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SUMMARY

In this thesis, a fully generative algorithm is developed for the reconstruction of dense

three-dimensional shapes from scene images under varying viewpoints and levels of focus.

Current state-of-the-art multiview methods are founded on a pinhole camera model that

assumes perfectly focused images and thus fail when given defocused image data. The

method developed herein overcomes this by instead assuming a thin lens which is able to

accurately model defocus blur in images. While easily stated, this requires a significant

mathematical reformulation from the bottom up as the simple perspective projection as-

sumed by the pinhole model and utilized by current methods no longer applies under the

more general thin lens model. New expressions for the forward modeling of image forma-

tion as well as model inversion are developed. For the former, image irradiance is related

to scene radiance using energy conservation, and the resulting integral expression has a

closed-form solution for in-focus points that is shown to be more general and accurate than

the one used in current methods. For the latter, the sensitivities of image irradiance to per-

turbations in both the scene radiance and geometry are analyzed, and the necessary gradi-

ent descent evolution equations are extracted from these sensitivities. A variational surface

evolution algorithm is then formed where image estimates generated by the thin lens for-

ward model are compared to the actual measured images, and the resulting pixel-wise error

is then fed into the evolution equations to update the surface shape and scene radiance esti-

mates. This algorithm is experimentally validated for the case of piecewise-constant scene

radiance on both computer-generated and real images, and it is seen that this new method

is able to accurately reconstruct sharp object features from even severely defocused images

and has an increased robustness to noise compared to pinhole-based methods.

xiv



CHAPTER 1

INTRODUCTION AND BACKGROUND

The problem of acquiring knowledge about the spatial geometry of objects of interest from

direct scene measurements, such as two-dimensional (2D) images, has been a central pillar

in computer vision research for decades; the field of 3D reconstruction deals with devel-

oping algorithms to solve this problem. Applications for 3D reconstruction are varied and

many. In medicine, it can be used as an aid for diagnosis or to construct patient-specific

molds, while in robotics it can be used to help a machine understand its surroundings. It

can also be used to generate digital models when CAD software is unavailable or as an

initial starting point for CAD designers to then modify to desired specifications. In artifact

preservation, 3D reconstruction can be used as a non-destructive method to create a model

of an fragile or valuable artifact; this model can be 3D printed or otherwise manufactured

and displayed in place of the actual artifact. Of particular importance in recent years is the

application to virtual and augmented reality, where realistic computer models of objects

and environments is needed.

Since the scene measurements used in 3D reconstruction are often optical images, re-

construction methods need to specify an assumed model of image formation. The model

used in most methods (with the exception of shape-from-defocus, described below) is the

pinhole camera model, where the camera lens is modeled as an infinitesimally small hole.

This allows a point in space to be mapped to its corresponding image point via a projec-

tion operator which can be easily represented using linear algebra. Additionally, any point

in space visible from the pinhole projects to a unique point in the image. Physically, this

means even though light may be emitted from a point in multiple directions, only one ray in

one direction will actually pass through the pinhole and reach the image plane. This prop-

erty of the pinhole model implies that the entirety of any image formed with this model is
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perfectly in-focus. In practice, however, many lenses are only well-focused within a small

depth-of-field, and algorithms based on the pinhole model lose accuracy and applicability

in such situations. For instance, if some images exhibit image blur in textured regions due

to defocus, these algorithms will treat this blur as a property of the scene, causing these

reconstructed regions to be smoother and have less texture than they do in reality. There

are also applications, such as endoscopy, where it is not practical to assume either the cam-

era can be held in a steady position long enough or the scene is static enough to acquire

focused images. A more general image formation model that takes refraction and limited-

focus into account, such as the thin lens model, treats blur naturally as a property of the

imaging geometry, not the scene. Thus, a reconstruction method that uses a thin lens model

should work well for images exhibiting defocus blur.

Such a method helps to unify the many approaches taken to 3D reconstruction over the

years. These approaches can be categorized by the imaging parameter that varies between

each image, known as the cue. Cues can be any number of things, but the three most often

used are camera viewpoint, scene illumination, and focus depth. For instance, in multiview

reconstruction (also known as stereo reconstruction) the images are captured from cameras

placed at different positions but with identical intrinsic settings, while in photometric stereo

(also known as shape-from-shading in the single image case) and shape-from-defocus it

is the lighting conditions and focus settings of the camera that change for each image,

respectively, while the camera stays in a fixed position.

Despite this artificial segmentation of 3D reconstruction into one-cue methods, there is

no reason that reconstruction cannot be done while considering multiple cues. This work

aims to address the problem of reconstructing dense objects from scene measurements

under varying viewpoints and levels of focus by developing a new class of variational algo-

rithms utilizing the thin lens optical model. This is done by retaining the general method-

ology of existing surface inversion methods for multiview reconstruction but replacing the

currently used pinhole model with the thin lens model, a change that is not trivial and re-
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quires substantial mathematical reformulation. The jump in model complexity allows for

better reconstruction when the available images are not well-focused. It also provides a

unified framework where different image cues (e.g. viewpoint or focus) are treated equally,

and the one-cue “shape-from-X” problems fall out as special cases.

1.1 Literature Survey

An overview of the primary frameworks for and approaches to 3D reconstruction taken

over the last 50 years is presented below, with an emphasis on multiview reconstruction as

this is the most aligned with the work presented here. Each general approach is explained

and key algorithmic advances noted. Additional information regarding the general classes

of methods, different surface representations used, and specific state-of-the-art algorithms

can be found in [1, 2, 3, 4].

1.1.1 Shape-from-motion and multiview reconstruction

The earliest proposed techniques for 3D reconstruction dealt with shape-from-motion, start-

ing with the methods proposed by Adiv [5] and Faugeras [6]. Shape-from-motion works

by tracking the motion of brightness patches through a succession of images [7, 8, 9, 10,

11, 12, 13, 14, 15, 16]. Such motion can either be caused by actual movement in the scene

or by the movement of the camera, the latter of the which leads to the case of multiview

reconstruction. One of the earliest and more popular of these methods, still taught to this

day, utilizes the simple epipolar geometry provided by the pinhole camera model as well

as assumptions of Lambertian reflectance [17, 18]. It uses a basic triangulation strategy

by finding sets of corresponding points in the input images and then backtracing along the

rays until the point of intersection is found. This results in a final object representation of a

point cloud or cluster of spatial points where some additional processing needs to be carried

out to interpolate between the points to form a final connected surface. In the ideal case,

this intersection exists and is unique; however due to numerics and image noise the rays in
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practice may not even intersect. Methods that rely on epipolar geometry like this typically

differ most in how they find corresponding image points [19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33]. The quality of this point-matching is the main factor in the accu-

racy of these methods. Thus they work best for well-focused scenes and objects with high

levels of texture where the point-matching is the least ambiguous. When the images have

many homogeneous or repetitive regions, the point-matching problem becomes ill-posed.

Probabilistic methods can be employed in these cases instead of the usual feature-detection

techniques; for instance, Markov Chain Monte Carlo methods are used in [34, 35, 36, 37]

to find the optimal set of point correspondences.

Epipolar matching can be taken even further by allowing for iterative refinement of

the reconstructed points. The collection of “bundle adjustment” methods uses the set of

matched image points to simultaneously reconstruct the 3D coordinates of the correspond-

ing scene points as well as the camera calibration parameters; this is done through an gra-

dient descent process aiming to minimize the reprojection error [38]. Among other things,

this helps to counter poor or unknown camera calibrations as well as noise. Even with this

however, algorithms depending on epipolar matching ignore much of the available image

information since the number of matched points is typically a small fraction of the total

number of pixels in each image.

Some methods avoid epipolar matching altogether and instead directly use the image

data in an attempt to represent the imaged environment in a hierarchical fashion. The

conceptually simplest of these methods represents the scene as a set of parallel planes

at different depths and decomposes the images into “layers” of pixels, each layer on a

different depth plane [39], essentially forming a depth map for each image. Another set of

methods take a “plane+parallax” approach by warping and compensating for a reference

plane. The residual planar parallax, or the deviations from this reference frame, can be

used to compute depth values for image points not on the plane [40, 41]. This is taken

further in [42] where a parametric surface (not necessarily planar) is used as the reference.
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It was shown in [43] that parallax representations are helpful in calibrating cameras and in

[44] that simultaneous camera calibration and 3D reconstruction can be done using parallax

approaches. These parallax representations allow for large image mosaics and panoramas

to be computed as the reference plane allows easy image alignment and texture-mapping.

Such scene representations are also useful in the field of image-based rendering.

While the methods discussed so far use image data to construct a representation of the

scene, methods based on voxel coloring and space carving can be thought of as going in

the opposite direction. The scene is first represented by a volume of voxels which are then

traversed one at a time, coloring and/or carving away the voxels as to stay photoconsistent

with the input images. In this context, photoconsistent means both that the shape repre-

sented by the voxels produces images close to the input images and that each individual

voxel results in a similar pixel value for all cameras to which it is visible. The end result is

a volumetric collection of voxels that contains all possible photoconsistent shapes, called

the “photo hull” [45]. Voxel coloring is primarily concerned with the coloring of voxels

while space carving simultaneously carves and colors.

If prior information is known about the objects being reconstructed, this can be incorpo-

rated into the reconstruction algorithm to provide a higher level of accuracy and robustness.

Examples of this can be seen in areas such as architecture modeling [46] and 3D medical

imaging [47], where the class of objects considered share common basic shapes or charac-

teristics.

Variational stereo

The problem of multiview reconstruction has also been viewed under a variational frame-

work. Instead of waiting to reconstruct the 3D scene geometry until after sufficient image

analysis has occurred (as in the epipolar matching mathods), these variational methods start

with an initial set of piecewise smooth surfaces that are iteratively deformed. The defor-

mation is governed by a gradient descent process aiming to minimize an energy functional
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representing some error measure between the surface estimates and the given data. This is

similar in concept to space carving, except for one key difference. In space carving, once

a voxel has been eliminated from the surface model, it is never reconsidered; in these vari-

ational methods, however, the surface is allowed to evolve in whatever direction yields the

lowest energy, meaning a voxel eliminated in one iteration could be added back to the sur-

face in some subsequent iteration. This energy minimization is done by writing the gradient

flow as the solution to a geometric partial differential equation (PDE), where an artificial

time parameter represents iteration time. Such PDEs can be implemented easily using the

level set numerical methods developed by Osher and Sethian in [48, 49], where the surface

is embedded as the zero level set of a higher-dimensional function. These level set methods

handle topological changes in the evolving manifold without any special intervention from

the user, and commonly used geometric quantities such as unit normals and curvature are

easily computable.

The first variational methods were proposed by Faugeras and Kerivan in [50] and further

elaborated upon in [51]. In the Lambertian and noiseless case, images of the same 3D scene

point taken from different cameras in different positions should exhibit the same image

value at the corresponding image points (which can be found via a perspective projection

of the scene point onto the camera planes); this is simply an extreme version of photometric

consistency. Thus, an intuitive error measure for a single surface point would be to consider

the squared-error between the values of each pair of projected image points; this can then

be integrated over the entire surface for an overall error measure that is used as the energy

functional. In order to counter sensitivity to noise and outliers (such as small areas of dense

texture), it was proposed to adjust this functional into a cross-correlation measure instead

of a direct error measure [50]. One can consider this as framing epipolar matching as a

variational problem as it still uses direct comparisons between image points as a basis for

the energy functional though it utilizes significantly more of the information available in

the images.
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This initial variational work was taken further by Yezzi and Soatto in [52, 53]; they

developed a fully generative variational method for multiview reconstruction by framing

the problem as one of 3D segmentation. Along with estimating the scene geometry, this

method also estimates the scene radiance. Assuming the cameras are calibrated, this allows

for synthetic images to be generated from the scene estimate through a forward model that

can be compared to the input images, providing an error measure that directly compares the

estimated quantities with the data. The resulting (regularized) energy functional can then

be written as an integral over the image domains rather than over the surfaces, which pro-

vides simpler computation, greater numerical stability, and greater robustness to specular

reflections as shown in [52, 53, 54, 55, 56, 57]. This approach also filled a complementary

role to epipolar matching methods since it performs well for scenes with sparse or repeating

textures, which as discussed above cause the point correspondence problem to be ill-posed

[52]. While the original method was developed under strict assumptions (Lambertian re-

flectance, constant albedo, calibrated cameras, consistent lighting/exposure settings, and

perfect focus), it has been expanded upon over the last two decades to allow these assump-

tions to be gradually relaxed without changing the underlying methodology [58, 59, 60, 61,

62, 63, 64, 65, 66, 67, 68, 69, 70, 71], except for the focus assumption which is the sub-

ject of the research herein. It has also been modified for some application-specific settings,

such as ocean wave modeling [54, 55, 56, 57] and cardiac CT segmentation [47]. It has also

been extended recently to work with radar signals [72]. Additionally, another variational

approach has been taken by Oswald in [73] where differences in image acquisition time, as

well as viewpoints, are accounted for.

1.1.2 Photometric stereo and shape-from-shading

As alluded to above, photometric stereo encompasses the collection of methods that infer

surface orientation from multiple images of an object from a single viewpoint but under

varying lighting conditions. It was shown by Horn in [74] that this problem in the sin-
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gle image case can be framed as a nonlinear first-order partial differential equation (PDE)

dependent on the image data, the known illumination, and a model of the bi-directional

reflectance function (BRDF); this PDE is called the brightness or irradiance equation (or

the rendering equation, in the realm of computer graphics). This started the lengthy work

in the field of shape-from-shading, and from this, Woodham proposed the method of pho-

tometric stereo for multiple images [75]. As such, algorithms for photometric stereo and

shape-from-shading set themselves apart by how they approach solving this irradiance PDE

[74, 76, 77, 78, 79, 80, 81, 82, 83]. While initial approaches did assume Lambertian re-

flectance, state of the art methods for photometric stereo have found ways to account for

non-Lambertian surfaces [84].

