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CHAPTER I

INTRODUCTION

Information on streamflow, precipitation, and potemtial evapo-
transpiration is necessary input to a continuous watershed model.

The data available to provide this information, however, contain
inherent errors. These errors are introduced while measuring, re-
cording and processing the basic data and in using that data to re-
present conditions pertaining to the watershed being modeled. The
parameters which are sensitive to errors in the data would be diffi-
cult to cortelate to physical characteristics of a watershed. This
correlation is necessary for application of hydrologic models to
ungaged watersheds. This study is therefore on the effects of data
errors on medel calibration rather than on the direct effects of the
errors on simulation,

For example, there is no means to determine the true accuracy
of point precipitation as measured by a gage (20). Rainfall, further-
more, is noted for its variability in space and time, and this often
makes the determination of the total rainfall on a watershed from a
gage placed at one point approximate. This spatial variability, which
ig more pronocunced in short duration thunder storms, may not be
entirely real, but instead may be a result of errors in point rain-

fall measurement (19). It is virtually impossible to make an accurate



asgessment on the error In estimating watershed precipitation from
gage precipitation since the true precipitation on the watershed can
not be determined. It is, however, methodologically easier and also
important to assess error present in the point precipitation data.

Streamflow is the most reliable data of the three types pre-~
viously mentioned. During normal flow pericds the stream gage is
usually representative of the actual flow which occurs. The stream
gage has generally been calibrated for the cross-section within the
Immediate channel. However, when the cross-section is changed due
to over-bank flow errors may be introduced in the extension of the
stage~discharge curve for a particular gage. A major flood may also
change the channel shape and therefore introduce errors into the
total stage-discharge curve.

Potential evapotramnspiration (PET) is.different from the above
two data types. PET may be estimated from various empirical equations
such as Penman's equation and Hargreaves equation (8). Use of pan
evaporation data is also a common method of evaluating the PET. The
same problem is present in using pan data as with precipitation in
that pan data may poorly represent PET over the watershed and the
pan data itself may have errors. Still another methed is a lysimeter
which can be emploved for directly measuring the evapotranspiration.
Each of these methods may produce different results, At this point,
a statement of which method is best would be impossible. It suffices

to say that different methods are currently being used and that the

results vary. This leads to the conclusion that the method used



can affect the prediction process and the parameter values used in
modeling. The degree to which this variation affects the model para-
meters and simulation will be discussed in the following chapters.

To determine the effects of errors in the data on model para-
meters, it 1s necessary to compare results between using true and
erronecus values of the data. The strategy of this study is to
develope an "error free'" data set, and the parameters calibrated
from this data are hereafter referred to as the "base set". These
base set parameters serve as a control to compare with the variations
caused by errors introduced in the data. As depicted in Figure 1,

a base gset of parameters is developed using precipitation and
calculated PET data as input. The parameters are optimized using

a pattern search procedure with minimum average absolute error
between observed and predicted daily streamflow as the optimization

criterion.
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CHAPTER IT

LITERATURE REVIEW

The major goal in hydrology is to predict watershed hydro-
logical response. For an ungaged watershed, this implies the need
to correlate the parameters of a hydrologic model to measureable
watershed characterisitcs. However, the hydrologic data (i.e.,
precipitation, streamflow, and evapotranspiration) which are used
to determine the above mentioned parameters contain errors as
depicted on Figure 2. A great deal of research has been devoted
to their origin and magnitude., The following sections discuss
the findings and conclusions of this research on each of the three

types of hydrologic data listed above.

Precipitation

Precipitation measurements have often been accepted at face
value although there is little known of how to assess the error in
measurement due to the type of raingage used (20). The assumption
that recorded data are entirely accurate is made by many people in
everyday work, While there is no means of measuring, to a known
high degree of accuracy, the quantity of precipitation that falls
at a particular point on the earth’s surface (20}, being aware of
the effect that errors will have on a prediction procedure is a

must.
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The effects of random errors in precipitation measurement
have been the subject of considerable research although, according
to Rodda {(20), they tend to be compensating in the long rum.
Systematic errors appear to be less common but can induce more
serious errors in optimized parameters. One case is the extra-
polation of precipitation from a distant gage to a watershed (20).
Rodda also discusses the difficulties with specific rain gage types
and the errors associated with each. The main cause of systematic
measurement error is wind which occurs during the period of pre-
cipitation., Kurtyka found wind caused errors to be negative
(20}.

Dawdy (6) has presented a fairly detailed analysis of the
considerations for evaluating urban hydrologic models and has
evaluated the effects of random errors in the data. He states, "If
a fitting process is used the parameters will deviate from their true
values in order to minimize the deviations between the simulated
and observed records as specified in the objective functiom" (6).
The fitted model parameters would then deviate from their popula-
tion values because of the random errors in the data., Dawdy made
has study by intoducing a random error with mean zero and standard
deviation of 10 percent to all rainfall values. The adjusted data
were used to calibrate a similation model to obtain a parameter set.
This parameter set was then compared to an “optimum” parameter set

based on the original rainfall data. Dawdy concluded that the



impact of errors on the simulation process depends in part on whether
the error is a random error of a quantity which is measured or
whether the error is in the use of the index which is an approxima-
tion to semething which cannot be measured (6). Point rianfall is
measurable and is used as an index to basin rainfall. The model
may have been calibrated to one set of precipitation data which
determined the '""best fit" of the parameters. Serious errors in
simulation may develop when using these "best fit" parameters with
another period of precipitation which contains events that are not
adequately represented by the index.

Analysls of random data errors was also presented by Ibbitt (12},
He assumed an "error free" set of precipitation data and obtained
an optimum set of "base" parameters in the same method used by Dawdy.
The error distribution was assumed to be normal with the mean being
that of the "error free' data and a standard deviation of 10 percent.
Negative values of preciplitation were rejected and either zero or a
value equal to the smallest non-zero quantity that could be measured
was substiruted (12). A major difference between Dawdy and Ibbitt
was in the treatment of potential evapotranspiration as discussed
in the last section of this chapter, A major conclusion by Ibbitt
was that the variation in the final parameter values for fittings to
error-contaminated data were no greater than for the error free case
{12), The value of the fitting criterion was found to depend largely
on the errors in the runoff record. This would stand to reason when

the optimization function is some form of minimizing the difference



between observed and simulated streamflow.

Huff and Changnon have presented data showing a definite
variation in intensity over raingage networks in Illinois (11).
The gage network is much more detailed than would normally be
encountered in a hydrologic investigation., With this type of
information it is apparent that distributing point rainfall from
one or two gages can induce sizable errors, the sign of which would
probably depend on the location of the gage relative to the storm
center, and might be elther random or systematic, depending on other
factors such as orographic influences.

