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ABSTRACT

Many processes in the modern paper mill can be
operated at higher consistencies than hitherto
possible due to recent advances in the understand-
ing of concentrated fiber suspension rheology
(stress vs. rate of deformation behavior). The
paper forming process is a conspicuous exception to
this general trend toward higher consistencies.
Here the fundamental issue is not fiber suspension
rheology but rather the microrheology (fiber orien-
tation distribution) of concentrated fiber suspen-
sions during high speed flows. To investigate
higher consistency forming from a more fundamental
perspective, several techniques are considered for
assessing fiber orientation in the bulk of such
systems. It is shown that high resolution flash x-
ray techniques can be employed to image 25 pm
tracer fibers in concentrated suspensions flowing
at velocities on the order of 10 m/s. Plans to
employ this technique to investigate fiber
orientation in several well controlled flows are
discussed.

INTRODUCTION

Tremendous progress has been made in the area of
medium consistency (MC) processing during the last
two decades. One method by which to emphasize this
and simultaneously identify those areas where effort
is still required is to compare the "typical" mill
operation of twenty five years ago with that of a
modern installation employing MC processes. The
state-of-the-art circa 1961 can be assessed from
several texts which appeared at approximately that
time (1,2,3). Figure 1 shows the range of typical
water distributions (kg water/kg fiber) for various
mill processes at that time.

Pulp leaving the blow tank at approximately
10% consistency was diluted prior to bleaching.
Common bleaching stages at the time included
chlorine, alkali extraction, chlorine dioxide,
peroxide and hypochlorite. Typical operating
consistencies are listed in Table 1.

Table 1 Typical 1961 bleaching conditions

Bleaching
Stage % Consistency

Cl 3-4
E 10-18
D 10-15
P 5-20
H 10-15

From Blow Tank l I

Washers I

Bleaching
C . -1

E
D I

P I_

H

Screening
Cleaning 1-I

Refiner I-

Jordan I--
Machine

Headbox I

10 ° 101 102 103

kg Water/ kg Fiber
Fig. 1 Water distribution in typical processes

circa 1961.

Rotary vacuum filter systems were employed for
pulp washing. Consistencies varied widely during
these operations with vat and final sheet con-
sistencies ranging between 1.0-1.3% and 14-16%,
respectively. Dilution factors ranged from 3.0-6.0
depending on performance.

Screening and cleaning were carried out at
extremely high dilutions. Rotary devices employed
for fine screening operated in the 0.1-0.6% con-
sistency range, while centrifugal cleaners perform-
ed best in the 0.5-0.75% range. While discussing
high consistency and pressure screens in 1962,
Schaffrath (4) mentioned that "The economies of
screening and pulp thickening have stimulated
considerable research work in the field of high
consistency screens. Consistencies in the range of
1.5%, as opposed to 0.1 to 0.6% found in conven-
tional screening systems...." Pressure screens
were just beginning to make "high consistency"
screening technically feasible at that time.

As is true today, refining operations were
among the higher consistency process steps in 1961.
Disk refiners operated at 5.0-6.0% while jordans
typically performed in the 2.0-4.0% range.

The 1961 Fourdrinier machine operated at much
lower speeds than today but was not significantly
different in terms of operating consistencies.
Headboxes received stock at 0.1-1.0% consistency,
depending on grade. Paper webs reached press sec-
tions and dryers at approximately 20 and 40%,
repectively.

MEDIUM CONSISTENCY DEVELOPMENTS

Pulp Storage and Transport

Trends in continuous pulping plus the ever-increas-
ing importance of mechanically processed recycled
fiber have increased the range of consistencies at
which fiber lines may begin. Any potential advan-
tages from less process water at this point would
be lost without developments in MC storage, dis-
charging and pumping. Gullichsen and coworkers
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(5,6) discussed the principles involved in these MC
processes and described commercial operations in
the 10-14% consistency range in 1981.