1.1.3 Shape-from-defocus

Methods for shape-from-defocus (and its cousin shape-from-focus) take a unique approach

compared to the other forms of 3D reconstruction already discussed; namely, the internal

properties of the camera are varied while all external camera and scene properties are as-

sumed constant. Here the set of input images are taken by a camera in a single position,

but the focus setting of the camera is changed for each image. Thus, the well-focused

portion of each image (e.g. visually crisp and not blurry) represents the portion of that

scene that exists at a specific depth that is easily computed from knowledge of the camera’s

focal properties. In this manner, each image contains information about a specific depth

slice, and the full surface can be reconstructed by drawing out and aggregating this depth

information. The pinhole camera model cannot be used here as it cannot model the lim-

ited depth of field of real lenses. Instead, shape-from-defocus methods typically assume

either a thin lens model [85, 86] or a Gaussian or other estimated optical kernel [87, 88],

all of which can model defocus blur. Additionally, some efforts have been made to solve

the shape-from-defocus problem in a variational framework [89, 90], and the work devel-

oped in this dissertation can be seen as a generalization of these methods that relaxes the
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fixed-viewpoint assumption and thus gain additional spatial information from parallax.

1.1.4 Deep learning approaches

The rise of ever more powerful processors and the decreasing cost of GPUs has allowed

some attempts at applying deep learning to 3D reconstruction. For instance, deep convolutional-

neural networks are trained to carry out depth-from-defocus on single input images in [91,

92] as well as multiview reconstruction [93, 94, 95, 96]. A thorough overview of the deep

learning methods developed over the last half-decade can be found in [4] and the references

therein. While the training of deep learning systems can be time-consuming and computa-

tionally intensive, sometimes taking days or even weeks, such systems have the benefit of

generalizability and fast run-time speeds. This is in contrast to more traditional approaches

to 3D reconstruction which in essence have to start from scratch for every new application.

Deep learning can also form the first part of a cascaded reconstruction system where the

output of the network is passed as the initial surface estimate to a variational method, such

as the method developed here.

1.1.5 Combining cues

A small number of attempts have been previously made to integrate both stereo and defocus

cues. In [97], depth-from-focus is used to generate disparity maps for each viewpoint which

are then combined using stereo correspondence. Because of this, it has all the limitations

of other point correspondence methods, which our algorithm avoids. Also, our method

consists of a single process that inherently and naturally integrates both cues, unlike the

cascaded single-cue structure in [97]. Similarly, in [98], stereo disparity maps are computed

using point correspondence between images taken with a short baseline. If defocus is

present, the disparity maps are refined using estimated Gaussian blur kernels. However,

this method requires a specialized 3-camera system for each viewpoint, unlike our method

which only needs a single camera, and the final output is a sequence of disparity maps,
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not a full dense 3D model. Finally, in [99] a method combining depth-from-defocus and

multiview reconstruction is proposed for light-field cameras. While effective, this method

requires the specialized sensor microarrays found in light-field cameras and cannot be used

with conventional CCD cameras which are more prevalent and widely accessible.

1.2 Contributions

Chapter 2 deals with the development and verification of the thin lens forward model,

which expresses image irradiance as a function of scene radiance and geometry. While the

equation governing this model is in general an integral, it has a closed-form solution for

the special case of an in-focus point with Lambertian reflectance. This novel irradiance-

radiance relationship resulted in a conference presentation [100] and journal publication

[101], where it was shown to be more general and accurate than the relationship first pro-

posed by Horn [102] that is still used today in state-of-the-art methods. The contents and

results of these papers are addressed along with some additional developments which are

used later on in this thesis.

Chapter 3 deals with the development of the thin lens model inversion, which is the

crux of this novel reconstruction algorithm that allows for reconstruction from defocused

images from multiple viewpoints, even if the focal parameters change between images. The

energy functional is formed as the total squared-matching error between the input images

and the synthetic images (which are generated using the forward model from Chapter 2).

The energy’s gradient flow is then derived by looking at the sensitivity with respect to the

surface shape and scene radiance, the former of which is not a trivial computation. It will

be shown that in the case of piecewise-constant scene radiance the gradient flow is non-zero

only for surface points that contribute to occluding boundary projections in the images.

Chapter 4 contains the results of applying the thin lens-based reconstruction to both

synthetic images generated using Blender as well as real images. It will be seen that this

novel thin lens-based method is able to recover sharp features, that are blurred and rounded
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in the images due to defocus, significantly better than pinhole-based methods. Also, the

thin lens-based method is able to accurately recover object shape even when the level of

defocus is varied among the images, a scenario where pinhole-based methods fail due to

being unable to reconcile the resulting varying object sizes in the images. While using the

thin lens model increases the algorithm’s computational complexity compared to pinhole-

based methods, it does cause a marked decrease in convergence time with respect to the

number of iterations required. At the time of this writing, manuscripts are being prepared

using the contents of Chapters 3 and 4 for eventual conference and journal submission.
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CHAPTER 2

THIN LENS FORWARD MODEL

In this chapter, the thin lens optical model will be explained and the irradiance equation

governing the corresponding forward model will be developed. This equation is a key

component in the fully-generative variational reconstruction framework, allowing synthetic

images based off the current shape estimate to be generated and compared to the actual im-

age data. The irradiance equation developed here is a more general version of the classical

equation developed by Horn, and both analytical and experimental comparisons of these

two equations are presented at the end of this chapter.

2.1 Thin Lens Geometry

2.1.1 Geometry and Notation

Figure 2.1 gives a visual depiction of the thin lens imaging model. We consider a lens of

diameter d and focal length f , where the center of the lens O acts as the origin for our

coordinate system. A thin lens is capable of capturing light over a finite solid angle of

directions and focusing that light to a specific point behind itself (through refraction).

The three primary axioms of the thin lens model determine the location of this point.

First, light rays entering the lens parallel to the optical axis converge behind the lens on the

optical axis at the focal point, which lies at depth −f . Second, rays emitted from the focal

point that pass through the lens exit the lens parallel to the optical axis. Third, rays through

the center of the lens are not refracted. When put together, these axioms are the foundation

for the thin lens equation, which states that a thin lens with focal length f perfectly focuses

all points at depth z (sometimes known as the focus depth) onto an image plane at depth

−z′ such that:
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Focal plane Image plane Surface Lens 

Figure 2.1: Geometry of the thin lens imaging model. A cone of rays from each light-
emitting point is captured by the lens and focused to a point behind the lens whose depth
is related to the depth of the emitter. If the image plane is incorrectly positioned, the image
of the emitter is blurred out from the divergence of the light rays at the image plane.

1

f
=

1

z
− 1

z′
(2.1)

This plane of focus at depth z is called the focal plane. Since points on the focal plane

are perfectly focused, all light rays emitted from a point P (X) = (X, z) on the focal plane

converge at a point P ′(X ′) = (X ′, z′) on the image plane, as shown in Figure 2.2, where

the solid rays demonstrate the three thin lens axioms. It is important to note that the third

axiom guarantees that the line going through both P and P ′ must also go through the center

of the lens. Furthermore, the 2D planar coordinates X = (x1, x2) and X ′ = (x′1, x
′
2) on the

focal and image planes, respectively, and their corresponding area elements dX = dx1 dx2

and dX ′ = dx′1 dx
′
2 are related as follows:

X ′ = MX (2.2a)

dX ′ = M2 dX (2.2b)

where M = z′/z = 1/(1− z/f) is the lens magnification.

For general points, in particular those not on the focal plane, a little more notation must
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Focal plane 

Image plane 

Figure 2.2: All rays through lens leaving P are focused at P ′. The solid rays are the three
principal rays from the thin lens axioms. Adapted with permission from [100] c© 2017
IEEE.

be introduced. Consider a surface point S(s1, s2) not on the focal plane, where (s1, s2) are

isothermal coordinates for the surface. The shape of the image of this point in the image

plane can be found easily using a conjugate image in the focal plane. First, all the rays

emitted from S(s1, s2) that pass through the lens are traced to find where they intersect the

focal plane, forming the conjugate image; then the conjugate image is mapped to the image

plane using the coordinate relationship (2.2a). This is shown in Figure 2.1 where a single

unfocused point on the surface forms a circle in the image instead of a point.

The set of all emitted rays that pass through the lens is denoted as Γ and can be pa-

rameterized in two convenient ways as illustrated in Figure 2.3, where the shaded region

is the tangent plane to the surface at S(s1, s2). Using surface coordinates (s1, s2, θ, φ), a

ray of length r in direction er = (S − P )/r can be parameterized by the surface point

S(s1, s2) from which it was emitted, the elevation angle θ the ray makes with the surface

normal N(s1, s2), and the azimuth angle φ in the tangent plane (e.g. the rotation around

N ). Likewise using focal plane coordinates (x1, x2, α, β), a ray can be parameterized by

the point P (x1, x2) at which it intersects the focal plane, the angle α between the ray and

the focal plane unit normal ez, which is parallel to the optical axis, and the azimuth angle

β in the focal plane (e.g. the rotation around ez). Equivalently, the angular component of
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these parameterizations can be written in terms of the solid angles subtended by the set of

rays as seen from the surface and the focal plane, denoted θ and α respectively. Without

loss of generality it can be assumed for the above that the focal plane lies in front of the

surface point. If it instead lies behind the surface, the conjugate image is virtual and rays

have to be virtually backtraced to intersect the focal plane.

Focal plane 

Image plane 

Surface 

Lens 

Figure 2.3: Any ray can be parameterized using either surface coordinates or focal plane
coordinates. The shaded region represents the tangent place to the surface at S(s1, s2), and
the dashed line represents the optical axis. While the ray shown here goes through the
center of the lens O, there is a whole cone of rays that pass through both P (X) and the lens
as denoted by the dotted lines, and the size of this cone is determined by the focus depth z
and lens diameter d. Adapted with permission from [100] c© 2017 IEEE.

2.2 Change of Variables Formulae

It will be particularly convenient, both here as well as in Chapter 3, to rewrite integrals in

surface coordinates (S,θ) = (s1, s2, θ, φ) as integrals in focal plane coordinates (X,α) =

(x1, x2, α, β), and vice versa. The full Jacobian matrix between these two sets of coordi-

nates for the simpler 2D case is given in Appendix C.1. Computing the full Jacobian matrix

for the 3D case would be unwieldy and involve many unnecessary terms that would cancel

out in the end as seen in the 2D case. Despite this, it is possible to compute the change

of measure between the surface and focal plane coordinates without going through the full

Jacobian matrix. Two such computations are shown here. First, the method presented in
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[101] will be given, where the area elements and solid angle elements of the two coordinate

systems are related separately and then multiplied to find the final change of measure. Sec-

ond, mixed coordinates (S,X) = (s1, s2, x1, x2) will be used as an intermediate coordinate

system, and the Jacobians between these mixed coordinates and the surface and focal plane

coordinates will be found. Both of these methods allow the final change of measure to be

computed by only considering one type of variable (spatial or angular) at a time.

2.2.1 Method 1: Relating Corresponding Area and Solid Angle Elements

Consider the situation presented in Figure 2.4. Here a small patch on the surface, centered

at S(s1, s2) (at depth z̃) and of area dS, is illuminated by a cone extending from the lens

center. This same cone also illuminates a small patch on the focal plane, centered at P (X)

and of area dX . This cone is at an angle θ relative to the surface normal N and α relative to

the focal plane normal ez. The solid angles subtended by both the surface and focal plane

patches from the point of view of the lens center are given by

dωlens,surf =
dS cos θ

(z̃/ cosα)2
=
dS cos θ cos2 α

z̃2
(2.3a)

dωlens,fp =
dX cosα

(z/ cosα)2
=
dX cos3 α

z2
(2.3b)

The solid angle subtended by both patches, from the point of view of the lens center, are

equal, so we can equate (2.3a) and (2.3b) to yield the following relationship between dS

and dX:

dX =
(z
z̃

)2
(

cos θ

cosα

)
dS (2.4)

Now consider the situation presented in Figure 2.5. Here a small patch on the lens of

area dAL is illuminated by a cone of rays emitted from a surface point S(s1, s2). As seen

from the point of view of the surface at S(s1, s2), this lens patch subtends a solid angle dθ

given by
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Figure 2.4: Solid angle subtended by a patches on the focal plane and surface as seen from
the lens center. Adapted with permission from [101] c© 2020 The Optical Society.

dθ =
dAL cosα

(z̃/ cosα)2
=
dAL cos3 α

z̃2
(2.5)

where z̃ is again the depth of S(s1, s2) along the optical axis. However, the solid angle that

the lens patch subtends can also be viewed from the perspective of the point P (X) on the

focal plane, and this solid angle dα is given by

dα =
dAL cosα

(z/ cosα)2
=
dAL cos3 α

z2
(2.6)

Since the area of the lens patch stays constant, (2.5) and (2.6) can both be solved for dAL

and then equated to yield

dα =

(
z̃

z

)2

dθ (2.7)

Finally, multiplying (2.4) with (2.7) gives the change of measure

dX dα =
(z
z̃

)2
(

cos θ

cosα

)
dS

(
z̃

z

)2

dθ =

(
cos θ

cosα

)
dS dθ (2.8)
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Figure 2.5: Solid angle subtended by a lens patch as seen from both the surface and the
focal plane. Adapted with permission from [101] c© 2020 The Optical Society.

