material 

removal) is the dominant mechanism of grit-material interaction. It has been suggested 

that material removal in chemical mechanical planarization (CMP) can occur at the 

intersection of two ploughing marks due to shear segmentation when the material that is 

ploughed up by an abrasive grit reaches the edge of a pervious ploughing mark and gets 

detached from the workpiece [105]. Another possibility for ridges as seen in Figure 39b 

is that they are pushed up by an abrasive and removed by the impact of a subsequent 

abrasive or by the motion of the nylon matrix.  

Foil strips were brushed with an unaltered brush (no bristles removed) until they 

penetrated the entire thickness of the foil. The time taken for complete penetration at any 

point as well as the location of penetration in the brushed region was noted for all the 

conditions in Table 10 with three replications. SEM images of a foil brushed at 15000 

rpm with 1 mm penetration show that complete penetration of the foil occurs repeatably 

at the start of the brush mark (Figure 39c). Two points are noticed corresponding to the 

position of the staggered bristles. The brush marks are much wider at the first point of 

contact of the bristle and foil that for the rest of the stroke indicating a deeper indentation 

that is attributed to impact forces. Further weight is added to this conclusion by noting 

that the first point of full penetration occurs at the middle of the brushed region when the 

spindle speed is reduced to 5000 rpm.  

Multiple impact points are seen for different bristles due to slight variation in their 

lengths during manufacturing. Material flow away from the impact points can be seen 

close to the point of complete penetration (Figure 39c). The material flows over the 
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unimpacted material behind it forming a ledge-like shape which is then broken by 

subsequent bristles forming debris. Cracks are also seen at the interface of different flow 

regions. Material could also be removed when these cracks intersect. Towards the middle 

of the brushed region (Figure 39e), plouging marks with ridges are seen similar to Figure 

39b and material deforms and may be removed as discussed in the preceding paragraph. 

Brush and foil debris are typically flung away from the brushed region due to the 

centrifugal force of the brush but can be captured using an adhesive layer at the end of 

the brush stroke (Figure 39f). Most of the debris seen are believed to be nylon fibers due 

to their glow which is characteristic of nonconductive materials in SEM images. There 

could however be some foil debris in it however that could also be glowing because they 

are insulated from the sample holder by the adhesive layer.  
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Figure 39: Material removal from foil without grooves (a) Brushing of foil (b) Chip 

formed during brushing (c) Complete penetration of foil at initial contact zone (d) 
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Time for complete penetration of the foil thickness reduces with increase in brush 

rotation speed (Figure 40). This is to be expected since increasing the brush rotation 

speed increases the tip velocity and therefore, the impact force and indentation depth per 

bristle.  For a constant workpiece reciprocation speed, it also increases the number of 

bristles interacting with the workpiece which would lead to faster material deformation or 

removal. Penetration is caused by the normal component of the rate of change in 

tangential momentum. This normal component increases as the bristle penetration Δn 

increases (Figure 40b). At lower spindle speeds, the effect of brush penetration is not 

noticeable. The point where the foil is completely penetrated also shifts away from the 

beginning of the brushed region to the middle of the brushed region indicating that 

impact forces are no longer dominant. At the middle of the brushed region, deflection of 

the bristle is maximum (Figure 40b) and hence, at these speeds, bristle stiffness is 

assumed to be responsible for penetration, a conclusion that is further backed by Figure 

38a and b. An increase of brush penetration from 0.5 mm to 1 mm increases the bristle 

normal force only by 0.04 N (Figure 38b) which may not result in a significant increase 

of foil indentation and therefore, time for complete penetration of foil thickness. 
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Qualitative Assessment of Deburred Grooves 

Figure 41 shows a groove deburred at 15000 rpm and 1 mm penetration after the 

first phase. The burrs are typically long and slender, attached to the groove edge at the 

root. It can be seen that most of the long burrs have been removed on both sides of the 

grooves within just one reciprocation. This demonstrates the capability of the process to 

quickly remove large burrs. It also suggests that deburring rate is Some residual burr is 

seen on the upmilling side. Brushing marks are seen on the surface of the foil except 

close to the edge where the burrs shield the surface from the bristles. It is interesting that 

while the burrs initially are larger on the downmilling side, the residual burrs for this 

groove are on the upmilling side, although this is generally not the trend. Furthermore, 

the residual burrs are flattened onto the foil surface under the action of the bristles. This 

suggests that while the long burrs break off from the groove edge (Figure 42), short burrs 

are stiffer and have a tendency to flatten instead of breaking off.  

Figure 40: Parameters affecting material removal in brushing. (a) Effect of speed 

and penetration depth on time for complete penetration of foil (b) Effect of 

penetration on contact speed. 
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Figure 41: SEM images of grooves before and after deburring (a) Before deburring 

(b) After two passes (Phase I) (c) Detailed view of edge after two passes (d) After two 

more passes (Phase II) (e) Detailed view of edge after two more passes 
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Figure 41c shows a highly magnified image of the residual burr. Debris of the 

burr and the bristle are noticed and can be differentiated by the glow on the nylon since it 

is nonconductive to the electrons from the SEM. Cracks originating from the burr edge 

are also seen along with brushing marks and a particularly deep brushing mark. These 

observations suggest that for residual burrs, the abrasives cause scratch marks which 

form cracks at the edge. These cracks propagate under the cyclic loading of the bristles 

until they intersect with the burr edge or another crack, removing a chunk of the burr seen 

as burr debris. The process continues until the entire residual burr has been removed 

(Figure 41d and e). A few microcracks are seen along the length of the groove after Phase 

II. Residual burrs are seen after Phase II for milder brushing conditions (5000 rpm, 0.5 

mm nominal penetration) but are absent for higher speeds and penetration (15000 rpm, 1 

mm nominal penetration). 
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Effect of Deburring Parameters on Deburring Rate 

Burr height reduction rate y is defined as the change in burr height Δx at any point 

for a given time that the groove interacts with the brush Δt. In this study, as described on 

page 7, deburring is carried out in two phases each consisting of one reciprocation of the 

workpiece at a constant feed of 120 mm/min. Since the grooves are 6 mm long, and the 

brush traverses twice this length in one reciprocation, the time for each phase is constant 

at 6 seconds. The change in burr height Δx along the groove at the end of each phase for 

all the replications of deburring parameters (Table 10) was calculated from burr height 

Figure 42: Mechanism of burr removal (a) Before bristle passes (b) Bristle 

removing burr (c) Burr removed 

bristle burr bristle removing burr 

residual burr 

(a) (b) 

(c) 
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measurements before and after each phase. Deburring rate was then calculated using Eq. 

22 for the constant Δt of 6 seconds.  

y   (22) 

An analysis of variance was conducted using Minitab
®
 for the 200 highest burr 

measurements after each phase for each condition in Table 10 (a total of 800 runs). Based 

on the results of a pervious study [103] burr height before deburring at each phase is 

considered as a covariate while analyzing the effect of deburring parameters. The results 

show that initial burr height x, penetration ΔN and spindle speed N are significant at α = 

0.05 for both phases. The speed-penetration interaction term is significant for the first 

phase but not for the second. Main effects plots cannot be obtained for this data due to its 

dependence on the initial burr height. The coefficients of the regression equations 

however suggest that penetration has a higher effect on the burr height reduction rate (Eq. 

23 for Phase I and Eq. 24 for Phase II). 

y  -0.125 + 0.159 x + 94.6 x 10
-6

 N + 3.93 Δn – 0.72 x 10
-3

 N Δn (23) 

y  -1.362 + 0.146 x + 26.7 x 10
-6

 N + 0.895 Δn (24) 

For all conditions in this set of experiments, the change of thickness after both 

phases of deburring was a maximum of 1 μm. Surface roughness of the foil was 

measured before and after each phase and the change calculated for the different 

conditions in Table 10 (Figure 43). Surface roughness initially improves during Phase I 

because the abrasives smoothen the pickled surface of the foil. During Phase II however, 

the indentation of the abrasives cause a roughening of the surface (Figure 39c) and so the 

change in surface roughness is negative. Analysis of variance indicates that spindle speed 

has a significant effect in both phases while penetration does not. This could be explained 

by noting that the material removal mechanics shows a dominant effect of spindle speed. 

However, further experiments need to be conducted to understand this trend.  
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Material Removal in Brushing 

Hertzian Model for Brush Penetration Rate Though a Foil  

Material removal in brushing is modeled based on Hertzian static penetration of a 

spherical indenter on a flat surface. The assumptions for Hertzian model are discussed in 

[106] and are summarized as: 

1. The loads applied to the grits are static i.e. vibrations during initial contact 

are neglected. 

Figure 43: Effect of deburring parameters on change in surface roughness (Sa) of 

foil (a) Phase I (b) Phase II 
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2. The radius of the contact area is much smaller than the dimensions of the 

contacting bodies. 

3. The contact surfaces are smooth (no friction effects). 

4. The material is isotropic, homogeneous and linear elastic. 

5. The deformations are small. 

Assumption 1 is a reasonable simplification given that no dynamic vibrations 

were noted in the high speed videos. Since the loads in brushing are small with tangential 

force being much smaller than the normal force (Figure 44), the depth of indentation 

would be small and the force due to friction can be assumed to be small satisfying 

Assumptions 2 and 3. Assumptions 4 and 5 are simplifications given that the material 

shows superelasticity and the deformations are in the plastic region, however as pointed 

out in [106], it is common to use the Hertzian model in these applications as a first 

approximation. The Hertzian model underpredicts the penetration in the plastic zone 

because of the linear elastic assumption [107]. Strain-rate sensitivity of NiTi results in a 

further reduction of its strength [44], which would also cause the model to underpredict 

the penetration. 
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The methodology used in this model is summarized in Figure 45. Images of the 

grits show that that they have an irregular but globular shape rather than sharp edges 

(Figure 37b). The sphere is assumed to have a diameter 2  equal to the nominal grit 

diameter of 109 μm. Indentation force comes from the change in momentum of the bristle 

normal to the foil surface on impact with the foil Fi or from the stiffness of the bristle Fs. 

Impact force Fi is calculated by dividing the bristle into Ne elements and summing the 

momentum components normal to the foil surface. It is assumed that the impact has a 

coefficient of restitution C of 0.7 [108] and that the impact time ti is the time taken for the 

bristle to move a distance equal to the tip width b while rotating at a speed ω in rps (Eq. 

26).  

   (25) 

   (26) 

Figure 44: Brushing forces 
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   (27) 

 
Force caused by the stiffness of the bristle Fs us obtained experimentally (Figure 

38a). This force is zero at the start of the contact area where impact force is maximum. 

On the other hand, impact force Fi is zero after the start of contact and stiffness force Fs 

reaches a maximum at the middle of the brushed area where it is deflected by the 

specified penetration Δn. In this model, both forces are calculated and the larger of the 

two is selected as the force Fn used to calculate the material penetration δ for a single 

bristle interacting with the foil (Eq. 28-30).  