"Fluidization" of Concentrated Suspensions

The basic operating principles for several MC pro-
cesses can be traced to the fundamental concept of
concentrated suspension "fluidization" developed by
Gullichsen (7) and illustrated in Fig. 2. When at
rest or when subjected to slow deformation, con-
centrated fiber suspensions exist as coherent net-
works which exhibit considerable strength. At
sufficiently high shear rates the network can be
disrupted and the entire suspension becomes tur-
bulent. The theological (stress vs. rate of
deformation) properties of such a turbulent suspen-
sion become very similar to those of pure water and
allow for confident design of higher consistency
devices.

* Complete turbulence

Fig. 2Con tFrom Gullichsen and Harkonen,(1981)

SHEAR RATE-4

Fig. 2 Concentrated fiber suspension
"fluidization" (7).

This behavior closely parallels two other phe-
nomena known to exist in turbulent flows. Poly-
meric drag reducing agents increase zero shear rate
viscosity slightly but significantly lower effec-
tive solution viscosity in the turbulent regime.
The second parallel is the effect of fluid viscos-
ity in turbulent flow of homogeneous fluids. Shear
rates required to produce turbulence increase with
viscosity. However, once this regime has been
reached the turbulent structure is essentially
independent of viscosity.

Bleach Plant Operations

Several developments have worked synergistically toSeveral developments have worked synergistically to

make the operation of all bleaching processes in
the medium consistency range possible. Among these
are displacement bleaching, oxygen bleaching, and
medium consistency chlorination.

The first laboratory investigations of dis-
placement bleaching were those of Rapson and
Andersson (8) in 1966. Pilot scale feasibility was
shown by Gullichsen (9) in 1973. At that time,
wide commercial use was limited mainly by process
equipment materials requirements. In 1979
Gullichsen (10) summarized the history of displace-
ment bleaching to that point, including the first
commercial installation in 1975.

The first few displacement bleaching installa-
tions involved conventional chlorination steps. By
1979 the "fluidization" concept had been applied to
the problem of mixing chemicals (both gaseous and
liquid) with MC pulps. This allowed the chlorina-
tion step to be accomplished at higher consisten-
cies than before. Gullichsen (10) documents the
first commercial MC chlorination-displacement
bleaching operation. Displacement bleaching
installations since 1979 have generally incor-
porated MC chlorination, since it allows the entire
bleaching operation to occur within one tower at
10-12% consistency.

Environmental and safety concerns have led to
the development and broad use of oxygen bleaching.
This technology has been applied in two forms. One
is as an extended delignification step prior to
final bleaching, while the other is as an aid to
the caustic extraction stage. Oxygen bleaching
often replaces (traditionally low consistency)
chlorination. McDonough (11) points out that
oxygen delignification can now be carried out at
low, medium or high consistencies. Higher
consistencies employ smaller reactors, while
greater dilution allows the oxygen to totally
dissolve. Most systems now operate in the 25-30%
range.

Pulp Washing

Medium consistencies have been used in the washing
area for some time. Pressure diffusers and belt
washers use the same principles of operation as
displacement bleaching. Liquid is displaced in
cross-current fashion through a thick moving fiber
mat. Consistencies remain in the 8-14% range
throughout the washing process.

Screening and Cleaning

Screening inlet consistencies have increased stead-
ily from the late 1960's and appear poised to
increase very significantly in the near future. In
1968, Racine (12) described a "high consistency"
pressurized screening installation operating in the
1.0% range. Henshaw (13) described a liner stock
screening system operating at 3.5% in 1975. Rela-
tively fine screens were operated at 2.0%, while
coarser ones could perform up to 5.0%. A 4.0%
waste paper screening and cleaning operation was
described in 1982 (14).

Recently, several screening devices have
appeared which employ the "fluidization" concept of
Gullichsen. By employing very high local shear
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rates the medium consistency stock is made more
fluidlike and processible. In 1984 Wedin (15)
described a new screen which uses high shear to
fluidize, and centrifugal force in the place of
foils to clean a stationary screen. This system
operated at 3.0% consistency.

Most recently, Gullichsen (16) has documented
mill trials of a medium consistency screen operat-
ing in the 8-15% range. It also employs his basic
fluidization concept.