2.2.2 Method 2: Using Mixed Coordinates

Focal plane coordinates (x1, x2, α, β) to mixed coordinates (x1, x2, s1, s2)

For a fixed point P (x1, x2) in the focal plane, if the elevation angle α of the ray unit vector

er with respect to the focal plane unit normal ez is varied, we obtain a local parameterization

of the visible portion of the surface S in terms of α and β. Using a spherical coordinate

system with origin P , er can be written solely in terms of α and β. This allows the following

orthonormal basis for R3 to be obtained (which can also be written solely in terms of α and

β):

er = (sinα cos β, sinα sin β, cosα)

∂er
∂α

= (cosα cos β, cosα sin β,− cosα)

er ×
∂er
∂α

= (− sin β, cos β, 0)

If we differentiate er with respect to β, we get a similar orthogonal basis, where each of

the original basis vectors is now multiplied by either a positive or negative factor of sinα:
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∂er
∂β

= sinα(− sin β, cos β, 0) =

(
er ×

∂er
∂α

)
sinα

er ×
∂er
∂β

= − sinα(cosα cos β, cosα, sin β,− sinα) = −∂er
∂α

sinα

∂er
∂α
× ∂er
∂β

= sinα(sinα cos β, sinα sin β, cosα) = er sinα

We now differentiate S = P + rer with respect to α and β to obtain:

∂S

∂α
=

∂

∂α
(P + rer) =

∂r

∂α
er + r

∂er
∂α

∂S

∂β
=

∂

∂β
(P + rer) =

∂r

∂β
er + r

∂er
∂β

∂S

∂α
× ∂S

∂β
=

(
∂r

∂α
er + r

∂er
∂α

)
×
(
∂r

∂β
er + r

∂er
∂β

)
= r

∂r

∂α

(
er ×

∂er
∂β

)
+ r

∂r

∂β

(
∂er
∂α
× er

)
+ r2

(
∂er
∂α
× ∂er
∂β

)
= −r ∂r

∂α
sinα

(
∂er
∂α

)
− r ∂r

∂β

(
er ×

∂er
∂α

)
︸ ︷︷ ︸

orthogonal to er

+r2 sinα(er)

Since we have a local parameterization of S in terms of α and β, we can write the outward

unit normal to S as

N = −
∂S
∂α
× ∂S

∂β∥∥∥∂S∂α × ∂S
∂β

∥∥∥
We also have er ·N = − cos θ from the definition of θ. This allows us to write

19



cos θ

∥∥∥∥∂S∂α × ∂S

∂β

∥∥∥∥ = er ·
(
∂S

∂α
× ∂S

∂β

)
= r2 sinα

⇓∥∥∥∥∂S∂α × ∂S

∂β

∥∥∥∥ =
r2 sinα

cos θ

In terms of the spherical angles α and β, the solid angle element dα is given by

dα = sinα dα dβ

which yields the change of variable formula

dS(X) =

∥∥∥∥∂S∂α × ∂S

∂β

∥∥∥∥ dα dβ =
r2 sinα

cos θ
dα dβ =

r2

cos θ
dα

which can be used in the following way:

∫
Γ

~ dα dX =

∫
Γ

~
cos θ

r2
dS dX

where ~ denotes an arbitrary expression in the integrand. This gives the formula to go

between focal plane coordinates and mixed coordinates:

dα dX =
cos θ

r2
dS dX (2.9)

Surface coordinates (s1, s2, θ, φ) to mixed coordinates (s1, s2, x1, x2)

For a fixed point S(s1, s2) on the surface, if the elevation angle θ of the ray unit vector

er with respect to the surface unit normal N is varied, we obtain a local parameterization

of the focal plane in terms of θ and the φ. This is essentially the same situation as just

discussed but with a different reference frame. Therefore, we can obtain matching formulas
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by swapping corresponding variables: P � S, N � ez, er � −er, θ � α, φ � β,

dS � dX , and dθ � dα. From this we obtain the following parameterization speed (for

the focal plane), solid angle element (from the point of view of the surface), and change of

variable formula:

∥∥∥∥∂P∂θ × ∂P

∂φ

∥∥∥∥ =
r2 sin θ

cosα

dθ = sin θ dθ dφ

dX(S) =

∥∥∥∥∂P∂θ × ∂P

∂φ

∥∥∥∥ dθ dφ =
r2 sin θ

cosα
dθ dφ =

r2

cosα
dθ

If we again let~ denote an arbitrary expression in the integrand, then the change of variable

formula can be used in the following way:

∫
Γ

~ dθ dS =

∫
Γ

~
cosα

r2
dX dS

This gives the formula to go between surface coordinates and mixed coordinates:

dθ dS =
cosα

r2
dX dS (2.10)

Focal plane coordinates (x1, x2, α, β) to surface coordinates (s1, s2, θ, φ)

We can now combine (2.9) and (2.10) to obtain the desired change of measure:

dα dX =

(
cos θ

cosα

)
dθ dS (2.11)

Note that this result matches (2.8) from the first method as expected. It also matches (C.5b)

and (C.10b) as obtained in the 2D case from the full Jacobian matrices in Appendix C.1.
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2.3 Radiometry and the Image Irradiance Equation

It is now necessary to define the relevant radiometric quantities. We denote by L(s1, s2, θ)

the surface radiance which, when multiplied by cos θ, is the power density emitted from

the surface point S(s1, s2) in the direction θ with respect to the surface normal per unit

surface area dS per unit solid angle dθ. Then the total radiant power P emitted through the

detected light rays Γ is given by

P =

∫
Γ

L(s1, s2, θ) cos θ dS dθ (2.12)

Next, the conjugate irradiance E(X) is the incident power density from the detected

light rays Γ at a point P (X) on the focal plane per unit area dX . Thus, with Ω denoting

the region of interest within the focal plane, called the conjugate image domain, the total

conjugate irradiant power Q passing through Ω is given by

Q =

∫
Ω

E(X) dX (2.13)

Finally, the image irradiance E ′(X ′) is the incident power density from the detected

light rays Γ at a point P ′(X ′) on the image plane per unit area dX ′. Thus, with Ω′ denoting

the region of interest within the image plane, called the image domain (e.g. the region

covered by the camera’s image sensor), the total image irradiant powerQ′ passing through

Ω′ is given by

Q′ =
∫

Ω′
E ′(X ′) dX ′ (2.14)

Assuming that there is no power loss from the lens, power conservation requires thatQ

and Q′ be equal, yielding

∫
Ω

E(X) dX =

∫
Ω′
E ′(X ′) dX ′ =

∫
Ω

E ′(X ′)M2 dX (2.15)
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where (2.2b) is used to write both integrals over the conjugate image domain. From (2.15)

it can be seen that the image irradiance is simply a scaled version of the conjugate image

irradiance:

E ′(X ′) =
1

M2
E(X) (2.16)

Furthermore, power conservation also requires that P and Q be equal, and making use of

(2.11) we obtain

∫
Ω

E(X) dX =

∫
Γ

L(s1, s2, θ) cos θ dS dθ

=

∫
Γ

L(s1, s2, θ) cos θ
(cosα

cos θ

)
dX dα

=

∫
Γ

L(s1, s2, θ) cosα dα dX

=

∫
Ω

(∫
Γ(X)

L(s1, s2, θ) cosα dα

)
dX

Here Γ(X) ⊂ Γ is the subset of the detected light rays that pass through the point P (X)

on the focal plane. The final step of the above yields the conjugate irradiance equation

E(X) =

∫
Γ(X)

L(s1, s2, θ) cosα dα (2.17)

Thus finding the image irradiance can be done by computing the conjugate irradiance via

(2.17) and then inputting the result into (2.16), giving the image irradiance equation

E ′(X ′) =
1

M2

∫
Γ(X)

L(s1, s2, θ) cosα dα (2.18)

where X and X ′ are related via (2.2a). It should be noted that (2.17) is identical to the

rendering equation in computer graphics with the assumption of a unit reflectance map.

This makes sense as our derivation models all radiance as being directly emitted from the
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surface, not reflected. In preparation for Chapter 3, we can augment (2.18) by considering

light emitted from not only the surface but also the background (e.g. the entirety of the

visible scene that is not the surface-of-interest). Here we take the “blue sky” approach of

[53] and model the background as another surface that fills the entire field of view. This

background surface is represented by a sphere G of infinite radius that is parameterized by

the spherical angular coordinates (η, γ) and supports a background radiance function K.

Then the full image irradiance equation becomes

E ′(X ′) =
1

M2

∫
ΓS(X)

L(s1, s2, θ) cosα dα +
1

M2

∫
ΓG(X)

K(η, γ, θG) cosα dα (2.19)

where ΓS(X) ⊆ Γ(X) and ΓG(X) ⊆ Γ(X) are the subsets of the detected ray directions

that pass through P (X) that are emitted from the only surface and only the background,

respectively, and θG denotes the ray angle with respect to the normal of the background

G. Here, both integrals are dependent on the surface shape. But we can rewrite this as

one integral dependent on the surface shape and one integral dependent only on the lens

geometry by exploiting that fact that ΓS(X)
⋃

ΓG(X) = Γ(X) and ΓS(X)
⋂

ΓG(X) = Ø:

E ′(X ′) =
1

M2

∫
ΓS(X)

L(s1, s2, θ) cosα dα

+
1

M2

(∫
Γ(X)

K(η, γ, θG) cosα dα−
∫

ΓS(X)

K(η, γ.θG) cosα dα

)
︸ ︷︷ ︸∫

ΓG(X)K(η,γ,θG) cosαdα

=
1

M2

∫
ΓS(X)

(
L(s1, s2, θ)−K(η, γ, θG)

)
cosα dα +

1

M2

∫
Γ(X)

K(η, γ, θG) cosα dα

(2.20)

The background can also be used to augment (2.17) in a similar manner by using (2.16):
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E(X) =

∫
ΓS(X)

(
L(s1, s2, θ)−K(η, γ, θG)

)
cosα dα +

∫
Γ(X)

K(η, γ, θG) cosα dα

(2.21)

2.3.1 Special Case: In-focus with Lambertian Reflectance (3D)

The integral in (2.17) has a closed-form solution in the special case of an in-focus point

with Lambertian reflectance, which allows for two important simplifications. First, un-

der Lambertian reflectance, the surface radiance is not a function of the ray angle, so

L(s1, s2, θ) = L(s1, s2). Second, an in-focus surface point lies on the focal plane, so

S(s1, s2) = P (X), allowing L to be moved outside the integral as (s1, s2) will no longer

depend on any angular property of the rays.

It will be easier to compute the integral over all allowable ray angles as opposed to over

all allowable solid angles, so the solid angle element in (2.17) can be written in spherical

coordinates as dα = sinα dα dβ. For a point whose projection onto the plane of the lens

lies inside the lens (e.g. ‖X‖ < d/2), the allowable azimuth ray angles span the entire

interval [−π, π]. For points who project outside the lens, only a certain subinterval [β−, β+]

of azimuth angles are covered by the set of rays emitted from that point that pass through

the lens. Similarly, for any given azimuth ray angle β, there exists an interval of valid

elevation ray angles [α−(β), α+(β)]. Putting this together with the simplifications from the

special case lets (2.17) be written as

E(X) = L(s1, s2)

∫ β+

β−

∫ α+(β)

α−(β)

cosα sinα dα dβ (2.22)

Let ρ designate the length of the projection of a ray onto the focal plane and ρ0 =
√
x2

1 + x2
2

denote the radial distance from the optical axis for the specific in-focus point P (X). Noting

that tanα = ρ/z, the inner integral over α can computed as
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∫ α+(β)

α−(β)

cosα sinα dα =
tan2 α

2(1 + tan2 α)

∣∣∣∣α+(β)

α−(β)

=
ρ2

2(ρ2 + z2)

∣∣∣∣ρ+(β)

ρ−(β)

=
z2(ρ2

+ − ρ2
−)

2(ρ2
+ + z2)(ρ2

− + z2)
(2.23)

Note that whereas ρ±, like α±, are dependent on β, this dependence has been dropped from

the notation for sake of neatness. What remains now is to find the form of this dependence

of ρ± on β. To do this, note that the two points in the plane of the lens (x1 + ρ± cos β, x2 +

ρ± sin β) both lie at a distance d/2 from the lens center, which is also the origin for this

coordinate system. Thus we have the following quadratic expression for ρ±:

(
d

2

)2

= ‖(x1 + ρ± cos β, x2 + ρ± sin β)‖2
2

= x2
1 + x2

2 + ρ2
± + 2ρ±(x1 cos β + x2 sin β)

= ρ2
0 + ρ2

± − 2ρ±ρ0 cos(β − β0) (2.24)

where φ0 = arctan(x2/x1). Letting ∆β = β − β0 and solving (2.24) for ρ± yields

ρ± =ρ0 cos(∆β)±

√
ρ2 cos2(∆β)− ρ2

0 +

(
d

2

)2

=ρ0 cos(∆β)±

√(
d

2

)2

− ρ2
0 sin2(∆β) (2.25a)

ρ2
± =ρ2

0

(
cos2(∆β)− sin2(∆β)

)
+

(
d

2

)2

± 2ρ0 cos(∆β)

√(
d

2

)2

− ρ2
0 sin2(∆β)

= ρ2
0 cos(2∆β) +

(
d

2

)2

︸ ︷︷ ︸
a

± ρ0

√
d2 cos2(∆β)− ρ2

0 sin2(2∆β)︸ ︷︷ ︸
b

(2.25b)

For the sake of space, note that (2.25b) is in the form a ± b. We can now substitute

(2.23) and (2.25b) into (2.22) to yield
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E(X) =
L(s1, s2)

2

∫ β+

β−

z2
(
(a+ b)− (a− b)

)
(a+ b+ z2)(a− b+ z2)

dβ

= L(s1, s2)

∫ β+

β−

z2b

(z2 + a)2 − b2
dβ

= L(s1, s2)

∫ β+

β−

z2ρ0

√
d2 cos2(∆β)− ρ2

0 sin2(2∆β)(
z2 + ρ2

0 cos(2∆β) +
(
d
2

)2
)2

− d2ρ2
0 cos2(∆β) + ρ4

0 sin2(2∆β)
dβ

= L(s1, s2)

∫ β+

β−

z2ρ0 cos(∆β)
√
d2 − 4ρ2

0 sin2(∆β)(
ρ2

0 −
(
d
2

)2 − z2
)2

+ 4ρ2
0z

2 cos2(∆β)
dβ (2.26)

Note that the last equality is obtained using the identity cos(2∆β) = 2 cos2(∆β)− 1.