   (28) 

Figure 45: Schematic for calculation of penetration rate and location of 

penetration 
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   (29) 

   (30) 

It is observed in Figure 39c that the bristles do not impact the foil at exactly the 

same location but over an area A which can be measured from the SEM images. The 

probability of the grit indenting the same location is taken as the ratio of the projected 

area of indentation a to the impact area A observed in the SEM images. Observation of 

the bristles under a microscope shows that only half of the tips on the brush have exposed 

abrasives and would remove material. Penetration rate δr is calculated from Eq. 32 where 

Na is the number of bristles that have exposed abrasives.  

   (31) 

   (32) 

Time taken for penetrating the 25 µm thick foil is calculated by dividing the foil 

thickness by δr and the results are compared with the experimentally obtained values in 

Figure 46b and reasonable agreement is seen. The model also shows that the normal force 

is determined by bristle stiffness at 5000 rpm while it is determined by impact force at 

15000 rpm. Impact forces outgrow the stiffness force at about 11000 rpm for a 1 mm 

nominal penetration. Deburring rate is much quicker than that penetration rate of a flat 

surface due to the presence of cracks in the burrs caused during burr formation. It was 

found that all burrs along an edge were removed in four passes (two workpiece 

reciprocations, i.e. 12 seconds for a 6 mm groove) at 15000 rpm and 1 mm penetration. 

Note that the metric of number of passes is independent of changes in groove length. 
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Table 11: Inputs to brush penetration rate model 

Quantity Symbol Unit Value Source 

Brush radius r mm 9.52 measured 

Bristle tip width b μm 457 measured 

Coefficient of restitution C 

no 

unit 0.7 [108] 

Mass of bristle mb mg 2.2 measured 

Number of bristle elements Ne   10   

Poisson ratio AlO ν 

no 

unit 0.23 [109] 

Young's modulus AlO E GPa 416 [109] 

Poisson ratio NiTi ν 

no 

unit 0.33 [101] 

Young's modulus NiTi E GPa 32 [77] 

Grit radius  μm 54.5 

from 

manufacturer 

Bristle spread area (15000 

rpm) A mm
2
 2.6 measured 

Bristle spread area (5000 rpm) A mm
2
 1.69 measured 
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Fracture Mechanics Model for Deburring 

Deburring rate during abrasive impregnated brushing of thin foils is obtained by 

modeling the burr as a thin plate with a crack in it (Figure 47b). The model uses the force 

calculations from the foil penetration model in the previous section and hence, the 

appropriate assumptions apply. The crack propagates under the action of cyclic loading 
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from the bristles. For thin foils, fracture of the long, slender burrs (Phase I) happens 

within one oscillation. However, it has been found that burr roots are much more difficult 

to remove [95, 110, 111] and Phase II determines deburring time. Figure 41c shows that 

the burr at the beginning of Phase II has been flattened onto the foil surface and is 

cracked along the edges. Action of the bristles results in a cyclic normal load Fn which 

induces a shear stress on the burr of thickness df and length bf that is given in Eq. 33. 

Tangential forces are again assumed to be negligible (Figure 44).  

   (33) 

Crack propagation in one pass of the brush over the burr is calculated by dividing 

the brush contact length lk into segments Δlk long (Figure 48). As the brush passes over 

the burr, the actual penetration Δi and therefore, the normal force due to bristle stiffness 

increases from zero until the burr is at the axis of the brush and then reduces again. For 

each segment at a distance fi from the point where the brush just reaches the burr, the 

actual penetration Δi is calculated from Eqs. 34 and 35 and the normal force from Eq. 31.  

   
(34) 

   
(35) 

   
(36) 

Propagation rate per cycle db/dN is computed from the Paris Law (Eq. 38) in 

facture mechanics and ΔK is calculated from the appropriate stress concentration factor 

KIII which is obtained from a handbook with Kmin as zero [112].  

   
(37) 

   
(38) 

Crack propagation per segment is calculated by multiplying the propagation rate 

in Eq. 38 by the number of bristles interacting with the burr Nint from Eq. 36 and process 
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is continued until fi = lk. Crack propagation due to impact force Fi is also added to obtain 

the total crack propagation in the first pass. If the crack propagation is less than the 

distance bf between two cracks in the burr or the burr width, then the process is repeated. 

The total number of passes Npass required for the crack to propagate the distance bf is 

taken as the number of passes required to deburr the groove edge (Figure 48). Table 12 

compares the predicted values for Npass using values in Table 13 for the speeds and 

penetrations used in this study with those obtained in experiments and shows good 

agreement.  
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Table 12: Comparison between predicted and actual number of passes for complete 

deburring 

Spindle Speed 

(rpm)   15000 5000 

Penetration (mm)   1 0.5 1 0.5 

Number of passes 
Model 2 4 4 12 

Expt. 2 4 6 10 

 

 

 

 

 

 

Npass = 0 

Starting crack length 

bi 

bi < bf Npass = Npass + 1 

Divide lk into 

segments of length Δlk 

Calculate number of 

bristles interacting 

with burr in each 

segment Eq. 36 

Calculate crack growth 

due to Fs at penetration 

Δi for each interaction 

Eq. 38 

Add crack growth due to 

Fi  

 Output 

Npass  

Yes No 

Figure 48: Deburring model process flowchart 
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Table 13: Parameters used for predicting Npass 

Quantity Symbol Unit Value Source 

Scaling 

constant C m/cycle/(MPa m
0.5

)
m

 1.88 x 10
-11

 [113] 

Scaling 

exponent m   4.21 [113] 

Initial crack 

length bi μm 5 measured 

Final crack 

length bf μm 20 measured 

Brush feed  f mm/min 100   

 

Sensitivity analysis of the model with brush penetration set to 1 mm and brush 

rotation speed 15,000 rpm indicates that a larger initial crack size bi results in a reduction 

in deburring time as would be expected. Reviewing the SEM images it is observed that 

most of the burrs have a width of less than 25 μm while the initial cracks in the root are at 

least 4 μm long. Hence, it is reasonable that cracks of about 8 μm would result in the 

burrs being removed in one pass. Based on these observations, it is very unlikely that 

there would be a burr with cracks of initial length less than 4 μm making the almost linear 

inverse proportionality of the prediction with reduction in bi less of a concern. It is also to 

be noted that brushing the foil for an additional two passes would not severely affect the 

thickness of the foil and hence, is not a major concern. A similar logic applied to the final 

crack length bf, shows that it is improbable for the current material to have burr roots 

larger than 25 μm. Over this range, the number of passes changes only by 1, which would 

not be detrimental to the feature size.  C and m at 15,000 rpm and 1 mm penetration 

shows that the predictions change only slightly for most parameters (Figure 49). The 

range for each parameter is obtained from SEM images and the references indicated in  
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Table 13. The drawback with overestimating Npass is the  reduction in foil 

thickness, which in the present experiments is negligible. Equation 33 indicates that, as 

expected, the number of passes would increase with increase in foil thickness.  

 
 

CONCLUSIONS 

This study sought to shed light on material removal in abrasive impregnated 

brushing of metallic foils. The following conclusions are arrived at in this study: 

 For brushing of a flat surface, some material is removed as chips by the 

grits. Material is also deformed by the grits and pushed up to form ledge 

like structures or microburrs which then break off due to the impact or 

stiffness forces of subsequent bristles.  

 The maximum normal force and maximum indentation shifts from the 

middle of the brushed region at 5000 rpm to the entry region at 15000 rpm 

Figure 49: Sensitivity analysis. (a) Crack size, (b) Final crack size, (c) Material 

fracture constant C, (d) Material fracture constant m. 
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due to a shift from a bristle stiffness dominated force to an impact 

dominated force.  

 A Hertzian static indentation model used to predict indentation rate during 

brushing of foils shows good agreement with experiments.  

 Burr removal occurs in two phases. Phase I involves fatigue fracture of the 

long slender burrs at the root. Phase II involves material being removed in 

flakes as the cracks formed during fracture in Phase I and new cracks 

formed during brushing propagate through the burr.  

 A fracture mechanics model based on Paris equation can predict the 

number of passes required to deburr an edge and further supports the 

hypothesis that material removal in brushing is better described by fracture 

mechanics.  

 Burrs can be removed within 12 minutes for a 6 mm long groove with no 

more than a micron change in foil thickness.  

 Surface finish initially improves for the pickled foils used in this study 

during Phase I but subsequently degrades in Phase II due to impact of the 

bristles.  

In the next chapter the knowledge of burr formation and deburring is applied to 

the micromilling of a device manufactured from a thin foil.  
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CHAPTER 6 

DESIGN OF SURGICAL SUPPORT STRUCTURE 

 

In this chapter, tissue manipulation devices currently used are described. The Pahl 

and Beitz systematic methodology of design is then used to address the needs of a tissue 

translocation device for surgical correction of AMD [114]. The four steps used for design 

are Task Clarification, Conceptual Design, Embodiment Design and Detail Design. 

Physical effects and working principles are presented in a morphological chart. They are 

compared with the requirements list to identify the principle solution. This solution is 

then fleshed out and auxiliary devices for use with the design are identified and 

developed. Detail Design, involves creating detailed drawings of the design and is not 

presented. However, the selected solution is manufactured and tested in-vivo and ex-vivo 

in a pig model.  

Ocular Tissue Translocation Devices 

This section discusses currently used tissue translocation devices in ophthalmic 

surgery. These devices are compared with the requirements for the new device.  

Forceps 

The most basic tissue manipulation device used in ophthalmic surgery is a pair of 

forceps. Lens insertion forceps have a clearance at the tip to grasp the tissue over a small 

area so that there is minimal damage to the graft. Miniature vertically acting forceps may 

be used to insert and manipulate the structures in the eye. They are easily introduced 

through one of the instrument ports made in the eye. 
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Lens Inserters 

During cataract surgery, a foldable artificial lens is inserted into the eye to replace 

the cataract. One type of lens inserter is the Tan EndoGlide (Angiotech Pharmaceuticals) 

[115]. These are used to fold and insert the artificial lens into the eye through a small 

incision. The lens is placed on a compliant platform, then pushed in to the cannula 

causing it to roll up. The cannula is then inserted through a clear corneal incision and the 

platform is advanced into the eye to release the artificial lens.  

Electro-Adhesive Forceps 

Electro-adhesive forceps work on the principle of thermal adhesion of a tissue to a 

surface [79]. The forceps consist of an insulated probe exposed at the tip, which acts as 

one electrode in the circuit. The second electrode is usually larger and can be placed 

anywhere in the operating field such that the electrical circuit can be completed. The 

probe is touched to the tissue and an electrical pulse is applied between the two probes. 

This causes thermal adhesion of the tissue to the probe via a hydrogen bonding 

mechanism. The tissue can then be translocated to the target location. A higher voltage is 

applied to cause ablation and detachment of the tissue from the probe. Adhesive forces on 

the order of 0.3x10
-3

 N were achieved with a 50 µm probe and chorioallantoic membrane 

of leghorn chicken embryos. A similar device based on electrically induced adhesion was 

developed to support an ocular tissue patch [14]. This device consists of two nitinol rings. 

One ring is placed below the tissue graft and the other is placed above the graft 

concentric with the first ring. The rings are then electrically heated to cause adhesion of 

the tissue to the rings. 

