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In modern aviation, a significant amount of data is generated during routine operations and
collected using technologies like Automatic Dependent Surveillance-Broadcast (ADS-B). The
abundance of such data presents great potential for utilizing emerging data analysis techniques
like machine learning to enhance the future of aviation. This paper presents a methodology that
leverages clustering and classification models for offline identification and online recognition of
air traffic flows. This research utilizes real trajectories in the terminal area of Zurich Airport
to train and assess various machine learning models. To prepare the raw trajectory data
for analysis, we apply a preprocessing step to clean and resample the data. Clustering is
performed using the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm,
and its performance is compared to Density-Based Spatial Clustering of Applications with
Noise (DBSCAN). For classification of the data, we employ two ensemble methods, Random
Forest and Extreme Gradient Boosting (XGBoost), and compare their outcomes with those of
Long Short-term Memory (LSTM). Our results demonstrate the superior reliability of OPTICS
compared to the baseline method for clustering, and the ensemble models perform as effectively
as the deep learning model, but with shorter training times due to their relative simplicity. The
proposed methodology enhances the understanding of air traffic flows at specific airports and
facilitates subsequent trajectory-centric tasks such as anomaly detection, trajectory prediction,
and conflict detection, ultimately contributing to the improvement of safety in the terminal
airspace.

I. Introduction

In the terminal airspace, Standard Instrument Departures (SID) and Standard Instrument Arrivals (STAR) provide
a basic structure of air traffic flows for aircraft operating under Instrument Flight Rules (IFR). However, due to the

dynamic nature of operational conditions, real flights often deviate from these standards [1, 2]. Additionally, Air Traffic
Controllers (ATCOs) often vector incoming aircraft to adjust their routes for safety or efficiency [3]. Despite these
variations, patterns in air traffic flows can be observed in daily terminal airspace operations. Thus, studying air traffic
flows has become a significant area of interest for the aviation industry as it supports various applications, including
load balancing, anomaly detection, environmental impact assessment, and conflict detection [1, 4, 5]. Recent years
have seen a growing concern for Air Traffic Flow Management (ATFM) due to increased traffic volumes and limited
resources leading to congestion and safety issues in various regions worldwide [6].

The expansion of historical aircraft trajectory data has sparked significant interest among researchers investigating
air traffic flows, particularly in offline trajectory clustering - a field within machine learning and artificial intelligence.
Clustering, as an unsupervised learning technique, utilizes extensive historical data and clustering algorithms to form
groups or clusters where samples within the same cluster exhibit higher similarity compared to those outside [4, 7].
This approach enables the grouping of flights with similar spatial and temporal characteristics, leading to identifying
patterns in air traffic flows.

In addition to offline clustering, real-time recognition of traffic flows is of great importance. This recognition
enhances the situational awareness of pilots and controllers, enabling them to evaluate and respond promptly to
potentially hazardous conditions [8]. Aviation organizations are also actively working to extend offline clustering
techniques to online applications [9]. The primary difference between offline and online air traffic flow identification
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lies in the data provided to the model. Offline learning utilizes complete trajectory data, while online learning relies on
partial trajectories for predicting the air traffic flow of a flight. The results obtained can further support tasks such as
anomaly detection and conflict detection, thus improving overall aviation operations.

The structure of this paper is given as follows: In Section II, an overview of the relevant research regarding the
study and analysis of air traffic flows is provided. In Section III, the methodology developed in this study is outlined.
In Section IV, the dataset used in this research is introduced, along with the preprocessing workflow applied to it. In
Section V, the implementation details of the clustering and classification methods utilized are presented. In Section VI,
we compare the machine learning models developed and present the corresponding main results. In Section VII, the
major findings of this research are summarized.

II. Literature Review
Trajectory clustering relies on the utilization of clustering algorithms and distance metrics to evaluate the similarity

