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Abstract

The dynamics of cyclic feedback systems are described. The em-
phasis is both in showing the diversity of possible dynamics in these
sytems and in showing that there is a underlying dynamic structure
possessed by all these systems. In particular, for the special class of
monotone cyclic feedback systems, the dynamics is fairly simple; the
recurrent sets can only comnsist of fixed points or periodic orbits and
in many cases can be shown to be Morse-Smale. This is contrasted
with the general cyclic feedback systems for which chaotic dynamics
can occur.

The general properties which large subclasses of these systems have
in common include periodic orbits and a semi—conjugacy onto a simple,
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but non-trivial, model dynamical system. To describe all systems
simultaneously, a purely topological description of the invariant sets
is introduced.

1 Introduction

Cyclic feedback systems (CFS) are systems of ordinary differential equations
of the form

z; = fi(z,zi1) 1=1,...,n (2o =2zn) (1)

where for all ( # 0

for some é; = £1. To simplify the notation we shall sometimes write

The cyclicity of these systems is obvious from (1). The constraint (2) is
called a feedback condition and, in particular, is a positive feedback if 6; = 1
and a negative feedback if 6; = —1. We make a simple observation that via
a change of variables of the form z; — A;z; where A; = +1 it is possible to
assume without loss of generality that

51 = A:j:]_
51 = ]_, ’1::2,...,7'2/

where A = 616, ...6, 1s expressed in the terms of the original feedback con-
ditions.

This suggests, and indeed it is the case, that A is one of the defining
characteristics of these systems. With this in mind we let CFS' and CFS~
denote the class of CFS when A = +1 or A = —1, respectively. Another
important quantity, at least as far as the global dynamics is concerned, is
the parity of the dimension of the system n. We shall employ the notation
CFS8oqq and CFSepen to denote CFS with n odd or even.

Systems of this form appear in a variety of applications and, also, are of
mathematical interest in their own right.

The idea of using a feedback in models of cell mechanisms goes back
to the paper of Jacob and Monod [16]. They modeled genetic regulatory



mechanism in bacteria using feedback systems. To mention other models,
Morales and McKay [25] used cyclic feedback systems to model metabolic
pathways in bacteria and Weiss and Kavanau [31] used the models from this
class to describe the control mechanism of the growth of cells. For a more
comprehensive list of models we refer the reader to the paper of Hastings
et.al. [10].

We would like to remark that these models were built to explain how the
cells are able to stabilize certain 0 in ever changing 0. The analogy with a
control theory comes to mind 0. It is well known that a negative feedback
has stabilizing properties and these were explored in the papers [16, 25,
31]. However, it is also well known that if one imposes too large a negative
feedback, the system usually starts to 0.

In recent years there was an increased effort to understand more about
0 phenomena in general. We are keenly aware of the fact that no living
organism is in the state of 0 and most processes around us are periodic
(or even more complicated). In neural networks, if one considers a ring
architecture of the neurons where the neurons are connected to each other in
a cyclic fashion, then one naturally arrives to the description of the dynamics
using CFS . This architecture 0 attention in recent years for its ability to
support stable oscillations, which may be viewed as stored spatio-temporal
information. As an example, we mention the work of Atyia and Baldi [2],
who used the models from the class of CFS to explore the so called “labeling
hypotheses”, which is related to the question how the brain processes the
visual information.

From the mathematical point of view CFS are interesting, because in
their study one comes across many important ideas which have been used in
last decade in the dynamical systems.

There is a direct link to a scalar delay-differential equation. Let us con-
sider the equation of the form

a(t) = f(a(t),2(t = 1)).
If we divide the interval [—1,0] into n equal subintervals and then use the

linear approximation of the solution on each subinterval, we obtain a cyclic
feedback system

j:l = f(a;l; :ETL)

1

.’1'11' = —(mi_l—mi).
n



In the next section we define a discrete Liapunov function for CFS . Such a
function was used to study scalar parabolic equations [1, 3, 11, 20] and (not
0) scalar delay-differential equations with negative feedback [17].