The effects of precipitation error on derivation of unit
hydrographs was presented by Laurenson and O'Donnell (14). Their
general approach was: (1) to set up a true rainfall-excess hyeto-~
garph and a true unit hydrograph, both synthetic but of reasonable
shape: (2} to determine the true surface runoff hydrograph by con-
volving the true hyetograph with the true unit hydrograph; (3)
to introduce known reasonable errors intoc the true hyetograph or
true runoff hydrograph, or both, thus producing an erroneous
hyetograph or an erroneous runoff hydrograph or both; (4) to apply
the various methods of derivation to the erroneous hyetograph or
erroneous runoff hydrograph or both, thus deriving the erroneous
unit hydrograph; and (5) to compare the derived erroneocus unit
hydrograph with the original true unit hydrograph, and to compute

various measures of the error it contains.
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Four methods of derivatien of the unit hydrograph were then
compared. These methods were 1) harmonic analysis method (0O'Donnell
1966}; 2) discrete Laguerre function method: 3) least squares
regression analysis; and 4) two parameter gamma distribution
method. In only one case, the use of the Laguerre function method,
was the shape of the hyetograph a major contributor to error in
the unit hydrograph derived,

Hershfield has investigated the pattern of the rain gage
network in a watershed and the influences which this pattern has
on the calculated rainfall distribution (10). The conclusion was
that the location of the gages was more important than the gage
density. This coincides with the coneclusions of Rodda (20) as to
placement of gages.

The effect of precipitation gage network density on storm
pattern definition have been presented by Brandsetter and Morgan (2).
A procedure was developed and presented for evaluating the gage
network density., Storm evolution was investigated using a 20-gage
network over a l0-square miles area. Brandsetter and Morgan conclude
that any single gage within the watershed is as representative of
the area means as any other, provided that there are no systematic
effects (2}. Their finding is that at the locations investigated,
the density of gages required for urban storm drainage design does

not have to be more than 1 gage per 10 square miles at the maximum (2),
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Streamflow

Of the three types of hydrologic data used, streamflow data
is probably the least prone to error (20, 5). Measured streamflow
data is compared with simulated streamflow data to determine the
"goodness of fit" of a predicition model. In using deterministic
models, the relationship of input to output is such that, once input
is known, the output is wholly predictable., If there are errors in
the observed data, there will naturally be errors in the simulated
record.

Dawdy has investigated the significance of random errors
in streamflow data on the parameters used in a simulation model
(5). Dawdy first optimized a set of parameters to data which was
assumed "error free”. This data was used as a ''base set" for later
comparison. Random errors with mean zeroc and standard deviations
of 5 and 10 percent were applied to the original record. These
error distributions for the mean daily discharge were determined
from the U,S. Geological Survey (196l) ratings of stream gages.
The interpretation is that a gage rated as "good" will have a
standard deviation in mean daily discharge of 5 percent. Peak
discharge is measured less accurately than mean daily discharge.
As stated by Dawdy, peaks that are '"fairly well” defined by dis-
charge measurements (peak flows are no more than twice the highest
current meter reading) have a standard error of approximately 5
percent, When not so defined, the peak flows are computed by means

other than extrapolating rating curves, such as by the slope area
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method. The standard error would then be about 10 percent,

It was concluded by Dawdy that estimates of model parameter
values are not as sensitive to random errors in streamflow as they are
to errors in precipitation. This may be explained by observing that
errors in input (precipitation) may be magnified because a precipita-
tion excess is used in the routing and any absolute error in input
becomes an absolute error in the precipitation excess prior to
routing. An example of error magnification would be when the excess
is defined as all precipitation above a constant value. Another
example of this magnification occurs with the use of the type of
infiltration function shown in Figure 3. In either case, the error
present in the precipitation data will represent a larger percentage
in the excess than in the total precipitation.

On the other hand if the excess is defined as a percentage
of the total precipitation, then errors in the precipitation will
be transferred proportiomally to the excess. The objective function
for optimization is usually stated in terms of some comparison with
streamflow. Therefore, error in the streamflow would be transfered
proportionally to the output of the model (5).

Errors in input data cause errors in different portions of
the model than do errors in output data, Random, unbiased errors
in input usually are compensated by adjustments in the parameters
associated with the loss function {infiltration, interception, and
detention) 1f a long enough record is used (5). Similar errors

in streamflow usually are compensated by parameters associated with
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the routing function,
Ibbitt has also investigated the effects of random data
errors on the parameters of a watershed model (12). By using
the data from Pawdy and O'Donmell (1965), Ibbitt introduced a
random error. The adjusted value was taken from a normal distribu-
tion of 10 percent., Negative values in streamflow were treated in
the same manner as those in precipitation discussed previously.
Ibbitt found that the larger errors were generated by errors
in the streamflow data. It was noticed that the parameter values
varied about the true parameters values based on the parameter
sensitivity to output (12). This would stand to reason because the
more sensitive parameters would tend to have larger perturbations

about their means than the less sensitive ones.

Evapotranspiration

Estimation of evaporative losses are becoming more important
due to the increased use of water and because evaporation is a
major factor in the availability of runoff, To properly simulate
streamflow, estimates of potential evapotranspiration are essential.

Jobson (13) has investigated the effects of time averaging
the meteorologic parameters of wind speed and temperature on the
computed evaporation (13). Averages of 30 minute data over periods
of 3 hours, 1 day and 1 month were used in conjunction with a mass

transfer formula shown below.

14
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e=Nu(EO-Ea) R O T A N I B N I I T B Y (1)

where: e = evaporation rate
N = mass transfer coefficient
u = wind speed
e = saturated vapor pressure corresponding
to temperature of the water surface

e = vapor pressure of the air

Due to the rapid fluctuations of the values on the right side of the
equation, the use of average values could introduce a sizeable error.
The conclusions reached were that using the 3-hour or l-day averages
produced very little effect on the mean error. Larger variations
were indicated for the monthly averages (13). These larger errors
were a result of the convariance of the wind speed and vapor pressure
and temperature. The variance of the error (simulated minus observed)
distribution was reported to increase by a factor of more than 6

as the averaging time increased from 3 hours to 1 day. For averag-
ing time larger than 1 day the variance of the error distribution
increased very slow.

In investigating constant bias errors and random errors in
potential evapotranspiration (PET), Parmele found that a constant
bias of 20 percent in PET has a cumulative effect and results in a
considerable error in simulated hydrograph peaks (13). The use of

a random error did not influence the streamflow prediciton to a



measureable amount.

Using a positive bias of 10 percent on the PET decreased the
total streamflow by 1 to 3 percent. A negative bias of 20 percent
resulted in an increase in streamflow of 2 to 7 percent. When a
random error of up to + 50 percent of daily ET was introduced along
with the bias it did not significantly change the total predicted
flow. The soil moisture conditions were either too low, resulting
in an under prediction of flow from the positive bias, or too high
resulting in an over prediction of flow from the negative bias.

The results are not very different from those presented by Crawford
and Linsley (1966), although Parmele's results are more detailed on
the necessity of using representative PET data for streamflow simula-
tion,

Both Ibbitt (12) and Dawdy (5) have treated errors in PET
as random errors. Although Dawdy does not discuss the detailed
affect of the PET error on model output, Ibbitt explains why the
effects are much less by noting that the error will have no effect
if the available soil moisture will allow evaporation of an amount
less than that which could be evaporated {12). TFor example, if the
correct value for PET is 3 millimeters (mm) and the error value is
2.7 mm, the error of 0.3 mm will have little effect if the avail-
able moisture will only allow an actual evaporation of 1.0 mm. In
this aspect, not all the PET errors were actually used during the

study.

