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SUMMARY

Drying studies have indicated that a better understanding of the heat trans-

fer characteristics of fibrous materials is required in order to document the

drying phenomena of these systems. The mechanisms associated with the heat flow

through porous materials have not been completely described, and this study was

undertaken in order to elucidate the role played by fiber and bed characteristics

and to increase the information available on the thermal properties of highly

porous, fibrous systems.

Fiber beds were formed by filtration of dilute suspensions of synthetic fibers-

nylon, dacron, and glass. The thermal conductivity of the fiber beds was deter-

mined with a single-specimen, guarded hot-plate apparatus which had the hot plate

above and the cold plate below. The steady-state heat flux in the specimen was

determined with the heat-meter method which utilized a "standard" Plexiglass disk

positioned below the fiber bed specimen such that the bed and "standard" were

sandwiched between the hot and cold plates.

The two-phase conductivity study consisted of measurements on dry fiber beds

and on beds fully saturated with a nonvolatile oil, dioctyl phthalate. The six

two-phase systems allowed observation of solid-fluid conductivity ratios in the

range of one to forty.

It was concluded from the measurements on the dry nylon fiber beds that

1. The over-all bed conductivity in the 30 to 60°C. temperature range

was only an insensitive function of temperature.

2. Changes in fiber length (2.78 to 5.54 mm.) and diameter (19.3 to

45.4 A) produced no significant alteration of the over-all conductivity of the beds

at the same porosity.
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The reduction in bed porosity produced an increase in the conductivity of the

bed provided the porosity level was not too high. As porosities were increased

above 0.93, the conductivity versus porosity relationship began to level off and

radiation and convection mechanisms were apparently responsible.

From the observations on the six two-phase systems it was concluded that:

v 1. Changes in fiber conductivity produced corresponding changes in bed

conductivity provided the elastic moduli of the fibers were similar.

2. Changes in fluid conductivity produced corresponding changes in the

effective conductivity of the fiber beds.

3. Porosity reductions produced conductivity variations in the fiber

bed which were dependent on the compressible nature of the fibers.

Glass fiber beds and nylon fiber beds had approximately the same over-all

conductivity even though the glass fiber conductivity was four times that of nylon.

However, dacron fiber beds had lower over-all conductivity values than the nylon

beds which corresponded to the difference in fiber conductivity. Because the bed

porosity was reduced by compression, it was hypothesized that the deformable nature

of the fibers permitted significant fiber-fiber contact areas to be present in the

nylon and dacron systems, and that these contact areas contributed to the heat flow

in the solid structure of the bed.

Application of a compression theory for a single fiber-fiber contact indi-

cated that the nylon and dacron systems had appreciably more contact area between

fibers than the glass system in the porosity regions of the study.

Prediction equations derived for two-phase systems with point contacts be-

tween particles corresponded quite well with the glass fiber bed results, but

underestimated the nylon and dacron results.
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An empirical expression was derived which accounted for the heat flow in the

contact regions between fibers, and the response of the calculated contact factors

for glass and the compressible systems was consistent with the hypothesis of a

fiber-fiber contact area contribution.

The partial saturation study allowed the observation of three-phase systems

of fiber-oil-air as a function of the liquid saturation of the void spaces in the

beds. The introduction of the nonvolatile oil into the nylon system produced a

change similar to that of a porosity reduction, because small solid-fluid conduc-

tivity ratios and contact areas between fibers were involved. The parallel phase

distribution equation adequately predicted the nylon-oil-air conductivity results.

In the partially saturated glass fiber beds, the large change from the glass-

air system to the glass-oil system produced a rapid change in the conductivity-

saturation relationship as the oil became the predominant fluid in the voids.

Consequently, the need for an adequate description of the distribution of the

fluids in the void spaces of the beds hampered the correlation of the glass-oil-

air system results.
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INTRODUCTION

Many fields, including packed column design, petroleum recovery, insulation,

refractories, and drying, require heat transfer information on porous systems

under widely divergent operating conditions. The thermal properties of most

porous materials are not readily available for application in a given situation.

Consequently, many difficulties arise. These difficulties stem from a lack of

understanding of the contribution of the components in the system to the over-all

heat flow, as well as from an inadequate description of the internal geometry and

temperature distribution.

In the paper industry, the lack of understanding of the heat-transfer charac-

teristics of a fiber network is no exception. The mechanisms associated with

drying phenomena are intimately related to the heat flow in the fiber system.

Early workers in this area directed their attention to the apparent simplicity

of the drying rate curve. In reality, these curves only masked the inherent

complexities involved in such an operation. Further elucidation of the paper

drying operations has had limited consideration. However, recent studies (1, 2)

have included efforts in the regimes of water and vapor movement, vaporization

zones, heat transfer, moisture distributions, and temperature distributions.

A significant contribution to the understanding of the drying phenomena was

made by Cowan (3) in his study of the hot-surface drying of glass fiber beds.

This simplified fiber system eliminated some of the difficulties associated with

the paper system and, as a result, heat and mass balance equations could be applied

in the analysis of the drying data. This analysis was extremely comprehensive and

it included estimates of surface evaporation, internal evaporation and vapor dif-

fusion rates along with detailed explanations of drying rate curves, moisture and

temperature distributions, etc.
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The heat-transfer mechanisms involved in the drying of a porous system include

the pure conduction heat flow in the components, heat transfer due to radiation and

convection, heat transfer by vapor distillation from warm to cold regions of the

system, and heat transfer associated with the liquid movement. Obviously, it will

require a concentrated effort for many years before an adequate understanding of

these mechanisms and their contribution can be obtained.

It is presently believed that the primary contributions in the drying opera-

tion are made by the conduction and vapor distillation mechanisms. The object of

this investigation was to observe the pure conduction mechanism of heat flow in

the fibrous network, without the interference of the other mechanisms suggested

above. Obviously, a drying system would not allow this distinction. Therefore,

the thermal conductivity of various fiber systems was obtained by a steady-state

measurement-impressing a temperature gradient across a specimen and measuring the

heat flux.

With a two-phase fibrous system, measurement of the pure conduction thermal

conductivity is not complex unless radiation and convection begin to make a signifi-

.
cant contribution. With the three-phase system, the important factor is the vola-

tility of the liquid phase. In drying, the volatile water phase produces the vapor-

liquid movement. The elimination of this mechanism of heat flow in the pure

conduction study was accomplished by using a nonvolatile liquid.

The selection of the fibrous systems to be studied was largely dependent on

the fiber and bed characteristics to be varied in the course of the investigation.

The use of pulp fiber, although directly applicable to the paper drying studies,

would not be consistent with the desire to obtain specific information on the

fiber characteristics and their effect on the heat transfer in the network.

'A

- ---
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Therefore, synthetic fibers with uniform geometry and no intrafiber pores provided

a simpler, more basic system than the wood fiber which swells and shrinks, bonds to

other fibers, has internal pore structure, and has a variation in the length and

diameter dimensions.

The kinds of synthetic fibers which were utilized were determined by consider-

ing the variables in the fiber network which were of interest from/a pure conduction

viewpoint. The list of variables included temperature, fiber size, fiber and fluid

conductivity, porosity or void fraction of the bed, and degree of liquid saturation.

It was planned that the variables would be adequately studied in the two-phase

systems, dry and fully saturated beds, and that the more important ones would be

included in the partial saturation or three-phase study.-

For the two-phase study, the bed porosity was anticipated to be the primary

consideration. Nylon fibers were selected for the main program of study because

a porosity range of 0.8 to 0.95 was conveniently obtainable in the nylon fiber

beds. Lower porosity values are of particular interest for application to the

paper system. However, extremely large pressures are needed to compress the syn-

thetic fiber bed below 0.8 porosity and it was believed that a satisfactory indi-

cation of the effect of bed porosity could be obtained in the 0.8 to 0.95 range.

Fiber conductivity was varied by using two additional fibers, glass and dacron.

The glass fiber has a conductivity approximately four times that of nylon and a

little more than six times that of dacron.

Response to compression was an additional variation introduced by the use of

different types of fibers. Consequently, the effect of compression on the fiber

network, and, in turn, its effect on the heat flow in the system was of primary

interest in the investigation.
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The alteration of fluid conductivity was intimately associated with the three-

phase study and the variation of the liquid saturation. The selection of a non-

volatile liquid was dependent on the characteristic of the liquid desired and also

on the properties of the fibers to be utilized. Dioctyl phthalate oil* was chosen

because it had an extremely low volatility, produced no changes in the fiber prop-

erties, was fluid enough to conveniently saturate the beds, and was not hygroscopic.

With the dioctyl phthalate oil, the fluid conductivity in the fully saturated fiber

bed would be more than six times the air conductivity in the dry fiber bed.

The investigation was primarily phenomenological in order to assess the impor-

tance of the fiber, fluid, and bed characteristics in the purely conductive flow of

heat in the fibrous system. The analysis of the more fundamental aspects of the

system and the empirical correlation of the experimental results produce a better

understanding of the heat-transfer characteristics of fibrous materials and allow

an extension of this understanding to other systems with similar characteristics.

*Ohio-Apex specifications
vapor pressure: less than 0.01 mm. Hg at 100°C.
viscosity: 80 centipoises at 20°C.
impurities: 0.01%
specific gravity: 0,986.
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LITERATURE SURVEY

Fiber beds fall into the category of high porosity systems (porosities from

0.5 to 0.99). The principal efforts in the area of heat transfer in porous media

have been concentrated in the low porosity range, 0.1 to 0.5, which generally in-

cludes the granular materials. On the basis of system geometry and over-all

porosity, there are some outstanding differences in the characteristics of the

granular and the fibrous systems.

There are also other major distinctions in porous systems as a whole and

these distinctions are of primary consequence in analyzing their heat-transfer

characteristics. The porous systems can be divided into two groups, continuous

fluid and continuous solid. The continuous fluid group can be further sub-

divided into consolidated and unconsolidated systems. For the purposes of this

study, the systems of primary interest are in the unconsolidated, continuous fluid

group. These materials are composed of solid particles dispersed in a continuous

fluid network with no permanent bond between solid particles. In general, the

fiber and granular beds are included in this type of system. However, paper might

be considered to be a part of the consolidated group.

It is convenient to divide the following discussion into two sections. The

first section will deal with the systems composed of two phases, solid-gas or

solid-liquid. The second section will be devoted to the three-phase systems,

solid-liquid-gas.

TWO-PHASE POROUS SYSTEMS

There is some information available on the mechanisms of heat flow through

dry fibrous materials.
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Heilman, (4), in discussing insulation, pointed out that, except with mater-

ials containing large pore spaces, heat is primarily transmitted by conduction

and that the importance of the air conductance is often unrealized. He believed

that the relative significance of internal contact resistances was not extremely

important, although this was difficult to observe. He indicated that radiation

contributed to the heat flow in the insulation when the system contained large

diameter pores. With regard to convection, Heilman observed heat transfer with

the heat flowing upward and downward through the specimen and concluded that no

convection occurred in materials with pore diameters less than 0.2 inch.

Finck (5) studied the mechanism of heat flow in fibrous materials such as

bagasse, cornstalk and wood pulp, flax, kapok, cotton, rockwool, etc. His primary

efforts were concerned with conductivity variations associated with changes in

bulk density. These results may be explained if one assumes that radiation and

convection are of primary importance at a low degree of compaction and that conduc-

tion becomes increasingly important as the density increases, but the radiation-

convection contribution decreases at a faster rate. Thus, a minimum is reached as

conduction becomes the predominant mechanism.

Of considerable interest is Finck's work with fiber arrangement at constant

density. Using randomly formed flax specimens for control, specimens with fibers

arranged perpendicular to the heat-flow direction exhibited a 20% decrease in

conductivity, but specimens with fibers arranged parallel to the heat flow gave a

90% increase in conductivity. Other fibers such as glass wool, hair felt, excel-

sior, wheat straw, etc., showed similar differences between parallel and perpen-

dicular arrangement.

Finek varied the direction of heat flow through a specimen, and he concluded

that convection was negligible even at densities of 0.003 g./cc. Radiation was
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observed to be affected markedly by dusting the fiber with aluminum powder. At

densities of 0.003 g./cc. the dusted specimens had a 17% decrease in apparent

conductivity, but at densities greater than 0.016 g./cc. the change was negligible.

These investigations indicate that conduction is the primary mechanism of

heat flow in the normal dry fibrous system. It is on this basis that other in-

vestigators have attempted to analyze their conductivity results by utilizing the

so-called phase distribution equations (6, 7).

The phase distribution equations are the simplest and most straightforward

method of predicting the conductivity of a composite system. When conduction is

the only mechanism of heat flow, the maximum conductivity for the system can be

obtained by considering the components to be thermally in parallel in the direc-

tion of the heat flow. This gives the parallel phase distribution equation,

.K =Kg + (1-e)K , (1)

where e is the porosity and K, K, and K are the thermal conductivities for the

composite, fluid phase, and solid phase, respectively.

If the components are considered to be thermally in series in the direction

of the heat flow, the series phase distribution equation results:

1/K= /Kg + (l-)/Ks (2)

The series model predicts the minimum composite conductivity.

Bogaty, et al. (6) utilized a combination of the parallel and series models

in order to analyze the effect of fiber arrangement on the thermal properties of

textiles made from wool, cotton, orlon, and viscose. The conductivity relationship,
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commonly referred to as the Schuhmeister expression for a two-phase composite,

was

K = A[eK + (l-e)Ks ] + BK K/[cK + (l-E)K] (3)
g s sg s g

where A and B are taken to be the effective fraction of the fibers parallel and

perpendicular to the heat flow. Applying Equation (3) to the various parallel

and perpendicular arrangements studied by Finck (5), surprisingly good agreement

with the experimental values was observed. In the analysis of their results for

the conductivity-density relationships for the various fabrics, they concluded

that the relative fiber arrangements as indicated by A and B were altered as the

fabrics were compressed. These changes were also dependent on the fiber conduc-

tivity.

Since these investigations and analysis of the thermal properties of dry

fibrous materials do not provide an extensive background for the study of the

heat-transfer mechanisms associated with porous materials, a review of the work

that has been accomplished utilizing two-phase granular systems is necessary.

Wilhelm, et al. (8) discussed the reaction rate and heat transfer in a

fixed-bed catalytic converter and also included a correlation for the thermal

conductivity of a static bed (flow absent) and an estimate of the radiation

effect. They stated, "a complete mathematical description of a bed of particles

...is difficult if not impossible, and attempts to compute theoretically the

thermal conductivities of such systems have not proved notably successful."

They summarized the status of knowledge of heat transfer in systems of solid

particles as follows:
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1. Heat transfer is almost purely conductive provided particle

size, gas pressure, or temperature are not too high (upper

limits: 3-4 mm. diameter, 8-10 atm., 300°C.).

2. Effective conductivity is more dependent on the continuous
phase than the discontinuous phase.

3. Bed conductivity approaches that of the solid phase when
the porosity is small.

4. The thermal conductivity of granular systems exhibits a

pressure dependence which sets in at much higher gas

pressures than ordinarily observed for gases in unpacked
containers. This is attributed to the interstitial dis-

tances which approach the mean free path of the gas

molecules.

This summary coincides with the conclusions made by Waddams (9) in his analysis

of several investigations (10-14).

