
Protocol Discovery in Multiprotocol Networks
�

Russell J. Clark
Mostafa H. Ammar
Kenneth L. Calvert

GIT-CC-94/42

August 4, 1994

Abstract

Multiprotocol systems can be an important tool for achieving interoperability.
As the number of protocols available on such systems grows, there is an in-
creasing need for support mechanisms that enable users to effectively access
these protocols. Of particular importance is the need to determine which of
several protocols to use for a given communication task. In this work, we
propose architectures for a protocol discovery system that uses protocol feed-
back mechanisms to determine which protocols are supported. We describe
the issues related to protocol discovery and present feedback mechanisms
necessary to support discovery. We present a prototype implementation of a
discovery system that supports next generation IP protocols.

Keywords: multiprotocol systems, protocol discovery, protocol feedback, IPng
transition

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332-0280
rjc@cc.gatech.edu

� This research is supported by a grant from the National Science Foundation (NCR-9305115) and
the TRANSOPEN project of the Army Research Lab (formerly AIRMICS) under contract number
DAKF11-91-D-0004.

1 Introduction

The communication network is quickly becoming a critical component of computer
systems in both educational and commercial environments. The abundance of
personal computers at commodity prices as well as the overwhelming publicity
associated with the National Information Infrastructure is fostering a significant
growth in the number of networked computer systems. While this growth is
impressive, it is important to recognize that the value of networking to the end-
user is limited by the degree to which the needed resources can actually be accessed
after going on-line. Just because a computer is connected to a network, for example
through an electronic mail service, does not mean the user can access the resources
available on the Internet. To a great extent, this access limitation is a direct result
of the incompatibilities between different network protocols1.

As data communications evolved, many different protocols were developed to
support developing technologies and to address varying user requirements. This
evolution has led to a great diversity in protocols that cannot interoperate. In order
to promote interoperability, several standards organizations have worked to define
standard protocols (e.g., TCP/IP, OSI). However, it is now clear that no single stan-
dard protocol or protocol family will become the universal protocol supported by
all networked systems. Instead, large numbers of systems continue to be installed
that support any one of the standards or one of numerous proprietary protocols
(e.g., IPX, AppleTalk, SNA). Even the Internet is no longer a single protocol net-
work [12]. While TCP/IP remains the primary protocol suite, other protocols (e.g.,
IPX, AppleTalk, OSI) exist either natively or encapsulated as data within IP.

Developing network systems that support multiple protocols can simplify the in-
troduction of new protocols, like IPng, and reduce the risk for network managers
faced with the prospect of supporting a new protocol. This will result in a faster,
wider acceptance of new protocols and increased interoperability between network
hosts. It has recently been pointed out that the National Information Infrastructure
will be a multi-supplier, multi-technology endeavor that will create difficult inter-
operability problems. This will require mechanisms for negotiating commonality
between network systems [20].

In our research, we consider ways in which multiprotocol networking can be
accommodated through the use of multiprotocol systems [4]. In previous work,
we have shown how a directory service can be used to provide the configuration
information necessary for a multiprotocol system to communicate [5]. In this
paper we present our research addressing the problem of what to do when no
protocol configuration information is available through a directory lookup or the
information that is available is inaccurate. We call our approach to solving this
problem protocol discovery. In the current work we analyze the protocol features,

1While some access limitations are policy rather than technology restrictions, such cases are not
the focus of this discussion.

2

especially feedback mechanisms, necessary to perform protocol discovery and
point out limitations in some current protocols. We also present some practical
approaches to performing discovery and describe our experience in implementing
a discovery system.

In the next section we present the background for this current work including
related work and a description of the multiprotocol model. In Section 3 we present
the protocol discovery approach to determining which protocols a multiprotocol
system should use. We present our implementation experience in Section 4 and
discuss the feedback mechanisms of several common protocols along with ways
they could be enhanced to better support discovery. We conclude with a summary
and future work in Section 5.

2 Background

The general problem we address is how to design network systems that can inter-
operate in a multiprotocol network. Our approach to achieving interoperability is
to develop multiprotocol end-systems that can directly communicate with many
different protocol configurations. In this section we review related work in this
area and then present the model for our research.

2.1 Related Work

Recently, others have begun to research the issues involved in integrating protocols
from different architectures. Ogle et al. [14] are developing a TCP/IP and SNA
system that performs protocol selection below the socket level interface. Janson
et al. [10] consider options for interoperability between OSI and SNA networks,
and analyze the addressing issues arising when these protocols are combined in a
single network. One approach to achieving interoperability in diverse systems is
to provide a mechanism for hosts to exchange protocol information before carrying
out the communication task. Two early examples of this approach are the Network
Command Language described by Falcone [8] and the “meta-protocol” concept
proposed by Meandzija [13]. Similarly, Tschudin describes a “generic protocol”
in [19].