between trajectories [3, 10]. In their study of traffic patterns in the Bay Area, Gariel et al. [11] employed K-means and
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithms, with trajectory features extracted
through Principle Component Analysis (PCA). K-means assigns points to cluster centers iteratively and adjusts the
centers to their means, whereas DBSCAN separates dense clusters from sparse noise using a specified search distance
and does not necessitate a predefined number of clusters [12]. Basora & Mailhot [7] proposed an automated framework
that utilized Historical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), a modified version of
DBSCAN, that requires a reduced number of input parameters. The authors explored distance metrics such as Euclidean
Distance (ED) and Symmetrized Segment-Path Distance (SSPD). ED is a straightforward mathematical distance that can
be applied easily, but it can only compare trajectories of equal lengths. On the contrary, SSPD is a shape-based distance
that remains unaffected by time (and thus trajectory length), making it robust against incidental variations between
trajectories, albeit requiring more computational resources. Other approaches include Longest Common Sub-Sequence
(LCSS) with spectral clustering [8], weighted ED combined with HDBSCAN [13], and clustering based on Dynamic
Time Warping (DTW) [3]. It is noteworthy that the extended version of DBSCAN called Ordering Points to Identify the
Clustering Structure (OPTICS) has not been extensively explored in aviation trajectory clustering research.

There is a limited body of literature available that explores the use of supervised learning techniques for real-time
recognition of air traffic flows. Bosson and Nikoleris [14] applied various supervised techniques to classify and predict
on which runway flights would land. They experimented with classifiers such as Logistic Regression, Support Vector
Machines (SVM), Bayes classifiers, K-Nearest Neighbors (KNN), Decision Trees, as well as ensemble methods like
Random Forest (RF) and AdaBoost. Additionally, they employed deep learning algorithms, specifically Multilayer
Perceptron (MLP) and Convolutional Neural Networks (CNN) and compared the performance of these prediction
models in terms of accuracy and runtime. They concluded that simpler classifiers such as DT and KNN required less
training time compared to more sophisticated models like RF and MLP, but at the expense of performance. Hong and
Lee [3] proposed a probabilistic method for predicting the estimated time of arrival of incoming flights. Morris and
Trevedi [8] presented a framework for classifying GPS-based trajectories and detecting unusual actions in real-time.
They employed a sliding window approach during the online prediction phase, considering only the recent history of the
trajectory instead of the entire past trajectory. Madar et al. [2] utilized RF to perform classification and recognition of
traffic flows of arrival flights and achieved accurate results.

To summarize, offline trajectory clustering requires the selection of a distance metric to assess trajectory similarity
and a suitable algorithm to group trajectories accordingly. The Euclidean Distance (ED) metric is frequently employed
in trajectory clustering due to its simplicity and computational efficiency. While some studies have utilized partitional
clustering algorithms like K-means, the main challenge lies in the difficulty of determining the total cluster number
in advance. On the other hand, density-based methods present alternatives that circumvent this challenge. Moreover,
density-based clustering effectively filters out noise, such as trajectories that deviate from standard operating procedures,
thereby improving the quality of clustering results since noise is commonly encountered in daily operations. Although a
few studies have focused on online trajectory analysis aimed at predicting metrics like estimated time of arrival and
landing runway, there is a need to explore real-time recognition of air traffic flows. Indeed, the prediction of a flight
traffic flow would yield significant benefits for tasks such as anomaly detection and conflict detection.
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III. Methodology
A schematic overview of the proposed methodology, its outcomes, and the interconnections between modules is

provided in Fig. 1. The methodology consists of two sequential modules: the clustering module and the classification
module, which make use of separate machine learning algorithms. In the clustering module, offline clustering methods
are applied to examine historical ADS-B data and identify the distinctive traffic patterns within terminal airspace.
Drawing upon the knowledge acquired, the classification module utilizes classification methods to decide the real-time
traffic flow to which incoming landing flight trajectories belong, with the capability to also identify trajectories that
deviate from regular traffic flows.

Fig. 1 Methodology Overview.

Trajectory data in aviation contains random components and noise, which can be challenging to filter out through
partitioning or hierarchical approaches. On the other hand, density-based clustering methods are effective in noise
elimination. The most popular density-based clustering algorithm in the aviation literature is DBSCAN [2, 7, 11],
which separates dense clusters from noise based on a distance threshold and a minimum number of samples. However,
DBSCAN has limitations in handling clusters with varying density levels and is sensitive to input parameters. OPTICS
[15] overcomes these limitations by creating an ordering of data points based on core and reachability distances, allowing
for the identification of clusters with different density levels and reducing sensitivity to parameters. In addition, OPTICS
provides a reachability plot that visualizes the cluster structure and aids in understanding the clustering process. Hence,
OPTICS is proposed for trajectory clustering to identify air traffic flows in the terminal airspace. However, DBSCAN is
still used as a baseline model and its results are compared to those of OPTICS.