Woodside and Messmer (15) have recently made an extensive study of the thermal

conductivity of unconsolidated media-sand, glass beads, lead shot-with air, n-

heptane, and water as the saturating fluids. They reported:

(a) The conductivity variation with porosity was greater the
higher the conductivity of the saturating fluid.

(b) The effect of larger solid conductivities was increased
when the conductivity of the saturating fluid was increased.

(c) The effective conductivity of the media increased as fluid

conductivity increased.

(d) In vacuo conductivities were one-hundredth of the conduc-
tivity of the solid particles.

(e) The part of the gas phase which was important in heat con-

duction extended from the contact points to a distance of
one-sixth of the particle radius.

The usual granular systems have certain characteristics which make a theoret-

ical analysis of the heat-transfer characteristics of the system plausible:

f
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1. Conduction is the primary mechanism.

2. Particle size and shape are uniform.

3. Internal structure is a fairly regular array.

4. Point contacts exist between particles.

Consequently, the relationships derived for the prediction of the thermal

conductivity of a composite material normally involve three parameters associated

with the individual components: (1) thermal conductivity, (2) volume concentra-

tion, and (3) phase distribution. The distribution of the components in a two-

phase system provides a wide variation in the type and applicability of the derived

prediction equation.

Maxwell proposed a model system composed of spherical particles randomly

dispersed in a continuous phase. These particles were so far apart as to have

no influence on one another. The conductivity of such a model is given by

K K= [2eK + (3-2 )KS]/[EK + (3-e)K ] (4)

The conductivity results for an actual granular system are greatly underestimated

by this noninteracting system of spheres.

Several authors have attempted to modify Maxwell's basic equation in-order

to obtain predictions consistent with the experimental results for granular mater-

ials. Strickler (16) utilized two factors which were functions of surface area and

solid conductivity in his adaptation of Equation (4). This adaptation produced

satisfactory predictions for the effective conductivities of powder and glass sphere

systems (17). Strickler (18) also published calculated results which compared

favorably with the experimental values for granular beds (19).
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A better modification of Maxwell's equation was made by deVries (20). He

attempted to compensate for the differences in the temperature gradients which

existed in the solid and fluid components by incorporating a particle shape factor

in his analysis. The expression for a two-phase system is

K= [K + (l-.e)FlK ]/[e + (l-e)F1] (5)

5
with F1 = (1/3) [1 + gi(K-Kg )/Kg] 1

i=l
3

and gi = 1,

i=l

where g. is the particle shape factor (gl = g2 = 3 for the spherical particles

of Maxwell's equation).

A different type of phase distribution and analysis has been proposed by

several authors. These systems are composed of particles arranged in a cubic

lattice. Russell (21) and later Topper (22) utilized an array of cubical voids

with the void faces perpendicular to the heat flow. Both arrived at the same

solution for the continuous solid system by assuming the heat flow lines in the

model were parallel. If the system is altered such that the fluid phase is

continuous, the following conductivity equation is produced

1/3
K /K = 1 - (1-e)1/3 + (l-e) (6)

(K/K)( -e)2/ 3 + 1 (1 -)2/3

Woodside (23) and Webb (24) also utilized the cubic lattice model for spheri-

cal particles in a continuous fluid phase. Using the assumptions of pure conduction

and parallel heat flow lines, the thermal resistance of the model was evaluated to give
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K F6vi1/3 2_1
- = 1 - -ln (7)

K a

with

a = [1 + 4/n (Ks/Kg-1)(6Vs/ )2/3]1 / 2

where V is the solid fraction, equivalent to (1-E).
-s

Conductivity predictions calculated on the basis of the cubic lattice models

have produced satisfactory correlations with the experimental results for certain

granular systems.

The derivation which has proved to be the most applicable to a wide range of

two-phase granular systems has been presented by Kunii and Smith (25). In their

detailed analysis of heat transfer in a bed of unconsolidated spherical particles,

they assumed the following mechanisms:

1. Heat transfer through the fluid in the void space by
conduction and radiation.

2. Heat transfer through the solid phase.
a. Conduction through the contact surfaces.
b. Conduction through the stagnant fluid near the

contact surfaces.
c. Radiation between surfaces of the solid particles.
d. Conduction through the solid particles.

The over-all mechanisms 1 and 2 were assumed to be in parallel while mechan-

ism d was in series with the combined result of parallel mechanisms a, b, and c.

At ordinary temperatures and with small particles, the radiation terms can be

omitted and the derived expression becomes

-K ________-_)__(1-E)_
K e +1 ( K (8)
Kp 1K

g(l/,)+(D hcK ) + K' 'p c' g Ks
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where h is the heat transfer coefficient at the contact and D is the particle
-c -p

diameter. Neglecting the heat flow through the contact surfaces of the particles,

Equation (8) becomes

K/K = E + + Kg/Ks) (9)

where P, y, 0 are parameters for the distances between particle centers, and the

effective length in the direction of heat flow of the solid particle, and the fluid

filaments adjacent to the contacts, respectively.

Other relationships have been proposed (14, 26) and utilized (8, 27) with

good success for certain granular systems under specific conditions. Austin (28)

has presented an extremely comprehensive discussion concerning the conductivity of

nonmetallic two-phase systems, including those of high porosity, and he reviews

the effect of porosity, temperature, system geometry, and component conductivity

on composite apparent conductivity.

In attempting to apply the information concerning the heat transfer character-

istics of granular materials to the fibrous systems, one is confronted with dif-

ferences in porosity, particle shape, and particle contact. The various models

utilized in the analysis of the granular beds can be applied to the composite

systems over the entire porosity range. Also, component concentration, in the

system is generally believed to be more important than the individual shape of a

specific particle. This leaves the contact between particles as a major distinc-

tion between the fiber and granular systems, primarily because the fiber beds are

compressed in order to reduce the porosity.

The magnitude of the contact areas between fibers in a bed and the effect of

significant contact on heat flow in the system is not known. It should be noted
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that consolidated granular systems have much higher conductivities than unconsoli-

dated beds (21). Therefore, any contact area between fibers in the solid structure

of the bed would produce a system analogous to the consolidated particles and an

alteration in the flow of heat would be expected.

THREE-PHASE POROUS SYSTEMS

The three-phase systems retain all of the difficulties associated with the

two-phase network and introduce the additional complexity related to the geometri-

cal configuration of the liquid phase in the pore spaces and its influence on the

heat flow in both the void volume and the solid structure of the system.

All of the information available on the heat-transfer characteristics of

three-phase materials are related to systems in which water is the liquid phase.

In these systems the vapor and liquid movement contribute to the heat flow in the

network. Therefore, any analysis of a system's conductivity when the liquid phase

is volatile must account for the heat flow by vapor distillation as well as by

conduction.

The liquid-vapor movements associated with a partially saturated porous

material on which a temperature gradient has been impressed has been the subject

of recent controversy and discussion. The most comprehensive analysis of the

phenomena has been presented by Philip and deVries (29). They critically analyzed

(a) the large value of the apparent vapor transfer in comparison with the simple

theory prediction, (b) the effect of moisture content on net moisture transfer, and

(c) the transfer of latent heat by distillation. Their prediction equation for the

effective conductivity of partially saturated sand took the form of deVries' (20,

30) modification of Maxwell's expression for three-phase systems. They utilized an



apparent conductivity, K , which can be attributed to the transfer of latent heat

of vaporization by vapor diffusion through a wetted pore space under the influence

of a temperature gradient. This apparent conductivity can be expressed for the

saturated vapor conditions as

K = DX [Pa/(P -Po)][dpo/dT] (10)

where D is the molecular diffusion coefficient for water vapor in air, X is the

latent heat of vaporization, P is the total pressure, po is the partial pressure
-a

and p is the density of the saturated water vapor.

Philip and deVries simply added the apparent conductivity due to vapor dis-

tillation, K , to the conductivity of the air, K , and used the total result for

the air phase in their calculations. The results of this type of analysis were

consistent with the conductivity of partially saturated sands as determined by a

transient line heat source method (20, 30). Woodside, et al. (31, 32) also

utilized this approach and found good agreement with the conductivity results for

sands and clays as measured with a guarded hot plate technique.

A different approach was taken by Herminge (33) in his investigation of the

conductivity-moisture characteristics of partially saturated glass fiber fabrics

by the dynamic Angstrom method (measurement of the propagation velocity of a heat

wave in the material). His correlation equation was a combination of the parallel

and series phase distribution equations for three components. The apparent conduc-

tivity due to vapor distillation, K , was applied to that fraction of pore space

which contained water. The two parameters expressing the fractional amount of

parallel and series contribution were determined from the dry and completely

saturated fabric conductivities. The resulting conductivity equation predicted

results which coincided with the partially saturated fabric conductivities.
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Gemant (34) has proposed a conductivity expression for a model system of

spherical particles saturated up to 20% of the total void volume. However, this

expression has been severely criticized (35, 36) because of its neglect of the

air phase conductance and for its use of artificial chipped areas of contact be-

tween the particles. In addition, Gemant did not consider the effect of vapor

movement in his system.

The remainder of the information on the heat transfer characteristics of

three-phase systems has been derived from drying studies. It is difficult to

evaluate some of these conductivity results because of the dynamic conditions

associated with the drying phenomena.

Nissan, et al. (37, 38) computed apparent conductivities for partially

saturated wool fiber mats from temperature-time relationships observed 'during

air drying studies.

Han and Ulmanen (2) utilized a heat balance at the hot surface of pulp beds

during drying in order to calculate the apparent conductivity at the moisture

content of the hot-surface region. Cowan (3) pointed out that these values were

artificial due to the neglect of the hot-surface evaporation rate. Realizing the

difficulty in predicting the mass movement during drying, Cowan proposed a heat

balance in a region in the bed where liquid and vapor movement was negligible.

Such were the conditions in the central regions of the glass fiber beds during

the constant-rate drying period because the moisture gradient and the temperature

gradient were small. However, since mass movement appeared to depend on the

actual drying rate, no generalized apparent conductivity-saturation relationship

could be acquired. The specific apparent conductivity-saturation data for the

central region of the glass fiber bed and also some of the values reported by

Herminge (33) are shown in Fig. 1.
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The parallel phase distribution equation for a three-component system is

included in Fig. 1 in order to indicate the maximum conductivity for the material

in which conduction is the only mechanism of heat flow. A discussion of the

apparent conductivity-saturation curves will provide a better insight as to the

complexities associated with heat transfer in a system with a volatile liquid

phase.

Looking at Fig. 1, as the water enters the bed, the vapor diffusion from

hot to cold regions in the system immediately produces a significant rise in the

over-all apparent conductivity. Once a continuous liquid network is formed, the

return liquid flow by capillary forces balances a portion of the heat flow by

vapor diffusion. As a result, the apparent conductivity-saturation relationship

levels off. As the saturation level increases further, the air space in the bed

decreases and restricts the vapor movement until the apparent conductivity and

pure conduction curves converge at total saturation.
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CONDUCTION EQUATIONS FOR COMPRESSIBLE SYSTEMS

A theoretical treatment of the thermal characteristics of a porous system

is confronted with numerous difficulties, which leads most investigators to

conclude that such an analysis is impossible. The actual composite system con-

sists of some distribution of components. With unconsolidated systems this

distribution is dependent on the size and shape of the particle involved and

must be defined in order to continue with the analysis. With some systems an

idealized, geometrically definable structure may be utilized as a model. However,

with a fiber bed, where the fibers assume a random distribution in the x-y plane

of the bed, a useful mathematical description of such an array presents vast

problems.

The consideration of the heat flow through a system with the complex geometry

leads to insurmountable difficulties. With a two-component system of particles

and fluid having an imposed steady-state temperature gradient, the description

of the temperature distribution in the structure would have to be revealed in

order to provide the boundary conditions for any derived equations for either or

both components. The temperature distribution is dependent on the individual

system. The factors of component conductivity and system geometry immediately

illustrate that the temperature within the structure is a function of the location

in the bed and that variation of these factors induces variation in the temperature

distribution.

A graphic illustration of the above statements is provided by Woodside and

Kuzmak (39) who measured the temperature gradient in the pore space of a model

porous system. Their results are shown in Fig.. 2. With their system of spherical

particles, the solid conductivity was larger and the porosity was lower than with
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[Woodside and Kuzmak (39)]1
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the fibrous system. Nevertheless, the wide variation in the temperature distribu-

tion in the pore space is evident. The rigorous application of the general case

is difficult and, therefore, simplifying assumptions associated with the tempera-

ture distribution and system geometry are usually incorporated in order to make

any headway in the analysis of the porous system. The assumptions are widely

divorced from the actual conditions and the resulting solutions are unsatisfactory

for the general case.

The treatment of the type of heat-transfer mechanisms which occur in the

porous systems also produces additional difficulties when high porosity systems

are involved. Conduction is the major mechanism, but strict analysis must regard

the contribution of convection and radiation as the pore volume becomes large.

TWO-PHASE EQUATION

Because of the successful efforts of Kunii and Smith (25) with their deriva-

tion for spherical particles, the initial efforts to predict the fiber bed con-

ductivity results of this study were directed toward a similar relationship for

cylindrical particles. These efforts were not entirely successful, but the treat-

ment for aligned cylinders was completed and is presented in Appendix I. The

aligned-cylinders configuration should produce the maximum effective conductivity

provided the solid-solid contact contribution is negligible and the assumption of

parallel heat flow lines is valid.

The analysis of the crossed cylinders in the manner of Kunii and Smith was

confronted with geometrical descriptions which were impractical. Modification of

the method and the resultant simplification allowed an analysis of the crossed-

fiber system to be accomplished. The treatment which is presented in Appendix II

was limited by the evaluation of the extent of the contact region.
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In a compressible system, such as the fiber bed, consideration has to be

given to the decreased resistance in the contact region because of a finite

contact area. Ideally, the heat flow in the fluid surrounding the contact and

the heat flow through the solid-solid contact should be separated in the analysis.

For the initial case, it was assumed that the mechanisms of heat transfer in the

compressible, porous system were:

1. conduction in the continuous fluid phase

2. conduction in the solid structure
a. conduction in the solid particle
b. conduction in the contact region.

Mechanism 2a and 2b were considered to be in series with each other, and the

combined result for the solid structure in parallel with Mechanism 1. The derived

expression (similar to the derivation in Appendix I) for the conductivity of the

model system was

K/K = + [l-e]/[(Kg/Ks ) + K/Df(hC)] (l)

where h is the heat transfer coefficient for the contact region and a is the
-c

ratio of the area of the contact region to the solid cross-sectional area. The

effective length of the solid particle in the direction of heat flow was taken to

be the fiber diameter. The area of the contact region as defined by the fraction

a consists of the solid-solid contact area as well as the area of the fluid fila-

ment which contributes to the heat transfer in the solid phase.

Equation (11) satisfies the necessary conditions for a porous material:

(a) The effective conductivity of the composite approaches the fluid conductivity

when the porosity approaches unity, and (b) The composite conductivity approaches

the solid conductivity as the porosity approaches zero, since the contact area be-

comes large and the contact term (K /D h a) becomes negligible.
-g i----c
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THREE-PHASE EQUATION

A description of the distribution of the fluid phases in the porous network

presents insurmountable problems. However, at the intermediate levels of satura-

tion, both fluid phases can be considered to be continuous and the following

mechanisms of heat flow are assumed:

1. Conduction in the gas phase.

2. Conduction in the liquid phase.

3. Conduction in the solid phase.
a. Conduction in the solid particle.
b. Conduction in the contact region.

The contact region in this case includes both the fluid filament adjacent

to the contact and the solid-solid contact area.