 

 



 123 

Task Clarification 

Following the Pahl and Beitz methodology, Table 14 summarizes the 

requirements for the tissue translocation device. The following sections discuss these 

requirements in detail. 

Table 14 : Requirement list for tissue translocation device. D = Demands, W = 

Wishes. 

D/W Requirement 

 
Geometry 

D Insertable through 2 mm incision 

D Should not have protruding parts 

D Flat apposition surface 

D Hold a patch of tissue 3 and 5 mm in diameter 

D Structure should be less than 250 μm thick inclusive of 150 μm thick tissue graft 

 
Forces 

D Should be able to withstand manipulation forces during surgery 

D Should be able to prevent folding of tissue 

D Mechanical manipulation should be possible using small gage instruments 

 
Kinematics 

D Prevent rubbing of clamp against tissue 

D Motion should be smooth (not jerky or sudden) 

D Prevent tissue wrinkling or folding 

 
Material 

D Biocompatible, sterilizable 

D Should be capable of being implanted in the eye for many years 

 
Energy 

D Energy levels should not damage tissue graft 

 
Production 

D Should be suitable for batch or mass production 

 
Quality Control 

D Should pass FDA approval 

D Should perform successfully in ex-vivo and in-vivo pig models 

 

Geometry 

The device can be inserted into the eye through one of the 2 mm long incisions 

made for the 3-port pars plana vitrectomy procedure. The device may also be inserted 
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through a clear corneal incision. This approach has the advantage that the incision is self-

sealing and is commonly used for inserting foldable intraocular lenses. The incision is 

made with the tip of a keratome and is typically slightly less than 3 mm in length. Larger 

incisions make it difficult to control the pressure inside the eye thus making it more 

difficult to control bleeding in the eye. Ideally, the device should have dimensions 

compatible with insertion through a small incision (2-3 mm). However, the size of the 

patch that needs to be translocated is about 3 mm for the pig model and 5 mm for 

procedures on humans. Hence, the dimensions of the device should be such that it can 

accommodate the graft without allowing it to fold. The presence of sharp edges and 

protrusions can significantly increase chances of inflammatory reactions and should be 

avoided. The translocation device will be left implanted under the retina after surgery and 

should be thin enough to be accommodated in the sub-retinal space.   

Forces and Kinematics 

During the production of the device and its use, it will be subjected to several 

forces. This includes manipulation forces during surgery, handling forces during 

sterilization, forces exerted by the tissue graft on the device and forces involved in the 

manufacture of the device. The device should be able to withstand these forces without 

damage. Instruments used in surgery are typically either 20, 23, or 25 gage and apply 

limited mechanical forces. Hence, if the device needs to be manipulated, forces should be 

within the mechanical limitations of small gage instruments. Surgery in the eye involves 

manipulation in a constrained space with a restricted view. Therefore, any motion of the 

device should be very smooth in order to avoid jerky manipulations within the eye. The 

cells of the RPE layer are extremely delicate and are highly prone to detach from the 

underlying Bruchs membrane, especially in elderly patients. Therefore, the device should 

not touch the RPE tissue designated for the fovea, or cause it to fold since this would 

damage the delicate RPE layer. 
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Energy 

Any energy release associated with the working of the device should not 

adversely affect the tissue. The area of damaged tissue, if any, should be minimal, at most 

on the order of about 10% of the graft area. Energy levels depend on the energy density 

as well as the duration of exposure of the tissue to the energy source. As a reference, 

typical energy densities used for a pulsed excimer laser ablation of eye tissues are 

between 100 and 200 mJ/cm
2 
[116]. 

Materials and Cost 

An estimated 1.6 million Americans over the age of 50 suffer from AMD [17]. 

Hence, the device should lend itself to mass production or at least large-scale batch 

production while being relatively inexpensive. The material used for construction of the 

device should be biocompatible and be capable of either gas or steam sterilization. 

Typical steam sterilization cycles involve heating the instruments in a steam autoclave to 

about 140°C using steam at about 15 psi. Gas sterilization involves exposing the device 

to ethylene oxide gas at temperatures between 30°C and 60°C and is preferred for devices 

sensitive to high temperatures or UV radiation. 

Comparison of Current Devices with Requirements List 

A comparison of the currently used tissue translocation devices described in 

Section 0 with the requirements of the device to be designed reveals some deficiencies in 

the current designs. Miniature forceps are readily available and can be designed to avoid 

significant tissue damage due to their small contact area. However, they contact the tissue 

only at one point and cannot support an entire patch of tissue. Even if two forceps are 

used, they can only stretch the tissue patch between two opposite points and not along the 

entire periphery of the patch. Hence, after translocation, the graft tissue may fold over 

during the healing process. Electrified forceps suffer from some of the same drawbacks 
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as standard forceps resulting from the point contact. The nitinol ring design on the other 

hand contacts the tissue all along its periphery. However, in the process of aligning the 

two rings so that they are concentric, they can rub against the tissue and damage it. Also, 

aligning the two rings is difficult. 

Similar to forceps, lens inserters cannot be implanted in the eye. Furthermore, 

they are designed for thicker tissues to prevent damage of one side of the tissue by 

causing it to fold without overlapping. On the other hand, the device to be designed is 

meant for tissues on the order of a few 100 microns, which need to be prevented from 

folding. They also contact the tissue over the entire area of the patch on one side of the 

tissue. This can also lead to significant damage of the RPE-Bruchs membrane graft and 

compromise functionality of the graft. 

Design Problem Statement 

The above discussion proves the need for a new device that meets the 

requirements listed in Table 14. In particular these devices are incapable of supporting an 

entire patch of thin tissue and prevent it from folding on itself. They also cannot be 

implanted in the eye permanently. An analysis of the requirements list suggests the 

following abstracted problem statement: 

To design a long term ocular implant to support a patch of tissue while it is 

translocated. 

This problem statement is represented as a function diagram in Figure 50. It is to 

be noted however, that moving the patch can be easily achieved using forceps if the tissue 

patch is secured properly. Hence, the design process mainly focuses on supporting the 

tissue.  
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Conceptual Design  

In this section, the solution to the foregoing problem statement is identified 

starting with the most abstract terms possible to avoid bias. This is done by starting with 

working principles in Section 00. These working principles are then compared with the 

requirements list to identify the principal solution in Section 00. 

Working Principles 

In-plane forces must be applied along the entire periphery of the tissue patch to 

support it. These forces must oppose any forces that might try to wrinkle the tissue. 

Folding or shrinkage forces can result from the elastic forces within the tissue, forces 

applied by the surgical instruments or the flow of liquid through the eye. Figure 51 shows 

a morphological chart for the different approaches to support the tissue patch. The 

following sections discuss these approaches in detail. 

Friction 

As illustrated in Section 0, most of the devices in ophthalmic surgery use forces 

arising from friction and mechanical interlocking to support tissue. Friction may be in the 

form of resistance offered by the surface of a pair of forceps. This approach has been 

modified for the tissue support structure shown in Figure 51a, b and c. All the designs are 

based on the idea of sandwiching the tissue between two stiff structures that support the 

tissue. The tissue is retained between the rings using friction between the rings and the 

tissue and hence, needs a normal force to be applied at the interface of the tissue and the 

structure. This normal force is supplied by compressing the tissue between the rings and 

Support tissue 

patch 

tissue 

supporting 

energy 

Move tissue 

patch 
supported tissue 

graft 

Figure 50: Function diagram for tissue translocation device 

motive energy 
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locking them in place using clasps or wedges (Figure 51a and b). The force can also 

come from the reaction forces due to elastic deformation of the structure (Figure 51c), 

similar to a paperclip.  It is to be noted that the structure may be monolithic (Figure 51a 

and c) or consist of multiple parts (Figure 51b) that can be assembled inside or outside 

the eye. Figure 51c can also be modified by using a superelastic or shape memory 

material. 

Mechanical Interlocking 

Mechanical interlocking may also be used to support the tissue. This concept has 

been translated in practice as forceps where sharp ridges present on the tips bite into the 

tissue (Figure 51d). Figure 51e presents another possible solution shaped like Figure 51c 

that works similar to the electro-adhesive forceps discussed in Section 0. However, rather 

than depending on hydrogen bonds to generate the required force, this solution uses 

mechanical interlocking of the tissue with a textured surface of the support structure. The 

texture causes the tissue to enter the crevices in the gripping surface. When heat is 

applied to the surface, the tissue is dehydrated and shrinks onto the surface to form a 

mechanical interlock. It is to be noted that in this case there is no necessity for a normal 

force to be applied between the tissue and the structure. 

Electrostatic Forces 

The third approach to supporting the tissue is to use electrostatic forces to grip the 

edge of the tissue. Some have hypothesized that devices like the electro-adhesive forceps 

support the tissue by electrostatic forces such as hydrogen bonds [79] (Figure 51f). 

Commercially, electrostatic forces have been applied to achieve adhesive forces on the 

order of 0.5 to 1.5 N/cm
2
 [117]. The lens folding devices utilize surface tension and 

viscoelastic fluids to resist relative motion between the lens and the folding device. 
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Bioadhesives based on electrostatic forces and van der Waals forces have also been used 

in drug delivery applications [118] (Figure 51g). 
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Physical Effect 1: Friction 
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Selection of Principal Solution 

The possible solutions shown in Figure 51 are now evaluated with respect to the 

requirements list in Table 14 to identify the principal solution. All the solutions fulfill the 

requirements of geometry except the ridged forceps (Figure 51d). However, not all of 

them satisfy the other requirements as discussed in the following sections. 

Electrostatic Forces 

Electrostatic forces based on charge induction (Figure 51f) would be difficult to 

use for a permanent bond between the tissue and translocation device since this would 

require a permanent supply of electric charge to the device. Moreover, the device would 

discharge through the body or the saline solution used in the eye. Bioadhesives (Figure 

51g) quickly clump together in the eye and do not allow sufficient time for application to 

the tissue being translocated. This suggests that it would be best to pursue a solution 

based on mechanical interlocking or clamping. 

Friction 

Microscopic polymer structures have been created using micromolding [119] and  

micro-SLA [120]. Photopolymers for contact lenses, such as polyvinyl alcohols, can be 

fabricated using micro-stereolithography. Micromolding could definitely be used to 

manufacture the devices shown in Figure 51a and b. However, polymers are too weak or 

compliant for the dimensions under consideration.  

There is however, a trade-off in flexibility that is involved in the design of the 

device. The material would need to be sufficiently stiff for the clasps to remain closed. If 

the material is too flexible, it will tend to bend and slip out of the clasps. However, if it is 

too stiff, it cannot be rolled up to insert it through the 2mm incision. The approach in 

Figure 51c also suffers from low elastic forces generated by the small dimensions 
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required for this device even if it were fabricated out of metal. In short, although all the 

designs satisfy the geometric requirements, designs in Figure 51a, b and c do not satisfy 

the force requirements. Furthermore, manufacture of micromolds calls for a significantly 

high initial investment and is not feasible for small batch production.  