16



CHAPTER IIl1

Data Error Synthesis

This chaptexr explains the basic objectives of this research
study in building on the previous research outlined in Chapter II,
There is a definite need to investigate errors which may be intro-
duced into runoff simulation due to poor calibration as a result
of erronecus information on precipitation, streamflow, and/or
evapotranspiration. If, within the present '"state of the artV,
it can be determined that errors in the data do not affect the
predicition process, then more effort could be directed toward
improving the predicting model. If, after all points are considered,
benefits from improved predictions are less than the cost of improv-
ing the model, then it would be a misuse of technology to attempt

to sophisticate the process any further.

Precipitation

The effects of random errors as discussed by Dawdy (5) and
Rodda {(20) have been investigated. Therefore, two additional types
of errors are investigated in this study. To do this, adjustments
to the hourly rainfall record assoclated with the largest storm of
the year were made by multiplying the measured storm data by 0.7,
0.8, 1.1, and 1.2.

Since flood peaks are often of particular interest in hydro-
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logic simulation and efforts to match them may strongly affect the
estimates of parameter values made in model calibration, the effects
of errors in measurement of precipitation during the largest storm
was alsc explored.

A third type of error is the systematic type discussed by
Rodda (20). This type of error could result from local meterclogical
conditions, orographic effects, or consistently low rain gage catch
efficiencies. For the purpose ¢f the present study, adjustments
to the existing precipitation record were made by multiplying the
measured data by 0.8, 0.9, 1.1, and 1.2, This was to allow an
agsessment of the effects of errrors in basin precipitation of -20

percent, -~10 percent, + 10 percent, and +20 percent.

Streamflow

The effects of random errors in streamflow, as discussed
previously and in the literature (5,20), is to increase the error
between the simulated and measured hydrographs. If the random
errors are not serially correlated and are introduced on a daily
basis they will produce perturbations on the output hydrograph as
shown in Figure 4. This type of error has been investigated rather
thorcughly and shows generally that random errors may be compensated
in the calibration process (5,20).

To build upon these investigations, it would be helpful to
obtain some quantitative measure in those cases where extrapolation
techniques were used to extend the rating curve for peak floods.

It is possible that a systematic error could be introduced into the
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data by using an extrapolated rating curve. For this study, errors
were introduced in the streamflow recorded for the three largest
peak events during the year. Initially it was felt that a value of
flow corresponding to the channel capacity should be used as a lower
limit for the adjusted streamflow data. However, since the objective
of this study is to assess the effect of errors in streamflow due to
errors in extrapolating the stage-discharge curve, a lower bound for
adjustment was selected so that at least three events within the
year would be included. All flows above this lower bound were ad-
justed by + 20 percent and -~ 20 percent. The results of introducing
the above errors into the streamflow record are presented by Chapter

v.

Potential Evapotranspiration (PET)

The investigation of random errors in evaporation as dis-
cussed in the literature is helpful but does not give a practical
insight into relalstic errors and their effects on the simulation
process. As discussed in reference 1, there are various empirical
methods of calculating potential evapotranspiration. The varlation
in each of the methods is illustrated on Figure 5 and 6.

Three forms of PET data were used in this study. These
were, 1) computed daily PET (Hargreaves 1971), 2) 20-year daily
average of the calculated PET, and 3) daily pan data. Comparisons of
2 and 3 with 1 are presented in Chapter 5. In addition, the pan

data was adjusted so that the yearly total would equal that of the
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calculated data. This was done in an effort to determine the effects
of the method of determining PET data and not the effects of annual

bias.
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CHAPTER IV

Data Preparation

This chapter describes the watershed, the simulation model,
and the hydrologic data used. Detailed information concerning the
simulation model is not included, but a brief description of the

parameters used and the optimization criterion is provided.

Watershed Description

The Camp Creek Watershed is located south of Atlanta, Georgia,
covering parts of three counties (Fultom, Clayton, and Favette), and
has a total area of 17.0 square miles., The watershed extends north
from State Highway 85, where the stream gage is located, to Godby
Road and east and west from the town of Riverdale to National Highway
(Figure 7).

The area is fairly hilly with an average elevation of 920
feet above sea level. The land ranges between a maximum elevation
of 1,000 feet above sea level to a minimum of 840 feet above sea
level.

Approximately 80 percent of the surface soil of the water-
shed is in the Appling—Cecil Association. The remaining 20 percent
is mainly from the Congaree-Chewacb-Wickham association (22).

The soil association and respective permeabilities are shown in

Table 1.
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Table 1. Camp Creek Soil Assoclations and Permeabilities

Soil Permeability Permeability
Class in/hr
Cecil-Lloyd-Appling . Moderate 0.6-2.0
Appling~Cecil Moderately Rapid 2.0-6.0

Congaree-Chewacb-Wickham Rapid 6.0-20.0
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Camp Creek Watershed is located in the area which has
relatively long, warm summers and short, mild winters, with
moderately heavy rainfall (22)., These conditions have been res-
ponsible for considerable leaching of soluable materials as bases.
The less soluable material and collodial matter have been trans-

fered down through the soil.

Model Description

The continuous watershed model used 1s the Georgia Tech Model,
?he concepts of the model originated with the Stanford Model (3)
and Kansas Model (17}, The Georgia Tech Watershed Model was programmed
by Pr. A, M. Lumb. The major elements of the model are shown on the
attached flow chart, Figure 8,

Precipitation and potential evapotranspiration are the major
daéa inputs to the model, Within the model, precipitation is stored
in the three surface storage and three soil mositure storages depicted
in Figure 8. A list of the input parameters and theilr definitions
are Included in Table 2.

The optimization objective used throughout this study was to
minimize the sum of the absolute errors between the observed and
the predicted daily streamflow. Thils objective function is used
because the watershed has a fairly constant base flow with peaks
throughout the year.

Optimization 1is accomplished through a direct search tech-
nique called Pattern Search (4), A flow chart of Pattern Search

is included as Figure 9. The technique starts at an arbitrarily
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Table 2. Definitions of Parameters used in Georgia Tech Watershed

Model

Parameter Description
AREA PARAMETERS

SWAREA, SUBWATERSHED AREA (SQ. MI.)

IMPA, FRACTION IMPERVIOUS AREA

FALZ, FRACTION ALLUVIAL AREA

FHLZ, FRACTION HILLSIDE AREA

PSRP, MAXTIMUM AREA FOR SRS (FRACTION)

PSDP, AREA WHEN SDS+SDSN (FRACTION)
STORAGE PARAMETERS -~ INCHES

ICMN, WINTER INTERCEPTION STORAGE

ICMX, SUMMER INTERCEPTION STORAGE

SRSN, SURFACE RETENTION STORAGE CAPACITY

SDSH, SURFACE DETENTION STORAGE CAPACITY

UZSN, UPPER SOIL ZONE CAPACITY :

LZSN, LOWER SQIL ZONE CAPACITY

GWSF, GROUND WATER STORAGE AT BASEFLOW
DRAINAGE PARAMETERS - INCHES/HOUR

PPIF, _ INFILTRATION PARAMETER

PSUP, INFILTRATION FUNCTION SHAPE PARAMETER

PPUL, UZ§ TO LZS PERCOLATION PARAMETER

PLGP, LZD TO GWS PERCOLATION PARAMETER

PDGP, UNDERFLOW FROM GWS PARAMETER

PLZU, UNDERFLOW FROM LZS PARAMETER

YYM, OVERLAND STORAGE COMSTANT (HOURS)

INFF, TNTERFLOW PARAMETER

KGWF, BASEFLOW RECESSION CONSTANT (DAILY)
EVAPOTRANSPIRATION PARAMETER

FIiP, - INTERCEPTION EVAPORATION PARAMETER

EVP, UZS8-LZS EVAPORATION PARAMETER

FIGWD, GROUKD WATER TRANSPIRATION PARAMETER

S8R5, SDS, UZS INITIAL STORAGE VALUES

LZS, GNS
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selected base point as defined by the initial parameter values. The
distinguishing feature of Pattern Search is in the selection of
trial points. There are two types of adjustments, local excursion
(LE) and pattern move (FM).