Real-time air traffic flow recognition can be approached as a multi-class classification problem, where a trajectory
segment serves as input and the corresponding air traffic flow is the target. The aviation literature has explored various
supervised learning techniques for classification, including efficient yet less accurate models such as LR, SVM, Naive
Bayes, and DT. Deep learning models such as MLP and CNN offer higher accuracy but require more computational
resources. Ensemble models like RF and XGBoost combine multiple base models to provide stable and accurate
predictions. RF utilizes many decision trees and the bagging strategy, while XGBoost employs the boosting strategy
to integrate results from the base models [16, 17]. These ensemble models have the potential to achieve accurate
predictions with faster training times compared to deep learning models. Hence, RF and XGBoost are proposed as
classifiers for air traffic flow recognition, prioritizing accuracy and efficiency. Additionally, a Long Short-term Memory
(LSTM) model [18] will also be developed for comparison with the ensemble models. It is important to mention that
the labels for the classification training data are directly derived from the results of the Trajectory Clustering module, as
shown in Fig. 1.
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IV. Dataset

A. Description
Zurich Airport (ZRH/LSZH) is a bustling commercial airport situated in Europe, serving a substantial number of

passengers, with an impressive count of over 30 million in 2019. It operates with three runways dedicated to both landing
and departure activities, contributing to the intricate nature of its traffic patterns. This study focuses on a comprehensive
analysis of two complete months, specifically October and November of 2019, as they provide a representative sample
of the regular traffic patterns observed within the airspace. In light of their potential impact on airspace safety and
efficiency, the data used in this research concentrates specifically on landing flights.

The raw ADS-B data utilized in this research is obtained from the OpenSky Network. The dataset encompasses a
total of 19,480 landing flights at LSZH, spanning the period between 10/1/2019 and 11/30/2019. Represented in a
tabular format, the dataset comprises a vast collection of 18,177,597 rows of records.

B. Preprocessing
The ADS-B dataset cannot be directly used by machine learning algorithms due to potential missing or erroneous data

inherent in the collaboratively collected nature of OpenSky Network. Therefore, a comprehensive data preprocessing
phase is essential to refine the raw data and make it suitable for the subsequent tasks. Additionally, the clustering
algorithm employed in this study requires trajectories of equal length as input, necessitating the resampling of trajectories
before they can be used for clustering purposes. Figure 2 provides an overview of the data pre-processing steps,
including data cleaning, augmentation, and manipulation. Through this process, the raw ADS-B dataset is transformed
into a refined dataset that is well-suited for the classification task, as well as a resampled dataset specifically tailored for
clustering. The preprocessing steps make use of the Traffic library [19], a Python library designed for processing and
analyzing aircraft trajectory data.

Fig. 2 Data Pre-processing Workflow

The local ENU coordinate system is used to present 800 sample trajectories from the Refined Dataset as shown in
Fig. 3. In this visualization, the coordinate system’s origin denotes the location of the airport’s highest runway.
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Fig. 3 Sample Trajectories from Refined Dataset (800 samples)

V. Implementation

A. Data Split
Utilizing the Resampled Dataset or the Refined Dataset in its entirety for constructing machine learning models is

not ideal due to two issues. Firstly, it would significantly lengthen the training process, and secondly, it would produce
a single clustering/classification result set, limiting the ability to conduct comprehensive analyses, especially when
comparing outcomes across different machine learning models.

To address these concerns, the trajectory set is divided into multiple subsets based on a weekly basis. This division
results in nine distinct subsets of Resampled/Refined Trajectories, denoted as 0, 1, ..., 8, representing specific weeks.
The machine learning process is then separately applied to each subset, generating nine distinct result sets. These sets
are then utilized to compare and assess the performance of various models in the subsequent analysis, allowing for a
more thorough assessment of the models.

B. Clustering

1. Distance Metric
The selected distance metric is the Weighted Euclidean Distance (WED), which is favored for its efficient computation

and ability to focus on the most crucial segments of trajectories. The mathematical expression of the WED between two
trajectories, denoted as 𝑇𝑎 and 𝑇𝑏, is as follows:

𝐷
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Where the weight assigned to each point in a trajectory at index 𝑖 is represented by 𝑤𝑖 , allowing for customization
according to the user’s preference. To emphasize the "middle part" of the trajectory, a beta distribution is employed as
the weight scheme. This approach has proven to be robust for weighting trajectories in clustering analyses, as evidenced
in [13]. Specifically, the beta distribution parameters are selected as 𝛼 = 1.8 and 𝛽 = 3. Figure 4 displays the weight
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scheme based on the beta distribution, alongside a uniform scheme that results in the original ED. Notably, the beta
distribution emphasizes the points located in the middle of the trajectory.