There is a important subclass of CFS , called monotone cyclic feedback
systems (MCJFS), which are obtained by imposing the additional assumption

b; ac >0

for all (n,¢) € R®. We want to remark that if A =1 in a MCFS , then the
flow, given by (1), generates a monotone dynamical system. These systems
have been studied extensively over the last decade by many authors, for
instance by H. Matano [19], M. Hirsch [12, 13, 14, 15], H. Smith [27] and
others. An important property of these systems is that almost all trajectories
converge to a fixed point (Hirsch [13, 14]), which was used in the applications
to neural networks.

The intent of this article is to demonstrate both that CFS display a
wide variety of dynamics and that these systems share important common
dynamic properties. We begin by making several assumptions.

Al f; e CY(R4,R), i=1,...,n.
A2
0fi(n, ()

5iTC|(O’O)>O i=1,...,n

A3 The exists a global compact attractor A. In other words, there exists a
compact set A such that for every R >> 1, the omega limit set of the
ball of radius R about the origin is A, i.e.

w(Bg(0)) = A.

The hypotheses (A1) - (A3) shall be assumed throughout this paper.

With these assumptions we are ready to discuss the dynamics of CFS.
In the next section we shall define a discrete Liapunov function which is at
the heart of most of the results described in this article. In Section 3, the
concept of a Morse decomposition will be introduced to provide an abstract
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framework with which we will deal with the information provided by the
Liapunov function. This is followed by Section 4 in which the Conley indices
for the Morse sets are described. In Section 5 we discuss the dynamics of
MCFS. As will be made clear, the dynamics for these systems is surprisingly
simple. This will be contrasted with the general CFS, for which chaotic
dynamics can occur. It is hoped that by the end of this section the reader
is aware of the diversity of the dynamics possible in CFS. The final two
sections strive to demonstrate that there are common factors within this
diversity. For example, in Section 6, reasonably general conditions which 0
the existence of periodic orbits will be given. Even more generally, it will
be shown that some Morse sets must have the topology of at least a circle.
Finally, in Section 7, the global dynamics will be discussed. In particular, it
will be shown that the dynamic structure of CFS can be mapped onto the
dynamic structures of a simple (but not trivial) model dynamical system.

2 The Liapunov Function

Observe that the subspaces
Y,:={zeR|z;,=0}\ {0} CR"
are sections to the flow generated by CFS. In particular, on Y;,
z; = fi(zi,zio1) = fi(0, %)
Thus, by the feedback condition

0 {>0 lf&:l, :IJZ'_1>OOI‘5.L'=—1, z,_1 <0
! <0 1f51:1, :IJi_1<OOI‘5i:—1, z;,_1 > 0.

The complement of these regions R™ \ UY; can be expressed as
UQ(O’l, ey On) U{O}
where for o; = +1,
Q(o1,...,00) :={z € R" | oyz; > 0}.

The @)s are of course open cones which correspond to “orthants” in R™.
Observe that (3) indicates how orbits move from one @ to another. Now

define N : UQ(o1,...,0n) = Z by



N(z) = cardinality{i | §;z;z;_1 < 0}. (4)

Clearly, NV is constant on each @, and hence, is a continuous function. Finally,
let
X’i = {-’E e R" | z; = 0, 5i+151;$1;+1.’111;_1 < 0}

One can check, by examining the flow on X;, that it is possible to extend the
domain of definition of A to

X = (UX3)) U (UQ(oy, - .-, 0m))

while preserving the continuity of A (see Figure 1). Furthermore, except for
the origin, the subsets of R™ where N is not defined, i.e. R™\ (X U {0}) are
precisely the boundaries between the regions on which N assumes different
values. Thus, A is left undefined on the complement of X.

The following result justifies the name Liapunov functional for N.

Proposition 2.1 (Mallet-Paret and Smith [18]) Let z(¢) be a nontrivial so-
lution of (1). Then

a. z(t) € X ezcept at isolated values of t.

b. N(z(t)) us locally constant for z(t) € X.

c. if z(to) & X then N(z(tf)) < M(z(t5)), where t§ > to and t5 < to.
d. if a(t) € X then (zi(t), zi1(t)) # (0,0) for 1 < i < n.

Remark 2.2 An immediate implication of Proposition 2.1 is that any re-
current dynamics which occurs in a CFS must be contained in the open sets
of X on which N is constant.