If Mechanism 1,.Mechanism 2, and the combined series result of Mechanisms 3a

and 3b are considered to be in parallel, a conductivity expression for three

phases can be derived (similar to two-phase derivation in Appendix I),

K = (1 -s)K + esK + ( (-(12)
g (1/Ks ) + (l/Dfhca)

where s is the saturation which is defined as the fractional amount of the void

volume which is occupied by the liquid with a conductivity of K . The heat

transfer coefficient, h , and contact area fraction refer to the entire contact

region. The effective length of the fiber in the direction of the heat flow is

considered to be Df.

When the contact resistance term (l/Dfh a) is small, Equation (12) reduces to

the parallel phase distribution equation for three components.
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FIBER-FIBER CONTACT AREA

The consideration of the number of fiber-fiber contacts in a fiber bed has

not been satisfactorily resolved since the experimental determination of the

number of contacts and, therefore, the verification of any of the theoretical

calculations has not been accomplished. Likewise, the evaluation of the contact

area is controversial in nature, and direct measurement of this parameter in the

fiber bed has met with dubious success.

With a lack of sound experimental evidence, estimates of the contact areas

in the fibrous systems of this study were acquired by combining two theoretical

treatments along with available compression data.

The total number of fiber-fiber contacts in a fiber bed was determined with

the equation of Onogi and Sasaguri (40)

C 64W2/ 4p2D HA (15)

where C is the total number of contacts between fibers, W is the weight of the
-t

fiber bed, D is the fiber diameter, p is the density of the fiber, H is the thick-

ness of the bed, and A is the cross-sectional area of the bed.

The contact area for a single fiber-fiber contact was calculated utilizing

the equations derived by Finch (41) for the response of identical cylinders con-

tacting at any angle, n. The elliptical contact area is described in terms of the

semi axes, a and b as follows:

a = m[3NR(1- 2 )/2E]1/ 5 (14)

and

b = n[3NR(L-g2)/2 E ]1/ 3 (15)
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where m and n are transcendental functions depending on the auxiliary'angle T, N

is the total load per contact, R is the radius of the cylinders, E is the modulus

of elasticity, and. is Poisson's ratio (assumed to be 0.5). For cylinders con-

tacting at right angles, w = 90°, the auxiliary angle T is equal to 90°-and m and

n become equal to unity. Therefore, the contact area, A , with the above conditions

2
becomes ga2

The fiber bed is assumed to be composed of a number of layers, L, which have

a thickness equivalent to the fiber diameter. Therefore, L = / Df. The number of

fiber-fiber contacts per layer, CL, becomes equal to Ct/L. If each layer is
-i --

assumed to support the total compressional load on the bed, G, at a given porosity,

then the average load at each contact, N, becomes G/CL. Therefore,

N = GH/CtDf (16)

Substituting Equation (16) into Equation (14) and utilizing the value of C
-t

as expressed by Equation (13), the resulting expression for contact area becomes

Ac 2.83[PD3f/E(1 )2]2/3 (17)

where P is the compressional stress on the fiber bed at porosity, e, (P = G/A).

The contact area as a function of porosity for the fibers of this study are shown

in Fig. 3. The compressional data of P versus e was taken from the work of Jones

(42). Comparison of the contact areas of the fibers at the porosity levels of this

investigation indicates that the nylon and dacron values are much larger than those

for the glass system.

From the standpoint of heat transfer through the fiber structure of the bed,

a better basis for comparison is acquired if the total contact area of a layer is
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considered as a fractional portion of the cross-sectional area of the layer which

is solid fiber. Therefore,

' = cC/(1-e)A (18)

where a' is the contact area fraction. Substituting the previously derived expres-

sions into Equation (18) gives

a' = 1.86[P/E(1-E)l/2]2/3 (19)

The calculated results for the contact area fraction are presented in Fig. 4.

It is apparent that the contact area fraction for a given fibrous system is

dependent only on the compressional characteristic of the system. Jones (42)

V reported that the fiber size did not alter the compressional characteristics of

the fiber bed when the length-to-diameter ratio was above a certain critical range.

Therefore, if the compressional stress on a given type of fiber bed is assumed to

be a function of porosity, then the contact area fraction is dependent only on the

bed porosity.

The contact area fractions as calculated should be qualified by the assump-

tions associated with the stress distribution at the contacts and the angle re-

lationships of the fibers. However, as a basis for comparison, the calculated

values provide a verification that the contact areas in nylon and dacron systems

at the porosity levels involved are larger than the glass system values at the

porosity levels of this study.

The actual magnitude of these contact areas are yet to be verified, and the

additional question arises as to whether the contact areas of even the magnitude

calculated could contribute significantly to the heat transfer in the fiber bed.
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Considering the observations of Woodside and Kuzmak (39) as was shown in Fig. 2,

one realizes that even a small area of fiber-fiber contact could maintain a

significant heat flux due to the increased temperature gradient in the region

of the contact surface. Therefore, the contact areas as calculated might well

contribute significantly to the over-all heat-transfer mechanisms associated with

the compressible fiber systems.



1

EXPERIMENTAL FIBER SYSTEMS

FIBER PREPARATION AND CHARACTERIZATION

Nylon, dacron, and glass fibers were obtained as continuous multifilament

strands and were cut to the desired lengths utilizing the method and equipment

of Jones (42). The continuous fiber was unwound from the bobbin onto a hexagonal

wheel, the filaments glued together and cut to produce a six-foot skein. The

skein was placed on a board backed with blotters and cut to precise fiber lengths

with a razor blade, gang cutter which was forced through the fibers with a hydrau-

lic press. After cutting, the glass fibers were cleaned with 30% hydrogen peroxide

overnight in order to remove the starchlike binder on the fibers (42, 43).

Fiber length distributions were determined with the Finnish Fiber Length

Recorder (44). From 100 to 150 fibers were counted from each sample and a few

duplicate measurements were made. All of the samples had very narrow fiber length

distributions and the arithmetic average length was utilized in all calculations.

Fiber diameters were measured microscopically with a calibrated eyepiece.

Ten to twenty fibers were measured and very little diameter variation was observed.

Fiber density, conductivity, and elastic modulus values were taken from in-

formation provided by the manufacturers and from other available data.

Table I gives a summary of all fiber samples and their properties.

FIBER BED FORMATION AND PREPARATION

An ideal fiber bed composed of layers of fiber randomly oriented in the two-

dimensional plane of the layer should result from the filtration of a perfectly



-34-

dispersed, fiber slurry. The general technique and filtration apparatus described

by Cowan (3) was utilized for the formation of fiber beds involved in this study.

Denier

3

5

15

5

5

TABLE I

FIBER CHARACTERISTICS AND PHYSICAL PROPERTIES

Thermal
Average Conductivity,
Fiber 10 4

Diameter, Length, Density, -s
F1J mm. g./cc. cal./sec.cm. °C.

19.3 2.78 .14a 5.9b

19.3

45.4

23.0

23.0

13.7 f

5.54

2.49

2.04

5.30

2.76

3.8e

2 4.8 g

Modulus of
Elasticity,

10-7E,
g./sq.cm.

0.9c

14.7d

72. 0dg

aDuPont (45)

bDuPont (46)

cWilder (47)

djones (42)

ePritulsky (48)

fArnold (43)

gOwens-Corning (49)

The required weight of fiber (9 to 14 grams) was dispersed in 12-15 liters

of deionized water and placed in 4-liter suction flasks. The fibers were de-

aerated under vacuum for a sufficient length of time (until the fibers settled).

The formation was accomplished by slowly pouring the fiber slurry into the

upper formation tube of the filtration apparatus as deaerated water flowed through

the system. The fibers were deposited on a 150-mesh septum screen covered with

Fiber

Nylon

Dacron

Glass

1.3ga, d

2-55f
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tea bag stock. The formed, five-inch diameter bed was then removed from the

system and dried at 105°C. in an oven. Tea bag stock was retained at both sur-

faces of the bed to facilitate handling. The bed was weighed and then stored

for the conductivity measurements.

PARTIAL SATURATION TECHNIQUE

After dry bed formation and preparation were accomplished, the fiber bed was

saturated with the nonvolatile dioctyl phthalate oil. Several techniques were

attempted and the most successful means simply allowed the oil to drip slowly into

the fiber bed over a period of eight to ten hours. The sides and bottom of the

bed were enclosed with an aluminum foil or plastic shell which prevented the oil

from escaping the saturated porous network of the bed. All evidences indicated

that a fully saturated system was acquired.

The removal of the oil in order to acquire a specific level of partial

saturation was accomplished by two methods, both utilizing the capillary forces

involved. The more complex method incorporated the porous-plate, capillary

pressure apparatus (5). With the apparatus filled with oil and the porous plate

saturated with oil, the saturated bed was placed atop the porous plate. The

mercury leg was then lowered to apply capillary suction and thereby remove a

certain portion of the oil in the bed. The oil remaining in the bed was assumed

to be retained in a uniform liquid network.

An easier means of accomplishing the same results utilized pulp blotters.

The saturated bed was placed atop several blotters and the oil allowed to flow

from the bed into the blotters.

The two methods were used alternately in the initial, partial saturation

studies, and, apparently, if any differences in the nature of the produced liquid
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network were present, they did not alter the conductivity response of the fibrous

system. Consequently, the blotter technique was utilized in the majority of the

saturation studies.
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THERMAL CONDUCTIVITY APPARATUS

GENERAL CONSIDERATIONS

Both steady-state and transient methods were available for the conductivity

measurements on the fibrous systems to be utilized in this investigation. The

transient methods have generally been adopted in cases where mass movement occurred

or when confined specimens were impractical. The obvious advantage of such methods

are the brief testing times involved. However, the assumed or partially valid

boundary conditions for most techniques limit the accuracy of the results unless

one resorts to difficult, often empirical, correction procedures. The transient,

line heat source method (15) has been used most often for partially saturated,

porous materials, but the large temperature gradients associated with such a

method may override any advantages which accompany the method's speed.

The classical, steady-state, thermal conductivity methods involve the simul-

taneous measurement of the steady-state heat flux and the temperature gradient in

the test samples. Since mass movement was eliminated in the partially saturated

system due to the nonvolatile oil, it was decided that one of the steady-state

methods was more advantageous to this study than any of the transient techniques.

The approved ASTM C177-45 method for work with homogeneous solids utilized

two heat sources, one of which physically surrounds or guards the central or

testing source. Heat from the testing zone has no tendency to escape when the

outer guard source is maintained at the same temperature as the test source. The

heat input is measured electrically and the temperature gradient across the speci-

men, as well as between sources, is measured with thermocouples.

Since the test specimens were to be porous materials rather than solids, and

since the majority of the investigation would utilize partially saturated beds,
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the usual ASTM design was not considered acceptable. This was due primarily to

the necessity of having the heat flow downward through the specimen in order to

prevent convection due to density gradients in the fluid. Also, two test speci-

mens were required which would magnify difficulties in the preparation procedures.

A single-specimen assembly, using an uppermost hot plate and single cooling

plate, was considered most advantageous. Such designs had been used successfully

for thermal conductivity measurements on liquids (50), air (51), and textiles (52).

The heat flow in such an apparatus could be determined by one of three methods:

(1) measurement of the heat input to the cooling water
flowing in the cold plate,

(2) use of a material of known conductivity, heat meter

(53), and,

(3) measurement of electrical input to the hot plate.

It appeared from the literature (54-57) that the primary apparatus problems

arose in acquiring heat flow lines normal to the specimen, measuring interface

temperatures, and determining the heat flux in the specimen. The flow-lines

problem is not easily solved, but it appears that an adequate guard-ring system,

properly operated, can make this factor almost negligible. If the direction of

heat flow is not a problem, then the measurement of the heat flux becomes less

of a difficulty.

The surface-to-surface temperature drop in the specimen must be measured

precisely in order to acquire the temperature gradient. Since thermocouples at

the interface between the plate and specimen must lie in the isotherm of the sur-

face in order to measure the surface temperature, many discrepancies can arise.

Several authors (55, 56) discuss this problem, and it would appear that a butt-

welded thermocouple (like a cylinder), lying in accurately formed grooves in the

surfaces, lies in the isotherm of the surface.
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GUARDED HOT-PLATE APPARATUS

The circular, guarded hot-plate apparatus design is presented in an exploded

diagram in Fig. 5.

The 0.5-inch brass backing plate (C) for the hot plate assembly was milled

3/16 inch deep in order to contain the 3/16-inch copper plates (G and H). The

Western Electric heating elements (E and F) were constructed from closely spaced,

high-resistance wire which was embedded in silicone rubber. The elements were

bonded to the copper hot plates by the manufacturer. The backing plate was re-

cessed 0.05 inch in the areas of the heating elements in order to maintain a

level, hot-plate surface. The test section (G) of the hot plate was attached

to the backing plate with a single, brass screw. The guard ring (H) was attached

by several screws along the circumference of the backing plate. A 1/32-inch gap

was maintained between the test and guard sections. The outside diameter of the

hot-plate assembly was 9 inches.

The test section (J) of the cold plate was milled from a 0.5-inch copper

disk. The 5/32-inch channels in the test section were concentric and continuous

such that water entering and leaving the test section flowed in alternate channels.

The 3/16-inch brass backing plate (L) for the cold plate was attached with several

screws and sealed with vacuum grease to prevent leakage. The circumference of the

test plate was beveled such that a 1/32-inch gap was maintained at the upper edge.

The guard section (K) of the cold plate was composed of a 3/16-inch copper

plate to which was soldered 0.25-inch copper tubing (M). The tubing was doubly

wound to give concentric, alternate flow channels similar to the test section.

The cold-plate assembly was recessed into a 1-inch Micarta base (N) such

that the upper, copper surfaces remained level.





The hot and cold-plate assemblies were confined in a 9-inch Plexiglas. ring

(I). The 2-inch high ring was recessed 0.25 inch into the Micarta base. A handle

(C) allowed the removal of the hot plate assembly from the retaining ring in order

to place the test specimen between the plates. A brass platform (B) was used in

most of the measurements. The platform sat atop the hot plate and evenly distribu-

ted the pressure applied by the large, deep-throat, C-clamp (A).

Photographs of the guarded hot-plate apparatus are shown in Fig. 6 and 7.

THERMOCOUPLE LOCATION AND TEMPERATURE MEASUREMENT

The thermocouples utilized in the temperature measurements were constructed

from 28-gage Chromel and Constantan wires. The thermal wires were insulated with

enamel and cotton braid. Junctions were formed by twisting the two wires together

and dipping in silver solder. Excess solder and wire ends were clipped away, and

the junction was carefully hammered until a continuous cylinder was formed.

The manufacturer's calibration curve for the Chromel-Constantan junction was

checked by immersing the thermals in a well-stirred oil bath along with a thermom-

eter calibrated by the National Bureau of Standards (NBS). The measured electro-

motive forces (e.m.f.s)' were identical to the reported values and an average

calibration of 0.0165°C./tvolt was utilized for the 15 to 70°C0 temperature range.