Fig. 4 Weight Scheme Comparison

2. Clustering Algorithm
Two algorithms, namely DBSCAN and OPTICS, are used to perform clustering. WED is used for pre-computing

distances between all pairs of input trajectories. Scikit-learn [20], an open-source Python library for machine learning,
is utilized to implement the two clustering algorithms.

DBSCAN requires two user-defined parameters, namely 𝜖 and 𝑀𝑖𝑛𝑃𝑡𝑠, whereas OPTICS only requires the 𝑀𝑖𝑛𝑃𝑡𝑠

parameter. The selection of these parameters can impact the clustering outcomes, particularly the rate of outliers. Thus,
an iterative approach is employed to determine the most suitable parameter settings. Research conducted by Gariel et
al. [11] on the daily rate of outlier trajectories at San Francisco International Airport revealed a range of 2% to 16%.
Considering the focus of this research is Zurich Airport and the dataset is based on a weekly basis, the upper bound is
adjusted to 25% after analyzing the dataset.

The first step consists im executing OPTICS, which requires searching for the optimal 𝑀𝑖𝑛𝑃𝑡𝑠 parameter. An
iterative search is conducted by exploring a range of 𝑀𝑖𝑛𝑃𝑡𝑠 values. The search space is set between 1.5% and 2.5%
of the number of trajectories in the associated weekly dataset. If multiple parameter settings meet the outlier rate
requirement, the one with the lowest outlier rate is selected. In cases where none of the parameter combinations fulfill
the outlier rate requirement, the week is excluded from further analysis.

The second step focuses on determining the best parameters for the DBSCAN algorithm. To ensure comparability
with the OPTICS results, the 𝑀𝑖𝑛𝑃𝑡𝑠 parameter in DBSCAN is set to the same value as in OPTICS. Consequently,
the search becomes one-dimensional, with the epsilon parameter varying between 5% and 15% of the maximum
distance between any two trajectories in the weekly dataset. If multiple parameter combinations satisfy the outlier rate
requirement, the one closest to the outlier rate obtained from OPTICS is chosen. If none of the parameter combinations
meet the outlier rate requirement, the week is excluded from further analysis.

Finally, a comparison is made between the resulting clusters obtained from both algorithms for each week.

C. Classification

1. Duration of Input Trajectory
The duration of the input trajectory segment, known as the "observation time" in this study, can be customized to

meet specific requirements. The Refined Dataset comprises trajectories of different lengths, as depicted in the overview
provided in Fig. 5. The median length is approximately 750, with half of the trajectories falling within the range of 600
to 900 points, which corresponds to a duration of 10 to 15 minutes considering the one-second intervals of ADS-B data.
Based on this information, setting the observation time to a few minutes would be reasonable. To evaluate the impact of
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this variable on the model, several observation times were tested, including 60, 120, 180, and 240 seconds. Observation
times exceeding 240 seconds are considered excessively long and would result in a model with inadequate predictive
power.

Fig. 5 Trajectory Length Overview

2. Trajectory Classification
For the traffic flow recognition task, three models are developed: two ensemble models (RF and XGBoost) and a

deep learning model (LSTM). The ensemble models, RF and XGBoost, are implemented using the Scikit-learn library,
while the deep learning model, LSTM, is implemented in PyTorch [21], which is a highly optimized framework for deep
learning in Python, widely used in both academic and industrial environments.

Hyperparameter Tuning
Hyperparameters in a machine learning model play a crucial role in determining its performance by controlling the
learning process. To ensure a fair comparison, hyperparameter tuning is conducted for each model type to find the
optimal set of hyperparameters that maximize performance.

Grid search and random search are commonly used methods for hyperparameter tuning, but they can be compu-
tationally expensive and have limitations. Bayesian optimization [22] is a more advanced approach that constructs
a probabilistic model and employs Bayesian reasoning to guide the search for promising hyperparameter sets. This
method is particularly beneficial for complex models with expensive objective functions. In this study, Optuna [23], a
Python-based automatic hyperparameter optimization framework, is utilized, employing a specific implementation of
Bayesian optimization known as the Tree-structured Parzen Estimator (TPE) algorithm.