These devices would require four surgical incisions to be made in the graft 

structure for the claps and wedges to pass through. The surgeon would also have to 

precisely align these features with the incisions inside the eye, whichfurther complicates 

the surgical procedure. The design in Figure 51b would need forceps that can generate 

sufficient force to push the wedge into the groove. It would be challenging to generate 

this force with the delicate tips of 23 gage forceps used in this procedure.  

Mechanical Interlocking 

The design in Figure 51e offers an alternate approach to securing the tissue graft 

without the requirement of high normal forces. In this design, the force comes from the 

tissue adhering to the rough surface of the structure. Hence, the device can be thin and 

compliant and still perform satisfactorily even if it does not apply a normal force on the 

graft tissue. Insertion of such a device can be achieved by deforming it so that it fits into 

the cannula. Unlike these lenses however the proposed device would be subjected to 

higher strains when inserting through a 2 mm cannula and therefore may not regain its 

original shape. Hence, the device would have to be made of a material that can regain its 

shape after severe deformation. This is one of the unique properties of shape memory 

alloys. Furthermore, nickel titanium alloy (nitinol) is a shape memory alloy that is 

approved for use in the manufacture of implants such as coronary stents.  Shape memory 

structures can be taught to remember a particular shape. They can then be subjected to 6-

8% strain but will regain the trained shape if heated above the austenite transformation 

temperature As. If the design in Figure 51d is made out of nitinol, it would fulfill all the 
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requirements stated earlier. This design is chosen as the principal solution for the tissue 

translocation device. 

Embodiment 

In this section the selected principal solution in Section 0.0.0 is developed in 

detail. Two embodiments of this device are presented. Various auxiliary devices to be 

used with this device are also presented. 

Embodiment 1: Helical Coil 

In this structure, the selected principal solution is very similar to the nitinol ring 

design [14] except that the two rings have been connected together to ensure that they are 

always concentric with each other. The helical configuration eliminates the need to align 

them inside the eye and avoids damage that would occur to the delicate RPE membrane 

during the surgical process. Hence, one embodiment of the principal solution consists of 

the two rings joined together by a tab as illustrated in Figure 52. This embodiment 

consists of a shape memory wire of circular or rectangular cross-section. The geometric 

constraints limit the diameter of the wire to about 100µm. The wire is trained to 

memorize a shape in its final position as shown in Figure 52. It is then straightened for 

insertion into the eye through the cannula. Part of the wire is heated above the austenite 

transformation temperature to form the bottom ring, which is inserted under the tissue 

graft. The remainder of the wire is heated to form the tab and top ring. The rings are then 

heated electrically to cause them to stick to the tissue. The tissue graft can then be cut and 

translocated.  

The foregoing device was fabricated using 100 µm nitinol wire (Flexinol, 

Dynalloy Inc.) and tested ex-vivo on cadaver pig eyes in air as illustrated in Figure 53. It 

can be seen that the device successfully grasps and supports the tissue in spite of the 

small gage wire used. It effectively demonstrates the proof of concept. However, Figure 



 134 

53b indicates that the tissue is not fully attached to the device along the periphery. This is 

primarily because of the small surface area of the wire that produces a low bond force, 

which could severely limit the success of the procedure. Further testing indicated that the 

forces involved in cutting the graft from the surrounding tissue was sufficient to break the 

bond between the tissue and the ring. Furthermore, this design suffers from the deficiency 

that the ends of the wire have a tendency to pierce the surrounding tissue and can lead to 

tissue damage. 

 

Figure 52: Embodiment 1: Shape memory alloy wire based design. (a) Uncoiled 

form for insertion (b) Bottom ring activated (c) Insertion under tissue (d) Top ring 

activated 

(a) (b) 

(c) (d) 
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Embodiment 2: Foil Based Structure 

The second embodiment of the principal solution is shown in Figure 54. This 

design improves on the ring design in that it has a much larger surface area since it is 

made from foil. Moreover, the annular surface can be textured to provide the tissue with 

features to shrink onto and create a stronger bond. The most basic form of texturing in the 

form of annular holes is illustrated in Figure 54. However, more complex surface features 

such as microscopic hooks or teeth may also be used.  

Figure 53: Ex-vivo tests of ring design in pig model (a) before extraction of graft 

(b) after extraction of graft 
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support 

structure 
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(a) (b) 



 136 

 
The structure is designed with a tab to increase the ease of device manipulation. If 

no gap is left between the rings, the tissue tends to wedge the structure open and prevents 

proper grasping as illustrated in Figure 55a. Hence, a gap of about 150 µm is 

intentionally created between the two rings to accommodate the tissue (Figure 55b).  

 
Insertion of the foil through the cannula is achieved by rolling it in to a scroll of 

about 1.6 mm in diameter and then inserting it into the cannula or through a 2 mm 

incision in the eye. This process induces plastic strain in the material, which is recovered 

by the shape memory effect. Commercially available foils typically have As between 

10°C and 90°C. Shape memory coronary stents typically have As at or slightly below 

body temperature to cause them to retain their trained shape once inserted into the body. 

Figure 55: Foil hinge (a) Tab bent with zero radius (b) Tab bent with 150 µm bend 

diameter 
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Figure 54: Embodiment 2: Shape memory foil based structure (a) open 

configuration (b) closed configuration 
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The tissue translocation device needs to remain open inside the eye during insertion 

under the tissue graft to be harvested (Figure 54a). The device is made with a transition 

temperature of 50 °C, which is above body temperature. This implies that the device 

would need some form of heat input to cause it to regain its trained shape.  

Auxiliary Device: Heat source 

Commonly used heat sources in ophthalmic surgery are surgical lasers (eg. Iridex 

Diolite) and bi-polar electric cauteries (eg. Synergetics Bi-polar Cautery Probes). The 

advantage of these two devices is that they require only a single port for insertion into the 

eye. The challenge with using lasers in the eye is that the beam has a comparatively large 

size, which makes it difficult to localize the application of heat. This problem is 

complicated further by beam divergence. Furthermore, the laser power required for 

proper heating of the foil structure was found to be almost 1W, a power level that is 

damaging to the eye. 

Electrical resistance heating is another alternative to supply heat inside the eye. 

Bipolar cautery pencils are commonly used to control bleeding inside the eye (Figure 

56a). Typically, a voltage of 30 to 50 V (sinusoidal, peak to peak) at about 360 kHz is 

applied between the two electrodes at the tip of the cautery to cause localized heating. 

However, as illustrated in Figure 56a, the area that is heated is extremely small. Also, the 

length of the electrical path is short leading to a very small resistance and hence, a small 

amount of heat is generated. Furthermore, both electrodes need to touch the foil structure 

to cause resistive heating. This requires the tip to be angled as shown in Figure 56a, 

which is cumbersome.  

Limitations of bipolar cauteries suggest the need for two separate electrodes to 

increase the length of the electrical path and hence higher heat generation. This was 

achieved by modifying two 23 gage forceps (Alcon/Grieshaber) that are energized 

electrically (Figure 56b). A notable feature of this design is that it allows the disposable 
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tip to be easily replaced even after the modification. The forceps are supplied with 3 V 

DC and the typical current used in surgery to activate the support structure is about 2 A 

corresponding to 6 W. 

 
Saline solution is used for infusion during the surgical procedure. This provides 

the current an alternate, low resistance path and causes the current to bypass the 

translocation device. Perflourooctane, which is an infusion liquid with a higher specific 

gravity than saline, and may be injected into the eye to create an insulating layer around 

the end of the tip in contact with the foil (Figure 57). Furthermore, the tips of the forceps 

are insulated, except at the two ends. The end of the tip that is connected with the 

electrical leads to the power supply remains outside the eye and out of the saline. Thus, 

current flow is focused through the foil to heat it instead of flowing through the saline 

solution. Based on the preceding discussion, the design shown in Figure 54 is the selected 

embodiment of the tissue translocation device. 

+ 

_ 

+ 

_ 

Figure 56: Electrical heat sources in ophthalmic surgery (a) bipolar pencil 

cautery (b) Monopolar electrified probes 
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Application of Burr Formation and Deburring Knowledge to Device 

The tissue support structure was manufactured by micromilling as shown in 

Figure 58. Nitinol foil (Johnson Matthey Medical Components), 25 µm in thickness was 

glued to a PMMA backing and micromilled on a laboratory-built micromilling machine 

(Figure 58).  The profile was cut using a 500 µm diameter end mill (PMT TR-2-0200-S) 

rotated at 60,000 rpm and fed at 100 mm/minute. The holes in the annulus were milled 

using a 200 µm diameter (PMT TR-2-0080-S) end mill at the same spindle speed but 

with a 10 mm/minute axial feed rate. The glue was then dissolved to release the part from 

the backing. It was then deburred and polished using emery paper. The flat foil structure 

was then folded in half while heating it to about 480°C to avoid failure during bending 

due to work hardening. It was then trained for 5 minutes at the same temperature in the 

closed configuration to obtain the final part shown in Figure 59. The foil in its rolled 

configuration is also shown. The roll has a diameter of about 1.6 mm which would easily 

fit through a 2 mm incision. 

Figure 57: Modifications to prevent flow of current through saline 
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A notable feature of the micromilling process is the production of burrs as shown 

in Figure 61a. These burrs serve as microscopic hooks to grasp the tissue graft and are 

retained on the graft side of the foil. However, the presence of burrs on the side that 

contacts the surrounding tissue could lead to damage of the graft and surrounding tissue. 

Hence, it is important to limit the size of the burrs on the device. Knowledge generated in 

Chapter 4 is applied to obtain two distinct burr size ranges (Figure 60). The devices are 

milled on a PMMA backing with cyanoacrylate adhesive. Large burrs are produced by 

Figure 59: Micromilled foil support structures without annular holes (a)unrolled 

and closed (b) rolled 

(a) (b) 

rolled foil 

milled foil 

foil 

1.6 mm 

3 mm 

0.5 

mm 

Figure 58: Micromilling of tissue support structure 
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selecting the tool path such that the device edges are downmilled with a feed of 1 

μm/tooth. Significantly smaller burrs are produced by upmilling with a feed of 10 

μm/tooth. Mean burr widths measured on these devices are compared with those 

predicted by the model and found to be in good agreement (Table 15). Variation in size 

of the larger burrs is much higher than that of the smaller burrs. The smaller burrs are 

stiffer due to their shorter length and have a higher tendency to stay normal to the foil 

surface unlike the larger but slender burrs. This would make the smaller burrs more 

capable of penetrating the tissue and anchoring it. Furthermore, the larger burrs cover the 

annular holes and would obstruct vascularization. 
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Table 15: Comparison between predicted burr widths and measured burr widths on 

device 

Feed (μm/tooth)     1 7.5 

Burr width (μm) 

Model    32 223 

Experimental 
Mean 41 204 

Std. dev. 10 86 

 

(a) 

(b) 

large burr 

small burr 

Figure 60: Different size burrs produced on device by selecting appropriate feed and 

milling side (a) Large burrs produced using 1 μm/tooth and downmilling (b) Small 

burrs produced using 7.5 μm/tooth and upmilling 

500 μm 

500 μm 
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The devices in Figure 60 were deburred based on the predictions from Chapter 5 

with two passes after Phase I at 15000 rpm with 1 mm nominal brush penetration and 

complete deburring was achieved. The annular holes also remain undamaged. 