The thermocouples were installed in the guarded hot plate apparatus at the

following locations:

(a) center area of hot-plate test section,

(b) center area of cold-plate test section,

(c) copper tubing of inlet cooling water,

(d) across the inlet and outlet tubing of the cooling water,

-41-
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(e) across the guard-to-test gap of the hot plate, and

(f) across the guard-to-test gap of the cold plate.

Also, thermocouples were prepared for differential measurements on the test speci-

men and standard as will be explained in a later section.

The thermals measuring the temperature of the hot plate and cold plate were

attached to a Honeywell, six-point, automatic recorder. The cold junctions were

placed in mercury wells submerged in an ice-distilled water bath. E.m.f.s. could

be measured with the recorder to + 5 uvolts.

The differential thermocouples and the inlet cooling water thermocouple were

attached directly to a Thermo-Electric, six-junction rotary switch. The switch

was attached to a manual potentiometer circuit containing a Leeds-Northrup 2430a

galvanometer, Leeds-Northrup student potentiometer, and accompanying standard

cell, four-dial rheostat, tap keys, and dry cells. E.m.f.s. could be read to

+ 1 uvolt with this installation.

The thermocouples were attached to the copper plates of the apparatus by

cutting a small groove slightly larger than the thermal wire, placing the junction

in the groove, and peening the metal against the wire until the junction was firmly

secured. The thermocouples in the cooling-water copper tubing were attached with

epoxy resin.

HEATING AND COOLING REGULATION

A schematic diagram of the thermal conductivity assembly is presented in

Fig. 8.

The heating elements were connected to the 110-volt circuit through variable

transformers which could be regulated in approximately 1-volt intervals. The

heating elements in the guard and test sections were regulated separately.
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The control of the cold plate temperature and thermal balance was maintained

with the flow rate of the cooling water. Deionized, deaerated water was stored

in the main reservoir where its temperature was maintained at a low level by

allowing well water to pass through the copper cooling coil. The cooled water

was pumped to the constant temperature reservoir where the temperature was

adjusted and controlled to + 0.05°C. with the usual heater-mercury switch-relay

system.

From the constant temperature reservoir the water flowed by gravity from the

reservoir through the cooling channels of the cold plate. Flow adjustment was

maintained with compression clamps on the rubber tubing, with the insertion of

capillary tubing, and with alteration of the water head.

Flow rates were determined with graduated cylinder and stop watch and could

be maintained and regulated to + 0.001 cc./sec. under normal flow conditions which

were 0.3 to 0.4 cc./sec. in the test section and 3 to 4 cc./sec. in the guard

section.

INSULATION OF APPARATUS

The guarded hot plate apparatus was placed in the center of a 30 by 30 by

23-inch plywood box. Loose Vermiculite insulation filled the lower half of the

box to the level of the Plexiglas; retaining ring. Fiberglass batting in 30 by

15 by 3-inch strips was placed on top of the apparatus to finish filling the box.

The batting could be removed easily when introduction of a test specimen was

required. (See Fig. 6 and 7).
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THERMAL CONDUCTIVITY DETERMINATION

HEAT FLUX MEASUREMENT

The design of the thermal conductivity apparatus allowed three possible

means of heat flux measurement to be considered. Two of the techniques appeared

to be most feasible: (1) measurement of heat flow into test section of cold plate,

and (2) heat-meter method.

With the first method, adequate maintenance of the guard-to-test thermal

balance insured uniform heat flow through the specimen and into the cold plate.

Therefore, the important consideration was associated with the accurate measure-

ment of the heat input to the cold plate. This consideration involved the accurate

determination of the temperature rise in the cooling water flowing in the test

section, the measurement of the water flow rate, and the prevention of heat loss

to the surroundings via the insulation below the cold plate.

This "calorimetric" method was tested in preliminary studies in which a

Plexiglas; disk was utilized as a "standard." After numerous measurements, it

became increasingly evident that the measured heat flux input to the cooling water

was dependent on the water flow rate as well as on the heat flux through the

standard into the test section. It was then obvious that the position of the

differential thermocouple in the inlet and outlet channels of the test section

did not allow the true temperature change in the cooling water to be measured.

Considerable time would have had to be spent in trial and error movement of the

thermocouple in order to find the correct location for proper measurement. Also,

other modifications of the cooling plate design would probably have been necessary

in order to insure proper measurement. In addition, once a satisfactory location

and apparatus design was obtained, considerable effort would have been required
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to check properly and calibrate all conditions of heat flux and water flow rates.

It was decided that the "calorimetric" technique would be abandoned in favor of

the heat-meter method.

The heat-meter method involves placing a material of known conductivity in

a region of heat flux identical to that of the test specimen. Comparison of the

temperature gradients, AT/H, in the materials allows a calculation of the unknown

conductivity, K , from the known value,.K , in the following manner:
-t -o

Q = K[AT/H]o = Kt[AT/H]t (20)

Therefore,

Kt = Ko [ T ] o Ht / [ A T] t Ho (21)

where Q is the heat flux and H is the thickness.

The heat-meter method was checked in preliminary work by using two Plexiglas

disks of known conductivity. Differential thermocouples were attached to the

surfaces of the disks with epoxy resin. The disks were then stacked between the

hot and cold plate test sections, and the apparatus brought to steady-state condi-

tions at various temperatures and several- temperature gradients. Arbitrarily, the

lower 0.240-inch disk was designated as the "standard" and the upper 0.264-inch

disk as the specimen. The conductivity of the "standard" was taken as the value

for Plexiglas as reported by the NBS*. The results -of the heat-meter trials are

given in Table II and thermal conductivity versus temperature for the "standard"

and the test specimen is plotted in Fig. 9.

*The thermal conductivity value for Plexiglas as reported by the NBS was based
on conductivity measurements on a 1-inch thick Plexiglas sheet.

A
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The results of the trial indicated that the heat-meter method would be more

than suitable for use in the thermal conductivity measurements. The very small

slope of the conductivity-temperature curve for Plexiglas was measured very

accurately in comparison with the NBS results. The 1.5% difference in conduc-

tivity, which was calculated, was wholly acceptable as the error involved in the

installation of the thermocouples at the material's surfaces. However, the two

disks were not from the same Plexiglas sheet and the NBS reported some variation

in Plexiglas conductivity.

Of additional interest was the observation that the calculated conductivity

of the test specimen was essentially independent of the guard-to-test thermal

balance (Table II). This occurred because the test and standard materials were

of approximately the same conductance, K/H. This concept will be discussed more

fully in the next section.

Because acceptable limits of accuracy and reproducibility could be main-

tained with the heat-meter method, it was adopted for heat flux measurements

during the investigation.

OPERATIONAL PROCEDURES

FIBER BED CONDUCTIVITIES

The "standard" for the heat flux determination during the measurements on

the fiber beds was a 5-inch diameter disk of Plexiglas which was 0.475-inch thick.

A differential thermocouple was laid in O.Ol-inch deep grooves on each surface of

the disk and attached with epoxy resin. The Plexiglas disk was then placed over

the test section of the cold.plate, and the thermal wires were run through the

retaining ring directly to the rotary thermocouple switch.
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The fiber bed test specimen was placed on top of the "standard." A differen-

tial thermocouple, with junctions attached to sheets of aluminum foil (5-inch

diameter, 0.001-inch thick), was placed on the surfaces of the fiber bed and the

thermal wires were run to the rotary switch. Attaching the thermal junctions to

the foil allowed positioning of the junction and also aided temperature distribu-

tion at the bed surface. The foil also allowed a low-emissivity (0.05) surface

to be maintained at the surfaces of the bed.

With the test specimen in place, three spacers (Fig. 6) were positioned in

the guard section. The spacers were made from 0.5-inch drill rod and machined to

+ 0.0005 inch length in order to control accurately the separation of the hot and

cold plates and thereby fix the specimen thickness. Expansion of the spacers and

the Plexiglas standard was negligible under run conditions.

The hot plate was then placed atop the specimen and spacer studs while being

positioned by the retaining ring. A diagram of the apparatus containing standard

and specimen is shown in Fig. 10.

In order to fix the thickness of the bed, pressure was applied to the hot

plate until contact with the spacers was acquired. Initially, the C-clamp pres-

sure was applied to the handle attached to the backing plate. However, better

pressure distribution was obtained with the platform arrangement, shown in Fig.

6 and 7, although no differences in the conductivity measurements were observed.

With the conductivity apparatus ready for operation, the fiberglass insula-

tion was put in place, and the voltages to the heater elements and the cooling

water flow rates were adjusted. Most of the measurements were made at an average

bed temperature of 55°C. and the required heater voltages and water-flow rates

i _
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HOT PLATE

TEST SECTION
J

II GUARD I

TEST SPECIMEN
FOIL

STANDARD

Figure 10. Standard and Specimen Position in Apparatus

were quickly obtained. Heating-up periods of six to eight hours were required

if the apparatus was initially at room temperature. Generally, measurements

immediately followed one another before the apparatus was allowed to cool. As

a result, the normal heating-up period was only three to four hours.

After the equipment reached the approximate operating conditions, adjust-

ments were made in the voltage input and the water-flow rates in order to attain

a thermal balance between the guard and test sections. Obviously, such adjust-

ments would be very time-consuming if a perfect balance condition was required.

Consequently, the NBS procedure for obtaining a perfect balance condition was

adopted. This procedure consisted of observing several imbalance points on

either side of the perfect balance condition, drawing a curve through the points

and reading off the perfect balance value.

The balance conditions which were plotted were the AT ratio of the specimen

to the standard versus the arithmetic average of the guard-to-test differential

GUARD II
-I I

_

I
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thermocouple readings for the hot and cold plates. The imbalance guard-to-test

readings when the guard ring was hotter than the test section were considered

positive, and when the test section was hotter the readings were negative. Gener-

ally, the imbalance conditions in the hot plate and the cold plate produced

similar changes in the AT ratio. Several balance plots are shown in Fig. 11 which

indicate the usual response for various specimen and standard conductance ratios.

Adjustments were made to bring the balance e.m.f.s. in the range of + 20 uvolts

around the balance point. When in this range, adjustments of 4 to 5 volts were

made every one to two hours until enough points were acquired. The plotted curves

were consistent and reproducible within this range, and generally one to two days

was a satisfactory length of time for measurement.

Obviously, initial measurements required longer periods in order to acquire

information concerning the time necessary to reach a steady-state condition, the

variation of temperature at constant heating and cooling settings, and the effect

on the conductivity results. Runs were continued for as long as thirteen days

without any change in the apparatus conditions and the calculated conductivities. /

which were acquired the first day. In fact, the calculated conductivities acquired

during the latter stages of the heating-up period were usually only 2-3% lower than

the final steady-state values. Apparently, this is due to the use of the heat-

meter method which allowed the response of the standard and specimen to a given

heat flux condition to be consistent.

The maximum and minimum AT ratios measured over the + 20 uvolt range differed

only by about 2% (Fig. 11) for most of the conductance ratios observed in the

study.
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LIQUID CONDUCTIVITY

The procedures utilized for the measurement of the thermal conductivity of

the dioctyl phthalate oil were identical to those for the fiber bed determinations.

However, the necessity for retaining the liquid, so that conductivity measurements

could be made, required certain modifications of the standard-specimen relationship.

A 0.270-inch retaining wall was constructed on a Plexiglas disk (0.475-inch

thick, 5.5-inch diameter). Thermocouples were attached to the upper and lower

surfaces of the standard and were connected to the automatic recorder.

For conductivity measurements, deaerated oil was poured into the retaining

bowl atop the standard, and the hot plate was placed on the disk. The measure-

ments were then conducted as described previously. The conductivity results for

the oil are given in Table III.

TABLE III

THERMAL CONDUCTIVITY OF DIOCTYL PHTHALATE

Temperature,
°C.

46.0

55.5

56.5

58.0

65.0

104 K,

cal./sec.cm.°C.

3.75

3.77

3.78

3.78

3.78
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TWO-PHASE CONDUCTIVITY RESULTS

The experimental work can be conveniently divided into two studies: (1) two-

phase systems, and (2) three-phase systems. The results of the dry and fully

saturated fiber beds will be presented in this section. It should be noted, how-

ever, that the fully saturated beds were considered as terminal conditions for the

three-phase systems during the experimental observations. The presentation and

discussion of the three-phase systems will follow the discussions and analysis of

the two-phase measurements.

The two-phase presentation consists primarily of the investigation of the

component and bed characteristics which influence the over-all thermal conduc-

tivity of the fibrous systems. Also, information as to the effect of temperature

and other operating variables is discussed along with an estimate of the errors

associated with the work.

The porosity, used in the experimental discussions, is an over-all value for

the bed which is calculated from the bed weight, W, thickness, H, cross-sectional

area, A, and the fiber density, p, by e = 1-(W/pHA).

DRY NYLON FIBER BEDS

The operating conditions and conductivity results for the nylon beds are

presented in Table IV.

The nylon fiber beds formed from the 3-denier, 2.78 mm. fibers comprised the

primary fibrous system which was studied. The initial work with these nylon beds

involved the investigation of the effect of the average bed temperature on the

over-all bed conductivity. Figure 12 shows the results for Bed N-1 at a porosity

of 0.922 utilizing various hot and cold plate temperatures and several heat flux

conditions.
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TABLE IV

DRY NYLON FIBER BED STUDIES

Fiber Bed
Temp., °C.

Fiber Bed
AT, °C.

Ra
Ratio Porosity

Bed
Conductivity,

104K,
cal./sec.crm. C.

Bed N-1-3: Denier,-2-.78 mm., Length - 9.68 g. Weight

34
38
42
45
46
47
48
53
57
61
62

13.8
20.3
24.3
27.3
21.7
26.8
27.5
34.9
39.4
26.1
26.5

2.81
2.78
2.75
2.86
2.69
2.88
2.80
2.84
2.81
2.66
2.63

0.922
0.922
0.922
0.922
0.922
0.922
0.922
0.922
0.922
0.922
0.922

Bed N-2-3 Denier-2.78 mm. Length-9.52 g. Weight

55
45
63
55
65
56
65
56

40.1
29.6
29.5
24.7
25.5
20.5
21.2
17.5

3.09
3.13
1.06
1.07
0.801
0.807
0.643
0.648

0.923
0.923
0.852
0.852
0.820
0.820
0.796
0.796

Bed N-3-3 Denier-2.78 mm. Length--9.64 g. Weight

55
63
66

40.8
30.9
23.2

3.10
1.12
0.681

0.922
0.850
0.793

Bed N-6-3 Denier-2.78 mm. Length-9.43 g. Weight

N-35 39.8 2.12

Bed N-7-3 Denier-2.78 mm. Length-9.03 g. Weight

N-37
N-38
N-39

57
56
55

46.1
45.2
41.7

3.97
3.96
3.20

Run
No.