One final comment; observe that for those z € R™ with each z; #0, 1 <
1< n
(—1)”(1) = sign H 6T 1 = H §;=6=A (5)
=1 2=1

so N takes only odd values if A = —1 and only even values if A = 1.



Figure 1: (A = —1 and n = 3) N = 3 on the two orthants Q(1,—1,1)
and Q(—1,1,—1), and N' = 1 elsewhere. Observe that A is not defined
only on 0(Q(1,—1,1)UQ(—1,1,—1)). On these partial hyperplanes the vec-
tor field points from the open sets where ' = 3 to the open set where
N = 1. Finally, on the set where ' = 1 the vector field on the faces X;
indicate the possibility of trajectories passing through the orthant in the fol-
lowing order Q(1,1,1) —» Q(-1,1,1) —» @Q(-1,-1,1) - Q(-1,-1,-1) —
Q(l,-1,-1) - Q(1,1,-1) - Q(1,1,1).

3 Morse Decompositions

Let ¢ : R x R® — R" denote the flow generated by the CFS and let oY)
and w(Y') denote the alpha and omega limit sets of ¥ under ¢. Recall (A3)
that A denotes the global attractor for ¢, and hence, is a compact invariant
set.

Definition 3.1 A Morse decomposition of A is a finite collection of mutually
disjoint compact invariant subsets of A

M(A):={M(p) |p € (P,>)}

indexed by a partially ordered set P such that if z € A\ Upep M(p), then
there exists p > ¢ such that a(z) C M(p) and w(z) C M(q).
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The individual invariant subsets M(p) are called Morse sets, and the
remaining portion, A\ U M(p), is referred to as the set of connecting orbits.

Remark 3.2 Observe that the existence of a partial ordering on the Morse
decomposition implies that the recurrent dynamics of A must lie entirely in
the Morse sets.

The similarities between Remarks 2.2 and 3.2 suggest that A can be used
to define a Morse decomposition for CFS. For example, if A = —1 one could
set

M(p):={z e X | N(e(t,z))=2p+1Vte R}, p=0,1,2,...

This almost works as a definition of a Morse decomposition. The problem is
the origin 0 € R™. Observe that 0 is a fixed point for any CFS and 0 € A.
Therefore, 0 must lie in a Morse set. However, 0 ¢ X, and hence, cannot lie
in any set of the form M(p) as defined above.

Deciding how to include the origin into the Morse decomposition requires
an understanding of the spectral properties of Df(0). These spectral prop-
erties are at the heart of many of the results associated with this Liapunov
function, and in fact for similar Liapunov functions. For a full account the
reader is referred to [5, 7, 9, 17, 18]. For our purposes it is sufficient to state
the following definitions and results.

Let J represent the number of the eigenvalues with positive real part of
the matrix D f(0).

Assume 0 <1 < nn and that J > 0.

ntl  ip oy _

If A=—1and nisodd, then P =< | ?ff]_,n,

1 if j=21,21+1.
if j=2i-1,2i.

fJ=n

if j=2i,2i+1.

2 ifJ=n

) if j=2i-1,2i.

If A=—1and n is even, then P =

ntl i g —
If A =1 and nis odd, then P :{,2 if J=mn
If A=1 and n is odd, then P ={



As a preliminary step in the construction of the Morse sets we make the
following definitions.
If A = —1then M(p) = {z(t): N(z(t)) =2p+1 for all t}.
If A=1then M(p) = {z(t): N(z(t)) = 2p for all t}.

Now, forp=0,..., P — 1 set

and

M(P)={0}u | M(p).

i>P
Proposition 3.3 ([9, Proposition 3.4]) The collection
M(A) = {M(p) |p=0,..., P}

15 a Morse decomposition of the global attractor A with an admissible ordering
p>p—1

4 The Conley Indices

As the reader may have realized by now the existence of Morse decompo-
sitions is equivalent to the existence of a discrete Liapunov function. The
primary reason for insisting on using the framework of Morse decomposi-
tions is that it permits us to use the algebraic machinery associated with the
Conley index [4, 24, 26, 28|.