Lindsay (17) points out that pressure screens
designed for operation in the 2.0-5.0% range are
becoming common. Systems are available which are
based on both inward and outward stock flows.
While such consistencies are becoming common, much
lower consistencies are still the rule in such
applications as tissue and fine papers.

Cleaning is still done at relatively low con-
sistencies with some hydrocyclone systems now being
designed for operation in the 1.0-2.0% range (18).

Refining

West (19) made the first systematic comparison be-
tween pulps refined at conventional (3.5%) and high
(30%) consistency in 1964. He reported that HCR
preserved fiber length and improved tear proper-
ties. Page (20) observed that fibers refined at
high consistency appear to have undergone axial
compression. Leach (21) subsequently compared the
properties of pulps and handsheets from a variety
of furnishes refined at 4.0, 20, and 30% con-
sistency. All pulps responded well to HCR. By the
1970's several patents were issued for HCR plates
and devices. Atack (22) studied double disk
refining of various wood chips and observed that
the optimum operating consistency range was 30-35%.
Haas (23) described the operation of a Swedish HCR
operation for production of high tear and stretch
sack kraft paper in 1970. In this case refiners
operated at 32%.

Clearly, refining at higher consistencies has
become a well established practice for both wood
chip and pulp refining. The exact effects and
potential applications of HCR are still being
investigated. For example, Nakada (24) has inves-
tigated the use of various combinations of conven-
tional and HCR. Duchesne (25) discusses the use of
HCR for reject handling.

Medium Consistency Forming

There have been three major activities in this area
with the most significant being the FORMFLOW pro-
cess developed at STFI and subsequently acquired by
Ahlstrom Oy. Several papers describe the process
(26-30) which was first tested in 1970 by Reiner.
Figure 3 shows the general design of this medium
consistency headbox. Intense turbulence generated
in the explosion chamber serves to disrupt the
local floc structure. A more uniform dispersion is
produced in the forming and decay sections. In
essence, the technique extrudes a single continuous
floc.

Figure 4 shows one of the demonstrated advan-
tages of higher consistency forming. Pilot studies

at STFI showed improved formation in sheets formed
at 3.4% as compared to 0.5% consistency. However,
the problem encountered in all attempts to form at
high consistency was also documented at this time.
Table 2 from the same paper compares the physical
properties of conventional and medium consistency
sheets made at STFI. Out-of-plane strength is
improved during medium consistency forming but only
at the price of significant losses in in-plane
physical properties. This phenomenon is the main
reason for the lack of widespread use of this
process. The same behavior has been documented
during commercial use and is shown in Table 3.

SUPPORT

--EXPLOSION CHAMBER

Fig. 3 FORMFLOW medium consistency headbox.
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Fig. 4 Formation in MC vs. conventional sheets
(27).

The second major contribution to this area was
due to Judd and Kranz (31,32). They argued that
the increased z-direction orientation present in
medium consistency sheets must increase sheet per-
meability and thus improve moisture transport
during pressing and drying. In their final headbox
design a small amount of very high velocity water
is introduced to promote floc disruption and
improve formation. They found that sheet per-
meability does indeed increase at higher con-
sistency. However, Table 4 again shows the loss of
in-plane physical properties.

The final major activity is currently underway
in Japan. A five year program was begun in 1982 to
produce quality printing and writing grade papers
from 3.0% stock. Significant effort has gone into
the study of floc stability and devices for floc
disruption (33). Medium consistency sheets have
been produced on a laboratory former (34). Work is
now proceeding to build a pilot machine. A chemi-
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cal dispersing agent was required to give improved
formation.

