
Final Report: 0510259

Page 1 of 6

Final Report for Period: 08/2007 - 07/2008 Submitted on: 09/16/2008

Principal Investigator: Tsiotras, Panagiotis . Award ID: 0510259

Organization: GA Tech Res Corp - GIT

Submitted By:
Tsiotras, Panagiotis - Principal Investigator

Title:
Wavelets in Control and Optimization

Project Participants

Senior Personnel

Name: Tsiotras, Panagiotis

Worked for more than 160 Hours: Yes

Contribution to Project:

Post-doc

Name: Kim, Byungmoon

Worked for more than 160 Hours: Yes

Contribution to Project:
From May 2006-December 2006 Mr. Kim worked as a research assistant in the project. From January 2007 to May 2007 he had a
joint post-doctoral appointment between the school of Aerospace Engineering and the Math department at Georgia Tech. Mr. Kim
developed the multi-resolution scheme for solving level-set methods.

Graduate Student

Name: Jain, Sachin

Worked for more than 160 Hours: Yes

Contribution to Project:
Graduate research assistanship (doctoral student)

Name: Jung, Dongwon

Worked for more than 160 Hours: Yes

Contribution to Project:
Graduate research assistanship (doctoral student)

Name: Bakolas, Efstathios

Worked for more than 160 Hours: No

Contribution to Project:
E. Bakolas was partially supported by this award. He worked in the development of the multi-resolution path-planning algorithm
using wavelets.

Undergraduate Student

Name: Earl, Andrew

Worked for more than 160 Hours: No

Contribution to Project:

Name: Gloss, William

Worked for more than 160 Hours: No

Contribution to Project:

Final Report: 0510259

Page 2 of 6

Name: Ozawa, Eiji

Worked for more than 160 Hours: No

Contribution to Project:

Name: Yu, Jason

Worked for more than 160 Hours: No

Contribution to Project:

Name: Hageman, Daniel

Worked for more than 160 Hours: No

Contribution to Project:
Performed undergraduate research with the PI

Name: Staub, Jeffery

Worked for more than 160 Hours: No

Contribution to Project:

Technician, Programmer

Other Participant

Research Experience for Undergraduates

Organizational Partners

Other Collaborators or Contacts
The PI initiated a collaboration with Prof. Haomin Zhou from the School of Mathematics at Georgia Tech. Prof. Zhou's expertise lie in level set
methods, wavelet processing, and computational methods of pde's. The PI and the graduate students supported by this project have conducted
weekly meetings with Prof. Zhou to exchange ideas and discuss the progress of this research. Zhou was also a member of the doctoral
dissertation committee of one of the PI's students (S. Jain).

The PI has also started an informal collaboration with Prof. Magnus Egerstedt from the School of Electrical and Computer Engineering at
Georgia Tech. Prof. Egerstedt prior experience is in optimal control and path and motion planning for mobile robots. Professor Egerstedt
currently served as a thesis committee member for two of the graduate students involved in this project (S. Jain and E. Bakolas).

The PI has also continued his collaboration with Dr. Francois Chaplais of the Laboratory of Signals and Systems of the Ecole des Mines in
Paris, France, which was initiated in 2003. This collaboration has led to two conference papers and one journal paper.

Activities and Findings

Research and Education Activities: (See PDF version submitted by PI at the end of the report)
Please see attached file.

Findings: (See PDF version submitted by PI at the end of the report)
Please see attached file.

Training and Development:
Sachin Jain received his doctoral dissertation in May 2008. The title of his dissertation was 'Multiresolution Strategies for the Numerical

Final Report: 0510259

Page 3 of 6

Solution of Optimal Control Problems.' His studies were supported solely by this NSF award. During this project Sachin became familiar with
adaptive gridding techniques, numerical methods for solving pde's and polynomial interpolation methods. His doctoral dissertation is one of
very few (only?) works in the literature that have addressed multi-resolution trajectory optimization.

Mr. Dongwon (Thomas) Jung received his doctoral dissertation in December 2007. The title of his dissertation was Hierarchical Path Planning
and Control of a Small Fixed-wing UAV: Theory and Experimental Validation.'' He was responsible for the design and construction of the
UAV platform as well as the implementation of the control algorithms on the UAV autopilot. He designed both the software and hardware of
the UAV. This included the on-board autopilot and associated electronics as well as the ground station. He also wrote the communication
protocols between the UAV and the ground station. He designed the attitude and navigation filters and the low-level PID loops for the
autopilot. He implemented the hierarchical multiresolution path planning scheme on the UAV autopilot and validated in a hardware-in-the-loop
environment, which he also developed himself.

Mr. Efstathios Bakolas received his MS degree in Aerospace Engineering in May 2007. The title of his MS thesis was 'A Hierarchical On-Line
Path Planning Scheme using Wavelets.' He is currently pursuing his Ph.D. degree in Aerospace Engineering at
Georgia Tech under the supervision of the PI.

Several undergraduate students have participated in the design and construction of the UAV. They gained valuable experience especially in the
airframe construction and the validation of its aerodynamic properties.

This project has enabled the PI (P. Tsiotras) to be involved in a new research area that is not part of the traditional controls. He has gained an
understanding of computational methods for solving pde's, graph theory, and signal processing techniques using wavelets. His involvement
with this project has allowed him to apply new, nontraditional to control and optimization problems. His involvement with the hardware and
software development of the UAV has complemented his theoretical skills. This project has also allowed the PI to interact and collaborate with
faculty from Math and Electrical Engineering Departments at Georgia Tech, as well as with foreign researchers.

Outreach Activities:
The PI has disseminated the results of this research via the web.

The PI also investigated participation in the Georgia Intern-Fellowships for Teachers (GIFT) program. The Georgia Tech GIFT program assists
Georgia Tech faculty in locating a local science or mathematics teacher to work in the PIs lab as well as it provides supports for translating their
summer experience back to the teacher's classroom. However, his participation was not made possible.

Journal Publications

Jain, S., Tsiotras, P., and Zhou, H.-M., "Adaptive Multiresolution Mesh Refinement for the Solution of Evolution PDEs", SIAM Journal of
Scientific Computing, p. , vol. , (2008). Accepted,

Jain, S. and Tsiotras, P., "Multiresolution-Based Direct Trajectory Optimization", AIAA Journal of Guidance Control, and Dynamics, p. 1424,
vol. 31, (2008). Published, 10.2514/1.32220

Chaplais, F., Tsiotras, P. and Jung, D., "Redundant Wavelet Processing on the Half-Axis with Applications to Signal Denoising with Small
Delays: Theory and Experiments", International Journal on Adaptive Control and Signal Processing, p. 447, vol. 20, (2006). Published,
10.1002/acs.911

Jung, D., Ratti, J., and Tsiotras, P., "Real-time Implementation and Validation of a New Hierarchical Path Planning Scheme for UAVs via
Hardware-in-the-Loop Simulation", Journal of Intelligent and Robotic Systems, p. , vol. 52, (2008). Published, 10.1007/s10846-008-9255-0

Jain, S. and Tsiotras, P., "Sequential Multiresolution Trajectory Optimization Schemes for Problems with Moving Targets", AIAA Journal of
Guidance, Control, and Dynamics, p. , vol. , (2008). Submitted,

Books or Other One-time Publications

Jung, D., Zhou, D., Fink, R., Williams, T., Moshe, J. and Tsiotras, P., "Design and Development of a Low-Cost Test-Bed for Undergraduate

Final Report: 0510259

Page 4 of 6

Education in UAVs", (2005). Conference Proceedings, Published
Collection: 44th IEEE Conference on Decision and Control/European Control Conference ECC 2005
Bibliography: Seville, Spain, Dec. 12-15, 2005, pp. 2739-2744.

Jung, D., and Tsiotras, P.,, "Inertial Attitude and Position Reference System
Development for a Small UAV", (2007). Conference Proccedings, Published
Collection: AIAA Infotech at Aerospace,
Bibliography: Rohnert Park, CA, May 7-10, 2007, AIAA Paper 07-2763

Jung, D., and Tsiotras, P., "Modelling and Hardware-in-the-Loop Simulation for a
Small Unmanned Aerial Vehicle", (2007). Conference Proccedings, Published
Collection: AIAA Infotech at Aerospace
Bibliography: Rohnert Park, CA, May 7-10, 2007, AIAA Paper 07-2768.

Tsiotras, P., and Bakolas, E., "A Hierarchical On-Line Path-Planning Scheme Using
Wavelets", (2007). Conference Proccedings, Published
Collection: European Control Conference
Bibliography: Kos, Greece, July 2-5, 2007, pp. 2806-2812

Tsiotras, P., "Multiresolution Hierarchical Path-Planning for Small UAVs", (2007). Conference Proccedings, Published
Collection: European Control Conference
Bibliography: Kos, Greece, July 2-5, 2007

Jain, S. and Tsiotras, P., "Multiresolution-Based Direct Trajectory Optimization", (2007). Conference Proccedings, Published
Collection: 46th IEEE Conference on Decision and Control
Bibliography: New Orleans, LA, Dec. 12-14, 2007, pp. 5991-5996

Jain, S. and Tsiotras, P., "Adaptive Multiresolution Mesh Refinement for the Solution
of Evolution PDEs", (2007). Conference Proccedings, Published
Collection: 46th IEEE Conference on Decision and Control
Bibliography: New Orleans, LA, Dec. 12-14, 2007, pp. 3525-3530

Bakolas, E. and Tsiotras, P., "Multiresolution Path Planning Via Sector
Decompositions Compatible to On-Board Sensor Data", (2008). Conference Proccedings, Published
Collection: AIAA Guidance, Navigation, and Control Conference (AIAA Paper 2008-7238)
Bibliography: Honolulu, HI, Aug. 18-21, 2008

Cowlagi, R. and Tsiotras, P., "Beyond Quadtrees: Cell Decomposition for Path Planning
using the Wavelet Transform", (2007). Conference Proccedings, Published
Collection: 46th IEEE Conference on Decision and Control
Bibliography: New Orleans, LA, Dec. 12-14, 2007, pp. 1392-1397.

Jung, D., and Tsiotras, P., "Bank-to-Turn Control for a Small UAV using Backstepping
and Parameter Adaptation", (2008). Conference Proceedings, Published
Collection: 7th IFAC World Congress
Bibliography: Seoul, South Korea, July 6-11, 2008, pp. 4406-4411.

Jung, D., and Tsiotras, P., "Multiresolution On-Line Path Planning for Small Unmanned
Aerial Vehicles", (2008). Book, Published
Collection: American Control Conference
Bibliography: Seattle, WA, June~11-13, 2008, pp. 2744-2749.

Cowlagi, R., and Tsiotras, P., "Multiresolution Path Planning with Wavelets: A Local Replanning Approach", (2008). Conference Proceedings,
Published

Final Report: 0510259

Page 5 of 6

Collection: American Control Conference
Bibliography: Seattle, WA, June 11-13,
2008, pp. 1220-1225.

Jain, S., Tsiotras, P., and Velenis, E., "Optimal Feedback Velocity Profile
Generation for a Vehicle with Given Acceleration Limits: A Level Set Implementation", (2008). Conference Proceedings, Published
Collection: 16th Mediterranean Conference on Control and Automation
Bibliography: Ajaccio, Corsica,
France, June 25-26, 2008.

Jung, D., Ratti, J., and Tsiotras, P., "Real-time Implementation and Validation of a
New Hierarchical Path Planning Scheme for UAVs via Hardware-in-the-Loop Simulation", (2008). Conference Proceedings, Published
Editor(s): K. Valavalis
Collection: International Symposium of Unmanned Aerial Vehicles (UAV'08)
Bibliography: Orlando, FL, June 23-24, 2008.

Jung, D., and Tsiotras, P., "On-line Path Generation for Small Unmanned Aerial
Vehicles using B-Spline Path Templates", (2008). Conference Proceedings, Published
Collection: AIAA Guidance, Navigation, and Control Conference
Bibliography: Honolulu, HW, Aug.~18-21, 2008 (AIAA Paper 2008-7135)

Jain, S., and Tsiotras, P., "Sequential Multiresolution Trajectory Optimization for
Moving Targets", (2008). Conference Proceedings, Published
Collection: AIAA Guidance, Navigation, and Control Conference
Bibliography: Honolulu, HI, Aug. 18-21, 2008 (AIAA Paper 2008-6980)

Sachin Jain, "Multiresolution Strategies for the Numerical Solution of Optimal Control Problems", (2008). Thesis, Published
Collection: Ph.D. dissertation
Bibliography: School of Aerospace Engineering, Georgia Institutde of Technology, May 2008

Dongwon Jung, "Hierarchical Path Control of a Small Fixed-wing UAV: Theory and Experimental Validation", (2007). Thesis, Published
Collection: Ph.D. dissertation
Bibliography: School of Aerospace Engineering, Georgia Institute of Technology, December 2007

Efstathios Bakolas, "A Hierarchical On-Line Path Planning Scheme
using Wavelets", (2007). Thesis, Published
Collection: M.S. thesis
Bibliography: School of Aerospace Engineering, Georgia Institute of Technology, May 2007

Web/Internet Site

URL(s):
http://www.ae.gatech.edu/labs/dcsl/research-3.html
Description:
A summary of the project is provided. Major findings and publications are posted.

Other Specific Products

Product Type:

Software (or netware)

Product Description:
Developed software to perform path planning among obstacles and implemented it on a small microprocessor

Final Report: 0510259

Page 6 of 6

Sharing Information:
A provisional patent has been filled through the Georgia Tech Office of Technology Licensing.

Product Type:

Instruments or equipment developed

Product Description:
We developed a small-scale unmanned aerial vehicle. This includes the airframe, the on-board autopilot, the ground station, and a
hardware-in-the-loop (HIL) testing environment.

Sharing Information:
The platform and HIL architecture is available to other interested researchers to use in order to test their own algorithms.

Contributions

Contributions within Discipline:
The multiresolution algorithms proposed in this work provide superior numerical accuracy and faster execution speeds for solving optimal
control problems. This is especially true for aerospace and mechanical applications, where state sensitivities, diverse time scales and
uncertainty of the environment make control and trajectory generation extremely challenging using standard methods. The results of this
research will advance the state-of-the art on numerical optimal control, especially for solving on-line optimal trajectories.

Contributions to Other Disciplines:
Our research will have an impact on the applied mathematics area since the techniques we have developed can be used for solving broader
classes of pde's, not necessarily only those that appear in optimal control problems. The results of this research will have a broader impact on
other areas such as image segmentation, medical imaging, signal encoding/decoding, denoising, etc. were multi-resolution can increase
accuracy and speed up execution times. The approach to develop scalable algorithms can be used in the area of embedded control systems,
where limited computational resources in terms of CPU speed and memory often hinder the implementation of 'out-of-the-box' control and
path-planning algorithms.

Contributions to Human Resource Development:
Sachin Jain was supported by this NSF award towards the completion of this doctoral degree (awarded in May 2008).

Dongwon (Thomas) Jung was supported by this NSF current towards the completion of this doctoral degree (awarded in December 2007).

Efstathios Bakolas was partially supported by this NSF current towards the completion of this masters degree (awarded in May 2007)

Six undergraduate students have been involved in research.

The project has enabled the PI (P. Tsiotras) to be involved in new research areas and collaborate with faculty from other disciplines (Dr.
Haomin Zhou from the Mathematics Dept and Dr. Magnus Egerstedt from Electrical and Computer Engineering).

Contributions to Resources for Research and Education:
As part of this project a team of undergraduare students was involved in the construction of a UAV platform and its associated autopilot. This
UAV platform has become a central piece in the PI's lab for educating graduate and undergraduate students in UAV-related research.

Contributions Beyond Science and Engineering:
We do not expect that the technology developed under this project to have an immediate effect on regulatory policies. Just focusing on UAVs,
there has been a long and tedious process during the last several years to come up with a consistent policy for just testing UAVs in controlled
air-space. The FAA is still trying to iron out all potential conflicts. A formal blueprint is not expected before 2012. It is possible however, that
the decisions of FAA and other government agencies tasked to prepare the list of regulations for operating UAVs will be affected by the
currently accepted (or anticipated) level of intelligence of UAVs. In that respect, the algorithms developed in this work may have an impact in
the final document. This remains to be seen, however.

It is very likely that the developed technology will find its way to commerical products. At the moment, we are working with a local Atlanta
company (Guided Systems Technology) to port the developed path-planning algorithms to their UAV products.

Categories for which nothing is reported:
Organizational Partners

MULTIRESOLUTION STRATEGIES FOR THE NUMERICAL
SOLUTION OF OPTIMAL CONTROL PROBLEMS

A Thesis
Presented to

The Academic Faculty

by

Sachin Jain

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
April 2008

MULTIRESOLUTION STRATEGIES FOR THE NUMERICAL
SOLUTION OF OPTIMAL CONTROL PROBLEMS

Approved by:

Dr. Panagiotis Tsiotras, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. J.V.R. Prasad
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Hao-Min Zhou
School of Mathematics
Georgia Institute of Technology

Dr. Magnus Egerstedt
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Anthony J. Calise
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Ryan P. Russell
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: March 25, 2008

Dedicated to my parents

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor and mentor Dr. Panagiotis Tsiotras

for his constant individual attention, guidance, and support without which I couldn’t have

made it this far. His patience and kindness with his vast knowledge and broad interests in

research played a crucial role in my development at Georgia Tech. I am very grateful to him

for all the enormous amount of advise and encouragement that he has provided throughout

the course of this work. I thoroughly enjoyed working under him and would like to thank

him for making my experience at Georgia Tech a valuable one.

I would also like to thank my committee members, Dr. Hao-Min Zhou, Dr. Anthony J.

Calise, Dr. J.V.R. Prasad, Dr. Magnus Egerstedt, and Dr. Ryan P. Russell for their advise

and comments which have helped me carry this research much further than I could ever have

by myself. I am very grateful to Dr. Zhou for his ever-extended assistance in my research.

His immense knowledge on wavelets and evolution PDEs was very much appreciated. I

would like to thank him for all his valuable advise and suggestions that helped me to move

forward in my research work. I would like to express my deepest gratitude to Dr. Calise

for his valuable comment on the initial guesses for solving trajectory optimization problems

which helped me solve challenging optimal control problems; to Dr. Prasad for his course

in “Optimal Guidance & Control” which laid the foundation for my work; to Dr. Egerstedt

and Dr. Russell for their willingness to be a part of my thesis defense committee.

I would like to thank all my teachers here at Georgia Tech for their dedication and effort

in instilling deep and fundamental understanding of course material. I would like to thank

Dr. J. Jagoda (Associate Chair for Graduate Studies and Research) and the staff of the

Aerospace Engineering office for always being ready with school related assistance.

I would like to acknowledge all my lab-mates of the Dynamics and Control Systems Lab

(DCSL) for the hours of productive discussion, advise, and moral support. I would also

like to thank all of my close friends who have supported me morally during these past few

iv

years.

I owe my greatest gratitude to my parents to whom this work is dedicated and who’s

love and sacrifices have made me worthy of this accomplishment. Thank you to my beloved

family: my father, mother, sister, and brother-in-law for making even the most stressful

of my days brighter. Their constant encouragement and great unconditional love gave me

strength to get through this incredible journey.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xiv

I MOTIVATION AND LITERATURE SURVEY 1

1.1 A Brief History of Optimal Control . 1

1.2 Motivation . 3

1.3 Adaptive Mesh Refinement for the Solution of Evolution PDEs 3

1.4 Numerical Methods for Solving Optimal Control Problems 5

1.5 Trajectory Optimization for Moving Targets and/or Dynamically Chang-
ing Environments . 9

1.6 Organization of the Thesis . 11

II WAVELET MULTIRESOLUTION THEORY 13

2.1 Traditional Wavelets . 13

2.2 Interpolating Wavelets . 18

III EVOLUTION PDES . 23

3.1 Method of Characteristics . 24

3.2 Conservation Laws . 26

3.2.1 Introduction . 26

3.2.2 Characteristics for Conservation Laws 27

3.2.3 Weak Solutions . 28

3.2.4 Entropy Condition and Vanishing Viscosity Solution 32

3.2.5 Discrete Conservation Form . 34

3.3 Hamilton-Jacobi Equations . 36

3.3.1 Introduction . 36

3.3.2 Characteristics for the Hamilton-Jacobi Equation 36

3.3.3 Viscosity Solution . 39

vi

3.3.4 Connection with Conservation Laws 41

3.4 Summary . 42

IV MULTIRESOLUTION DATA COMPRESSION 43

4.1 Dyadic grids . 43

4.2 Encoding . 44

4.3 Construction of the Interpolation Operator Ip 45

4.3.1 Piecewise-polynomial Interpolation 45

4.3.2 Essentially Non-Oscillatory Interpolation 47

4.4 Decoding . 48

4.5 Error Estimate . 49

4.6 Comparison with Existing Multiresolution-Based Approach 51

4.7 Summary . 53

V SOLUTION OF IBVP FOR EVOLUTION EQUATIONS 54

5.1 Problem Statement . 54

5.2 Adaptive gridding . 54

5.2.1 Grid Adaptation for the solution of (IBVP) 54

5.2.2 Grid Adaptation Approach of Alves et al. [3] 60

5.2.3 Comparison with Existing Multiresolution-Based Approaches . . . 60

5.3 Numerical Solution of the IBVP for Evolution Equations 64

5.3.1 Calculation of Spatial Derivatives 64

5.3.2 Temporal Integration . 66

5.3.3 Solution of the IBVP for Evolution PDEs 67

5.4 Numerical Examples . 69

5.5 Summary . 78

VI OPTIMAL CONTROL . 84

6.1 Problem Formulation . 84

6.1.1 Primal Problem P . 84

6.1.2 Problem P λ . 84

6.2 Introduction to Nonlinear Programming 88

6.3 NLP Formulation: Discretizations on Dyadic Grids 89

vii

6.4 Examples of Runge-Kutta Discretization 92

6.4.1 Euler Method . 92

6.4.2 Trapezoidal Method . 93

6.4.3 Hermite-Simpson Method . 93

6.4.4 Classical Runge-Kutta Method . 94

6.5 Multiresolution Trajectory Optimization 95

6.6 Rationale of Proposed Multiresolution Scheme 98

6.7 Numerical Examples . 101

6.8 Advantages of the Proposed Multiresolution Trajectory Optimization Al-
gorithm over the Existing Methods . 112

6.8.1 Advantages over the Method of Betts et al. [18, 20, 22] 112

6.8.2 Advantages over the Pseudospectral Knotting Method [117, 63] . 114

6.8.3 Advantages over the Algorithms of Binder et al. [24, 25, 26, 27] and
Schlegel et al. [121] . 116

6.9 Summary . 117

VII SEQUENTIAL MULTIRESOLUTION TRAJECTORY OPTIMIZATION FOR
PROBLEMS WITH MOVING TARGETS AND/OR DYNAMICALLY CHANG-
ING ENVIRONMENT . 125

7.1 Problem Formulation . 125

7.2 Sequential Trajectory Optimization . 126

7.2.1 Sequential Trajectory Optimization Algorithm I (STOA I) 126

7.2.2 Sequential Trajectory Optimization Algorithm II (STOA II) . . . 134

7.2.3 STOA I vs. STOA II . 138

7.3 Summary . 139

VIII THESIS CONTRIBUTION, CONCLUSIONS, AND FUTURE WORK 147

8.1 Conclusions and Contributions . 147

8.1.1 Hierarchical Multiresolution Adaptive Mesh Refinement for the So-
lution of Evolution PDEs . 147

8.1.2 Trajectory Optimization Using Multiresolution Techniques 149

8.1.3 Multiresolution Trajectory Optimization Schemes for Problems with
Moving Targets and/or Dynamically Changing Environments . . . 151

8.2 Future Work . 153

8.2.1 Mesh Refinement . 153

viii

8.2.2 Multiresolution Mesh Refinement for the Solution of Evolution PDEs153

8.2.3 Multiresolution Trajectory Optimization Algorithm 154

8.2.4 Applications of Sequential Trajectory Optimization Algorithms . . 155

APPENDIX A NUMERICAL ANALYSIS . 157

A.1 Polynomials and Interpolation . 157

A.1.1 Divided Difference Polynomials . 158

A.1.2 Lagrange Interpolating Polynomial 160

A.1.3 Hermite’s Interpolating Polynomial 160

A.1.4 Chebyshev Polynomial . 161

A.1.5 Legendre Polynomial . 162

A.1.6 Neville’s Algorithm . 162

A.2 Romberg Quadrature . 163

A.3 Derivation of the Defects of Hermite-Simpson Discretization 166

APPENDIX B ARZELO-ASCOLI COMPACTNESS CRITERION 170

REFERENCES . 171

ix

LIST OF TABLES

1 Example 3. Data compression along with the decoding errors for the proposed
approach. 51

2 Example 4. Comparison of the proposed decoding approach with Harten’s
approach. 52

3 Example 6. Comparison of the proposed algorithm with the algorithm of
Alves et al. 64

4 Example 7. Comparison of the proposed algorithm with the algorithm of
Alves et al. 64

5 Example 8. L1 error and computational times for uniform vs. adaptive mesh. 70

6 Example 8. L1 errors at different times for Jmax = 12. 72

7 Example 9. L1 errors at different times for Jmax = 12. 73

8 Example 10. L1 errors at different times for Jmax = 12. 75

9 Example 11. L1 errors at different times for Jmax = 12. 77

10 Example 12. Sod’s problem. L1 errors at different times for Jmax = 12. . . . 78

11 Example 12. Lax’s problem. L1 errors at different times for Jmax = 12. . . . 78

12 Example 14: No. of grid points along with the error in the computed optimal
cost at each iteration. 105

13 Example 14: No. of grid points and error for uniform mesh. 105

14 Example 15: No. of nodes used by MTOA at the final iteration, overall CPU
time taken by MTOA, and final states for three different values of umax. . . 107

15 Example 15: Uniform mesh. 107

16 Example 17: Uniform mesh vs. MTOA. 111

17 Example 18. Target snapshots. 132

18 Example 18. Target trajectory known. 134

19 Example 19. 138

20 Neville’s algorithm for a third-degree interpolation. 163

21 Romberg quadrature. 165

x

LIST OF FIGURES

1 Pictorial representation of the subspaces Vj and Wj. 14

2 Haar wavelets (Daubechies wavelets with µ = 1). 16

3 Daubechies wavelets (µ = 2). 16

4 Symlets (µ = 4). 17

5 Symlets (µ = 8). 17

6 Coiflets (µ = 3). 18

7 Coiflets (µ = 5). 18

8 Examples of interpolating subdivision [135]. 20

9 Scaling functions resulting from interpolating subdivision. Going from left
to right, top to bottom, p is 1, 3, 5, 7 [135]. 21

10 Characteristic curves associated with the IVP (55)-(56) and the solution given
in Example 1. 30

11 Characteristic curves associated with the IVP (55), (59). 31

12 Characteristic curves associated with the solutions given in Example 2 to
IVP (55), (59). 32

13 Example of a dyadic grid. 43

14 Demonstration of the procedure for finding the nearest points in piecewise
polynomial interpolation. 46

15 Example 3. Grid point distribution for ǫ = 1× 10−3. 51

16 Demonstration of the proposed grid adaptation algorithm using Example 5. 58

17 Demonstration of the grid adaptation approach of Alves et al. [3] using Ex-
ample 5. 61

18 Example 8. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
1, ǫ = 0.01, N1 = N2 = 1. 71

19 Example 9. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
3, ǫ = 0.001, N1 = N2 = 2. 74

20 Example 10. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
3, ǫ = 0.001, N1 = N2 = 2. 80

21 Example 11. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
3, ǫ = 10−5/2Jmax−j, N1 = N2 = 1. 81

22 Example 12. Sod’s problem. Parameters used in the simulation are Jmin =
4, Jmax = 12, p = 3, ǫ = 0.001, N1 = N2 = 2. 82

xi

23 Example 12. Lax’s problem. Parameters used in the simulation are Jmin =
4, Jmax = 12, p = 3, ǫ = 0.001, N1 = N2 = 2. 83

24 Butcher diagram. 90

25 Example 13. Time history of thrust T along with the grid point distribution
for iterations 1, 3, and 6. 118

26 Example 13. Time history of thrust T along with the grid point distribution
for iterations 7 and 8. 119

27 Example 13. Time history of mass m and the phase portrait of velocity v vs.
altitude h for iteration 8. 119

28 Example 13. Time history of thrust T computed on a uniform mesh using
an explicit fourth-order RK discretization. 120

29 Example 14: Time history of x, v at the final iteration of MTOA. 120

30 Example 14: Time history of u along with the grid point distribution at the
final iteration of MTOA. 120

31 Example 15: Time history of states x, y and control u along with the grid
point distributions for different umax at the final iteration of MTOA. 121

32 Example 16: Time history of state x along with the grid point distribution
at the final iteration of MTOA. 122

33 Example 17: Problem A. Time histories of v, h for umax = 180 at the final
iteration of MTOA. 122

34 Example 17: Problem A. Time history of u along with the grid point distri-
bution for umax = 180 at the final iteration of MTOA. 122

35 Example 17: Problem A. Time histories of γ, ζ for umax = 68 at the final
iteration of MTOA. 123

36 Example 17: Problem A. Time history of u along with the grid point distri-
bution for umax = 68 at the final iteration of MTOA. 123

37 Example 17: Problem B. Time histories of v, h for ξmax = 0.0066 at the final
iteration of MTOA. 123

38 Example 17: Problem B. Time history of u for ξmax = 0.0066 along with the
grid point distribution at the final iteration of MTOA. 124

39 Example 18 (Target snapshots). Trajectory along with the grid point distri-
butions for horizons 1, 2, and 3. 140

40 Example 18 (Target snapshots). Trajectory along with the grid point distri-
butions for horizons 4, 5, and 6. 141

41 Example 18 (Target snapshots). Time history of control θ for all horizons. . 142

42 Example 18. Trajectory along with the time history of the control θ using
three different multiresolution strategies. 143

xii

43 Example 19. Control time history and grid point distributions for horizons 1,
2, and 3. 144

44 Example 19. Control time history and grid point distributions for horizons 4,
5, and 6. 145

45 Example 19. Control time history and grid point distributions for horizons 7
and 8. 146

xiii

SUMMARY

There exist many numerical techniques for solving optimal control problems but less

work has been done in the field of making these algorithms run faster and more robustly.

The main motivation of this work is to solve optimal control problems accurately in a fast

and efficient way.

Optimal control problems are often characterized by discontinuities or switchings in the

control variables. One way of accurately capturing the irregularities in the solution is to

use a high resolution (dense) uniform grid. This requires a large amount of computational

resources both in terms of CPU time and memory. Hence, in order to accurately capture

any irregularities in the solution using a few computational resources, one can refine the

mesh locally in the region close to an irregularity instead of refining the mesh uniformly

over the whole domain. Therefore, a novel multiresolution scheme for data compression has

been designed which is shown to outperform similar data compression schemes. Specifically,

we have shown that the proposed approach results in fewer grid points in the grid compared

to a common multiresolution data compression scheme.

The validity of the proposed mesh refinement algorithm has been verified by solving

several challenging initial-boundary value problems for evolution equations in 1D. The ex-

amples have demonstrated the stability and robustness of the proposed algorithm. The

algorithm adapted dynamically to any existing or emerging irregularities in the solution

by automatically allocating more grid points to the region where the solution exhibited

sharp features and fewer points to the region where the solution was smooth. Thereby, the

computational time and memory usage has been reduced significantly, while maintaining

an accuracy equivalent to the one obtained using a fine uniform mesh.