Recall that the Conley index of an isolated invariant set S is the homotopy
type of a pointed topological space, i.e.

h(S) ~ (A, ao).

For our purposes it is more convenient to use the cohomological Conley index
(which we shall refer to from now on as the Conley index)

CH*(S) := H*(A, ao)

where H* denotes Alexander-Spanier cohomology [21, 29].
Since each Morse set is an isolated invariant set, it has a Conley index.
The following proposition indicates what these indices are.
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Proposition 4.1 The cohomological Conley indices of the Morse sets for
the CFS are as follows.

Z k=2P

0 otherwise

ort(r) - {

If J<n and A =1, then

Za7Z k=0
k _
CHY(M(0)) = {0 otherwise
Z k=2p2p+1
k _ p; p _ _
CH(M(p) = {0 otherwise =1..,P-1
If J <n and A = —1, then
Z k=2p2p+1
k _ 12%94 _ _
cH (M(p))_{O otherwise p=0,.,P—1

If J = n, then the indices of the Morse sets M(p), p # P — 1 are as above.
The remaining indezx is as follows.

If A =1 andn 1s even or if A = —1 and n is odd, then

77 k=n-—1

0 otherwise.

CH*(M(P —1)) = {

IfA=1 andn 1s odd or if A = —1 and n is even, then

Z k=n—-2,n-1

0 otherwsse.

CH¥M(P -1)) = {

Though the details of the proof are rather complicated, the idea is fairly
simple. Let

s 00 -+ #£1
1 s 0 -+ 0
L(s) = 01 s - 0
0 00 E
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and let

Zq
hz)=| :
T,
Observe that
= L(s)z + h(z) (6)

is a CFS where A is determined by the upper right hand entry of L(s). In
analogy with the definition of J as the number of eigenvalues with a positive
real part of Df(0), we denote by J(s) the number of eigenvalues with a
positive real part of L(s). We defined P to be the number of Morse sets
in a Morse 0 for the system ¢ = f(z) as a function of J, n and A. Let
us denote Py := P. Let P(s) be defined in the same way using J(s), n
and A for the system (6). Varying the parameter s allows one to vary J(s)
from 0 to n. Furthermore, the nonlinearity A guarantees the existence of
a global attractor. For (6) it is reasonably straightforward to compute the
index of the Morse sets as a function of s. Now recall that as long as the
isolating neighborhoods are preserved, the Conley index remains unchanged.
Therefore, the strategy is as follows. For the CFS of interest,

T = f($)7
one determines A and chooses L(s) accordingly. Next one computes Py from
the spectrum of Df(0), and then chooses s such that P(s) = P;. Finally,
and this is the most technical part, one creates a homotopy from L(s) +
h(z) to f(z) which does not essentially change the spectral properties of the
linearized operator at the origin and which preserves the existence of a global
attractor.

5 The Range of Dynamics

In this section we will discuss the range of dynamics which CFS can exhibit.
To do this we begin by describing the results for MCFS and then contrasting
these results with those of non—-monotone systems.

Theorem 5.1 (Mallet-Paret and Smith, [18]) Let us consider a MCFS
in R™. Consider any point z and its omega limit set w(z). Then w(z) is one
of the following:
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i) a fized point

it) a limit cycle

1) a set H = EUC where E is set of equilibria and C is the set of
connecting orbits between the equilibria in E.

The main tool used in the proof of this result is the Liapunov function N
defined in Section 2. However, for MCFS, the function A is non—increasing
along the difference y(t) := Z(¢) — z(t) of any two solutions Z(¢) and z(t) and
along y(¢) := z(¢) for any solution z(¢). This can be used to examine the
structure of trajectories in the neighborhood of a periodic orbit.

The discrete Liapunov function can be also used to show transversality of
the intersection of the stable and unstable manifolds of the critical elements
i.e. fixed points and periodic orbits. For the scalar parabolic equation this
was realized by Henry [11] and Angenent [1] using a zero number as a Lia-
punov function. Fusco and Oliva [6] used the function N to show that for
MCFS with A = 1 stable and unstable manifolds of two critical elements
intersect 1 provided at least one of them is a periodic orbit.