In our implementation, the RF model incorporates three key parameters: n_estimators, max_depth, and min_samples_split.
Similarly, the XGBoost model involves three primary parameters: learning_rate, max_depth, and subsample. The
search space for each parameter is defined as a range, allowing for exploration within specific intervals. In contrast, the
LSTM model encompasses five tunable parameters: batch_size, num_layers, hidden_size, dropout, and learning_rate.
The search space for batch_size, num_layers, and hidden_size is defined as a set of discrete integer numbers, while the
search space for dropout and learning_rate is represented as ranges. The determination of these search spaces relies on
heuristic techniques. For a comprehensive overview of the search spaces for the classification models, please refer to
Table 1.

Train-test Split and Cross-validation
The classification models are trained on a weekly basis, with input labels derived from weekly clustering. For the
ensemble methods, the weekly trajectories are divided into training/testing set, following an 80-20 split convention.
The training set is employed to construct the model, while the testing set evaluates model performance. For the LSTM
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Table 1 Hyperparamter Search Space

Model Type Hyperparameter Min Max Data Type Search Set

RF
n_estimators 20 200 Int -
max_depth 2 20 Int -

min_samples_split 2 20 Int -

XGBoost
learning_rate 1e-4 2e-1 Float -
max_depth 2 20 Int -
subsample 0.4 1 Float -

LSTM

batch_size - - - [16, 32, 64, 128]
num_layers - - - [1, 2, 4]
hidden_size - - - [8, 16, 32, 64, 128]

dropout 0 0.5 Float
learning_rate 1e-4 2e-1 Float

model, the training set is further divided into train and validate subsets. During training iterations, the LSTM model
updates parameters using the train set and evaluates performance using the validate set. After completing iterations, the
testing set assesses the trained model’s performance.

To address data variability, noise, and overfitting, we utilize cross-validation with stratified shuffle split. This
technique randomly divides the input data into training and testing sets while preserving the original label distribution. In
the case of the ensemble models, this process repeats for ten times to train and test ten distinct models. The performance
of models on the testing set is then averaged to obtain an overall performance metric. However, due to the considerably
longer training time of the LSTM model compared to the ensemble models, we reduce the number of iterations from ten
to two for efficiency purposes.

VI. Results

A. Clustering
Out of the nine weeks included in the analysis, Week 4 is excluded due to not meeting the outlier rate requirement,

whereas the remaining eight weeks satisfy the outlier rate condition, allowing both algorithms to produce clusters with
an outlier rate below 25%.

To facilitate a quantitative comparison between the two clustering methods, two key metrics have been defined as
follows:

• Density: This metric is specific to a cluster and is calculated as the average distance between any two trajectories
within the cluster. It reflects the closeness of the trajectories within one cluster.

• Mean Density: This metric pertains to the overall clustering result and is calculated as the weighted average
density of all clusters (excluding the outliers) in the result set, based on the number of trajectories in each cluster.

It is reasonable to expect that a more reliable clustering would yield clusters with lower Densities, where the
trajectories within the same cluster would be closer to each other. Consequently, the Mean Density of such a clustering
would also have a lower value compared to a less reliable clustering method.

Taking Week 3 as an example, the outlier rates for OPTICS and DBSCAN clustering are 24.33% and 23.48%
respectively, making the results from both algorithms comparable. Figure 6 illustrates the clusters obtained by DBSCAN,
while Fig. 7 displays the clusters obtained by OPTICS, with both excluding the outlier trajectories.

The results indicate that both the OPTICS and DBSCAN algorithms have identified similar clusters, with OPTICS
detecting an additional cluster compared to DBSCAN. Specifically, OPTICS recognizes Cluster 0 and Cluster 1 as
separate clusters, while DBSCAN considers them as one. The epsilon distances of the trajectories, as depicted in Fig.
8, reveal that Cluster 0 exhibits a lower density compared to Cluster 1 (this observation is also supported by Fig. 7).
This discrepancy highlights a limitation of DBSCAN in identifying clusters with varying densities due to its rigid
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(a) 2D Results (b) 3D Results

Fig. 6 Clusters Obtained by DBSCAN for Week 3

(a) 2D Results (b) 3D Results

Fig. 7 Clusters Obtained by OPTICS for Week 3

neighborhood definition. In contrast, OPTICS, which does not depend on a fixed neighborhood, exhibits improved
performance in identifying clusters with varying densities. As a result, it can achieve a more granular clustering process,
ultimately producing clusters with reduced densities.