The recent work of Comer and Lin [6] describes the use of a technique called
active probing to deduce characteristics of a TCP implementation. While their work
focuses on discovering possible problems with a known protocol, the technique
used is somewhat similar to the discovery process we perform.

3

 TCP

 FTP

 IP SIPP

 FTAM

CLNP

 TP0
 TP4

Figure 1: A Multiprotocol Graph

2.2 The Multiprotocol Model

A simple definition of a multiprotocol system is “a host that supports more than one
protocol or protocol family”. In this section, we provide a more formal definition
and provide some examples of what we mean by a multiprotocol system.

In this work, we define a protocol as “a prior agreement among systems regarding
the form and meaning of messages”. A protocol entity (PE) is an object that imple-
ments a given protocol. With this protocol, a PE can communicate with another
PE of the same type. In most cases, a PE of type � will use another PE of type �
to transfer messages over to � ’s peer. This uses relationship between � and � gives
rise to the common layering model that describes most network architectures. It
is convenient to represent this relationship as a protocol graph. For instance, Fig-
ure 1 portrays a multiprotocol protocol graph. In this graph, each box or node
represents a PE and each edge represents a uses relationship. Each instance of
communication invoked by a user of a protocol graph involves a particular subset
of protocols in the graph. We refer to this subset as a protocol path or simply a path.
A path encompasses a fixed set of PEs, connected by the uses relation, that provides
communication from the top layer PEs down to the bottom layer PEs.

A system supporting the protocol graph in Figure 1 provides a file-transfer service
using seven different protocol paths. It supports the FTP application using TCP
and the FTAM application using TP0 or TP4. This host supports three different
network layer protocols. It supports the standard Internet protocol version 4,
identified as IP. It also supports SIPP, one of the current proposed next generation
Internet protocols (IPng) [7]. The OSI CLNP protocol is also supported along with
the TUBA option [3] for providing TCP applications over CLNP.

Each of the graphs in Figure 2 provides a single protocol path. Figures 2a and 2f
represent single stack architectures for the Internet and OSI protocols respectively.
FTP using the SIPP IPng proposal is shown in Figure 2b. Figure 2g depicts a mixed
stack architecture that provides the upper layer OSI services using the Internet

4

 TCP

 FTP

 IP

 FTAM

 TP0
 TP4 TCP

 FTP

 SIPP

 TCP

 FTP

CLNP

 FTAM

 TP4

 IP SIPP CLNP

 FTAM

 TP4

 FTAM

 TCP

 IP

 (a) (b) (c) (d) (e) (f) (g)

Figure 2: Single Protocol Graphs

protocols [18]. This is an example of a “transition architecture” for providing OSI
applications without requiring a full OSI implementation. Figures 2d and 2e
represent two other mixed stacks for providing OSI applications over the Internet.
While these are less popular than 2g, they are indeed possible in our multiprotocol
system. Figure 2c depicts a mixed stack architecture that provides the upper
layer Internet applications using the OSI network protocol [3]. In addition to
communicating with the two previous simple protocol stacks, the multiprotocol
system of Figure 1 includes all the protocols necessary to communicate with these
two new, mixed protocol stacks.

Unfortunately, in most current examples, multiprotocol architectures like that in
Figure 1 are implemented as independent protocol stacks running on a single
system. This means, for instance, that even though both TCP and CLNP may exist
on the system, there is no way to use TCP and CLNP in the same communication.
The problem with such implementations is that they are designed as coexistence (or
so-called “ships in the night”) architectures and are not integrated interoperability
systems. We believe future systems should include mechanisms to overcome this
traditional limitation. By integrating the components of multiple protocol stacks in
a systematic way, we can interoperate with hosts supporting any of the individual
stacks as well as those supporting various combinations of the stacks.

In order to effectively use multiple protocols, a system must identify which of the
available protocols to use for a given communication task. We call this the Protocol
Determination task. In performing this task, a system determines the combination of
protocols necessary to provide the needed service. For achieving interoperability,
protocols are selected from the intersection of those supported on the systems
that must communicate. In previous work [5], we presented mechanisms for
using directory services to assist in protocol determination. In the next section we
describe an alternative approach called protocol discovery.

5

S D

 I2 I1

Figure 3: A Sample Network

3 Protocol Discovery

The idea behind protocol discovery is to use the features of networks and the
network protocols themselves in determining which protocol paths are available
to support a given communication task. This is done primarily by attempting to
communicate using different protocols and monitoring the attempts to see what
can be learned about the network configuration. Other sources of information
can also be useful. A multiprotocol host could keep a cache of configuration
information about hosts recently heard from. A host could also passively listen
to other conversations on the network, especially a broadcast network, and learn
about the protocols supported by hosts on the network. In protocol discovery,
we use as much of this information as is available to the multiprotocol system for
determining which protocols are supported on the remote system.