These results show that the dynamics of MCFS is 0 simple taking into
account the fact that these are high dimensional dynamical systems. A natu-
ral question arises, whether the dynamics of a general CFS is also as simple.

The answer is negative.

Gedeon [8] has constructed a class of CFS which exhibits a chaotic 0. We
proceed to describe these results.

Let us consider the following MCFS with negative feedback (A = —1)

T = —a1%p — blf(fES)
11'12 = —0Qaa2Z2 + b2.’111 (7)
T3 = —a3T3+ bax,

where f is a monotone C! function satisfying the feedback condition
zf(z) >0 if z # 0.

We also assume without loss of generality that f’(O) = 1. It can be shown,
that if one fixes the 0 a4, as, as, by, b3 then, under some additional conditions,
there is a value b] = bi(a1,aq,as, bz, b3) at which the origin undergoes a
subcritical Hopf bifurcation. Thus for the value of b; such that b, — b} < 0,
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|b; — b3| << 1 the system (7) admits a hyperbolic periodic orbit «. It also
can be shown that, if f € C3, f”(0) = 0 and f”(0) > 0, then v has a
one-dimensional unstable manifold which for us will mean that there is one
Floquet multiplier with absolute value bigger than one.

We shall assume from now that the hyperbolic periodic orbit v with one
dimensional unstable manifold of the system (7) is given. Let [y(¢)]3 denote
the third coordinate of the point ().

Definition 5.2 Given a periodic orbit ~, let M = (M;, M2, M3) € v such
that Ms = maxoc,cr [7(t)]s, where T' is the minimal period of (t), be a
point with maximal value of the third coordinate on 4.

Let us consider the following class of nonlinearities (Figure 2)

g(z) = f(z)ifz € (—o0, M5+ 6]
g(z) < 0,0<g(z)<Lifze(M;+68+mn,00) (8)
g(z) has a unique maximum in y € (M3 + 6, M3+ 6 + 7]

with g(y) < f(y)

Observe, that there are three constants 8,7, L in this definition. We will
assume that 0 < L < f(M3) so that the second line of the definition makes
sense. We will take §,7 > 0.

Note, that every function ¢ from this class coincides with the function f
in the range of v and therefore v is a periodic orbit of the system

Ty = —0qT1 — blg(m3)
dlz = —Q2Z2 + b21111 (9)
11'13 = —AazT3 + b3(112.

We denote by 3 the space of biinfinite sequences of 0s and 1s and by o a

shift map defined by
o(w); = w1
for w € ¥ where w; is the ¢-th entry in w.

Now we follow the following strategy to show the existence of complicated
dynamics in CFS . We show that there is a nonlinearity g of the type (8)
such that the Poincare map II; corresponding to the periodic orbit 7 for the
system (9) admits the intersection of the stable and unstable manifolds. This
is done in the following theorem.
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Figure 2: The graph of the function gs,(z) has to lie in a L-shaped region,
which is shown here for two different values of 6, 7.
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Theorem 5.3 (Gedeon [8]) Assume that the system (7) admits a hyperbolic
pertodic orbit v with one-dimensional unstable manifold. Fiz L such that
0 < L < f(My,) and choose a two dimensional family G : (6,7) — gsn, of
functions of the form (8).

Fiz any one dimensional family F C G parameterized by a continuous

curve of the form (6,7m(68)) in the neighborhood of (0,0) such that
n(6) = 0(8), q> ; as 6 — 0. (10)

There exist § = §(F,G) > 0 and a hyperplane H with the following
properties.

For any § < & the system (9) with gs, € F admits H as a Poincaré
section with a Poincaré map Iy, —and there ezist an invariant set S C H, a
continuous surjective map p : S — X and an integer d such that the following
diagram commutes

Hd
S o S
p p
ag
5 5

i.e. (S, H;l&m) is semi—congjugate to (X, 0).

Observe, that since the condition (10) is open, the set of (8,7) for which
the Theorem holds is open in R% Note, that the result does assert the
existence of a semi—conjugacy and not a conjugacy which means that the
map p is not necessarily one-to-one.

Let us remark, that the system (9) with gs,(z) € F and § < § is the
simplest possible system which may have a chaotic behavior, since the phase
space is 3-dimensional and there is only one nonlinear term on the right-hand
side.