Next, a direct multiresolution-based approach for solving trajectory optimization prob-

lems is developed. The original optimal control problem is transcribed into a nonlinear

programming (NLP) problem that is solved using standard NLP codes. The novelty of

xiv

the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid

over which the NLP problem is solved, which tends to increase numerical efficiency and

robustness. Control and/or state constraints are handled with ease, and without any addi-

tional computational complexity. The proposed algorithm is based on a simple and intuitive

method to balance several conflicting objectives, such as accuracy of the solution, conver-

gence, and speed of the computations. The benefits of the proposed algorithm over uniform

grid implementations are demonstrated with the help of several nontrivial examples.

Furthermore, two sequential multiresolution trajectory optimization algorithms for solv-

ing problems with moving targets and/or dynamically changing environments have been

developed. For such problems, high accuracy is desirable only in the immediate future, yet

the ultimate mission objectives should be accommodated as well. An intelligent trajectory

generation for such situations is thus enabled by introducing the idea of multigrid temporal

resolution to solve the associated trajectory optimization problem on a non-uniform grid

across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in

the state and control variables.

xv

CHAPTER I

MOTIVATION AND LITERATURE SURVEY

1.1 A Brief History of Optimal Control

The objective of optimal control theory is to determine the control signals that will cause

a process to satisfy the physical constraints and at the same time minimize (or maximize)

some performance criterion. The history of optimal control dates back to the 17th century

when the calculus of variation originated (Fermat, Newton, Liebniz, and the Bernoullis).

It is believed that the calculus of variation started with Pierre de Fermat (1601-1665)

when in 1662 he postulated his principle that the light rays follow the minimum time

paths [32, 62]. In the late XVII-th century, Bernoulli (1667-1748) used Fermat’s ideas

to solve a discrete-time version of the “brachistochrone” problem posed by Galileo Galilei

(1564-1642) in the XVI-th century. The “brachistochrone” problem is to find the shape

of a wire such that a bead sliding along it traverses the distance between the two end

points in minimum time. Later Bernoulli challenged his colleagues to solve the continuous

brachistochrone problem; not only did he solve it himself, but so did Leibniz, his brother

James, l’Hospital, and Newton. Calculus of variations was futher developed by Euler (1707-

1783) and Lagrange (1736-1813) who gave the first-order necessary conditions of optimality

for minimizing or maximizing a functional. These conditions are commonly known as Euler-

Lagrange equations. The next step was to look at the second variation, and Legendre

(1752-1833) was the first one to do this, who found an additional necessary condition of

optimality for a minimum. During the middle of XIX-th century, Jacobi (1804-1851) and

Hamilton (1805-1865) showed that the partial derivatives of the performance index with

respect to each parameter of a family of extremals (which today we call states) obey a

certain differential equation. The equation is the Hamilton-Jacobi equation, which is the

basis of dynamic programming developed by Bellman over 100 years later.

Weirstrass (1815-1897) put calculus of variations on a more rigorous basis and discovered

1

his famous condition involving an “excess-function” which is the predecessor of the maxi-

mum principle of Pontryagin in this century. As pointed out by Sussmann [133], Weierstrass’

condition, expressed in terms of the Hamiltonian, simply says that along the optimal curve

the optimal control must maximize the Hamiltonian (where the classical definition of the

Hamiltonian is used, which is opposite in sign from the one commonly used today). During

this period, Clebsch (1833-1872) gave a sharper interpretation of Legendre’s condition (the

Legendre-Clebsch condition) which, in modern language, states that the second derivative

matrix of the Hamiltonian with respect to the controls must be positive definite (assuming

no active control or state constraints). Later Bolza (1857-1942) and Bliss (1876-1951) gave

calculus of variations its present rigorous mathematical structure.

Dynamic programming, a new vision and an extension of Hamilton-Jacobi thoery, was

developed by Bellman and his colleagues starting in the 1950s [12] which led to the Hamilton-

Jacobi-Bellman (HJB) equation. The HJB equation is a partial differential equation which

defines the optimal cost to go function, that is, the performance index value from current

time to the end, on the optimal trajectory for the continuous time problems. In the middle

of XX-th century, Pontryagin extended the calculus of variations to handle control variable

inequality constraints, in particular, extended the necessary conditions derived by Weier-

strass (1815-1897) to the cases where the control functions are bounded, enunciating his

elegant maximum principle [29, 59, 60]. In optimal control terminology, it states that a min-

imizing path must satisfy Euler-Lagrange equations where the optimal controls maximize

the Hamiltonian within their bounded region at each point along the path1. The maximum

principle is inherent in dynamic programming since the HJB equation includes finding the

controls (possibly bounded) that minimize the Hamiltonian at each point in the state space.

A comprehensive introduction to calculus of variations and optimal control can be found in

[33, 93], and for a more detailed historical perspective on the evolution of optimal control

the reader is referred to [5, 32, 133].

1Pontryagin used the classical definition of the Hamiltonian, which is opposite in sign from the one
commonly used today.

2

1.2 Motivation

The solution of general (realistic) trajectory optimization problems is a challenging task.

Analytical solutions are seldom available or even possible. As a result, numerical methods

must be employed in order to solve the trajectory optimization problems. However, the

amount of numerical computation required for even a relatively simple problem is forbidding

if it must be done by hand. This is why the calculus of variations and optimal control

theory found very little use in engineering and applied science until the middle of XX-th

century. The truly enabling element for the use of the optimal control theory was the digital

computer, which became available commercially in 1950s. The development of economical,

high-speed computers since then has dramatically changed the situation. These days, as will

be discussed later in Section 1.4, there exist many numerical algorithms for solving optimal

control problems but less work has been done in the field of making these algorithms run

faster and more robustly. The main motivation of this work is to solve the optimal control

problems accurately in a fast and efficient way.

Optimal control problems are often characterized by discontinuities or switchings in the

control variables. One way of accurately capturing the irregularities in the solution is to

use a high resolution (dense) uniform grid. This requires a large amount of computational

resources both in terms of CPU time and memory. Hence, in order to accurately capture

any irregularities in the solution using a few computational resources, one would like to

refine the mesh locally in the region close to an irregularity instead of refining the mesh

uniformly over the whole domain. To achieve this goal, we start by looking at what has

been done in the field of partial differential equations (PDEs) for adaptive mesh refinement.

1.3 Adaptive Mesh Refinement for the Solution of Evolution PDEs

It is well known that the solution of evolution partial differential equations is often not

smooth even if the initial data are smooth. For instance, shocks may develop in hyperbolic

conservation laws. To capture discontinuities in the solution with high accuracy one needs

to use a fine resolution grid. The use of a uniformly fine grid requires a large amount

of computational resources in terms of both CPU time and memory. Hence, in order

3

to solve evolution equations in a computationally efficient manner, the grid should adapt

dynamically to reflect local changes in the solution.

Several adaptive gridding techniques for solving partial differential equations have been

proposed in the literature. A nice survey of the early works on the subject can be found

in [6, 138]. Currently, popular adaptive methods for solving PDEs are: (i) moving mesh

methods [1, 2, 4, 7, 8, 38, 39, 50, 91, 98, 105, 106, 136], in which an equation is derived that

moves a grid of a fixed number of finite difference cells or finite elements so as to follow

and resolve any local irregularities in the solution; (ii) the so called “adaptive mesh refine-

ment” method [10, 13, 14, 15], in which the mesh is refined locally based on the difference

between the solutions computed on the coarser and the finer grids, and (iii) wavelet-based

or multiresolution-based methods [3, 16, 68, 69, 75, 76, 87, 139, 140, 141], which take ad-

vantage of the fact that functions with localized regions of sharp transition can be very well

compressed. Our proposed method falls under this latter category.

Mallat [102] formulated the basic idea of multiresolution analysis for orthonormal wavelets

in L2(R). Harten [68, 69, 70] later proposed a general framework for multiresolution repre-

sentation of data by integrating ideas from three different fields, namely, theory of wavelets,

numerical solution of PDEs, and subdivision schemes. Recently, Alves et al. [3] proposed

an adaptive multiresolution scheme, similar to the multiresolution approach proposed by

Harten [68, 69] and Holmstrom [75] for solving hyperbolic PDEs. These approaches share

similar underlying ideas. Namely, the first step is to interpolate the function values at

the points belonging to a particular resolution level, from the corresponding points at the

coarser level, and find the interpolative error at the points of that particular resolution level.

Once this step has been performed for all resolution levels, all the points that have an in-

terpolative error greater than a prescribed threshold are added to the grid, along with their

neighboring points at the same level and the neighboring points at the next finer level. The

main difference between these approaches is that in Harten’s approach [68, 69], the solution

for each time step is represented on the finest grid and one calculates the interpolative

errors at all the points of the finest grid at each mesh refinement step. On the other hand,

Holmstrom [75] and Alves et al. [3], compute the interpolative error only at the points that

4

are in the adaptive grid. If a value that does not exist is needed, Holmstrom interpolates

the required function value recursively from a coarser scale. Alternatively, Alves et al. [3]

add to the grid the points that were used to predict the function values at all previously

added points, in order to compute the interpolative error during the next mesh adaptation.

In this thesis, we propose a novel multiresolution scheme for data compression, which

results in a higher compression rate compared to the multiresolution approach by Harten [68,

69, 70] for the same desired accuracy. Subsequently, we apply the proposed encoding scheme

to solve initial-boundary value problems (IBVP) encountered in evolution PDEs and show

that the proposed mesh refinement algorithm results in fewer points in the grid compared

to the approach of Alves et al. [3].

Next, we give a literature survey on numerical methods for solving optimal control

problems.

1.4 Numerical Methods for Solving Optimal Control Problems

As mentioned before, the solution of general (realistic) trajectory optimization problems is

a challenging task. Analytical solutions are seldom available or even possible. As a result,

most often than not, one resorts to numerical techniques [20, 21, 22, 24, 25, 26, 27, 28, 30,

52, 53, 56, 55, 67, 72, 104, 117, 118, 121, 124, 57, 73, 107, 100, 101, 36, 37, 131, 58]. Available

numerical techniques for solving optimal control problems can be broadly divided into direct

methods [20, 21, 22, 24, 25, 26, 27, 28, 30, 52, 53, 56, 55, 67, 72, 104, 117, 118, 121, 124] and

indirect methods [57, 73, 107]. Indirect methods solve the necessary optimality conditions

stated in terms of the adjoint differential equations, Pontryagin’s minimum principle, and

the associated transversality conditions. Direct methods, on the other hand, are based

on discretizing the states and controls at a set of nodes, transforming the optimal control

problem into a nonlinear programming (NLP) problem. The solution of the resulting NLP

problem can be obtained using standard NLP solvers. A nice survey of available trajectory

optimization methods can be found in [17] and [114]. Recently, hybrid methods that combine

the analytic and numerical methods have also been proposed in the literature [36, 37] by

Calise et al.

5

In recent years, direct transcription methods have become increasingly popular for solv-

ing trajectory optimization problems, the major reason being that in direct methods one

does not require an analytic expression for the necessary conditions, which for compli-

cated nonlinear dynamics can be intimidating. Moreover, incorporating state and control

constraints is rather straightforward. Most importantly, experience has shown that direct

methods tend to be more robust with respect to inaccurate initial guesses, hence they con-

verge more easily. On the other hand, indirect methods result in more accurate overall

solutions and provide more confidence in the (at least local) optimality of the obtained

solution. Algorithms that aim at taking advantage of both direct and indirect methods by

combining them into a single algorithm have been also proposed in the literature [132, 126].

Direct methods can be broadly classified as shooting methods [21, 27, 28, 30, 104, 121]

and collocation methods [20, 22, 52, 53, 56, 55, 67, 72, 117, 118]. Shooting methods can be

further subdivided into simple (or single) shooting methods [27, 30, 104, 121] and multiple

shooting [21, 28] methods. In simple shooting the initial conditions, the final conditions,

and the “parameters” make up the NLP variables. All states and controls are then rep-

resented using these NLP variables. The terminal conditions are the constraints and with

each iteration of the NLP solver the trajectory is integrated and the terminal conditions

evaluated. The fundamental difference between the simple shooting and multiple shoot-

ing methods is that the multiple shooting methods divide the time interval into multiple

segments with there own initial conditions and which are integrated separately, that is on

each segment the shooting is performed separately, and the values of the state variables at

the junctions of these segments are also included as the optimization variables. Moreover,

additional constraints are introduced enforcing continuity of the state from one segment

to another. The effect of the controls is thus limited to corresponding segments, and the

nonlinear effects of early controls on the latter parts of the trajectory is reduced. Hence,

the multiple shooting technique is more robust compared to the simple shooting approach,

where the small changes introduced early in the trajectory can propagate into very nonlinear

changes at the end of the trajectory. However, in the case of multiple shooting, the number

of NLP variables and constraints increases markedly over simple shooting implementations.

6

Direct collocation methods descretize the ordinary differential equations (ODEs), using

collocation (or interpolation schemes) [120, 142] along with the introduction of collocation

conditions as NLP constraints, together with the initial and terminal conditions. Direct

collocation methods can be further subdivided into pseudospectral methods [52, 56, 55, 117,

118] and other collocation methods [20, 22, 53, 67, 72]. In a sense, “pseudospectral” is a

synonym for “collocation” but the term “pseudospectral” is applied only when collocation

is used with a basis of global functions like Chebyshev or Legenedre polynomials. The

other difference between the pseudospectral and the rest of the collocation methods is that

pseudospectral methods use differentiation, whereas typical collocation methods are based

mainly on integration. In other words, pseudospectral methods rely on the discretization of

the tangent bundle (roughly, the left-hand side of the differential equation, ẋ = f(x, u, t)),

whereas most of collocation methods rely on the approximation of the vector field (the

right-hand side).

Regardless of the particular method used, if a highly accurate solution is needed using

one of the above mentioned direct methods, one must resort to the use of a high resolution

(dense) grid. This choice results in a large amount of computational resources both in terms

of CPU time and memory, especially if the resulting NLP problem is not sparse. Therefore,

recent work has focus on the reduction of the high computational load associated with

uniform grid discretizations. See, for instance, the work by Betts et al. [18, 20, 22], Ross

and Fahroo [117, 118], Gong et al. [63], Binder et al. [24, 27, 25, 26], and Schlegel et al.

[121].

The method of Betts et al. [18, 20, 22] selects the new grid points by solving an integer

programming problem that minimizes the maximum discretization error (found by inte-

grating the dynamics of the system) by subdividing the current grid. In [22], the authors

computed the discretization error by comparing the solution with a more accurate estimate

using two (half) steps and by keeping the control fixed. The authors also assumed that the

order of discretization, which effects the addition of mesh points to any subinterval in their

mesh refinement algorithm, is constant. However, during the course of optimization process

the actual order may vary with each iteration because of the potential activation of path

7

constraints. It has been shown in [23] that having the wrong value for the order of discretiza-

tion can seriously impact the mesh refinement algorithm of [22]. In order to overcome this

problem, Betts et al. [20] derived a formula for estimating the order reduction by comparing

the behavior of the discretization errors on successive mesh refinement iterations. But since

the estimated order reduction is very sensitive to the computed discretization errors, the

authors in [20] use a highly accurate quadrature method, namely Romberg quadrature, with

a tolerance close to machine precision for computing the discretization errors.

The pseudospectral knotting method introduced by Ross and Fahroo [117] breaks a

single phase problem with discontinuities and switches in states, control, cost functional,

or dynamic constraints into a multiple phase problem with the phase boundaries, termed

as “knots” by the authors, as the point of discontinuities or switchings. This way states

and controls are allowed to be discontinuous across the phase boundaries and the phase

boundaries can be fixed or free. On each phase, the problem is solved using the Legendre

pseudospectral method [52] or Chebyshev pseudospectral method [55], and the free knots are

part of the optimization process. The knots where the states are assumed to be continuous

but no continuity condition is imposed on the controls are termed as soft knots. The soft

knots can handle problems with smooth data and non-smooth solutions (e.g. switches

and corners). But as pointed out by Ross [116] “Soft knots do not increase the speed of

the algorithm; they are expected to improve accuracy. Consequently, the introduction of

soft knots in the grid might significantly slow the algorithm.” In order to improve the

pseudospectral methods, Gong et al. [63] present an algorithm in which the user specifies

the number of nodes to be increased in a particular phase, in case the error of the computed

optimal control between two successive iterations is greater than a prescribed threshold.

The authors of Ref. [63] use the gradient of the control to determine (approximately) the

location of the knots. Binder et al [24, 27] use a wavelet-Galerkin approach to discretize the

optimal control problem into an NLP problem. In Ref. [118], the authors use the domain

transformation techniques for generating the adaptive grids.

Binder et al. [24, 25, 26] work in the wavelet space by using the wavelet-Galerkin

approach to discretize the optimal control problem into an NLP problem and use the local

8

error analysis of the states and the wavelet analysis of the control profile to add or remove

the wavelet basis functions. In Ref. [27], the authors use a direct shooting approach, where

the optimal control problem is converted into an NLP problem by parameterizing the control

profile, combined with a wavelet analysis of the gradients of the Lagrangian function with

respect to the parametrization functions at the optimal points in order to determine the

regions that require refinement. For problems with state and/or control path constraints

Schlegel et al. [121] use wavelet analysis of the control profile to determine the regions that

require refinement.

In our continued effort on solving optimal control problems numerically [80, 81, 84],

in this thesis, we have proposed a novel, fully automated, adaptive multiresolution-based

trajectory optimization technique to solve optimal control problems quickly and accurately.

The proposed technique does not require the solution of any secondary optimization prob-

lem for adding (or removing) points to the mesh, as done for instance, in Ref. [18, 20, 22].

Moreover, the criterion for deciding the region to refine the mesh is based on simple inter-

polations. Furthermore, the algorithm can add and remove points anywhere in the grid.

Hence the grid can embrace any form depending on the irregularities in the solution, thus

providing more flexibility in capturing any irregularities in the solution as opposed to the

pseudospectral knotting method [117], where the grid on a particular phase is fixed.

Next, we give a literature survey on the numerical techniques for solving optimal control

problems with moving targets and/or dynamically changing environments.

1.5 Trajectory Optimization for Moving Targets and/or Dynamically
Changing Environments

A common line of attack for solving nonlinear trajectory optimization problems in real

time [125, 100, 88, 144] is to break the problem into two phases: an offline phase and

an online phase. The offline phase consists of solving the optimal control problem for

various reference trajectories and storing these reference trajectories onboard for later online

use. These reference trajectories are used to compute the actual trajectory online via

a neighboring optimal feedback control strategy [31, 92, 130, 33] typically based on the

linearized dynamics. This approach requires extensive ground-based analysis and onboard

9

storage capabilities [94]. Moreover, perturbations around the reference trajectories might

not be small, and therefore applying the linearized equations may not be appropriate.

To illustrate the previous point, consider the problem of finding the optimal control that

will steer the system from point A to the target point B under certain path constraints at

a minimum cost. If the target point B is far off, then there is no real advantage of finding

the optimal trajectory online with high precision from the starting point till the end. As

we continue to move from point A towards the target point B, we can get more accurate

information about the surrounding environment (path constraints), which may be different

from what was assumed at the beginning when the trajectory was optimized. Moreover,

the path constraints and the terminal constraints may also change as the vehicle progresses

towards point B. For example, the target point B may not be stationary. One way of

handling this problem is to use the receding horizon approach [108, 11, 143], in which

a trajectory that optimizes the cost function over a period of time, called the planning

horizon, is designed. The trajectory is implemented over the shorter execution time and

the optimization is performed again starting from the state that is reached at the end of

the execution time. However, if the planning horizon length does not reach the target B,

the trajectory found using this approach might not be optimal. One would like to solve the

nonlinear trajectory optimization problem online for the whole time interval, but with high

accuracy only near the current time. Recently, some work has been done in this direction

by Kumar et al. [94] and Ross et al. [119]. Kumar and Seywald [94] proposed a dense-

sparse discretization technique in which the trajectory is discretized by placing ND dense

nodes close to the current time and NS sparse nodes for the rest of the trajectory. The

state values at some future node are accepted as optimal and are prescribed as the initial

conditions for the rest of the trajectory. The remainder of the trajectory is again discretized

using a dense-sparse discretization technique, and the whole process is repeated again. The

algorithm can be stopped by using any adhoc scheme, for example, it can be terminated

when the density of the dense nodes is less than or equal to the density of the sparse nodes.

Ross et al. [119] also proposed a similar scheme by solving the discretized NLP problem on

a grid with a certain number of nodes and then propagate the solution from the prescribed

10

initial condition by integrating the dynamics of the system for a specified interval of time.

The values of the integrated states at the end of the integration interval are taken as the

initial condition for solving the NLP problem for the rest of the trajectory, again on a grid

with a fixed number of nodes. The whole process is repeated until the terminal conditions

are met.

In this thesis, we present two algorithms that autonomously discretize the trajectory

with more nodes (finer grid) near the current time (not necessarily uniformly placed) and

use fewer nodes (coarser grid) for the rest of the trajectory, the latter to capture the overall

trend. Furthermore, if the states or controls are irregular in the vicinity of the current

time, the algorithm will automatically further refine the mesh in this region to capture the

irregularities in the solution more accurately. The generated grid is fully adaptive and can

embrace any form depending on the solution.

1.6 Organization of the Thesis

Since this work is multidisciplinary, every effort has been made to make this thesis self-

contained. The thesis is organized as follows. Chapter 2 gives a brief introduction into

wavelet multiresolution theory. In Chapter 3, we briefly describe the evolution equations, the

difficulties encountered while solving the evolution equations, remedies for resolving these

difficulties and also at the same time provide the reader with enough context to understand

remarks made in the remainder of the thesis. In particular, we show that the solutions to

the initial value problem for the conservation laws and Hamilton-Jacobi equations are not

smooth in general, which is another motivation behind developing a novel multiresolution

data compression algorithm described in Chapter 4. In Chapter 4, we present the proposed

multiresolution scheme for data compression and compare the proposed scheme with the

Harten’s data compression scheme [68, 69, 70]. We show that the proposed algorithm results,

in general, in a fewer number of grid points compared to Harten’s approach [68, 69, 70]. In

Chapter 5, we present a hierarchical multiresolution adaptive mesh refinement algorithm for

the solution of evolution PDEs. The proposed grid adaptation method for the solution of

evolution PDEs is then compared with the existing multiresolution schemes for the solution

11

of evolution PDEs. This analysis is followed by several challenging numerical examples that

show the robustness of the proposed approach and the advantages in terms of computational

time compared to the uniform mesh case. Next, we move on to the optimal control part

in Chapter 6. In Chapter 6, we first formulate the general optimal control problem and

discretize the continuous optimal control problem into an NLP problem. We then present

the multiresolution-based trajectory optimization algorithm followed by several nontrivial

examples that show the robustness, efficiency and accuracy of the proposed algorithm. We

conclude this chapter by giving advantages of the proposed algorithm over the current

state-of-the-art adaptive algorithms for solving optimal control problems. In Chapter 7, we

present two sequential trajectory optimization techniques for solving problems with moving

targets and/or dynamically changing environments. Finally, the conclusions and several

issues for the future study are proposed in Chapter 8.

12

CHAPTER II

WAVELET MULTIRESOLUTION THEORY

Wavelets and multiscale analysis have emerged in a number of different fields, from har-

monic analysis and partial differential equations in pure mathematics, to signal and image

processing in computer science and electrical engineering. Typically, a general function, sig-

nal, or image is broken up into linear combinations of translated and scaled versions of some

simple, basic building blocks. Multiscale analysis comes with natural hierarchical structure

obtained by only considering the linear combinations of building blocks up to a certain

scale. This hierarchical structure is particularly suited for fast numerical implementations.

In this chapter, we give a brief introduction into the theory of wavelets and multiresolution

analysis. For details on any particular topic the reader is referred to the corresponding

references.

2.1 Traditional Wavelets

The traditional wavelets are defined over the whole real line R and form two-parameter

families of basis functions, which induce a multiresolution decomposition of L2(R) [34, 44,

102, 103]. This is the main property making wavelets attractive in applications. Specifically,

wavelets induce the following nested sequence of subspaces,

V0 ⊂ V1 ⊂ V2 · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2(R),

with the following properties.

Multiresolution Properties:

• ⋃∞
j=0 Vj is dense in L2(R), that is,

⋃∞
0 Vj = L2(R),

• ⋂j≥0 Vj = 0,

• f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1,∀ j ≥ 0,

• f(x) ∈ Vj ⇐⇒ f(x− 2−jk) ∈ Vj,∀ j ≥ 0.

13

The “base” (or coarse-resolution) subspace V0 is spanned by integer translates of the

scaling function φ:

V0 = span{φ(x− k)}, k ∈ Z. (1)

The higher-resolution subspaces Vj are spanned by dilated versions of the scaling function:

Vj = span{2j/2φ(2jx− k)}, k ∈ Z, j ≥ 0. (2)

The orthogonal complement of Vj in the larger subspace Vj+1 is denoted by Wj and it is

spanned by the wavelets:

Wj = span{2j/2ψ(2jx− k)}, k ∈ Z, j ≥ 0, (3)

where ψ is the mother wavelet, which spans the spaceW0 = V1⊖V0. Hence, we see that the

traditional wavelets are characterized by the translation and dilation of a single function ψ.

A pictorial representation of the subspaces Vj and Wj is given in Figure 1.

Figure 1: Pictorial representation of the subspaces Vj and Wj .

For notational convenience, we define the two-parameter family of functions

φj,k(x) = 2j/2φ(2jx− k), j ≥ 0, k ∈ Z, (4)

ψj,k(x) = 2j/2ψ(2jx− k), j ≥ 0, k ∈ Z. (5)

14

L2(R) can then be decomposed as

L2(R) = V0

+∞
⊕

j=0

Wj = lim
j→∞

Vj, (6)

that is, for all f ∈ L2(R),

f(x) =
∑

k∈Z

c0,kφ0,k(x) +
∑

j≥0

∑

k∈Z

dj,kψj,k(x) (7)

= lim
j→∞

∑

k∈Z

cj,kφj,k(x), (8)

where

cj,k = 〈f, φj,k〉L2(R) =

∫ ∞

−∞
f(x)φj,k(x)dx, j ≥ 0, k ∈ Z, (9)

dj,k = 〈f, ψj,k〉L2(R) =

∫ ∞

−∞
f(x)ψj,k(x)dx, j ≥ 0, k ∈ Z. (10)

The following fact is crucial for the approximating properties of wavelet decompositions.

Theorem 1 (Equivalent Characteristics [34]). The following are equivalent:

1. The first µ moments of the wavelet ψ are zero, that is,

∫

xℓψ(x)dx = 0, ℓ = 0, 1, · · · , µ− 1. (11)

2. All polynomials of degree up to µ−1 can be expressed as a linear combination of shifted

scaling functions at any scale.

Note that from the multiresolution properties, we have that φ(x) ∈ V0 ⊂ V1. Hence,

there exist coefficients hk such that φ(x) satisfies

φ(x) =
∑

k

hk

√
2φ(2x− k), k ∈ Z. (12)

Therefore, the scaling function is obtained by solving the above recursive equation (12).

Now, since W0 ⊂ V1, and since the mother wavelet ψ(x) ∈ W0, there exist coefficients h̃k

such that

ψ(x) =
∑

k

h̃k

√
2φ(2x− k), k ∈ Z. (13)

15

Examples of some commonly used wavelets are Haar wavelets (Figure 2), Daubechies

wavelets (Figure 3), symlets (Figures 4, 5), and coiflets (Figures 6, 7). It has been shown

in the literature [34, 44] that the condition of orthogonality Vj ⊥ Wj gives

h̃k = (−1)kh1−k. (14)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

φ(
x)

(a) Scaling function (φ(x)).

0 0.2 0.4 0.6 0.8 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
ψ

(x
)

(b) Wavelet (ψ(x)).

Figure 2: Haar wavelets (Daubechies wavelets with µ = 1).

0 0.5 1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

φ(
x)

(a) Scaling function (φ(x)).

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

ψ
(x

)

(b) Wavelet (ψ(x)).

Figure 3: Daubechies wavelets (µ = 2).

In many applications, one never has to deal directly with the scaling functions or wavelets

and only the coefficients hk, h̃k, cj,k, and dj,k need to be considered. There exist following

relationships between the coefficients hk, h̃k, cj,k, and dj,k [34],

16

0 1 2 3 4 5 6 7
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

φ(
x)

(a) Scaling function (φ(x)).

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

ψ
(x

)

(b) Wavelet (ψ(x)).

Figure 4: Symlets (µ = 4).

0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

φ(
x)

(a) Scaling function (φ(x)).

0 5 10 15
−1

−0.5

0

0.5

1

1.5

x

ψ
(x

)

(b) Wavelet (ψ(x)).

Figure 5: Symlets (µ = 8).

From Fine Scale to Coarse Scale:

cj,k =
∑

ℓ

hℓ−2kcj+1,ℓ, (15)

dj,k =
∑

ℓ

h̃ℓ−2kcj+1,ℓ, (16)

From Coarse Scale to Fine Scale:

cj+1,k =
∑

ℓ

hk−2ℓcj,ℓ +
∑

ℓ

h̃k−2ℓdj,ℓ. (17)

The traditional wavelets, discussed above, are usually constructed using Fourier tech-

niques, although some traditional wavelets can be constructed without the use of Fourier

17

0 2 4 6 8 10 12 14 16 18
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

φ(
x)

(a) Scaling function (φ(x)).

0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

1.5

x

ψ
(x

)

(b) Wavelet (ψ(x)).

Figure 6: Coiflets (µ = 3).

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

φ(
x)

(a) Scaling function (φ(x)).

0 5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

ψ
(x

)

(b) Wavelet (ψ(x)).

Figure 7: Coiflets (µ = 5).

techniques. Interpolating wavelets based on the interpolating subdivision scheme of Deslau-

riers and Dubuc [46], and independently discovered by Donoho [47] and Harten [68], are

such an example and are discussed next.

2.2 Interpolating Wavelets

The interpolating wavelets are constructed on a set of dyadic grids of the form

Vj = {xj,k ∈ R : xj,k = k/2j , k ∈ Z}, j ∈ Z, (18)

where j denotes the resolution level and k the spatial location. Note that since xj,k = xj+1,2k

it follows that Vj ⊂ Vj+1. Interpolating wavelets can be formally introduced through the

interpolating subdivision scheme of Deslauriers and Dubuc [46], which considers the problem

18

of building an interpolant f̂(x) on a grid Vj+1 for a given data sequence f(xj,k). Further,

for simplicity of notations, we denote f(xj,k) simply by fj,k. Deslauriers and Dubuc defined

a recursive procedure for interpolating the data fj,k to all dyadic points in between. The

algorithm proceeds by interpolating the data fj,k to the points on a grid Vj+1 which do

not belong to Vj. This procedure does not modify any of the existing data and thus can

be repeated until the data are interpolated to all dyadic points up to the desired level of

resolution. The interpolation is achieved by constructing local polynomials, f̂(x) of degree p,

which uses p+1 closest points. For example, to find the value of the interpolant at location

xj+1,2k+1 we construct the polynomial of degree p based on the values of the function

at locations xj,k+ℓ (ℓ = −(p − 1)/2, . . . , (p + 1)/2) and evaluate it at location xj+1,2k+1.

Evaluating this polynomial at point xj+1,2k+1 and substituting the values of polynomial

coefficients expressed in terms of values fj,k, we get that

f̂(xj+1,2k+1) =

(p+1)/2
∑

ℓ=−(p−1)/2

hj,k,ℓfj,k+ℓ, (19)

where hj,k,ℓ, ℓ = −(p − 1)/2, . . . , (p + 1)/2, are the interpolating coefficients from even

points xj+1,2(k+ℓ) to odd point xj+1,2k+1. The values of the interpolating coefficients are

the same for the evenly spaced grid points. In other words, the interpolating coefficients

are translation and dilation invariant for a uniform grid. For example, when the grid points

are evenly spaced, we have

{hj,k,ℓ}1ℓ=0 =

{

1

2
,
1

2

}

, (20)

for linear subdivision (p = 1), and

{hj,k,ℓ}2ℓ=−1 =

{

− 1

16
,

9

16
,

9

16
,− 1

16

}

, (21)

for cubic subdivision (p = 3). Examples of linear and cubic subdivisions are shown in

Figure 8. In Figure 8, on the left, the linear subdivision step inserts new values in between

the old values by averaging the two old neighbors, whereas on the right, cubic polynomials

are used for every quad of old values to determine a new in between value.