Next, a succession of variable changes are applied to (2.26) to simplify the integral into

a cleaner and more easily-computable form:

E(X) =L(s1, s2)

∫ sin(∆β)

− sin(∆β)

z2ρ0

√
d2 − 4ρ2

0u
2(

ρ2
0 −

(
d
2

)2 − z2
)2

+ 4ρ2
0z

2(1− u2)
du

[
u = sin(∆β), du = cos(∆β) dβ

]

=L(s1, s2)

∫ d
2ρ0

0

2ρ0z
√
z2d2 − (2ρ0zu)2

z2d2 +
(
ρ2

0 −
(
d
2

)2
+ z2

)2

− (2ρ0zu)2

du

=L(s1, s2)

∫ A

0

√
A2 − v2

A2 +B2 − v2
dv,

 A = zd, B = ρ2
0 −

(
d
2

)2
+ z2,

v = 2ρ0zu, dv = 2ρ0z du


=L(s1, s2)

∫ ∞
0

1

A2

(A2 − v2)2

A2 +B2 − v2
dw,

[
w = v√

A2−v2 , dw = A2

(
√
A2−v2)3 dv

]

=L(s1, s2) =

∫ ∞
0

A2

B2

A

(1 + A2

B2 + w2)(1 + w2)
dw,

[
A2 − v2 = A2

1+w2

]

=L(s1, s2)

∫ ∞
0

(
1

1 + w2
− 1

1 + A2

B2 + w2

)
dw

27



The final line of the above can be evaluated as

E(X) = L(s1, s2)

tan−1w − 1√
1 + A2

B2

tan−1

 w√
1 + A2

B2

∞
0

=
π

2
L(s1, s2)

(
1− B√

A2 +B2

)

Substituting in for A and B yields the final closed-form solution to (2.22):

E(X) =
π

2
L(s1, s2)

1−
ρ2

0 −
(
d
2

)2
+ z2√

z2d2 +
(
ρ2

0 −
(
d
2

)2
+ z2

)2

 (2.27)

Substituting (2.27) into (2.16) yields the final image irradiance

E ′(X ′) =
π

2

1

M2
L(s1, s2)

1−
ρ2

0 −
(
d
2

)2
+ z2√

z2d2 +
(
ρ2

0 −
(
d
2

)2
+ z2

)2

 (2.28)

The closed-form solution (2.28) has an analagous expression in the 2D case, which is de-

rived and discussed in Appendix C.2.

2.4 Comparison to Horn’s Equation

The classical irradiance equation is derived by Horn in [102]. The geometry considered is

shown in Figure 2.6 where a lens of diameter d and focal length f is situated such that a

surface patch of area δO is at depth z in front of the lens and the corresponding patch on

the image plane, of area δI , is at depth f behind the lens.

By equating the solid angles of the cone of rays connecting these patches to the optical

center and finding the ratio between the areas of the patches, it is found that the image

irradiance E ′ is related to the surface radiance L by:
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Surface Image plane 

Figure 2.6: Geometry used by Horn to relate surface radiance to image irradiance. Only
rays through the lens center are considered. Adapted with permission from [100] c© 2017
IEEE

E ′(X ′) =
π

4

(
d

f

)2

L(s1, s2) cos4 α (2.29)

where α is again the angle that the ray connecting the centers of the two patches makes

with the optical axis. For the discussion that follows, the term Horn relationship shall refer

to (2.29) whereas the term lens relationship shall refer to (2.28).

2.4.1 Analytical Comparison

The reader is referred to [102] for the full derivation of (2.29). However, there are two key

assumptions that are important to note. First, it is assumed that the only light rays arriving

at the image patch are emitted from the surface patch. This is only true if the entire surface

patch is perfectly focused, which brings up the second assumption. The image plane being

placed a focal length behind the lens means that the lens is focused at infinity according to

(2.1). In order for the surface patch to be perfectly focused, either z must be sufficiently

large such that far-field approximations are valid, allowing the surface to be considered

“infinitely” far from the lens, or a pinhole model must be implicitly assumed so that any

point will be considered perfectly focused onto the image plane. If neither of these are true,
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then some rays from nearby surface patches would arrive at the same image patch due to

blur caused by defocus, causing the first assumption to be false. Also, the case of near-

focused images is not addressed by either situation. This hints that the Horn relationship

may be a special case of the lens relationship in far-field or small aperture conditions, and

we shall now show that this is exactly the case.

It is easily noticed that the forms of (2.29) and (2.28) are very similar. They both

involve the multiplication of a pure constant (a fraction of π), a constant dependent on the

lens parameters, the surface radiance, and a spatially-varying term. Both equations depend

on lens parameters d and f , but in the lens relationship there is no explicit dependence on

ray angle α. Instead, the only other information needed to compute the image irradiance

via (2.28) is the surface radiance, the placement of the image plane, and the location of

the point being imaged, all of which should already be available without any additional

computation. It should be noted that (2.29) can also be rewritten in a form that does not

explicitly reference α by using the fact that cosα = z√
z2+ρ2

0

.

Figure 2.7 gives visual representations in the form of surface plots of (2.29) subtracted

from (2.28) for varying values of d, z, and ρ0. In order to get a better understanding of the

differing parts of the two irradiance relationships, the radiance has been set to L = 1. It

was noticed that the deviations between the two relationships depended much more on the

f -number of the lens (which is the ratio f/d of the lens’ focal length to its diameter) than

the actual value of the focal length, so for these plots a fixed focal length of f = 50mm was

used, which is the standard focal length for many modern cameras. The focus depth z was

varied from 50mm to 1m as a lens does not create real images when focused at a depth less

than its focal length, and this range allowed for exploration of both near-field and far-field

conditions (relative to the focal length). On the other hand, the radial distance ρ0 is only

constrained by the size of the image sensor and was varied from 0m to 1m; though the

size of image sensors rarely ever approach 1m in any dimension, this allows us to test for

possible edge cases.
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(a) d = f/32 (b) d = f/5.6 (c) d = f/3.5

(d) d = f/1.4 (e) d = f/1 (f) d = f/0.7

Figure 2.7: The Horn and lens irradiance equations are near identical for small apertures
and far-focused points but diverge for near-focused and centered points as the aperture in-
creases. This becomes significant for f -numbers less than about 2. Reused with permission
from [101] c©2020 The Optical Society

Figure 2.7(a) shows the case of a small lens with diameter d = f/32 (this is typically

the smallest aperture used in most general photography). It is seen that the surface plot is

flat and near-constant no matter the values of z and ρ0. The maximum deviation is on the

order of 10−4 when z ≈ f and ρ0 = 0, and the deviation decreases as both z and ρ increase

(order of 10−5 at z = 20f , for instance).

Next, Figures 2.7(b)-2.7(c) show the case of medium-sized lenses with diameters d =

f/5.6 and d = f/3.5, which are standard lens sizes that comes packaged with many

consumer-grade Digital Single Lens Reflex (DSLR) cameras. Again, the surface plot is

visually flat except when both z and ρ0 are low, where a small dip can be seen. This is also

seen numerically, as now the maximum deviation is slightly higher. It is on the order of

10−2 when z ≈ f and ρ0 = 0 for both f -numbers and on the order of 10−4 (for f/5.6) and

10−3 (for f/3.5) at z = 20f .

Finally, Figures 2.7(d)-2.7(f) show the case of large lenses with diameters d = f/1.4,
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d = f/1, and d = f/0.7; it should be noted that 0.7 is the f -number of the largest practical

lens ever made, so it is rare to find such low f -numbers outside of very specialized uses. A

large dip can now be seen in the surface plots for these lens when both z and ρ0 are small.

In fact, for f/0.7 the maximum deviation has significantly increased to 1.6 when z ≈ f

and only decreases to about 10−1 when z = 20f . For the other two slightly smaller lenses,

the deviation is still large on the order of 10−1 at z ≈ f and 10−2 for z = 20f . This makes

sense as the pinhole assumption used to derive (2.29) breaks down as the lens gets larger

and farther away from a “pinhole.” It is important to note that as L = 1 in the generation

of Figure 2.7, the actual deviation in modeled irradiance can be much larger if the scene

lighting is bright.

The small deviation between these two irradiance relations in most situations is no

coincidence. It can be shown that (2.29) is an approximation of (2.28) under two simple

assumptions:

A1 : ρ2
0 � z2 (2.30a)

A2 : d� z (2.30b)

A1 ensures ray elevation angles are small and cosα = z√
z2+ρ2

0

≈ 1 whereas A2 ensures

far-field conditions. Taking these two assumptions into account and writing the lens mag-

nification as M = z′/z yields
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E ′(X ′) =
π

2
L(s1, s2)

( z
z′

)2

1−
ρ2

0 −
(
d
2

)2
+ z2√

z2d2 +
(
ρ2

0 −
(
d
2

)2
+ z2

)2


A1
≈ π

2
L(s1, s2)

( z
z′

)2

1−
−
(
d
2

)2
+ z2√

z2d2 +
(
−
(
d
2

)2
+ z2

)2


=
π

2
L(s1, s2)

( z
z′

)2
(

1−
−
(
d
2

)2
+ z2

z2 +
(
d
2

)2

)
A2
≈ π

4
L(s1, s2)

( z
z′

)2
(
d2

z2

)
=
π

4
L(s1, s2)

(
d

z′

)2

(2.31)

Note that if z′ = f , as is the case in Horn’s derivation, then (2.31) is simply (2.29), assum-

ing A1. If indeed z′ = f , then by (2.1) the focal plane exists at infinity, meaning that both

A1 and A2 hold for any finite choice of ρ and d.

2.4.2 Experimental Comparison

Whereas it is seen from the above that there are certain situations where the classical and

proposed relationships give significantly different irradiance values, this alone does not

indicate which of the two more closely models irradiance in the real world. The relative

accuracy of the two equations were thus tested both with computer simulations using the

optical design software Zemax as well as comparisons with a series of simple and intensity-

sparse photographs. Finally, the accuracy of the the two irradiance models were compared

in a simple application to shape-from shading.
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Computer Simulations

Using Zemax’s OpticStudio Online software, a simple optical geometry was set up and

simulated as follows. The geometry consisted of three parts, very reminiscient of Figure

2.6: a lens, a small circular light source in front of the lens, and a rectangular light detector

behind the lens. The lens was set to have a focal length of f = 50mm, and its diameter

was set to one of three values: d ∈ {f/32, f/5.6, f/0.7}. These diameters were chosen

as to be consistent with those used to generate Figure 2.7. The light source had a radius

of 1µm and radiated a power of 1W isotropically within the solid angle subtended by the

lens. This allowed the source to have a near-constant radiance and be considered a good

approximation of a Lambertian point source. For each lens diameter, the source was placed

at various depths z ∈ {1.1f, 10f, 20f} and various radial distances ρ ∈ {0, d/4, 4d}; as

the geometry was radially symmetric, it was sufficient to move off the optical axis in only

the x-direction. This allowed for the analysis of near-focused and far-focused points as

well as points on the optical axis, points that project inside the lens, and points that project

outside the lens. For each depth of the source, the detector was placed at the appropriate

depth z′ given by (2.1) and radial position as specified by the lens magnification (2.2a)

and measured the irradiance of the image of the source, which was computed using non-

sequential ray-tracing.

For the sake of space, Table 2.1 shows only the most relevant results of these simu-

lations, namely the absolute irradiance errors |E ′meas − E ′Horn| and |E ′meas − E ′lens|, where

E ′meas, E
′
Horn, and E ′lens are the measured irradiance and the predicted irradiances given by

the Horn and lens relationships, respectively. In all cases, the lens relationship provided

a more accurate irradiance prediction than the Horn relationship, and in 2/3 of the cases

the increase in accuracy was at least an order of magnitude. In general, the difference in

accuracy was the most pronounced for near-focused points on the optical axis and tended

to decrease as the light source was moved back away from the lens and radially outward as

well as when the f -number was increased; this agrees with the patterns seen in Figure 2.7.
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Table 2.1: Zemax Simulation Irradiance Errors (W/M2)

ρ = 0 ρ = d/4 ρ = 4d

|E′meas − E′Horn| |E
′
meas − E′lens| |E′meas − E′Horn| |E

′
meas − E′lens| |E′meas − E′Horn| |E

′
meas − E′lens|

d = f/32

z = 1.1f 3.83× 1011 7.10× 106 2.55× 1011 1.35× 108 4.70× 1010 3.08× 108

z = 10f 6.11× 1012 4.92× 1010 5.09× 1012 1.05× 1012 3.30× 1012 2.55× 1012

z = 20f 1.27× 1013 2.05× 1011 1.30× 1013 4.71× 1012 1.29× 1013 1.14× 1013

d = f/5.6

z = 1.1f 3.84× 1011 4.70× 106 2.56× 1011 1.25× 108 2.46× 1010 6.90× 106

z = 10f 6.05× 1012 5.86× 109 5.05× 1012 1.01× 1012 3.26× 1012 2.52× 1012

z = 20f 1.24× 1013 3.92× 1010 1.29× 1013 4.63× 1012 1.52× 1013 1.37× 1013

d = f/0.7

z = 1.1f 5.00× 1011 2.59× 108 3.04× 1011 1.67× 108 1.90× 108 7.37× 106

z = 10f 6.15× 1012 4.82× 1010 1.91× 1013 1.49× 1013 2.15× 1012 1.71× 1012

z = 20f 1.09× 1013 1.72× 1012 7.99× 1013 7.16× 1013 1.32× 1013 1.18× 1013

Zemax simulations confirm the increased accuracy in the proposed thin lens irradiance
model over Horn’s classical model and that the improvement in accuracy increases for
near-field, on-axis points and larger apertures. Reused with permission from [101] c©
2020 The Optical Society.

Physical Experiments

In order to see how the two irradiance relationships compare in practice, they were both

used to model the irradiance of an actual image. Using a Nikon DSLR camera equipped

with two AF-S NIKKOR lenses of different aperture sizes, 24 photos were taken of a small

and in-focus light source consisting of a red LED (NTE30034) shining through a pinhole,

with the LED at a different radial location in each photo. The smaller lens had a focal

length of f = 18mm and aperture of d = f/3.5 = 5.1mm whereas the larger lens had a

focal length of f = 50mm and aperture of d = f/1.4 = 35.7mm. Both lenses were focused

near their minimum focus distance: 169.3mm for the small lens and 356.7mm for the large

lens. In order to preserve the actual irradiance as much as possible, only the raw camera

sensor data was used. The pinhole was used to ensure only one pixel on the camera sensor

was illuminated, as seen in Figure 2.8, allowing the LED to be modeled as a point source.

Considering the LED’s half-power angle of 30◦, the pinhole also allowed the radiance to

be approximately Lambertian and constant so long as the pinhole was pointed towards
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the optical center for each photo. The Lambertian quality is needed for both irradiance

relationships to be valid, and the constant radiance allows for the system unknowns to be

modeled as a pair of constants, one multiplicative and one additive.

Figure 2.8: Cropped photo taken of LED point source focused onto one pixel. Reused with
permission from [101] c©2020 The Optical Society.