In terms of quantitative comparison, It is found that in Week 3, DBSCAN generates a Mean Density of 3.1378,
while OPTICS produces a lower value of 2.4379. This finding suggests that OPTICS has generated a more reliable
clustering result, which is consistent with our expectations based on the visualizations.

To further validate the reliability and consistency of OPTICS in clustering, a comprehensive comparison of the
two clustering methods has been conducted across all weeks, excluding Week 4. The same approach for finding the
parameters for the two clustering models has been strictly followed. The resulting outlier rates are shown in Table 2, and
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Fig. 8 Reachability Plot for Week 3

the clustering results are summarized in Fig. 9.

Table 2 Outlier Rate Across Weeks.

Week OPTICS (%) DBSCAN (%) Week OPTICS (%) DBSCAN (%)
0 24.90 24.10 5 22.90 23.73
1 20.67 21.47 6 13.35 13.09
2 24.09 24.87 7 23.08 23.91
3 24.33 23.48 8 20.85 21.55

Fig. 9 Mean Density Across Weeks
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The summary reveals a consistent pattern where OPTICS yields clustering results with lower Mean Density values
compared to DBSCAN in 7 out of 8 weeks. The only exception is Week 2, where OPTICS exhibits a slightly higher
Mean Density than DBSCAN. This consistent trend suggests that OPTICS has demonstrated a higher level of reliability
in identifying traffic flows when compared to DBSCAN.

Given the more reliable clustering results produced by OPTICS and its requirement of only a single user-defined
parameter compared to the two required by DBSCAN, we conclude that OPTICS is the more suitable clustering
algorithm for identifying traffic flows in terminal airspace.

B. Classification
Optuna logs the hyperparameter tuning processes during the execution of the models. As an illustration, the

hyperparameter tuning process for RF on Week 3, with an observation time of 180 seconds, is depicted in Fig. 10.

Fig. 10 Hyperparameter Tuning Logs - RF, Week 3, Observation Time 180 Seconds

The hyperparameter tuning process records the objective value, which represents the accuracy obtained by averaging
the accuracy values of all cross-validation sets. This process consists of 500 trials, each corresponding to a specific
combination of hyperparameters. While the majority of trials yield high accuracy values, some trials may result in lower
values. This is expected due to the probabilistic nature of the Bayesian method, which allows exploration of suboptimal
areas in the search space. The red curve in the graph represents the best value achieved among the completed trials. In
the provided example, the best value initially increases within the first 200 iterations and then reaches a stable state.

Hyperparameter tuning is conducted for three classification model types. The final results are summarized in Table
11. To assess model performance, the accuracy values for each week, corresponding to the same observation time, are
averaged to obtain an overall accuracy score.

After examining the accuracy results, a notable trend becomes evident, indicating an increase in overall accuracy as
the observation time extends. This pattern aligns with expectations, as longer observation times provide the prediction
model with more trajectory information, resulting in improved performance.

While our classification task does not exhibit a highly imbalanced input dataset, it is crucial to include additional
classification metrics for a comprehensive evaluation of the model’s performance. Therefore, we calculate and compare
F1 score, also known as the harmonic mean of precision and recall [24]. The computation process for the F1 score
is similar to our approach for accuracy, where we average the values over weeks. The results are presented in Table
3. Notably, the F1 score values demonstrate a behavior that closely aligns with the accuracy values, indicating the
consistency between these two metrics in our classification models.

Another intriguing finding is that all three models achieve comparable levels of accuracy when subjected to the
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Fig. 11 Overall Accuracy Comparison Between Models

Table 3 Overall Accuracy Comparison

Observation Model Overall F1 Score Observation Model Overall F1 Score

60
Random Forest 0.812

180
Random Forest 0.872

XGBoost 0.814 XGBoost 0.871
LSTM 0.809 LSTM 0.873

120
Random Forest 0.844

240
Random Forest 0.898

XGBoost 0.842 XGBoost 0.899
LSTM 0.836 LSTM 0.893

same observation times. This observation may initially seem surprising, considering that the LSTM, as a deep learning
model, is expected to outperform ensemble models. However, a detailed discussion will provide an explanation.