The local excursion consists of a limited univariate search
such that only a single parameter is adjusted by a small increment,
DELTA, Upon completion of the local excursions for all parameters
selected, a pattern move is made, The directjon of the pattern move
1s determined from the information gathered from the local excursicn
for each parameter, Each parameter is altered in the direction in-
dicated by the most successful local excursion. The process is
repeated with the specified DELTA until the objective funetion can
ne longer be improved. At that peint a resolution is made which

divides the current DELTA by two and the procedure continued.

Data Preparation

The streamflow, precipitation and evapotranspiration data
for the Camp Creek watershed were stored in a Fastran drum file
on a Univac 1108 computer.

Two precipitation gages were initially used, one located
at the Atlanta Airport just north of the watershed and the other
located at Jonesboro, Georgia. The airport gage is a continuous
recording gage and the Jonesboro gage is a storage gage.

In conjunction with the Georgia Tech model, a data manage-

ment program is used to weight precipitation by the Theisen method
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for up to 15 rain gages for a particular watershed. A flowchart

of the data management process is shown in Figure 10. Other

options which may be employed are reading data from cards or drum-
file, eliminating various portion of data which are not desired,
creating new files, punching cards in various formats for input,

and weighting up to 15 precipitation gages with the end result

being one set of precipitation data which represents the distributed
rainfall over the watershed. The management program was used to
weight the previously mentioned two gages and obtaln one set of

precipitation data.
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CHAPTER V

ANALYSIS OF RESULTS

In presenting the results it will be helpful to refer back
to Chapter I which outlines the general objectives of this study.

As discussed previously a 'base set'" of parameters was first obtained
by optimization using precipitation and caluclated ET data as input
to the Georgia Tech Watershed Model. Of the ten years of available
data, water year 1961 was selected for this study because it con-
tained the largest flood of record. The optimum parameter set is
shown in Table 3 along with the assoclated average absolute error

in daily flows (CFSD), the number of pattern moves necessary, and

the number ¢f resolutions performed on each parameter., A calcomp
plot of the observed hydrograph and simulated hydrograph is included
on Figure 11.

A resolution of 1 means that an improved value of the objective
function could not be found with a DELTA of 10 percent for each para-
meter and that the current adjustments were at the 5 percent level.

A resolution of 2 means the same as the above except at the 5 percent
and 2.5 percent levels, For this study an accuracy of at least 10
percent was considered to balance the tradeoffs between improved
values of the objective function and increased computer costs.
variations in the parameter values less than 10 percent are assumed

to result from parameter interaction and a lack of resolution of the



Table 3. Optimum Parameter Values for Camp Creek
‘Watershed for Water Year 1961

Absolute FError = 6.1366
Number of Pattern Moves = 3

Number of Resolutions = 2

Parameter Optimum
Value
IMPA .015
FALZ ,499
FHLZ .166
PSRP .3
PSDP .3
ICMN .05
ICMX .25
SRSN .50
SDSN .20
UZSN 1.708
LZSN 4,182
GWSF 0.0
PPIF 8.28
PSUR 5.4
PPUL 0.058
PLGP 0,195
PDGP 0.0
PLZU 0.0
TTM 0.50
INFP 0.088
KGWF 0.99
EIP 0.73
EVP 1.00
ETGWP 0.00
SRS 0.00
SDS 0.00
Uzs 0.26
1ZS 2,52

GWS 7.0
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optimization method rather than an improvement in the optimization
function,

Five parameters are considered to be the most critical to
model operation. These are FALZ, FHLZ, UZSN, LZSN and PPIF as defined
in Table 2. The above parameters are responsible for allocation of
water to the three soil zones discussed in Chapter IV, These five
parameters were found to be the most sensitive during the initial
phase of calibration. Of the parameters presented in Table 2, these
five also have the best analogies to physical characteristics of
the watershed.

A brief discussion of these five parameters and thelr signi-
ficance within the model is necessary at this point, It must be
noted that the five parameters interact extensively so that in-
ferring any results through only one parameter may lead to erroneous
conclusions.

The maximum infiltration rate at any point in time 1s calculated

from

_ PPIF
UZS ............ LR B B B R L R B N

Z[PSUP UZSN]

max.

Figure 12 illustrates the role of imax’ PPIF, and UZSN in allocating
precipitation among surface runoff, interflow, and infiltration. If
the maximum infiltration rate (imax) were plotted versus the ratio of
UZ5 te UZSN the resulting curve would look like those shown in Figure

13. Thus imax is the maximum infiltration rate at a given time and
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PPIF iz the maximum infiltration rate in inches per hour when UZS is
EZ&eTo .,

The parameters FALZ and FHLZ determine the fractional area of
alluvium and hillside lower zone storages respectively. Another

parameter, FRLZ, is calculated internally as

FRLZBI-[FALZ-"FIILZI L I R A I N A N ) (3)

and refers to the fractional area of ridge lower zone storage.
Removal of meoisture from the LZSN zone through drainage is zero

until a threshold is reached. Drainage from the ridge zone is added
to the hillside and alluvial lower zones in proportion to the res—
pective values of FHLZ'and FALZ. FALZ directly relates to percola-
tion from the lower zone to groundwater storage through the following

equation.

PERGC = PLGP [(ALZS/LZISN) = 0.5]  eiiiieireinrnnnaranas 4)
where PLGP iz the percolation to ground water parameter and ALZS is
the alluvium lower zone soill moisture. Base flow is then calculated
as

BFLO = (FALZ) (BFP) {(GWS—GWSF)  ...cuiviconssnonnns veeaes (5)

where BFP 1s defined as
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BFP=100-KGWF0.04167 oooooooooo L R A ] (6)

and KGWF is the baseflow recession constant. GWSF is a threshold
value for the initiation of baseflow,.

Interflow is a function of the interactions of HLZS (hillside
lower zone soll moisture), LZSN, FHLZ and a parameter INFP. Inter-

flow (IFLO) drains from the hillside lower zone.

IFLO = (XLX) (FHLZ) (IAM2) R €2
where

XLX = [(INFP) (.8 + (.2) (W) ] W Ceredeat e cernaee (8)

W = [HLZS/LZSN] - 0.5 ferarreraeanenanan eve (9

mn = (1.0 - neal®’ . (10)

IAM2 represents the remaining area of effective lower zone soil
capacity when the fraction of impervious area is IMPA,.