Fitting the irradiance models to the photos is thus equivalent to finding the optimal

values of these constant parameters, which can be done by minimizing the squared-norm

error between the measured irradiance value for each photo and the corresponding modeled

irradiance:

C∗1,i, C
∗
2,i = arg min

C1,C2

∥∥∥I − C1Ê
′
i − C2

∥∥∥2

2
(2.32)

where i ∈ {Horn, lens}, I is the vector of illuminated pixel intensities (one pixel per

image), Ê ′Horn is the vector of irradiance values modeled by the Horn relationship (2.29),

and Ê ′lens is the vector of irradiance values modeled by the lens relationship (2.28), the

latter two both with L(s1, s2) = 1. This has the well-known solution:

C∗1,i =
σIÊ′i
σ2
Ê′i

, C∗2,i = µI −
σIÊ′i
σ2
Ê′i

µÊ′i
(2.33)

where σIÊ′i is the sample covariance between I and Ê ′i, σ
2
Ê′i

is the sample variance of Ê ′i,

µI is the mean value of I , and µÊ′i is the mean value of Ê ′i.

Quantitative results from this experiment can be seen in Tables 2.2 and 2.3, where
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E ′i = C∗1,iÊ
′
i + C∗2,i. For both lenses, the lens relationship produced a lower overall model-

ing error than the Horn relationship, and the difference in modeling error increased nearly

threefold from the smaller lens to the larger lens. Also, the lens relationship fit the majority

of the images better in both cases (13/24 for the small lens and 18/24 for the large lens). It

should be noted that whereas the difference in modeling error is relatively low (and the op-

timal models near identical in terms of the irradiance values they produce), the difference

between the modeling parameters is significant, especially for the multiplicative constant

C∗1,i, which represents an estimate of the surface radiance. For most computer vision pur-

poses this will not matter much, but it is quite notable from a modeling standpoint or in the

case of inverse problems. This is all consistent with the previous discussion on how both

irradiance models are nearly identical except in a few extreme situations.

Table 2.2: Analysis of Model Fitting Parameters

Method C∗1,i C∗2,i ‖I − C∗1,iÊ ′i − C∗2,i‖2
2

f/3.5

Horn 1.0429× 105 −4522.7 1.0819499× 107

Lens 1.3097× 105 −4530.5 1.0819465× 107

f/1.4

Horn 2.8846× 104 652.2722 1.0934127× 107

Lens 3.6211× 104 651.6485 1.0934022× 107

The optimal representation of the radiance differed significantly

between irradiance models even though modeling error was similar.

Reused with permission from [101] c©2020 The Optical Society.

Shape-from-Shading Simulation

In order to illustrate the usefulness of the lens irradiance relationship, a simple shape-

from-shading problem was simulated. The simulation had a camera imaging a Lambertian

slanted plane that was illuminated by a distant point source with uniform radiance Lsrc,

where the center of the lens was the origin of the coordinate system. The plane was sit-
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Table 2.3: Analysis of Accuracy Differences in Modeled Irradiance

Aperture ‖I − E ′Horn‖2
2 − ‖I − E ′lens‖2

2 max |E ′Horn − E ′lens|

f/3.5 34.09 0.0144

f/1.4 105.25 0.0672

The lens-based irradiance model provided a better fit than Horn’s,

and the accuracy gap was most pronounced for the large lens.

Reused with permission from [101] c©2020 The Optical Society.

uated such that its center was perfectly in-focus (e.g. it lay in the focal plane) with unit

normal N . The image irradiance was computed using (2.28) (the more accurate of the two

irradiance models), with the scene radiance computed as L = Lsrc cos θ, where θ is the

angle between N and the ray vector between the point source and a given point on the

plane. Assuming only the irradiance pattern and illumination are known, as well as that the

surface is a plane, recovering the shape is equivalent to recovering the unit normal defin-

ing the plane. This was done using gradient descent on the squared-difference between

the measured ray-cosines and those that result from an estimate of the unit normal, Nest.

Since in both irradiance models the image irradiance is proportional to the scene radiance,

the measured values of cos θ can be computed by dividing the measured irradiance by the

factors multiplying L and by Lsrc. This was done twelve times, comparing the results of

using (2.28) versus (2.29) in the inversion process with three different lens apertures for

both near-field and far-field imaging.

The results of these simulations can be seen in Table 2.4 and are summarized as follows,

where f = 50mm, z ∈ {1m, 100m}, the initial normal estimate was Nest = [0, 0,−1]T ,

N = [1/2, 1/2,−1/
√

2]T , Lsrc = 1W/sr/m2, and d ∈ {f/32, f/3.5, f/1}. The lens aper-

ture had no apparent effect on the reconstructed normal, so the following results apply

to all three apertures. Both models gave near-perfect reconstructions in the far-field and

only mediocre reconstructions in the near-field, though the lens irradiance model provided

a more accurate unit normal in both cases even if it provided a worse value of the objec-
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Table 2.4: Shape-from-Shading Simulation Results

Method Nest ‖N −Nest‖2

∑
(cos θ − cos θest)

2

z = 1m

Horn [0.6519, 0.0426,−0.7571]T 4.86× 10−1 3.3832

Lens [0.6022, 0.2600,−0.7549]T 2.65× 10−1 5.0956

z = 100m

Horn [0.4997, 0.5001,−0.7072]T 2.92× 10−4 0.0449

Lens [0.5000, 0.5000,−0.7071]T 1.62× 10−5 0.0082

The lens model reconstructed the unit normal more accurately than Horn’s model.

The improvement was notable even in the far-field where the two models are

near-identical. Reused with permission from [101] c©2020 The Optical Society.

tive function for the near-field. Given the known ambiguous nature of shape-from-shading,

it is possible the near-field case contained a hard-to-escape local minimum even with all

the assumptions used; this would explain the poorer performance of both models in the

near-field.
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CHAPTER 3

THIN LENS MODEL INVERSION

With the thin lens forward model established, we can set up a cost functional that is mini-

mized when the surface shape and radiance estimates are optimal. Here optimal means that

the reconstruction produces images (using the forward model (2.19)) as close as possible

to the input images in the sense of the L2-norm.

Since we will be estimating the surface shape S and the surface and background ra-

diance functions L and K using an iterative procedure, we can augment them to be time-

varying so that they represent a class of evolving functions S(u, v)→ S(u, v, t), L(u, v)→

L(u, v, t), and K(η, γ) → K(η, γ, t), where t is an artificial gradient descent time param-

eter and (u, v) are time-independent surface parameters. Letting C be the total number

of images, we may construct the image error function E ′c comparing the modeled image

irradiance E ′c and the actual measured intensity Ic of the c-th image as

E ′c(X ′c) = E ′c(X
′
c)− Ic(X ′c)

where the subscript on X ′ is used to denote that these planar coordinates are with respect

to the coordinate system of the c-th image. This same error function can be mapped to the

conjugate domain Ωc to produce an equivalent conjugate error function

Ec(Xc) = E ′c(McXc) = M−2
c Ec(Xc)− Ic(McXc)

The total squared-error cost function J for the full image collection is then

J =
1

2

C∑
c=1

∫
Ω′c

(E ′c)2 dX ′c =
1

2

C∑
c=1

∫
Ωc

M2
c E2

c dXc (3.1)
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We plan on minimizing J through an artificial-time gradient descent procedure, so the

derivative of J with respect to the artificial time parameter t is

dJ

dt
=

C∑
c=1

∫
Ωc

Ec
dEc
dt

dXc (3.2)

Note that (3.1) contains no artificial regularizers and only measures the image matching-

error. If images are sufficiently defocused, there should be natural regularization that occurs

through the use of the thin lens model. This is already hinted at in the form of (2.17), where

the irradiance is a weighted average over all scene points that contribute to a respective

image point, and will be even more evident in the evolution equations derived here.

We want to minimize (3.1) with respect to S, L, and K, and this can be done using

an alternating gradient descent procedure. First, we fix an initial estimate for the surface

shape S and find the optimal surface and background radiance functions L and K for this

estimate. Then, we fix L and K and update S according to the gradient descent flow of

J with respect to S. These two steps are then repeated until convergence. From (3.2) we

can see that in order to find the sensitivity of J to perturbations in the surface shape and

scene radiance, and thus obtain the desired gradient descent evolution equations, it suffices

to find the corresponding sensitivities of the irradiance E. For the following, Lambertian

reflectance is assumed, so the dependence of L on θ has been dropped in the notation.

3.1 Surface Evolution Equation

Here we develop the equations governing the desired evolution of S that minimize (3.1).

For the sake of space and clarity of notation, the following development is done with respect

to only a single image unless otherwise specified. However, it is straightforward to apply

the results of this section to the entire image collection: for a given surface point, compute

the evolution flow with respect to each image where that point is visible, and then sum
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these individual updates for the full evolution flow.

3.1.1 Radial/transverse coordinate frame

For the following it will be useful to define the frame

N, Tr = er − (er ·N)N, T⊥ = Tr ×N (3.3)

where Tr denotes er projected onto the tangent plane of S and T⊥ denotes the orthogonal

transverse direction. Along the occluding boundary S∗ they become unit vectors T ∗r = e∗r

and T ∗⊥ = e∗r×N∗ but are otherwise orthogonal with matching magnitude ‖Tr‖ = ‖T⊥‖ ≤

1 and may therefore form the basis for isothermal coordinates (sr, s⊥) in the radial and

transverse directions respectively (with unit speed along the occluding boundary). The ∗

superscript is used here and in the following to denote the corresponding quantity at the

boundary of visibility. Note that these coordinates become degenerate at any front-to-

parallel point where er = −N .

3.1.2 Irradiance sensitivity

Using (2.9) and noting that cos θ = −er · N , we may rewrite the first term of (2.21) as a

flux integral:

E(X) = −
∫
S(ΓS(X))

L̂− K̂ cosα

r2
er ·N dS +

∫
Γ(X)

K cosα dα (3.4)

where L̂ : R3 → R and K̂ : R3 → R are volumetric extensions of L and K such that

L̂(S) = L(S) and K̂(G) = K(G). If we assume that L̂ and K̂ are fixed and that only

the surface evolves, then differentiating with respect to time causes the second integral to

vanish, and the time derivative of (3.4) is given as
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dE

dt
(X) =

∫
S∗

(ΓS(X))

(
−Q̂

∗ cosα∗

(r∗)2
e∗r

)
·
(
dS∗

dt
× T ∗

)
ds∗

+

∫
S(ΓS(X))

∇ ·

(
−Q̂ cosα

r2
er

)
(St ·N) dS (3.5)

where S∗(ΓS(X)) (or more compactly S∗) denotes the surface curve bounding the subpatch of

S visible from P (X), T ∗ denotes the unit tangent vector along S∗ (which will also be a unit

tangent vector to the surface S), ds∗ denotes the arclength element of S∗, and Q̂ .
= L̂− K̂.

A detailed derivation of (3.5) is given in Appendix A. Next, by noting that

∇ ·

(
Q̂ cosα

r2
er

)
=

cosα

r2

(
∇Q̂ · er

)
we obtain

dE

dt
(X) =

∫
S∗

(ΓS(X))

(
−Q̂

∗ cosα∗

(r∗)2
e∗r

)
·
(
dS∗

dt
× T ∗

)
ds∗

−
∫
S(ΓS(X))

∇Q̂ · er
cosα

r2
(St ·N) dS (3.6)

Interior boundary points (non-occluding)

A boundary point S∗ which does not fall along a visibility boundary with respect to P (X)

represents the endpoint of a ray along the boundary ∂ΓS(X) of the surface ray set between

P (X) and the lens. For such points, the ray direction at the boundary remains unchanged

even as S∗ evolves (e.g. S∗ moves along the ray), and we have that

e∗r =
S∗ − P
r∗

= constant
d
dt−→ dS∗

dt
=
dr∗

dt
e∗r

Such points do not contribute to the boundary integral in (3.6), since e∗r · (e∗r × T ∗) = 0,
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and may therefore be ignored when evaluating the boundary integral.

Occluding boundary points

We may then restrict our attention to the subset of S∗(ΓS(X)) representing occluding bound-

aries with respect to P (X). As such, this subset of S∗ is represented by the occluding

boundary condition

e∗r ·N∗ = 0

We may decompose St into its tangential and normal evolution components using the ra-

dial/transverse frame (3.3)

St = arTr + a⊥T⊥ + bN

Now letting s∗r(t) and s∗⊥(t) denote evolving isothermal coordinates paired to T ∗r and T ∗⊥ at

an occluding boundary point S∗ we may write

dS∗

dt
=

(
a∗r +

ds∗r
dt

)
T ∗r +

(
a∗⊥ +

ds∗⊥
dt

)
T ∗⊥ + b∗N∗

and in turn

e∗r ·
(
dS∗

dt
× T ∗

)
= e∗r · (N∗ × T ∗)(S∗t ·N∗)

We can represent T ∗ in the radial/transverse frame as

T ∗ = − τ ∗r T
∗
r + κ∗rT

∗
⊥√

(κ∗r)
2 + (τ ∗r )2

where κ∗r is the radial curvature (e.g. the normal curvature of S in the radial direction T ∗r )

and τ ∗r is the radial torsion (e.g. the geodesic torsion of S in the radial direction T ∗r ). We

can then write the scalar triple product
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e∗r · (N∗ × T ∗) = − κ∗r√
(κ∗r)

2 + (τ ∗r )2

This allows us to rewrite (3.6) as

dE

dt
(X) =

∫
S∗

(ΓS(X))

(
Q̂∗ cosα∗

(r∗)2

)(
κ∗r√

(κ∗r)
2 + (τ ∗r )2

)
(S∗t ·N∗)ds∗

−
∫
S(ΓS(X))

∇Q̂ · er
cosα

r2
(St ·N) dS (3.7)

3.1.3 Total matching error sensitivity

Inserting the occluding boundary term of (3.7) into (3.2) and swapping the order of inte-

gration (details in Appendix B) yields

∫
Ω

E

(∫
S∗

(ΓS(X))

(
Q̂∗ cosα∗

(r∗)2

)(
κ∗r√

(κ∗r)
2 + (τ ∗r )2

)
(S∗t ·N∗) ds∗

)
dX

=

∫
S

Q̂√
1− (ez ·N)2

(∫
Ω∗

(ΓS(S))

E∗κ∗r cosα∗

r∗
dsX

)
(St ·N) dS (3.8)

where Ω∗(ΓS(S)) is the line of points in the focal plane that make rays satisfying the occluding

boundary condition with the surface point S, and dsX is the arclength element in the focal

plane.