The interpolating scaling function φj,k(x) is defined to be the result of running the sub-

division scheme ad infinitum starting from a sequence fj,ℓ = δℓ,k, where δℓ,k is the Kronecker

19

Figure 8: Examples of interpolating subdivision [135].

delta, and then performing the interpolating subdivision scheme up to an arbitrary high

level of resolution. All scaling functions for the regularly spaced grid Vj are translates and

dilates of one function φ(x) = φ0,0(x),

φj,k(x) = φ(2jx− k), (22)

called the interpolating scaling function, since φ(x) is interpolating in the sense that φ(0) = 1

and φ(k) = 0 for k 6= 0. The main feature of this approach is that the powerful properties

such as approximation order and the connection with wavelets remain valid. The scaling

function φ(x) resulting from the interpolating subdivision for different values of p, namely,

1, 3, 5, and 7 are shown in Figure 9.

Since the scaling functions are interpolating, then at a particular level j,

f(x) =
∑

k

cj,kφj,k(x), (23)

where cj,k = fj,k. Moreover, since xj,k = xj+1,2k, we have

cj,k = cj+1,2k. (24)

Hence, if we set

dj,k(x) = cj+1,2k+1 −
∑

ℓ

hj,k,ℓcj+1,2(k+ℓ), (25)

20

Figure 9: Scaling functions resulting from interpolating subdivision. Going from left to
right, top to bottom, p is 1, 3, 5, 7 [135].

and

ψj,k(x) = φj+1,2k+1(x), (26)

then the forward wavelet transform can be written as

cj,k = cj+1,2k, (27a)

dj,k = cj+1,2k+1 −
∑

ℓ

hj,k,ℓcj+1,2(k+ℓ), (27b)

while the inverse wavelet transform is given by

cj+1,2k = cj,k, (28a)

cj+1,2k+1 = dj,k +
∑

ℓ

hj,k,ℓcj+1,2(k+ℓ). (28b)

While Mallat [102, 103] formulated the basic idea of multiresolution analysis for or-

thonormal wavelets in L2(R), Harten [70] later proposed a general framework for multireso-

lution representation of data by integrating ideas from three different fields, namely, theory

of wavelets, numerical solution of PDEs, and subdivision schemes. His contribution to

21

the theory of wavelets lies mainly in his extension of wavelets to nonuniform grids. The

algorithm for constructing interpolating wavelets on a nonuniform grid is the same as de-

scribed above, except that scaling functions and wavelets will not be dilates and translates

of each other. In this case, the interpolating coefficients are location-dependent and are, in

general, different. Further, in [134] Sweldens introduced a lifting scheme for constructing

the wavelets that are not necessarily translates and dilates of each other and called such

wavelets as second generation wavelets. Second generation wavelets maintain most of the

useful properties of the traditional wavelets described above. For the sake of brevity, we

will skip the details on the lifting scheme and the interested reader is referred to [134].

The interpolating wavelets defined on real line with evenly spaced grid are an example of

traditional wavelets, while the extension to the irregular grids and intervals is an example

of second-generation wavelets.

Next, we give a brief introduction to the evolution PDEs.

22

CHAPTER III

EVOLUTION PDES

Many problems in engineering and physics can be written in the form of an initial value

problem (IVP) for an evolution equation,

(IVP) :

ut + f(uxx, ux, u, x) = 0 in R× (0,∞),

u = g on R× {t = 0},
(29)

where the function f : R
m × R

m × R
m × R → R

m, and the initial function g : R → R
m

are given. The unknown is the function u : R× [0,∞) → R
m. Such PDEs are often called

evolution equations, the idea being that the solution evolves in time from a given initial

configuration.

Our goal is to solve such PDEs. But what it means to “solve” a given PDE can be

subtle, depending in large part on the particular structure of the problem at hand. The

informal notion of a “well-posed problem” widely used in the study of PDEs captures many

of the desirable features of what it means to solve a PDE.

A given problem for a PDE is said to be well-posed if

WP 1: the problem in fact has a solution;

WP 2: this solution is unique;

WP 3: the solution depends continuously on the data given in the problem.

Now it would be desirable to solve a PDE in such a way that WP 1 - WP 3 hold. But

what is a solution? Should u be real analytic or at least a solution of a PDE of order k be

at least k times continuously differentiable. Then at least all the derivatives which appear

in the statement of the PDE will exist and be continuous, although maybe certain higher

derivatives will not exist. A solution with this much smoothness is referred to as the classical

solution of the PDE. In reality, it is not possible to solve many PDEs in a classical sense.

23

Hence, one looks for a wider class of candidates for solutions satisfying the well-posedness

conditions WP 1 - WP 3. Such solutions are called weak or generalized solutions. Hence,

our goal is to find numerically a weak solution to any well-posed evolution equation.

The multiresolution mesh refinement approach for solving evolution PDEs proposed in

Chapter 5 will work for any evolution PDE, but the PDEs that are mainly of interest to

us are nonlinear conservation laws and Hamilton-Jacobi (HJ) equations. The reason being

that the IVP for the nonlinear conservation laws and the HJ equations do not, in general,

have a smooth solution lasting for all times t > 0 even if the initial condition is smooth.

Hence, in the next sections we will briefly discuss these equations, namely, we will describe

why these equations can have non-smooth solutions, and define a notion of weak solution

for both the nonlinear conservation laws and the HJ equations. The only purpose of this

chapter is to familiarize the reader with the difficulties encountered while solving nonlinear

conservation laws, HJ equations, and at the same time provide the reader with enough

context to understand remarks made in the remainder of the thesis. Therefore, to keep

things simple, for further analysis in this chapter we will assume u : R × [0,∞) → R. But

before going into the details of nonlinear scalar conservation laws and HJ equations, we

briefly describe the method of characteristics for solving a basic nonlinear first order PDE

which we will use to show as to why the nonlinear conservation laws and the HJ equations

can have non-smooth solutions.

3.1 Method of Characteristics

Consider the IVP for a basic nonlinear first-order PDE

G(Dxu, u,x) = 0 in U , (30a)

u = g on Γ, (30b)

where U is an open subset of R
2, Γ ⊆ ∂U , and Dxu = [ux1

, ux2
]. The function G :

R
2×R×U → R, and the initial function g : Γ→ R are given. The unknown is the function

u : U → R. G, g are supposed to be smooth functions.

The basic idea behind the method of characteristics is to convert the PDE (30a) into a

system of ODE’s (called characteristics). Suppose we want to know the solution u of (30)

24

at any point x ∈ U , that is, find u(x). Then, the goal of the method is to find some curve

lying within U , connecting x with a point x0 ∈ Γ and along which we can compute u. Since

from (30b) we know u(x0) = g(x0), the idea is to be able to compute u all along that curve,

so in particular at x.

To this end, let us suppose that the curve be parametrically described by the function

x(s) = [x1(s), x2(s)], (31)

where s lies in some subinterval of R. Assume u ∈ C2, and define

z(s) = u(x(s)), (32)

p(s) = Dxu(x(s)), (33)

that is, p(s) = [p1(s), p2(s)], where

pi(s) = uxi(s), for i = 1, 2. (34)

So z(·) gives the value of u along the curve and p(·) records the values of the gradient Dxu.

Then the following system of 5 first-order ODEs [54],

dp

ds
(s) = −DxG(p(s), z(s),x(s)) −DzG(p(s), z(s),x(s))p(s), (35a)

dz

ds
(s) = DpG(p(s), z(s),x(s)) · p(s), (35b)

dx

ds
(s) = DpG(p(s), z(s),x(s)), (35c)

comprise the characteristic equations of the nonlinear first-order PDE (30a). The functions

p(·) = [p1(·), p2(·)], z(·), x(·) = [x1(·), x2(·)] are called the characteristics.

Theorem 2 (Structure of Characteristics [54]). Let u ∈ C2(U) solve the nonlinear PDE

(30a) in U . Assume x(·) solves the ODE (35c), where p(·) = Dxu(x(·)), z(·) = u(x(·)).

Then p(·) solves the ODE (35a) and z(·) solves the ODE (35b) for those s such that x(s) ∈

U .

Now we move on to the discussion of the nonlinear conservation laws and HJ equation.

25

3.2 Conservation Laws

3.2.1 Introduction

The class of conservation laws is a very important class of PDEs because as their name

indicates, they include those equations that model conservation laws of physics (mass,

momentum, energy etc.). Conservation laws are generally nonlinear.

Consider the IVP for the scalar conservation laws

ut + F (u)x = 0 in U = R× (0,∞), (36a)

u = g on Γ = R× {t = 0}. (36b)

Here, F : R→ R, g : R→ R are given and u : R× (0,∞)→ R is the unknown, u = u(x, t).

Equation (36a) is said to be in conservation form and is called a conservation law.

To understand the physical significance of the conservation laws, we integrate equation

(36a) with respect to x and t from a to b and t1 to t2 respectively, where a, b ∈ R and

t1, t2 ∈ [0,∞). Performing the integration with respect to t for the first term and with

respect to x for the second term, we obtain

∫ b

a
u(x, t2)dx−

∫ b

a
u(x, t1)dx = −

(∫ t2

t1

F (u(b, t))dt−
∫ t2

t1

F (u(a, t))dt

)

. (37)

Equation (37) is referred to as the integral form of conservation law. In (37), u is the

density of the “conserved material” (whatever material the conservation law is conserving);

∫ b
a u(x, t1)dx,

∫ b
a u(x, t2)dx are the amount of conserved material in the interval [a, b] at

times t1, t2 respectively; and F (u) is vaguely defined to be the flux function. Then the

physical interpretation of (37) is that the difference in the “amounts of material” entering

and/or leaving the control volume [a, b] × [t1, t2] across the top and bottom, t = t1 and

t = t2, is balanced by the amount of material entering/or leaving the sides, x = a and x = b.

After giving a physical interpretation of the conservation laws, we derive the character-

istics for conservation laws and show that the solution to the nonlinear conservation laws,

in general, is not smooth.

26

3.2.2 Characteristics for Conservation Laws

For finding the characteristics of the scalar conservation law (36), we set x(s) = [x(s), t(s)],

p(s) = [ux(x(s), t(s)), ut(x(s), t(s))]. Then we have

G(p(s), z(s),x(s)) = ut(x(s), t(s)) + F ′(z(s))ux(x(s), t(s)), (38)

and consequently

DpG = [F ′(z(s)), 1], (39)

DxG = 0, (40)

DzG = F ′′(z(s))ux(x(s), t(s)). (41)

Hence, equation (35c) becomes

dx
ds (s) = F ′(z(s)),

dt
ds(s) = 1.

(42)

Therefore, t(s) = s, since t(0) = 0. In other words, we can identify the parameter s with

the time t.

Equation (35b) becomes

dz

ds
(s) = DpG · p (43)

= F ′(z(s))ux(x(s), s) + ut(x(s), s) (44)

= 0 by (36a). (45)

Consequently,

z(s) = z0 = g(x0); (46)

and (42) implies

x(s) = F ′(g(x0))s + x0. (47)

Thus the projected characteristic x(s) = (x(s), s) = (F ′(g(x0))s+x0, s) (s ≥ 0) is a straight

line, along which u is constant.

27

Remark 1 (Crossing characteristics.). But suppose now we apply the same reasoning to

a different initial point x̂0 ∈ Γ, where g(x0) 6= g(x̂0). The projected characteristics may

possibly then intersect at some time t > 0. Since Theorem 2 tells us u = g(x0) on the

projected characteristic through x0 and u = g(x̂0) on the projected characteristic through

x̂0, an apparent contradiction arises. The resolution is that the IVP (36) does not, in

general, have a smooth solution, existing for all times t > 0.

The method of characteristics demonstrated that there does not in general exist a smooth

solution of (36) existing for all times t > 0. Therefore, we look for a weak or generalized

solution to (36).

3.2.3 Weak Solutions

Define the set of test functions, C1
0 to be the set

{v ∈ C1 : {(x, t) ∈ R× [0,∞) : v(x, t) 6= 0} ⊂ [a, b]× [0, T] for some a, b and T}. (48)

If we multiply PDE (36a) by v ∈ C1
0 and integrate with respect to x from −∞ to ∞ and

with respect to t from 0 to ∞, we get

0 =

∫ ∞

0

∫ ∞

−∞
[ut + F (u)x]v dxdt (49)

=

∫ T

0

∫ b

a
[ut + F (u)x]v dxdt (50)

=

∫ b

a

∫ T

0
utv dtdx+

∫ T

0

∫ b

a
F (u)xv dxdt (51)

=

∫ b

a

{

[

uv
]t=T

t=0
−
∫ T

0
uvt dt

}

dx+

∫ T

0

{

[F (u)v]x=b
x=a −

∫ b

a
F (u)vx dx

}

dt (52)

= −
∫ b

a
u(x, 0)v(x, 0) dx−

∫ b

a

∫ T

0
uvt dtdx−

∫ T

0

∫ b

a
F (u)vx dxdt, (53)

since v(x, T) = v(a, t) = v(b, t) = 0. We note that since the support of v is contained

in [a, b] × [0, T] and v is defined on R × [0,∞), v(x, 0) need not be zero. We can rewrite

(49)-(53) as

0 =

∫ ∞

0

∫ ∞

−∞
[uvt + F (u)vx] dxdt+

∫ ∞

−∞
gv(x, 0) dx. (54)

The above equality was derived assuming that u is a smooth solution of (36), but the

resulting formula has meaning even if u is only bounded. Hence, we define the notion of

weak solution for the conservation laws as follows:

28

Definition 1. If u satisfies (54) for all v ∈ C1
0 , u is said to be a weak solution to IVP (36).

Next, we explain the concepts of “shocks” and “fans” with the help of some simple

examples.

Example 1

Consider the Burger’s equation

ut +

(

1

2
u2

)

x

= 0, (55)

with initial condition

u(x, 0) =

1, x ≤ 0,

0, x > 0.

(56)

The characteristic curves associated with the above IVP are shown in Figure 10(a).

We see in Figure 10(a) that the characteristic curves associated with the above problem

intersect. Hence, we need to consider a weak solution.

It is easy to verify that

u(x, t) =

1, x ≤ t/2,

0, x > t/2.

(57)

is a weak solution to IVP (55)-(56). The example demonstrates that a solution that is

obviously not a classical solution can still be a weak solution. The weak solution given

in (57) is associated with the characteristic curves given in Figure 10(b). The solution on

the characteristics emanating from x, x < 0 is different from that on the characteristics

emanating from x, x > 0. Hence, there is a discontinuity along the curve x = t/2.

One should note that by the form of the solution (57) the discontinuity in the solution

propagates along the curve x = t/2. Hence, the speed of propagation of the discontinuity

is dx/dt = 1
2 .

A more formal definition of a shock will be given later in this chapter but for the time

being we define the shock as follows.

Definition 2. A discontinuity of a piecewise continuous weak solution is called a shock if

the characteristics on both sides of the discontinuity impinge on the discontinuity curve in

the direction of increasing t.

29

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(a) Characteristic curves associated with the IVP
(55)-(56).

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

t

(b) Characteristic curves associated with the solu-
tion given in Example 1 to IVP (55)-(56).

Figure 10: Characteristic curves associated with the IVP (55)-(56) and the solution given
in Example 1.

If we let aL = F ′(uL) and aR = F ′(uR), where uL and uR are the values of u on the left

and right sides of the discontinuity, then a discontinuity will be a shock if

aL > σ > aR, (58)

where σ is the speed of propagation of the discontinuity.

The discontinuity in the weak solution (57) of IVP considered in Example 1 is a shock

(Figure 10(b)). In the above example, aL = 1, aR = 0 and σ = 1
2 , so the above inequality

is satisfied.

Next, we consider another example.

Example 2

In this example, we again consider the Burger’s equation (55) but with different initial

condition

u(x, 0) =

0, x ≤ 0,

1, x > 0.

(59)

It can be easily shown that

u(x, t) =

0, x ≤ t/2,

1, x > t/2,

(60)

30

and

u(x, t) =

0, x < 0,

x/t, 0 ≤ x ≤ t,

1, x > t,

(61)

are both the weak solutions to the Burger’s equation (55) with the initial condition given

in (59). Hence, we see that the weak solutions to IVP for conservation laws are not unique.

The characteristics associated with the IVP given by Burger’s equation (55) and initial

condition (59) are shown in Figure 11. We see that because the slope of the characteristic

curves for x < 0 is greater that the slope of the characteristic curves for x > 0, there is

a region that has no characteristics. The solution (60) corresponds to filling in this region

that has no characteristic curves with characteristics that come out of the curve t = 2x, as

shown in Figure 12(a). Since the characteristics on either side of the curve x = t/2 emanate

from the discontinuity, the discontinuity in solution (60) is not a shock.

The solution given in (61) corresponds to filling in the region that has no characteristic

curves with a “fan” of characteristics as is shown in Figure 12(b). We saw that we were

able to “fill in” the missing characteristics in at least two different ways that are compatible

with the weak formulation of the problem. However, solutions found by filling in a region

with a fan are the desired solutions (shown in the next section).

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

Figure 11: Characteristic curves associated with the IVP (55), (59).

31

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(a) Characteristic curves associated with the solu-
tion (60) given in Example 2 to IVP (55), (59).

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

(b) Characteristic curves associated with the solu-
tion (61) given in Example 2 to IVP(55), (59).

Figure 12: Characteristic curves associated with the solutions given in Example 2 to IVP
(55), (59).

3.2.4 Entropy Condition and Vanishing Viscosity Solution

Weak solutions to conservation laws can contain discontinuities that are due to a disconti-

nuity in the initial condition or due to characteristics that cross each other, but any weak

solution to an IVP (36) must satisfy across any jump discontinuity the following condition.

Proposition 1 (Rankine-Hugoniot condition [137]). Let C be a smooth curve in x − t

space (R × [0,∞)), xC = xC(t), across which u, a weak solution to IVP (36), has a jump

discontinuity. Let P = (x0, t0), t0 > 0, be any point on C and uL and uR be the values of

u evaluated to the left and the right of P , respectively. Then

(uL − uR)
dxC

dt
= F (uL)− F (uR). (62)

σ = dxC
dt is the speed of propagation of the discontinuity and equation (62) is referred

to as the jump condition or the Rankine-Hugoniot condition. Observe that the speed σ and

the values uL, uR, F (uL), F (uR) will generally vary along the curve C. The point is that

even though these quantities may change, the expressions σ(uL − uR) and F (uL)− F (uR)

must always exactly balance.

In addition, we saw that, in general, weak solutions to conservation laws are not unique.

One way of choosing the correct solution is to choose the solutions that are limits of an

associated viscous problem as the viscosity vanishes (which are generally called the vanishing

32

viscosity solutions). Hence, we want solutions to equation (36a) that are limits of solutions

to

ut + F (u)x = νuxx (63)

as ν → 0.

Proposition 2 ([137]). If a vanishing viscosity solution exists, it is a weak solution.

As shown in Section 3.2.2 using the method of characteristics that the solution u of the

scalar conservation law (36a), whenever smooth, takes the constant value z0 = g(x0) along

the projected characteristic

x(s) = (F ′(g(x0))s+ x0, s) (s ≥ 0). (64)

Now we know that typically we will encounter the crossing of characteristics, and resultant

discontinuities in the solution, if we move forward in time. However, we can hope that if we

start at some point in R×(0,∞) and go backwards in time along a characteristic, we will not

cross any others. In other words, let us consider the class of, say, piecewise-smooth weak

solutions of (36) with the property that if we move backwards in t along any characteristic,

we will not encounter any lines of discontinuity for u.

So now suppose at some point on a curve C of discontinuities that u has distinct left

and right limits, uL and uR, and that the characteristic from the left and a characteristic

from the right hit C at this point. Then in view of the above equation we have

F ′(uL) > σ > F ′(uR). (65)

These inequalities are called the entropy condition (from a rough analogy with the thermo-

dynamic principle that physical entropy cannot decrease as time goes forward).

Remark 2. 1. In Example 1: F ′(uL) = 1, σ = 1
2 and F ′(uR) = 0, hence the solution

satisfies the entropy condition.

2. In Example 2 with weak solution (60): F ′(uL) = 0, s = 1
2 and F ′(uR) = 1, hence the

solution does not satisfy the entropy condition.

33

3. In Example 2 with weak solution (61): the solution satisfies the entropy condition

vacuously since there are no discontinuities in the solution.

In view of the entropy condition, we give a formal definition of shock as follows.

Definition 3. A curve of discontinuity for u is called a shock provided both the Rankine-

Hugoniot and the entropy conditions are satisfied.

Proposition 3 ([137]). Suppose that F is convex and that the solution to the IVP (36)

satisfies the entropy condition across all jumps. Then the solution u is the unique viscosity

solution to the IVP (36) that satisfies entropy condition and is a vanishing viscosity solution

to IVP (36).

The nonconvex analogue to the Entropy condition mentioned above is as follows:

Definition 4 ([137]). The solution to equation (36a) (where F is not necessarily convex),

u = u(x, t), containing a discontinuity is said to satisfy entropy condition if

F (uL)− F (u)

uL − u
≥ F (uR)− F (uL)

uR − uL
(66)

for all u between uL and uR, where uL and uR are the solution values to the left and right

of the discontinuity, respectively.

As for the case where F is convex, if F is not convex, the solution u is unique and is a

vanishing viscosity solution if u satisfies the entropy condition (66) across all jumps.

3.2.5 Discrete Conservation Form

In order to solve the IVP for the conservation laws (36) numerically, we must write the

conservation law (36a) in a discrete form. To this end, we assume that we are given a

nonuniform grid of the form1

Grid ={xji,ki
: xji,ki

= ki/2
ji ∈ [0, 1], 0 ≤ ki ≤ 2ji , Jmin ≤ ji ≤ Jmax, for i = 0 . . . N,

and xji,ki
< xji+1,ki+1

, for i = 0 . . . N − 1}, (67)

1It should be noted that for solving IVP for the conservation laws (36) numerically the domain should
be bounded, and hence, without loss of generality, we consider the nonuniform grid on the interval [0, 1].

34

where Jmin, Jmax ∈ Z
+
0 .

For simplicity of notations, we define the cell walls by

xji−1/2,ki−1/2
=
xji−1,ki−1

+ xji,ki

2
, xji+1/2,ki+1/2

=
xji,ki

+ xji+1,ki+1

2
, (68)

and we denote u(x, t) evaluated at x = xj,k and t = tn by un
j,k, where 0 ≤ k ≤ 2j , Jmin ≤

j ≤ Jmax, n ∈ Z
+
0 , t0 = 0, tn = tn−1 + ∆tn for n > 0, and ∆tn is the time step based on

the Courant-Friedrichs-Levy (CFL) condition [137].

The CFL condition asserts that the numerical waves should propagate at least as fast as

the physical waves. This means that the numerical wave speed of (xji+1,ki+1
−xji,ki

)/∆tn+1

must be at least as fast as the physical wave speed |F ′(u)|. This leads us to the CFL time

step restriction of

∆tn+1 <
mini=0,...,N−1(xji+1,ki+1

− xji,ki
)

maxx{|F ′(u)|} . (69)

The above equation (69) is usually enforced by choosing a CFL number α with

∆tn+1

(

maxx{|F ′(u)|}
mini=0,...,N−1(xji+1,ki+1

− xji,ki
)

)

= α, (70)

and 0 < α < 1.

To ensure that shocks and other steep gradients move at the right speed, equation (36a)

should be written in a discrete conservation form, that is, a form in which the rate of change

of conserved quantities is equal to a difference of fluxes [97]. Hence, it has been shown in

the literature [109], that equation (36a) should be approximated by

un+1
ji,ki

= un
ji,ki
− ∆tn+1

xji+1/2,ki+1/2
− xji−1/2,ki−1/2

(Fn
ji+1/2,ki+1/2

−Fn
ji−1/2,ki−1/2

), (71)

where Fn
ji±1/2,ki±1/2

= F(xji±1/2,ki±1/2
, tn), and ∆tn+1Fn

ji+1/2,ki+1/2
, ∆tn+1Fn

ji−1/2,ki−1/2
ap-

proximate the flux of material across the sides x = xji+1/2,ki+1/2
and x = xji+1/2,ki+1/2

,

respectively. The approximate fluxes are written as

Fn
ji+1/2,ki+1/2

= F(un
ji−ℓ,ki−ℓ

, . . . , un
ji+m,ki+m

), (72)

Fn
ji−1/2,ki−1/2

= F(un
ji−ℓ−1,ki−ℓ−1

, . . . , un
ji+m−1,ki+m−1

), (73)

if Fn
ji±1/2,ki±1/2

depends on u at ℓ+m+ 1 points.

35

But how can it be guaranteed that the scheme picks out the correct entropy-satisfying

weak solution? To answer this question, we first give the following definition.

Definition 5 (Monotone Scheme). A difference scheme of the form

un+1
ji,ki

= Q(un
ji−ℓ−1,ki−ℓ−1

, . . . , un
ji+m,ki+m

) (74)

is said to be monotone if the function Q is a monotone increasing function with respect to

each of its arguments.

Proposition 4 ([97, 123]). A conservative, monotone scheme produces a solution that

satisfies the entropy condition.

In a nut shell, this means that to construct a viable numerical scheme for solving IVP

(36), we only need to make sure that it is in conservation form and that it is a monotone

increasing function of its arguments.

Next we move on to the discussion of HJ equations.

3.3 Hamilton-Jacobi Equations

3.3.1 Introduction

Consider the IVP for Hamilton-Jacobi (HJ) equation:

ut +H(ux, x) = 0 in U = R× (0,∞), (75a)

u = g on Γ = R× {t = 0}, (75b)

where the Hamiltonian H : R × R → R and the initial function g : R → R are given.

The unknown is the function u : R × [0,∞) → R. In the next section, we derive the

characteristics for the IVP (75).

3.3.2 Characteristics for the Hamilton-Jacobi Equation

As for the conservation laws, we set x(s) = [x(s), t(s)], p = [p1(s), p2(s)], where p1(s) =

ux(x(s), t(s)) and p2(s) = ut(x(s), t(s)). Then we have

G(p(s), z(s),x(s)) = p2(s) +H(p1(s), x(s)). (76)

36

Therefore,

DpG =

[

∂H

∂p1
(p1(s), x(s)), 1

]

, (77)

DxG =

[

∂H

∂x
(p1(s), x(s)), 0

]

, (78)

DzG = 0. (79)

Thus equation (35c) becomes

dx
ds (s) = ∂H

∂p1
(p1(s), x(s)),

dt
ds(s) = 1.

(80)

Hence, t(s) = s, since t(0) = 0. Again, as for the conservation laws, we can identify the

parameter s with time t.

The equation (35a) for the case at hand reads

dp1

ds (s) = −∂H
∂x (p1(s), x(s)),

dp2

∂s (s) = 0;

(81)

the equation (35b) is

dz

ds
(s) =

∂H

∂p1
(p1(s), x(s))p1(s) + p2(s) (82)

=
∂H

∂p1
(p1(s), x(s))p1(s)−H(p1(s), x(s)) by (75a), (76). (83)

In summary, the characteristic equations for the HJ equation are

dp1

ds
(s) = −∂H

∂x
(p1(s), x(s)), (84a)

dz

ds
(s) =

∂H

∂p1
(p1(s), x(s))p1(s)−H(p1(s), x(s)), (84b)

dx

ds
(s) =

∂H

∂p1
(p1(s), x(s)). (84c)

Equations (84a) and (84c) are called Hamilton’s equations. Once x(s), p1(s) have been

found from the Hamilton’s equations, z(s) can be found from (84b).

As for conservation laws, the IVP for HJ equation (75) does not, in general, have a

smooth solution u lasting for all times t > 0. To show this, we consider for simplicity

H(ux, x) = H(ux), (85)

37

that is,

ut +H(ux) = 0 in U = R× (0,∞), (86a)

u = g on Γ = R× {t = 0}. (86b)

Hence, the associated Hamilton’s equations are

ẋ(t) =
∂H

∂p1
(p1(t)), (87a)

ṗ1(t) = 0, (87b)

with initial conditions

x(0) = y, (88a)

p1(0) = g′(y), (88b)

for some fixed y ∈ Γ. Hence, the solution of (87)-(88) is

x(t) = y + t
∂H

∂p1
(g′(y)), (89a)

p1(t) = g′(y). (89b)

In the general form, we can write (89) as

x(t, y) = y + t
∂H

∂p1
(g′(y)), (90a)

p1(t, y) = g′(y), (90b)

for all y ∈ Γ.

Therefore, (84b) reduces to

ż(t) = g′(y)
∂H

∂p1
(g′(y))−H(g′(y)), (91)

with z(0) = g(y), which implies

z(t) = g(y) + t

(

g′(y)
∂H

∂p1
(g′(y))−H(g′(y))

)

. (92)

Now we suppose that the mapping from y → x(t, y) is one-to-one, then the candidate

solution u produced by the method of characteristics is

u(x, t) = g(x−1(t, y)) + t

(

g′(x−1(t, y))
∂H

∂p1
(g′(x−1(t, y))) −H(g′(x−1(t, y)))

)

. (93)

38

But since (x(t), t) =
(

y + t ∂H
∂p1

(g′(y)), t
)

(t ≥ 0) are straight lines, the characteristics may

possibly intersect at some time t > 0. Hence, we see that the mapping from y → x(t, y)

might not be one-to-one, and x−1(t, y) might be defined only for small t > 0. As a conse-

quence, the function u is not globally defined by (93) which also implies that the solution

to IVP for HJ equations does not in general have a smooth solution, existing for all times

t > 0. Also it has been pointed out by Crandall et al. [43] that if H and g are assumed to be

smooth and g be compactly supported, then (86) will typically have a unique C2 solution

u on some maximal time interval 0 ≤ t < T for which limtրTu(x, t) exists uniformly, but

this limiting function might not be continuously differentiable. Thus, ux might become

discontinuous at t = T (or “shocks” might form).

Hence, in the next section we consider the notion of “weak” solution for HJ equations.

3.3.3 Viscosity Solution

Consider the approximate problem:

uν
t +H(Duν , x)− νuν

xx = 0 in R× (0,∞),

uν = g on R× {t = 0},
(94)

for ν > 0. Equation (75) involves a fully nonlinear first order PDE, whereas (94) is an IVP

for a quasilinear parabolic PDE, which is known to have a smooth solution [54]. The term

νuν
xx in (94) in effect regularizes the HJ equation. The idea is that as ν → 0, the solution uν

of (94) will converge to some sort of weak solution of (75). This technique is known as the

method of vanishing viscosity. However, as ν → 0 we can expect to loose control over the

various estimates of the function uν and its derivatives: these estimates depend strongly on

the regularizing effect of νuν
xx and blow up as ν → 0. Hence, a unique limit solution may

not exist. However, Evans in [54] has mentioned that in practice we can be at least sure that

the family {uν}ν>0 is bounded and equicontinuous on compact subsets of R
n× [0,∞). Now

since the family {uν}ν>0 is bounded and equicontinous on compact subsets of R
n × [0,∞),

consequently the Arzela-Ascoli Compactness Criterion (Appendix B) ensures that

uνj → u locally uniformly in R× [0,∞), (95)

39

for some subsequence {uνj}∞j=1 and some limit function

u ∈ C(R× [0,∞)). (96)

Now we can expect that u is some kind of solution of our IVP (75) but as we only know

u is continuous, and have absolutely no information as to whether ux and ut exist in any

sense, such an interpretation is difficult.