As can be seen from the previous brief discussion the inter-
action of the five parameters chosen for optimization and comparison
is very complex. The following sections discuss the resulting effect

on each parameter from the error introduced into the data.
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Precipitation

Two distinct cases will be presented. The first is for a
systematic error introduced into the entire precipitation record.
The second is for the particular error which may be associated
with one or more large events during a year. In the first case
adjustments of ~20 percent, -10 percent, +10 percent and +20 percent
were made tce the entire precipitation record. The parameters were
then optimized using the adjusted precipitation and compared to the
original base set of parameters. This comparison is made in Table 4
and in Figure 14. Plots of the daily hydrographs are included for
each adjustment in Figures 15 through 22. Figures 15, 17, 19 and
21, show the simulated hydrographs and the observed hydrographs.
Figures 16, 18, 20, and 22 present the same simulated hydrograph with
that simulated from the base set of parameters.

From Figure 14 the relative movements of each parameter result-
ing from the erroneous precipitation can be observed. The direction
and size of the movement reflects the internal adjustment of the
model to compensate for the precilpitation error which was introduced.

In looking at positive adjustments to the precipitation,
large changes in UZSN, LZSN, FALZ, and FHLZ are apparent. The best
way for the model to absorb an increase in precipitation without
additional runoff is to increase the storage capacity of the ridge
Zone. By increasing LZSN and UZSN and decreasing FHLZ and FALZ,
the added precipitation is then allocated te the ridge zone where

is has greater opportunity for evaporation. There are actually two



Table 4. Rasults of Adjustments to Total
Precipitation Record

Adjustment = 0.8

Parameter

FALZ
FHLZ
UZEN
LZSN
PPIF

Adjustment = 0.9

Paramoter

FALZ
FHLZ
UZSN
LZsN
PPIF

Adjustment = 1.1

Parameter

FALZ
FHLZ
UZ35N
LZSN
PPIF

Base 2djusted
Parameter
. 49875 .50947
.16561 . 20839
1.70775 . 84453
4.18176 1.8382
8.28 9.95808
Base Adjusted
Parameter
. 498755 54008
. 16561 .174¢6
1.70735 1.32165
4.18176 2.82086
8.28 7.36
Base Adjusted
Parameter
. 49875 . 40976
.16561 13602
1.70775 2.30522
4,18176 5.4784
8.28 8.0224

Change in
Parameter
+ .01072
+ .04278
- .86322
-2.34356
+1.67808

Change in
Parameter
- .04133
- .00899
+ .3861
+1.36116
+ .92

Change in
Parameter
+ 08899
+ .02959
- .59747
-1.2966

+ .2576

+ +
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' Change

.02149
.2583
. 50547
.5604
.2027

Chance
Base

.0828
.05428
.22608
. 3255
111

Change
Base

.1784
.17 86
. 3498
.31007
L0311



Takle 4.

Adjustment = 1.2

Parameter

FALZ
FHLZ
UZSN
LZSN
FPIF

Base

-49875

.16561
1.70775
4.18176
8.28

46

Results of Adjustments to Total
Precipitation Record (Gniinuation)}

2djusted
Parameter
.22619
05754
3.05399
6.2137
9.20074

thange in

Paraneter

+ .27256
+ .10807
~1.34624
-2.03194
~ .9207

Change
Base
+ ,5465
.6525

+ .788
+ .48.59
+ .1112
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effects involved. When precipitation is increased and the volume of
streamflow is maintained approximately constant the evapotranspira-
tion must increase. Therefore the first effect is an increase in
UZSN and LZSN to afford a greater storage and thus a greater oppor-
tunity for evaporatiom. The gecond effect is for the zones FHLZ

and FALZ to decrease to allow more precipitation to fall on the

ridge zome, The ridge zome does mnot drain until a threshold is
reached therefore keeping it wet to allow for higher evaportrans—
piration. This trend for the interaction of FALZ and FHLZ with

UZSN and LZSN is quite apparent for all adjustments in precipitation.
For the -20 percent adjustment the FALZ shift seems to be incon-
sistant, The can be attributed to the interdependency of PPIF, which
increases rapidly between adjustments of =10 to ~20 percent (Figure
14) allowing more water to infiltrate and drain to groundwater storage.
Thus, too much low flow would be simulated unless FALZ is reduced.
The small variations of PPIF about the horizontal axis result from
parameter interaction and a resolution of only 10 percent used in the
optimization. For additional detail on storage allocations, refer

to Appendix A which contains the detailed storage and flow table from
each simulation.

The second type of precipitation error which was analyzed was
assocliated with a large event, All the rainfall associated with the
largest precipitation event of the year was adjusted by -20 percent,
-20 percent, +10 percent and +20 percent. This storm cccurred over

a two day period, February 25 and 26, 1961, and is associated with
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the largest peak of the ten-year record. The total precipitation for
the two-day period was 5.7 inches preceeded by 6,23 inches in the
previous 6 days. The vresults are shown in Table 5 and Figure 23.
The calcomp plots of each adjustment are also included on Figures 24
through 31. Figure 24, 26, 28 and 30 compare the simulated hydro-
graphs with the observed hydrographs while Figures 25, 27, 29 and 31
compare the hydrograph associated with base parameters with the hydro-
graphs assoclated with the adjusted parameters. From Figure 23 slight
variations outside the 10 percent level are present for PPIF on the
positive and negative adjustments and for FHLZ on the neagtive adjust-
ment. These variations are understandable since PPIF controls soil
molsture conditions prior te the storm and FHLZ increases to supply
more storm runoff through Interflow when precipitation is decreased.
PPIF moves in a direction to allow infiltration to increase so that,
prior to the storm, UZS will be wetter and thus more runocff will be
generated from the storm.

A more detailed amalysis of the allocation of moisture by
the model may be conducted by referring to the flow and storage

allecation table in Appendix B.

Streamflow
As discussed previcusly adjustments of +20 percent and -20
percent were made to the three largest peaks within the year. The
results of these adjustments are included in Table & and on Figure
32. Also included are the calcomp plots of the hydrographs for the

base set simulation compared to the simulation using the adjusted



Table 5, Results of Adjustments to Precipitation

Adjustment

Parameter

FALZ
FHLZ
UZSN
LZ&N
PPIP

Adjustment

FALZ
FHLZ
UZSN
LZSN
PPIF

Adjustment

FALZ
FHLZ
UZ5N
LZSN
PPIF

Adjustment

FALZ
FHLZ
UZSN
L.ZSN
PPIF

for the Largest Event

o7

Base

.49875

16561
L.70775
4.18176
8.28

It

0.8

.49875

16561

70775
.18176
.28

o ™

= 1.1

.49875
.16561
70775
.18176
.28

o0 e

1l

1.2

.43875

.16561
1.70775
4.18176
8.28

Adjusted
Parameter

.49875

.18813
1.73745
4,1817¢6
9.2

.49875

.16944
1.6038
4.18176
9.2

.5225

15521
1.6038
4.18176
7.36

.5225

.15521
1.e038
4,18176
7.36

Change in
Parameter

-.,02252
-.0297

+.92

-.0038
+.1039

~.92

-.0237%

C+.,0104

+.104
+.92

-.0237
+.0104
+.104

+.92

Change

Base—
+,1359
+.0174

+.111

+.023
~-.0608

+.131

+.0476
-.0628

-.111

+.,0476
-.0628
-.0608

-.111
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Table 6.