Here we present the protocol discovery concept, beginning in the next section with
a simple example. After the example we give a formal description of the discovery
task and present our proposed discovery architectures.

3.1 An Example of Protocol Discovery

Consider an initiating host supporting a multiprotocol graph such as that of Fig-
ure 1. This is the source or initiating host, labelled S, in the network with topology
presented in Figure 3. The user of this host is attempting to communicate with
the destination or responding host D. These hosts are physically connected via two
intermediate network layer routers labelled I1 and I2.

In order to perform a file transfer, the user must first determine which, if any, of
the seven distinct local protocol combinations are supported on the remote host.
The task is to determine which protocols supported by S are also supported by D.
It is also necessary to determine the network layer protocols supported by both I1
and I2 as well as S and D.

6

In this case, without prior knowledge of the remote configuration, the user deter-
mines the protocols to use based on the feedback provided from the applications.
The user proceeds by attempting a connection with one of the two applications
and monitoring the way this attempt fails or succeeds. A successful connection
indicates that the current application could be used. A failed connection indicates
one of several possible problems.

Suppose for instance that host D supports the single OSI stack of Figure 2f. If the
user decides to first try the FTP application with TCP and IP then this attempt
will subsequently fail2. Table 1 lists the feedback provided to the user for various
protocol incompatibilities3 . In this case, since no compatible network layer is
found, the user will receive the Connection timed out message. Since this message
does not provide information about the actual cause of the failure, there is little
to assist the user in choosing the next protocol combination to try. If the user
continues by trying FTP with the two other options, both will fail. However, the
attempt with the FTP/TCP/CLNP combination will fail with the Connection refused
message. Based on the information in Table 1, the user can determine that CLNP
is supported on the remote system. Now, when the FTAM application is tried, the
user can choose the protocol combination that includes CLNP. In this example, the
FTAM/TP4/CLNP option is tried and the communication succeeds.

Compatibility Problem FTP Error Message FTAM Error Message
Network congestion/partition Connection timed out Timer expired
Remote host off-line Connection timed out Timer expired
No compatible physical layer Connection timed out Timer expired
No compatible network layer Connection timed out Timer expired
No compatible transport layer Connection refused Timer expired
No compatible application layer Connection refused OSI service tsap#259 not found

Table 1: FTP and FTAM Error Messages

The “guided” protocol selection carried out in the above scenario is what we are
interested in with protocol discovery.

3.2 The Protocol Discovery Task

Here we provide a more formal description of the protocol discovery problem.
Consider the protocol path � , represented as ��� . At the beginning of protocol

2The first type of failure that might be encountered is the failure to find a network address
for host � in the format required for the selected protocol. In order to simplify the example, the
discussion here assumes that addresses are available for all the protocols attempted.

3The error messages listed are for the FTP program from Sun OS 4.1.3 and FTAM program from
the ISODE version 8.

7

discovery the paths currently supported on the multiprotocol system 	 are known.
That is, the members of the set � ��
 	 are known. Given this, it is necessary
to determine for all � ��
 	 whether � ��
� or � ���
� . In protocol discovery,
this determination is made based on feedback from interaction with the network,
primarily through communication attempts with various protocols. Until negative
feedback arrives about a protocol in � � , � ��
� still may be true. In general, � ���
�
can only be known when feedback arrives from some protocol indicating that ��� ,
or some protocol in ��� , is not supported on . Because of intermittent failures and
delays, it is not possible to assume ��� �
� based only on the failure of an attempt
to use ��� . On the other hand, positive feedback about ���
� may come as a result
of successful interaction with all of the protocols in the path ��� or from another
protocol indicating that ��� is supported on .

In protocol discovery it is not necessary to determine the entire set � ��
� . All
that is needed is to find one common path between and 	 that uses the same
protocols and will therefore provide sufficient communication. The discovery
process performs a bottom-up search of the protocol graph to find a matching
protocol path. The discovery system starts with a low level protocol, like the CLNP
network layer, and tries to establish whether it exists on the destination. Once
positive feedback arrives from the network layer, the next step is to determine which
transport layer protocols are available through this network layer. Eventually,
when communication is established with some application that provides the service
requested, the discovery process can stop and normal communication can proceed.
In this case we say that a complete, matching protocol path has been found. It is
possible that a partially successful communication attempt will not lead to complete
success. For instance, even after identifying a network and transport layer, it may
still be necessary to backtrack and find another network layer if the first one does
not lead to an application providing the desired service.

We have identified the following two basic approaches to supporting discovery in
multiprotocol systems.