N-7
N-8
N-12
N-9
N-13
N-6
N-15
N-10
N-ll
N-14
N-16

1.04
1.05
1.06
1.02
1.09
1.02
1.04
1.053
1.04
1.11
1.12

N-17
N-18
N-23
N-24
N-25
N-26
N-27
N-28

N-19
N-21
N-22

0.945
0.93
1.43
1.41
1.56
1.55
1.72
1.70

0.94
1.35
1.63

0.905 1.105

0.938
0.938
0. 925

0.871
0.872
0.892
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TABLE IV (Continued)

DRY NYLON FIBER BED STUDIES

Run Fiber Bed Fiber Bed AT
No. Temp., °C. AT, °C. Ratio Porosity

Bed N-10-3 Denier-2.78 mm. Length--9.31 g. Weight

N-40 55 41.:4 3.155 0.923

Bed N-4--3 Denier--5.54 mm. Length-9.70 g. Weight

N-29 56 41.5 2.90 0.922

N-30 55 24.0 1.07 0.849
N-31 56 17.6 0.672 0.792

Bed N-5-15 Denier-2.49 mm. Length-10.53 g. Weight

N-32 55 39.5 2.79 0.915
N-33 54 22.5 0.995 0.836
N-34 55 16.5 0.625 0.774

Bed
Conductivity,

104K,
cal./sec.cm. C.

0.903

1.01
1.41
1.64

1.05
1.52
1.76

In the temperature range from 30 to 60°C., the conductivity-temperature

relationship for the nylon bed was masked by scatter in the data. Apparently,

this scatter was the result of changing the temperature drop across the fiber

bed. This situation was connected with the operating conditions since the lower

levels of heat flux (lower temperature drops across the bed) produced the larger

conductivity values at specific temperatures, i.e., 46 and 61°C. Once the heat

flux level reached a certain minimum (a temperature drop of approximately 25°C.

for a fiber bed at 0.922 porosity) the conductivity values were no longer

affected. In the temperature range from 45 to 57°C., the five measurements with

at least this minimum heat flux level indicated a 2% increase in conductivity

for the nylon beds.

The effect of bed temperature was also observed with Bed N-2 at lower porosity

levels under maximum heat flux conditions. These results are included in Fig. 13
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along with the effect of porosity. On this basis, a temperature coefficient of

approximately 0.002 x 104 cal./sec.cm.?C. was attributed to the nylon beds in

the 45 to 65°C. temperature range. Further efforts with temperature and heat

flux variation were not attempted due,to the small effect which was observed; and,

therefore, the remainder of the dry bed studies were conducted at 550C., under

maximum heat flux conditions.

The reproducibility of any conductivity measurement was found to be within

1% for a given bed at specific operating conditions. The variation between nylon

beds was found to be dependent on the level of porosity. Looking at Fig. 13, the

decrease in bed porosity produced a marked increase in the conductivity of the

nylon beds. At the higher porosities, a 10% variation in the beds was apparently

observed; but this was reduced to less than 5% as the porosity was lowered.

It should be noted that the load limit of the C-clamp compression arrange-

ment was reached when the nylon beds were reduced to 0.8 porosity. Therefore, a

superior reproducibility of results should probably not be expected at the maximum

compression conditions. For instance, an error in the thickness of a nylon bed of

0.01 inch at a porosity of 0.8 would produce a 3% error in porosity which in turn p>

would cause a 5% change in conductivity.

Two changes in fiber size were investigated by approximately doubling the

fiber diameter,, i.e., from 3 denier to 15 denier, and also by doubling the fiber

length, i.e., from 2.78 mm. to 5.54 mm. The conductivity response for the differ-

ent nylon fiber beds is presented in Fig. 14. As a basis for comparison, the

results predicted from the parallel phase distribution equation

K = eK + (l-e)K (1)
-g

are included in Fig. 13 and 14.

I
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The changes in fiber dimensions did not produce any significant alteration

in the conductivity response of the nylon beds. This observation compares favor-

ably with the conductivity data reported for granular materials in which particle

size plays an insignificant role.

DRY GLASS FIBER BEDS

The glass fibers had a conductivity value which was four times the conduc-

tivity of the nylon fibers. It was anticipated that this increase in fiber

conductivity would reveal the effect of this variable on the response of the

over-all bed conductivity. The results of the conductivity measurements on the

glass fiber beds are given in Table V and plotted in Fig. 15.

First, it is noted that poor reproducibility between glass fiber beds was

encountered. As much as a 20% difference in conductivity was found between beds.

Formation differences are most likely the reason behind such variation because

the glass fibers had a very definite tendency toward flocculation during the

formation procedure. Also, structural differences can occur when the glass fibers

begin to be broken during compression.

Comparison of the glass and nylon data reveal very little difference in

conductivity values at these porosity levels. However, when comparing both sets

of data with the parallel phase distribution predictions, the response of the

two systems appears to be quite divergent. On this basis, the glass and nylon

systems have other differences besides the stated difference in fiber conductivity,

e.g., the compressibility of the fiber beds.

It has been mentioned that the glass fibers were broken during compression.

An examination of the fiber length distribution of Bed G-5 revealed that after
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TABLE V

DRY GLASS FIBER BED STUDIES

Fiber Bed
Temp., °C.

Fiber Bed
AT, °C.

AT
Ratio Porosity

Bed
Conductivity,

104K,
cal./sec.cm.°C.

Bed G-1-13.7 p--2.7 6 mm. Length-12.09 g. Weight

55
55
55
55

50.5
43.3
27.7
19.6

4.80
3.33
1.23
0.74

0.971
0.956
0.916
0.898

Bed G-2-13.7 -i-2.76 mm. Length-13.77 g. Weight

0.966
0.950
0.904
0.883

).'S°o .93
.(\5 1.00

2.o0 1.27

\1.37

Bed G-4-13.7 p--2.76 mm. Length-13.81 g. Weight

G-9 56 48.7
G-10 53 41.8

4.22
3.52

0.958
0.949

Bed G-5-13.7 P--2.76 mm. Length-13.14 g. Weight

G-12
G-13
G-11
G-14
G-15
G-16
G-17

55
55
56
55
55
56
55

48.5
42.8
38.2
38.1
33.4
31.1
26.2

rI
5.20
3.33
2.60
2.62
1.95
1.51
1.17

0.968
0.951
0.941
0.941
0.925
0.908
0.889

1,o 0.858
i -75 0.858
(,4 0.897
1 ' 0o.89

S2 .0.945

1 1.00
i1q 1.065

Run
No.

G-1
G-2
G-3
G-4

G-5
G-6
G-7
G-8

55
55
56
56

0.90
o.88
1.23
1.69 f

50.0
43.3
28.0
23.0

4.62
2.93
1.19
0.915

1.323 0.82
1^3 O. 0.86
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compression to 0.89 porosity, as many as one-third of the fibers in the bed may

have been broken*. Jones' (42) compression data on glass fiber beds was termin-

ated at a porosity of 0.94 due to the rapid increase of the load on the bed and

the increasing significance of fiber breakage. Therefore, porosity reductions

below 0.94 may be considered to be produced by considerable fiber breakage and

repositioning in addition to compression.

DRY DACRON FIBER BEDS

Because of the widely different compressibility characteristics of the glass

and nylon systems, an intermediate system, dacron-air, was selected. The dacron

fibers, with a larger elastic modulus, produce a less compressible system than

nylon and at the same time do not have the complex fiber-breakage phenomena

associated with the glass system. A more ideal, intermediate system would have

had a fiber conductivity value greater than nylon, but such a system was not

available.

Table VI gives the conductivity results for the dacron system, and these

results are also presented in Fig. 16. Two fiber lengths were utilized, but no

differences in conductivity response were observed in the two beds formed from

the different size fibers. This observation corresponded to the effect of fiber

size in the nylon system.

The conductivity response to porosity changes in the dacron beds appears to

be similar to the response observed with the nylon system. As the porosity was

reduced, the experimental data coincided with the values predicted by the parallel

phase distribution equation for dacron and air.

*The average fiber length before compression was 2.76 mm. The total fiber length
of the 466 counted fibers after compression was 962 mm. This total length was
equivalent to 349 fibers before compression. Therefore, 117 new fibers were
formed by breaking.
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TABLE VI

DRY DACRON FIBER BED STUDIES

Run Fiber Bed
No. Temp., °C.

Bed D-1-5 Denier-2.04 mn

D-1 55
D-9 56
D-10 56

Bed D-2-5 Denier-5.30 mm

D-2 55
D-3 56
D-4 55
D-5 55
D-ll 55
D-12 55

Fiber Bed AT
AT, °C. Ratio

i. Length-11.88 g. Weight

47.7 3.96
38.1 2.55
33.0 1.87

i. Length--11.95 g. Weight

47.2 4.95
44.7 4.01
41.5 3.25
36.8 2.58
32.0 1.85
28.3 1.40

Porosity

Bed
Conductivity,

104K,
cal./sec.cm.°C.

0.934
0,902
0.875

0.947
0.933
0.919
0.901
0.875
0.847

0.873
0.915
0.986

0.873
0.865
0.878
0.905

1,VI 0.996
1.08

Alo

't.
,60o

I.1Q

Very evident in the dacron results was the minimum in the conductivity-

porosity relationship. This phenomenon was present in the other fibrous system

which was observed at the higher porosity levels, and, also, this condition has

been reported for other porous systems. Generally, investigators have attributed

this phenomena to convection and radiation. The discussion of this situation will

be included in a later section.

OIL-SATURATED FIBER BEDS

The conductivity results for the glass, nylon, and dacron fiber beds which

were fully saturated with dioctyl phthalate oil are presented in Fig. 17. These

two-phase results are not very extensive, but they add a great deal to the

analysis of the two-phase systems since they represent systems with lower solid-

fluid conductivity ratios.

I
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The fully saturated nylon and dacron systems behave like the nylon-air and

dacron-air systems in that they align with the parallel phase distribution predic-

tions. It is significant to note that the results for the glass-oil system fall

below the predicted values, although not as much as with the glass-air system.

Apparently, the replacement of the air with the more conductive oil (reduction

of the solid-fluid conductivity ratio) has produced a significant change in the

proportion of heat flux in the structure of the highly conductive glass fibers.

However, even the reduction of the solid-fluid conductivity ratio has not produced

a response in the glass system which is comparable to the viscoelastic fiber

systems.
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ANALYSIS OF TWO-PHASE RESULTS

CONVECTION AND RADIATION MECHANISMS

With the usual porous materials at normal temperatures, the mechanism of

heat transfer is taken to be conduction, and most predictions of composite thermal

conductivity assume that convection and radiation are negligible except under

specific conditions. In the regions of high porosity encountered with the fibrous

systems, there is good evidence that mechanisms of heat transfer in addition to

conduction are important.

Although the dry fiber bed conductivity results in the very high porosity

range (greater than 0.95) are not very extensive, the conductivity-porosity

relationships appear to level off around 0.95 porosity. This tendency is most

evident in the results for the dacron fiber beds which were presented in Fig. 16.

If conduction were the only mechanism of heat flow in these higher porosity

regions, the conductivity values should consistently decrease as the porosity

is increased because the volume occupied by the lower conductivity air increases.

Other workers with fibrous materials have also encountered this phenomenon.

Finck (5) has reported that the conductivity of various fibrous materials

passed through a minimum in the bulk density range of 0.05 to 0.08 g./cc.

(corresponds to a porosity range of approximately 0.94 to 0.96).

Baxter (52) indicated that the apparent conductivity of wool felt increased

rapidly in the bulk density region below 0.1 g./cc. (porosities greater than 0.92).

The above observations were made with the heat flux passing downward through

the highly porous specimen, which corresponded to the conditions of this study.

With the heat flux downward through the specimen, the over-all density gradient /
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in the fluid was such that mass movement from the cold regions to the warm regions

of the specimen was retarded. Generally speaking, this condition inhibits the

V influence of convection. Baxter and Finck also reported that a variation of the

direction of heat flux in the highly porous materials did not significantly in-

fluence the apparent conductivity results.

Investigation of the influence of radiation on the apparent conductivity of

highly porous materials at low temperatures has been limited. Finck found that

aluminum powder in a fiber mat influenced the conductivity of a fiber mat only

at a bulk density lower than 0.016 g./cc. (porosity greater than 0.99) with the

specimen at room temperature.

The apparent conductivity due to radiation, K , can be defined as the rate

of heat transfer by radiation per unit area divided by the temperature gradient,

and this has been expressed by Russell (21) in the form

K = 4oCT35 (22)
r a

where a is the radiation constant (1.36 x 1012cal./sq.cm.sec.°K ), C is the

constant depending on the emissivity and the geometry of the surfaces of the

air space, T is the absolute temperature, and p is the thickness of air space.

Assuming that the constant, C, is approximately unity for nonmetallic materials,

the radiation contribution to the heat transfer in the pore space can be calcu-

lated as a function of temperature and the thickness of the air space. These

results are shown in Table VII.

The influence of the radiation effect on the apparent conductivity of the

Y air spaces in the bed is almost wholly transmitted to the over-all conductivity
of the bed since the fiber bed has such a high porosity.
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TABLE VII

APPARENT CONDUCTIVITY DUE TO RADIATION

10 K

Thickness of Air Space, cal./sec.cm.°C.

cm. 550C. 75°C.

. 0.01 0.9 0.023

0.02 0.038 o.o46

0.03 0.058 0.069

0.10 0.192 0.230

Air conductivity 0.62 0.65

The main problem in evaluating this information is the knowledge of the

actual size of the pore spaces in the fiber bed. Cowan (3) utilized the capil-

lary pressure-saturation data on glass fiber beds at 0.945 porosity with the

assumption of a hydraulic radius model in his calculation of pore sizes. He

reported an average pore diameter of 0.002 to 0.003 cm. in the beds.

The fibers utilized in this study were larger than Cowan's; therefore, a

larger pore diameter value would be expected. The effective air spaces in the

bed would have to be about ten times the values calculated from the capillary

pressure data of Cowan in order to produce an appreciable radiation effect as

illustrated in Table VII. Nevertheless, the effective thickness of the air

spaces in the bed that are associated with radiative heat transfer may not be ade-

quately represented by the capillary pressure calculations.

On the basis of the above discussion, the influence of heat transfer mechan-

isms other than conduction at porosities around 0.95 appears to be negligible.

However, a closer look at the phenomena may provide some insight. The thermal

I



-74-

conductivity of the solid component and the gaseous component in the porous system

are generally quite different. Therefore, the temperature gradient in the solid

V will be different from the gradient in the pore space. This was illustrated in

Fig. 2. Obviously, if the pore space is of sufficient size, this condition will

v allow convection to occur and become significant in the high porosity regions.

This type of convection occurs in the pore space and not as an over-all mechanism

where mass movement takes place between the surfaces of the bed. Therefore, a

/ change in direction of heat flux would not give any indication of the extent of

this convective mechanism.

The magnitude of the convective movement in the pore space would be dependent

on the surface area of the fiber as well as the distance between fibers and the

j relative conductivity of the fiber and gas components. Therefore, the porosity

region in which this type of convective mechanism of heat transfer becomes signifi-

cant will be dependent on the characteristics of the porous system involved.

The radiation contribution cannot be overlooked, despite the previous calcu-

lations. As the bed becomes more and more porous, the possibility for a signifi-

j cant influence of radiation becomes more pronounced. Indeed, the system character-

istics play the major role in determining the critical region of influence.

In order to observe the possibility of radiation in the fiber system, the

emissivity of the hot plate surface was altered by making measurements with and

without the aluminum foil. Also, measurements were made on the conductivity of

air in order to determine the effect of the emissivity of the surfaces. These

results are shown in Table VIII.