Streamflow

Parameter

PALZ
FHLZ
UZSN
LZSN
PPIF

Streamflow

FALZ
FHLZ
U2SN
LZSN
PPIF

+.2

Base

.49875

.16561
1.70775
4.18176
8.28

-.2

49875

16561
1.70775
4,18176
8.28

Adjusted
Parameter

.49266

.16975
1.74766
4,18176
B8.4985

.45125
.1455
1.6335
3.76358
10.12

Change in
Paraneter

.00609

.00414

.03991
0.0000
0.2185

.0475
.0201
.07425
.41818
1.84

Results of aAdjustments to Streamflow

Change
Base

-0.0122
+0.0250
+0.0234

0.0000
+0.0264

-0.0952
~0.1214
~0.0435
-0.1000
+0.222
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parameter set (Figures 33 and 35) and the observed hydrographs com-
pared to simulated hydrographs using the adjusted parameters (Figures
34 and 36).

There were three events during the year which were adjusted.
These occurred during (1) February 23 through 26 having origimal
daily streamflow values of 215 cfs, 300 cfs, 1870 cfs and 106 cfs
respectively, (2) April 12 having an origimal daily streamflow of
179 cfs and (3) June 21 having an original daily streamflow value of
274 cfs as shown in Table 7. The adjustments and adjusted stream-
flow values are also shown with the corresponding daily precipitation
for each event. At this point it should be noted that the "base set"
of parameters under simulated the yearly record by 0.89 inches.
However by decreasing the observed streamflow (-20 percent adjustment)
the model now has much more precipitation for the three events than
the observed streamflow would indicate. In this case the model
would allocate more moisture to the ridge zone by decreasing FHLZ
and FALZ. Also by decreasing the streamflow, PPIF would increase
and UZSN would decrease to increase the infiltration and decrease
surface runoff to that of the adjusted peak flow. Although the de-
crease in LZSN is small, its decrease would allow a greater fraction
of the evapotranspiration from the upper zone storage {(UZS8) so it
would be dryer at the start of the storms and thus increase infiltra-
tion.

From Figure 32, it is apparent that larger variatiomns of the

parameters from the base set occur for a negative adjustment of



Table 7. Adjustment Values for Streamflow

Event Date Original Adjustment  Adjusted Precipitation
Streamflow Streamflow
1 Feb 23 215 1.2 258 0.86
24 300 1.2 360 3.75
25 1870 1.2 2244 1.95
26 106 1.2 127.2 ¢.00
April 12 179 1.2 214.8 1.49
June 21 274 1.2 328.8 1.93
1 Feb 23 215 0.8 172.0 0.86
24 300 0.8 240.0 3.75
25 1870 0.8 14%6.0 1.95
26 106 0.8 84.8 0.00
April 12 179 0.8 143.2 1.49
3 June 21 274 0.8 219.2 1.93
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streamflow. The positive adjustments show variations that are within
10 percent and are considered insignificant as previously disucssed.
It must be noted that streamflow is only used to evaluate the
objective function for coptimizations and is not required input for
the simulation. The smaller changes in parameter values for the
positive adjustments indicate that the parameter values are deter-
mined of more from their effect on antecedent moisture conditions
than from any one peak event. Inceases in the three peak values
cause smaller changes in the parameters than decrease because there
is not enough precipitation to allocate in conjunction with the
observed streamflow.

It appears that PPIF, relative to the other four parameters,
is more sensitive to adjustments of selected rainfall events, whereas
in overall adjustments of precipitation, UZEN, LZEN, FALZ and FHLZ
seem most sensitive., This may be due to PPIF being determined mainly
by major events during the year. However, in the case of the overall
adjustments, minor perturbations of PPIF are masked in the variation
of the remaining four parameters.

More detail may be obtained by referring to the detailed flow

tables in Appendix C.

Evaporation
As discussed in Chapter IV, three methods of estimating
PET data were used tc compare the effects of one method versus

another. The three sources were (1) daily pan evaporation from

76
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Rome, Georgia, 60 miles northwest of the watershed, (2) calculated
daily PET from Hargreaves equation (8), and (3) a 20-year average

of the Hargreaves calculated PRET. The caluclated Hargreaves data

was first used in obtaining the base set of parameters. Each data
type was then used to replace the calculated PET and the parameters
were optimized again. A comparison of the three types is presented
in Table 8 and Figure 37. The relative position of each at the start
of the water year should be noted. Pan evaporation is the lowest,
the calculated monthly PET the next highest, and the 20-year monthly
average being the highest. The difference between the pan evaporation
and the Hargreaves calculated PET is greater than the difference
between the 20-year average and the calculated PET, An adjustment
was then made to the pan evaporation in order to adjust the yearly
total to agree with that of the calcualted Hargreaves PET. The
results of each of the above three data inputs on the five parameters
are presented in Table ¢ and Figure 38.

Calcamp plots for each adjustment are included in Figures 39
through 44. Figures 39, 41, and 43 show the hydrographs simulated
using the adjusted parameters compared to the observed hydrographs
while Figures 40, 42, and 44 have the simulated hydrographs (adjusted
parameters) compared to the simulated hydrographs using the base set
parameters,

By using the smaller PET values, the results should compare
to the conditions of increased precipitation throughout the year.

This is generally the case with a decrease in FALZ and FHLZ and an
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Nov Dec Jan Feb Mar Apr May Jun July Aug

1.96 1.75 .9 1.55 3.10 5.49 5.28 5.53 6.64 5.37

2.324 1.393 1.391 2.295 3.904 5.322 6.347 6.620 7.041 6.294
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Table 9. Results of Using the Two Sources of ET Data

Parameter Base Adjusted Change in '~ Change
Value Parameter Base
Pan ET
FALZ 49875 40613 .09262 -.186
FHLZ .16561 .13823 .02738 -.165
UZSN 1.70775 1.6335 0742 -.043
LZSN 4.18176 4.5999% L4131 +.0999
PPIF 8.28 10.12 1.84 +.222

Pan ET adjusted by 1.13

FALZ .49875 . 45006 0487 ~.0976

FHLZ .16561 .14227 ' 0233 -.1409
UZSN 1.70775 1.47015 .2376 -.1391
LZSN 4.18176 4.18176 .0000 -
PPIF 8.28 10.12 1.84 +.222

20-Year Average LT

FALZ .49875 .48094 .01781 -.0357

FHLZ 16561 .12287 .04274 -.25807
UZSN 1.70775 1.30309 - .40466 -.2369

LZSN 4,18176 4.18176 0.0 -

PPIF 8.28 8.855 .575 +.0694
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increase of PPIF. The change in direction of UZSN may reflect the
accumulative effect of evapotranspiration on UZS relative to the
major storm hydrographs. With a decreased PET the model has, in
effect, toc much precipitation. The decrease of UZSN is limiting the
upper soil zone so as to store more moisture in the lower zones.
FALZ and FHLZ are decreasing so that this meisture may be stored in
the ridge storage (i.e., FRLZ is increasing). Generally LZSN is not
as sensitive to the small variations in PET which are present. Only
for the lowest data values {(pan evaporation) does LZSN change and
its movement is in the positive direction as would be expected. A
more detalled analysis may be accomplished by referring to the flow

tables in Appendix D.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

In conclusion, it 1is apparent that the most critical data
errors are those made in precipitation systematically throughout
the vear. Variations of up to 70 or 80 percent for UZSN, FHLZ,
LZSN, and FALZ for a 20 percent increase in precipitation (Figure
14) would be unacceptable on parameters with which correlations
with the physical characteristics of a watershed were expected.