� User Discovery: In this approach, the user performs discovery by attempting
to use different protocol paths. This is the approach carried out in the previous
example using FTP and FTAM. To support this approach it is necessary to
enhance the current protocol systems to provide explicit failure indications.
In the above scenario, a message such as CLNP supported, TP4 not supported
rather than the simple Connection refused would greatly assist the user in
determining which protocol path to attempt next.

� Automated Discovery System: This approach involves implementing a pro-
tocol subsystem that performs protocol discovery automatically as part of the
normal protocol operations. Such a system could receive a communication
request from the user such as, “Transfer files from host A to host B”, and then
discover which protocols to use to perform the task.

8

 TCP

 FTP

 File Transfer Service

 IP SIPP

 FTAM

CLNP

 TP0
 TP4

 Generic Application

 Multiprotocol Application

 Multiprotocol
 Network Subsystem

Figure 4: Automated Discovery Architecture Scopes

In the current work, we focus on the second approach. A goal of this research
is to develop the necessary components for a discovery system that can take a
user’s request and return a “connected” communication session. This system will
operate without the user being aware of the protocols used, different network
address formats, or failures during protocol attempts. In this system, feedback is
given to the user only after the communication is successfully established or all
possible combinations are exhausted.

3.3 Automated Discovery Architectures

Here we describe three different architectures for developing an automated discov-
ery system. Each architecture has its own virtues and limitations. As we will see,
the main distinction among the architectures is the scope of the discovery system
in terms of the protocols included. This difference in scope is depicted in Figure 4.

Generic Application: The first approach to automated discovery is to perform
protocol discovery as part of a generic user application that provides a common
service. The generic File Transfer Service of Figure 4 presents the user with a con-
sistent interface, regardless of the actual protocols or applications used [17]. This
discovery approach incorporates the entire protocol graph, including the applica-
tions, into the discovery system. The main advantage of this approach is that it
allows the user to communicate with a wide range of currently-installed systems,
including those supporting a variety of applications.

A problem with this approach is that it is difficult to hide the actual applications
and some limitations will always arise when developing the generic interface. For
instance, the FTAM application includes several features not found in FTP. These

9

features will need to be either emulated for FTP communications or not provided
at all.

Multiprotocol Application: The second approach to performing automated pro-
tocol discovery is to develop multiprotocol versions of applications that perform
discovery themselves. For example, a multiprotocol FTP implementation could
support discovery by including calls to several different protocols4. This approach
provides the user with a familiar user interface and functionality and while hiding
many of the details of protocol discovery. The user will still need to perform part of
the discovery process by selecting the application that is supported on the remote
host.

One disadvantage of this approach is that it only provides communication with sys-
tems that support some version of this multiprotocol application. In the short term,
this application will primarily be supported only over its native protocols (e.g., FTP
over TCP/IP). This will limit the connectivity attainable by the discovery system.
Another drawback is that this approach may require extensive modification of the
application to support new protocols and address formats.

Multiprotocol Network Subsystem: The effort needed to modify the application
to support multiple protocols can be alleviated by performing discovery below
the application/protocol interface. This is the idea behind our third approach
where a multiprotocol network subsystem is used to provide multiprotocol support
through standard programming interfaces. The network subsystem is the portion
of a host operating system that supports protocol implementations. Two popular
examples are the System V Streams [2] and BSD UNIX Socket [11] environments.
Implementing the discovery algorithm as part of the network subsystem enables
current applications to run over multiple protocols with little or no modification to
the actual application. The degree of connectivity provided is essentially the same
as in the multiprotocol application approach.

The main drawback of this approach is that it requires extensive modification of
the network subsystem. Also, as with the generic application, the use of a generic
interface to many protocols will usually result in a compromise of functionality for
some of the protocols. For instance, TCP provides a graceful disconnect while the
OSI TP4 does not. Another issue is that since the discovery process is done auto-
matically, the application programmer loses some control over the actual protocols
used as well as the discovery process.

4Some of the changes needed to provide this support in FTP have already been proposed [15].

10

3.4 Issues With Discovery Algorithms

Each of the discovery architectures proposed in the previous section incorporates
some form of algorithm or set of rules that directs the operation of the discovery
process. The design of these algorithms is affected by the choice of discovery
architecture as well as other factors. In this section we present several issues in
developing discovery algorithms and discuss how these issues relate to the different
architectures.

� Where to start: The first interesting question in designing a discovery algo-
rithm is, "Which protocol should be tried first?" This choice can be completely
random or it can be based on some a priori knowledge of protocols that have
a better than average possibility of success. For instance, if a multiproto-
col system is connected to a network where most of the other hosts support
one specific protocol family, then those protocols should probably be tried
first. Additionally, a cache of recently contacted hosts could be used to store
information about the protocols successfully used with these hosts.
Another good choice for a first try is a protocol that provides particularly
good feedback when failures occur. In this case, even if the protocol does
not establish the desired communication, it should provide good insight into
which protocols to try next.