Table 2 Properties of pilot-machine conventional
and MC corrugating medium (26)

Property Conventional MC

Basis weight (g/m2) 152 151

Tensile index (kNm/kg)
MD 60 33
CD 30 26
MD x CD 43 29

Scott internal bond
(J/m2) 200 420

Table 3 Properties of production machine conven-
tional and MC fine paper (26)

Property Conventional MC

Basis weight (g/m2) 122 146

Tensile index (kNm/kg) 37 22

Table 4 Physical properties of conventional (0.5%)
and MC (2.5%) sheets (32)

Property Conventional MC

Yield strengths (kPa)

MD 216 85.4
CD 216 43.4
Z 291 204

It is too early to make direct comparisons be-
tween medium- and low-consistency sheets produced
by this method. However, it is confirmed (35) that
the basic problem observed is felted sheet struc-
ture. At this time it does appear that the same
in-plane physical properties reduction will be
observed in this approach.

Several other less widely known works in the
area should be mentioned. In 1978 a USSR patent
(36) was issued for a medium consistency (3-5%)
former. Vibrating rods and plates within the head-
box serve to disrupt fiber flocs. Rogut (37) has
described the application of medium consistency
technology to corrugating medium.

Summary of MC Technology

Figure 5 depicts the current state-of-the-art
regarding water distribution in a modern MC opera-
tion. While the information is to some degree
qualitative and certainly subject to some debate,

one conclusion is inescapable. Every operation
involved in the manufacture of paper products has
made significant progress in reducing associated
water volume except the paper forming process
itself. While developments in the area of micro-
turbulent headboxes have allowed some small
increases in consistency without loss of formation,
typical operating consistencies for machine head-
boxes (especially for high quality papers and
tissue) are still in the 0.1-1.0% range.

From Blow Tank
or Storage

Washers
Bleaching

C
0
E

D
P
H

Screening
Cleaning
Refining

Machine
Headbox

100 101 102 10 3

kg Water/kg Fiber

Fig. 5 Water distribution in modern MC processes.

Considering the work now being done by others
to solve the remaining problems in MC processes up
through screening and cleaning, our efforts are
focused on the major missing link in the total MC
chain - Medium Consistency Forming.

THE FUNDAMENTAL PROBLEM IN MC FORMING

Physical testing of sheets formed at medium con-
sistency clearly indicates an increased z-direction
component in fiber orientation. At medium con-
sistencies this fiber orientation distribution is
largely fixed within the headbox. A very simpli-
stic model for what must occur during the forming
process at any consistency is shown in Fig. 6. In
step 1, fiber flocs which exist at any commercially
viable consistency must be disrupted to form a
deflocced three dimensional suspension (fluidized).
To achieve good in-plane physical properties this
three dimensional structure must be reduced to a
two dimensional system in which the fibers lie
essentially in the plane of the sheet (step 2).
Microscale turbulence is used to disrupt flocs in
conventional operation. At these low concentra-
tions, fibers are allowed to form a two dimensional
mat during the drainage process. Thus a sheet with
good in-plane physical properties is produced,
since the fibers are largely coplanar.

This same simple figure allows the cataloging
of previous attempts at MC forming and clear defi-
nition of the underlying fundamental issues. Step
1 (floc disruption) has been accomplished to date
by one of two means. Intense local turbulence is
employed in both the FORMFLOW and Judd devices.
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Again, these are basically applying the "fluidiza-
tion" concept of Gullichsen as shown in Fig. 2.
The Japanese effort appears to require both intense
turbulence and chemical dispersing agents to
achieve good formation.

Deflocced Ordered
Fiber Flocs Random Fiber Fibers

Suspension (2-D)
(3-D)

I I
STEP 1

I

t
Increasing
Consistency

Paper

STEP 2

HIGH / LOW' HIGH / HIGH

Filled Polymer Processe MC Proceses

Mean Field Theories No Current Theories

Real Time X-ray (?) Flash X-ray

LOW / LOW LOW / HIGH

Handsheets Conventional Papermaking

NoninterectingoParticle Theories No Current Theories

Photography Pulsed Lasers ()

Increasing Speed

'Consistency / Speed

STEP 3

Fig. 6 Conceptual model of forming process.