The alteration of the hot-surface emissive characteristics produced the

expected, large change in the apparent conductivity of the air. The contribution
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of radiation to the over-all heat transfer through the air layer was quite

evident.

TABLE VIII

HOT SURFACE EMISSIVITY STUDY

Run Hot Surface 10K,
No. Conditions cal./sec.cm.°C.

Air-thickness of 0.25 inch

A-2 Aluminum foila ' 0.72

A-5 Copper plateb 0.92

Dacron Fiber Bed'D-2-porosity of 0.947

D-2 Aluminum foila 0.88

D-14 Aluminum foila 0.87

D-13 Copper plate o.o90

Normal run conditions. Foil total emissivity
approximately equal to 0.05.

Clean, but unpolished copper plate with total
emissivity approximately equal to 0.5.

With the dry fiber bed, the changes associated with the emissive character-

istics of the hot surface were expected to have little effect on the over-all

conductivity of the bed. However, the conductivity results for the fiber beds

had indicated that mechanisms, in addition to conduction, aided in the heat trans-

fer at the higher levels of porosity. The 3% increase in the apparent conductivity

of the dacron fiber bed when the aluminum foil was removed is probably significant

and indicative of the role that radiation begins to play at the higher levels of

porosity.

Additional observations of fibrous systems in the higher porosity regions will

be necessary before the relative magnitude of the effects of convection and radia-

tion can be acquired.
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PREDICTION EQUATIONS

Valuable information has been obtained by applying the two-phase conductivity

equations for spherical particles in a continuous fluid to the study of the heat

transfer characteristics of granular systems. Since particle geometry is gener-

ally not considered to be a critical factor in the heat flow in a porous system,

these equations, which were discussed in the Literature Survey section, were util-

ized in the analysis of the dry fiber bed conductivity results.

The predicted results are presented with the experimental values in Fig. 18,

J 19, and 20. Air-phase conductivity was taken as 0.6 x 10 4 cal./cm.sec.°C.

Maxwell's noninteracting system [Equation (4)] underestimated all of the

conductivities of the fiber beds. Even at these higher porosity levels his model

system is not realistic.

The cubic lattice models of Russell [Equation (6)] and Woodside [Equation

(7)] correspond quite well with the glass system results, but underestimate the

nylon and dacron system. The primary characteristic of these ideal systems at

the high porosity levels is that the particles do not touch, and, therefore, solid-

solid contact is of little importance to the over-all heat flow in the model.

Apparently, the heat-transfer characteristics of the glass fiber bed are adequately

described by this type of arrangement.

deVries' relationship, Equation (5), was applied to the fibrous system by

assuming that the fiber length and diameter were the major and minor axes of an

ellipsoid in order to calculate the particle shape factors in the equation. The

predictions from deVries' equation also gave inconsistent results: overestimated

the glass system and underestimated the nylon and dacron systems.
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Apparently, some of the variables in the fibrous system are not accounted for.

This situation was more emphatically revealed when the relationship of Kunii and

Smith was studied.

Kunii and Smith's final expression took the form of Equation (9) which

neglected the effect of the actual solid-solid contact area and only considered

the influence of the fluid filaments adjacent to the contact. The effective thick-

ness of the fluid filament, 0, was computed by Kunii and Smith for various values

of solid-fluid conductivity ratios with two types of structural geometry for the

system:

(1) 01 for loose packing of spheres (approximately 3 contacts/particles),
and

(2) 02 for close packing of spheres (approximately 14 contacts/particle).

The application of Equation (9) to the fibrous system also involved two other

parameters. For calculation purposes, the distance between adjacent particle

centers was taken to be the particle diameter, and, therefore, i became unity.

The effective length of the cylindrical fiber was calculated as shown in Appendix

II which indicated that 7 was equal to n/4.

Use of the fluid filament factors, 0, for the spherical particles as calcu-

lated by Kunii and Smith allowed estimates of the fiber bed conductivities to be

made, and these values are shown in Fig. 18, 19, and 20 with the other predictions.

The highly porous structure of the fiber bed should correspond to the loosely

packed structure of the spherical particles, provided the solid-solid particle

contact is not important. However, only the glass fiber results were adequately

predicted by the Kunii and Smith 01 factor, while the nylon and dacron results

were greatly underestimated. On the other hand, the close packing factor, 02,
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should overestimate the results for the highly porous fiber bed. This was true

for the glass system, but not for the deformable fiber systems.

The obvious conclusion from the use of the Kunii and Smith relationship was

that the influence of the contact region was more pronounced with the dacron and

nylon systems than with the glass system. This also had been the indication with v

the other predicted values though only the Kunii and Smith relationship allowed

this difference to be distinguished.

Apparently, the heat-transfer characteristics of the glass fiber system cor-

respond in detail to the model utilized by Kunii and Smith. This includes the

neglect of the solid-solid contact contribution to heat flow in the solid struc-

ture. The fact that glass has a very high modulus of elasticity supports the

concept that the fiber-fiber contact area will be extremely small, and that there

will be little deformation at the contacts when the glass fiber beds are compressed.

As a consequence, the heat flux in the solid structure of the glass system passes

through the fluid filaments adjacent to the contact, and Kunii and Smith have

included this contribution in their analysis.

With the dacron and nylon systems, a picture consistent with Kunii and Smith's

model cannot be acquired. The predicted values correspond only when the effect

of the contact region is maximized in the model.

A close-packed structure does not correspond with the structure of the fiber

bed. However, the close-packed model with the reduced resistance in the contact

region provided the best conductivity predictions for the nylon and dacron fiber

beds. Kunii and Smith found adequate correlation with their predictions for a

wide range of solid-fluid systems, and, therefore, it is not adequate to attribute

-
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the fibrous system situation to a reduction in the solid-fluid conductivity ratio.

Apparently, the only other significant effect lies with the solid-solid contact.

A finite contact area would greatly reduce the resistance to heat flow in

the solid structure, and with deformable materials the existence of significant

contact area between particles is reasonable. The analysis of the fiber-fiber

contact area (Fig. 4) indicated that there was a significant difference between

the glass fiber beds and nylon and dacron beds in the porosity regions of this

study.

Further illustration is provided if one looks at the conductivity data for

the six, two-phase fibrous systems which have been investigated under comparable

compressional conditions. Table IX gives the conductivity values for the fibrous

systems and, as a basis for comparison, the predicted conductivity values as cal-

culated from the parallel distribution equation are also included.

TABLE IX

COMPARISON OF PREDICTED AND EXPERIMENTAL
RESULTS FOR TWO-PHASE SYSTEMS

104K,
cal./sec.cm.°C.

System K /K Porosity Experimental Predicted
-s -g

Glass-Air 40.0 0.95 0.86 1.76

Nylon-Air 9.8 0.90 1.14 1.14

Dacron-Air 6.4 0.9 0 0.91 0.92

Glass-Oil 6.4 0.95 4.0 4.8

Nylon-Oil 1.6 0.90 3.8 4.0

Dacron-Oil 1.0 0.90b 3.7c 3.8

aEquation (1).

Larger compressional stress than in the nylon and glass systems.

Extrapolated value.
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As the conductivity ratio K /K decreases, the thermal characteristics of the
-s -g

components of the bed become similar and the predicted and experimental conductivity

values should converge. Apparently, this is the situation-note the two glass

systems. However, at the conductivity ratio of 6.4, the dacron-air experimental

values compare favorably with the predictions, but the values for the glass-oil

system are 20% apart. Even the experimental results for the nylon-air system,

which has a larger conductivity ratio than glass-oil, are identical with the pre-

dicted values. Therefore, the deformable fiber systems have one or more additional

mechanisms of heat transfer which do not influence the glass system to the same

degree.

The derivation of the two-phase conduction equation for a compressible system

accounted for the possibility of a significant contribution to the heat flow by

the particle-particle contact area. The contact resistance term in Equation (11)

includes the area of actual solid-solid contact as well as the area of surrounding

fluid. One observes that once the contact factor (h a) becomes large the expres-

sion becomes equivalent to the parallel phase distribution relationship, Equation

(1). This corresponds to the concept that as the fiber bed is compressed, the

fiber-fiber contacts become more significant and the heat flow from one particle

to another is maximized. On the other hand, when the heat flow in the solid struc-

ture is less than the maximum, the conductivity predicted from Equation (11) is

less than the parallel distribution equation. This latter condition should corre- V

spond to the regions of higher porosity. However, it is also in the regions of

higher porosity that the additional mechanisms of radiation and convection become

significant and Equation (11) would not be expected to be sufficient.

For correlation purposes, the experimental data for the dry fiber beds have

been utilized to calculate the contact factor (h a) values in Equation (11).



K/K = E + [l-]/[(Kg/K)+ Kg/Df(h)] ()

To aid in the calculation of the contact factors at the higher porosity levels,

arbitrary curves have been drawn which correspond to the discussion in the

previous paragraph. These arbitrary curves are shown in Fig. 21, 22, and 23 with

the experimental data for glass (lowest values), nylon, and dacron beds.

There is a definite possibility that the nylon-air data in the porosity region

of 0.92-0.94 falls below the maximum conductivity before the additional heat-

transfer mechanisms become significant. Consequently, the nylon response in this

region is assumed to be similar to the response of the glass-air system throughout.

The dacron-air data do not drop below the maximum conductivity value before

the contribution of mechanisms other than conduction become significant. However,

the glass-oil data provide a system with the same solid-fluid conductivity ratio,

and the presence of the oil in the voids reduces the effect of convection and

radiation. The primary difference in the dacron-air and the glass-oil systems

is the elastic modulus of the fibers. Looking at Fig. 4, it is apparent that at

the porosity level of 0.95 the contact area fractions for the two systems are

about equal. In fact, the glass contact area is a little greater because of the

larger compressional stress necessary. Therefore, it seems reasonable to combine

the glass-oil data with the dacron-air system in order to acquire some estimate of

the h a values in the higher regions of porosity.
-c

The calculated values for h a are presented in Fig. 24 as a function of solid

fraction. The nylon and dacron change is what one would expect when the contact

area between fibers begins to contribute to the heat flow in the solid structure

as the bed is compressed. The glass system contact factor remains at a low level
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Figure 24. Contact Factor Response
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throughout the compression. This observation is consistent with the concept that

the heat flow in the fluid film between the glass fibers is controlling since a

significant change in this contribution as the bed is compressed is not expected,

At the lower porosity levels, the contact factors for the nylon and dacron

systems are primarily dependent on the nature of the solid-solid contact area,

and it is expected that the heat flow in the fluid film adjacent to the contact

contributes little to the over-all heat flow. When the porosity is increased and

the solid-solid contact area is decreased, the nature of the entire contact region,

which includes the solid-solid contact area and the fluid film, governs the heat

flux in the solid structure.

Apparently, in the glass system, the contact area contribution does not be-

come significant. This is due to the high elastic modulus of the glass and also

because fiber breakage occurs. The decrease in the resistance of the fluid film

adjacent to the contact as the porosity is reduced is small, especially at these

high porosities. Therefore, the decreased resistance of the contact region of

the glass-air system is not sufficient to maintain a large heat flux in the solid

structure. Consequently, the over-all conductivity of the glass fiber bed does v

not increase rapidly when the porosity is reduced.

The division of the contact factor into the contributions of the solid-solid

contact area and the fluid filament surrounding the contact is difficult. How-

ever, if some assumptions concerning the response in the different systems are

made one can continue with the analysis.

First, the expression for the conductivity of porous materials when the heat

flow in the solid structure is divided as discussed above, is
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K/K= e+ (l-) (23)

, :^ )+ 7K/Ks
_ f( c ) g

0 K

where y and 0 are effective lengths for the solid particle and the fluid film;

respectively; & and a' are the fractional areas for the fluid filaments and solid-

solid contacts, respectively; and h' is the heat transfer coefficient for the
-0

solid-solid contact area.

If it is assumed that the solid-solid contact area in the glass fiber system

does not contribute to the over-all conductivity of the bed, Equation (23) can be

utilized to calculate the 6/0 value for the glass system. If 5 is taken as unity

and y as 0.785 (Appendix II), the 0 value for glass-air is 0.10.

It was concluded that in the nylon system the contact area contribution was

more significant than the fluid filament value. If it is assumed that the fluid

filament contributions in the glass and nylon systems are the same, then the 0

value for nylon will also be 0.10. Using this value in Equation (23), the contact

term can be computed for the nylon-air system. The results of these calculations

are presented in Table X for high and low porosity levels in the nylon system.

TABLE X

COMPARISON OF FLUID FILAMENT AND CONTACT
RESISTANCES IN NYLON-AIR SYSTEMS

Fluid -_
Porosity, Filament, Contact Term, neglecting experimental

E 0 [K/Dfh'1] 0 result
-g -- c f

0.80 0.10 0.028 2.68 2.80

0.95 0.10 0.455 1.04 1.26:

0.80 0.15 0.025 2.75 2.80

0.95 0.15 0.181 1.14 1.26
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At the low porosity regions the neglect of the fluid filament contribution

in Equation (23) does not introduce a significant error in the calculated conduc-

tivity of the nylon-air system. However, at the higher porosity where the fiber-

fiber contact area would be less significant, the fluid filament contribution

cannot be neglected in the prediction.

Looking at the calculations of Kunii and Smith for the 0 values for the

system of spherical particles, and also observing the calculations made in

Appendices I and II, the 0 values for nylon-air are at least 50% greater than

the glass-air values. A better estimate of the 0 value for nylon-air, based on

the empirically determined value of 0.10 for glass-air, would be 0.15. This

value was utilized in Equation (23) for nylon-air and these results are also

presented in Table X. The conclusions are similar, but the neglect of the fluid

filament value does not introduce as much error at the high porosity level as was

previously observed.

Alteration of the assumed values of 5 and y in Equation (23) would change

the magnitude of the calculated values, but the above discussion would still be

applicable.

From the combined contribution of the fluid filament and the contact area

(h a as shown in Fig. 24), the response of the heat-transfer coefficient, h , for

the contact region was calculated by using the fiber-fiber contact area fractions,

a', as given in Fig. 4. The calculated, contact heat-transfer coefficients for

the nylon-air, dacron-air, and glass-air systems are presented in Fig. 25 as a

function of the bed solid fraction.

The response of the heat-transfer coefficient for the nylon and dacron

systems is what one would expect for a bed in which the fiber-fiber contact area
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becomes important as the bed is compressed. Better contact between fibers allows

more heat to flow in the solid structure as indicated by the decreased resistance

in the contact region. Therefore, it appears that the use of the fiber-fiber

contact area fraction, a', allows a consistent computation of the heat-transfer

coefficient in the deformable fiber systems.

The response of the glass heat-transfer coefficient is not consistent with

the result expected if the fiber-fiber contact area was involved in the heat flow

in the solid structure of the bed. In that case, one would expect the heat-

transfer coefficient to remain constant or to increase as the porosity was re-

duced. The calculated decrease in h indicates that the area of fiber-fiber
-c

contact represented by ' is not indicative of the significant portion of the

contact region. Therefore, the fluid filaments surrounding the contacts must

conduct the heat flowing in the solid structure. These areas of fluid change

very little as the porosity is reduced, particularly at these high levels of

porosity.