The result was obtained by altering a MCFSinto a CFSby changing the
function f(z) into a function gs,(z). However, the functions f and gs,(z)
are not close in any function space. A natural question is, whether we can
achieve the same result by a small perturbation of the function f. The answer
is positive.
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Figure 3: Function A(z).

Theorem 5.4 (Gedeon [8]) Assume that the system (7) admits a hyperbolic
periodic orbit v with one-dimensional unstable manifold.
For every € there is a function h € C*(R,R) with

1f = hllco <€

and a Poincaré section H with the following properties.

The system (7) with f replaced by h admits H as a Poincaré section with
a Poincaré map m and there exist an invariant set S C H, a continuous
surjective map p : S — X and an integer d such that the following diagram
commutes

X

i.e. (S,7) is semi—conjugate to (X,0).
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This result is interesting because, as we saw in Theorem 5.1, for MCFS a
Poincaré-Bendixon trichotomy holds and by a result of Teres¢dk [30] a C*
perturbation of a MCJFS will preserve the Poincaré-Bendixon properties of
the flow.

In more limited setting the C*-perturbation result is due to M. Hirsch.
Observe that if n is odd and we change ¢ — —t in the flow generated by
(7) then all the feedbacks §; change the sign and so we get a MCFS with
A = 1. Such a flow defines a monotone dynamical system, as was mentioned
in Introduction. For n = 3 such a system cannot exhibit chaotic dynam-
ics; furthermore, this property is stable under C* perturbations of the flow
(Hirsch [13],[14]). Again Theorem 5.4 provides a concrete example of the fact
that this property is not stable under C° perturbation.

As we see the dynamics of a general CFS may be very complicated which
should be contrasted with the simple dynamics of the subclass of MCFS .

6 The Structure of Morse Sets

In the previous section it was remarked that the recurrent dynamics for
MCFS can consist of at most fixed points, periodic orbits, or heteroclinic
cycles. Of course, as we saw in section 5, for the general CFS, the dy-
namics within the Morse sets can be much more complicated, however, it is
reasonable to ask whether, even in these more general systems, one can be
assured that the Morse sets contain fixed points or periodic orbits. Part of
the purpose of this section is to demonstrate that the Conley index can be
used to answer these questions. Thus, we begin with some abstract existence
theorems.

Theorem 6.1 (McCord [22]) Let S be an isolated invariant set and assume

Z ifk=j

0 otherwise.

CH%S)z{
Then, S contains a fized point.

The next theorem provides for the existence of periodic orbits. First,
however, we need the following concept. = is a Poincaré section for an
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isolating neighborhood if = is a local section, i.e. ¢((—¢,¢€),=), an open
subset of R", is 0 to = X (—¢,¢€) for € > 0, ZN N is closed, and for every
z € N there exists t; > 0 such that

o(ty,z) € Z.

Theorem 6.2 (McCord, Mischaikow, and Mrozek [23]) If S is an isolated

invariant set with isolating neighborhood N such that N has a Poincaré€ sec-

tion and ' o
cHt(S) L YE=0T ]
0 otherwise

for some 7, then S contains a periodic orbit.
Returning now to CFS we have the following theorem.

Theorem 6.3 1. If A =1, then M(0) contains at least two fized points.
2. Let J =n. For all CFS! . and CFS,,;, M(P — 1) contains at least

two fized points.

Proof.  We give the proof of (1) and claim that the proof of (2) is similar.
We assume without loss of generality that §; = 1 for all z. Then it is easy to
check that

M(0) Cc Q(1,1,...,)UQ(~1,—1,...,—1) = NH(0).

From the details of the proof of Proposition 4.1 it is easy to check that

CH*(InvQ(+1,...,+1)) ~ {Z if k=0

0 otherwise.