To show that such a u is a weak solution one way would have been to integrate by parts

to throw the “hard-to-control” derivatives onto a fixed test function, and only then try to

go to limits to discover a weak solution, as was done for the conservation laws. But since

(75a) is fully nonlinear we cannot just integrate by parts to switch to differentiations on

the test function. Hence, the idea is to put the derivatives onto any smooth function v, at

the expense of certain inequalities holding. The solution that is built using this technique

is called viscosity solution, in honor of the vanishing viscosity technique.

Definition 6 (Viscosity Solution). A bounded, uniformly continuous function u is called a

viscosity solution of IVP (75) for HJ equation provided:

i) u = g on R× {t = 0},

ii) for each v ∈ C∞(R× (0,∞))

if u− v has a local maximum at a point (x0, t0) ∈ R× (0,∞), then

vt(x0, t0) +H(vx(x0, t0), x0) ≤ 0,

(97)

and

if u− v has a local minimum at a point (x0, t0) ∈ R× (0,∞), then

vt(x0, t0) +H(vx(x0, t0), x0) ≥ 0,

(98)

To verify that a given function u is a viscosity solution of the HJ equation (75), we

must confirm that (97), (98) hold for all smooth functions v. Some of the interesting facts

regarding the viscosity solutions taken from [54] are as follows:

1. If u is constructed using the vanishing viscosity method, it is a viscosity solution.

40

2. Any classical solution of (75) is also a viscosity solution.

3. Let u be a viscosity solution of (75) and suppose u is differentiable at some point

(x0, t0) ∈ R× (0,∞). Then

ut(x0, t0) +H(ux(x0, t0), x0) = 0. (99)

For a more detailed discussion on the viscosity solutions, the reader is referred to [42,

41, 43, 54] where the existence and uniqueness of the viscosity solutions to IVP for HJ

equations (75) is also shown.

3.3.4 Connection with Conservation Laws

The purpose of this section is to show a direct connection between the conservation laws

and HJ equations in one spatial dimension, which will be utilized for solving the IVP to HJ

equations numerically.

For simplicity, we consider the HJ equation

ut +H(ux) = 0, (100)

which becomes

(ux)t +H(ux)x = 0, (101)

after one takes a spatial derivative of the entire equation. Setting v = ux in the above

equation results in

vt +H(v)x = 0, (102)

which is a scalar conservation law. Thus in one spatial dimension a direct correspondence

between HJ equations and conservation laws can be drawn. The solution v to a conservation

law is the derivative of a solution u to a HJ equation. Conversely, the solution u to a HJ

equation is the integral of a solution v to a conservation law. This allows us to point out a

number of useful facts.

1. Since the integral of a discontinuity is a “kink”, or discontinuity in the first derivative,

solutions to HJ equations can develop kinks in the solution even if the data are initially

smooth.

41

2. The solutions to HJ equations cannot generally develop a discontinuity unless the

corresponding conservation law develops a delta function. Thus solutions u to (75)

are typically continuous.

3. Since the conservation laws can have non-unique solutions, entropy conditions are

needed to pick out “physically” relevant solutions to equation (75) as well.

Hence, the successful numerical methodology for solving conservation laws (Section 3.2) can

be applied for solving the IVP for HJ equations (75) [111].

3.4 Summary

In this chapter, we showed that the solution to the nonlinear conservation laws and the HJ

equations do not have smooth solutions lasting for all times t > 0 and hence developed the

notion of “weak” solutions for the nonlinear conservation laws and the HJ equations. We

also stated the conditions that any numerical scheme for solving IVP for the conservation

laws should satisfy for picking out the unique “physically” correct solution to the IVP

for the conservation laws. A direct correspondence between the conservation laws and HJ

equations in one spatial dimension was shown which allows us to use the successful numerical

methodology of conservation laws for solving IVP for HJ equations.

As was shown for the conservation laws and HJ equations, the solution to (IVP), in

general, do not have smooth solutions. Hence, in order to solve evolution equations in a

computationally efficient manner, the grid should adapt dynamically to reflect local changes

in the solution. Therefore, in the next chapter, we propose a novel multiresolution-based

data compression algorithm.

42

CHAPTER IV

MULTIRESOLUTION DATA COMPRESSION

First, we give a brief overview on dyadic grids which are used in the proposed multiresolution

data compression algorithm.

4.1 Dyadic grids

Since D = [0, 1], we consider dyadic grids of the form

Vj = {xj,k ∈ [0, 1] : xj,k = k/2j , 0 ≤ k ≤ 2j}, Jmin ≤ j ≤ Jmax, (103)

where j denotes the resolution level, k the spatial location, and Jmin, Jmax ∈ Z
+
0 . We

denote by Wj the set of grid points belonging to Vj+1 \ Vj. Therefore,

Wj = {yj,k ∈ [0, 1] : yj,k = (2k + 1)/2j+1, 0 ≤ k ≤ 2j − 1}, Jmin ≤ j ≤ Jmax − 1. (104)

Hence, xj+1,k ∈ Vj+1 is given by

xj+1,k =

xj,k/2, if k is even,

yj,(k−1)/2, otherwise.

(105)

An example of a dyadic grid with Jmin = 0 and Jmax = 5 is shown in Figure 13.

k=0 k=1

k=0 k=3

k=0

k=0

k=0

k=0 k=1
V0

W0

W1

W3

W4

k=7

k=15

W2

Figure 13: Example of a dyadic grid.

With a slight abuse of notation, we write Vj+1 = Vj ⊕ Wj, although Wj is not an

orthogonal complement of Vj in Vj+1. The subspaces Vj are nested, VJmin
⊂ VJmin+1 · · · ⊂

43

VJmax , with limJmax→∞ VJmax = D. The sequence of subspaces Wj satisfy Wj ∩Wℓ = ∅ for

j 6= ℓ.

Next, we present a novel multiresolution scheme for data compression.

4.2 Encoding

Suppose g : D → R is specified on a grid VJmax ,

UJmax = {gj,k : xj,k ∈ VJmax}, (106)

where gj,k = g(xj,k). Let Ip(x;XGrid) denote any p-th order interpolation of U = {gj,k :

xj,k ∈ XGrid}, where XGrid = {xjℓ,kℓ
}i+p

ℓ=i ⊂ Grid, where

Grid ={xji,ki
: xji,ki

∈ [0, 1], 0 ≤ ki ≤ 2ji , Jmin ≤ ji ≤ Jmax, for i = 0 . . . N,

and xji,ki
< xji+1,ki+1

, for i = 0 . . . N − 1} ⊂ VJmax , (107)

and x ∈ [xji,ki
, xji+p,ki+p

]. In (107) Grid can be uniform or nonuniform. Then the encoding

algorithm for compressing the signal g is as follows.

Encoding Algorithm

Step 1. Initialize an intermediate grid Gridint = VJmin
, with function values Uint = Umin,

where Umin = {gJmin,k : 0 ≤ k ≤ 2Jmin}. Set j = Jmin.

Step 2. DO for k = 0, . . . , 2j − 1.

(a) Compute the interpolated function value ĝ(yj,k) = Ip(yj,k,XGridint
).

(b) If the interpolative error coefficient at the point yj,k,

dj,k = |g(yj,k)− ĝ(yj,k)| > ǫ, (108)

where ǫ is the prescribed threshold, then add yj,k to the intermediate grid

Gridint and the corresponding function value g(yj,k) to Uint.

Step 3. Increment j by 1. If j < Jmax goto Step 2, otherwise move on to the next step.

44

Step 4. Terminate the algorithm. The final nonuniform grid representing the compressed

information is GridM = Gridint and the corresponding function values is the set

UM = Uint.

If we represent the above nonlinear encoding procedure by an operator M , then we can

write

UM = MUJmax . (109)

One should note that in Harten’s approach [68, 69, 70] the points of a particular resolu-

tion level Wj are interpolated only from the corresponding points belonging to Vj. In our

approach, instead, we continuously keep on updating the grid, and the points {g(yj,k)}2
j−1

k=0

of level Wj are interpolated from the function values at the points in Vj ⊕Wj. Hence, by

making use of the extra information from levels Wj – which in any case will be added to

the adaptive grid – we are able to reduce the number of grid points in the final grid. This

process results in higher compression factors, as will be shown in Section 4.6 via several

examples.

In the next section, we briefly describe the techniques that will be used in this thesis

for constructing Ip.

4.3 Construction of the Interpolation Operator Ip

The proposed encoding and decoding algorithms will work with many interpolations, like

piecewise-polynomial interpolation, essentially nonoscillatory (ENO) interpolation, cubic-

spline interpolation, trigonometric interpolation etc. [70]. For sake of brevity, we only

describe the techniques for constructing Ip that are used in the thesis.

4.3.1 Piecewise-polynomial Interpolation

For piecewise-polynomial interpolation, the stencil XGridint
consists of the p+1 nearest points

to x in Gridint. By p + 1 nearest points here we mean one neighboring point on the left of

x, one neighboring point on the right of x and the remaining p − 1 points are the points

nearest to x in the set Gridint. In case two points are at the same distance from x, that is,

45

if a point on the left and a point on the right are equidistant to x, then we choose a point

so as to equalize the number of points on both sides. For example, consider a grid at level

j = 3 as shown in Figure 14. The set Gridint consists of the solid circles. Let p = 3 and

x = x3,4, shown by an empty square in Figure 14. The whole process involves three steps.

Step a: We include in the set XGridint
one neighboring point on the left (x3,2), shown by

a left triangle and one neighboring point on the right (x3,5), shown by a right triangle in

Figure 14. Step b: We add to the set XGridint
the point x3,6 since the distance from xinterp

to x3,0 is greater than the distance of x3,4 to x3,6. Step c: To choose the last point, we

notice that both points x3,0 and x3,8 are equidistant to x3,4. In this case, we choose x3,0 in

order to equalize the number of points on both sides. Hence, our final set XGridint
consists

of points x3,0, x3,2, x3,5, and x3,6 as shown in Figure 14.

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

XStep a:

Step b:

Step c:

Grid
int

Grid int

X
Grid int

X
Grid int

Figure 14: Demonstration of the procedure for finding the nearest points in piecewise
polynomial interpolation.

Suppose p is even and suppose we have already chosen p−2 points based on the previous

methodology, such that (p − 2)/2 points are on the left of x and the remaining (p − 2)/2

points are on the right of x. In case both points on the left and the right are equidistant to

x we choose either of these points as the last point. Note that this situation will not arise

if p is odd.

Once we have found the p+ 1 nearest points of the set XGridint
, we construct an interpo-

lating polynomial ĝ(x) of order p passing through these p+1 points. One may use Neville’s

algorithm (Appendix A.1.6) to construct the respective interpolating polynomials on the

fly.

46

4.3.2 Essentially Non-Oscillatory Interpolation

For ENO interpolation, the stencil XGridint
consists of one neighboring point on the left and

one neighboring point on the right of x in the set Gridint, and the remaining p − 1 points

are selected from the set Gridint that give the least oscillatory polynomial. Next, we briefly

describe how the ENO interpolant is constructed. For more details on ENO interpolation

the reader is referred to [70, 110].

To this end, let the grid Gridint be given as in (107). Now define

D+gn
ji,ki

=
gn
ji+1,ki+1

− gn
ji,ki

xji+1,ki+1
− xji,ki

, D−gn
ji,ki

=
gn
ji,ki
− gn

ji−1,ki−1

xji,ki
− xji−1,ki−1

. (110)

Define the zeroth divided difference of g by

D0
i g = gn

ji,ki
, (111)

at each grid node xji,ki
. The first divided difference of g are defined midway between grid

nodes as

D1
i+1/2g =

D0
i+1g −D0

i g

xji+1,ki+1
− xji,ki

. (112)

The second divided differences are defined at the grid nodes as

D2
i g =

D1
i+1/2g −D1

i−1/2g

xji+1,ki+1
− xji−1,ki−1

, (113)

while the third divided differences

D3
i+1/2g =

D2
i+1g −D2

i g

xji+2,ki+2
− xji−1,ki−1

, (114)

are defined midway between the grid nodes.

The divided differences are then used to construct a polynomial of the form

ĝ(x) = Q0 +Q1(x) +Q2(x) +Q3(x). (115)

Let the left neighboring point to x in Gridint be xjL,kL
. Then define

Q0 = g(xjL,kL
), (116)

and

Q1(x) = (D1
L+1/2g)(x − xjL,kL

), (117)

47

which gives linear interpolation of one neighboring point on the left and one neighboring

point on the right of x in the set Gridint.

Now for the second-order accuracy we can include the next point to the left and use

D2
Lg, or we can include the next point to the right and use D2

L+1g. One would like to avoid

interpolating near large variations such as discontinuities or steep gradients, since they cause

overshoots in the interpolating function, leading to numerical errors in the approximation

of the derivative. Thus, if |D2
Lg| ≤ |D2

L+1g|, set c = D2
Lg and L⋆ = L − 1; otherwise, set

c = D2
L+1g and L⋆ = L. Then define

Q2(x) = c(x− xjL,iL)(x− xjL+1,kL+1
). (118)

If we stop here, that is, omitting the Q3 term, we have a second-order accurate method for

approximating g(x).

To obtain the third-order accurate correction compare |D3
L⋆+1/2g| and |D3

L⋆+3/2g|. If

|D3
L⋆+1/2g| < |D3

L⋆+3/2g|, set c⋆ = |D3
L⋆+1/2g| otherwise set c⋆ = |D3

L⋆+3/2g|. Then define

Q3(x) = c⋆(x− xjL⋆ ,kL⋆)(x− xjL⋆+1,kL⋆+1
)(x− xjL⋆+2,kL⋆+2

), (119)

which is the third-order accurate correction to the approximation of g(x).

Next, we give the decoding algorithm, that is, the algorithm for computing

ÛJmax = M−1UM. (120)

4.4 Decoding

One way of decoding the information back from the compressed signal in nonlinear schemes

is to keep track of the stencils that were used for interpolating the function values at a

particular point while encoding the information and use the same stencils to decode the

information from the compressed signal. An alternative way (described below) of decoding

the information from the compressed signal is to follow the same approach as in the encoding

algorithm.

Decoding Algorithm

Step 1. Initialize Gridint = VJmin
, with function values ÛJmax = Uint = Umin, where Umin =

{gJmin,k : 0 ≤ k ≤ 2Jmin}. Set j = Jmin.

48

Step 2. DO for k = 0, . . . , 2j − 1.

If g(yj,k) ∈ UM, then add g(yj,k) to ÛJmax , Uint and yj,k to Gridint otherwise add

ĝ(yj,k) = Ip(yj,k,XGridint
) to ÛJmax .

Step 3. Increment j by 1. If j < Jmax goto Step 2, otherwise move on to the next step.

Step 4. Terminate the algorithm.

It should be noted that at termination Gridint = VJmax .

4.5 Error Estimate

In this section, we derive an estimate for the error between the original signal UJmax and

the decoded signal ÛJmax obtained after encoding the original signal and then decoding the

compressed signal UM .

Proposition 5. Let UJmax be defined as in (106), and let ÛJmax = M−1UM , where M−1

denotes the decoding algorithm described above. Then for 1 ≤ m <∞,

Em(g) = ‖UJmax−ÛJmax‖m =

1

2Jmax + 1

2Jmax
∑

k=0

|gJmax,k − ĝJmax,k|m

1
m

≤
(

2Jmax − 2Jmin

2Jmax + 1

)

1
m

ǫ,

(121)

and

E∞(g) = ‖UJmax − ÛJmax‖∞ = max
0≤k≤2Jmax

|gJmax,k − ĝJmax,k| ≤ ǫ. (122)

Proof. First, we note that

|gJmin,k − ĝJmin,k| = 0, k = 0, . . . , 2Jmin , (123)

since gJmin,k ∈ UM for all k = 0, . . . , 2Jmin . Next, since the function values in the set ÛJmax

are interpolated directly only from the function values in UM, we have a direct control over

the error. Therefore,

|g(yj,k)− ĝ(yj,k)| ≤ ǫ, k = 0, . . . , 2j − 1, (124)

for j = Jmin, . . . , Jmax − 1. Hence, we have

‖UJmax − ÛJmax‖∞ = max
0≤k≤2Jmax

|gj,k − ĝj,k| ≤ ǫ. (125)

49

For 1 ≤ m <∞, we have

‖UJmax − ÛJmax‖mm (126)

=
1

2Jmax + 1

2Jmin
∑

k=0

|gJmin,k − ĝJmin,k|m +
Jmax−1
∑

j=Jmin

2j−1
∑

k=0

|g(yj,k)− ĝ(yj,k)|m

 (127)

≤ ǫm

2Jmax + 1

Jmax−1
∑

j=Jmin

2j−1
∑

k=0

1 = ǫm
2Jmax − 2Jmin

2Jmax + 1
. (128)

Consequently, for 1 ≤ m <∞,

‖UJmax − ÛJmax‖m ≤
(

2Jmax − 2Jmin

2Jmax + 1

)

1
m

ǫ, (129)

which completes the proof.

Example 3

Consider g1 : D → R,

g1(x) =

1, 1
3 ≤ x ≤ 2

3 ,

0, otherwise,

(130)

and g2 : D → R,

g2(x) =

0, 0 ≤ x < 1
6 ,

1, 1
6 ≤ x < 1

3 ,

0, 1
3 ≤ x < 1

2 ,

sin(πx), 1
2 ≤ x < 2

3 ,

0, 2
3 ≤ x < 5

6 ,

x, 5
6 ≤ x ≤ 1.

(131)

For this example, we consider a grid with Jmin = 3 and Jmax = 10 and use ENO interpolation

for the encoding and the decoding algorithms described above. For both g1 and g2, the data

compression factor

C =
2Jmax + 1−Np

2Jmax + 1
× 100%, (132)

where Np denotes the number of grid points, along with the decoding errors Em, m =

1, 2,∞, with an interpolating polynomial of degree p = 3 and different thresholds ǫ, are

50

summarized in Table 1. First, we consider ǫ = 10−3 for both the functions g1 and g2. The

proposed algorithm compressed the given signals g1 and g2 using only 25 and 52 points,

respectively, The decoding errors Em (m = 1, 2,∞) are well below the threshold for both

these functions. The grid point distributions for both g1 and g2 are shown in Figure 15.

Next, for g2, we decrease the threshold to 10−7. It is observed that the proposed encoding

algorithm increased the number of points used for compressing the signal; once again, the

decoding errors are below the prescribed threshold.

Table 1: Example 3. Data compression along with the decoding errors for the proposed
approach.

ǫ C Einf E1 E2

g1 10−3 97.56 0 0 0

g2 10−3 94.93 2.2741 × 10−5 8.2103 × 10−7 2.8111 × 10−6

g2 10−7 93.85 9.0426 × 10−8 3.7983 × 10−9 1.2662 × 10−8

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9

10

x

j

(a) g1(x).

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9

10

x

j

(b) g2(x).

Figure 15: Example 3. Grid point distribution for ǫ = 1× 10−3.

4.6 Comparison with Existing Multiresolution-Based Approach

The proposed encoding algorithm results, in general, in a fewer number of grid points when

compared to the Harten’s multiresolution scheme [68, 69]. First, we explain why this is so

and then we give several examples to demonstrate this fact.

In the encoding algorithm of existing approach [68, 69], one interpolates {g(yj,k)}2
j−1

k=0

only from the function values at the points belonging to Vj for j = Jmin . . . Jmax−1, and only

then, one adds to the adaptive grid, the points yj,k for all the pairs (j, k), such that dj,k > ǫ.

51

In the proposed method, we continuously keep on updating the adaptive grid instead. If

the interpolative error coefficient at yj,k, where 0 ≤ k ≤ 2j − 1 and Jmin ≤ j ≤ Jmax − 1, is

greater than the prescribed threshold, we add yj,k to the adaptive grid. We use the newly

added point also for interpolating the remaining points at level Wj and the levels below it.

In other words, in the proposed approach {g(yj,k)}2
j−1

k=0 are interpolated from the function

values at the points in Vj ⊕Wj for j = Jmin, . . . , Jmax − 1. Hence, by making use of the

extra information from levels Wj , which in any case will be added to the adaptive grid, we

are able to reduce the number of grid points in the final grid.

We illustrate this fact with the help of several examples.

Example 4

We again consider the functions g1 and g2 given by (130) and (131), respectively, and

a grid with Jmin = 2 and Jmax = 10. We compare the proposed encoding algorithm

(using ENO interpolation) with the Harten’s encoding algorithm (using ENO interpolation)

and the Harten’s encoding algorithm (using central interpolation). The number of grid

points used by the proposed algorithm Np, Harten’s algorithm (using ENO interpolation)

NHeno, and Harten’s algorithm (using central interpolation) NHc for different thresholds

using interpolating polynomial of degree p = 3 are summarized in Table 2. For both

Table 2: Example 4. Comparison of the proposed decoding approach with Harten’s ap-
proach.

ǫ Np NHeno NHc Np/NHeno Np/NHc

g1 10−3 25 29 53 0.86 0.47

g2 10−3 52 58 108 0.90 0.48

g2 10−7 63 73 119 0.86 0.53

functions g1 and g2, we found that the proposed algorithm results in up to 14% fewer

number of points in the compressed data compared to the Harten’s approach (using ENO

interpolation) and up to 53% fewer points compared to the Harten’s approach (using central

interpolation).

52

4.7 Summary

In this chapter, we have proposed a novel multiresolution scheme for data compression.

The proposed data compression scheme is shown to outperform similar data compression

schemes in the literature. Specifically, we have shown that the proposed approach results

in fewer grid points when compared to a common adaptive grid approach.

Next, based on the proposed data compression scheme, we present an adaptive multires-

olution technique for solving evolution PDEs .

53

CHAPTER V

SOLUTION OF IBVP FOR EVOLUTION EQUATIONS

5.1 Problem Statement

The IVP (29) that we are trying to solve is defined over all of R, and hence has no physical

boundary. Unfortunately, we can numerically approximate the solution only on a finite

domain, so we must introduce boundaries and enforce some form of boundary conditions.

Hence, we consider an initial-boundary value problem (IBVP) for an evolution equation:

(IBVP) :

ut + f(uxx, ux, u, x) = 0 in D × (0,∞),

u = g on D × {t = 0},
(133)

where D = D∪∂D, with D ⊂ R bounded. The function f : R
m×R

m×R
m×D → R

m, and

the initial function g : D → R
m are given. The unknown is the function u : D×[0,∞)→ R

m.

The algorithm proposed in this section works for other boundary conditions as well, but

for simplicity in the analysis below we only use periodic, Dirichlet, and Neumann boundary

conditions. Without loss of generality, we will further assume that D = (0, 1).

In (IBVP) the initial function g can be irregular. Even if g is smooth, discontinuities

such as shocks (in hyperbolic conservation laws) and kinks (in Hamilton-Jacobi equations)

can develop in the solution u at some later time. Therefore, we would like to adapt the grid

dynamically to any existing or emerging irregularities in the solution instead of using a fine

mesh over the whole spatial and temporal domain. In the next section, we propose a novel

grid refinement technique for solving (IBVP) in a computationally efficient manner.

5.2 Adaptive gridding

5.2.1 Grid Adaptation for the solution of (IBVP)

Consider a set of dyadic grids Vj and Wj as described in Eqs. (103) and (104),

Vj = {xj,k ∈ [0, 1] : xj,k = k/2j , 0 ≤ k ≤ 2j}, Jmin ≤ j ≤ Jmax, (134)

54

Wj = {yj,k ∈ [0, 1] : yj,k = (2k + 1)/2j+1, 0 ≤ k ≤ 2j − 1}, Jmin ≤ j ≤ Jmax − 1. (135)

Assume we are given a nonuniform grid of the form

Grid ={xji,ki
: xji,ki

∈ [0, 1], 0 ≤ ki ≤ 2ji , Jmin ≤ ji ≤ Jmax, for i = 0 . . . N,

and xji,ki
< xji+1,ki+1

, for i = 0 . . . N − 1} ⊂ VJmax , (136)

For simplicity, we denote by un
j,k the value of u(x, t) evaluated at x = xj,k and t = tn,

where 0 ≤ k ≤ 2j , Jmin ≤ j ≤ Jmax, n ∈ Z
+
0 , t0 = 0, tn = tn−1 + ∆tn for n > 0, and

∆tn is the time step based on the Courant-Friedrichs-Levy condition [137] for hyperbolic

equations and the von Neumann condition [137] for all other evolution equations. The

“top-down” approach of our algorithm allows one to add and remove points using the most

recently updated information. To this end, suppose u(x, tn) is specified on the grid Gridold,

with corresponding solution values Uold = {un
j,k : xj,k ∈ Gridold}, where Gridold can be

either regular or irregular1. We assume Gridold ⊇ VJmin
. Our aim is to find a new grid

Gridnew, by adding or removing points from Gridold, reflecting local changes in the solution.

To this end, we initialize an intermediate grid Gridint = VJmin
, with the function values

Uint = {un
Jmin,k : un

Jmin,k ∈ Uold, 0 ≤ k ≤ 2Jmin}, and we set j = Jmin. The mesh refinement

algorithm proceeds as follows:

Step 1. Find the points belonging to the intersection of Wj and Gridold, that is,

Y = {yj,ki
: yj,ki

∈ Wj ∩ Gridold, for i = 1, . . . ,M, 1 ≤M ≤ 2j − 1}. (137)

If Y is empty goto Step 4 otherwise goto the next step.

Step 2. Set i = 1.

(a) Compute the interpolated function values at point yj,ki
∈ Y , û(yj,ki

), that is,

ûℓ(yj,ki
) = Ip(yj,ki

,XGridint
), where ûℓ is the ℓth element of û, for ℓ = 1, . . . ,m.

(b) If at the point yj,ki
2,

dj,ki
(un) = max

ℓ=1,...,m
|uℓ(yj,ki

, tn)− ûℓ(yj,ki
)| < ǫ, (138)

1Typically, Gridold at time t = 0 is regular with Gridold = VJmax .
2Note that u(yj,k, tn) ∈ Uold for all yj,k ∈ Y .

55

goto Step 2(f), otherwise add yj,ki
to the intermediate grid Gridint and move

on to the next step.

(c) Add to Gridint N1 points on the left and N1 points on the right neighboring

to the point yj,ki
in Wj. This step accounts for the possible displacement of

any sharp features of the solution during the next time integration step. The

value of N1 dictates the frequency of mesh adaptation and is provided by the

user. The larger the N1, the smaller the frequency of mesh adaptation will be,

at the expense of a larger number of grid points in the adaptive grid. Hence,

there is a trade-off between the frequency of mesh adaptation and the number

of grid points.

(d) Add to Gridint 2N2 neighboring points at the next finer level

{yj+1,2ki+ℓ}N2

ℓ=−N2+1, where 1 ≤ N2 ≤ 2N1. This step accounts for the pos-

sibility that the solution becomes steeper in this region. Our experience has

shown that N2 = N1 is a good choice.

(e) Add the function values at all the newly added points to Uint. If the function

value at any of the newly added points is not known, we interpolate the func-

tion value at that point from the points in Gridold and their function values in

Uold using Ip(·,XGridold
).

(f) Increment i by 1. If i ≤ M goto Step 2(a), otherwise move on to the next

step.

Step 3. Increment j by 1. If j < Jmax goto Step 1, otherwise move on to the next step.

Step 4. Terminate the algorithm. The final nonuniform grid is Gridnew = Gridint and their

corresponding function values is the set Unew = Uint.

Remark 3. Although the proposed grid adaptation algorithm will work for any interpolation

technique, in this work we use ENO interpolation to avoid any unphysical interpolation of

the data.

56

Remark 4. For sake of brevity, in the thesis, we work only with the point-value discretiza-

tion of data but the proposed encoding and decoding algorithms (or the grid adaptation

algorithm for solving PDEs) will also work for discretizations based on the cell-averages.

Next, we explain the proposed grid adaptation algorithm with the help of a simple

example.

Example 5

Consider a dyadic grid V4 and the function

g(x) =

1, x = x4,k,

0, otherwise,

(139)

with k = 6, so that g denotes an impulse located at x = x4,6 = 0.375. Let Jmin = 0,

Jmax = 4, p = 1, ǫ = 0.1, N1 = N2 = 1, and consider Gridold = VJmax . For this example the

proposed grid adaptation algorithm is illustrated in Figure 16.

In Figure 16, the solid circles show the points belonging to the intermediate grid Gridint

and those belonging to Gridnew. The empty squares show the points that are being tested

or have been tested for inclusion in Gridint. If the interpolative error coefficient at a point is

greater than the prescribed threshold, then we show that point by a solid square. The left

and the right neighbors are shown by left and right triangles, respectively. For reference,

all points at that particular level are shown by empty circles.

First, we initialize Gridint with VJmin
. Next, we check if the function value at the point

y0,0 ∈ W0 can be interpolated from the nearest p + 1 = 2 points in Gridint, which in this

case are the points x0,0 and x0,1. Since for this example g(y0,0) can be interpolated from the

points in Gridint, we do not include y0,0 in Gridint. Next, we consider the level W1 and check

the point y1,0. Since g(y1,0) can again be interpolated from the function values at points

x0,0, x0,1 ∈ Gridint, we do not include y1,0 in Gridint, and move on to the next point y1,1.

For the same reason as before, we do not include this point and the point y2,0 belonging

to the next level W2. Moving further to y2,1, we find that g(y2,1) cannot be interpolated

from the neighboring two points x0,0, x0,1 ∈ Gridint. Hence, we include y2,1 in Gridint along

with points y2,0, y2,2 ∈ W2 and y3,2, y3,3 ∈ W3. Next, we check point y2,2. The nearest

57

VJmin = V0

W0

Grid int

Grid int

Grid int

Grid int

Grid int

Gridnew

Grid int

W1

W2

W2

W3

W3

W3

W3

W3

W3

W2

g
k=0 k=6 k=16

Grid int =

Figure 16: Demonstration of the proposed grid adaptation algorithm using Example 5.

58

points to y2,2 in Gridint are y3,3 and x0,1. Since g(y2,2) can be interpolated from y3,3 and

x0,1, we do not include y2,2 in the grid. For the same reason, we do not include y2,3. Now

we move to the next level W3 and check points y3,0 and y3,1. Since both these points can

be interpolated from the existing points in Gridint we do not include these points in the

grid. Subsequently we check y3,2. Since g(y3,2) cannot be interpolated from the nearest

two points y2,0, y2,1 ∈ Gridint we include y3,2 along with points y3,1 and y3,3 (which in any

case is already present in Gridint) in Gridint. Moving on to the next point y3,3, we see again

that g(y3,3) cannot be interpolated from the nearest two points y2,1, y2,2 ∈ Gridint. Hence,

we include y3,3 along with y3,2 (which in any case is already present in Gridint) and y3,4 in

Gridint. The next point in W3 is y3,4. Since g(y3,4) can be interpolated from the two nearest

points y3,3, y2,2 ∈ Gridint, we move on to the next point y3,5. The nearest two points to y3,5

in Gridint are y2,2, x0,1, and since g(y3,5) can be interpolated from these two points, we do

not include y3,5 in Gridint. For the same reason we do not add points y3,6 and y3,7. The

final adaptive grid Gridnew is shown by the solid circles in Figure 16.

The adaptive grid generated using the previous algorithm depends on how we select

points along the grid, that is, whether we move from left to right or from right to left across

each level. It also depends on the location of the singularity. If the singularity is located

in the middle, then it does not matter whether we move from left to right or from right

to left. The result will be the same nonuniform grid. If on the other hand, the singularity

is not in the middle, then the grid depends on the way in which we traverse across each

level. To illustrate this fact, we again consider Example 5, but this time with k = 1.