Next, inserting the surface integral term of (3.7) into (3.2) and swapping the order of

integration yields
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∫
Ω

E

(
−
∫
S(ΓS(X))

∇Q̂ · er
cosα

r2
(St ·N) dS

)
dX

=

∫
S

−∇Q̂ ·

(∫
Ω(ΓS(S))

E cosα

r2
er dX

)
(St ·N) dS (3.9)

Adding (3.8) and (3.9) and applying (2.10) gives the full expression for dJ
dt

when only

S is evolving and allows us to extract the evolution equation for S for a single image as

St =

[
− Q̂√

1− (ez ·N)2

(∫
Ω∗

(ΓS(S))

E∗κ∗r cosα∗

r∗
dsX

)
+∇Q̂ ·

(∫
ΓS(S)

E cos θ er dθ

)]
N

(3.10)

Notice that each surface point is updated by a weighted averaging of the pointwise error E

over the region of the image contributed to by that surface point. This is the key that leads

to the natural regularization mentioned previously, as the impact of noise or other outlying

measurements in the data will be averaged out, with the size of the averaging window

correlating with the amount of defocus present in the images. Also, in the special case of

modeling the radiances L and K as constant functions, the second term vanishes, meaning

that only surface points on the occluding boundary need to be considered in that case.

One final thing to note is that the first integral of (3.10) represents a diffusion term due

to the presence of the radial curvature κr. Since both Q̂ and E can have either positive or

negative sign, this diffusion can be in the backwards direction and thus unstable. If the

curvature term were outside the integral, we could simply set κr = −1 which would at

least guarantee the update at each point is in the right direction since we know that κr is

negative at occluding boundary points (since we are using an outward normal). But since

κr is inside the integral, doing this normalization could potentially change the overall sign

of the integral and thus the direction of the update. This can be avoided by keeping track of
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the sign of the actual gradient and flipping the sign of the normalized update if necessary,

as the computation of the radial curvature is relatively inexpensive. Such a modification

turns the diffusion into an advection, which can be stabilized with the proper choice of

time step. However, in doing so we are no longer descending down the exact gradient of

the cost function J , though we are traversing a shallower trajectory that will still lead to its

minimum.

Like with the irradiance equation, the analogous equation for (3.10) in the 2D case

is derived and discussed in Appendix C.4. While the two cases give functionally similar

evolution flows, one important difference is that the cosine factor present in the first term

of (3.10) is completely canceled out in 2D. By expanding

√
1− (N · ez)2 =

√
cos2 α +

(
(ez × er) ·N

)2

it is seen that only when N lies in the plane spanned by er and ez does the above simplify

to cosα, which in turn cancels out the cosine factor in the integral. This is the only possible

scenario in 2D, but it is far from guaranteed in 3D, explaining both the new radical term

and the non-cancellation of the cosine term in the 3D case.

3.2 Scene Radiance Estimation

3.2.1 Smooth radiances

Once the surface has been updated according to (3.10), we need to update L and K as to be

optimal with this new shape. If we assume S and K are fixed and that only L is evolving,

the sensitivity of E with respect to L is

dE

dt
(X) = −

∫
S(ΓS(X))

Lt
cosα

r2
er ·N dS

The analogous expression for the sensitivity ofE with respect toK for fixed S and L can be

found by replacing ΓS → ΓG and Lt → Kt. After inserting into (3.2), swapping the order
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of integration, and applying the change of variables (2.10), the gradient descent evolution

equations for L and K over the entire image collection are

Lt =
C∑
c=1

∫
ΓS(S)

Ec cos θ dθ (3.11a)

Kt =
C∑
c=1

∫
ΓG(G)

Ec cos θG dθG (3.11b)

where θG denotes the ray angle with respect to the normal of the background surface G and

the background solid angle element dθG.

In order to obtain the optimal radiance functions for a given estimate of S, L and K can

be updated in an alternating fashion according to (3.11a) and (3.11b) until steady state is

reached. The alternating update is necessary as E is dependent on both L and K for some

pixels through defocus blur, therefore coupling the update equations.

3.2.2 Constant radiances

In the special case that the surface and background radiance functions are separately mod-

eled as constant functions, which is the case considered in the experiments in Chapter 4,

then the optimal values of L and K individually can be found by finding where the deriva-

tive of J vanishes, yielding

Lopt =

C∑
c=1

(∫
Ω′c
Ic(X

′
c)W

′
S(X ′c)−KW ′

G(X ′c)W
′
S(X ′c) dX

′
c

)
C∑
c=1

∫
Ω′c
W ′
S(X ′c)

2 dX ′c

(3.12a)

Kopt =

C∑
c=1

(∫
Ω′c
Ic(X

′
c)W

′
G(X ′c)− LW ′

G(X ′c)W
′
S(X ′c) dX

′
c

)
C∑
c=1

∫
Ω′c
W ′
G(Xc)2 dX ′c

(3.12b)
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where W ′
i (Xc) = M−2

∫
Γi(Xc)

cosα dα for i ∈ {S,G}. Note that (3.12a) and (3.12b) are

still coupled, so they still need to be applied in an alternating fashion until steady state

is reached. However, it was seen in practice that a good steady state approximation is

usually reached after two applications despite the coupling. This constant radiance case

is analagous to the assumptions used in Chan-Vese image segmentation, where the images

are assumed to be well-approximated as binary images. This interpretation is still mostly

valid with the thin lens model though for a larger class of images; the subtle difference here

is that given sufficient defocus, there will exist at least one smooth transition region where

the near-constant foreground and background blur and blend with each other.
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CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

Here we show the results of testing our method on four different datasets, three computer-

generated with Blender and one obtained with real cameras. All experiments were run on

a laptop equipped with an Intel i7-4790 processor (3.60 GHz), assumed that the radiance

functions L and K were constant functions, and used a level set implementation with a

128 × 128 × 128 voxel grid. The dimensions (in pixels) of the Blender-generated images

and real images were 480 × 480 and 2304 × 1536 respectively. For comparison purposes,

we also applied the pinhole-based method of [53] to these datasets.

Figure 4.1: Focused (left) and defocused (right) images from the first tetrahedron dataset (2
of 30 views). Defocus blur makes sharp corners appear rounded and causes the tetrahedron
to appear larger than its actual size
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Figure 4.2: Two viewpoints of the thin lens-based reconstruction (top) and the pinhole-
based reconstruction (bottom) for the first tetrahedron dataset. The sharp edges and corners
of the shapes were reconstructed accurately using the thin lens method but rounded using
the pinhole method

4.1 Qualitative Analysis

4.1.1 Synthetic Images

The first two datasets consist of a single tetrahedron imaged in two different ways: varying

viewpoint only, and varying both viewpoint and focal parameters. For both datasets, thirty

cameras were placed in a 20 m diameter ring around and slightly above the tetrahedron. For

the first dataset, the cameras had identical intrinsic parameters of f = 50 mm, d = f/1.4,

and z = 500 mm; the right column of Figure 4.1 shows two of the images produced by

these cameras while the left column shows the same views of the scene when the cameras

are focused. As would be expected, the tetrahedron appears larger in the defocused images

due to defocus blur, and the edges and corners appear rounded and elongated instead of

sharp. The initial surface used was an ellipsoid containing the tetrahedron.

Figure 4.3: Four snapshots of the evolving surface for first tetrahedron dataset using the
thin lens method after 0, 20, 60, and 120 iterations
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Figure 4.4: Two viewpoints of the thin lens-based reconstruction (top) and the pinhole-
based reconstruction (bottom) for the second tetrahedron dataset. The thin lens method
successfully reconstructed the single tetrahedron while the pinhole method could not rec-
oncile the two different thicknesses visible in the images

Figure 4.2 shows two viewpoints of the reconstructed models obtained using both the

thin lens method and pinhole method, while Figure 4.3 shows the evolving surface at four

different iterations for the thin lens method, including the initial and final surface. Both

models are the correct general shape, but the thin lens method was able to reconstruct

the sharp edges and corners of the tetrahedron, particularly the edges between the visible

faces, whereas the pinhole method obtained much wider and more rounded features. This

is because the pinhole-based method incorrectly assumes perfect focus, so the blurred,

rounded features in the image are assumed to be directly indicative of the scene shape

instead of a consequence of the imaging process.

The differences between how the thin lens and pinhole methods treat defocus are shown

even more dramatically in the second dataset. With the cameras placed as before, the focal

parameters are varied such that the first 15 cameras had f = 50 mm, d = f/1.4, and

z = 2 m while the latter 15 cameras had f = 50 mm, d = f , and z = 500 mm. Thus, the

first 15 images appear relatively sharp and well-focused while the latter 15 appear much

more blurred and defocused, similar respectively to the left and right columns of Figure 4.1.

We see from Figure 4.4 that the pinhole method completely fails here and reconstructs the
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Figure 4.5: Focused (left), defocused (middle), and noisy and defocused (right) images
from the dumbbell dataset (2 of 30 views). Defocus blur makes the entire object appear
wider and the disk edges appear rounded instead of being a sharp transition

shape as a conglomeration of two tetrahedra of different thicknesses. This failure occurs

because the pinhole model cannot reconcile the discrepancies between the two apparent

sizes of the tetrahedron that can be seen in the images. In contrast, our thin lens method

treats defocus as an imaging property, so it was able to account for the different levels

of defocus blur and reconstruct the tetrahedron as a single coherent shape. It should be

noted that the bottom face of the tetrahedron had a relatively rough texture in both the thin

lens reconstructions, due to the non-visibility of this face in the images and the lack of the

smoothness penalty used in the pinhole method. However, the three other faces are mostly

smooth, showing that no smoothness penalty is needed for patches of the surface that are

visible to the cameras.

To test our method’s performance on rounded and partially concave shapes, the third

dataset consists of a slanted dumbbell (long cylindrical rod with flat disks on each end),

with the cameras situated as before and with focal parameters matching those of the first

tetrahedron dataset. The imaged scene is illustrated in Figure 4.5, with the left and mid-

dle columns respectively corresponding to focused images of the dumbbell and defocused

images actually used for the reconstruction. Again, the initial surface was an ellipsoid con-
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Figure 4.6: Two viewpoints (left and middle) of the thin lens-based reconstruction (top) and
the pinhole-based reconstruction (bottom) for the dumbbell dataset. The thin lens method
more accurately reconstructs the sharp edges of the disks and the actual thickness of both
the disks and the central rod when compared with the pinhole method. When noise was
added to the dumbbell dataset (right), the thin lens reconstruction was barely affected while
the pinhole reconstruction was of noticeably lower quality

taining the dumbbell, and two views of the resulting reconstructions from each method are

shown in Figure 4.6, with Figure 4.7 containing snapshots of the evolution process using

the thin lens method. The thin lens reconstruction more accurately models the sharp transi-

tions at the edges of the disks along with the actual thickness of the disks and rod compared

to the pinhole reconstruction. It was also able to well-model the rounded surfaces and con-

cave areas with only slightly less smoothness relative to the pinhole reconstruction. In

contrast, the pinhole method once again rounded all the edges and produced a too-thick

reconstruction, which can be easily seen in the relative thicknesses of the reconstructed rod

and disks.

Figure 4.7: Four snapshots of the evolving surface for the dumbbell dataset using the thin
lens method after 0, 160, 240, and 400 iterations
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Figure 4.8: Zoomed-in focused (left) and defocused (right) images from the chesspiece
dataset (2 of 32 views). Sharp features like occluding edges and texture on the mane are
blurred out and indistinguishable in the defocused images.

To test robustness to noise, a second test was run after adding uniformly distributed

noise to the dumbbell images; two of these noisy images can be seen in the right column

of Figure 4.5. A one-view comparison of the resulting reconstructed models can be seen in

the right column of Figure 4.6. While the noise barely affected the quality of the thin lens

reconstruction, it caused a noticeable decrease in the smoothness of the pinhole reconstruc-

tion, especially on the rounded edges of the disks and central rod. This was expected due

to the averaging that takes place in the surface update for the thin lens method but which is

not present in the pinhole method.

4.1.2 Real Images

The fourth dataset consists of 32 real images of a white knight chess piece taken using

a DSLR camera; though the camera was in a fixed position, the knight was placed on a

turntable that was rotated in order to generate images at different viewpoints. Zoomed-in

versions of two of these viewpoints can be seen in Figure 4.8, where as before the left

column contains focused images while the right column contains defocused images that

were used in the reconstruction. It can be seen that while the general shape of the knight

is maintained in the defocused images, specific details like occluding edges and texture are

blurred out and indistinguishable, particularly around the head and mane of the knight. For
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Figure 4.9: Two viewpoints of the thin lens-based (top) and pinhole-based reconstructions
(bottom) for the knight dataset. The thin lens method correctly reconstructs the shape of the
knight and is able to better carve out the slot between the muzzle and the body compared
to the pinhole method.

the defocused images, the camera had f = 45 mm, d = f/5.3, and z = 371 mm. The

initial surface was an ellipsoid containing the knight.

The obtained reconstructions in Figure 4.9 show that the thin lens method was able

to more accurately reconstruct the knight’s shape. Without any decrease in smoothness

(even though there are no explicit smoothness regularizers) the thin lens reconstruction

provides increased accuracy compared to the pinhole reconstruction. For instance, the

pinhole method provides an overly smooth reconstruction in order to be photometrically

consistent with the defocused images, but this means that is not able to fully carve out the

niche between the knight’s muzzle and body since the niche appears more shallow (and

Figure 4.10: Four snapshots of the evolving surface for the chesspiece dataset using the
thin lens method after 0, 20, 40, and 70 iterations
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even non-existent in some images) due to defocus blur. In contrast, the full depth of this

niche, as well as a flatter bottom (which was not visible in any of the images) is clearly

seen in the thin lens reconstruction.

4.2 Quantitative Analysis

Quantitative results for these experiments are summarized in Table 4.1. Due to the in-

creased number of pixels needed to process for every updated surface point, from the line

integral in (3.10), the thin lens method is significantly more computationally expensive.