 

Animal Studies 

The support structures were tested along with the electrical actuation system ex-

vivo with cadaver pig eyes and in-vivo with live pigs. Results of an ex-vivo test are 

shown in Figure 62. It can be seen that the structure can be used to translocate tissue. No 

significant damage due to electrical heating can be visually observed in the tissue patch.  

Figure 61: SEM images of tissue translocation device (a) Device with large burrs (b) 

Device with large burrs after deburring (c) Device with small burrs (d) Device with 

small burrs after deburring  

150 μm 150 μm 

150 μm 150 μm 

(c) 

(b) (a) 

(d) 

large burr 

annular hole annular hole 

deburred edge  

deburred edge  

annular hole 

small burr 

annular hole 
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The in-vivo tests are summarized in Table 16. The wire-based device was 

actuated with laser heating in six pigs. Although the tissue adhered to the wire, the forces 

involved in translocating the graft are high enough to break the adhesive bond. The 50 

µm foil based devices were difficult to manipulate using the delicate 23 gage forceps 

used for retinal surgery. Therefore, 25 µm foil based devices were tested in 15 pigs. In 

five pigs, the device was actuated with the laser (Iridex Diolite). Laser power of about 0.8 

W was needed for shape recovery of the foil and adhesion with tissue. However, the 

tissue graft was severely damaged due to the high power used. The patches were inserted 

under the retina in four animals and survived for one to seven weeks. The 25 µm foil 

devices were then tested in ten pigs with electrical actuation. Perflourooctane was used to 

insulate the tips from the Balanced Salt Solution (BSS) infusion fluid. Successful 

translocation was achieved in three pigs. Among the devices used, some had burrs on the 

order of 200 μm, some about 40 μm and some were completely deburred. However, the 

tissue, whose thickness is estimated to be about 150 μm would be pierced and damaged if 

the burrs are larger than about 75 μm.  Furthermore, burrs larger than this size would 

obstruct the annular holes as well as cause the tissue to contact the device only at the high 

points of the burrs, reducing the area for the tissues to thermally adhere to the device. The 

Figure 62: Ex-vivo tests of foil based structure (a) Device implanted in pig eyeball 

(b) Device with harvested tissue graft 

eye ball 

translocation 

structure 

tissue patch 

translocation structure 

structure 
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effect of the presence of these burrs on tissue healing requires detailed in-vivo surgeries 

and is left to future work. However, it may be noted that barbed sutures are routinely used 

in surgery to close up wounds [121]. 

Bleeding during surgery poses a severe limitation. The presence of multiple 

instruments in the eye and the large incision used to insert the rolled foil leads to a drop 

in the pressure inside the eye due to leakage of infusion. This makes it difficult to 

tamponad the bleeding once it starts.  This limitation of the procedure can be overcome 

by using a clear corneal incision since these incisions are self-sealing.  

In some cases because of the bleeding, the entry of the foil under the tissue patch 

to be harvested was obstructed by a clot. This caused the foil to fold over itself. A long 

pick would need to be used to remove any obstructions and can also be used to ensure a 

large enough pocket under the RPE for the structure to be inserted without the burrs 

snagging on the tissue. Another challenge with this procedure is that the perfluorooctane 

becomes cloudy as the electric current heats the foil causing a reduction in visibility. This 

could be partly due to localized arcing between the tips of the forceps and the foil leading 

to localized degradation of the perfluorooctane. Consequently, the perfluorooctane has to 

be removed after activation of the foil. 

Table 16: Summary of in-vivo tests of device with primary results 

Device No. of pigs Survival Results 

100 µm wire 6 0 Insufficient adhesion to tissue 

50 µm foil 
2 1 

Too thick to be manipulated 

with 23 gage forceps 

25 µm foil, 

laser actuation 5 4 

High Laser power required for 

actuation damages tissue 

25 µm foil, 

electric 

actuation 10 3 

Successful translocation if 

bleeding is controled 

Conclusions 

This chapter presented the systematic design of a device to translocate tissue 

inside the eye for surgical correction of AMD. The following conclusions are drawn: 



 146 

 Currently used tissue translocation techniques were analyzed and found to 

have significant limitations to perform translocation in the eye.   

 A novel device was designed and manufactured out of thin nitinol foil. 

The device could be inserted through a 2 mm incision in the eye by rolling 

it. The rolled coil could be successfully unrolled in the eye using shape 

memory effect caused by electric heating.  

 The adhesion of the tissue to the device is achieved by electrically heating 

it beyond the shape transformation temperature of the structure.  

 The adhesion of the tissue to the foil structure is further improved by the 

presence of burrs along the edge of the device. These burrs are produced 

during the micromilling process and act as microscopic hooks to anchor 

the tissue to the foil structure.  

 The predictions for burr size from Chapter 4 and deburring passes from 

Chapter 5 can be successfully applied to the device to produce either large 

(~200 μm) burrs or small (~ 40 μm) burrs as well as to fully deburr them. 

 The device was shown to successfully grasp and translocate a patch of 

tissue in both ex-vivo and in-vivo tests carried out on pig eyes.  

The next chapter presents an analysis of the structural and thermal characteristics 

of this device. 
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CHAPTER 7 

ANALYSIS OF TISSUE SUPPORT DEVICE 

 

In this chapter a bilinear kinematic material model can be used to simulate the 

clamping force generated by the device on the tissue due to shape memory effect. This 

approach proved adequate because of the noncyclic loading conditions for the device. 

This presents an advantage over the other models in that it does not require the use of 

special algorithms. The model was also used to explore the limits on the deformation of 

the device imposed by loss of shape memory. Prior thermal models involving ocular 

tissue have focused on simple geometries such as electrodes and do not provide insight in 

to the temperature profiles of a planar structure with varying cross sections. Hence, an 

electro-thermal analysis was performed to simulate the thermal gradients in the device as 

well as the thermally affected region of the tissue. These finite element analyses were 

also verified using closed form reduced order models. 

Clamping Force Analysis 

Motivation 

Shape memory effect is used in the tissue translocation device to close on to the 

tissue patch that needs to be moved as illustrated in the Figure 54. The objective of this 

analysis was to simulate the amount of clamping force the structure would exert on the 

tissue. The developed model was also used to evaluate the effect of changing the 

thickness of the structure on the force exerted by the structure on the tissue. 

Geometry 

The geometry used to model the structure is shown in Figure 63. It consists of a 

thin planar structure folded over similar to a paperclip. At the open end, the gap between 
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the foil is assumed to be 2 µm. This ensures that the edges are close to each other without 

being merged completely by the finite element software. Symmetry is used in modeling 

the structure.  

 
 

Material Models 

The material model used in this model is based on the work done by Terriault et 

al. [77]. The aim of this study is to model the pressure applied by the foil on the tissue 

when its temperature is raised beyond Af. At this high temperature, in the stress free state, 

the material is fully austenite. During operation of the device, the structure is initially 

deformed to open it at a temperature below Af. Hence, it is consists entirely of the low 

temperature phase, martensite and will follow the purely elastic-plastic behavior of 

martensite. If the induced strains are below 8%, all the mechanism of strain is exclusively 

twinning. Consider the case that it is constrained to remain open in this state and the 

temperature is increased to above Af by resistance heating. The material attempts to 

transform to the high temperature phase namely, austenite and in the process attempts to 

recover the strain. However, since it is constrained, it cannot achieve this transformation 

and the material remains in the stress-induced martensite phase. If the structure is 

2µm 

150µm 

φ3mm 

φ4mm 

φ250µm 

0.8mm 

Figure 63: Geometry used for structural analysis 
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released from the constraint, it follows the martensite elastic and subsequently the inverse 

transformation curve in Figure 4. This process of recovery continues until it touches the 

tissue at which point it is restricted from further recovery. If the strain in this case is 

above εaf (Figure 4), then the material is partly austenite and partly martensite. If the 

strain is below εaf, the material is completely austenitic. In this study, our intention is to 

model the force applied by the foil structure at high temperature on the tissue as it regains 

its trained shape. Hence, the direct transformation curve can be neglected and the 

structure can be modeled as a bilinear kinematic hardening material. Material properties 

are shown in Figure 64 and are obtained from [77] at 50°C. 

 

Boundary Conditions  

As discussed in the previous section, the complete closure of the foil is prevented 

by the presence of tissue between the two foils. This results in some residual strain in the 

foil, which in turn induces a corresponding stress in the foil based on the stress-strain 

curve in Figure 64. This internally generated residual stress due to the shape memory 

effect or elasticity causes the foil to apply a corresponding pressure on the tissue. The 

tissue in turn applies a reaction pressure on the foil. Hence, the pressure on the tissue has 
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strain ε 

E = 32 GPa 

st
re

ss
 σ

 

(M
P

a)
 

320 MPa 

0.01 0.08 

E = 1.6 GPa 

Figure 64: Stress-strain curve used in FE model 
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a one-to-one correspondence to a given displacement of the foil. This correspondence is 

governed by the inverse transformation stress-strain curve of nitinol. Hence, the device is 

deformed from the trained shape (closed) by a pressure on the foil to open it, the material 

model traces the stress-strain curve (Figure 64) from the strain free, trained state. The 

deformed shape of the structure when it contacts the tissue is known. If the pressure is 

now varied, a point is reached when this known deformation (strain) is induced in the 

foil. The pressure corresponding to this known strain is also the pressure applied by the 

foil on the tissue in equilibrium and is the quantity of interest in this analysis. Hence, as 

shown in Figure 65, the actual process follows the curve from a point of higher strain to 

the known strain while the finite element model starts from a strain free state and follows 

the curve to the known strain. 

 
Based on this approach, the model is subjected to the loads shown in Figure 66. 

The bottom part of the foil is held fixed. Symmetry is used in the model and so 

displacement along the z-axis for the edges shown is constrained. Pressure P is applied to 

the top face of the foil along the positive y-axis. In the actual foil, there will be a gradient 

in the pressure with a higher pressure towards the hinge and a lower pressure towards the 

open end because of higher strain near the fixed end of the foil, similar to the strain 

st
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inverse 

transformation 

curve 

actual process 

ANSYS model 

Figure 65: Actual process of deformation verses the ANSYS model 

Temperature >Af 
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distribution in a cantilever beam. However, this gradient is assumed to have a negligible 

effect on the analysis since the difference in strain is fairly small. Furthermore, the 

quantity of interest is the average pressure on the tissue and not the variation. 

 
The analysis was carried out using ANSYS

®
 Multiphysics V13. The model is a 

thin structure with out-of-plane loading and displacements. Hence, it was meshed with 

linear shell elements (SHELL181). Convergence to within 6% for maximum von-Mises 

stress was obtained as shown in Figure 67.  

bottom foil fixed 

upward pressure P 

applied to top foil 

symmetry 

symmetry 

x z 

y 

Figure 66: Boundary conditions for clamping pressure simulation 
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Results and Discussion 

Simulations were run by varying pressure P so that the displacement of the open 

end reached the known displacement of 150 µm. It was found that this displacement was 

reached at a pressure of 77.12 Pa as shown in Figure 68. This corresponds to a net force 

of 220 µN on the tissue. This force is extremely small and insufficient for clamping 

tissue.  