Hence, the impulse is located at x = x4,1. If we go from left to right then the adaptive grid

consists of the points x4,0, x4,1, x4,3, x4,5, x4,16. If we go from right to left then the grid

consists of the points x4,0, x4,1, x4,3, x4,16. Now let k = 15, which implies that the impulse

is located at x = x4,15. If we go from left to right then the grid consists of the points

x4,0, x4,13, x4,15, x4,16, and if we go from right to left then the grid consists of the points

x4,0, x4,11, x4,13, x4,15, x4,16. Note that, in the proposed algorithm, it is not mandatory to

traverse across a level only from the leftmost point or from the rightmost point. We can

instead start from any point at that level, each time resulting in a different grid. This

59

suggests that by using a suitable probability distribution function to choose the order in

which the points at each particular level are selected, one may be able to further optimize

the grid.

5.2.2 Grid Adaptation Approach of Alves et al. [3]

In this section, we briefly summarize the main idea underlying the grid adaptation approach

of Alves et al. [3] which is based on the approach of Harten [68, 69]. For further details,

the reader is referred to [3, 68, 69, 70].

Consider a set of dyadic grids Vj and Wj as described in equations (134) and (135)

before. We explain pictorially, with the help of Example 5, how the approach of Alves et

al. [3] works (see Figure 17). The symbols used in Figure 17 are the same as those used

in Figure 16 except for a new symbol (a triangle facing down), which is used to show the

parents of points inWj, that is, the points in Vj that are used for interpolating the function

values at points in Wj . In the approach of Alves et al., we first interpolate the function

values at the points belonging to Wj from the corresponding points in Vj for j = 0, . . . , 3,

respectively, as shown in Figure 17. Then we find the points which have interpolative error

coefficients greater than the prescribed threshold ǫ. We see that points y2,1, y3,2, y3,3 have

interpolative error coefficients greater than the threshold (shown by solid squares) and add

these points in the grid. Next, we add the points y2,0, y2,2 neighboring to y2,1 in W2 (shown

by level A) and the points y3,2, y3,3 neighboring to y2,1 inW3 (shown by level B). Similarly,

we add points y3,1, y3,3 neighboring to y3,2 inW3 (shown by level C) and the points y3,2, y3,4

neighboring to y3,3 in W3 (shown by level D). Finally, we include the parents of all the

points added previously to the adaptive grid (shown by levels Ap, Bp, Cp and Dp) resulting

in the nonuniform grid Gridnew shown in Figure 17.

5.2.3 Comparison with Existing Multiresolution-Based Approaches

The proposed grid adaptation algorithm results, in general, in a fewer number of grid points

when compared to the grid adaptation algorithms of Harten [68, 69], Holmstrom [75], and

the Alves et al. [3]. First, we explain why this is so and then we give several examples to

demonstrate this fact.

60

VJmin = V0

W0

 V1

 V2

 V3

VJmin = V0

A

B

C

D

A

B

C

D

Gridnew

W1

W2

W3

g
k=0 k=6 k=16

Ap

Bp

Cp

Dp

Figure 17: Demonstration of the grid adaptation approach of Alves et al. [3] using Exam-
ple 5.

61

In the grid adaptation algorithm of existing approaches [68, 69, 75, 3], one interpo-

lates {g(yj,k)}2
j−1

k=0 only from the function values at the points belonging to Vj for j =

Jmin . . . Jmax − 1, and only then, one adds to the adaptive grid, the points yj,k along with

the points {yj,k+ℓ}N1

ℓ=−N1
and {yj+1,2k+ℓ}N2

ℓ=−N2+1 for all the pairs (j, k), such that dj,k > ǫ.

In the proposed method, we continuously keep on updating the adaptive grid instead. If

the interpolative error coefficient at yj,k, where 0 ≤ k ≤ 2j − 1 and Jmin ≤ j ≤ Jmax − 1,

is greater than the prescribed threshold, we add yj,k to the adaptive grid, at the same time

we also add to the adaptive grid the neighboring points at the same level {yj,k+ℓ}N1

ℓ=−N1
,

as well as the neighboring points at the next level {yj+1,2k+ℓ}N2

ℓ=−N2+1. We use the newly

added points also for interpolating the remaining points at level Wj and the levels below

it. In other words, in the proposed approach {g(yj,k)}2
j−1

k=0 are interpolated from the func-

tion values at the points in Vj ⊕Wj ⊕Wj+1 for Jmin ≤ j ≤ Jmax − 2 and in Vj ⊕Wj for

j = Jmax − 1. Hence, by making use of the extra information from levels Wj (and Wj+1),

which in any case will be added to the adaptive grid, we are able to reduce the number of

grid points in the final grid.

In Harten’s approach, the solution at each time step is represented on the finest grid, and

one encodes and decodes the solution at each time step in order to calculate the interpolative

errors. In other words, the interpolative errors are computed at all points of the fine grid at

each mesh refinement step. Holmstrom [75], on the other hand, calculates the interpolative

error coefficients only at the points that are in the adaptive grid; if a function value is

needed that does not exist in the present grid, the author interpolates the function value

from a coarser scale recursively. In the algorithm of Alves et al. [3] one also adds to the grid

the points that were used to predict the function values at all the previously added points

in order to compute the interpolative error during the next mesh adaptation. Therefore, in

the approach of Alves et al., when a point yj,k (0 ≤ k ≤ 2j − 1 and Jmin ≤ j ≤ Jmax − 1),

is added to the grid, one also include its parents, which were used to predict the function

value at that point. The parents are not needed for approximating the given function to the

prescribed accuracy, but are included just for calculating the interpolative error coefficient

at the point yj,k during the next mesh adaptation. In the proposed algorithm, on the other

62

hand, whenever a point is being checked for inclusion in the adaptive grid, we predict the

function value at that point only from the points which already exist in the adaptive grid.

Hence, if that point is inserted in the grid we do not need to add any extra points (i.e.,

its parents). This also alleviates the task of keeping track of the parents from the rest of

the points as in the approach of Alves et al. and the task of recursively calculating the

function values from the coarser resolution levels as is done in the approach of Holmstrom.

Next we give several examples to compare the proposed grid adaptation approach with the

algorithm of Alves et al. [3] for solving evolution PDEs.

Example 6

First we consider a very simple example. For this example we consider a dyadic grid V4 and

the function

g(x) =

1, x = x4,k,

0, otherwise,

(140)

with an impulse located at x = k/24, where 0 ≤ k ≤ 16. Let Jmin = 0, Jmax = 4, p = 1,

ǫ = 0.1, and N1 = N2 = 1. Table 3 shows the number of grid points used by the proposed

grid adaptation algorithm Np and the number of points NA used by the grid adaptation

scheme of Alves et al. [3] for k = 0, . . . , 16. We found that when the impulse is located at

either the left boundary (k = 0) or the right boundary (k = 16) or in the middle of the

domain (k = 8) both the approach of Alves et al. and the proposed approach result in the

same grid. For all other cases, the grids generated are different. Moreover, we see that the

proposed algorithm results in a fewer number of grid points. For this example, the proposed

algorithm outperforms the algorithm of Alves et al. [3] by up to 33%.

Example 7

Next we again consider the functions g1 and g2 given by (130) and (131), respectively, and

a grid with Jmin = 2 and Jmax = 10. This time we set N1 = N2 = 1 in the proposed

grid adaptation algorithm. Table 4 gives the number of points used by the proposed grid

adaptation algorithm Np and the number of points NA used by the grid adaptation scheme

of Alves et al. [3]. For this example, we observe that the proposed grid adaptation algorithm

63

Table 3: Example 6. Comparison of the proposed algorithm with the algorithm of Alves
et al.

k Np NA Np/NA k Np NA Np/NA

0 9 9 1 9 6 9 0.67

1 5 6 0.83 10 9 12 0.75

2 7 9 0.78 11 6 9 0.67

3 6 8 0.75 12 11 12 0.92

4 11 12 0.92 13 5 7 0.71

5 6 9 0.67 14 7 9 0.78

6 9 12 0.75 15 4 6 0.67

7 6 9 0.67 16 9 9 1

8 13 13 1

Table 4: Example 7. Comparison of the proposed algorithm with the algorithm of Alves
et al.

ǫ Np NA Np/NA

g1 10−3 53 93 0.57

g2 10−3 108 185 0.58

outperforms the algorithm of Alves et al. [3] by up to 43%.

We are now ready to present the algorithm for solving the (IBVP) on an adaptive,

nonuniform grid.

5.3 Numerical Solution of the IBVP for Evolution Equations

The numerical scheme for discretizing (IBVP) depends on f(uxx, ux, u, x). The proposed

grid adaptation algorithm will work for many numerically stable discretization schemes for

(IBVP). We use different schemes for the numerical examples discussed in this chapter,

depending on the problem. Hence, in the next section we only describe the techniques we

use for calculating the spatial derivatives ux and uxx on the nonuniform grid and we state

the numerical schemes in the examples themselves.

5.3.1 Calculation of Spatial Derivatives

To calculate the derivative ux on the adaptive nonuniform grid Gridnew we use the weighted

ENO (WENO) scheme [89, 90, 99, 110] on nonuniform grids. To this end, let the nonuniform

grid be given as in (136). Now define

D+un
ji,ki

=
un

ji+1,ki+1
− un

ji,ki

xji+1,ki+1
− xji,ki

, D−un
ji,ki

=
un

ji,ki
− un

ji−1,ki−1

xji,ki
− xji−1,ki−1

. (141)

64

A third-order essentially nonoscillatory (ENO) approximation [71, 127, 128] to (u±x)nji,ki
=

u±x (xji,ki
, tn) is given by one of the following expressions

((u±x)nji,ki
)
1

=
v1
3
− 7v2

6
+

11v3
6

, (142a)

or

((u±x)nji,ki
)
2

= −v2
6

+
5v3
6

+
v4
3
, (142b)

or

((u±x)nji,ki
)
3

=
v3
3

+
5v4
6
− v5

6
, (142c)

where for calculating (u−x)nji,ki
, we use v1 = D−un

ji−2,ki−2
, v2 = D−un

ji−1,ki−1
, v3 = D−un

ji,ki
, v4 =

D−un
ji+1,ki+1

, v5 = D−un
ji+2,ki+2

, and for calculating (u+
x)nji,ki

, we use v1 = D+un
ji+2,ki+2

, v2 =

D+un
ji+1,ki+1

, v3 = D+un
ji,ki

, v4 = D+un
ji−1,ki−1

, v5 = D+un
ji−2,ki−2

. The basic idea behind

a third-order ENO scheme is to choose either ((u±x)nji,ki
)
1

or ((u±x)nji,ki
)
2

or ((u±x)nji,ki
)
3

for

approximating (u±x)nji,ki
by choosing the smoothest possible polynomial interpolation of u.

It is reminded that a WENO approximation of (u±x)nji,ki
is a convex combination of the

approximations in equations (142a), (142b) and (142c), that is,

(u±x)nji,ki
=

3
∑

ℓ=1

ωℓ((u
±
x)nji,ki

)
ℓ
, (143)

where 0 ≤ ωℓ ≤ 1 for ℓ = 1, 2, 3 and ω1 + ω2 + ω3 = 1. The weights for fifth-order accuracy

are given by [89, 110]

ωℓ =
αℓ

α1 + α2 + α3
, ℓ = 1, 2, 3, (144)

where,

αℓ =
ᾱℓ

(Sℓ + δ)2
, ℓ = 1, 2, 3, (145)

S1 =
13

12
(v1 − 2v2 + v3)

2 +
1

4
(v1 − 4v2 + 3v3)

2, (146)

S2 =
13

12
(v2 − 2v3 + v4)

2 +
1

4
(v2 − v4)2, (147)

S3 =
13

12
(v3 − 2v4 + v5)

2 +
1

4
(3v3 − 4v4 + v5)

2, (148)

and

ᾱ1 = 0.1, ᾱ2 = 0.6, ᾱ3 = 0.3. (149)

65

In (145) δ is used to prevent the denominator from becoming zero. In our computations,

we have used δ = 10−6.

For the sake of brevity, we denote the cell walls by

xji−1/2,ki−1/2
=
xji−1,ki−1

+ xji,ki

2
, xji+1/2,ki+1/2

=
xji,ki

+ xji+1,ki+1

2
. (150)

In order to calculate (uxx)nji,ki
= uxx(xji,ki

, tn) on a nonuniform grid (136), we use the

centered second difference scheme [137]

(uxx)nji,ki
=

(

un
ji+1,ki+1

−un
ji,ki

xji+1,ki+1
−xji,ki

−
un

ji,ki
−un

ji−1,ki−1

xji,ki
−xji−1,ki−1

)

xji+1/2,ki+1/2
− xji−1/2,ki−1/2

. (151)

5.3.2 Temporal Integration

Although the proposed grid adaptation algorithm of Section 5.2.1 will work for any numeri-

cally stable scheme, in this work we use the total variation diminishing (TVD) Runge-Kutta

(RK) methods proposed by Shu and Osher in [110, 127] to increase the accuracy of the

temporal discretization. While there are numerous RK schemes, these TVD RK schemes

guarantee that no spurious oscillations are produced.

The basic first-order accurate TVD RK scheme is just the forward Euler method and

is assumed to be TVD. Higher order accurate methods are obtained by sequentially taking

Euler steps and combining the result with the initial data using a convex combination.

The second-order accurate TVD RK scheme is also known as the midpoint rule. First,

an Euler step is taken to advance the solution to time tn + ∆tn+1,

un+1
ji,ki
− un

ji,ki

∆tn+1
+ f

(

(uxx)nji,ki
, (u+

x)nji,ki
, (u−x)nji,ki

, xji,ki

)

= 0, (152)

followed by a second Euler step to advance the solution to time tn + 2∆tn+1,

un+2
ji,ki
− un+1

ji,ki

∆tn+1
+ f

(

(uxx)n+1
ji,ki

, (u+
x)n+1

ji,ki
, (u−x)n+1

ji,ki
, xji,ki

)

= 0, (153)

followed by an averaging step,

un+1
ji,ki

=
1

2
un

ji,ki
+

1

2
un+2

ji,ki
, (154)

66

that takes a convex combination of the initial data and the result of two Euler steps. The

final averaging step produces the second-order accurate approximation to un+1
ji,ki

.

The third-order accurate TVD RK scheme is as follows. First, an Euler step (152) is

taken to advance the solution to time tn + ∆tn+1, followed by a second Euler step (153) to

advance the solution to time tn + 2∆tn+1, followed by an averaging step

u
n+1/2
ji,ki

=
3

4
un

ji,ki
+

1

4
un+2

ji,ki
, (155)

that produces an approximation to u at time tn + 1
2∆tn+1 and at location xji,ki

. Then

another Euler step is taken to advance the solution to time tn + 3
2∆tn+1,

u
n+3/2
ji,ki

− un+1/2
ji,ki

∆tn+1
+ f

(

(uxx)
n+1/2
ji,ki

, (u+
x)

n+1/2
ji,ki

, (u−x)
n+1/2
ji,ki

, xji,ki

)

= 0, (156)

followed by a second averaging step,

un+1
ji,ki

=
1

3
un

ji,ki
+

2

3
u

n+3/2
ji,ki

, (157)

that produces a third-order accurate approximation to un+1
ji,ki

.

Now we are ready to give the algorithm for solving the IBVP for evolution equa-

tions (133).

5.3.3 Solution of the IBVP for Evolution PDEs

Based on the problem, the desired accuracy, and the computational hardware, we choose

the minimum resolution level Jmin, the maximum resolution level Jmax, the threshold ǫ, the

order of the interpolating polynomial p and the parameters N1, N2 required for the grid

adaptation algorithm given in Section 5.2.1. The final time tf is assumed to be given.

To solve (IBVP) on an adaptive grid, we first initialize Gridold = VJmax,

Uold = {g(xJmax,k)}2
Jmax

k=0 ,

and set t = 0, n = 03. Then the algorithm proceeds as follows:

3In case of hardware limitations, we suggest using Gridold = VJint
, Uold = {g(xJint,k)}2Jint

k=0 , where Jmin <
Jint < Jmax is chosen based on the hardware limitations. Then, either if there are no discontinuities in
the initial condition g or even if there are discontinuities in g that are self-sharpening, the algorithm will
autonomously add points at higher resolution levels as we continue to move forward in time.

67

Step 1. Given Gridold, Uold find the new grid Gridnew and the function values at all the points

in Gridnew, Unew = {un
j,k : xj,k ∈ Gridnew}, using the grid adaptation algorithm given

in Section 5.2.1. The new grid Gridnew is the grid on which we will propagate the

solution from time t to time tadapt = t+ ∆tadapt, where

∆tadapt =
N1∆xmin

wave speed
, (158)

is the time after which the grid should be adapted again, calculated from the

approximate time the solution will take to move N1 grid points, and ∆xmin =

minGridnew
(xji+1,ki+1

−xji,ki
). The reader is referred to [137, 110] for details on com-

puting the wave speed. One can always use ∆tadapt = ∆t for the cases where the

wave speed is either difficult or impossible to compute.

Step 2. Compute the solution at time t = tn+1 at all the points belonging to Gridnew,

Unew = {un+1
j,k : xj,k ∈ Gridnew}, using any numerically stable scheme, and increment

n by 1. Keep on repeating this step while t < tadapt. If t ≥ tf terminate the

algorithm.

Step 3. Reassign the sets: Gridold ← Gridnew, Uold ← Unew. It should be noted that we do

not interpolate the function values at the finest level during the mesh refinement

process. In the proposed mesh refinement algorithm, we only check the retained

points in Gridold to further add and remove points in the grid. The interpolative

error coefficients are computed only at the points yj,k ∈ Gridold, and the solution

Uold for all yj,k ∈ Gridold is known from the previous step.

Step 4. Goto Step 1.

Remark 5. As pointed out earlier, ∆tn is computed based on the Courant-Friedrichs-Levy

(CFL) condition [137] for hyperbolic equations and the von Neumann condition [137] for all

other evolution equations. For both CFL condition and the von Neumann condition ∆tn

depends on ∆xmin. Hence, in the proposed algorithm ∆tn changes adaptively depending

on ∆xmin, which also changes adaptively.

68

5.4 Numerical Examples

In this section, we present several examples to demonstrate the stability and robustness

of our algorithm. These examples also illustrate the algorithm’s ability to automatically

capture and follow any existing or self-sharpening features of the solution that develop in

time.

Example 8

First, we consider a nonlinear conservation law

ut + (F (u))x = 0. (159)

For a specific example, we consider the inviscid Burgers’ equation

ut +

(

1

2
u2

)

x

= 0. (160)

We use the same smooth initial condition and the Dirichlet boundary condition as in [3],

that is,

g(x) = sin(2πx) +
1

2
sin(πx), u(0, t) = u(1, t) = 0, (161)

to check the ability of the proposed algorithm to capture the shock. The solution is a wave

that develops a very steep gradient and subsequently moves towards x = 1. Because of the

zero boundary values, the wave amplitude diminishes with increasing time.

For solving (160)-(161), we use (71) along with the ENO-Roe scheme proposed by

Shu and Osher [128] on a non-uniform grid for calculating the numerical flux functions

Fn
ji±1/2,ki±1/2

. For temporal integration, we use a third-order total variation diminish-

ing (TVD) Runge–Kutta (RK) scheme [127]. The numerical solution at times t = 0 s,

t = 0.158 s, t = 0.5 s and t = 1 s using a grid with Jmin = 4 and Jmax = 12 are shown

in Figure 18(a). The other parameters used in the grid adaptation procedure are p = 3,

ǫ = 0.01, N1 = N2 = 1. Figure 18 also shows the grid point distribution in the adaptive

mesh at times t = 0 s, t = 0.1 s, t = 0.158 s and t = 1 s. We see that as the shock continues

to develop, the algorithm adds points at the finer levels of resolution in the region where

the shock is developing, and removes points from the regions where the solution is getting

69

smoother. Similar conclusions can be drawn by looking at the time evolution of the num-

ber of grid points (Figure 18(f)). We observe that the number of grid points increases as

the shock continues to develop, and once the solution is smooth everywhere except for the

region of the shock the number of grid points is pretty much steady, the number of grid

points oscillates about a mean value of 43. This shows that the proposed strategy uses only

the grid points that are actually necessary to attain a given precision, and the algorithm is

able to add and remove points when and where is needed.

A comparison of CPU times for the uniform and adaptive grids, along with the L1

error (E1(u)) between the solution of the proposed multiresolution algorithm and the fine

grid solution evaluated at grid VJmax and the number of grid points used by the proposed

algorithm at the final time step for different Jmax = 8, 9, 10, 11, 12 are summarized in Table 5.

We observe a major speed up in the computational time compared to the uniform mesh,

and the speed-up factors increase at an approximate rate of two. The proposed approach

results in speed-up factors that are higher than those reported in [3]. For scale Jmax = 12

the speed-up factor using the proposed approach is 63.7, which is about 27% higher than

the one reported in [3]. It is reminded that we chose N1 = 1 and Alves et al. chose N1 = 2

which implies that in our case mesh refinement was performed twice as many times as was

performed in [3] for the same problem and even then the speed-up factor is 27% higher than

the one reported in [3]. The L1 errors (E1(u)) along with the number of grid points used

by the proposed algorithm at times t = 0.158 s, t = 0.5 s and t = 1 s for Jmax = 12 have

been summarized in Table 6.

Table 5: Example 8. L1 error and computational times for uniform vs. adaptive mesh.
Uniform Mesh Adaptive Mesh

Jmax Np in VJmax tcpu (s) Np at tf in Gridnew E1(u) tcpu (s) Speed Up

8 28 + 1 = 257 2.7106 31 7.1991 × 10−3 0.5835 4.6454

9 29 + 1 = 513 9.3851 34 7.1717 × 10−3 1.2737 7.3684

10 210 + 1 = 1025 36.6631 37 7.7397 × 10−3 2.6622 13.7717

11 211 + 1 = 2049 223.8606 40 7.7220 × 10−3 6.0399 37.0636

12 212 + 1 = 4097 804.9415 43 7.8012 × 10−3 12.6301 63.7320

In the next two examples, we consider Hamilton-Jacobi equations, that is, evolution

70

0 0.2 0.4 0.6 0.8 1
−0.8

−0.4

0

0.4

0.8

1.2

1.6

x

u(
x)

Adaptive

t=0

t=0.158

t=0.5

t=1

V12

(a) Solution u(x, t).

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(b) Grid point distribution at t = 0 s.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(c) Grid point distribution at t = 0.1 s.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(d) Grid point distribution at t = 0.158 s.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(e) Grid point distribution at t = 1 s.

0 0.2 0.4 0.6 0.8 1
15

30

45

60

N
g

t

(f) Time evolution of the number of grid points.

Figure 18: Example 8. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
1, ǫ = 0.01, N1 = N2 = 1.

71

Table 6: Example 8. L1 errors at different times for Jmax = 12.
t Np in Gridnew C (%) E1(u)

0.158 49 98.80 8.2093 × 10−3

0.5 42 98.97 9.3552 × 10−3

1 43 98.95 7.8012 × 10−3

equations as in (133), where

f(uxx, ux, u, x) = f(ux). (162)

For discretizing f(ux) we use the Lax-Friedrich’s (LF) scheme [43, 110, 111, 128]

f(ux) = f̂LF(u−x , u
+
x) = f

(

u+
x + u−x

2

)

− 1

2
αx(u+

x − u−x), (163)

where, αx = maxux∈Ix |f1(ux)|, f1 is the partial derivative of f with respect to ux, Ix =

[umin
x , umax

x], and the minimum and the maximum values of ux are identified by considering

all the values of u−x and u+
x on the nonuniform grid.

Example 9

First, we consider the HJ equation with convex f(ux) taken from [111]

ut +
(ux + 1)2

2
= 0, (164)

with the initial condition and the periodic boundary condition as in [111], that is,

g(x) = − cos πx, u(−1, t) = u(1, t), − 1 ≤ x < 1. (165)

For solving the problem using the proposed algorithm, we first convert the above men-

tioned problem from x ∈ [−1, 1] to x̂ ∈ [0, 1] by using a simple change of variables x = 2x̂−1.

With a slight abuse of notation, we denote x̂ by x, and hence, the problem (164)-(165) trans-

forms to

ut +
(1
2ux + 1)2

2
= 0, (166)

with the initial condition and the periodic boundary condition,

g(x) = − cosπ(2x− 1), u(0, t) = u(1, t). (167)

The derivatives u+
x , u

−
x in the LF discretization are approximated using a WENO scheme

and the temporal integration is performed using a third-order TVD RK scheme. The

72

numerical solution at times t = 0 s, t = 1.5/π2 s, t = 3.5/π2 s, t = 7/π2 s, t = 10/π2 s, and

t = 14/π2 s using a grid with Jmin = 4 and Jmax = 12 are shown in Figure 19(a). The

other parameters used in the grid adaptation algorithm are p = 3, ǫ = 0.001, N1 = N2 = 2.

Figure 19 also shows the grid point distribution in the adaptive mesh at times t = 0 s,

t = 3.5/π2 s, t = 7/π2 s, and t = 14/π2 s. We see that as the kink continues to develop

the algorithm adds points at the finer levels of resolution in the region where the kink is

developing, and removes points from the regions where the solution is getting smoother and

smoother. As the HJ equation (166) continues to evolve further in time, the discontinuity

in the first derivative of the solution is smoothing out and as a result the algorithm starts

removing points from the finer levels of resolution. This, again, demonstrates that the

proposed strategy uses only the grid points that are actually necessary to attain a given

precision, and the algorithm is able to add and remove points when and where is needed.

The L1 errors (E1(u)) along with the number of grid points used by the proposed algorithm

at times t = 1.5/π2 s, t = 3.5/π2 s, t = 7/π2 s, t = 10/π2 s, and t = 14/π2 s for Jmax = 12

have been summarized in Table 7.

Table 7: Example 9. L1 errors at different times for Jmax = 12.
t Np in Gridnew C (%) E1(u)

1.5/π2 52 98.73 1.7603 × 10−3

3.5/π2 50 98.78 4.2828 × 10−3

7/π2 39 99.05 5.4194 × 10−3

10/π2 44 98.93 6.0113 × 10−3

14/π2 31 99.24 6.5118 × 10−3

Example 10

Next, we consider the Hamilton-Jacobi (HJ) equation with non-convex f(ux),

ut − cos(αux + 1) = 0, (168)

with

g(x) = − cosπ(2x− 1), u(0, t) = u(1, t), (169)

where α is a constant. We again use an LF scheme (163) for solving the IBVP (168)-(169).

The derivatives u+
x , u

−
x in the LF discretization are approximated using a WENO scheme

and the temporal integration is performed using a third-order TVD RK scheme.

73

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

x

u(
x)

Adaptive

t=0

t=1.5/π2

t=3.5/π2

t=7/π2

t=10/π2

t=14/π2

V12

(a) Solution u(x, t).

−1 −0.5 0 0.5 1
4

5

6

7

8

9

10

11

12

x

j

(b) Grid point distribution at t = 0 s.

−1 −0.5 0 0.5 1
4

5

6

7

8

9

10

11

12

x

j

(c) Grid point distribution at t = 3.5/π2 s.

−1 −0.5 0 0.5 1
4

5

6

7

8

9

10

11

12

x

j

(d) Grid point distribution at t = 7/π2 s.

−1 −0.5 0 0.5 1
4

5

6

7

8

9

10

11

12

x

j

(e) Grid point distribution at t = 14/π2 s.

0 0.5 1 1.5
20

40

60

80

N
g

t

(f) Time evolution of the grid points.

Figure 19: Example 9. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
3, ǫ = 0.001, N1 = N2 = 2.

74

The choice of α = 0.5 results in the commonly used test problem for 1-D HJ equations

given in [111]. In order to make the problem more interesting and challenging, in this work,

we consider two more choices for α, namely, α = 1 and α = 1.5. The choices α = 1 and

α = 1.5 result in more kinks in the solution at time t = 1.5/π2 s. The numerical solutions

for all the cases at time t = 1.5/π2 s using a grid with Jmin = 4 and Jmax = 12 along with

the corresponding grid point distributions are shown in Figure 20. The other parameters

used in the grid adaptation algorithm are p = 3, ǫ = 0.001, N1 = N2 = 2. The solutions

at t = 1.5/π2 s for α = 0.5, 0.1, and 1.5 have two, four, and six kinks respectively. We once

again observe that the proposed algorithm is able to capture all the kinks in the solutions

accurately and efficiently by adding points at the finer resolution levels in the region of

kinks, while resolving the smoother regions using only the points at the coarse resolution

levels. The L1 errors (E1(u)) along with the number of grid points used by the proposed

algorithm at time t = 1.5/π2 s, for α = 0.5, 1, 1.5 and Jmax = 12 have been summarized in

Table 8.

Table 8: Example 10. L1 errors at different times for Jmax = 12.
α Np in Gridnew C (%) E1(u)

0.5 44 98.93 1.1259 × 10−3

1 120 97.07 8.8733 × 10−4

1.5 125 96.95 5.6106 × 10−4

Example 11

Consider the scalar reaction-diffusion problem that appears in combustion problems [77, 113]

ut − uxx −
Reδ

aδ
(1 + a− u)e−δ/u = 0, (170)

ux(0, t) = 0, u(1, t) = 1, u(x, 0) = 1. (171)

The solution u represents the temperature of a reactant in a chemical system, a is the

heat release, δ is the activation energy, and R is the reaction rate. For small times the

temperature gradually increases from unity with a “hot spot” forming at x = 0. After

some finite time, ignition occurs and the temperature at x = 0 jumps rapidly from near

unity to near 1 + a. A flame front then forms and propagates towards x = 1 with a speed

proportional to eaδ/2(1 + a). In real problems, a is close to unity and δ is large, thus the

75

flame front moves exponentially fast after the ignition. We use the same problem parameters

as in [77, 113] namely, a = 1, R = 5, and δ = 30. This is the same problem as the one given

in [1], except for the value of the parameter δ, which in [1] is taken to be 20. Instead, we

consider δ = 30 as in [77, 113], since the flame layer in this case is much thinner, and higher

mesh adaptation is required. We use (151) to discretize uxx, and use a third-order TVD RK

scheme for temporal integration. To illustrate how we apply Neumann boundary condition

on a nonuniform grid we again consider a grid of the form (136). To apply the Neumann

boundary condition, ux(0, t) = 0, we introduce a fictitious node xj−1,k−1
= −xj1,k1

, which

lies outside the physical domain4, and approximate the boundary condition by

(ux)nj0,k0
=
un

j1,k1
− un

j−1,k−1

xj1,k1
− xj−1,k−1

= 0, (172)

which implies un
j−1,k−1

= un
j1,k1

. Hence, at the boundary x = 0, equation (151) reduces to

(uxx)nj0,k0
=

2

(

un
j1,k1

−un
j0,k0

xj1,k1
−0 −

un
j0,k0

−un
j−1,k−1

0−xj−1,k−1

)

xj1,k1
− xj−1,k−1

=
2(un

j1,k1
− un

j0,k0
)

(xj1,k1
)2

. (173)

The numerical solutions at times t = 0 s, t = 0.24 s, t = 0.241 s and t = 0.244 s using a

grid with Jmin = 4 and Jmax = 12 are shown in Figure 21(a). The other parameters used

in the grid adaptation algorithm are p = 3, ǫ = 10−5/2Jmax−j, N1 = N2 = 1. One of the

main challenges of this problem is the fact that one needs to use a very small time step

to capture the transition layer during the time of ignition. This is achieved automatically

by the proposed algorithm since the algorithm is adaptive both in time and space. As

the mesh gets refined, ∆tn in the proposed algorithm for the solution of evolution PDEs

given in Section 5.3.3 also decreases. We see from Figure 21(f) that for time t < 0.195 s

the proposed algorithm found the solution using only about 50 to 65 points. Starting from

t = 0.195 s to t = 0.2385 s, the algorithm slowly increased the number of points to around

95 points and, thereafter, efficiently added points at finer levels starting at t = 0.2385 s.