The heat-transfer coefficient, h , is probably dependent on the nature of

the composite system and the conductivity of its components. An empirical cor-

relation of contact coefficients has been given by Wilhelm, et al. (8). Porosity

and solid conductivity were used as the measurable parameters affecting the

coefficient, but no direct experimental evidence to clarify the situation was

offered. Therefore, more than qualitative discussion is probably futile.

The heat-transfer area associated with the contact region also has nebulous

characteristics. The picture presented byWoodside and Kuzmak.(Fig. 2) illus-

trated that some portion of the pore space was involved with the heat transfer

in the solid structure. Woodside and Messmer (15) reported that a distance



-94-

one-sixth the particle radius from the contact accounted for the important contact

region in their granular system. A similar concept provided the basis for Kunii

and Smith's analysis. All are empirical adjustments to provide a consistent cor-

relation. The added fiber-fiber contact area contribution in the deformable fiber

system simply enlarges the scope of this type of analysis.
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THREE-PHASE CONDUCTIVITY RESULTS

The partial saturation study utilized two fibrous systems-nylon and glass.

These systems were maintained at two average porosity levels; 0.90 and 0.85 for

the nylon, 0.96 and 0.95 for the glass. The primary variable studied was degree

of saturation, s, which is defined as the fractional amount of the void volume

in the bed which contains liquid. The liquid in this study was the nonvolatile

oil, dioctyl phthalate.

The calculated degree of saturation is an average value determined by weight

and it is assumed that the liquid is uniformly distributed throughout the network.

Obviously, the specific saturation at a given location in the bed may vary from

this average, but it is believed that this variation is small, especially as

related to the heat-transfer characteristics of the bed.

Maintaining a temperature gradient in a partially saturated porous bed

produces a surface tension gradient* in the liquid network and redistribution

of the liquid occurs. Preliminary measurements with two beds laminated together

indicated that redistribution of the oil from one bed to the other was not extend

sive. Subsequent measurements of the conductivity of the partially saturated

fiber beds indicated that a change in the temperature gradient across the bed did

not significantly alter the conductivity of the bed. These observations were made

at several levels of saturation with as much as a 50% change in the temperature

gradient.

The errors associated with the thermal conductivity measurements in the

partial saturation study were the same as with the dry bed study. About 1% 1

variation was observed for individual measurements. Small differences in porosity

*Dioctyl phthalate surface tension at 20°C. was 33 dynes/cm. A surface tension
variation with temperature of 0.1 dyne/cm.°C. is normal.



-96-

were partially responsible for the 5 to 15% variation between beds at a given

saturation. Also, as much as a 5% variation was encountered with a given bed

when remeasured at a specific saturation level after the bed has been taken

through a complete saturation-desaturation cycle. The best reproduction of

measurements was acquired if the changes in saturation were accomplished with

the bed porosity at or near the desired porosity for measurement. This was

especially applicable to the measurements at the lower levels of saturation.

PARTIALLY SATURATED NYLON FIBER BEDS

Eight nylon fiber beds were used in the partial saturation study. The

conductivity results at the two porosity levels are shown in Fig. 26 and 27 as

a function of saturation. A complete summary of the operating conditions and

the conductivity results are given in Table XI in Appendix III.

In Fig. 26 and 27, the parallel phase distribution equation for nylon-oil-air

is plotted as a basis for comparison and subsequent analysis. This equation can

be written as

K = (l-e)K + esKI+ (1-s)eKg (24)
g

where K is the liquid conductivity and s is the average saturation.

The replacement of the air in the fiber network with the more conductive

oil produced an immediate change in the conductivity of the nylon bed. At the

upper levels of saturation the conductivity of the bed did not increase as rapidly

A as the saturation was increased. This produced a leveling off of the conductivity-

saturation relationship at saturations above 0.8. This was particularly noticeable

with the 0.85 porosity bed.
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In general, changes in saturation and changes in porosity produced similar

conductivity results in the nylon system. Observing the parallel distribution

equation predictions, the excellent correlation with the nylon data corresponds

with the results for the two-phase study. The introduction of the more conductive

oil accomplishes a significant reduction in the solid-fluid conductivity ratio

(from 10 to 1.6), and the heat flow in the solid phase would be maximized even if

it were not for the appreciable contribution of the solid-solid contact area in

the nylon system.

At the lower saturation levels, the conductivity of the system, when the oil

is introduced, should lag slightly until the oil becomes the predominant fluid in

the pore spaces. The parallel distribution equation accounts for the oil-phase

contribution as a whole, but the oil actually is in discrete pockets throughout

the bed. Consequently, the contribution of the liquid would not be a maximum one

until the saturation is increased. Looking at Fig. 26 and 27, the conductivity

values at the lower saturation levels are slightly below the parallel model pre-

diction.

PARTIALLY SATURATED GLASS FIBER BEDS

The conductivity versus saturation results for the glass fiber systems are

presented in Fig. 28 and 29. A complete summary of the operating conditions and

conductivity results is given in Table XII of Appendix III.

The conductivity change of the glass system as the oil was introduced was

much more pronounced than in the nylon system. In the saturation region of 0.4

to 0.8 the conductivity of the glass fiber bed increased very rapidly and then

leveled off at saturations above 0.8.

1
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It would be expected that the presence of the small amount of the more con-

ductive oil in the contact regions would give rise to an appreciable increase in

the conductivity of the fiber system. At the lower saturation levels, the conduc-

tivity of the glass fiber bed increases with saturation, but not very rapidly.

However, it should be noted that even at the fully saturated conditions, the con-

ductivity results are still 20% below the parallel model. Therefore, the reduction

of the solid-fluid conductivity ratio does produce a significant change in the heat

flow in the solid structure, but in the initial stages of oil introduction this

change is masked by the predominant fluid in the voids-air. When the predominant'

fluid becomes oil, a rapid increase in conductivity is observed.

In the higher saturation region, the conductivity response levels off also

because the relative changes in the system become minor. Even though the less

conductive air is being replaced, the effect on the over-all bed conductivity

ceases to be important.
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ANALYSIS OF THREE-PHASE CONDUCTIVITY RESULTS

PREDICTION EQUATIONS

As in the case of the two-phase results, the conductivity responses of the

three-phase systems are consistent if one takes into account the compressional

characteristics of the fiber. The contribution of the contact area in the nylon

system at porosities less than 0.92 is highly significant and enhances heat flow

in the solid structure of the bed. The introduction of the oil does not alter

these concepts, and the response of the partially saturated nylon bed is adequately

predicted by the parallel model. Any variation in this model should arise at the

lower saturation levels where the liquid contribution would not be a maximum.

However, this alteration would not be extremely significant.

With the glass system, the description of the configuration of the liquid

in the porous network at the lower levels of saturation is necessary in order to

account for the liquid contribution. With the glass bed the liquid is more

significant since the conductivity contribution of the solid structure is not a

maximum. Therefore, a poor assumption about the liquid contribution to heat flow

will bring about appreciable discrepancies. This situation is similar to the

solid-phase contribution in the two-phase system.

/
The conductivity relationship which was derived for a three-phase compressible

system assumed that the fluid phases were continuous in the network and were paral-

lel paths of heat flow. The equation is

K = c(l-s)Kg + sK + (1/K ) + (/Dfh) (12)
S f1C

]



The application of Equation (12) to the partially saturated nylon conductivity

data produces the parallel distribution expression because the h a factor at the
-c

porosity levels of 0.90 and 0.85 is calculated to have a value of at least 10.0.

Such a value makes the contact resistance term negligible and Equation (12) be-

comes equivalent to Equation (24).

The application of Equation (12) to the partially saturated glass conductivity

data gives the contact factors as shown in Fig. 30. The results of h a calcula-

tions illustrate that Equation (12) does not provide a satisfactory description

of the component contributions. Starting with the dry bed, the contact factor

would be expected to increase as the oil is introduced. Obviously, Equation (12)

allows too much of the heat flow to be attributed to the liquid phase, and the

calculated contact factor decreases. Most likely, the liquid phase is initially

retained between the fibers and around the contacts, and the heat flow in these

regions is increased, thereby increasing the heat flow in the solid structure.

Once the liquid occupies a predominant portion of the porous network, a signifi-

cant contribution to the over-all heat flow in the bed can be attributed to the

liquid phase.. Then, Equation (12) gives a more realistic prediction as noted in

Fig. 30 at saturations above 0.6.

The increased contribution by the contact region when the air is replaced

by the oil is shown by the increased value of h a at the high saturation levels

and also by the increase in the contact factor as the porosity is reduced.

A contributing influence to the discrepancies in Equation (12) is the gas-

phase contribution. When the air becomes discrete pockets dispersed in the porous

network, the model system is erroneous.
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The increased complexity of the system geometry has made the weaknesses of

the model more apparent and, therefore, it is considerably less satisfactory than

in the two-phase system.

Eucken (58) utilized Maxwell's relation for the conductivity of an aggregate

consisting of one phase in which spheres of the other phases are embedded in de-

riving an equation for any number of phases. The generalized expression is

1 - 2i(K - K. )/(2K +K.)

K = K - (25)

1 + Vi(Kc-Ki)/(2K +Ki)

i

where K is the conductivity of the continuous phase and V. is the fraction volume

of the phase whose conductivity is K..of the i phase whose conductivity is K..

Equation (25) was utilized to calculate the conductivity of the nylon-oil-

air and the glass-oil-air system with (a) the gas phase continuous and (b) the

liquid phase continuous. The results for the 0.90 porosity nylon bed and the 0.96

porosity glass bed are given in Fig. 31 and 32, respectively.

In the lower saturation region, with the air as the continuous phase, Equation

(25) predicted lower values than were observed experimentally. This is the result

of the interaction between particles which was discussed in the two-phase analysis.

In the upper saturation region where the oil is the continuous phase, the predic-

tions corresponded reasonably well with the data, especially in the glass system.

The interesting result of these calculations with Eucken's equation is

associated with the type of transition which has to occur in the system as the

continuous phase shifts from the gas to the liquid and the resultant change in the

conductivity response. Also, the shift from the larger solid-fluid conductivity
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ratio produces an appreciable change in the correlation. In the nylon case, where

the oil-saturated bed is almost a homogeneous network, Equation (25) closely pre-

dicts the conductivity value as would be expected. In the glass case, the solid-

fluid ratio is reduced considerably in going from the air-continuous to the oil-

continuous system (from 40 to 6.5). Also, the particle interaction is not as

significant. The net result of these factors produces an excellent correlation

in the upper saturation levels for the glass system.

SYSTEMS WITH A VOLATILE LIQUID PHASE

The extension of the information acquired in the partial-saturation study

with a nonvolatile oil to the more applicable systems with a volatile liquid phase

presents a great many difficulties. These difficulties arise primarily from the
/

inadequate understanding of the mechanisms involved in the heat transfer in the

porous material. Therefore, no generalized correlation is satisfactory in all

cases, and further efforts with other fiber systems with various solid-liquid-gas

conductivity ratios are necessary in order to provide a definite correlation in

the general case.

The purely conductive characteristics of a given porous system may be esti-

mated quite well under certain circumstances. If the system has a low value of

the solid-fluid conductivity ratio, the most consistent estimate can be acquired

with the parallel distribution equation. Cowan (3) utilized the parallel model

for his analysis of the glass-water-air system in order to estimate the pure

conduction conductivity values for his partially saturated beds. From the infor-

mation previously discussed on the two-phase systems, it can be said that the

conductivity of the glass-water system, which has a solid-fluid conductivity ratio

of 1.65, would be adequately predicted by the parallel model, but that the glass-

air system would be overestimated.
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Cowan observed that the glass-air system was overestimated by the parallel

model, and he utilized an effective glass conductivity value of 7.5 x 10- 4

cal./sec.cm.°C. in his calculations. This type of modification placed restrictions

on the parallel model which are similar to the empirical treatments which were

utilized in this study. Looking at the conductivity results reported by Cowan

and Herminge (33) as shown in Fig. 1, it is obvious that the pure conduction contri-

bution is only a fraction of the total heat flow in the glass-water-air system.

Consequently, an inadequate estimate of the pure conductivity.in the lower satura-

V tion regions will not produce an appreciable error in the over-all, apparent con-

ductivity prediction of the system with a volatile liquid phase.

Considering other fibrous systems, such as paper, which have deformable fibers

one would expect a good prediction of the conduction contribution to heat flow to

be acquired from the parallel phase distribution equation. The solid-fluid con-

ductivity ratios in the wood fiber-water-air system are low, but more important,

the fiber-fiber contact areas are significant and should greatly enhance the heat

flow in the fiber network. The internal geometry of both the fiber and the fiber

network are complex. Consequently, it is fortunate that the use of the phase

distribution equation in such instances may provide an adequate estimate of the

conductivity.

The estimates of the vapor movement contribution to heat flow by Philip and

deVries (29) and Herminge (33), produced good results in their systems. However,

the exact nature of the vapor diffusion and the associated diffusivity in porous

systems has yet to be determined and the value of the heat transfer attributable

to this mechanism awaits this information.
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SUGGESTIONS FOR FUTURE WORK

The confirmation of the contribution of the fiber-fiber contact areas to the

heat flow in the solid structure of a fiber bed under compression could be acquired

with measurements in vacuo. Subsequent work concerning the incidence of fiber-

fiber contacts and the amount of contact area would contribute markedly to the >

understanding of heat flow in fibrous systems.

A thorough investigation of the extremely high porosity regions of porous

materials with variation of temperature, temperature gradient, fiber surface

characteristics, pore size, and pore saturant would provide a better insight as y

to the nature and contribution of the radiation and convection mechanisms.

Additional efforts with a wider range of solid-fluid.conductivity ratios

would provide a broader basis for a generalized correlation of effective conduc-

tivities for both two and three-phase porous systems.

Measurements of conductivities as well as the observation of temperature

gradients in the pore spaces of idealized model fiber systems would provide

information on the effect of structural geometry in addition to providing a basis

for a more fundamental analysis of the composite conductivities.
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NOMENCLATURE

a = semiaxis of the elliptical contact area, cm.

A = cross-sectional area of bed, sq. cm.

A = single fiber-fiber contact area, sq. cm.
-c

C = constant depending on emissivity and geometry of pore space

C = number of fiber-fiber contacts per layer
-L

C = total number of fiber-fiber contacts in the fiber bed
-t

d = maximum thickness of fluid filament between crossed cylinders, cm.
-in

d = average thickness of fluid filament between crossed cylinders, cm.
-av

D = diffusion coefficient of water vapor in air, sq.cm./sec.

Df = fiber diameter, cm.

E = modulus of elasticity, g./sq.cm.

= particle shape factor

G = total compressional load on fiber bed, g.

h = heat transfer coefficient for total contact region, cal./sec.sq.cm.°C.
-c

h' = heat transfer coefficient for fiber-fiber contact area, cal./sec.sq.cm.°C.

H = bed thickness, cm.

K = effective thermal conductivity of system, cal./sec.cm.°C.