 Figure 68: Displacement of foil on application of a pressure of 77.12 Pa 
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Figure 67: Convergence with linear shell elements 
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The model was used to evaluate the effect of increasing the foil thickness on the 

clamping force. As can be seen from Figure 69, clamping force even  as low as 200 mN 

(20 g) can be generated only if the foil thickness is greater than 300 µm. This however, is 

much larger than is allowed by the space between the tissues and could increase chances 

of autoimmune rejection. Hence, it can be concluded that shape memory effect cannot 

provide the necessary clamping force to hold the tissue. This limitation can be overcome 

by employing thermal adhesion to hold the tissue.  

 

Closed Form Analysis and Verification 

Structurally the foil is similar to spring made of half a turn of a rectangular cross 

section wire (n = 0.5). Hence, the results of the FEA model were verified by analytical 

equations for the axial stiffness λx of such a spring using Eqs. 39 to 41 [122]. The 

symbols used for the dimensions of the spring are illustrated in Figure 70. Shear modulus 

G can be calculated using Eq. 40 as a function of elastic modulus E and Poisson‘s ratio ν. 

Based on this stiffness, the force required for a 150 µm deflection is calculated and 

compared with the values obtained from the FE analysis. It can be seen that the values 
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Figure 69: Variation of net clamping force with foil thickness 



 154 

agree to within 30%. It is noted that the analytical equations do not capture the effect of 

the annular holes and hence overestimates the required force. 

 
 

   
(39) 

   (40) 

    (41) 

Table 17: Comparison of predicted force for 150 µm deflection from FEA and 

analytical model 

Load (µN) 

spring model FEA 

285 220 

Bending Analysis 

Motivation 

During the surgery the support structure is rolled up into a spiral and inserted 

through an incision. During this process the foil undergoes large bending strains. The 

shape memory effect is completely reversible to a strain of 8 %. However, the bending 

strains can reach higher values and cause permanent plastic deformation of the structure. 

It is the role of this investigation to analyze the stresses and strains induced in the device 

when it is rolled in a spiral. The model is then used to study the effect of changing the foil 

thickness and hole diameter on these strains. 

Figure 70: Rectangular section helical spring 

b 

a 
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Boundary Conditions 

The boundary conditions applied to the foil as shown in Figure 71. The top edge 

is first given a ramped rotation of 3.15 radians (180 degrees) so that the foil is folded over 

in half (Load Step 1). The edge is then moved vertically downwards so that the bend 

diameter d becomes smaller (Load Step 2). The base is clamped and symmetry is applied 

to the edges shown. 

 

 

Figure 71: Boundary conditions for bending analysis 

Side view 

undeformed foil 

Load Step 1: Foil with 180° 

rotation 
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Meshing 

The bending analysis was carried out in ABAQUS. A 4-node general-purpose 

shell element with reduced integration, hourglass control and finite membrane strains was 

used to discretize the geometry. Convergence with maximum stress is achieved to within 

2% at the element size of 0.05 µm (Figure 72). The mesh that was finally used is shown 

in Figure 72. 

 

 

Results and Discussion 

When the foil is subjected to bending, stress concentrations develop around the 

holes that are close to the bending vertex. Strains beyond 8% cannot be recovered by 

shape memory effect. Hence, the bend diameter d which induces a maximum strain of 8% 

is considered to be the minimum radius of the spiral the device can be rolled in to. Figure 

73 shows this strain for a foil of 25 µm thickness and hole diameter of 250 µm is reached 

at a bend diameter is 1.55 mm. The diameter of the incision through which the foil needs 

Figure 72: Mesh convergence for bending 
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to be inserted in to the eye is about 1.6 mm. Hence, these results imply that the foil can be 

inserted in to the eye without inducing plastic strains.  

 
As mentioned in Section 4 e, the clamping force can be increased by increasing 

the foil thickness. Hence, the effect of increasing foil thickness on the maximum possible 

bend angle. Figure 74 shows the strain and corresponding rotation for structures with 

increasing thickness from 25 µm and 200 µm. It can be seen that devices made of foils 

thicker than 25 µm cannot be folded over completely (180° rotation).  

 
Figure 74: Rotation to failure as a function of thickness 
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Figure 73: Equivalent strain contour plots for foil 
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Holes are milled in the annulus to provide texturing to the surface and improve 

adhesion with the tissue. However, they also weaken the structure. Hence, the effect of 

the hole diameter on the bend diameter d was analyzed for hole diameters from 200 µm 

to 350 µm. Figure 75 shows that the minimum bend diameter increases almost linearly 

with increase in hole diameter.  

 

Closed Form Analysis and Verification 

Results from the FEA analysis were verified using analytical equations for sheet 

bending. The theoretical strain in the outer and inner fibers of the foil ei for a 180° bend is 

given by Eq. 42 where r is the bend radius and T is the thickness of the foil [123]. The 

strain value for a 25 µm foil with 250 µm diameter holes obtained from FEA is compared 

with the estimate from Eq. 42 in  

Table 18 and found to be in good agreement. 

   (42) 
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Figure 75: Variation of bend diameter as a function of hole diameter for a 25 µm 
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Table 18: Verification of FEA results for bending 

average strain (%) 

FEA analytical 

1.18 1.2 
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Electro-Thermal Analysis 

Motivation 

From the discussion in Sections 3 and 4, it can be concluded that the amount of 

force generated by shape memory effect is too small to clamp the tissue. However, the 

tissue can be held stretched if it is thermally adhered to the foil [84]. It has been shown 

that tissue will stick to an electrode if the temperature of the tissue reaches 70°C [124]. 

However, if temperatures reach about 100°C, dehydration causes the tissue to disintegrate 

and it would get detached from the foil. Hence, the voltage has to be controlled so that 

the overheating of the tissue is avoided. Furthermore, some heat is conducted in to the 

choroid. If the temperature in the choroid exceeds 70°C, it will stick to the foil and hinder 

the extraction of the tissue patch. The electrodes, foil and tissue are surrounded by a fluid 

environment (perflorooctane). Hence, some heat is lost to convection. The objective of 

the following analysis is to study the relationship between voltage applied to the foil and 

tissue temperature in a fluid environment. 

Geometry 

The geometry used for the model is shown in Figure 76. It consists of a patch of 

RPE sandwiched between the foil structure. The foil thickness is 25 µm, while the RPE 

tissue is 150 µm thick. Below this composite structure is the choroid which is 350 µm 

thick. The radius of the foil hinge is neglected in this analysis. As illustrated in Figure 56, 

the foil is actuated by touching it with two forceps, one at the hinge and the other 

diametrically opposite. The area of contact between the forcep and the foil was measured 

under a tool makers microscope and found to be approximately rectangular with 

dimensions 250 µm x 210 µm. Since symmetry is used in the model, the contact area is 

modeled as a patch with dimensions 250 µm x 105 µm. 
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Materials 

Electrical and thermal properties of the tissue and foil are summarized in Table 

19. Most body tissues have about 80% water content. Consequently, thermal and 

electrical properties of various tissues in the body are similar to that of water. Hence, 

both the RPE and the choroid are assigned the same material properties. All properties 

are assumed to be constant with respect to temperature. Convection coefficient of fluid 

around the foil hpfo is assumed to be 250 W/m
2
K based on an estimate from [125].  

Table 19: Thermal and electrical material properties for support structure and 

tissue 

    Nitinol Retina 

Property Unit Name Value Reference Value Reference 

Electrical 

conductivity 

S/m k 10
6
 [126] 0.1 [127] 

Thermal 

conductivity 

W/(mK

) 

K 18 0.454 [128] 

Density kg/m
3
 ρ 6450 1062 [86] 

Heat capacity 

at constant 

pressure 

J/(kgK) Cp 840 3680 [129] 

 

top foil 

RPE  

bottom foil 

bottom foil 

choroid 

choroid forcep contact 

area 

Figure 76: Geometry used for electro-thermal analysis 
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Boundary Conditions 

COMSOL
®
 has a built-in bio-heat transfer analysis module. The governing 

equation is shown in Eq. 43, where ρb is the density of blood, Cb is the specific heat of 

blood, ωb is the flow rate of blood [124]. The term ρbCbωb(Tb-T) corresponds to heat 

extracted by blood flow (perfusion)  through the tissue. Heat generated in the tissue due 

to metabolism (body heat) is captured by the term Qmet. External heat generation Qext in 

this study comes from electric resistance heating of the foil and tissue. On the left hand 

side of the equation, δts is the heating time, ρ is the density of the tissue, C is the specific 

heat of the tissue, k is the conductivity of the tissue, T is the temperature of the tissue and 

t is time. Hence, heat is added to the tissue by resistance heating and metabolism while 

heat is extracted due to conduction to surrounding tissue and heat transfer to blood flow. 

The rate of temperature rise in the tissue is proportional to the net heat transfer through 

the tissue. Values used for perfusion constants are shown in Table 20. 

    
(43) 

 

Table 20:  Values for perfusion 

Quantity Value Units Reference 

ρb 1000 kg/m
3
 [6] 

Cb 4180 J/(kgK) [6] 

ωb 0.2 s
-1

 [11] 

The boundary conditions for the electrical analysis are shown in Figure 77. The 

coupled electro-thermal analysis consists of a steady state electrical analysis followed by 

a transient thermal analysis. Voltage is applied to the area where the forceps touch the 

foil (Figure 77). The other end of the foil is set to ground voltage. All other surfaces are 

electrically insulated.  

Boundary conditions for thermal analysis are shown in Figure 78. Heat generation 

by resistance heating calculated from the electrical analysis is applied to all the parts in 

the model. Heat extraction due to blood perfusion is specified in the RPE and choroid 
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tissue volumes. The bottom surface of the choroid is fixed to body temperature. 

Convection is specified on all top surfaces of the foil and RPE that are exposed to 

perflourooctane. Heat generated due to metabolism is assumed to be negligible in this 

analysis in comparison to the heat generated by resistance heating. The model is meshed 

using linear tetrahedral elements. Convergence on heat flux magnitude to within 5% was 

obtained with moderate mesh sizes as shown in Figure 79.  

 

 
 

perfusion 

convection 

body temperature 

Figure 78: Boundary conditions for thermal analysis 

ground 

voltage 

Figure 77: Boundary conditions for electrical analysis 
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Results and Validation 

The voltage at which the average temperature in the foil reaches 70°C is found to 

be about 0.35 V. In practice, however, the required voltage is about 3 V. This discrepancy 

is mostly due to the resistance of the leads and electrified forceps Re that have not been 

included in the FE model. The resistance Re and the resistance of the top half of the foil Rf 

were measured using a digital multimeter and the results are tabulated in Table 21. In 

addition to the comparatively high resistance of the forcep and leads, additional power is 

required to overcome the contact resistance between the foil and the forceps and the 

resistance of moving parts in the forceps. 