As the points from finer grid levels are being added, the algorithm automatically decreases

the time step and is able to capture the transition layer during the time of ignition. The

4Note that xj0,k0
= 0.

76

L1 errors (E1(u)) along with the number of grid points used by the proposed algorithm at

times t = 0.24 s, t = 0.241 s and t = 0.244 s for Jmax = 12 have been summarized in Table 9.

Table 9: Example 11. L1 errors at different times for Jmax = 12.
t Np in Gridnew C (%) E1(u)

0.24 137 96.66 4.6714 × 10−4

0.241 227 94.46 3.4834 × 10−3

0.244 180 95.61 3.2098 × 10−3

Example 12

Finally, we consider a Riemann initial value problem (shock tube) for the Euler equations

of gas dynamics, as follows

ut + f(u)x = 0, (174)

u(x, 0) =

uL, x < 0.5,

uR, x > 0.5,

(175)

where

u = [ρ m E]T, (176)

f(u) = νu+ [0 p pν]T, (177)

ρ, m, E are the gas density, momentum, total energy per unit volume, respectively, ν = m/ρ

is the velocity, and

p = (γ − 1)

(

E − ρν2

2

)

, (178)

is the pressure. In (178) γ is the ratio of specific heat, which takes the usual value of 1.4

(for air). We consider the two well-known problems, namely, Sod’s problem [129], the initial

data for which is given by

uL = [1 0 2.5]T, uR = [0.125 0 0.25]T, (179)

and Lax’s problem [96], the initial data for which is given by

uL = [0.445 0.698 8.82]T, uR = [0.5 0 1.4275]T. (180)

We use the characteristic numerical scheme given in [128, 110] for solving this problem. The

basic idea behind the characteristic scheme is to transform the nonlinear system (174) to a

77

system of (nearly) independent scalar conservation laws, and discretize each scalar conser-

vation law independently in an upwind biased fashion. Then we transform the discretized

system back to the original variables. We use the ENO-Roe fix (ENO-RF) scheme [128]

on a non-uniform grid for obtaining the numerical flux function Fn
ji±1/2,ki±1/2

in the scalar

field, and we use a third-order TVD RK scheme for temporal integration.

The numerical solution of the density ρ(x, t), the velocity ν(x, t), the pressure p(x, t), the

internal energy per unit mass e(x, t) (e = p/(γ−1)ρ), and the grid point distributions in the

adaptive mesh for Sod’s problem and Lax’s problem at times t = 0.2 s, t = 0.13 s respectively,

using a grid with Jmin = 4 and Jmax = 12 are shown in Figure 22 and Figure 23 respectively.

The other parameters used in the grid adaptation procedure are p = 3, ǫ = 0.001 and

N1 = N2 = 2. Figures 22, 23 also show the time evolution of the number of grid points

for both Sod’s and Lax’s problems. The L1 errors (E1(ρ), E1(m), E1(E)) along with the

number of grid points used by the proposed algorithm for solving Sod’s problem at times

t = 0.05 s, t = 0.1 s, t = 0.15 s, and t = 0.2 s and Lax’s problem at times t = 0.05 s, t = 0.1 s,

and t = 0.13 s for Jmax = 12 are summarized in Table 10 and Table 11, respectively.

Table 10: Example 12. Sod’s problem. L1 errors at different times for Jmax = 12.
t Np in Gridnew C (%) E1(ρ) E1(m) E1(E)

0.05 212 94.83 1.0300 × 10−4 1.1859 × 10−4 2.9885 × 10−4

0.1 189 95.39 2.8712 × 10−4 3.2164 × 10−4 8.3684 × 10−4

0.15 173 95.78 4.9362 × 10−4 5.4437 × 10−4 1.4215 × 10−3

0.2 195 95.24 7.8443 × 10−4 8.1571 × 10−4 2.1954 × 10−3

Table 11: Example 12. Lax’s problem. L1 errors at different times for Jmax = 12.
t Np in Gridnew C (%) E1(ρ) E1(m) E1(E)

0.05 272 93.36 5.6092 × 10−5 1.2380 × 10−4 7.7312 × 10−4

0.1 270 93.41 1.8641 × 10−4 4.1361 × 10−4 3.3487 × 10−3

0.13 267 93.48 2.7005 × 10−4 5.9612 × 10−4 4.9735 × 10−3

5.5 Summary

In this chapter, we have proposed a novel multiresolution grid adaptation algorithm for

solving evolution equations. The proposed algorithm for solving evolution PDEs is adaptive

both in space and time. The algorithm is shown to outperform similar grid adaptation

schemes in the literature. Several examples have demonstrated the stability and robustness

78

of the proposed algorithm. In all examples considered, the algorithm adapted dynamically

to any existing or emerging irregularities in the solution, by automatically allocating more

grid points to the region where the solution exhibited sharp features and fewer points to the

region where the solution was smooth. As a result, the computational time and memory

usage can be reduced significantly, while maintaining an accuracy equivalent to the one

obtained using a fine uniform mesh.

Next, we move on to our main motivation behind this work, that is, develop fast and

efficient algorithms for solving optimal control problems.

79

0 0.2 0.4 0.6 0.8 1
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

x

u(
x)

Adaptive

t=1.5/π2

t=0 V12

(a) Solution u(x, 1.5/π2) for α = 0.5.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(b) Grid point distribution at t = 1.5/π2 s for α =
0.5.

0 0.2 0.4 0.6 0.8 1
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

x

u(
x)

Adaptive

t=1.5/π2

t=0 V12

(c) Solution u(x, 1.5/π2) for α = 1.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(d) Grid point distribution at t = 1.5/π2 s for α = 1.

0 0.2 0.4 0.6 0.8 1
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

x

u(
x)

Adaptive

t=1.5/π2

t=0 V12

(e) Solution u(x, 1.5/π2) for α = 1.5.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(f) Grid point distribution at t = 1.5/π2 s for α =
1.5.

Figure 20: Example 10. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
3, ǫ = 0.001, N1 = N2 = 2.

80

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

u(
x)

Adaptive

t=0.244
t=0.241

t=0.24

V12

(a) Solution u(x, t).

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(b) Grid point distribution at t = 0 s.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(c) Grid point distribution at t = 0.24 s.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(d) Grid point distribution at t = 0.241 s.

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(e) Grid point distribution at t = 0.244 s.

0 0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

250

300

N
g

t

(f) Time evolution of the number of grid points.

Figure 21: Example 11. Parameters used in the simulation are Jmin = 4, Jmax = 12, p =
3, ǫ = 10−5/2Jmax−j , N1 = N2 = 1.

81

0 0.2 0.4 0.6 0.8 1
0.1

0.4

0.7

1

x

ρ

Adaptive
V12

(a) Solution ρ(x, 0.2).

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

x

ν

Adaptive

V12

(b) Solution ν(x, 0.2).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

p

Adaptive
V12

(c) Solution p(x, 0.2).

0 0.2 0.4 0.6 0.8 1
1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

e

Adaptive
V12

(d) Solution e(x, 0.2).

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(e) Grid point distribution.

0 0.05 0.1 0.15 0.2
40

80

120

160

200

240

N
g

t

(f) Time evolution of grid points.

Figure 22: Example 12. Sod’s problem. Parameters used in the simulation are Jmin =
4, Jmax = 12, p = 3, ǫ = 0.001, N1 = N2 = 2.

82

0 0.2 0.4 0.6 0.8 1
0.3

0.5

0.7

0.9

1.1

1.3

x

ρ
Adaptive
V12

(a) Solution ρ(x, 0.13).

0 0.2 0.4 0.6 0.8 1

0

0.4

0.8

1.2

1.6

x

ν

Adaptive
V12

(b) Solution ν(x, 0.13).

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

3.5

x

p

Adaptive
V12

(c) Solution p(x, 0.13).

0 0.2 0.4 0.6 0.8 1
0

4

8

12

16

20

x

e

Adaptive
V12

(d) Solution e(x, 0.13).

0 0.2 0.4 0.6 0.8 1
4

5

6

7

8

9

10

11

12

x

j

(e) Grid point distribution.

0 0.05 0.1 0.14
50

100

150

200

250

300

350

N
g

t

(f) Time evolution of grid points.

Figure 23: Example 12. Lax’s problem. Parameters used in the simulation are Jmin =
4, Jmax = 12, p = 3, ǫ = 0.001, N1 = N2 = 2.

83

CHAPTER VI

OPTIMAL CONTROL

6.1 Problem Formulation

Consider the following optimal control problem with Bolza cost functional, which we call

the primal problem and denote it by P .

6.1.1 Primal Problem P

The problem is to determine the state x(·) and the control u(·) that minimize the Bolza

cost functional,

J = e(x(τf), τf) +

∫ τf

τ0

L(x(τ),u(τ), τ)dτ, (181)

where e : R
Nx × R+ → R, τ ∈ [τ0, τf], x : [τ0, τf] → R

Nx , u : [τ0, τf] → R
Nu , L :

R
Nx × R

Nu × [τ0, τf]→ R, subject to the state dynamics

ẋ(τ) = f(x(τ),u(τ), τ), (182)

the boundary conditions

x(τ0) = x0, ef (x(τf), τf) = 0, (183)

where ef : R
Nx × R+ → R

Ne , and the constraints

Cu(u(τ)) ≤ 0, Cx(x(τ)) ≤ 0, Cxu(x(τ),u(τ)) ≤ 0, (184)

where Cu : R
Nu → R

NCu , Cx : R
Nx → R

NCx , Cxu : R
Nx × R

Nu → R
NCxu . The initial time

τ0 is assumed to be given and the final time τf can be fixed or free.

Next, we define the dual problem.

6.1.2 Problem P λ

For the sake of simplicity, in this section, we denote the inequality constraints by

C =

Cu

Cx

Cxu

≤ 0, (185)

84

where C : R
Nu × R

Nx → R
NC , NC = NCu +NCx +NCxu . Now by adjoining the dynamic

constraints (182), the constraints (185), and the boundary condition (183) to J , we obtain

the augmented performance index,

J ′ = e(x(τf), τf) + νTef (x(τf), τf) +

∫ τf

τ0

(L+ λT (f − ẋ) + µTC)dτ, (186)

where λ ∈ R
Nx , ν ∈ R

Ne , µ ∈ R
NC , and

µi =

0, Ci < 0,

> 0, Ci = 0,

(187)

for i = 1, . . . , NC .

The Hamiltonian is defined to be

H = L+ λT f + µTC. (188)

Let us define

E(x(τf), τf) = e(x(τf), τf) + νTef (x(τf), τf). (189)

Hence,

J ′ = E(x(τf), τf) +

∫ τf

τ0

(H − λT ẋ)dτ. (190)

Now consider the integral

∫ τf

τ0

λT (τ)ẋ(τ)dτ = λT (τ)x(τ)|τf
τ0 −

∫ τf

τ0

λ̇T (τ)x(τ)dτ (191)

= λT (τf)x(τf)− λT (τ0)x(τ0)−
∫ τf

τ0

λ̇T (τ)x(τ)dτ. (192)

Hence,

J ′ = E(x(τf), τf)− λT (τf)x(τf) + λT (τ0)x(τ0) +

∫ τf

τ0

(H + λ̇Tx)dτ. (193)

The first variation of J ′ is given by

δJ ′ =
∂E

∂x(τf)
dx(τf) +

∂E

∂τf
δτf − λT (τf)δx(τf) (194)

+

∫ τf

τ0

(Hxδx +Huδu + λ̇T δx)dτ +

∫ τf +δτf

τf

Ldτ, (195)

85

where

∂E

∂x(τf)
=

[

∂E

∂x1(τf)
, . . . ,

∂E

∂xNx(τf)

]

, (196)

dx(τf) = δx(τf) + ẋ(τf)δτf = δx(τf) + f |τ=τf
δτf , (197)

Hx =

[

∂H

∂x1
, . . . ,

∂H

∂xNx

]T

, (198)

Hu =

[

∂H

∂u1
, . . . ,

∂H

∂uNu

]T

. (199)

Since
∫ τf +δτf

τf

Ldτ = L|τ=τf
δτf , (200)

therefore,

δJ ′ =

[

∂E

∂x(τf)
− λT (τf)

]

δx(τf)+

[

∂E

∂τf
+

∂E

∂x(τf)
f |τ=τf

+ L|τ=τf

]

δτf

+

∫ τf

τ0

((Hx + λ̇T)δx +Huδu)dt. (201)

Recall that a necessary condition for a minimum is that the first variation of J ′ be zero,

that is,

δJ ′ = 0. (202)

Hence, the necessary conditions for optimality are as follows:

λ̇T = −Hx, (203)

Hu = 0 (204)

λT (tf) =
∂E

∂x(tf)
, (205)

and

∂E

∂τf
+

∂E

∂x(τf)
f |τ=τf

+ L|τ=τf
= 0. (206)

Using (205), equation (206) can be written as

∂E

∂τf
+ λT (tf)f |τ=τf

+ L|τ=τf
= 0, (207)

Equations (203)-(205) are known as Euler-Lagrange equations and (207) is known as the

transversality condition.

86

Hence, problem P reduces to the dual problem of determining x, u, λ, ν, and µ from

the Euler-Lagrange equations (203)-(205), the transversality condition (207), the state dy-

namics,

ẋ(τ) = f(x(τ),u(τ), τ), (208)

and the boundary conditions,

x(τ0) = x0, (209)

e(x(τf), τf) = 0. (210)

As noted earlier, it is very difficult to find an analytic solution to the above mentioned

optimal control problems P or P λ, therefore the problems must be solved numerically. For

this reason, the optimal control problems P or P λ must be discretized to an NLP problem

using certain kind of discretization, say for example, Runge-Kutta (RK) discretizations

(discussed later in Sections 6.3 and 6.4). A discretization method is said to be direct if

it refers to the discretization of problem P and indirect if it refers to the discretization of

problem P λ.

The indirect methods, as seen from above, require one to solve the necessary optimality

conditions stated in terms of the adjoint differential equations and the associated transver-

sality conditions, which for complicated nonlinear dynamics can be intimidating. On the

other hand, direct methods are simply based on discretizing the states and the controls

at a set of nodes, transforming the optimal control problem into an NLP problem. More-

over, direct methods tend to be more robust to the initial guesses, hence they converge

more easily. Therefore, in this work, we discretize problem P directly without finding any

analytic expressions for the necessary conditions using RK discretizations as described in

Section 6.3.

Before we transcribe the optimal control problem into an NLP problem, we give a very

brief introduction to nonlinear programming. For further reading, the reader is referred to

a very nice text on nonlinear programming by Bazaraa et al. [9].

87

6.2 Introduction to Nonlinear Programming

A NLP problem is to minimize f(x) subject to

g(x) ≤ 0, (211)

h(x) = 0, (212)

where x ∈ R
n, f : R

n → R, g : R
n → R

m, h : R
n → R

ℓ. The above problem should be

solved for the values of the variables x1, . . . , xn that satisfy the constratints (211), (212)

and meanwhile minimize the function f .

The function f is usually called the objective function, or the criterion function. The

constraints (211) are called inequality constraints and the constraints (212) are called the

equality constraints. A vector x satisfying all the constraints (211), (212) is called a feasible

solution to the problem. The collection of all such solutions forms the feasible region.

The nonlinear programming (NLP) problem, then, is to find a feasible point x̄ such that

f(x) ≥ f(x̄) for each feasible point x. Such a point x̄ is called an optimal solution to the

problem.

Next, we give the necessary conditions for x̄ to be an optimal solution to the above

mentioned NLP problem.

Theorem 3 (Karush-Kuhn-Tucker (KKT) Necessary Conditions [9]). For the above stated

problem let x̄ be a feasible solution, and let I = {i : gi(x̄) = 0}. Suppose that f and gi for

i ∈ I are differentiable at x̄, and suppose that each gi for i /∈ I is continuous at x̄, and that

each hi for i = 1, . . . , ℓ is continuously differentiable at x̄. Further, suppose that grad(gi)(x̄)

for i ∈ I and grad(hi)(x̄) for i = 1, . . . , ℓ are linearly independent. If x̄ solves the problem

locally, then unique scalars µ̃i for i ∈ I and λ̃i for i = 1, . . . , ℓ exist such that

grad(f)(x̄) +
∑

i∈I

µ̃igrad(gi)(x̄) +

ℓ
∑

i=1

λ̃igrad(hi)(x̄) = 0, (213)

µ̃i ≥ 0, i ∈ I, (214)

where grad(·) denotes the gradient of the function in the parantheses. In addition to the

above assumptions, if each gi for i /∈ I is also differentiable at x̄, then the KKT conditions

88

can be written in the following equivalent form:

grad(f)(x̄) +
m
∑

i=1

µ̃igrad(gi)(x̄) +
ℓ
∑

i=1

λ̃igrad(hi)x̄) = 0, (215)

µ̃igi(x̄) = 0, i = 1, . . . ,m, (216)

µ̃i ≥ 0, i = 1, . . . ,m. (217)

In the next section, we transcribe the optimal control problem P into an NLP problem.

6.3 NLP Formulation: Discretizations on Dyadic Grids

All discretizations of the state dynamics, constraints and performance index in this chapter

will be performed on (nonuniform) grids induced by dyadic grids (103) and (104):

Vj = {tj,k ∈ [0, 1] : tj,k = k/2j , 0 ≤ k ≤ 2j}, Jmin ≤ j ≤ Jmax, (218)

Wj = {t̂j,k ∈ [0, 1] : t̂j,k = (2k + 1)/2j+1, 0 ≤ k ≤ 2j − 1}, Jmin ≤ j ≤ Jmax − 1. (219)

For simplicity, we denote x and u evaluated at tj,k by xj,k and uj,k respectively. Using

the transformation

τ = t∆τ + τ0, (220)

where ∆τ = τf−τ0 we can express the trajectory optimization problem stated in Section 6.1

on the unit interval t ∈ [0, 1] in terms of the new independent variable t. Hence, the original

trajectory optimization problem reduces to the minimization of the following cost functional

J = e(x(1), τf) + ∆τ

∫ 1

0
L(x(t),u(t), t)dt, (221)

subject to the state dynamics

1

∆τ
ẋ(t) = f [x(t),u(t), t], (222)

where x : [0, 1]→ R
Nx , u : [0, 1]→ R

Nu , the boundary conditions

x(0) = x0, ef (x(1), τf) = 0, (223)

and constraints

Cu(u(τ)) ≤ 0, Cx(x(τ)) ≤ 0, Cxu(x(τ),u(τ)) ≤ 0. (224)

89

We convert the above mentioned optimal control problem into an NLP problem using a

Runge-Kutta (RK) discretization. To this end, let a nonuniform grid of the form

G = {tji,ki
: tji,ki

∈ [0, 1], 0 ≤ ki ≤ 2ji , Jmin ≤ ji ≤ Jmax, for i = 0, . . . , N,

and tji,ki
< tji+1,ki+1

, for i = 0, . . . , N − 1}. (225)

Then a q-stage RK method for discretizing Eq. (222) is given by [17, 18]

xji+1,ki+1
= xji,ki

+ hji,ki
∆τ

q
∑

ℓ=1

βℓf ℓ
ji,ki

, (226)

where f ℓ
ji,ki

= f(yℓ
ji,ki

,uℓ
ji,ki

, tℓji,ki
), yℓ

ji,ki
, uℓ

ji,ki
, tℓji,ki

are the intermediate state, control,

and time variables on the interval [tji,ki
, tji+1,ki+1

], given by

yℓ
ji,ki

= xji,ki
+ hji,ki

∆τ

q
∑

m=1

αℓ,mfm
ji,ki

, (227)

where hji,ki
= tji+1,ki+1

− tji,ki
, tℓji,ki

= tji,ki
+ hji,ki

ρℓ, uℓ
ji,ki

= u(tℓji,ki
), for 1 ≤ ℓ ≤ q,

and q is referred to as the stage. In these expressions ρℓ, βℓ, αℓ,m are known constants

with 0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ 1. The scheme is explicit if αℓ,m = 0 for m ≥ ℓ and implicit

otherwise. The coefficients ρℓ, βℓ, αℓ,m can be written in a convenient way using the Butcher

diagram [35] as shown in Figure 24. Some common examples of q-stage RK methods are

the trapezoidal method (q = 2), the Hermite-Simpson method (q = 3), and the classical

fourth-order RK method (q = 4) [17, 18, 35].

ρ1 α11 . . . α1q

...
...

. . .
...

ρq αq1 . . . αqq

β1 . . . βq

Figure 24: Butcher diagram.

Using Eq. (226), the defects of discretization are given by

ζi = xji+1,ki+1
− xji,ki

− hji,ki
∆τ

q
∑

ℓ=1

βℓf ℓ
ji,ki

, (228)

for i = 0, . . . , N − 1. For discretizing the cost functional (221), we introduce a new state z

such that

ż(t) = ∆τL(x(t),u(t), t)dt, z(0) = 0. (229)

90

Using a q-stage RK method for discretizing Eq. (229) yields

zji+1,ki+1
= zji,ki

+ hji,ki
∆τ

q
∑

ℓ=1

βℓLℓ
ji,ki

, (230)

where Lℓ
ji,ki

= L(yℓ
ji,ki

,uℓ
ji,ki

, tℓji,ki
), i = 0, . . . , N − 1. Hence, we have

zjN ,kN
= zj0,k0

+ ∆τ

N−1
∑

i=0

hji,ki

q
∑

ℓ=1

βℓLℓ
ji,ki

. (231)

Since z(0) = zj0,k0
= 0, the cost functional (221) in discretized form can be written as

follows

J = e(xjN ,kN
, τf) + ∆τ

N−1
∑

i=0

(

hji,ki

q
∑

ℓ=1

βℓLℓ
ji,ki

)

. (232)

Let us now define the following sets

X = {xj0,k0
, . . . ,xjN ,kN

},

U = {uj0,k0
, . . . ,ujN ,kN

},

G̃ = {tℓji,ki
∈ [0, 1] : tℓji,ki

/∈ G, 0 ≤ i < N, 1 ≤ ℓ ≤ q},

X̃ = {yℓ
ji,ki

: tℓji,ki
∈ G̃},

Ũ = {uℓ
ji,ki

: tℓji,ki
∈ G̃}.

As a result of the discretization, the optimal control problem reduces to the NLP problem

of finding the variables X, U, Ũ, τf , that minimize

J = e(xjN ,kN
, τf) + ∆τ

N−1
∑

i=0

(

hji,ki

q
∑

ℓ=1

βℓLℓ
ji,ki

)

, (233)

subject to the following constraints

ζi = 0, i = 0, . . . , N − 1, (234)

xj0,k0
= x0, (235)

ef (xjN ,kN
, τf) = 0, (236)

Cu(U, Ũ) ≤ 0, (237)

Cx(X, X̃) ≤ 0, (238)

Cxu(X, X̃,U, Ũ) ≤ 0. (239)

91

Remark 6. It is well known [64, 49] that RK discretizations for optimal control problems

need to satisfy additional assumptions in order to obtain consistent approximations. Hence-

forth, we will therefore assume that the following conditions hold:

1. If the optimal control problem does not have any constraints, or if the optimal control

problem has only pure control constraints then by RK discretizations we mean RK

discretizations that satisfy the conditions in Ref. [64].

2. Alternatively, if the optimal control problem has only pure control constraints, the

coefficients of the RK scheme satisfy the conditions given in Ref. [49] or Ref. [64].

3. If the optimal control problem has state or mixed state/control constraints, then by

RK discretizations we mean either Euler, Trapezoidal, or Hermite-Simpson discretiza-

tion.

The restriction to the above mentioned schemes stems from the fact that the convergence

of these schemes for optimal control problems has been demonstrated in the literature [64,

49, 48, 19, 18]. Nonetheless, we point out that the proposed mesh refinement approach will

work with any RK discretization for which the convergence for the optimal control problems

can be shown, using either uniform or non-uniform meshes.

In the next section, we give examples of the RK discretizations used in this work.

6.4 Examples of Runge-Kutta Discretization

Four common examples of q-stage RK methods are Euler method (q = 1), trapezoidal

method (q = 2), Hermite-Simpson method (q = 3), and classical fourth-order RK method

(q = 4). The Euler discretization is first-order accurate, whereas the trapezoidal discretiza-

tion is second-order accurate, and Hermit-Simpson and classical RK discretization are both

fourth-order accurate.

6.4.1 Euler Method

An explicit Euler method is a 1-stage RK scheme with the following parameters

The defects of discretization for an explicit Euler scheme are as follows

ζi = xji+1,ki+1
− xji,ki

− hji,ki
∆τ f(xji,ki

,uji,ki
, tji,ki

), (240)

92

0 0

1

for i = 1, . . . , N − 1.

6.4.2 Trapezoidal Method

Trapezoidal method is a 2-stage implicit RK scheme with the following parameters

0 0 0
1 1/2 1/2

1/2 1/2

The defects for the trapezoidal discretization are given by

ζi = xji+1,ki+1
− xji,ki

−∆τ
hji,ki

2
(fji,ki

+ fji+1,ki+1
), (241)

where

fji,ki
= f(xji,ki

,uji,ki
, tji,ki

),

for i = 1, . . . , N − 1.

6.4.3 Hermite-Simpson Method

Let us consider a 3-stage RK scheme with the following parameters

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6

1/6 2/3 1/6

It has been indicated in [35] that this scheme is equivalent to the implicit Hermite-

Simpson (HS) scheme (Appendix A.3), the defects of discretization for which are given

by

ζi = xji+1,ki+1
− xji,ki

−∆τ
hji,ki

6
[fji,ki

+ 4fji+1/2,ki+1/2
+ fji+1,ki+1

], (242)

where

fji,ki
= f(xji,ki

,uji,ki
, tji,ki

),

fji+1/2,ki+1/2
= f(xji+1/2,ki+1/2

,uji+1/2,ki+1/2
, tji+1/2,ki+1/2

),

93

xji+1/2,ki+1/2
=

1

2
[xji,ki

+ xji+1,ki+1
] + ∆τ

hji,ki

8
[fji,ki

− fji+1,ki+1
],

tji+1/2,ki+1/2
=
tji,ki

+ tji+1,ki+1

2
, uji+1/2,ki+1/2

= u(tji+1/2,ki+1/2
),

for i = 1, . . . , N − 1.

6.4.4 Classical Runge-Kutta Method

The Butcher diagram for the fourth-order explicit RK scheme (q = 4) is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Hence, the defects of discretization for a fourth-order RK scheme are as follows

ζi = xji+1,ki+1
− xji,ki

− 1

6
(r1 + 2r2 + 2r3 + r4), (243)

where

r1 = hji,ki
∆τ f(xji,ki

,uji,ki
, tji,ki

),

r2 = hji,ki
∆τ f(xji,ki

+
1

2
r1,uji+1/2,ki+1/2

, tji+1/2,ki+1/2
),

r3 = hji,ki
∆τ f(xji,ki

+
1

2
r2,uji+1/2,ki+1/2

, tji+1/2,ki+1/2
),

r4 = hji,ki
∆τ f(xji,ki

+ r3,uji+1,ki+1
, tji+1,ki+1

),

tji+1/2,ki+1/2
=
tji,ki

+ tji+1,ki+1

2
, uji+1/2,ki+1/2

= u(tji+1/2,ki+1/2
),

for i = 1, . . . , N − 1.

Since the trajectory optimization problem can have discontinuities and switchings in the

states and the controls, one way to accurately capture these discontinuities and switchings

in the solution is to solve the NLP problem on a very fine mesh. However, this will require a

lot of computational resources in terms of both CPU time and memory. Therefore, in order

to accurately capture the irregularities in the solution and alleviate these problems, we will

only refine the mesh locally in the region of the irregularity using the multiresolution-based

mesh refinement algorithm described in Chapter 4.

94

We are now ready to present the proposed multiresolution-based trajectory optimization

algorithm.

6.5 Multiresolution Trajectory Optimization

Consider a set of dyadic grids Vj and Wj as described in Eqs. (218) and (219). Let G be a

nonuniform grid as given in (67)), then by Ip(·;TG(·)) we denote the p-th order essentially

nonoscillatory (ENO) interpolation (see Section 4.3.2) of U = {gj,k : tj,k ∈ TG(t)}, where

TG(t) = {tjm,km}i+p
m=i ⊆ G, 0 ≤ i ≤ N − p− 1.

To proceed with the algorithm, we first choose the minimum resolution level Jmin based

on the minimum time step required to achieve the desired accuracy in the regions of the

solution where no constraints are active1, the threshold ǫ, which should be at least of the

order of hJmin
, where hJmin

= 1/2Jmin (the significance of ǫ and reason for such a choice

of ǫ which will be clear shortly), and pick the maximum resolution level Jmax. The pro-

posed MTOA involves the following steps. First, we transcribe the continuous trajectory

optimization problem into an NLP problem using a q-stage RK discretization as described

in the previous section. We use trapezoidal discretization for the first iteration and switch

to a high-order discretization for subsequent iterations. Next, we set iter = 1, initialize

Griditer = VJmin
, and choose an initial guess for all NLP variables. Let us denote the set of

initial guesses by Xiter. The proposed Multiresolution Trajectory Optimization Algorithm

(MTOA) then proceeds as follows:

Multiresolution Trajectory Optimization Algorithm (MTOA)

1. Solve the NLP problem on Griditer with the initial guess Xiter. If Griditer has points

from the level WJmax−1, terminate.

2. Mesh refinement.

(a)-i. If the problem has either pure state constraints or mixed constraints on the states

1The minimum time step required to achieve a desired accuracy in the regions of the solution where
no constraints are active can be calculated using the well-known error estimation formulas for RK schemes
[64, 19, 65, 66].

95

and controls, set Φiter = {xj,k,uj,k : tj,k ∈ Griditer} and Nr = Nx +Nu.

(a)-ii. If the optimal control problem does not have any constraints, or if only pure

control constraints are present, set Φiter = {uj,k : tj,k ∈ Griditer} and Nr = Nu.

(a)-iii. In case no controls are present in the problem, set Φiter = {xj,k : tj,k ∈ Griditer}

and Nr = Nx.

In the following, let Φiter denote the set constructed in Step (a) of the algorithm,

that is, let Φiter = {φℓ(tj,k) : ℓ = 1, . . . , Nr, tj,k ∈ Griditer}.

(b) Initialize an intermediate grid Gridint = VJmin−1, with function values

Φint = {φℓ(tJmin,k) ∈ Φiter, 0 ≤ k ≤ 2Jmin, ℓ = 1, . . . , Nr}, (244)

and set j = Jmin − 1.

i. Find the points that belong to the intersection of Wj and Griditer

T̂j = {t̂j,ki
: t̂j,ki

∈ Wj ∩Griditer, for i = 1, . . . , Nt̂, 1 ≤ Nt̂ ≤ 2j − 1}. (245)

If T̂j is empty go to Step 2(c), otherwise go to the next step.

ii. Set i = 1.

A. Compute the interpolated function values at t̂j,ki
∈ T̂j,

φ̂ℓ(t̂j,ki
) = Ip(t̂j,ki

,TGridint
(t̂j,ki

)),

where φ̂ℓ is the ℓth element of φ̂, for ℓ = 1, . . . , Nr.

B. Calculate the interpolative error coefficient dj,ki
at the point t̂j,ki

2

dj,ki
(φ) = max

ℓ=1,...,Nr

dj,ki
(φℓ) = max

ℓ=1,...,Nr

|φℓ(t̂j,ki
)− φ̂ℓ(t̂j,ki

)|. (246)

If the value of dj,ki
is below the threshold ǫ, then reject t̂j,ki

and goto

Step 2(b)iiE, otherwise add t̂j,ki
to the intermediate grid Gridint and move

on to the next step.

2Note that φℓ(t̂j,k) ∈ Φiter for all t̂j,k ∈ T̂j and ℓ = 1, . . . , Nr.