� Interpreting failure: The most important aspect of the discovery process is
the use of failed communication attempts to learn as much as possible about
the remote configuration. The information learned is then used to guide the
selection of the next protocol to be attempted. The extent to which this is
possible depends on the type of feedback provided by a protocol when it
fails. In Section 3.1 we presented an example where more detailed feedback
would be useful for user discovery. In the next section we give more detail
on the type of feedback needed for automated discovery systems.

� When to give up: Many failed attempts will result in no feedback at all. In these
cases it is difficult to distinguish a situation of temporary network congestion
or failure from a case where the protocols being used are not supported on the
remote system. The first decision of this sort is to decide when to stop trying
one protocol and move on to another. Additionally, the discovery algorithm
may be designed to start over after unsuccessfully trying all the protocol
combinations and try them again. In this case the system must decide when
to abandon this discovery cycle.

� Datagram vs. Connection Service: Discovery fits most naturally as part of the
connection establishment process. This is because of the fact that positive
feedback of communication success is provided as part of connection estab-
lishment. Datagram service is often unreliable and a “no feedback” situation
could mean that the communication was a success. In this case, higher level

11

indication from the application or user is necessary to provide enough con-
text to indicate when a communication attempt was successful. The generic
application and multiprotocol application architectures are more likely to be
able to incorporate this application level context into the discovery process.

� Access to Protocol Operation: The feedback mechanism supported by a proto-
col is only useful for protocol discovery if the discovery system has access
to it during each communication attempt. In many cases, protocol imple-
mentations do not make the complete feedback information available to the
protocol users. It may also be useful for the discovery system to have access
into the operation of the protocol. One example of this is a system that uses
TCP as one of the possible transport protocols. While the TCP handshake is
taking place, some feedback has been received but the upper layer has not
yet heard indication of a connection. If the discovery system is about to give
up on this attempt, it could check on the state of the TCP protocol and detect
that enough progress has been made to warrant waiting further.
In order to provide this type of access to protocol operations it is necessary
to “open up” the details of the actual protocol implementations. This will
be difficult for the generic application and multiprotocol application archi-
tectures since they will likely be implemented as user level programs. Such
programs will have protection problems in getting to the detailed protocol
information in popular systems like UNIX where the protocols are commonly
implemented in a privileged kernel space.

� Parallel attempts: The discovery algorithm can be designed to try protocols
one at a time or it could try several protocols in parallel. In the parallel case,
all the possible protocol combinations would be tried at the same time and the
first one to successfully communicate would be handed off to the user. The
parallel approach might be practical when parallel hardware is available or
when there is a long propagation delay between the two systems and trying
several protocols is faster than waiting for feedback.
One problem with this approach is that it may result in the creation of several
successfully communicating sessions, all but one of which would need to be
gracefully terminated without being used.

3.5 Feedback

The feedback provided by protocols regarding communication failures is important
enough to the discovery process to warrant further discussion. As we described in
Section 3, the only way a discovery system can determine for sure whether protocol
path ���
� or ��� �
� is to obtain some definite feedback indicating which one is
true.

12

The most effective way to obtain positive feedback about the existence of ��� is to
get it directly from the protocols that constitute � � . This feedback could be in the
form of a direct acknowledgment of transmitted data or it could be any other data
received from the destination that uses the protocols in � � . This second approach
is necessary when doing discovery with unreliable datagram protocols that do
not send back acknowledgments. It is also possible to get feedback from other
protocols, which are not part of ��� , indicating that ��� is supported on . While such
feedback would strongly suggest ���
� , the only sure way to guarantee that ��� is
truly available for communication is to hear it directly from the protocols in ��� .
Unlike positive feedback, negative feedback indicating � � �
� will, in general,
need to be sent by some protocol other than the one missing from . Most of the
time, useful negative feedback will come from some lower layer protocol in ��� that
carries the traffic of the missing protocol. For instance, a network layer protocol
might return an error indicating that the desired transport layer protocol was not
found. The only example we have encountered where negative feedback might
come from the protocol itself is the case of network protocols that send feedback
from an intermediate router (e.g., ! 1 in Figure 3) indicating that is not reachable
using this network protocol.

Clearly it is impractical for to provide complete feedback for every protocol
message sent by 	 ; in the case of an unreliable connection-less protocol, this would
conflict with the design intention of the protocol. One option that may be useful for
such protocols is to provide a variable feedback mechanism that allows the sender
to request positive feedback on certain data. This feedback could be turned on by 	
for the first several datagrams while discovery is taking place. After the protocols
are determined and communication succeeds, the feedback could be turned off to
provide the efficiency normally desired for such protocols.