K = thermal conductivity of continuous phase

K = thermal conductivity of gas or fluid phase
-g_

K. = thermal conductivity of to phase

K = thermal conductivity of liquid phase

K = apparent thermal conductivity due to radiation

K = thermal conductivity of solid phase
--s

K = apparent thermal conductivity due to vapor diffusion

£ = effective length of fluid filament in direction of heat flow,. cm.
-g



-114-

£ = effective length of solid particle in direction of heat flow, cm.
-s

L = number of layers in fiber bed

m = transcendental function

n = transcendental function

n = effective number of contacts per half particle
-c

N = normal load on single fiber-fiber contact, g.

p = thickness of pore space, cm.

p = partial pressure of water vapor, atm.

P = compressional stress on fiber bed, g./sq.cm.

P = atmospheric pressure, atm.
-a

= heat flow rate, cal./sec.

Q = heat flux,cal./sec.sq.cm.

Q = heat flux in solid phase, cal./sec.sq.cm.

R = fiber radius, cm.

s = average bed saturation, liquid volume/void volume

T = temperature, °C.

T = absolute temperature, °K.
-a

AT = total temperature drop, °C.

AT = temperature drop across contact region
-c

AT = temperature drop across solid phase
-s

V = fractional volume of gas phase, gas volume/total bed volume-g

-1
V. = fractional volume of solid phase, phase volume/total bed volume
V = fractional volume of solid phase, solid volume/total bed volume
-s

w = side of projected intersection of crossed fibers, cm.

W = weight of fiber bed, g.

x = distance from cylinder axis, cm.

x = distance from cylinder axis to boundary of fluid filament, cm.
-O
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Y

Z

= fiber

= ratio

length, cm.

of solid conductivity to fluid conductivity

Greek Letters

a = ratio of area of total contact region to total solid area

a' = ratio of area of fiber-fiber contacts to total solid area

= ratio of distance between particle centers to particle diameter

.Y I /D7s= f

= ratio of area of fluid filament to total solid area

E = bed porosity, void volume/total volume

0 = angle between axis and differential element, radians

0 = angle between axis and boundary of fluid filament, radians

X = latent heat of vaporization, cal./g.

= Poisson's ratio

P = density of fiber, g./cc.

PO = density of saturated water vapor, g./cc.

a = radiation constant, cal./sec.sq.cm.°K.

T = auxiliary angle determining transcendental function

0 = a g/-f

wl = angle between intersecting fibers
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APPENDIX I

ANALYSIS OF ALIGNED CYLINDERS

The two-component system to be analyzed consisted of solid, cylindrical

fibers and a stagnant fluid. The stagnant fluid was considered as the continuous

component filling the void spaces of the system. The fibers were considered as

perfect cylinders of diameter, Df, and of length, Y.

The relationships derived by Kunii and Smith (25) were used as a guide during

the initial analysis, and similar heat transfer mechanisms were assumed to be

operable in this system as in their system of spherical particles. The mechanisms

were:

1. Heat transfer through the void space by conduction.

2. Heat transfer through the solid particle by conduction.

3. Heat transfer through the contact surface of the particles.

4. Heat transfer through the fluid filament adjacent to the contact

surfaces.

Using these mechanisms, which neglect radiation and convection, an expression

for the effective over-all conductivity of the two-component system was derived.

1 t/ T

1 t32AT ,
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Assume that Mechanism 3 and Mechanism 4 are in parallel, Mechanism 2 is in

series with combined 3 and 4, and Mechanism 1 is in parallel with combined 2, 3,

and 4.

The over-all heat flux = KAT/D = (heat flux in voids)+(heat flux in solid)
(28)

(heat flux in voids) = KgAT/Df (29)

(heat flux in solid) = Qs (30)

with,

AT = AT + AT (31)
s c

where AT = temperature drop in solid
-s

AT = temperature drop near contact--c

Then

i.. LTs = Qs/(Ks/2s )(l-e) (32)

ATc = Q/[(KgK/g) + hc][l-e] (33)

where £ = effective length of solid resistance
-s

2 = effective length of fluid filament resistance
-g

h' = heat transfer coefficient for solid-solid contact
-c

Combining Equations (28) through (33) and letting y = I /D and 0 = _ /D

gives

(l-E)
/g 1/(l/0 + Dfh/Kg) + (Kg/K) (34)

If the heat transfer through the contact is neglected

K/K = e + )/ + (-) /( + K/Ks )g &gs (35)
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The value of O can be calculated using several techniques. Although the

exact technique of Kunii and Smith was not detailed in their article, the same

results can be obtained for their system by using the following method.

The initial attack was on the simplified case with the cylinders parallel

and having line contact. A single contact is considered. Heat flow is parallel

to the axis between particles. The basis of the technique is the definition of

the heat flow through differential elements of the model solid-fluid system, the

summation of the elements, and the application of the assumed resistances.

x = RSIN

dx = RCOS ede

T dx7 ^^ Y = FIBER LENGTH

/A;T t^^ ^ R = FIBER RADIUS

\ QV/ QF AT = TEMPERATURE DROP

Heat flow through solid:

K (2Yldx)LT r s

dq = (2 Rcose) = KYT d (36)

Heat flow through fluid filament:

K (2Ydx)LT
d g ) c cosede

dq = 2(R-Rcose) - K YT (1-cos)

with AT = AT + AT
- -s -c
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then

AT = dq + dq(l-cose)
K Yde K Ycosede
s g

Solving for dq, simplifying, and letting Z = K /K
- s -g

K YATcosede
dq = Z-(Z-l)cose

The total heat flow rate is

q = KsYaT o

0

cosQde
Z-(Z-l)cose

Integrating

K YAT
s (

q= Z_-/1
(tan2Z)L2-Z- (tan /2Zii tane0/2) - 0

An alternate expression in terms of the resistance to the two mechanisms

(2YRsin 0 )AT

q = (£ /K ) + (g/Kg)
s s g g S

Ysine AT

(7/Ks) + (0/K )0 g
(42)

Equating (41) and (42) and solving for 0 gives

(l-l/Z)sine
= o
O r-2Z (tan-1 /2Z-1 tane /2) - o,

-
z (43)

Letting n = number contacts for one half of a single particle and assuming (l/n )

to be the fractional amount of heat passing through a single contact and adjacent

fluid filament then,

(38)

(39)

(40)

(41)
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1/n = 2x Y/2RY = sin0 (44)

With close packing of cylinders below, the total number of contacts equals 3.

However, correcting for orientation of the two contacts 60° from the axis between

particles, n = 1 + 2(cos60°) = 2. Using sin9 = 1/2 and y = r/4 (see Appendix

II) Equation (43) was utilized to acquire the following results:

with Z = 10 for nylon-air, 0 = 0.052

with Z = 40 for glass-air, 0 = 0.029

Using Equation (35), the predicted values for the nylon and glass fiber beds

are shown in Fig. 33. In the nylon case the values are lower than experimental,

while the glass values are larger as was expected. Both predictions closely

align with the Kunii and Smith 02 prediction for close-packed spheres.
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APPENDIX II

ANALYSIS OF CROSSED FIBERS

The evaluation of 0, as given in Equation (35) of Appendix I, for crossed

fibers presented geometrical considerations which were impractical. The evalua-

tion of the effective resistance of the solid phase and the fluid filament was

accomplished by changing to a projected cross section of fibers intersecting with

axes perpendicular.

Tw

w

R

2
w

d
-m

d
-av

= side of projected

= radius of fiber

= projected area of

= maximum thickness

= average thickness

total volume =

area of fiber crossing

fiber crossing

of fluid filament volume

of fluid filament volume

d w2 =w(2R - 2j2w2/4
m

volume of cylinder sections = wR2(26-sin29)

= 2Rsinl(w/R) - w2 R2/4= 2R wsin (w/TR)-w4

(45)

(46)

fluid filament volume = total - cylinder sections

2 2 r2 2 2 -
= 2Rw2 _ w -w2/4 - 2R2wsin (w/2R)

d = fluid filament volume/projected area
-av

-A
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d = 2R - -w /4 (2R2/w)sin (w/2R) (48)

if w = 2R, then d = 2R(1-n/4)
- - -9-av

then if da = , 0 = 1-X/4 = 0.215-av -g

if 2- =2R4-d = 2R4, then y = v/4 = 0.785

Using these values in Equation (35) produces results which are much too low

as illustrated in Fig. 33.
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APPENDIX III

PARTIAL SATURATION STUDIES

TABLE XI

NYLON FIBER BEDSa

Run Fiber Bed
No. Temp., °C.

Bed N-3-Porosity 0.903

NOS-15
NOS-16

56
55

Fiber Bed
AT, °C.

16.1
16.6

AT
Ratio

0.607
0.655

Saturation

0.898
0.847

Bed
Conductivity,

104K
cal./sec.cm.°Co

3.86
3.57

Bed N-4-Porosity 0.909

NOS-18 56

Bed N-4-Porosity 0.849

NOS-21
NOS-22

56
55

Bed N-6-Porosity 0.905

NOS-28
NOS-29
NOS-24
NOS-25
NOS-26
NOS-27

55
57
55
56
56
53

Bed N-6-Porosity 0.853

NOS-30
NOS-32
NOS-33
NOS-31
NOS-34
NOS-35
NOS-36

56
56
56
55
56
55
55

16.6 0.661 0.940

10.5
14.5

3.54

0.365
0.533

0.956
0.535

4.16
2.85

16.3
17.2
15.6
17.2
20.2
21.6

0.645
0.659
0.612
0.743
0.937
1.190

0.830
0.826
0.818
0.666
0.500
0.344

3.63
3.56
3.83
3.15
2.50
1.97

10.5
11.1
11.9
12.4
13.8
15.7
22.4

0.362
0.378
0.416
0.447
0.510
0.628
1.046

0.937
o.8o8
0.705
0.660
0.543
0.412
0.120

4.19
4.02
3.65
3.40
2.98
2.42
1.45
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TABLE XI (Continued)

NYLON FIBER BEDSa

Run Fiber Bed
No. Temp., °C.

Fiber Bed
AT, °C.

AT
Ratio Saturation

Bed
Conductivity,

104K
cal./sec.cm. C.

Bed N-7-Porosity 0.909

NOS-38
NOS-39
NOS-40
NOS-41

55
55
56
57

Bed N-7-Porosity 0.859

NOS-43
NOS-45
NOS-57
NOS-47
NOS-49
NOS-42
NOS-52
NOS-54

55
56
55
55
54
54
56
56

Bed N-8-Porosity 0.902

NOS-19 56

Bed N-8-Porosity 0.850

NOS-17
NOS-11
NOS-12
NOS-7
NOS-8
NOS-14

55
56
66
55
64
56

Bed N-9-Porosity 0.898

NOS-5
NOS-3c

NOS-4

45
57

- 64

16.7
21.5
27.4
30.7

0.650
0.953
1.395
1.600

0.850
0.532
0.300
0.161

3.60
2.46
1.68
1.46

10.8
11.6
12.6
14.3
16.5
18.6
23.5
25.7

0.360
0.387
0.452
o.508
0.625
0.748
0.994
1.125

0.840
0.757
0.618
0.508
0.368
0.260
0.167
0.070

4.31
3.92
3.36
2.99
2.43
2.03
1.53
1.35

15.9 0.622 1.0 3.77

10.2
10.2
12.7
10.0
12.4
15.0

0.349
0.346
0.345
0.355
0.353
0.570

0.787
0.777
0.777
0.632
0.632
0.370

4.35
4.40
4.41
4.28
4.31
2.66

21.6
29.0
34.0

1.61
1.61
1.60

0.136
0.136
0.136

1.45
1.45
1.46
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TABLE XI (Continued)

NYLON FIBER BEDSa

Run Fiber Bed
No. Temp.., °C.

Fiber Bed

AT °C.
AT

Ratio Saturation

Bed
Conductivity,

4
10 K

cal./sec.cm.°C.

Bed N-9-Porosity 0.842

NOS-13
NOS-10
NOS-9
NOS-6

64
53
64
56

Bed N-10-Porosity 0.906

NOS-44
NOS-46
NOS-48
NOS-50

55
55
56
56

Bed N-10-Porosity 0.855

NOS-53
NOS-55

NOS-56
N0o-58
NOS-59
NOS-60

NOS-61
NOS-51

55
55
56
56
55
55
55
55

from 3-denier
fibers.

fibers, 2.78 mm. long, except Bed N-4 with

13.0
11.4
14.4
18.0

0.359
0.432
0.431
0.726

1.0
0.533
0.533
0.204

4.25
3.52
3.53
2.09

16.1
23.6
30.5
36.6

0.632
1.080
1.675
2.29

0.915
0.430
0.154
0.030

3.70
2.17
1.40
1.02

10.9
11.4
13.4

17.6
17.7
20.8
23.1
25.2

0.370
0.398
0.468
0.681
0.743
0.925
1.040
1.200

0.883
0.717
0.553
0.304
0.218
0.117
0.050
0.050

aAll beds
5.54-mm.

4.10
3.81
3.24
2.23
2.04
1.64
1.46
1.27
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TABLE XII

GLASS FIBER BEDS

Run Fiber Bed
No. Temp., °C.

Fiber Bed
AT, °C.

aT
Ratio Saturation

Bed
Conductivity,

104K
cal./sec.cm. C.

Bed G-3-Porosity 0.965

GOS-1
GOS-13

65
55

Bed G-3-Porosity 0.957

GOS-2
GOS-20

GOS-26

55
55
58

Bed G-3-Porosity 0.947

GOS-3
GOS-28
GOS-25
GOS-4
GOS-23
GOS-16
GOS-5
GOS-6
GOS-9
GOS-11

56
56
56
56
55
55
56
55
55
55

Bed G-4-Porosity 0.958

GOS-7
GOS-24
GOS-10
GOS-12
GOS-15
GOS-17
GOS-18
GOS-22

56
57
55
55
55
56
55
54

Bed G-4-Porosity 0.949

GOS-8
GOS-27
GOS-19

55
56
56

25.1 .-
22.6

0.860
1.002

1.0
1.0

4.05
3.46

17.7
17.6

39.0

0.732
0.707
2.600

1.0
1.0

0.157

3.92
4.05
1.10

15.5
16.8
16.3
17.6

15.3
21.2
28.6
27.6
32.2
33.8

0.590
0.662
0.638
0.680
0.635
0.969
1.380
1.450
1.890
2.110

1.0
0.887
0.852
0.747
0.735
0.581
0.428
0.418
0.242
0.118

.397
3.54
3.70
3.44
3.69
2.42
1.70
1.61
1.24
1.11

23.1
24.6
22.4
23.7
23.4
27.6
35.4
40.1

0.962
1.020
1.005
1.080
1.055
1.355
2.190
2.830

1.0
0.858
0.852
0.835
0.778
0.644
0.413
0.259

N,

3.60
3.40
3.45
3.21
3.29
2.56
1.58
1.22

19.1
19.6
29.6

0.789
0.810
1.520

0.840
0.825
0.498

3.63
3.54
1.89
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TABLE XIII

DACRON FIBER BEDa

Run Fiber Bed
No. Temp., °C.

Fiber Bed
AT, °C.

AT
Ratio Saturation

Bed
Conductivity,

104K
cal./sec.cm.°C.

Bed D-l-Porosity 0.902

DOS-1
DOS-2
DOS-3

57
55
54

Fibers-5 denier, 2.04 mm.

16.3
17.0
18.2

0.658
0.692
o.803

0.884
0.789
0.671

3.56
3.38
2.98