96

C. Add to Gridint points belonging to the set (VĴ ∩ [tj,ki
, tj,ki+1]) \ Gridint,

where Ĵ = min{j + ĵ, Jmax}, ĵ = 2 if iter = 1 and ĵ ≥ 2 if iter > 1.

Here ĵ is the number of finer levels from which the points be added to

the grid for refinement. In particular, we add to the intermediate grid

Gridint the points {tĴ ,k : 2Ĵ−jki ≤ k ≤ 2Ĵ−j(ki + 1)} \ Gridint.

D. Add the function values at all the newly added points to Φint. If the

function value at any of the newly added points is not known, interpolate

the function value at that point from the points in Griditer and their

function values in Xiter using Ip(·,TGriditer
(·)).

E. Increment i by 1. If i ≤ Nt̂ goto Step 2(b)iiA, otherwise move on to the

next step.

iii. Set j = j + 1. If j < Jmax go to Step 2(b)i, otherwise move on to the next

step.

(c) Terminate the mesh refinement algorithm. The final nonuniform grid is Gridnew =

Gridint and the corresponding function values are in the set Φnew = Φint.

3. Set iter = iter+ 1. If the number of points and the level of resolution remain the

same after the mesh refinement procedure, terminate. Otherwise interpolate the NLP

solution found in Step 1 on the new mesh Gridnew (which will be the new initial guess

Xiter), reassign the set Griditer to Gridnew, and go to Step 1.

The order of the interpolating polynomial p can be taken to be one less than the order

of the RK discretization of the differential equations. This choice of p is dictated by the

error analysis given in the next section, which considers the case with no constraints. It

is reminded that under the presence of constraints, the order of the RK discretization

for optimal control problems may be less than the order of the RK discretization used

for the differential equations [64]. The subsequent analysis, albeit heuristic, elucidates

the motivation behind the proposed approach and the previous choice of p. Although a

more rigorous analysis is required to justify the recommended choice for the order of the

interpolating polynomials (hence the order of the RK discretization as well), nonetheless,

97

in all numerical examples we considered, choosing the interpolating polynomial according

to the previous criterion turned out to be adequate, irrespective of the presence (or not) of

the constraints.

6.6 Rationale of Proposed Multiresolution Scheme

In this section we outline the main idea behind the multiresolution mesh refinement algo-

rithm. In the process, we also provide rough estimates on the error one expects to obtain by

following the proposed approach. To keep the notation as simple as possible, the subsequent

discussion will be restricted to the case of a scalar-valued control function u. Furthermore,

we will consider a problem without state and control constraints, so that the refinement

algorithm is performed based on the (scalar-valued) control histories (case 2(a)-ii of MTOA

with Nu = Nr = 1).

The key idea behind the proposed mesh refinement algorithm is based on the fact that

the interpolative error coefficient in Step 2(b)ii-B of the MTOA, and for a sufficiently fine

grid, provides a good measure of the local smoothness of the function u. To see why this is

so, consider a function u which, at t = t̄, has ν ≥ −1 continuous derivatives3, but it has a

jump discontinuity in its (ν + 1)th derivative. Locally around any point t 6= t̄ the function

u can be approximated accurately by a polynomial, say û, of degree ν. Furthermore, in the

neighborhood of t̄, any interpolating polynomial of degree at least ν+1 will induce an error

that is proportional of the jump discontinuity of u(ν+1).

The proposed algorithm uses the information of the local interpolation error in (246)

to locally refine the grid, if necessary. In particular, at the locations when the solution is

smooth (hence it can be accurately interpolated by neighboring points) no further refinement

is performed. At those locations where the function is not smooth, grid points are added

to reduce the interpolation error below a certain threshold.

To this end, let the final grid at a certain iteration step be given by the points G =

{t0, t1, . . . , tN}. For each point ti ∈ G, (0 ≤ i ≤ N), let TG(ti) = {τ i
0, τ

i
1, . . . , τ

i
p} ∈ G\{ti}

with τ i
0 < · · · < τ i

p, be the stencil of p + 1 points that are used to interpolate the function

3This notation implies that for ν = −1 the function is discontinuous.

98

u in the interval [τ i
0, τ

i
p], according to the discussion in the previous section. That is, let û

be the unique polynomial of degree p, such that (see Appendix A.1.1)

û(τ i
m) = u(τ i

m), 0 ≤ m ≤ p, 0 ≤ i ≤ N, (247)

and

u(t) = û(t) + u[τ i
0, . . . , τ

i
p, t] Π

p
m=0(t− τ i

m), τ i
0 ≤ t ≤ τ i

p. (248)

Moreover, if u is sufficiently smooth (i.e., is continuously differentiable at least ν ≥ p + 1

times) in the interval [τ i
0, τ

i
p] then

u[τ i
0, . . . , τ

i
p, t] =

u(p+1)(ξ)

(p + 1)!
, τ i

0 ≤ ξ ≤ τ i
p. (249)

It then follows from (248) that

di(u) = |u(ti)− û(ti)| ≈ |u(p+1)|(hi)
(p+1), (ν ≥ p+ 1), (250)

where hi = max0≤m≤p−1(τ
i
m+1−τ i

m). In (250) the notation “≈” indicates a term of the same

order of magnitude. Similarly, the notation “.” will be used to indicate a term dominated

by an expression of a known order of magnitude.

If, on the other hand, u has a jump discontinuity in its (ν+ 1) derivative and ν < p+ 1,

then [51, 68]

u[τ i
0, . . . , τ

i
p, t] ≈

[[u(ν+1)]]

(hi)p−ν
, (251)

where [[u(ν+1)]] denotes the jump at the discontinuity of the (ν+ 1)th derivative of u inside

the interval [τ i
0, τ

i
p]. It follows from (248) that, in this case, we have the estimate

di(u) = |u(ti)− û(ti)| ≈ [[u(ν+1)]](hi)
(ν+1), (ν < p+ 1). (252)

It has been shown in Ref. [64] that, under appropriate smoothness and coercivity hy-

potheses [64], and assuming that the solution u⋆ of the continuous optimal control problem

(221)-(223) is at least ν = p− 1 continuous differentiable, the following estimate holds

max
0≤i≤N

|xi − x⋆(ti)|+ max
0≤i≤N

|ui − u⋆(ti)| . hp+1 + hp

∫ 1

0
ω(u⋆(p), [0, 1]; t, h) dt, (253)

99

for sufficiently small h = max0≤i≤N{ti+1 − ti}, and where ω(v, [a, b]; t, h) denotes the local

modulus of continuity of the function v, defined by [122]

ω(v, [a, b]; t, h) = sup{|v(σ1)− v(σ2)| : σ1, σ2 ∈ [t− h/2, t + h/2] ∩ [a, b]}. (254)

In (253) it has been assumed that the optimal solution (xi, ui) of the discrete problem

(233)-(236) is computed using a p + 1-th order RK scheme satisfying the Hager conditions

of Ref. [64].

The MTOA estimates the last term in (253) using the local interpolating error for the

control. To see why this is true, re-write the last term in (253) as follows

∫ 1

0
ω(u⋆(p), [0, 1]; t, h) dt =

N−1
∑

i=0

∫ ti+1

ti

ω(u⋆(p), [0, 1]; t, h) dt

=

N−1
∑

i=0

∫ ti+1

ti

ω(u⋆(p), [t′i, t
′′
i]; t, h) dt

(255)

where t′i = 3ti/2 − ti+1/2 and t′′i = 3ti+1/2 − ti/2. Using the definition of the modulus of

continuity (254) and the estimate (251), we have that

ω(u⋆(p), [t′i, t
′′
i]; t, h) ≤ sup

σ1,σ2∈[t′i,t
′′
i]
|u⋆(p)(σ1)− u⋆(p)(σ2)| ≈ [[u⋆(p)]]. (256)

It follows that
∫ ti+1

ti

ω(u⋆(p), [t′i, t
′′
i]; t, h) dt . h1−p

i di(u
⋆). (257)

Since the MTOA ensures the bound |di(u
⋆)| ≤ ǫ we finally get the estimate (recall that

∑N
i=0 hi ≈ 1)

hp

∫ 1

0
ω(u⋆(p), [0, 1]; t, h) dt . ǫ. (258)

It follows that

max
0≤i≤N

|xi − x⋆(ti)|+ max
0≤i≤N

|ui − u⋆(ti)| . hp+1 + ǫ. (259)

Given now the general grid in (225) it follows from (259) that if we chose ǫ ≈ h
(p+1)
Jmin

,

where hJmin
= tJmin,k+1 − tJmin,k = 1/2Jmin , 0 ≤ k ≤ 2Jmin − 1, we get an estimate of the

form

max
0≤i≤N

|xji,ki
− x⋆(tji,ki

)|+ max
0≤i≤N

|uji,ki
− u⋆(tji,ki

)| . hp+1
Jmin

. (260)

100

Remark 7. As pointed out by Hager [64], the error in the discrete controls ui may be one or

more orders larger that the error obtained if the control were computed by the minimization

of the Hamiltonian and by using the discrete state/costate pair instead. Hence, ideally, the

approximation order in the right-hand-side of (253) will be one or more order less that

p + 1 even if a p + 1-th RK order is used. The interested reader may refer to Ref. [64] for

further details in regards to this observation. Since here we are only interested in rough

error estimates, the exact order of convergence for the discrete controls is immaterial for

the overall analysis (for example, use a higher order RK-scheme if needed).

6.7 Numerical Examples

In this section we provide several examples to demonstrate the robustness and efficiency

of the proposed approach for the solution of optimal control problems. For all cases, we

have used SNOPT [61] to solve the resulting NLP problem (233)-(239). SNOPT is an NLP

solver, which is based on sequential quadratic programming (SQP). All computations were

performed in MATLAB on a Pentium IV machine with a 3 GHz processor and 2 GB of

RAM. In all the examples below, and unless stated otherwise, a linear function has been

used as an initial guess for the first iteration of MTOA.

Example 13

First, we consider the Moon landing problem, taken from Ref. [55]. The control problem is

formulated as maximizing the final mass, and hence minimizing

J = −m(τf). (261)

The equations of motion are given by

dh

dτ
= v, (262)

dv

dτ
= −g +

T

m
, (263)

dm

dτ
= − T

Ispg
, (264)

where the state variables h, v, m are altitude, velocity, and mass respectively. Control is

provided by the thrust T , which is bounded by

0 ≤ T ≤ Tmax. (265)

101

The final time τf is free. The other parameters in the problem are g, the gravity of the

Moon, and Isp, the specific impulse of the spacecraft engine. The normalized parameters

for the problem were chosen the same as in [55]:

Tmax

m0g
= 1.1,

Ispg

v0
= 1,

h(0)

h0
= 0.5,

v(0)

v0
= −0.05,

m(0)

m0
= 1,

for any given set of initial conditions h0, v0, and m0. Therefore, we have the following

normalized initial conditions:

h(0) = 0.5, v(0) = −0.05, m(0) = 1.0. (266)

For soft landing, we must have

h(0) = 0.5, (267)

v(0) = −0.05, (268)

m(0) = 1.0. (269)

In addition, for a physical meaningful trajectory, we must have

m(τf) > 0. (270)

We solved this problem on a grid with Jmin = 3 and Jmax = 10. The threshold used for

this problem was ǫ = 10−4. We used the fourth-order explicit RK scheme (q = 4) for a high

order discretization in MTOA. The algorithm terminated in 8 iterations and the overall

CPU time taken by MTOA to solve this problem was 5.1 seconds. Because of the space

constraints, we show the time history of thrust T along with the grid point distribution

only for iterations 1, 3, 6, 7, and 8 (Figure 25 and Figure 26). The grid point distributions

in Figure 25 and Figure 26 show that with each iteration the algorithm adds points at finer

resolution levels, and as a result the solution is getting more and more accurate. Moreover,

as the solution gets more and more accurate, the algorithm also removes points at the coarser

levels from the region where the solution is getting smoother. The grid point distribution

at iteration 8 (Figure 26(d)) again shows that the regions where the solution is smooth are

102

well represented by the coarse resolution levels; the higher resolution levels are needed only

near the switching points in the thrust T , thus illustrating the efficiency of the proposed

algorithm. From Figure 26(c), we see that the algorithm was accurately able to capture

the switching in the control using only two points. It should be noted that the algorithm

used only 25 points out of 1025 points of the grid V10 for calculating the final solution. One

should also discern that the algorithm used 25 points at iteration 6 whereas used 23 points

at iteration 7. At iteration 7, the algorithm removed some points at the coarser resolution

levels and added points at the finer resolution level W8. This clearly demonstrates that the

proposed strategy uses only the grid points that are actually necessary to attain a given

precision, and the algorithm is able to add and remove points when and where is needed.

The time history of mass m along with the phase portrait of the velocity v vs. the altitude

h for the last iteration are shown in Figure 27.

For comparison, we also solved the same problem using a fourth-order explicit RK

scheme on a uniform grid with same number of nodes as used by MTOA at the final

iteration, that is, on a uniform mesh with 25 nodes. The algorithm terminated in 2.1

seconds. Since, the switching in the control is not captured accurately (see Figure 28(a))

using a uniform mesh with 25 nodes, we gradually increased the number of nodes in the

uniform mesh and resolved the problem using the same linear initial guess, until the CPU

time taken by the algorithm was approximately equal to the CPU time taken by MTOA.

We ended up using 46 nodes in the uniform mesh. The algorithm terminated in 5.1 seconds.

The control found using a uniform mesh with 46 nodes is shown in Figure 28(b). Hence,

we see that MTOA was able to capture the switching in the control with more accuracy for

the same CPU time as for the uniform mesh case with 46 nodes.

Example 14

We first consider a simple minimum-energy problem with a second-order state variable

inequality constraint, taken from Ref. [33]. Since the analytic solution for this problem is

known, we can infer the absolute accuracy of the solution provided by the proposed MTOA.

103

The problem is to find the control u(t) that minimizes the cost function

J =
1

2

∫ 1

0
u2(t) dt, (271)

subject to the dynamics

ẋ = v, (272)

v̇ = u, (273)

initial and final conditions

x(0) = x(1) = 0, (274)

v(0) = −v(1) = 1, (275)

and the path constraint

x(t) ≤ 0.04. (276)

We solved this problem on a grid with Jmin = 3 and Jmax = 10. The threshold used was

ǫ = 10−4. We used the implicit HS scheme for a high order discretization in MTOA. The

algorithm terminated in 5 iterations. The time histories of the states x and v at the final

iteration are shown in Figure 29. The time history of the control u along with the grid

point distribution at the final iteration are shown in Figure 30. It should be noted that the

proposed algorithm used only 61 points out of the maximum of 1025 points at the finest

resolution grid V10. Since the analytic solution of this problem is known [33] the absolute

error can be computed for all cases. The errors in the computed solution along with the

number of grid points (Niter) used by the algorithm at each iteration are shown in Table 12.

As shown in Table 12, the numerical solution converges to the analytic solution and, with

each iteration, the errors are decreasing roughly by an order of magnitude.

The overall CPU time taken by MTOA to solve this problem was 5.6 seconds. For

comparison, we also solved the same problem using a Hermite-Simpson discretization on a

uniform grid with the same number of points as in MTOA at the final iteration, that is, on

a uniform mesh with 61 nodes. The algorithm terminated in 2.5 seconds with the errors

shown in Table 13. Since the errors in the solution using a uniform mesh with 61 nodes

104

Table 12: Example 14: No. of grid points along with the error in the computed optimal
cost at each iteration.

Iteration Niter ‖x− x⋆‖L∞ ‖v − v⋆‖L∞ ‖u− u⋆‖L∞ |J − J⋆|
1 9 4.0 × 10−2 1.5× 10−1 1.7× 100 Failed
2 15 1.3 × 10−4 2.1× 10−3 1.3× 10−1 5.7× 10−3

3 29 3.9 × 10−6 5.9× 10−5 3.0× 10−3 4.6× 10−4

4 45 3.1 × 10−7 1.4× 10−5 5.2× 10−4 6.6× 10−6

5 61 3.0 × 10−8 1.6× 10−6 5.6× 10−5 3.3× 10−8

Table 13: Example 14: No. of grid points and error for uniform mesh.

N1 ‖x− x⋆‖L∞ ‖v − v⋆‖L∞ ‖u− u⋆‖L∞ |J − J⋆|
61 3.7× 10−6 1.4× 10−4 1.4 × 10−1 2.7 × 10−4

131 1.7× 10−6 9.5× 10−5 2.7 × 10−2 6.0 × 10−5

are larger than the ones achieved using MTOA, we also gradually increased the number of

nodes in the uniform mesh and resolved the problem using the same linear initial guess,

until either the errors were of the same order of magnitude as the ones obtained using the

MTOA or the CPU time taken by the algorithm was approximately equal to the CPU time

taken by MTOA. This process ended up in a uniform mesh of 131 nodes. The algorithm

terminated in 5.7 seconds and the final errors are shown in Table 13. These results show

a typical trend we observed in all examples we tested, and which demonstrate the efficacy

of the MTOA : higher accuracy for the same CPU time or a smaller number of grid points

and CPU time for the same accuracy, compared to uniform grid implementations.

Example 15

Here we consider a problem derived from the control of a chemical reaction [22, 40]. The

problem is to maximize the final amount of product y during a two-stage chemical reaction,

x→ y → z, by a proper choice of the rate coefficient u(t). The amount of waste product z

formed does not influence x and y, and since the magnitude of z is of no interest, we may

consider only the reaction rates for x, y, which are given by

ẋ = −ux, (277)

ẏ = ux− ρuky, (278)

where ρ, k are positive constants. For this example we consider the same parameters as in

105

[22, 40]

ρ = 2.5, k = 1.5, tf = 2, (279)

and initial conditions

x(0) = 1, (280)

y(0) = 0.01. (281)

The allowable control must lie within the range

0.1 ≤ u(t) ≤ umax. (282)

We solved this problem on a grid with Jmin = 3 and Jmax = 6 for three different choices

of umax, namely, umax = 0.5, umax = 0.4, and umax = 0.3. The threshold used in the

simulations was ǫ = 10−4. We used the implicit HS scheme for a high order discretization

in MTOA. The algorithm terminated in four iterations for all cases. The time history of

the states x, y and the control u, along with the grid point distribution for different values

of umax at the final iteration of MTOA are shown in Figure 31. The final states x(2) and

y(2) (rounded off to five decimal places), the overall CPU time taken by MTOA to solve

the problem, and the number of nodes used at the final iteration of MTOA (Nf) for the

previous three values of umax, are summarized in Table 14. The values of x(2) and y(2) are

the same as those reported in Ref. [40].

We also solved the same problem using the HS discretization on a uniform grid having

the same number of points as used by MTOA at the final iteration, that is, on a uniform

mesh with Nf nodes. The CPU times (tCPU) used by the algorithm for all the cases are

summarized in Table 15. The values for both x(2) and y(2) were accurate up to five

decimal places for the case umax = 0.4. Since either of the two values x(2) or y(2) was not

of the same accuracy for the remaining two cases, we resolved the problem for the cases

umax = 0.5 and umax = 0.2 with a larger number of nodes in the uniform mesh (using

again a linear initial guess). We repeated this process until the values for both the states

at the final time coincided to five decimal places to the solution given in Table 14. The

result was a uniform mesh of 55 and 20 nodes for the cases umax = 0.5 and umax = 0.3

106

respectively. These observations, along with the corresponding CPU times are reported

in Table 15. The uniform mesh implementation required more points to obtain the same

accuracy. The corresponding CPU times were comparable for this example for both uniform

and non-uniform mesh implementations. The reader should be reminded however that the

uniform grid solutions were obtained by calling SNOPT only once (assuming convergence

was possible). Hence per iteration the CPU time for the MTOA is indeed smaller, as

expected.

Table 14: Example 15: No. of nodes used by MTOA at the final iteration, overall CPU
time taken by MTOA, and final states for three different values of umax.

umax Nf tCPU (sec) x(2) y(2)

0.5 31 6.2 0.52222 0.30813
0.4 23 3.8 0.53051 0.30611
0.3 17 1.7 0.55765 0.30013

Table 15: Example 15: Uniform mesh.

umax N tCPU (sec) Error N tCPU (sec) Error

0.5 31 3 10−5 55 6.9 10−6

0.4 23 1.7 10−6 - - -
0.3 17 1.0 10−5 20 1.3 10−6

Example 16

In this example we investigate the performance of MTOA to a “hyper-sensitive” problem,

taken from Ref. [18]. As pointed out in Ref. [115, 18] this problem is extremely difficult to

solve using indirect methods. The problem is to minimize

J =

∫ 10000

0

(x2(t) + u2(t)) dt, (283)

subject to

ẋ = −x3 + u, (284)

and

y(0) = 1, (285)

y(10000) = 1.5. (286)

107

We solved this problem on a grid with Jmin = 4 and Jmax = 10. The threshold used was

ǫ = 10−4. We used the implicit HS scheme for a high order discretization in MTOA. MTOA

terminated in 5 iterations and the overall CPU time taken by MTOA to solve this problem

was 17.5 seconds. The final nonuniform grid (shown in Fig. 32(b)) included 53 nodes. The

time history of the state x is shown in Figure 32(a).

For comparison, we also solved the same problem using a HS discretization on a uniform

grid having the same number of nodes as used by MTOA at the final iteration, that is, on

a uniform mesh with 53 nodes. The algorithm terminated after 43.7 seconds; the value

of the optimal cost found was an order of magnitude larger than the optimal cost found

using MTOA. These results show, again, the superiority of the MTOA over uniform grid

implementations. For this example, the uniform grid implementation not only took more

than twice the CPU time of MTOA, but also returned a solution that was far worse than

the one obtained from MTOA.

Example 17

As our final example we consider the realistic problem of optimizing the re-entry trajectory

of an Apollo-type vehicle [112]. This is a benchmark problem in trajectory optimization

that is known to be very challenging owing to its sensitivity in terms of the initial guesses.

The equations of motion during the flight of the vehicle through the Earth’s atmosphere

are as follows:

v̇ = − S

2m
ρv2cD(u)− g sin γ

(1 + ξ)2
,

γ̇ =
S

2m
ρvcL(u) +

v cos γ

R(1 + ξ)
− g cos γ

v(1 + ξ)2
,

ξ̇ =
v

R
sin γ,

ζ̇ =
v

1 + ξ
cos γ,

where v is the velocity, γ is the flight path angle, ξ = h/R is the normalized altitude, h is

the altitude above the Earth’s surface, R is the Earth’s radius, and ζ is the distance on the

Earth’s surface of a trajectory of an Apollo-type vehicle. The control variable is the angle

108

of attack u. For the lift and drag the following relations hold:

cD = cD0
+ cDL cos u, (287)

cD0
= 0.88, (288)

cDL = 0.52, (289)

cL = cL0
sinu, (290)

cL0
= −0.505. (291)

The air density is assumed to satisfy the relationship, ρ = ρ0e
−βRξ . The values of the

constants are

R = 209.0352 (105 ft),

S/m = 50, 000 (10−5 ft2 slug−1),

ρ0 = 2.3769 × 10−3(slug ft−3),

g = 3.2172 × 10−4 (105 ft s−2),

β = 1/0.235 (10−5 ft−1).

The cost functional to be minimized that describes the total stagnation point convective

heating per unit area is given by the integral

J =

∫ tf

0
10v3√ρdt. (292)

The vehicle is to be maneuvered into an initial position favorable for the final splashdown

in the Pacific. Data at the moment of entry are

v(0) = 0.35 (105 ft s−1), (293)

γ(0) = −5.75 deg, (294)

ξ(0) = 4/R (h(0) = 400, 000 ft), (295)

ζ(0) = 0 (105 ft). (296)

Pesch [112] considered two situations for the given problem, one with constraints on control

and the other one with constraints on the state. We consider both of these problems in the

sequel.

109

Problem A. Problem A imposes a control inequality constraint that limits the decelera-

tion of the vehicle:

|u| ≤ umax, umax > 0. (297)

The data prescribed at the unspecified terminal time tf for Problem A are as follows

v(tf) = 0.0165 (105 ft s−1), (298)

γ(tf) unspecified, (299)

ξ(tf) = 0.75530/R (h(tf) = 75, 530 ft), (300)

ζ(tf) = 51.6912 (105 ft). (301)

We solved this problem for all the cases considered by Pesch [112], and the results obtained

using MTOA vindicate the proposed algorithm. For the sake of brevity, here we only give

the results for the cases when umax = 180 and umax = 68.

We solved this problem on a grid with Jmin = 3 and Jmax = 7. The threshold used for

this problem was ǫ = 10−2. We used the implicit HS scheme for a high order discretization

in MTOA. The algorithm for both cases terminated after 5 iterations and the overall CPU

times taken by MTOA to solve the problem for both cases were 111.2 seconds and 125.6

seconds, respectively. The time histories of the velocity (v) and altitude above the Earth’s

surface (h) at the final iteration of MTOA for umax = 180 are shown in Figure 33. The time

history of the angle of attack (u) along with the grid point distribution at the final iteration

of MTOA for umax = 180 are shown in Figure 34. The time histories of the flight-path angle

(γ) and the distance on the Earth’s surface (ζ) at the final iteration of MTOA for umax = 68

are shown in Figure 35. The time history of the angle of attack (u) along with the grid

point distribution at the final iteration of MTOA for umax = 68 are shown in Figure 36.

We also solved this problem for both the previous two cases on a grid with Jmin = 3 and

Jmax = 6, but this time we uniformly refined the mesh after each iteration. The reason for

choosing Jmax = 6 is because this problem could not be solved on a uniform grid finer than

V6 because of hardware limitations. The CPU times taken by the algorithm for both the

cases are shown in Table 16. We solved the problem using MTOA with the same parameters

as before, but this time with Jmax = 6. MTOA terminated within four iterations for both

110

cases. The overall CPU times taken by MTOA along with the number of nodes used by

MTOA at the final iteration (Nf) are given in Table 16. As shown in Table 16, the MTOA

outperformed the standard uniform grid implementation for this problem in terms of CPU

time.

Table 16: Example 17: Uniform mesh vs. MTOA.

Problem Uniform mesh MTOA
N tCPU (sec) Nf tCPU (sec)

A (umax = 180) 65 241.1 39 76.6
A (umax = 68) 65 174.9 30 94.2

B (ξmax = 0.0066) 65 265.4 41 60.0

Problem B. For this problem we impose a constraint to reduce re-ascent after the first

dip into the atmosphere, that is, we have

ξ ≤ ξmax, ξmax > 0. (302)

The data prescribed at the unspecified terminal time tf for this problem are

v(tf) = 0.01239929 (105 ft s−1), (303)

γ(tf) = −26.237124 deg, (304)

ξ(tf) = 0.75530/R (h(tf) = 75530 ft), (305)

ζ(tf) = 51.10198 (105 ft). (306)

Again, we solved this problem for all the cases considered by Pesch [112]. The results

obtained using MTOA, once again, justify the proposed algorithm. For the sake of brevity,

below we only give the results for the case when ξmax = 0.0066. We solved this problem

on a grid with Jmin = 2 and Jmax = 7. We used the implicit HS scheme for a high order

discretization in MTOA. The threshold used for this problem was ǫ = 10−2. The algorithm

terminated after 6 iterations and the overall CPU time taken by MTOA to solve this problem

was 235.2 seconds. The time histories of the velocity (v) and altitude above the Earth’s

surface (h) at the final iteration of MTOA are shown in Figure 37. The time history of the

angle of attack (u) along with the final grid point distribution are shown in Figure 38.

111

When we attempted to solve the same problem on a uniform mesh with 33 nodes (with

the same linear initial guess) using HS discretization, the algorithm failed to converge.

Increasing the number of nodes to 65 nodes and using again the same linear initial guess

did not help. We therefore solved this problem again on a grid with Jmin = 2 and Jmax = 6,

but this time we progressively refined the mesh uniformly after each iteration. The value

of Jmax = 6 was chosen because the problem could not be solved on a uniform grid finer

than V6 owing to hardware limitations. The CPU time taken by the algorithm in this

case is given in Table 16. Once again, we solved the problem using MTOA with the same

parameters as before but this time with Jmax = 6. MTOA terminated in 5 iterations. The

overall CPU time taken by MTOA along with the number of nodes used by MTOA at the

final iteration (Nf) are also given in Table 16. These results again show the benefits of the

MTOA in terms of accuracy and speed when compared with uniform grid implementations

for this problem.

Next, we give the advantages of MTOA over the existing adaptive techniques for solving

optimal control problems.

6.8 Advantages of the Proposed Multiresolution Trajectory Optimiza-
tion Algorithm over the Existing Methods

First we show the advantages of the proposed multiresolution trajectory optimization al-

gorithm over the current state-of-the-art algorithms for solving optimal control problems,

namely, the algorithm of Betts et al. [18, 20, 22] and the pseudospectral knotting method [117],

and then compare the proposed algorithm with the methods of Binder et al. [24, 25, 26, 27]

and Schlegel et al. [121].

6.8.1 Advantages over the Method of Betts et al. [18, 20, 22]

The method of Betts et al. [18, 20, 22] selects the new grid points by solving an integer pro-

gramming problem, that minimizes the maximum discretization error (found by integrating

the dynamics of the system) by subdividing the current grid. In [22], the discretization error

is computed by comparing the solution with a more accurate estimate using two (half) steps

112

and by keeping the control fixed. The authors also assumed that the order of discretiza-

tion, which effects the addition of mesh points to any subinterval in their mesh refinement

algorithm, is constant. However, during the course of optimization process the actual order

may vary with each iteration because of the potential activation of path constraints. It has

been shown in [23] that having the wrong value for the order of discretization can seriously

impact the mesh refinement algorithm of [22]. In order to overcome this problem, Betts et

al. [20] derived a formula for estimating the order reduction by comparing the behavior of

the discretization errors on successive mesh refinement iterations. But since the estimated

order reduction is very sensitive to the computed discretization errors, the authors in [20]

use a highly accurate quadrature method, namely Romberg quadrature (Appendix A.2),

with a tolerance close to machine precision for computing the discretization errors.

Briefly, the mesh refinement method of Betts et al. [18, 20] comprises of three main steps.

First, to interpolate all the states and controls using B-splines required for integrating the

dynamics of the system. Second, integrate all the states using a highly accurate quadrature

method, namely Romberg quadrature, with a tolerance close to machine precision in order

to find the discretization errors. Third, solve an integer programming problem for refining

the mesh.

Solving an integer programming problem for just refining the mesh on top of the NLP

problem required for solving the optimal control problem can be computationally expensive.

The proposed technique allows us to bypass solving any kind of secondary optimization

problem for adding points to the mesh. Only simple interpolations are needed to refine

the mesh, which can be done on the fly. Furthermore, the proposed mesh refinement

algorithm does not involve any integrations, as opposed to the highly accurate integrations

(Romberg quadratures) used by Betts et al, which again can be computationally expensive

for nonlinear dynamics. Finally, the algorithm of [18, 20, 22] can only add points to the

grid, whereas MTOA is capable of not only adding points to the grid but also removing

points from the grid when and where is needed. Moreover both the operations of adding

and removing points can be done in a single step.

113

6.8.2 Advantages over the Pseudospectral Knotting Method [117, 63]

The pseudospectral knotting method introduced by Ross and Fahroo [117] breaks a sin-

gle phase problem with discontinuities and switches in states, control, cost functional, or

dynamic constraints into a multiple phase problem with the phase boundaries, termed as

“knots” by the authors, as the point of discontinuities or switchings. This way states

and controls are allowed to be discontinuous across the phase boundaries and the phase

boundaries can be fixed or free. On each phase, the problem is solved using the Legendre

pseudospectral method [52] or Chebyshev pseudospectral method [55], and the free knots

are part of the optimization process. The knots where the states are assumed to be contin-

uous but no continuity condition is imposed on the controls are termed as soft knots. The

soft knots can handle problems with smooth data and non-smooth solutions (e.g. switches

and corners). But as pointed out by Ross [116] “Soft knots do not increase the speed of the

algorithm; they are expected to improve accuracy. Consequently, the introduction of soft

knots in the grid might significantly slow the algorithm.” In the pseudospectral knotting

method, one needs to know a priori the approximate number and location of singularities

in the solution. These may not be known beforehand for most problems. One needs to

know the number of irregularities in order to add that many soft knots in the optimization

problem. Furthermore, the soft knots break the problem into multiple phases and each

phase is solved using a particular number of grid points assigned by the user for that phase

before starting the algorithm. Therefore, the user needs to know a priori the approximate

locations of the singularities, without which, the user will not be able to assign correctly,

the number of nodes for a particular phase. These facts are illustrated with the help of a

simple example.