CLNP provides a two level feedback mechanism that allows the source to specify
whether or not negative feedback should be returned. Feedback is requested by
setting the error report (ER) flag in the header of each packet for which feedback
is desired. We propose that future protocols include a three level feedback mech-
anism. The feedback level is indicated by the value of a 2-bit field in the protocol
header. This field tells the end and intermediate systems what type of feedback
should be sent to 	 about the processing of this packet. The highest feedback
level indicates both positive and negative feedback. This is the level used during
protocol discovery. It allows both end and intermediate systems to provide an
immediate indication of the degree of success achieved with this protocol. After
determining which protocols to use, the source sets the feedback field of all subse-
quent outgoing packets to request only negative feedback. This is the normal case
for most feedback mechanisms today. The third feedback level indicates that no
feedback should be provided to 	 regarding this packet. This option is useful for
any application where feedback is unnecessary or could overwhelm the source.

13

4 Discovery Implementation

To demonstrate the feasibility of the protocol discovery concept we undertook an
implementation incorporating two of the three network protocols from Figure 1:
IP and CLNP5. This implementation was done in Sun OS 4.1.3 for the Sun Sparc
architecture. This work involved the addition of the CLNP protocol6 as well as the
development of the discovery system we describe.

We describe our experience and insights gained from this implementation work
in this section. We pursued both the multiprotocol application and multiprotocol
network subsystem architectural approaches (See Section 3.3). As part of our im-
plementation, we developed the discovery algorithm presented in Figure 5. This
algorithm performs discovery of protocols that provide a connection-oriented ser-
vice. We developed this algorithm after carefully analyzing the feedback provided
by these protocols for various compatibility problems. Before describing the algo-
rithm we summarize our findings regarding this feedback.

4.1 Feedback Analysis

With IP, network layer feedback is provided by the Internet Control Message Pro-
tocol (ICMP) [16]. ICMP is an unusual protocol in that it is both an integral part of
IP and a user of IP, using IP to transfer its messages. ICMP has several different
message types, most of which are used to provide feedback during communication.
These messages are generated by a network host when it encounters an error while
processing an IP datagram.

Table 2 gives the ICMP feedback that would be generated for several possible
protocol compatibility problems. The most difficult problem to recognize is when
there is no compatible network layer at ! 1, the next hop from the source. When
this occurs, there is no direct feedback and therefore a failure can only be inferred
by a timeout in a higher layer protocol. For the other compatibility problems listed
in Table 2 there are unique feedback messages in ICMP to indicate the problem.
These messages can be used by a multiprotocol system to determine where an
incompatibility occurs. The feedback presently proposed for SIPP is a straight-
forward extension of the current ICMP [9]. In the current proposal, there are few
differences between the ICMP feedback messages for IP and SIPP.

Unlike IP and SIPP, CLNP includes a feedback mechanism as part of the network
protocol definition. CLNP supports a number of Error Report (ER) PDUs that

5The SIPP protocol is still evolving. We have been closely following the standardization effort
and will be incorporating SIPP into our implementation as the specification matures.

6For the CLNP portion we made significant use of code from the NetBSD software release.
Additionally, we are indebted to Francis Dupont for the contributions made to support TUBA.

14

Compatibility Problem ICMP Feedback Generated by
No IP at I1 None, timeout S
No IP at I2 Net Unreachable I1
No IP at D Host Unreachable I2
No matching Transport at D Protocol Unreachable D
No matching Application at D Port Unreachable D
IP option mismatch at I1,I2,D Parameter Problem I1,I2,D
Time Exceeded at I1,I2 Time Exceeded in Transit I1,I2
Time Exceeded at D Time Exceeded in Reassembly D

Table 2: Protocol Problem Feedback for IP

provide feedback during the operation of the network layer protocol. Most of
the ER messages are designed to provide specific feedback for the operation of
CLNP itself. The ER PDUs returned for various protocol compatibility problems
are given in Table 3. Two important messages that are not provided by the CLNP
ER PDUs are the Protocol and Port Unreachable messages found in ICMP. As we
will discuss in Section 4, these messages are particularly useful in multiprotocol
networks where there may be several different transport and application layer
protocols. Like ICMP, there is no means for CLNP to automatically detect that the
protocol is not supported on the next hop I1. A timeout mechanism is also required
in this case to detect such a failure.