It seems significant that an error of up to 30 percent in precipita-
tion associated with a major event during the year (Figure 23) has
little effect on parameter values. 1t is also true, however, that
errors associated with individual major thunderstorms may be much
larger than this. In order to assess the significance of an error
one must look at both the probability of it happening and the con-
sequence when it happens.

The effects of errors in streamflow on model parameters are
still of some question. Parameter variations, such as those shown
in Figure 39, may depend on whether the streamflow record used for
calibration represents either a wet or dry year. The effects seem
to be major only in two parameters, FHLZ and PPIF. However, these

two parameters have a major effect on the moisture accounting in



the model and the simulated streamflow.

The PET data comparison (Figure 37) has variations within it
which assist in making assumptions about the five parameters. Of
the five, LZSN seems to be the most stable in this case (Figure 38).
PPIF will decrease in order to compensate for drier soil conditions
due to greater evapotranspiration. Since FHLZ and UZSK are sensitive
to the variations in PET it does not seem likely that they could be
used as correlation parameters to watershed characteristics,

The adjustments which were applied to the total precipitation
record are probably as large as could be expected although this
would depend on gage performance. In adjusting the precipitation
associated with a single event the errors involved could conceiwvably
be much larger. This aspect was not investigated but, as discussed
previocusly, errors in the order of twice the total rainfall over the
watershed may occur. Adjustments of + 20 percent to streamflow data
are within the range which would be expected. This range could be

caused by debris in the channel retarding the flow or by large storms
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causing over-hank flow at the stream gage. In examining the variations

in potential evapotranspiration (PET) it is apparent from Figures
5 and 6 that larger variations could be expected. The variations
in the PET data used are smaller than those in Figures 5 and 6, which

is apparent from Figure 37.

Recommendations
This study has brought to the surface several questions. It

would be very interesting to obsgerve the effects of random storm
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centers in conjunction with a varying rainfall distribution over a
watershed. The distributicn could be one in time and space over
subwatersheds. This more sophisticated model would be, ar present,
difficult to calibrate. Each subwatershed would have, in essense,
a different rainfall and therefore have variations in the optimum
parameter set obtained. The model would also become more complex
which may not be advantageous at this time.

There are many aspects of the data which are still not under-
stood., Point rainfall can not be measured to a known accuracy., The
concept of potential evapotranspiration as used in watershed models
is still somewhat wvague as a tool in hydrology. This is an area
for the theoretician and the practical engineer to work together in
order to understand more fully the workings of nature, The number of
years of streamflow data necessary for predicition of both low and

high flows would also be an advantageous area to investigate,
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SUMMARY

This study has investigated the effects of the three basic
types of hydrologic data, necessary for streamflow simulation, on
the parameter values which are obtained through computerized optimiza-
tion. By studying the calibration of a model to a watershed the
general effects of data error on the calibration procedure were in-
vestigated.

As a result of thils study, it appears that the most sensitive
systematic data errors are in precipitation data. Systematic errors
in streamflow and potential evapotranspiration produce similar effects
on model parameters, although under certain conditions parameter

values are more sensitive to errors in streamflow,
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Adjustment to Total Precipitation Record of 1.1
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Adjustment to Total Precipitation Record of 1.2
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Adjustment to Largest Storm of 0.7
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Adjustment to Largest Storm of
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Adjustment to Largest Storm of 1.1
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Adjustment to Largest Storm of 1.2
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. Ad}ustment to Streamflow of 0.8
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Adjustment to Streamflow of 1.2
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Calculated 20-Year Average
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ran svapotranspiration

FLEY AnE OTCHAGE TAPLE PCR  CAMPCREEM WEAR FAYETTVILLE GEOAGIA RATER YEAR 1981  (VALVES IN INCHEZ)
et 144 DEC JiH FEg MiR AFR MAY JukE JuLy WG wet TOYAL
PRECIPITATION . 1,887 1,128 2,033 2,329 3,040 7,085 0,978 3,342 T,ee0 ToE,806 b0y 1,353 50,234
LrsFs (vATPRIHED frCrPs) : - ’ .
INTERLERYICN J%29 ° L%t? 259 Jdee $377 B33 L 1ME 1 1%k 1,879 1,059 T 1,897 . %9 16,053
TRFILCTRATICL«pToECT W92 262 1,509 1,834 5,953 5,605 2,994 1,998 4,313 1.9%3 G114 L1223 33,199
abELE YRY NAY yOou (030 JI10 1, Ty hh2 L3813 L0u8 506 882 AT JAir o 3, es
«FFCw 513 L0890 BRIk L7 yl68 87, +$55 023 #0982 00 L0T8 CHen JSee
SLETALt EETENTICN Set18 $004 2008 J090° 1,832 831 229 N 1T R LY 174 W15 3,3
FERCILATITN {maATESSRED JnChES) . -
LreeL?t Lece L0940 W59% 2,231 1,367 3,152 2,757 1,087 3,624 L% 2. aus . d40- 23,300
L?Emfvrd _ JoLf (600 . D00 LJo08  #,16S 1,24% 1,514 083 1,048 L0 224 L0809, 61¥
FEFPLCE EILGE L 000 L L000 000 2,053 3,200 LRz W00 W28 T L0090 IS 1T I 'Y
L~ERfLLs Yy 000 oot LB00 Lo WCL0 L0060 «0400 LO00,  LE00 L0030 Loet 00
SYeFi=FL (v {paTiR%FL JPCFEL) )
IFFRyviCLY MKE4 N «217 LS00 JE34 L1593 105 L0T4 L0409 Nie 042 95 L0éc J608
eLEFLCE AL oY 108 L1966 518 1,803 419 L0800 1,099 L0992 CEY. ML P
JNTERFLE . . 1 LR00 L0400 124 1,173 L7100 L9 L0350 Ll L6 1 333 2,8:0
tatEFLEw Luth D3u7 e 301 4363 1,039 1,064 1,025 JBEd 12 792 K141 2,598
AWYEL FLES ’ JBEL e ALT)) 853 6,217 3,768 2,122 1,143 2,307 1,435 1,264 JITL 28,
EVAPLTIRAEISPIGATION (aBTEFEVED IRLHES)
IWTECCEPTIEN LY 295 251 08 Ty R-11.] 1,2%2 1,138 1022 1,090 1,351 205 18,6a)
ELH Lo 000 W00 L0060 010 L003 Locd J00 L 003 -1 001 L0394 LT |
V73 L5935 L1319 079 1 561 LB54 1,327 1,240 1,059 5,536 1,007 1,1ve 10,@3e
LI 782 JI00 , Y14 JPul LJuad 1,118 1,758 1,507 1,235 2,024 $,30 $,3%0 12,840
c-8 . LG50 s 900 00 $L00 L0600 g JO0C0 +000 000 JO00 J000 1] L000
TITH 1.9%8 1,539 10499 +BRS 1,27, 2,918 4,301 31,8485 3,919 $, el 3, Tat 3,361 32,7s]
FLTENT]AL 3,210 t,960 1,756 00 1,550 3,160 5,492 5,288 5,530 b, 640 b, 3P0 4,940 a5,Ted
EnfeCF=v[RTr- STERAGES {FEFVICLS SUBesREA TnCHES) .
wre 37 +0381 L850 002 018 110 s 005 002 JOu) N T4 2 250 (000
(3] N1 LS00 000 L0080 +000 000 000 000 L« 004 (000 000 L0809
L1 ] i LA00 JN20 LO00 P00k 1ol %13 L0000 L 000 11 001 000
Ly T LRT 1,376 LYY 1,083 1,050 L 769 1T LEL J2US 1,128 iy
LIffEILtr) 1,797 1,518 1,618 3 Bia 5,059 5,191 3,942 3,152 4,68 2,810 M,esd 2,022
B A8 IRARS ¥ 1,683 1,480 1,793 2.Eh8 2,8pd 2.,86% 2.h1d 1,853 2,017 1,492 2. 0% 1,619
L78RTLLBICF) 1,791 1,5%% 1,088 2,950 5,071 3,63} 2,705 2,182 31,608 1,657 e .01 1,715
Lar 8,419 5,269 4,507 S,R%7 f#,¥va 16,350 17,431 35,0803 35,9562 13,374 11,979 fo,ed
ANELAL PRFCTRITATICY MIMGS EVAFOTRANAPIRATION wIAUS BTREARFLCW MIKYS LADERFLOK FQUALS o757