Now one applies Theorem 6.1. O

The next theorem is concerned with the existence of periodic orbits and
as the reader may have guessed will be proven with the aid of Theorem 6.2.
Again, Proposition 4.1 provides us with the appropriate indices, so all that
remains is to find Poincaré sections for the isolating neighborhoods. However,
for CFS the X;s are ideal candidates for Poincaré sections. Recall that on
Xi, z; # 0, and hence, compact subsets of X; are local sections for the flow.
The most general conditions under which X; acts as a Poincaré section is
not known, however, if it does then a periodic orbit z(¢) in M(p) can be
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characterized as follows. For every 1 = 1,...,n there exist times ¢; and ¢!
such that z;(¢;) > 0 and z;(t}) < 0. We shall refer to periodic orbits with this
property as large periodic orbits. If X; is not a Poincaré section for M(p),
then it appears possible that there exist periodic orbits which remain in an
orthant Q(o1,...,0n).

Theorem 6.4 (Gedeon and Mischaikow [9]) If J < n then for CFS™T let
p=1,...,P—1 and forCFS™ letp=0,...,P—1

1. If, for some1=1,...,n, some X; is a Poincaré section of M(p), then
M(p) contains a large periodic orbit.

2. If, in addition, one considers a MCFS and if M(p) contains no fized
points, then the appropriate X; acts as a Poincaré section, and hence,
M(p) contains a large periodic orbit.

While completely general conditions on the existence of Poincaré sections
are not known, the following theorem provides reasonable sufficient condi-
tions.

Theorem 6.5 (Gedeon and Mischaikow [9]) Consider a CFS of the follow-
g form

z; = o;gi(zi) + Bifi(zice), i1=1,...,n

where a;,3; € {+1} and we assume that for every v, z,g:(z;) > 0 and
z;i1fic1(ziz1) > 0. If

n
[[ e = (1"
=1

then for every 1 X; is a Poincaré section.

While these theorems are rather general in nature, they fall short of the
stated goal of this section which was to show that there are dynamic struc-
tures that are shared by the Morse sets for all CFS. Obviously, if there are
fixed points in the Morse sets then these theorems are not applicable. On the
other hand as the following result shows, even when there are fixed points,
and hence, when there need not be periodic orbits, there is a set which topo-
logically is similar (though it may be more complicated) to the large periodic
orbit.
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Theorem 6.6 (Gedeon and Mischaikow [9]) There ezists an essential con-
tinuous surjective map

0, : M(p) — S
where S* is a 1 circle embedded in N'~*(p) C R™.

Observe that large periodic orbits in M(p) can also be characterized as 1

circle embedded in N 7!(p) C R™.

7 The Global Structure

Our goal in this final section is to describe dynamic structures which are
common to all CFS. The first point which needs to be addressed is what is
meant by describe? From the topological point of view conjugacy provides
the most complete description of the dynamics. Recall that a conjugacy
between a flow ¢ : R x Z — Z and a flow ¢y : R XY — Y is given by a
homeomorphism A : Z — Y and a time reparameterization ¢ of ¢ such that

id X h

RxZ RxY

@ Y

h

Z Y

commutes. Observe that if one does not allow for the time reparameterization
of one of the flows, then two periodic orbits which differ only in their period
can not be made conjugate. Clearly, if the flow 7 is completely understood,
then all the topological properties of ¢ are also understood. In this case ¥
can referred to as the model dynamics.

The results of section 5 should convince the reader that this notion of
equivalence is far too strong for our purpose of trying to express a uniform
structure for all the possible CFS. A weak notion, and the first we shall
employ, 1s that of a semi-conjugacy. In particular, ¢ is said to be semi-
conjugate to ¢ if the above diagram commutes where the 0 A is replaced by
a continuous surjection p: Z — Y.
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The model dynamics ¢ for the CFS which we shall use depends on P

and is defined as follows. Let A be a square matrix of the form

Ay 0 ... 0
Ao 0 A,
0 Ap_4

The submatrices A,, p =0,..., P — 1 have two forms:

Ap = 1% (Type I)
and B
4| ir2172 . fq)_l , (Type IT)
Let z = (zp,...,2¢-1) € RF. Then in polar coordinates z = r{ where

r > 0 and ¢ € S*7!, the unit sphere in R*. Let D* = {2 = (20,...,25_1) |
k-1

> 22 < 1} be the closed unit ball in R*. Consider the flow

p=0

¥ : R x DF - DF (11)
generated by the equations

(= A — (A ¢)¢ (12)
r=r(l—-r). (13)

The dynamics of 1 is most easily understood if one observes that (12) is
obtained by projecting the linear system z = Az onto the unit sphere.
The choice of Type I or Type II matrices is determined by the CFS. The

specific choices for the A,’s as a function of the type of CFS are as follows:

CFS yat Ap, p = 0,...P — 1 are of Type II unless n = 2P + 1 when A,,
p=20,...,P—2 are of Type Il and Ap_; 1s of Type L.