Table 21: Resistance of forceps and foil 

Resistance Ω 

Re Rf 

2.8 0.38 

Maximum temperature in the model is in the foil close to the open side as seen in 

Figure 80. This is because current density is less at the tab and hence it heats to a lower 

extent. Furthermore, the tab has a larger area for heat convection and is also closer to the 

bottom foil which acts as a heat sink. Hence, heat loss from the foil is higher in this area. 
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Figure 79: Convergence of electro-thermal analysis 



 165 

As a result, temperature close to the tab is lower. Furthermore, current density is highest 

around the diameter of the holes in the annulus. Hence, maximum temperature is seen at 

the open end.  

Variation of maximum temperature in the entire model with respect to voltage is 

shown in Figure 81. It can be noted that the variation is almost quadratic in nature. This is 

to be expected since for a constant voltage, resistance heating varies with the square of 

voltage as shown in Eq.44. 

    
(44) 

 

  

 
 

Figure 80: Temperature rise in model at 2s with 0.35 V applied voltage 
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Equation 45 can be used to verify the results of the finite element model by 

performing a heat balance. The tissue volume used in this analytical approximation is the 

volume under the foil since the FEA results show that most the temperature of the tissue 

away from the foil remains fairly unchanged. Heat loss by convection is calculated using 

Eq.7 where A is the annular area of the foil, and hpfo is the convection coefficient of the 

fluid surrounding the foil. Heat loss by conduction is calculated by a lumped thermal 

resistance model using Eq. 8 to 10 as shown in Figure 82. Equations 45to 49 50 can be 

simplified to obtain Eq. 50  which gives the average temperature rise in the lumped mass 

model. 

Table 22 compares the average temperature rise predicted by the finite element 

model with the average temperature rise predicted by the lumped thermal mass model. 

The lumped mass model predicts a much smaller temperature rise. This is because in the 

lumped mass model, the heat generation due to joule heating is assumed to be equally 

distributed throughout the volume. However, in the heat generation is concentrated 

mostly in the top foil which is also the material with the smaller specific heat. Hence, 

there is significantly higher temperature rise in the foil than in the rest of the model. This 

Figure 81: Maximum foil temperature as a function of applied voltage 

m
ax

 f
o
il

 t
em

p
er

at
u
re

 (
°C

) 

voltage (V) 



 167 

localized heating is not captured by the lumped mass model and hence, it predicts a much 

lower temperature rise. However, it is still of the same order of magnitude and 

sufficiently validates the FEA results. 

    
(45) 

   (46) 

   
(47) 

   (48) 

   
(49) 

   (50) 

 

Table 22: Comparison between FEA model and lumped mass model 

ΔTavg (°C) 

FEA Lumped mass 

23 15 

 

 
 

choroid bottom foil RPE 

Ttop foil Tb 

bottom foil 

choroid 

RP

E 

top foil 

Figure 82: Lumped mass model for prediction of temperature rise 
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The FEA model can also be used to predict the ablation depth of the tissue when 

the foil is heated. The tissue sticks to the foil if its temperature reaches 70°C while it 

disintegrates if the temperature reaches 100°C. A voltage of 0.35 V causes the tissue to 

reach a maximum temperature of 80°C. As shown in Figure 83 the maximum depth at 

which temperature reaches 70°C gives the maximum adhesion depth, which in this case 

is 59 µm. This implies that the top foil will stick to the tissue while the bottom foil will 

not. There is also no adhesion near the tab since the temperature rise at the tab is much 

lower. Furthermore, the bottom foil will not stick to the choroid in this case. If the bottom 

foil sticks to the choroid, it would make extraction of the structure difficult. The results 

also suggest that the structure may need to be turned over and the bottom foil heated to 

cause it to stick to the tissue. Also, local heating of the tab may be required to raise the 

temperature locally to cause adhesion of the tissue. It is also noted that while adhesion 

occurs at the foil, the surrounding tissue is not damaged. In fact the tissue within the 

holes in the annulus remains fairly unaffected which is advantageous for vascularization 

of the tissue. 

Equations 8 to 10 can be used to find the temperature gradient in the lumped 

model when the average foil temperature is 75°C. This in turn can be used to find the 

depth in the tissue at which the temperature reaches 70°C. Table 23 compares the depth 

predicted by the FEA model with that predicted by the lumped mass model. The lumped 

mass model predicts a higher depth since it assumes that the entire top foil is at a constant 

temperature. The FEA model captures the variation of temperature along the foil area and 

hence predicts a lower ablation depth. However, the lumped mass model validates the 

ablation depth predicted by the FEA model.  
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Table 23: Comparison between adhesion depth predicted by FEA model and 

analytical model 

Ablation depth (µm) 

FEA Analytical 

59 65.8 

Figure 83: Temperature profile during thermal adhesion (a) Area of adhesion and 

ablation depth in tissue with 0.35V applied voltage (b) Cross sectional thermal 

profile at section with maximum temperature 

 

areas of tissue that 

reach 70°C or higher 

detail (b) 

 (a) 

 (b) 
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The model can also be used to check the effect of cauterizing the tissue patch 

around the structure before adhering the tissue to the structure. If the tissue is cauterized 

before adhesion, there will be no flow of blood through the RPE tissue. There would be 

no heat carried away by the blood and the perfusion term in Eq. 4 can be neglected for 

the RPE. Perfusion would still be present in the choroid. The simulation was run for 0.3V 

applied voltage with and without perfusion in the RPE. The results are summarized in 

Table 24 and indicate that the effect of cauterization on temperature in the tissue is not 

significant. 

Table 24: Maximum temperature in tissue with and without cauterization with 0.3V 

 

not cauterized cauterized 

max temp (°C) 69.96 70.2 

 

Convective heat transfer coefficient for perflourooctane was not found to be 

reported in literature and hence estimate of this value was used based on [125]. A 

sensitivity analysis was carried out to analyze the effect of this estimate on the results are 

shown in Figure 84. Typical values for oils are between 50 and 3000 W/m
2
K, for which 

the maximum temperature reduces by about 30°C. This in turn would require a higher 

voltage to be applied to the foil. However, as shown in Figure 81, the increase in applied 

voltage would not be very significant. Other results such as the depth of thermally 

affected tissue are not affected by the variation in hpfo since they depend mainly on the 

foil temperature. 
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Force measurement 

The primary purpose of the device is to resist inplane forces that would cause the 

tissue to fold and wrinkle. Hence, the force required to pull the tissue out of the clamp 

was measured experimentally. A patch of the tissue graft was adhered to the translocation 

device ex-vivo with pig eyeballs.  The graft was excised with excess tissue around the 

periphery to allow for the tissue to be gripped in a fixed clamp at one end. Weights were 

hung from the translocation device until it detached from the tissue. The maximum 

weight that the translocation device could withstand before it got detached from the tissue 

was noted. Multiple measurements were taken for devices with annular holes, with and 

without burrs. The mean of the measured values is shown in Figure 86 and suggests that 

the force is higher for the device with burrs. However, there is high variation in the 

measured values stemming from the variation in tissue properties within an eyeball and 

between eyeballs. The burrs on the devices used for these tests had a width of about 

200 μm. 
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Figure 84: Variation of maximum foil temperature with change in convective heat 

transfer coefficient of fluid medium in the eye 
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Figure 87 shows images of the translocation device with and without burrs after a 

pull test. It can be seen that the burrs on the support surface provides toeholds and 

crevices for the tissue to anchor on to. The shape edges may also snag the tissue as it 

slides relative to the structure and mechanically restrain (hook) the tissue. They also 

increase the surface area for thermally induced adhesion. These burrs, however, are 

produced unintentionally during the milling process and hence, are an uncontrolled aspect 

of the design which is undesirable. If the size of these burrs is negligible, they will not 

provide adequate mechanical interlocking with the tissue. On the other hand if they are 

too large, they could potentially prevent full closure of the support structure, obstruct the 

tissue from contacting the rest of the foil and block the annular holes created to aid 

with burrs without burrs 

mean =  48.3 mN 

σ = 22.7 mN 
mean 35.8 mN 
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Figure 86: Pulling force for devices with and without burrs 

Figure 85: Pulling force measurement apparatus 
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vasularization (Figure 87). Furthermore, they could snag on the tissue as the support is 

inserted under the graft and hinder insertion. This suggests a need for a better control on 

the burr size and a deeper understanding of the factors that affect burr size and will be the 

subject of future research. 

 

Conclusions 

This chapter summarizes the analysis of a tissue support structure for 

translocation of a patch of tissue inside the eye. Based on the analysis, the following 

conclusions can be drawn: 

tissue gripped by 

burrs 

large burrs 

obstructing 

annular 

hole 

Figure 87: Support structure after the tissue was adhered to it and then pulled out 

of it. (a) device with burrs (b) deburred device 

weak or no tissue 

adhesion: could be 

due to interfering 

large burrs 

tissue snagged on burr 

more uniform tissue 

attachment 

(a) 

(b) 
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 Clamping forces generated in the foil due to shape memory effect are 

negligible for the 25µm foil used. Significant clamping forces can be 

generated only if foil thickness is beyond 300 µm. 

 The 25 µm foil can be rolled with a smallest diameter of 1.55 mm which is 

within the design criterion of 1.6 mm. Thicker foils cannot be bent in to a 

roll for insertion. Increasing the annulus hole size increases the minimum 

bend diameter. 

 Device temperature is a function of current density and hence, the tab has 

the lowest temperature while the areas around the holes have a relatively 

higher temperature. Depth of thermally affected tissue when the foil is at 

80°C is about 59µm. Most of the tissue graft is not damaged thermally. 

Blood flow in thin tissues such as the RPE does not significantly affect 

thermal gradients within the tissue due to an external heat source. 

 The presence of burrs on the surface of the device grips the tissue and 

leads to better mechanical interlocking with it. 

In the next chapter the conclusions of this dissertation are summarized and the 

objectives put forth in Chapter 1 are evaluated in light of these findings. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

In this chapter the conclusions from each chapter are juxtaposed with the research 

objectives proposed in Chapter 1 which were as follows: 

 Evaluate abrasive slurry assisted brush deburring as a means to deburr 

microfeatures. 

 Understand the mechanics of burr formation in thin foils as well as the 

effect of process parameters on the process. 

 Understand the mechanics of material removal in brushing and abrasive 

impregnated brush deburring. 

 Apply and verify the generated knowledge to the manufacture of a tissue 

translocation device. 

Abrasive Slurry Assisted Deburring 

This chapter focused on experimentally evaluating the applicability of abrasive 

assisted brush deburring to micromilled grooves and quantifying the effects of material 

hardness, spindle speed, grit size and type on the rate of burr height reduction. From this 

study, the following conclusions are drawn: 

 A linear regression model can be used to predict the time required for 

completely deburring a micromilled groove based on the maximum initial 

burr height present, brush rotation speed and grit type. In these 

experiments, the model slightly underestimates the deburring time for the 

harder material (tool steel) and slightly overestimates the time for the 

softer material (copper). 
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 The deburring rate is proportional to the initial burr height with an almost 

constant proportionality for the conditions chosen in this study. An 

inference drawn from this is that the burrs either bend or break at about 

half the initial burr height. Deburring rate increases with spindle speed and 

is higher for diamond than SiC. No clear trend is evident for the influence 

of grit size.  