4
tearCY Ik STORACE CCLALY 1]

TTT


Ir.FIi.TPATlO-Dr.fCT

Pan Evapotranspiration Adjusted by 1.13

PLOw ANE STCRACE TAPLE FER CAMPCREEK nFAR FAYETTVILLE Gtcaéll . : C OWATER TEAW 1961  (VALUEY Ix InCwES)
_ cet hCY  OEE Jan FEB . MAR - AFR HAY JUME Jity AL - sEPT Twal
PAFATRITATION 1,687 1,128 2,03 2,329 ll.aho T, 065 4,978 3,342  T,86% 2,406 4,201 1,35 %4,33¢

LPAFS (1 #TEFS*ED TaCPES)

ISTERCEPTILK 933 +278 +167 01 L6350 L.2065 14187 1,701 1,012 L2379 H40 30,923

INFILTFSTICHTIRSCTY ;era LS50 1 598 1,TBA S,626 3,4FS 2,908 1,963 8,297 1,517 W 0Es H%Y 29 20
eFnr? g L0E9 -, 00} 030 Jd27 1,840 Yy IR 049 .58 T LT Y D L E ]
«Filr 8L LCo8 $002 0N 017 163 L1109 L 0%8 2021 L 089 029 L0T4 008 L3917
SUEFACE FFTENTICR 009 L0085 088 108 1,967 MWl 237,049 L5380 053 (183 ,0le 3,477
PUGEC: STTEN {aATERSHED JhCri R} - . .
WAL T . 114 Lhon L3750 2,935 6,971 2,638 2, L%Y L8831 3 8% TR -1 L3120 20,090
[ WARTTE ] RETH + 500 LA 1T 4,068 1,532 1,329 2000 0085 LOC0 W52 LY B,t8%
SIESatl REDGE . ST L0040 <G00 L0008 1,589 ' 7¢3 Ty (000 LD39 L0008 L0040 W03 2,00
DLLE LN 4 S N{T 000 008 Jo60 2300 000 000 2800 0G0 LO00 5] o 000
STEFLMELEP [oATERERED IPCHEN) :
IvPEREITLY AkFs | L2k W017 L0308 L3 2193 .108 +OTH L0029 R LOud 095 Loz - ,83)
BUGFALE T 00 WIS 221 8,150 1,683 4,500 091 Lyt o9 N7 MY S,.181
IVIEEF | Cn Jf08 N1 L0 L10 1,i51 L b5 . 38H +00% LY L3 JCd0 $013 .59
EitEELOP rid 2937 2 388 363 UG 1,047 1,04% Al U7 it 132 RY?: L 3 A
TETAL FLCH 578 L 459 (532 JTIE B S1B 3,683 2,030 1,036 2,243 1,027 1,101 Je3}  Z0,012
EVIPCYRANSETRITION (maTERERTD INCHEY) )
INTEELEPTICN L1 573 258 2185 L3R8 v ,ss5 1,119 1,169 1,710 1,126 1,430 fEi8 13,44}
30y ) L8508 T L0038 L0n0 4039 L0CS D08 (000 J0ce 000 001 L00¢ 1Y
L7 kit L k13 1Y L2599 V483 L,ce0 1,825 1,512 1,250 1,79y 1,225 1,311 12,4¢9
[ ¢ ] JTeh 321 L3370 Led0 - L4177 1,108 1,718 1.5 1,358 1,808 1.20% }.24% 31,7129
Gt 4 N0t 060 JA00 900 YT Y Y | JS00 000 L0008 SO0 yrot 4092 000
TCTiL 2,163 1,427 1,129 W58 1,387 2,VcB  4,6%% 4,05k G041 4, J80 3,487 345t 34,437
FLTENTIAL 3,621 2. 1,970 1,05 1, 7@ 3 497 b,1%5 5,996 6,230 7 ud0  &,I5Y 5,611 S1.437
EMCoCFPerChTR STCRACPS (FREAVICLS SUR=aRE4 I%NCMER)
e Ty 2k 080 001 s 210 a1 L0073 V001 053 00 550 2009
£1+1 ] ) JLne 1T J000 ,000 LY L000 Lo0n o0 T LCOD L030 s 000
438 Locd 006 22 D00 00 2183 L0800 000 W00 LC00 007 LLoo0
L9 - Jh10 7153 1,ack Rl 1,188 HL L] LT85 T M.1¥. w151 NS T2 BT 1
LIN'RIEGE} 1,760 Y,1%0 4,402 3,287 5,57 u,b1é 3,311 2,336 A, 02% 2 1axe 2,739 1,992
LESCaLLLy Tl Y 1,854 $.151 {1,230 @018 2,45) 2,53 1,78y 1,396 2,004 1301 2,030 1,0
[ AL VY §4-13] Libty t.422 1,37 2,611 4,270 B0 2,244 1¢07R 3,01% 1,443 [ ISLL) ;.2!1
Ged - 270 5,300 B,622 W, 989 12,300 13,280 13,802 11,815 11,843 3,181 8,017 ot '

ANARLAL PRECTIPITATICH rFIMUSR EVAPOTRANBPIRATION MINUS STREAMFLOWN KINUS UNDERPLON ZOUVALZ =1,81%
CHMGE In OTCRAOE ECLALE e1,01% : '

71T