A thorough evaluation of a model’s classification performance involves analyzing the distribution of actual and
predicted labels using a confusion matrix. This analysis enables the identification of specific areas that can be enhanced.
Upon examining all confusion matrices obtained from models, it becomes apparent that the optimized models excel in
accurately predicting and distinguishing between various traffic flows. However, they encounter challenges in effectively
discerning regular traffic flows from outliers. To illustrate this phenomenon, Fig. 12 presents the confusion matrix for
the classification results of Week 3 with an observation time of 180 seconds.

The confusion matrix is structured with rows representing truth classes and columns representing predicted classes.
The matrix’s diagonal elements signify the count of correctly classified samples, whereas the off-diagonal elements
indicate misclassified samples. The majority of samples fall along the diagonal, indicating overall good performance of
the model. In fact, the accuracy for this particular result set is 88%. Upon examining the misclassified samples, which
are represented by the off-diagonal elements, it becomes apparent that a significant number of them are found in the first
row or first column. This suggests that these samples have been misclassified as outliers when they are actually regular
traffic flows, or vice versa.

Figure 13 provides deeper insights into this phenomenon, where all trajectories in the testing set are plotted using
colors of their respective traffic flow numbers. This visualization demonstrates that trajectories for each regular traffic
flow are distinct and easily distinguishable to human eyes. For instance, Cluster 1, depicted in orange, originates from
the southwest and moves northeast. It is worth noting that identifying Cluster 3 and 5 might pose some challenges as
they both originate from the north and head south. Importantly, outliers are scattered throughout the airspace, as they
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Fig. 12 Confusion Matrix - RF, Week 3, Observation Time 180 seconds

can emerge from any direction and move in any direction, making them blend in with regular traffic flows. This is a
significant consequence of having incomplete trajectory data constrained by the observation time, which in this case is
180 seconds.

Consequently, differentiating between a trajectory segment containing regular traffic flow and an outlier, or vice versa,
proves to be a challenging task even for humans. The Bayes error [25], also known as irreducible error or minimum
achievable error, represents the lowest possible error rate that can be achieved for a given classification problem. It is a
theoretical concept that reflects the best performance any classifier could attain, considering the statistical distribution of
the data. While there is no defined method to compute the Bayes error for the current problem, the author believes that,
based on the observations made, the bias and variance exhibited by the models approach the level of Bayes error.

Based on the previous discussion, there seems to be little variation in performance among the three models. However,
notable distinctions emerge when considering their training costs. Table 4 summarizes the training times for the three
model types, including cross-validation. Clearly, training an LSTM model requires significantly more time compared
to training an ensemble model. Specifically, when comparing the two ensemble models, training a Random Forest
(RF) model takes only about one-fifth of the time required for training an XGBoost model. This discrepancy arises
from the RF model’s ability to be constructed in parallel, while the XGBoost model is constructed sequentially. The
shorter training time of the RF model leads to reduced durations for hyperparameter tuning and faster iterations during
model development. Taking into account both model performance and training costs, the RF model is considered as the
optimal selection for real-time classification of traffic flows in a given trajectory segment.

VII. Conclusion
The study of air traffic flows is significant in the aviation industry, as it enhances the understanding of traffic patterns

and supports applications such as anomaly detection and conflict detection. In this research, we propose a methodology
to identify traffic flows in terminal airspace and recognize traffic flows associated with real-time landing flights. We
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Fig. 13 Trajectories in the RF’s Test Set for Week 3

Table 4 Training Time Comparison

Model Type Approximate Training Time
RF 10 seconds

XGBoost 1 minute
LSTM 2 hours

acquire and preprocess raw ADS-B trajectory data from Zurich Airport as our primary data source. Our approach
involves establishing clustering models using OPTICS and DBSCAN algorithms for traffic flow identification, as well as
developing ensemble models (RF and XGBoost) and a LSTM model for traffic flow recognition. The obtained results
demonstrate the superior reliability of OPTICS in identifying traffic flows compared to DBSCAN, making it the more
suitable choice for this task. Furthermore, the findings demonstrate that ensemble models, particularly RF, achieve
comparable performance to complex deep learning models in traffic flow recognition while requiring significantly less
computational resource. Thus, RF emerges as the most suitable model for traffic flow recognition. By employing these
methods and techniques, this study contributes to the advancement of traffic flow analysis and provides valuable insights
for efficient and accurate traffic management in terminal airspace.
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