Compatibility Problem CLNP Feedback Generated by
No CLNP at I1 None, timeout S
No CLNP at I2 Destination Unreachable I1
No CLNP at D Destination Unknown I2
No matching Transport at D None D
No matching Application at D None D
CLNP option mismatch at I1,I2,D Unsupported Option I1,I2,D
Time Exceeded at I1,I2 Lifetime Expired in Transit I1,I2
Time Exceeded at D Reassembly Lifetime Expired D

Table 3: Protocol Problem Feedback for CLNP

4.2 A Discovery Algorithm

The discovery algorithm we developed starts at the upper left of Figure 5 with the
TCP/IP protocols. We chose this as our starting point since a large percentage of
the systems on our network support these protocols. If the attempt succeeds then
the connection is established and communication proceeds. If the attempt fails,
this algorithm takes one of three different paths depending on the feedback given.

15

If an ICMP Protocol Unreachable is received then we know that IP is supported on
the remote system and it is probably best to try a different upper layer protocol. If
a TCP Reset message is received then we know that both IP and TCP are supported
but the requested application was inaccessible through TCP. The system could still
support this application over TCP using the RFC-1006 mechanism for providing
OSI applications over TCP. If TCP is found, the RFC-1006 option is attempted next.
If TCP is not found but IP is, then the TP4 protocol is attempted with IP. If neither of
these feedback messages are received, the system assumes that IP is not supported
on the remote system and goes on to try the TCP/SIPP combination.

Fail w/Timeout, Other ER messages,
 TCP Reset

 SIPP

 IP

Fail w/ Timeout,
Net Unreachable,
Host Unreachable

Retry or Quit

 TCP

 CLNP
 TCPSucceed

Succeed

Start

 IP
 true

Fail w/Protocol
Unreachable

 IP
 false

Fail w/ Timeout,
Dest Addr Unreachable

 TCPSucceed SIPP
 true

 SIPP
 false

 IP

 Fail

 1006
 TP0

 TP4

Succeed

Fail

Succeed

Fail w/TCP Reset

 SIPP

 Fail

 1006
 TP0

 TP4

Succeed

Fail

Succeed

Fail w/TCP Reset

Fail w/Protocol
Unreachable

Dest Addr Unreachable
Dest Addr Unknown

CLNP
 false

CLNP
 true CLNP

 TP4

Fail

Succeed

 TCP
 false

 TCP
 true

 TCP
 false

 TCP
 true

Figure 5: Protocol Discovery Algorithm

The SIPP portion of the algorithm proceeds much like the IP portion since the ICMP
feedback is similar for the two protocols. In our implementation, we do not yet
support the SIPP protocol so this portion of the algorithm is not used. The CLNP
algorithm does not include the two options for higher level protocol problems since

16

it does not include specific feedback about unreachables7. For CLNP, if a packet
arrives for an unsupported upper layer protocol the packet is simply discarded.
This means that the case of no feedback from a CLNP attempt could still mean
that CLNP is supported on the system. When TP4 is found on the remote system
but the application is not available, TP4 will return a Disconnect Request TPDU. In
the algorithm presented here, this feedback does not affect the order of protocol
attempts.

Multiprotocol Application: In our implementation of the multiprotocol applica-
tion architecture we developed a version of the discovery algorithm as part of a
simple data transfer application. For each protocol combination attempted by the
algorithm, the application creates a new socket using the appropriate protocols.
The standard socket interface does not require the level of feedback required by
our discovery algorithm. In order to provide feedback regarding the actual failures
we added several new error codes (i.e., errno values) that indicate the ICMP return
codes and receipt of a TCP Reset.

Multiprotocol Network Subsystem: To implement the multiprotocol network
subsystem, we incorporated the discovery algorithm into the BSD socket architec-
ture. In this implementation we introduced the novel concept of a multiprotocol
family. This new protocol family is denoted as PF MULTI. To use the multiprotocol
system, a programmer creates a socket with this protocol family and the protocol
service type required (e.g., datagram or stream). When the socket is created it is
still not known exactly which protocols will be used to implement this socket. The
discovery algorithm is invoked when the user attempts to establish a connection
via the connect() system call. After discovery finds the protocols to be used, the
protocol specific values are filled in to the socket structure. For datagram service,
protocol discovery is performed at the time of the first data send (e.g., with the
sendto() system call).

It is important to note that our multiprotocol subsystem version of automated
discovery is implemented within the UNIX kernel and has access to the entire set
of protocol implementations and the feedback they provide. When implementing
an automated discovery system in other architectures where protocols are not part
of the same privileged address space (e.g., Mach [1]), it will be important to provide
access to the protocol feedback systems.

Addressing: One interesting challenge with this architecture is how to specify the
appropriate address information for each of the protocols that will be attempted.
In current systems, the application creates an address structure of the appropriate

7The TUBA proposal [3] recommends the addition of these as two new ER types.