The above experiments had iteration times ranging from 1 to 3.5 minutes using the thin

lens method, with iteration time increasing with the level of defocus and number of fore-

ground pixels. In contrast, the pinhole method ran consistently at 100 ms or less per itera-

tion. However, the thin lens method converged faster (in terms of the number of iterations)

than the pinhole method for all except the dumbbell datasets. To measure the quantitative

error of the final reconstructions relative to the input images, we used the total squared-

error between the predicted (calculated using the thin lens forward model) and the actual

pixel intensity. For comparison purposes, error for the noisy dumbbell reconstructions were

computed with respect to the noiseless images. The thin lens method gave a lower error for

all datasets with the most significant difference being for the dumbbell datasets where de-

Table 4.1: Performance Comparison of Thin Lens and Pinhole Reconstruction Methods
Dataset Error # Iterations Max. Iter. Time (s)

Thin Lens Pinhole Thin Lens Pinhole Thin Lens Pinhole
Tetrahedron 1 1.78× 109 2.47× 109 120 129 57 0.07
Tetrahedron 2 9.10× 109 1.03× 1010 120 160 65 0.05
Dumbbell 1.91× 109 7.11× 109 400 200 217 0.1
Noisy Dumbbell 1.87× 109 7.18× 109 480 400 217 0.1
Chess Piece 4.99× 1010 5.40× 1010 70 100 87 0.1

The thin lens reconstructions were more photometrically consistent and less affected by
by noise than the pinhole reconstructions, often requiring significantly fewer iterations
to converge even though each iteration itself was more costly.
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focus blur had the most effect. Also, the thin lens method’s robustness to noise can now be

seen quantitatively as the pinhole method was affected significantly more by adding noise

to the dumbbell images compared to the thin lens method, both in terms of the forward

model error as well as convergence time; for instance, the thin lens method only required

80 additional iterations compared to the pinhole method’s 200.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis developed a novel variational algorithm for multiview reconstruction of dense

surfaces that is effective when the input images are defocused as well as when the cam-

era focal parameters change between images along with the viewpoint. It is reminiscent of

depth-from-defocus as the camera is modeled as a thin lens instead of a pinhole; this allows

for the successful reconstruction of sharp edges and corners that appear rounded in images

due to defocus blur, as a thin lens appropriately models defocus blur as a property of the

imaging process and not of the scene. The more defocus blur inherent in the images, the

better this method performs over traditional pinhole-based methods due to the more general

forward model developed in Chapter 2; this forward model was shown to be more accu-

rate than existing irradiance models, especially for large lens apertures and near-focused

points where the pinhole model is invalid. However, this performance does come at the

cost of significantly increased computation time with the need to integrate over a sizable

number of pixels for every updated surface point each iteration. Even so, this very same in-

tegration grants this thin lens-based method a form of natural regularization that increases

its robustness to noise and decreases the need for artificial regularizers, and this benefit is

proportional to the level of defocus. As such, the proposed thin lens-based method is an

effective complement to existing methods that can be applied to a large number of previ-

ously unsupported situations where both the viewpoint and focal properties of the camera

can arbitrarily change between images.

There are still open areas of research and future work that can be done to improve and

better understand the proposed method. While the mathematics for both the piecewise-

smooth and piecewise-constant radiance cases have been developed, only the piecewise-

constant radiance version was implemented for this thesis. It still remains to implement
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and validate the more general piecewise-smooth radiance version, which should require

fewer images, show improved performance, and be applicable to a larger class of images.

For instance, the smooth radiance algorithm should prove more effective on the chess piece

images since they still contained a significant amount of irradiance variance within the

foreground and background regions respectively. The more general method would also

provide the means to accurately do texture mapping by mapping the optimal radiance func-

tions onto the resulting reconstructed shapes. In the same vein, the current state of the

algorithm assumes Lambertian reflectance, and work can be done to modify the algorithm

for non-Lambertian scenes, which is important for reconstruction in outdoor environments

that are often non-Lambertian. Work can also be done to widen the applicability to more

dynamic environments as well as longer data capture times by incorporating time-varying

radiance functions. Further extensions of the algorithm include a multi-scale implemen-

tation, where the usual Gaussian blurring done at each resolution scale is replaced with

blurring consistent with the focal properties of the camera, as well as modeling the thin

lens as an array of pinholes, which has the potential to reduce computation time without

significance performance loss.
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APPENDIX A

SHAPE SENSITIVITY OF FLUX THROUGH SHAPES WITH FREE

BOUNDARIES

To compute the sensitivity of the conjugate irradiance function E(X) to perturbations in

the surface shape, we need to compute the shape sensitivities of a class of flux integrals

through an evolving subset of an evolving shape. Not only is the shape evolving, but the

subset of the parameter space corresponding to the evolving portion of the shape is itself

evolving.

Let f : R3 → R3 denote a differentiable vector field in space, (u, v) denote time-

independent parameters for the evolving surface patch S(u, v, t), and U(t) ⊂ R2 denote an

evolving compact subset of its fixed parameter space with smooth boundary. We may now

express the time-varying flux of f through the corresponding subpatch of S as

Flux =

∫
S(U)

f ·N dS =

∫
U(t)

f · (Su × Sv) du dv

where N and dS denote the outward unit normal to S and the surface area element, respec-

tively.

A.1 Boundary integral

The boundary ∂U of the evolving parameter subset U is represented by the parameterized

planar curve

U∗(p, t) =
(
u∗(p, t), v∗(p, t)

)
where p ∈ [0, 1] is the time-independent curve parameter. Notice that p also gives a time-

independent parameterization of the evolving surface subpatch boundary S∗ as
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S∗(p, t) = S
(
u∗(p, t), v∗(p, t), t

)
The total time derivative of the flux through the U -subpatch is

d

dt
Flux =

∫ 1

0

f · (Su × Sv)(U∗t · n∗)‖U∗p‖ dp+

∫
U

ft · (Su × Sv) + f · (Su × Sv)t du dv

where

n∗ = Jt∗ and t∗ =
U∗p
‖U∗p‖

=
(u∗p, v

∗
p)√

(u∗p)
2 + (v∗p)

2

respectively denote the unit normal and unit tangent to U∗. After expanding and swapping

the derivative order Sut → Stu and Svt → Stv in the last term we obtain

d

dt
Flux =

∫ 1

0

f · (Su × Sv)(U∗t · n∗)‖U∗p‖ dp

+

∫
U

ft · (Su × Sv) + f · (Stu × Sv) + f · (Su × Stv) du dv

=

∫ 1

0

f · (Su × Sv)(U∗t · n∗)‖U∗p‖ dp

+

∫
U

ft · (Su × Sv) + Stu · (Sv × f) + Stv · (f × Su) du dv

=

∫ 1

0

(
f · (Su × Sv)(U∗t · n∗) + St · (Sv × f)n∗1 + St · (f × Su)n∗2

)
‖U∗p‖ dp

+

∫
U

ft · (Su × Sv)− St ·
(
(Sv × f)u + (f × Su)v

)
du dv

=

∫ 1

0

(
f · (Su × Sv)(U∗t · n∗) + St × (Sut

∗
1 + Svt

∗
2)
)
‖U∗p‖ dp

+

∫
U

ft · (Su × Sv)− St · (Sv × fu + fv × Su) du dv

where n∗i and t∗i denote the i-th component of n∗ and t∗. Finally, substituting the relations
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S∗p = Suup + Svvp

dS∗

dt
= Suu

∗
t + Svv

∗
t + St

dS∗

dt
× S∗p = (Su × Sv)(u∗tvp − v∗t up) + St × (Suup + Svvp)

= (Su × Sv)(U∗t · n∗)‖U∗p‖+ St × (Sut
∗
1 + Svt

∗
2)‖U∗p‖

we obtain

d

dt
Flux =

∫ 1

0

f ·
(
dS∗

dt
× S∗p

)
dp+

∫
U

ft · (Su × Sv)− St · (Sv × fu + fv × Su) du dv

A.2 Surface integral

We now simplify the remaining surface integral, letting Df denote the Jacobian of the

vector field f :

∫
U

ft · (Su × Sv)− St · (Sv × fu + fv × Su) du dv

=

∫
U

(Su × Sv) · (Df)St + St ·
((

(Df)Su
)
× Sv + Su ×

(
(Df)Sv

))
du dv

=

∫
U

(Su × Sv) · (Df)St

+ St ·
((

(Df)Su − Su
)
×
(
Sv − (Df)Sv

)
+
(
(Df)Su

)
×
(
(Df)Sv

)
+ Su × Sv

)
du dv

=

∫
U

(Su × Sv) · (Df)St

+ St ·
(
− adjT (I −Df)(Su × Sv) + adjT (Df)(Su × Sv) + Su × Sv

)
du dv

=

∫
U

(Su × Sv) · (Df)St + St ·
(

adjT (Df)− adjT (I −Df) + I
)

(Su × Sv) du dv
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where adj(A) denotes the adjugate matrix for a given matrix A and I is the identity matrix.

We now employ the following formula for any 3x3 matrix A:

adj(A) =
(traceA)2 − traceA

2
I − (traceA)A+ A2

to obtain

adj(A)− adj(I − A) + I = ItraceA− A

and therefore continue to simplify the surface integral:

=

∫
U

St ·
(

(Df)T (Su × Sv)
)

+ St ·
(
Itrace(Df)− (Df)T

)
(Su × Sv) du dv

=

∫
U

trace(Df)St · (Su × Sv) du dv

=

∫
S(U)

(∇ · f)St ·N dS

A.3 Combined result

Finally, we express the combined result for the total time derivative of flux as

d

dt
Flux =

∫
S∗
f ·
(
dS∗

dt
× T ∗

)
ds∗ +

∫
S(U)

∇ · f(St ·N) dS (A.1)

where T ∗ denotes the unit tangent vector along the surface subpatch boundary S∗ (which

will also be a tangent vector to the surface S) and ds∗ denotes its arclength element. Note

that while formulas for flux derivatives have been previously given in [103, 104], these

formulas only consider the case of a moving surface, not a deforming surface. The main

consequence of this is that the partial time derivative in those formulations is replaced with

the material derivative as given by the dS∗

dt
term in (A.1).
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APPENDIX B

SWAPPING ORDER OF INTEGRATION FOR OCCLUDING BOUNDARY

INTEGRAL

B.1 Occluding boundary and occluding projection

We may express the occluding surface boundary S∗(ΓS(X)) (with respect to a fixed viewpoint

P (X) on the focal plane) as the zero level set of the following function g : S → R on the

surface:

g(S,X)
.
=
(
S − P (X)

)
·N (B.1)

Similarly, if we fix a point S on the surface, the zero level set of (B.1) on the focal plane

domain expresses the occluding projection contour Ω∗(ΓS(S)) which is the locus of points in

Ω for which S is part of the occluding boundary for P (X).

It will be necessary to use the gradients of g with respect to both X and S. The gradient

and gradient magnitude with respect to X is

∇Xg = N − (N · ez)ez

‖∇Xg‖ =
√

1− (N · ez)2 (B.2)

Using the Weingarten equations [105] and the radial/transverse frame (3.3), the (intrinsic)

gradient and gradient magnitude with respect to S is found to be
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∇Sg = −r S(Tr) = r
(
κrTr − τrT⊥

)
‖∇Sg‖ = r‖Tr‖

√
κ2
r + τ 2

r (B.3)

where S(·) is the shape operator of S, and κr and τr are the geodesic curvature and torsion

of S in the direction of Tr.

B.2 Dirac integration formula

Combining the generalized scaling property of the Dirac delta with the coarea formula gives

the following integration formula (assuming a differentiable scalar function g : Rn → R

such that ‖∇g 6= 0‖):

∫
Rn
f(x)δ

(
g(x
)
dx =

∫
g−1(0)

f(u, v)

‖∇g‖
dHn−1(x)∫

g−1(0)

f dHn−1 =

∫
Rn
f‖∇g‖δ

(
g(x)

)
dx (B.4)

where Hn−1 denotes the n − 1 dimensional Hausdorff measure of the zero level set of g

[106].

B.3 Planar integration of occluding boundary to surface integration of occluding

projection

We now consider an integral over all reference points P (X) in the focal plane of occluding

boundary integrals with respect to each surface point. We begin by applying (B.4) with

g defined as in (B.1) and having gradient magnitude (B.3). After swapping the order of

integration, the Dirac integration formula is applied again, but in the reverse direction,

using (B.2):
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∫
Ω

(∫
S∗

(ΓS(X))

f ds∗

)
dX

=

∫
Ω

∫
S(ΓS(X))

fr‖Tr‖
√
κ2
r + τ 2

r δ
(
(S − P ) ·N

)
dSdX

=

∫
S

∫
Ω(ΓS(S))

fr‖Tr‖
√
κ2
r + τ 2

r δ
(
(S − P ) ·N

)
dXdS

=

∫
S

∫
Ω(ΓS(S))

fr‖Tr‖
√
κ2
r + τ 2

r

‖∇Xg‖
‖∇Xg‖

δ
(
(S − P ) ·N

)
dXdS

=

∫
S

∫
Ω∗

(ΓS(S))

fr∗

√
(κ∗r)

2 + (τ ∗r )2

1− (N∗ · ez)2
dsXdS (B.5)
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APPENDIX C

PRELIMINARY COMPUTATIONS (2D)

C.1 Full Jacobian for Change of Variables (2D)

In this 2D case, the surface is simply a curve C(s), where s is the arclength parameter; like-

wise the focal plane is simply a line. Consider a ray emitted from C(s) that passes through

point P (x) on the focal plane; for sake of space and neatness these points will simply be

denoted henceforth as C and P . Let r denote the length of the ray segment connecting C

and P and er = (C − P )/r denote the unit ray vector. Let (T,N) and (ex, ez) denote the

unit tangents and normals to C and P , respectively. Finally, as previously defined, θ and α

are the angles that er makes with N and ez, respectively. Table C.1 summarizes the inner

product relationships between all these unit vectors in terms of the ray angles θ and α. Note

that only N · er and ez · er remain unchanged in 3D case

Table C.1: 2D Angle Relationships
ex · er = − sinα ez · er = cosα
T · er = sin θ N · er = − cos θ
T · ex = − cos(θ − α) N · ex = − sin(θ − α)
T · ez = sin(θ − α) N · ez = − cos(θ − α)

C.1.1 Jacobian ∂(s, θ)
∂(x, α)

of surface coordinates s(x, α) and θ(x, α)

We first differentiate in α starting with

∂er
∂α

=
I − ereTr

r

∂(C − P )

∂α
=
I − ereTr

r
T
∂s

∂α
=
T − er sin θ

r

∂s

∂α

Now differentiating cosα = er · ez yields

− sinα =
∂er
∂α
· ez =

− cos θ sinα

r

∂s

∂α
⇒ ∂s

∂α
=

r

cos θ
(C.1)
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Next, differentiating − cos θ = er ·N yields

sin θ
∂θ

∂α
=
∂er
∂α
·N + er ·

∂N

∂α
= sin θ

(
cos θ

r
+ κ

)
∂s

∂α

where κ denotes the curvature of C. Substitution by (C.1) then gives

∂θ

∂α
= 1 +

κr

cos θ
(C.2)

Next, we differentiate in x starting with

∂er
∂x

=
I − ereTr

r

∂(C − P )

∂x
=
I − ereTr

r

(
T
∂s

∂x
− ex

)
=

(T − er sin θ) ∂s
∂x
− ex − er sinα

r

Now differentiating cosα = er · ez yields

0 =
(− cos θ sinα) ∂s

∂x
− cosα sinα

r
⇒ ∂s

∂x
= −cosα

cos θ
(C.3)

Next, differentiating − cos θ = er ·N yields

sin θ
∂θ

∂x
=
∂er
∂x
·N + er ·

∂N

∂x
= sin θ

(
cos θ ∂s

∂x
+ cosα

r
+ κ

∂s

∂x

)
Substitution by (C.3) then gives the last entry of the Jacobian

sin θ
∂θ

∂x
= sin θ

(
−κcosα

cos θ

)
⇒ ∂θ

∂x
= −κcosα

cos θ
(C.4)

Combining (C.3), (C.1), (C.4), and (C.2) into matrix form gives the following Jacobian and
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determinant

∂(s, θ)

∂(x, α)
=

 ∂s
∂x

∂s
∂α

∂θ
∂x

∂θ
∂α

 =
1

cos θ

 − cosα r

−κ cosα cos θ + κr

 (C.5a)

∣∣∣∣ ∂(s, θ)

∂(x, α)

∣∣∣∣ =
∣∣∣−cosα

cos θ

∣∣∣ =
cosα

cos θ
(C.5b)

Note that the absolute value can be removed since cosα and cos θ will always have the

same sign.