None of the attempts thus far have achieved
step 2 (coplanar fiber arrangement) at medium con-
sistency. Resulting sheets are always three dimen-
sional in nature. The fundamental problem to be

overcome if medium consistency forming is to become
widely accepted is the lack of control of fiber

orientation distribution during the forming pro-
cess. The problem is not the rheological (stress
vs. rate of deformation) behavior of concentrated
fiber suspensions (Fig. 2) but rather the micro-
rheology (fiber orientation distribution) of these
systems during high speed flows.

FIBER SUSPENSION MICRORHEOLOGY

Fiber suspension microrheology has been thoroughly
investigated by Mason and coworkers (38-45) for the
case of very dilute suspensions in slow flows. Here
photographic techniques are quite adequate for flow

visualization. The current area of interest is
diametrically opposed to this as shown in Fig. 7.
MC forming requires knowledge of suspension micro-

rheology in the high concentration - high Reynolds
number regime, where neither theories nor experi-
mental techniques now exist.

The basic problem in studying concentrated

fiber suspension microrheology during high speed
flows is an obvious experimental one. Photographic

techniques cannot be applied, since the suspension

is opaque. A first objective of our work in MC

forming has been the development of some technique

to measure fiber orientation in the bulk of a con-

centrated fiber suspension during high speed (10

m/s) flow. Several techniques were considered and
compared against the most important performance

criteria. This comparison is shown in Table 5.

Range of operating consistency must be the top
criterion. Type of data acquired is also impor-
tant. Several techniques give average orientation

data. It was felt that, if at all possible, one
should directly image fibers in the bulk and build
up orientation distribution statistics. If fiber
bending is important, direct imaging becomes a
necessity.

Fig. 7 Regimes of fiber suspension microrheology.

Assuming actual fiber images are desired,
speed of the experimental technique becomes cru-
cial. Our imaging objective was to clearly
visualize a 25 pm fiber traversing the field of
view at 10 m/s. This requires exposure times on the
order of 100 ns or less. If dynamic data are
required, framing rates of 10 3 fps are necessary.

Table 5. Criteria for selection of imaging technique

% Exposure Framing Type of Sus-
Consistency Time (s) Rate (fps) Data pension

Light
scattering <1 C C A P

Pulsed
laser <<1 10

- 8
106 D P

Dielectric
properties >1 C C A T

Birefringence >>1 C C A M

X-ray 1-100% 10-8 0-10
4

D T

Ideal 0.1-100% 10
- 7

103 D P

C = continuous measurement
A = average orientation data
D = orientation distribution data
P = paper fiber suspension
T = tracer fibers in pulp suspension
M = model fibers in suspension

Finally, the fiber system to be studied must
be considered. At low concentration, photographic
techniques can be applied to actual paper fiber
suspensions. Some techniques may work with model
systems in which all paper fibers are replaced with
model fibers which give some measure of orien-
tation. Intermediate between these extremes are
possible tracer techniques. An imaging technique
in which paper fibers and water appear transparent
could be applied if a suitable tracer can be found.
Here "suitable" implies that the tracer can be
imaged by the technique of choice but is equivalent
to the paper fibers in all other important aspects.

No perfect imaging systems seems to exist. It
appears that some high speed x-ray system employing
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appropriate tracer fibers offers the best chance
for success.

FLASH X-RAY RADIOGRAPHY

A number of x-ray cineradiography, flash radiog-
raphy and flash cineradiography systems can be
found in the literature (46-49). Several of the
more important devices are listed in Table 6.
Depth of penetration and resolution are always
among the key questions here. As energy increases,
penetration increases but resolution deteriorates
due to scattering as shown in Fig. 8. Resolution
is primarily a function of x-ray spot size and
geometry as shown in Fig. 9. Note that speed
(exposure time) is not a factor with any of the
flash systems as pulse durations are typically
30 ns. Resolution of several of these devices has
been tested using fine tungsten filaments. The LLL
machine can clearly image 12 um filaments and prob-
ably even finer with further work. 25 nm filaments
were clearly seen with the H-P system, while the
LANL(SP) device could resolve 100 pm wires.