17

type (e.g., AF INET) and passes it in as an argument to the connect() system call.
With our system, it is necessary to have addresses for each of the several different
protocols that will be attempted. We provide these in the connect() call as a linked
list of address structures (sockaddr). We felt this to be a better approach than the
alternative of having the PF MULTI domain code obtain appropriate addresses for
all the protocols to be tried.

Both of our implementations provide protocol discovery that enables the user of
an application on a multiprotocol system to communicate with hosts supporting
any of five different protocol combinations. The protocol subsystem approach
provides this support without requiring the application programmer to implement
the discovery algorithm.

5 Concluding Remarks

One approach to providing interoperability in a contemporary network is to de-
velop systems that support several different protocols. Protocol discovery is an
effective mechanism for handling the problem of determining which of several
protocols to use. In this work we describe three main architectures for developing
protocol systems that automatically perform discovery. These architectures offer
varying levels of interoperability with other network systems. While the generic
application offers the user seamless connectivity to the widest range of systems, this
approach has the highest development cost since much of the implementation can
only be used for the specific application it was developed for. The multiprotocol
subsystem approach allows a single discovery implementation to support several
different applications.

While it is possible to implement protocol discovery with current protocols and
protocol implementations, the discovery process can be greatly enhanced by some
simple additions. First, protocols should provide feedback indicating whether or
not they succeed in reaching the destination system and whether or not the next
higher level protocol was found. We proposed a simple variable feedback mech-
anism that provides this feedback. Protocol designers should consider including
this type of feedback in future protocol standards. Second, the protocol imple-
mentations should be designed to make this feedback available to the users of the
protocol.

The discovery algorithm we presented here was designed after analyzing the feed-
back provided by the protocols in use, studying the implementation options in
our development environment, and using empirical evidence to decide which pro-
tocols were the more likely to succeed after each failure. Our future work will
include the continued study of discovery algorithms for different protocols and the
exploration of ways to simplify the design of discovery algorithms. We will also

18

be pursuing the implementation of SIPP in our current architecture once the SIPP
protocol standard solidifies.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and
M. Young. Mach: A new kernel foundation for Unix development. In Proceed-
ings Summer Usenix, July 1986.

[2] AT&T. STREAMS Programmer’s Guide, 1988. Unix System V.

[3] R. W. Callon. TCP and UDP with bigger addresses (TUBA), a simple proposal
for internet addressing and routing. RFC 1347, June 1992.

[4] R. J. Clark, M. H. Ammar, and K. L. Calvert. Multi-protocol architectures as
a paradigm for achieving inter-operability. In Proceedings of IEEE INFOCOM,
April 1993.

[5] R. J. Clark, K. L. Calvert, and M. H. Ammar. On the use of directory services
to support multiprotocol interoperability. In Proceedings of IEEE INFOCOM,
June 1994.

[6] D. E. Comer and J. C. Lin. Probing TCP implementations. In Summer USENIX,
pages 245–255, June 1994.

[7] S. Deering. Simple internet protocol plus (SIPP) specification. Internet Draft,
July 1994.

[8] J. R. Falcone. A programmable interface language for heterogeneous dis-
tributed systems. ACM Transactions on Computer Systems, 5(4):330–351,
November 1987.

[9] R. Govindan and S. Deering. ICMP and IGMP for the simple internet protocol
plus (SIPP). Internet Draft, March 1994.

[10] P. Janson, R. Molva, and S. Zatti. Architectural directions for opening IBM
networks: The case of OSI. IBM Systems Journal, 31(2):313–335, 1992.

[11] S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman. The Design and
Implementation of the 4.3 BSD UNIX Operating System. Addison-Wesley, 1989.

[12] B. Leiner and Y. Rekhter. The multiprotocol internet. RFC1560, December
1993.

[13] B. Meandzija. Integration through meta-communication. In Proceedings of
IEEE INFOCOM, pages 702–709, June 1990.

19

[14] D. M. Ogle, K. M. Tracey, R. A. Floyd, and G. Bollella. Dynamically selecting
protocols for socket applications. IEEE Network, 7(3):48–57, May 1993.

[15] D. Piscitello. FTP operation over big address records FOOBAR. RFC1639, June
1994.

[16] J. B. Postel. Internet control message protocol. RFC 792, September 1981.

[17] M. T. Rose. The Open Book. Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

[18] M. T. Rose and D. E. Cass. ISO Transport Services on top of the TCP. RFC
1006, May 1987.

[19] C. Tschudin. Flexible protocol stacks. In Computer Communication Review,
pages 197–205. ACM Press, September 1991.

[20] M. K. Vernon, E. D. Lazowska, and S. D. Personick. R&D for the NII: Technical
Challenges. Interuniversity Communications Council, Inc. (EDUCOM), 1994.

20