CFSty: Aoisof Typeland A,, p=1,... P —1 are of Type IL
CFS., Ap,p=0,...P —1 are of Type IL

.
even*
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CFSI . .. Ao is of Type I and A,, p = 1,...,P — 1 are of Type II unless

n = 2P when A,,p=1,..., P —2 are of the Type Il and Ap 1s of Type
L.

When it is necessary to distinguish between the model flows we shall let ¥
denote the corresponding flow where * denotes even or odd.

Let II(p), p=0,..., P — 1 denote the invariant set of ¢ in the invariant
subspace corresponding to A, and let II(P) := 0, the origin. Observe that
{Ii(p) | p=0,..., P} forms a Morse decomposition of 1 on D*.

Theorem 7.1 Consider CFSE. Assume that if A, is of Type II, then M(p)

has a Poincaré section. Then, there exist a continuous surjective function
p: A— DX
for which M, = p~*(II(p)) (p = 0,..., P) and a continuvous flow g : Rx A —

A obtained via an order preserving time reparameterization of ¢ such that
the following diagram commutes

Rx A_4XP R« DK

& by

A DX

i.e. @ is semi-conjugate to Y.
Immediate corollaries of Theorem 7.1 are as follows.

Corollary 7.2 Consider MCFSE and assume that if A, is of Type II, then
M(p) has no fized points. Then, there ezists a semi—conjugacy from @ to .

Corollary 7.3 Consider a CFS of the following form
z; = a;gi(zi) + Bifi(xica), i1=1,...,n

where a;,B; € {+1} and we assume that for every i, z,g:(z;) > 0 and
zi1fic1(ziz1) > 0. If

H ai/B'i = (_1)n+17
=1
then there exists a semi-conjugacy from & to PZ.
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These results all depend upon the appropriate Morse sets not containing
fixed points. In the last section, we dealt with this problem, by showing
that these Morse sets could always be mapped onto a circle in a non-trivial
manner. We will employ the same idea here, but on the level of Morse
decompositions.

Recall that given a Morse decomposition M(A) = {M(p) | p € (P,>)}
an interval I C P satisfies the property that if p,g € I and p > r > ¢, then
r € I. The importance of intervals is that given a Morse decomposition all
coarser Morse decompositions involve isolated invariant set of the form

M(I) = (U M(p)) U ( U C(p,q))

pel p,g€l
where [ is an interval and
C(p,q) :={z € A w(z) C M(q) and o(z) C M(p)}
is the set of connecting orbits from M(p) to M(q).
Definition 7.4 A Morse decomposition M(A) = {M(p) | p € (P,>)} is
topologically semi-equivalent to M(B) = {M(q) | ¢ € (Q,>)} if there exists

1. an order preserving bijection p : P — Q, and

2. a continuous surjection p : A — B such that

M(I) = p~(M(p(1)))
for every interval I C P.

Theorem 7.5 Given CFSE. The Morse decomposition M(A) is topologi-
cally semi-equivalent to M(D¥ F).

Observe that in this description the dynamics is almost completely ig-
nored. In particular, we lose all information concerning individual orbits.
On the other hand, what is preserved is the purely topological structure of
the invariant sets. Observe, that unstable manifolds get mapped to unstable
manifolds and the same for stable manifolds. As an example of the informa-
tion this description provides, let us assume that A = —1,n >4 and P > 2.
Then the set M(0,1) := M(0) UM(1)UC(M(1),M(0)) is a pre-image of an
essential map onto II(0,1) := II(0) U II(1) U C(II(1),II(0)). One can easily
check that I1(0, 1) is homeomorphic to S* a 3-dimensional sphere.
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