C.1.2 Jacobian ∂(x, α)
∂(s, θ)

of surface coordinates x(s, θ) and α(s, θ)

We first differentiate in θ starting with

∂er
∂θ

=
I − ereTr

r

∂(C − P )

∂θ
=
I − ereTr

r

(
−ex

∂x

∂θ

)
=
−ex − er sinα

r

∂x

∂θ

Now differentiating − cos θ = er ·N yields

− sin θ =
∂er
∂θ
·N =

sin θ cosα

r

∂x

∂θ
⇒ ∂x

∂θ
=

r

cosα
(C.6)

whereas differentiating − cosα = er · ez yields

− sinα
∂α

∂θ
=
− cosα sinα

r

∂x

∂θ

Substitution by (C.6) gives us

∂α

∂θ
= 1 (C.7)

Next, we differentiate in s starting with
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∂er
∂s

=
I − ereTr

r

∂(C − P )

∂s
=
I − ereTr

r

(
T − ex

∂x

∂s

)
=

(T − er sin θ)− (ex + er sinα)∂x
∂s

r

Now differentiating − cos θ = er ·N yields

0 = sin θ

(
cos θ + cosα∂x

∂s

r
+ κ

)
⇒ ∂x

∂s
= −cos θ + κr

cosα
(C.8)

whereas differentiating cosα = er · ez yields

− sinα
∂α

∂s
= − sinα

cos θ + cosα∂x
∂s

r

Substitution by (C.8) then gives us

∂α

∂s
= −κ (C.9)

Combining (C.8), (C.6), (C.9), and (C.7) into matrix form gives the following Jacobian and

determinant

∂(x, α)

∂(s, θ)
=

 ∂x
∂s

∂x
∂θ

∂α
∂s

∂α
∂θ

 =
1

cosα

− cos θ − κr r

−κ cosα cosα

 (C.10a)

∣∣∣∣∂(x, α)

∂(s, θ)

∣∣∣∣ =

∣∣∣∣− cos θ

cosα

∣∣∣∣ =
cos θ

cosα
(C.10b)

Note that the absolute value can be removed since cosα and cos θ will always have the

same sign.
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C.2 Image Irradiance Equation (2D)

In the much simpler 2D case, each ray has only one angular parameter and one spatial

parameter, either (s, θ) in surface coordinates or (x, α) in focal plane coordinates. It is

easy to see that the extreme ray angles α± are related to the spatial coordinates by

tanα±(x) = −x
z
± d

2z

Now, the 2D conjugate irradiance equation (assuming an in-focus point and Lambertian

reflectance) is given by

E(x) = L(s)

∫ α+(x)

α−(x)

cosα dα

= L(s)(sinα+ − sinα−)

= L(s)

(
sin tan−1

(
−x+ d/2

z

)
− sin tan−1

(
−x− d/2

z

))
= L(s)

(
x+ d/2√

(x+ d/2)2 + z2
− x− d/2√

(x− d/2)2 + z2

)
(C.11)

Next, in 2D the relationship between the conjugate irradiance and the image irradiance

is similar in form to its 3D counterpart; the main difference is that there is only one factor

of the lens magnification instead of two:

E ′(x′) =
1

M
E(x) (C.12)

where M = 1− z/f and x′ = x/M as before. Now combining (C.11) and (C.12) gives the

final closed-form of the 2D image irradiance:

E ′(x′) =
1

M
L(s)

(
x+ d/2√

(x+ d/2)2 + z2
− x− d/2√

(x− d/2)2 + z2

)
(C.13)
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C.3 Shape Sensitivity of Flux (2D)

Similar to A, let f : R2 → R2 be a differentiable vector field in the plane, and let C denote

an evolving curve. Let p be a time-independent parameter for C(p, t), and let U(t) ⊂ R

represent an evolving set of n ≥ 1 intervals {[p1, p2], [p3, p4, ], . . . , [pn−1, pn]} within its

fixed parameter space. The time-varying flux through the corresponding subset of C can

be expressed as

Flux =

∫
C(U)

f ·N ds =

∫
U(t)

f · JCp dp

where N denotes the unit normal to C and ds its arclength element, and J =

 0 1

−1 0

.

C.3.1 Boundary terms

The boundary ∂U = U∗(t) of the evolving parameter subset U can be represented by the

pairs of sub-interval endpoints

U∗(t) =

p1(t), p2(t)︸ ︷︷ ︸
sub-interval 1

, p3(t), p4(t)︸ ︷︷ ︸
sub-interval 2

, . . . , pn−1(t), pn(t)︸ ︷︷ ︸
sub-interval n


In the following, p∗ refers arbitrarily to any of these sub-interval endpoints. Accordingly,

the corresponding contour subsection endpoint C∗ can be represented as

C∗(t) = C(p∗(t), t)

in order to denote the actual points on the curve at integration boundaries. The total U -

subsection flux derivative can then be written as
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d

dt
Flux =

2n∑
k=1

f · JCp
dpk
dt

(−1)k +

∫
U

ft · JCp + f · JCpt dp

=
2n∑
k=1

f · J
(
Cp
dpk
dt

+ Ct

)
(−1)k +

∫
U

ft · JCp − fp · JCt dp

=
2n∑
k=1

f · J C
∗

dt
(−1)k +

∫
U

ft · JCp − fp · JCt dp (C.14)

where the second line is obtained by swapping the derivative order Cpt → Ctp and applying

integration by parts, and the final line is obtained by expanding the material derivative

dC∗

dt
= Cp

dp∗

dt
+ Ct

C.3.2 Contour Integral

The remaining contour integral can be simplified as follows, withDf denoting the Jacobian

of the vector field f :

∫
U

ft · JCp − fp · JCt dp =

∫
U

JCp · (Df)Ct − JCt · (Df)Cp dp

=

∫
C(U)

N · (Df)Ct)− JCt · (Df)T ds

=

∫
C(U)

NT (Df)
(
(Ct · T )T + (Ct ·N)N

)
−
(
(Ct · T )N − (Ct ·N)T

)T
(Df)T ds

=

∫
C(U)

(
T T (Df)T +NT (Df)N

)
(Ct ·N) ds

=

∫
C(U)

∇ · f(Ct ·N) ds (C.15)

75



C.3.3 Combined result

Substituting (C.15) into (C.14) gives the final result

d

dt
Flux =

2n∑
k=1

f · J dC
∗

dt
(−1)k +

∫
C(U)

∇ · f(Ct ·N) ds (C.16)

Note that the contour integral is exactly the 2D analog of the surface integral in the 3D

case (A.1). Also, the first terms are functionally identical, as they are respectively summing

and integrating along the boundary an inner product between the vector field and vectors

orthogonal to the boundary points. However, this set of boundary points can be discretized

in the 2D case while they span a continuum in the 3D case.

C.4 Surface Evolution Equation (2D)

Irradiance sensitivity

Just as in the 3D case, the irradiance E(x) can be written as a flux integral:

E(x) = −
∫
C(ΓC (x))

Q̂ cosα

r
er ·N ds (C.17)

Note that the only main difference here in 2D is that there is only one factor of r in the

denominator instead of two, which is to be expected. Now, applying (C.16) gives the total

time derivative of E as

dE

dt
(x) =

2n∑
k=1

(
−Q̂ cosα∗

r∗
e∗r

)
· J dC

∗

dt
(−1)k −

∫
C(ΓC (x))

∇Q̂ · er
cosα

r
(Ct ·N) ds

Interior boundary points (non-occluding) A point C∗ ∈ ∂CΓC(x)) which does not fall

along a visibility boundary with respect to P (x) represents the endpoint of a ray along the

boundary ∂ΓC(x) of the ray set between P (x) and the lens, emitted from C. For such

76



points, the implications are the same as in 3D: the ray direction e∗r at the boundary remains

unchanged even as C∗ evolves (e.g. C∗ moves along the ray):

e∗r =
C∗ − P
r∗

= constant
d
dt−→ dC∗

dt
=
dr∗

dt
e∗r

As in the 3D case, such points do not contribute to the boundary summation since e∗r ·Je∗r =

0, and may therefore be ignored.

Occluding boundary points As such, attention may again be restricted to the subset of

∂C(ΓC(x)) representing the occluding boundaries with respect to P (x), which are the points

C∗ whose rays to P (x) satisfy the occluding boundary condition

e∗r ·N∗ = 0

By decomposing Ct into its tangential and normal components, it can be found that the

inner product in the boundary summation can be written as

e∗r · J
dC∗

dt
= −

Ct(s∗, t)︸ ︷︷ ︸
.
=C∗t

·N∗

 (e∗r · T ∗)

Finally, noting that e∗r · T ∗ = (−1)k), the time derivative of E simplifies to

dE

dt
(x) =

∑
occluding
C(ΓC (x))

(
Q̂ cosα∗

r∗

)
(C∗t ·N∗)−

∫
C(ΓC (x))

∇Q̂ · er
cosα

r
(Ct ·N) ds (C.18)
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Total matching error sensitivity

The total matching error (for a single image), and its time derivative, is simply the 2D

analogues of their respective equations from the 3D case:

J =
M

2

∫
Ω

E2 dx (C.19a)

dJ

dt
=

∫
Ω

E dE
dt

dx (C.19b)

Boundary term Inserting the boundary term of (C.18) into (C.19b) and again utilizing

the Dirac integration formula (B.4) gives

∫
Ω

E(x)

 ∑
occluding
C(ΓC (x))

Q̂∗ cosα∗

r∗
(C∗t ·N∗)

 dx

=

∫
Ω

E(x)

(∫
C

L cosα(Ct ·N)|κer · T |δ
(
(C − P ) ·N

)
ds

)
dx

=

∫
C

L|κ|


∫
P(ΓC (C))

E(x) cosα|er · T | δ
(
(C − P ) ·N

)︸ ︷︷ ︸
0 or 1 root
(at θ=±π

2

dx

 (Ct ·N) ds

=

∫
C

L|κ|

E(x) cosα

1︷ ︸︸ ︷
|er · T |
| − ex ·N |︸ ︷︷ ︸

cosα


θ=±π

2

(Ct ·N) ds

=

∫
C

L|κ|[E(x)]θ=±π
2
(Ct ·N) ds

Both terms Noting that the curvature κ must be positive at an occluding boundary point

allows the absolute value sign to be dropped, and the final simplified expressions for the

matching error sensitivity and the resulting evolution flow for C for a single image are
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given as

dJ

dt
=

∫
C∗
QE(x∗)κ∗(C∗t ·N) ds∗ −

∫
C

(
∇Q̂ ·

∫
P(ΓC (C))

E(x)er
cosα

r
dx

)
(Ct ·N) ds

(C.20)

Ct(s) =

(
−QE(x∗)κ∗ +∇Q̂ ·

∫ x+

x−
E(x)er

cosα

r
dx

)
N

=

(
−QE(x∗)κ∗ +∇Q̂ ·

∫ θ+

θ−
E(x)er dθ

)
N (C.21)

It can be seen that (C.21) is similar in form to its 3D analog (3.10). For one thing, the

second (non-boundary) term is identical in both (with the accepted idea that angle and

solid angle elements are corresponding analogues). The first (boundary) terms differ in

three important ways. First is that in 2D for a given occluding boundary point on the curve,

there is only a single point in the focal plane that forms an occluding boundary ray with

that curve point; however, in 3D there is an entire line of such focal plane points. Second,

in both 2D and 3D one factor of r−1 is canceled out from applying the Dirac integration

formula, but this still leaves one factor in the 3D case due to the increase in dimensionality.

Finally, the factor of cosα is not completely canceled out in the 3D case. Expanding out

√
1− (N · ez)2 =

√
cos2 α +

(
(ez × er) ·N

)2

it is seen that only when N lies in the plane spanned by er and ez does the above simplify

to cosα. This is the only possible scenario in 2D, but it is far from guaranteed in 3D, which

explains both the new radical term and the non-cancellation of the cosine term in the 3D

case.
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[92] M. Carvalho, B. Le Saux, P. Trouvé-Peloux, A. Almansa, and F. Champagnat,
“Deep depth from defocus: How can defocus blur improve 3D estimation using
dense neural networks?” In Computer Vision – ECCV 2018 Workshops, L. Leal-
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