 Groove depth change is small (for all conditions examined in this study) 

and is maximum for the largest diamond grit at the highest speed. The 

edge of the groove on the upmilling side exhibits a small radius due to the 

action of the abrasives.  

 Large burrs shield some of the area next to them from the action of bristles 

resulting in a slope in the surface and a depression in the unshielded 

region.   

The study showed that brush deburring can effectively remove large burrs in a 

few minutes with improvements in surface finish but the precision of the process is 

adversely affected by the large brush-workpiece interaction area and lack of control of 

the number of grits interacting with the workpiece. This addresses the first objective and 

it may be stated that ‗Abrasive slurry assisted brush deburring effectively deburrs 

microgrooves but is difficult to control.‘ Brush deburring has been suggested as the first 

method of choice for deburring microfeatures but has not been systematically evaluated. 

This study makes significant contribution by filling this gap in knowledge.  

Burr Formation in Thin Foils 

This chapter focused on presenting a fundamental understanding of the mechanics 

of burr formation in micromilling of a thin nitinol foil adhered to a backing material. The 

following conclusions are drawn: 
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 Burrs are formed via ploughing as the tool initially penetrates the foil, 

mainly due to delamination and insufficient chip thickness. If initial 

penetration is sufficient to cause the foil to fail in tension, the foil tears 

with the crack starting closer to the upmilling side and thereby resulting in 

larger downmilling burrs. If penetration is insufficient, the foil plastically 

deforms until it tears typically in the middle of the tooth path.  

 The kinematic model developed captures the effects of feed per tooth, tool 

tip radius and adhesive peel strength to predict the burr width and is 

shown to be within the experimental variation.  

 At higher feeds, with a new tool and a strong adhesive bond, chips of the 

material are formed leading to very small burrs on either side of the 

groove.  

 Three types of burrs were identified: rollover, feathery and wall type. 

Feathery burrs are produced only on the downmilling side when cutting 

with sufficient chip thickness, moderate bond strength and a new tool. 

Wall burrs are formed with worn tools at higher feeds due to moderate 

delamination on the downmilling side. Rollover burrs are formed in all 

other cases. 

 The effect of downmilling on burr height is most pronounced except when 

there is significant delamination on the upmilling side.  

 Wear of the tool results in larger burrs. Increasing the feed from 

insufficient chip thickness (< 5 μm in this work) to sufficient chip 

thickness (5 to 10 μm in this work) reduces the burr height if the tool is 

new, whereas it increases the burr height if the tool is worn.  

 Spindle speed (strain rate effect) does not have a significant effect on the 

burr height for a new tool. For a worn tool, a lower spindle speed (more 

time for delamination) results in larger burrs.  
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 PMMA is a softer backing material and yields larger burrs and has a 

higher tendency for forming a built-up edge, which in turn produces larger 

burrs.  

 A weak adhesive bond with the backing material also leads to larger burrs. 

 Variation in burr height is smallest for a feed of 7.5 μm/tooth, high bond 

strength and cutting with a new tool. 

In short, it has been shown that process parameters such as the feed per tooth and 

milling side (up vs. down), workpiece conditions such as adhesive-backing material 

combination (which affects adhesive strength) and the tool properties such as tool edge 

radius and wear noticeably affect burr size. The variation of burr width with feed per 

tooth has been captured by a kinematic model whose predictions are within the 

experimental variation. The smallest experimental variation for the predicted value was 

about 75 μm at a feed of 7.5 μm/tooth. This addresses the second objective and it may be 

stated that ‗Process parameters, especially feed per tooth, in micromilling of thin foils 

affect burr size and burr width can be predicted within a range.‘ Burr formation in 

machining of microscale features in thin metal foils is influenced by the edge radius and 

foil delamination, which make it a distinct process from macromachining or 

micromachining of bulk materials. This thesis has for the first time shed light on the 

mechanics of burr formation in this process as well as the effect of process parameters on 

burr width. An experimentally verified model has also been presented allowing to these 

results to be generalized.  

Deburring of Thin Foils 

This chapter sought to shed light on material removal in abrasive impregnated 

brushing of thin (25 μm) metallic foils. The following conclusions are arrived at in this 

study: 
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 For brushing of a flat surface, some material is removed as chips by the 

impregnated abrasives. Material is also deformed by the grits and pushed 

up to form ledge like structures or microburrs which then break off due to 

impact or stiffness forces improved by subsequent bristles.  

 The maximum normal force and maximum indentation shifts from the 

middle of the brushed region at 5,000 rpm to the entry region at 15,000 

rpm due to a shift from a bristle stiffness dominated force to an impact 

dominated force.  

 A Hertzian static indentation model used to predict indentation rate during 

brushing of foils shows good agreement with experiments.  

 Burr removal occurs in two phases. Phase I involves fatigue fracture of the 

long slender burrs at the root. Phase II involves material being removed as 

flakes as the cracks formed during fracture in Phase I and new cracks 

formed during brushing propagate through the burr.  

 A fracture mechanics model based on the Paris equation can predict the 

number of passes required to deburr an edge and further supports the 

hypothesis that material removal in brushing of Nitinol is better described 

by fracture mechanics.  

 Burrs can be removed within 12 minutes for a 6 mm long groove with no 

more than a micron change in foil thickness.  

 Surface finish initially improves for the pickled foils during Phase I but 

subsequently degrades in Phase II due to impact of the bristles. 

In summary, abrasive grits impregnated in the brush bristles indent the workpiece 

material either due to the stiffness of the bristles or due to initial contact forces with the 

latter dominating at higher brush rotation speeds. During abrasive impregnated brush 

deburring, burrs are removed via crack propagation due to action of the bristles in two 

phases. Hertzian static indentation and the Paris equation for fracture mechanics are able 
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to describe workpiece indentation during brushing and brush deburring respectively. This 

addresses the third objective and it may be stated that ‗Material indentation in abrasive 

impregnated brush deburring is dominated by bristle stiffness at low speeds and impact at 

high speeds and brush deburring occurs due to fracture of burrs.‘ This study significantly 

deepens the understanding of material removal in brushing, which has been long 

identified as an important and unaddressed gap in the knowledge of brushing and brush 

deburring. It has shown that deburring occurs by fracture rather than bending failure. The 

experimentally verified models help explain the shift in the position of maximum 

material penetration with increase in speed while also allowing the material penetration 

rate and number of deburring passes to be predicted.  

Design of Surgical Support Structure 

This chapter presented the systematic design of a device to translocate tissue 

inside the eye for surgical correction of AMD. The following conclusions are drawn: 

 Currently used tissue translocation techniques have significant limitations 

to perform translocation in the eye.   

 A novel device was designed and manufactured out of thin Nitinol foil can 

be inserted through a 2 mm incision in the eye by rolling it. The rolled coil 

can be successfully unrolled in the eye using shape memory effect caused 

by electrical heating.  

 The adhesion of the tissue to the device is achieved by electrically heating 

it beyond the shape transformation temperature of the structure.  

 The adhesion of the tissue to the foil structure is further improved by the 

presence of burrs along the edge of the device. These burrs are produced 

during the micromilling process and act as microscopic hooks to anchor 

the tissue to the foil structure.  
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 The predictions for burr size from Chapter 4 and deburring passes from 

Chapter 5 can be successfully applied to the device to produce either large 

(~200 μm) burrs or small (~ 40 μm) burrs as well as to fully deburr them. 

 The device can successfully grasp and translocate a patch of tissue in both 

ex-vivo and in-vivo tests carried out on pig eyes. 

Analysis of Tissue Support Device 

This chapter summarizes the analysis of a tissue support structure for 

translocation of a patch of tissue inside the eye. Based on the analysis, the following 

conclusions can be drawn: 

 Clamping forces generated in the foil due to shape memory effect are 

negligible for the 25µm foil used. Significant clamping forces can be 

generated only if the foil thickness is greater than 300 µm. 

 The 25 µm foil can be rolled with a smallest diameter of 1.55 mm which is 

within the design criterion of 1.6 mm. Thicker foils cannot be bent into a 

roll for insertion. Increasing the annulus hole size increases the minimum 

bend diameter. 

 Device temperature is a function of current density and hence, the tab has 

the lowest temperature while the areas around the holes have a relatively 

higher temperature. Depth of thermally affected tissue when the foil is at 

80°C is about 59µm. Most of the tissue graft is not damaged thermally. 

Blood flow in thin tissues such as the RPE does not significantly affect 

thermal gradients within the tissue due to an external heat source. 

 The presence of burrs on the surface of the device leads to better 

mechanical interlocking with it. 

Knowledge of micromilling of thin metal foils has been applied to a 

systematically designed medical device for translocation of a tissue graft inside the eye. 
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The models in Chapter 4 and 5 can be successfully applied to predict the burr size on the 

device within a range as well as the number of passes required to deburr the device. 

Finite element analysis of the device shows that the forces generated due to shape 

memory effect are insufficient by themselves to hold the tissue graft. On the other hand, 

experiments show that heating the device sufficiently causes the tissue to stick to the 

annular surface allowing the tissue to be successfully harvested and translocated. SEM 

images of the device after the tissue has been removed from the device show that the 

burrs enhance retention of the tissue by acting as microhooks. This addresses the fourth 

objective and it may be stated that ‗Burrs on a surgical micromilled device snag tissue 

and assist tissue retention.‘ This device aids in the surgical correction of one of the 

leading causes of blindness in the world. 

Future Work 

Burr Formation 

Following are some areas where the current research in the area of burr formation 

during micromilling of thin foils may be extended: 

 Verification of the extent of delamination between the foil and backing 

material experimentally to validate the predictions of this study. 

 Understanding the process by which cracks are generated during burr 

formation rather than assuming the cracks to occur at the middle of the 

delaminated area. 

 As the tool follows a curved path, the actual uncut chip thickness would 

vary from the feed per tooth and would affect the predicted transition feed 

from ploughing to cutting. Hence, the model developed in this study could 

be connected to some of the tool path planning algorithms that have been 
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reported in literature to study burr formation for features that are not 

straight grooves. 

 Evaluation of the effect of pretensioning the foil or sandwiching it 

between stiffer materials (such as adhesive tape with card paper) on burr 

size. It is expected that both these strategies would reduce the tendency of 

the foil to delaminate from the backing material and reduce burr 

formation. 

Abrasive Impregnated Brush Deburring 

 Developing an understanding of the impact dynamics of the bristles as 

they contact the workpiece. 

 Develop a statistical model of abrasive grit sizes, shapes, distribution and 

radii to predict the indentation process more accurately. 

 Develop methods to improve surface roughness during Phase II of the 

deburring process. 

Tissue Translocation Device 

 Understand the biomechanics of tissue-burr interaction. 

 Create deterministic features on the foil surface to enhance burr retention. 

 Carry out in-vivo surgical tests to evaluate the viability as a long term 

implant in the eye. 
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