Table 6. X-ray imaging systems

Exposure Framing X-ray Spot Energy Resolution
8

Builder Time (s) Rate (fps) Size (mm) (KEV) (microns)

LANL (sp) 10-
4

104 3.0 150 100

Realtime 10-2 102 <1.0 100 25

LLL 3 x 10
- 8

0 0.02 150 5

H-P 3 x 10-8 10 2.0 300 25

Impuls-
physics 10

- 7
103 1.0 150 50

aAnticipated resolution in some cases.

verging duct flow channel was used in the imaging
zone and is shown in Fig. 11. The entire setup is
shown in Fig. 12.

X/____\__ -rOBJECT

\SPOT/ H

|I'- S - r

FILM

RESOLUTION = H(L-S) / L

Fig. 9 X-ray system resolution.

VISUALIZATION
REGION

Fig. 10 Portable flow hoop.

100 P1AG MONU - C

10 \ o g

oJr

.01 0.1 1.

ENERGY

li

Fig. 8 X-ray scattering and absorption.

A simple flow loop was constructed to assess
the ability of the H-P system to visualize 25 im
tungsten filaments within a concentrated suspension
flowing at 10 m/s. The portable flow loop shown in
Fig. 10 was shipped to the H-P laboratories at
McMinnville, Oregon for testing. As the device had
to be portable, large MC pumps were not feasible.
A 2% suspension of hardwood fibers which could be
easily pumped was used for these tests. This is
appropriate, since our sole objective was to test
the system's imaging capability. A simple con-

Fig. 11 Converging duct section.

Results of these preliminary tests were quite
encouraging. Both 50 and 25 pm diameter tungsten
wire were clearly imaged in the flow chamber at
exit velocities on the order of 10 m/s. Sample
radiographs are shown in Fig. 13-14.
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Fig. 14 25 nm Tungsten filaments.

Table 7 Issues regarding x-ray/tracer fiber
approach

X-ray system

Exposure time
Resolution
Penetration
Speed

Fig. 12 Experimental setup.

CURRENT STATUS AND FUTURE WORK

High resolution flash radiography has been demon-
strated to be a potentially powerful technique for
the investigation of high speed multiphase flows in
general and concentrated fiber suspension flows in
particular. Work is just beginning and there are
many questions to be resolved before the technique
is proven. Some of these are listed in Table 7.

Tracer fibers

X-ray cross section
Hydrodynamic equivalence (size)
Mechanical equivalence
Surface character
Density

Exposure time is of no concern with the flash
devices. Resolution will always be a top priority,
although results thus far are very encouraging.
Resolution and depth of penetration always trade
off to some degree. High framing rates with high
resolution seem unlikely (though not impossible) at
this time.

Development of a truly appropriate tracer
system will be the key to ultimate success of this
approach. All tests to date have been with
tungsten filaments to enhance and prove imaging
capability. Any tracer must be of higher x-ray
cross-section relative to the pulp suspension.
Tracer fibers must be of the same dimensions as the
bulk fibers. Of the parameters to consider, mecha-
nical equivalence (stiffness) may be the most dif-
ficult to achieve. But there are several possible
solutions. Surface character of the tracer and
bulk fibers must be comparable. The material being
imaged in the tracer fibers will always be of
greater density than the bulk fibers. This is not
of tremendous concern, since the technique will
only be applied to concentrated systems where
fiber-fiber interactions dominate.

A key point to realize is that these do not
form a set of mutually exclusive requirements. For
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example, very high resolution would solve all
problems. If 5 pm tungsten wires can be imaged
they can be coated to appear as 50 pm paper fibers.
While the inner tracer material could be imaged,
its presence would have virtually no effect on
overall fiber or suspension behavior.

Work to be done in the near future involves
more detailed testing of the x-ray techniques to
better quantify their capabilities in the crucial
areas of resolution and depth of field. More
realistic tracer systems will be tested. The tech-
nique will then be used to investigate the fiber
orientation distributions of concentrated suspen-
sions during certain well controlled high speed
flows. This type of information will greatly
improve our ability to design and operate MC
forming devices.
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