Let us assume an optimal control problem which has two switchings in the control and

neither the number of switchings nor their approximate locations is known a priori before

solving the problem. Now suppose the user adds only one soft knot. In that case, the

pseudospectral knotting method will not be able to capture accurately both the switchings

in the control since one soft knot can capture only one switching. On the other hand, adding

too many soft knots will result in the unnecessary increase in the size of the optimization

114

problem.

Now we assume that somehow it is known that there are going to be two switchings in

the control. In this case, the user can add two free soft knots in the optimization problem,

which will break the problem into three phases. But now the question is to add how

many nodes in each of the phases, which can not be answered correctly unless the user

knows the approximate location of the switching beforehand. Say for example, the user

solves the optimization problem using pseudospectral knotting method with equal number

of grid points N for all the phases and suppose after solving the problem it appears that

the switchings take place at 0.1τf and 0.95τf . Hence, the problem was solved by using N

points for the phase [0, 0.1τf], N points for the phase [0.1τf , 0.95τf], and N points for the

phase [0.95τf , τf]. It may happen that the chosen value of N was redundant for the first

and third phases, whereas N might have not been adequate for the second phase. While

taking N to be sufficiently large for all the phases will increase the size of the NLP problem

considerably.

In order to improve the pseudospectral methods, Gong et al. [63] present an algorithm

in which the user specifies the number of nodes to be increased in a particular phase, in

case the error of the computed optimal control between two successive iterations is greater

than a prescribed threshold. The authors of Ref. [63] use the gradient of the control to

determine (approximately) the location of the knots. Since the number of nodes that will

be increased on a particular phase is assigned by the user a priori even before starting the

code, the algorithm faces the same problem as discussed before for the case of pseudospectral

knotting method.

On the other hand, the proposed multiresolution trajectory optimization algorithm is

fully autonomous. The user need not know a priori the number nor the approximate loca-

tions of the irregularities in the solution. The proposed MTOA will automatically detect

the regions in the solution that are nonsmooth and it will add points accordingly when and

where is needed.

Furthermore, the nonuniform grids of pseudospectral methods result in grid distributions

that remain fixed for each phase, since the location of the nodes are dictated by the zeros of

115

the first derivative of the Legendre or Chebyshev polynomials (Appendix A.1), irrespective

of the location of the soft knots [118]. Our algorithm uses a grid that is fully adaptive,

embracing any form depending on the irregularities in the solution. This provides more

flexibility in capturing any irregularities in the solution.

6.8.3 Advantages over the Algorithms of Binder et al. [24, 25, 26, 27] and
Schlegel et al. [121]

From all previous references in this area the work of Binder et al. [24, 25, 26, 27], and

Schlegel et al. [121] are the closest – at least in spirit – to the approach proposed in this

thesis.

Binder et al. [24, 25, 26] work in the wavelet space by using the wavelet-Galerkin

approach to discretize the optimal control problem into an NLP problem and use the local

error analysis of the states and the wavelet analysis of the control profile to add or remove

the wavelet basis functions. When one uses wavelet-Galerkin methods, multiplication in

the physical space becomes convolution in the wavelet space, which is very costly as it is

hard to compute convolutions efficiently. Whereas, by using the proposed mesh refinement

technique, we always work in the physical domain and at the same time take advantage of

one of the main properties of the wavelets - the multiresolution properties (see Chapter 2).

Moreover, operations like multiplication and differentiation are fast in the physical domain

as compared to the wavelet domain. Furthermore, nonlinearities can be handled with ease.

Binder et al. in [27] use the direct shooting approach, where the optimal control prob-

lem is converted into an NLP problem by parametrization of the control profiles, combined

with a wavelet analysis of the gradients of the Lagrangian function with respect to the

parametrization functions at the optimal points to determine the regions that require re-

finement. In order to improve this method further for problems with state and/or control

path constraints Schlegel et al. [121] use wavelet analysis of the control profile to determine

the regions that require refinement. Using wavelet analysis only to determine the regions of

irregularities in the solution results in additional computational overhead, as one needs to

transform back and forth between the physical and wavelet domain. In addition, one needs

to interpolate the function values at the finest level every time one needs to perform the

116

wavelet transform, which also results in additional computational overhead. Whereas the

proposed mesh refinement technique uses only the retained points in the grid for further

adding and removing points from the grid, and hence there is no need of interpolating the

function values at the finest level.

6.9 Summary

In this chapter we have proposed a novel multiresolution-based approach for direct tra-

jectory optimization. The algorithm automatically, and with minimal effort, generates a

nonuniform grid that reduces the discretization error with each iteration. As a result, one

is able to capture the solution accurately and efficiently using a relatively small number of

points. All the transition points in the solution (for example, bang-bang subarcs, or entry

and exit points associated with state or mixed constraints) are captured with high accuracy.

The convergence of the algorithm can be enhanced by initializing the algorithm on a coarse

grid having a small number of variables. Once a converged solution is attained, the grid can

be further refined by increasing the accuracy locally, only at the vicinity of those points that

cannot be accurately interpolated by neighboring points in the grid. The methodology thus

provides a compromise between robustness with respect to initial guesses, intermediate and

final solution accuracy, and execution speed. These observations are supported by several

numerical examples of challenging trajectory optimization problems. The proposed mul-

tiresolution trajectory optimization algorithm has been shown to have several advantages

over the current state-of-the-art methods for solving the optimal control problems.

Next, we present two sequential trajectory optimization techniques for solving problems

with moving targets and/or dynamically changing environments.

117

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

Time (τ)

T

(a) Iteration 1: Time history of thrust T .

0 0.2 0.4 0.6 0.8 1 1.2
3

4

5

6

7

8

9

10

Time (τ)

j

No. of Points: 9 out of 1025

(b) Iteration 1: Grid point distribution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

Time (τ)

T

(c) Iteration 3: Time history of thrust T .

0 0.2 0.4 0.6 0.8 1 1.2
3

4

5

6

7

8

9

10

Time (τ)

j

No. of Points: 15 out of 1025

(d) Iteration 3: Grid point distribution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

Time (τ)

T

(e) Iteration 6: Time history of thrust T .

0 0.2 0.4 0.6 0.8 1 1.2
3

4

5

6

7

8

9

10

Time (τ)

j

No. of Points: 25 out of 1025

(f) Iteration 6: Grid point distribution.

Figure 25: Example 13. Time history of thrust T along with the grid point distribution
for iterations 1, 3, and 6.

118

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

Time (τ)

T

(a) Iteration 7: Time history of thrust T .

0 0.2 0.4 0.6 0.8 1 1.2
3

4

5

6

7

8

9

10

Time (τ)

j

No. of Points: 23 out of 1025

(b) Iteration 7: Grid point distribution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

Time (τ)

T

(c) Iteration 8: Time history of thrust T .

0 0.2 0.4 0.6 0.8 1 1.2
3

4

5

6

7

8

9

10

Time (τ)

j

No. of Points: 25 out of 1025

(d) Iteration 8: Grid point distribution.

Figure 26: Example 13. Time history of thrust T along with the grid point distribution
for iterations 7 and 8.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.2

0.4

0.6

0.8

1

Time (τ)

m

(a) Iteration 8: Time history of mass m.

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

v

h

(b) Iteration 8: Phase portrait of v vs. h.

Figure 27: Example 13. Time history of mass m and the phase portrait of velocity v vs.
altitude h for iteration 8.

119

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

Time (τ)

T

(a) No. of nodes used: 25.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

Time (τ)

T

(b) No. of nodes used: 46.

Figure 28: Example 13. Time history of thrust T computed on a uniform mesh using an
explicit fourth-order RK discretization.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

Time (τ)

x

Analytical
Numerical

(a) Iteration 5: Time history of x.

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (τ)

v

Analytical
Numerical

(b) Iteration 5: Time history of v.

Figure 29: Example 14: Time history of x, v at the final iteration of MTOA.

0 0.2 0.4 0.6 0.8 1
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Time (τ)

u

Analytical
Numerical

(a) Iteration 5: Time history of u.

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9

10

Time (τ)

j

No. of Points: 61 out of 1025

(b) Iteration 5: Grid point distribution.

Figure 30: Example 14: Time history of u along with the grid point distribution at the
final iteration of MTOA.

120

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time

x(t)

u(t)

y(t)

(a) Time history of x, y, and u for umax = 0.5.

0 0.5 1 1.5 2
3

4

5

6

Time

j

No. of Points: 31 out of 65

(b) Grid point distribution.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time

u(t)

x(t)

y(t)

(c) Time history of x, y, and u for umax = 0.4.

0 0.5 1 1.5 2
3

4

5

6

Time

j

No. of Points: 23 out of 65

(d) Grid point distribution.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time

x(t)

u(t)

y(t)

(e) Time history of x, y, and u for umax = 0.3.

0 0.5 1 1.5 2
3

4

5

6

Time (τ)

j

No. of Points: 17 out of 65

(f) Grid point distribution.

Figure 31: Example 15: Time history of states x, y and control u along with the grid
point distributions for different umax at the final iteration of MTOA.

121

0 2000 4000 6000 8000 10000

0

0.5

1

1.5

Time (τ)

x

(a) Iteration 5: Time history of x.

0 2000 4000 6000 8000 10000
4

5

6

7

8

9

10

Time (τ)

j

No. of Points: 53 out of 1025

(b) Iteration 5: Grid point distribution.

Figure 32: Example 16: Time history of state x along with the grid point distribution at
the final iteration of MTOA.

0 100 200 300 400
0

0.1

0.2

0.3

0.4

Time (τ)

v
(1

05)

(a) Iteration 5: Time history of v.

0 100 200 300 400

1

2

3

4

Time (τ)

h
(1

05)

(b) Iteration 5: Time history of h.

Figure 33: Example 17: Problem A. Time histories of v, h for umax = 180 at the final
iteration of MTOA.

0 100 200 300 400
−180

−100

0

100

180

Time (τ)

u

(a) Iteration 5: Time history of u.

0 100 200 300
3

4

5

6

7

Time (τ)

j

No. of Points: 48 out of 129

(b) Iteration 5: Grid point distribution.

Figure 34: Example 17: Problem A. Time history of u along with the grid point distribu-
tion for umax = 180 at the final iteration of MTOA.

122

0 100 200 300 400
−50

−30

−10

10

Time (τ)

γ

(a) Iteration 5: Time history of γ.

0 100 200 300 400
0

20

40

60

Time (τ)

ζ
(1

05)

(b) Iteration 5: Time history of ζ.

Figure 35: Example 17: Problem A. Time histories of γ, ζ for umax = 68 at the final
iteration of MTOA.

0 100 200 300 400
−180

−100

0

100

180

Time (τ)

u

(a) Iteration 5: Time history of u.

0 100 200 300
3

4

5

6

7

Time (τ)

j

No. of Points: 38 out of 129

(b) Iteration 5: Grid point distribution.

Figure 36: Example 17: Problem A. Time history of u along with the grid point distribu-
tion for umax = 68 at the final iteration of MTOA.

0 100 200 300 400
0

0.1

0.2

0.3

0.4

Time (τ)

v
(1

05)

(a) Iteration 5: Time history of v.

0 100 200 300 400

1

2

3

4

Time (τ)

h
(1

05)

(b) Iteration 5: Time history of h.

Figure 37: Example 17: Problem B. Time histories of v, h for ξmax = 0.0066 at the final
iteration of MTOA.

123

0 100 200 300 400
−180

−100

0

100

180

Time (τ)

u

(a) Iteration 5: Time history of u.

0 100 200 300
2

3

4

5

6

7

Time (τ)

j

No. of Points: 61 out of 129

(b) Iteration 5: Grid point distribution.

Figure 38: Example 17: Problem B. Time history of u for ξmax = 0.0066 along with the
grid point distribution at the final iteration of MTOA.

124

CHAPTER VII

SEQUENTIAL MULTIRESOLUTION TRAJECTORY

OPTIMIZATION FOR PROBLEMS WITH MOVING TARGETS

AND/OR DYNAMICALLY CHANGING ENVIRONMENT

7.1 Problem Formulation

We wish to determine the state x(·) and the control u(·) that minimize the Bolza cost

functional,

J = e(x(τf), τf) +

∫ τf

τ0

L(x(τ),u(τ), τ)dτ, (307)

where e : R
Nx × R+ → R, τ ∈ [τ0, τf], x : [τ0, τf] → R

Nx , u : [τ0, τf] → R
Nu , L :

R
Nx × R

Nu × [τ0, τf]→ R, subject to the state dynamics

ẋ(τ) = f(x(τ),u(τ), τ), (308)

the state and control constraints

C(x(τ),u(τ), τ) ≤ 0, (309)

where C : R
Nx × R

Nu × [τ0, τf]→ R
Nc , the initial condition

x(τ0) = x0, (310)

and the terminal constraint

ef (x(τf), τf) = 0, (311)

where ef : R
Nx × [τ0,∞) → R

Ne . The initial time τ0 is assumed to be given and the final

time τf can be fixed or free.

Note that the functions C and ef are assumed to be given at time t0, but may change

as the vehicle moves from x0 to x(τf). This change is not known a priori so it cannot be

modeled via the explicit time-dependence of C and ef in (309) and (311).

125

7.2 Sequential Trajectory Optimization

In order to solve an optimal control problem with a moving target and/or a dynamically

changing environment, in this chapter we present two sequential trajectory optimization

algorithms. The basic idea behind the proposed algorithms is to solve the trajectory op-

timization problem at hand over the horizon [τ1
0 , τ

1
f], and as we continue to move forward

in time, we re-solve the optimization problem again on the new horizons [τ i
0, τ

i
f], where

i = 2, . . . , NH , using the solution of the previous horizon as an initial guess. Here τ1
0 = τ0,

τ i−1
0 < τ i

0 < τ i−1
f , i = 2, . . . , NH , and NH is the number of horizons. If the final time is

fixed, then

τ1
f = τ2

f = · · · = τNH
f = τf . (312)

For further analysis, let

∆τ i
ro = τ i+1

0 − τ i
0, i = 1, . . . , NH − 1, (313)

be the time interval after which we re-optimize the trajectory. The value of ∆τ i
ro can be

the same or different for all i = 1, . . . , NH − 1 . For the case when ∆τ i
ro are all the same for

i = 1, . . . , NH − 1, that is, τ i
ro = τro, for all i = 1, . . . , NH − 1, and the final time is fixed,

the number of horizons is given by

NH = ⌊(τf − τ0)/∆τro)⌋. (314)

Next, we present the sequential trajectory optimization algorithm STOA I.

7.2.1 Sequential Trajectory Optimization Algorithm I (STOA I)

Consider a set of dyadic grids Vj and Wj as described in Eqs. (218) and (219). We first

choose the minimum resolution level Jmin based on the minimum time step required to

achieve the desired accuracy in the regions of the solution where no constraints are active1,

the threshold ǫ(t) (the significance of which will be clear shortly), and the maximum resolu-

tion level Jmax. Then the proposed STOA I involves the following steps. First, we transcribe

1The minimum time step required to achieve a desired accuracy in the regions of the solution where
no constraints are active can be calculated using the well-known error estimation formulas for RK schemes
[64, 19, 65, 66].

126

the continuous trajectory optimization problem into an NLP problem using a q-stage RK

discretization as described in Section 6.3. We use trapezoidal discretization for the first

iteration and switch to a high-order discretization for subsequent iterations. Next, we set

i = 1, iter = 1, initialize Grid
i
iter = VJmin

, and choose an initial guess for all NLP variables.

In the following, the interpolation operator Ip is constructed using ENO interpolations (see

Section 4.3.2). Let us denote the set of initial guesses by X i
iter. The proposed sequential

trajectory optimization algorithm then proceeds as follows:

STOA I

Step 1. Solve the NLP problem on Grid
i
iter with the initial guess X i

iter on the horizon [τ i
0, τ

i
f].

If Grid
i
iter has points from the level WJmax−1, go to Step 4.

Step 2. Mesh refinement.

(a) i. If the problem either has pure state constraints or mixed constraints on

states and controls, set Φi
iter = {xj,k,uj,k : tj,k ∈ Grid

i
iter}, Nr = Nx +Nu.

ii. If the optimal control problem does not have any constraints or only pure

control constraints are present, set Φi
iter = {uj,k : tj,k ∈ Griditer}, Nr = Nu.

iii. In case no controls are present in the problem, set Φi
iter = {xj,k : tj,k ∈

Grid
i
iter}, Nr = Nx.

In the following, let Φi
iter denote the set constructed in Step 2a of the algorithm,

that is, let Φi
iter = {φℓ(tj,k) : ℓ = 1, . . . , Nr, tj,k ∈ Griditer}.

(b) Initialize an intermediate grid Gridint = VJmin−1, with function values

Φint = {φℓ(tJmin,k) : φℓ(tJmin,k) ∈ Φi
iter, ∀ tJmin,k ∈ VJmin

, ℓ = 1, . . . , Nr},

(315)

and set j = Jmin − 1.

i. Find the points that belong to the intersection of Wj and Grid
i
iter

T̂j = {t̂j,km : t̂j,km ∈ Wj ∩ Grid
i
iter, for m = 1, . . . , Nt̂, 1 ≤ Nt̂ ≤ 2j − 1}.

(316)

127

If T̂j is empty go to Step 2c otherwise go to the next step.

ii. Set m = 1.

A. Compute the interpolated function values at point t̂j,km ∈ T̂j, φ̂ℓ(t̂j,km) =

Ip(t̂j,km,TGridint
(t̂j,km)), where φ̂ℓ is the ℓ-th element of φ̂, for ℓ =

1, . . . , Nr.

B. Calculate the interpolative error coefficient dj,km at the point t̂j,km,
2

dj,km(φ) = max
ℓ=1,...,Nr

dj,km(φℓ) = max
ℓ=1,...,Nr

|φℓ(t̂j,km)− φ̂ℓ(t̂j,km)|.

If the value of dj,km is below the threshold ǫ(t̂j,km), then reject t̂j,km

and go to Step 2(b)iiF, otherwise add t̂j,km to the intermediate grid

Gridint and move on to the next step.

C. Add to Gridint Nneigh points on the left and Nneigh points on the right

of the point t̂j,km in Wj.

D. If Nneigh = 0 add to Gridint points belonging to the set

(VĴ ∩ [tj,km, tj,km+1]) \ Gridint,

else add to Gridint points belonging to the set

(VĴ ∩ [t̂j,km−Nneigh
, t̂j,km+Nneigh

]) \ Gridint.

Here Ĵ = min{j + ĵ, Jmax}, where ĵ = 2 if iter = 1 else ĵ ≥ 2, ĵ is

the number of finer levels from which the points be added to the grid

for refinement.

E. Add the function values at all the newly added points to Φint. If the

function value at any of the newly added points is not known, we

interpolate the function value at that point from the points in Grid
i
iter

and their function values in Φi
iter using Ip(·,T

Grid
i
iter

(·)).

F. Increment m by 1. If m ≤ Nt̂ go to Step 2(b)iiA, otherwise move on

to the next step.

2Note that φℓ(t̂j,k) ∈ Φi
iter for all t̂j,k ∈ T̂j and ℓ = 1, . . . , Nr.

128

iii. Set j = j + 1. If j < Jmax go to Step 2(b)i, otherwise go to Step 2c.

(c) Terminate. The final nonuniform grid is Gridnew = Gridint and the correspond-

ing function values are in the set Φnew = Φint.

Step 3. Set iter = iter + 1. If the number of points and the level of resolution remain

the same after the mesh refinement procedure, terminate. Otherwise, interpolate

the NLP solution found in Step 1 on the new mesh Gridnew, which will be the new

initial guess X i
iter. Reassign the set Grid

i
iter to Gridnew, and go to Step 1.

Step 4. New horizon:

(a) Set Grid
i = Grid

i
iter.

(b) Increment i by 1.

(c) Set τ i
0 = τ i−1

0 + ∆τ i−1
ro .

(d) Terminate if τ i
0 ≥ τ i−1

f , otherwise set iter = 1, Grid
i
iter = VJmin

.

(e) Interpolate the solution of the previous horizon [τ i−1
0 , τ i−1

f] given on Grid
i−1

to Grid
i
iter, which will be our new initial guess X i

iter for Step 13.

(f) Update information about the path constraints and the terminal constraints.

Step 5. Go to Step 1.

Remark 8. Although the STOA I will work for any form of ǫ(t), we recommend using the

following form,

ǫ(t) = ǫ̂E(max{0, t − ti+1
0 }), (317)

where ǫ̂ be at least of order hJmin
= 1/2Jmin , and E : [0, 1 − ti+1

0] → R
+ is such that

E(0) = 1. For example, one may choose E(t) = eβ(max{0,t−ti+1
0 }), where β ∈ R

+, for

t ∈ [0, 1], and i = 1, . . . , NH . This choice implies that the threshold is constant, is equal to

ǫ̂ for t ∈ [0, ti+1
0], and it varies with time for t ∈ (ti+1

0 , 1]. Such a choice stems from the fact

3It should be noted that although Grid
i
1 = Grid

i−1
1 on the transformed domain [0, 1] but both the grids

Grid
i−1
1 and Grid

i
1 correspond to different time intervals, that is, [τ i−1

0 , τ i−1
f] and [τ i

0, τ
i
f] respectively.

129

that the solution should be calculated with high precision till the initial time of the next

horizon.

We demonstrate the above algorithm with the help of a simple, yet practical example,

in which the terminal condition is assumed to be changing with time.

Example 18

Consider the Zermelo’s problem taken from Ref. [33]. A ship must travel through a region

of strong currents. The equations of motion of the ship are

ẋ = V cos θ + u(x, y), (318)

ẏ = V sin θ + v(x, y), (319)

where θ is the heading angle of the ship’s axis relative to the (fixed) coordinate axes, (x, y)

represent the position of the ship, V is the magnitude of the ship’s velocity relative to

the water, and (u, v) are the velocity components of the current in the x and y directions,

respectively. The magnitude and direction of the currents are assumed to be,

u = −V y, (320)

v = 0, (321)

and the ship’s velocity V is assumed to be unity. The path constraint is the width of the

river, and we assume

0 ≤ x ≤ 6.8. (322)

The problem is to steer the ship in such a way so as to minimize the time necessary to go

from a given point A to another given point B. For this specific example, we assume the

coordinates of point A to be

xA = x(0) = 0, yA = y(0) = −4. (323)

The target B is assumed to be moving. However, the trajectory of point B is not known in

advance. Initially, the coordinates of B are taken to be as follows

xB = x(τf) = 6, yB = y(τf) = 1. (324)

130

We assume (Step 4f of STOA I) that the information about the target is updated every time

before the re-optimization is done on a new horizon. We also assume that the trajectory of

the target is given by

xB(τ) = 6− 0.1τ, yB(τ) = 1− 0.2τ. (325)

Hence, on each horizon Hi, where i = 2, . . . , NH , we have the following terminal constraints,

x(τ i
f) = 6− 0.1τ i

0, x(τ i
f) = 1− 0.2τ i

0. (326)

For the sake of simplicity, and so that the proposed algorithm terminates in a finite number

of iterations, we assume that if τ i
0 ≥ 5, for some i ∈ [1, NH], then

x(τm
f) = 6− 0.1τ i

0, y(τm
f) = 1− 0.2τ i

0, (327)

for all m = i, . . . ,NH .

We solved this problem on a grid with Jmin = 2 and Jmax = 7 for each horizon with

ǫ(τ) = 0.01e10 max{0,τ−τ i+1
0 }, where i = 1, . . . , NH . The other parameters used in the simu-

lation are p = 3 and Nneigh = 0. A fourth-order implicit Hermite-Simpson scheme [82] was

used as a high-order scheme for discretizing the continuous optimal control problem into an

NLP problem.

To solve this problem, we let ∆τ i
ro ≈ 1 sec (i = 1, . . . , NH − 1). One way for finding

the initial conditions (x(τ i
0), y(τ

i
0)) for the next horizon (Hi) is to integrate the dynamics

of the system using the control found on the previous horizon (Hi−1) for a duration of

∆τ i
ro seconds and then use the integrated states at the end of the interval [τ i−1

0 , τ i
0] as the

initial conditions for solving the NLP problem on the new horizon (Hi). For this example,

we picked the initial time τ i
0 for each horizon Hi, i = 1, . . . , NH , as follows. For the first

horizon we set τ1
0 = 0 and for subsequent horizons we choose

τ i
0 = min

τ
{τ ∈ Grid

i−1
τ : τ ≥ τ i−1

0 + 0.95}, (328)

where i = 2, . . . , NH ,

Grid
i−1
τ = {τ : τ = (τ i−1

f − τ i−1
0)tj,k + τ i−1

0 , ∀ tj,k ∈ Grid
i−1}. (329)

131

The algorithm terminated after solving the problem on 6 horizons. The number of itera-

tions taken by the algorithm before the algorithm terminated on each horizon (iterf), the

maximum resolution level reached on each horizon (Jf), the number of nodes used by the

algorithm at the final iteration on each horizon (Nf), along with the initial and the final

times for all the horizons are shown in Table 17.

Table 17: Example 18. Target snapshots.

Horizon iterf Jf Nf τ0 τf
H1 3 4 9 0 5.6018
H2 3 4 9 1.0503 5.5198
H3 4 5 13 2.1677 5.4687
H4 6 7 17 3.1993 5.4965
H5 2 3 7 4.2043 5.5818
H6 1 2 5 5.2374 5.7538

The computed trajectory found using the proposed algorithm, along with the grid point

distributions for different horizons are shown in Figures 39 and 40. In these figures, the

initial point A is depicted by a square and the target point B is depicted by a cross. As

pointed out earlier, the target B is assumed to be non-stationary, and for convenience of

the reader, in Figures 39, 40 all the previous locations of B are also shown in addition to

the current position of target B. The optimal controls found for all the horizons are shown

in Figure 41. From Figures 39(a), 41(a), we see that the proposed algorithm used only 9

points out of 129 points of the grid V7 for solving the given problem on the first horizon

[0, τf]. The grid point distribution 39(b) shows that the points from the finer resolution

levels V3, V4 are concentrated only near the initial time. On the second horizon, we assume

that the target B has moved to the new location. From Figures 39(c), 39(d), and 41(b),

we again find that the algorithm used only 9 points for discretizing the trajectory and the

points from the finer levels of resolution V3, V4 are again clustered near the current time.

For the third horizon, the algorithm used 13 points to find the optimal solution. From the

grid point distribution in Figure 39(f), it is evident that the algorithm started adding points

from the finer resolution level, V5, near the location where there should be a switching in

the control, since the ship is approaching the shore. Moving on to the fourth horizon, we

see that, as the boat is approaching the shore, there should be a switching in the control.

132

Hence, in order to capture this control switching, the algorithm further added points at the

finer resolution levels V6, and V7, as can be observed from the grid point distribution for

the fourth horizon (Figure 40(b)). For the fifth and sixth horizons, the algorithm used only

7 and 5 points respectively for computing the optimal solution. Since on the sixth horizon,

we had τ6
0 > 5, the target was further assumed to be stationary located at

x(τm
f) = 6− 0.1τ5

0 , y(τm
f) = 1− 0.2τ5

0 , (330)

for all m = 5, . . . , NH . Hence, the algorithm terminated after solving the problem on the

sixth horizon. The overall CPU time taken by STOA I to solve this problem was 5.1 seconds.

The combined trajectory and the control found on different horizons is shown in Figure 42.

Next, we incorporate the information of the trajectory profile of the target (325) in

the optimal control problem itself. Since the trajectory profile of the target is assumed

to be given for the optimal control problem at hand, the resulting problem can be solved

in one go using MTOA (see Section 6.5). The results found using MTOA are shown in

Figure 42 and the overall CPU time taken by MTOA to solve this problem was 9.5 seconds.

The minimum time (τf) to steer the ship from point A to the target point B found using

MTOA is τf = 5.8637. We also solved the same problem using STOA I. For comparison

purposes the results found using STOA I are again shown in Figure 42. The number of

iterations taken by the algorithm before the algorithm terminated on each horizon (iterf),

the maximum resolution level reached on each horizon (Jf), the number of nodes used by

the algorithm at the final iteration on each horizon (Nf), along with the initial and the

final times for all the horizons are shown in Table 18. The overall CPU time to solve the

problem using STOA I was 6.3 seconds. Hence, we see that the cost found by solving the

problem using MTOA is less by 5−4 than the cost found using STOA I for the problem

when the trajectory profile of the target is assumed to be known. However, we see that the

overall CPU time taken by STOA I is about two-thirds of the overall CPU time taken by

MTOA to solve the same problem.

133

Table 18: Example 18. Target trajectory known.

Horizon iterf Jf Nf τ0 τf
H1 3 4 9 0 5.9065
H2 3 4 9 1.1075 5.8256
H3 3 4 11 2.2870 5.8648
H4 6 7 17 3.4051 5.8643
H5 1 2 5 4.4810 5.8642
H6 1 2 5 5.5184 5.8642

7.2.2 Sequential Trajectory Optimization Algorithm II (STOA II)

In this section, we present yet another sequential trajectory optimization scheme referred

to as STOA II, which takes full advantage of the multiresolution structure of the grid in

the mesh refinement procedure so that the previously computed information is retained,

while moving from one horizon to the next. In order to avoid notational complexities, and

without loss of generality, we will assume in this section that the time interval of interest

is the unit interval t ∈ [0, 1] = [τ0, τf]. Transformation (220) can be used to convert any

optimal control problem from the domain [τ0, τf] to [0, 1].

Consider again a set of dyadic grids Vj andWj as described in Eqs. (218) and (219). We

choose the parameters Jmin, Jmax, and ǫ(t) as for the STOA I. Then the proposed STOA II

involves the following steps. First, we transcribe the continuous trajectory optimization

problem into an NLP problem using a q-stage RK discretization as described in the previous

section. We use trapezoidal discretization for the first iteration and switch to a high-order

discretization for subsequent iterations. Next, we set i = 1, iter = 1, ti0 = 0, initialize

Grid
i
iter = VJmin

, and choose an initial guess for all NLP variables (X i
iter). Fix J̄ = Jmin − 1.

The proposed sequential trajectory optimization algorithm proceeds as follows:

Step 1. Solve the NLP problem on Grid
i
iter with the initial guess X i

iter on the horizon [ti0, 1].

If Grid
i
iter has points from the level WJmax−1, go to Step 4.

Step 2. Find Gridnew using the mesh refinement step (Step 2) of STOA I.

Step 3. Set iter = iter + 1. If the number of points and the level of resolution remain

the same after the mesh refinement procedure then terminate, otherwise interpolate

134

the NLP solution found in Step 1 on the new mesh Gridnew, which will be our new

initial guess X i
iter, reassign the set Grid

i
iter to Gridnew, and go to Step 1.

Step 4. New horizon.

(a) Set Grid
i = Grid

i
iter.

(b) Increment i by 1.

(c) Set ti0 = tJ̄ ,i−1.

(d) If i = 2J̄ + 1 terminate, else go to the next step.

(e) Set Grid
i− = {t : t ∈ Grid

i−1 and t ≥ tJ̄ ,i−1}.

(f) If the number of points in the set {Grid
i− ∩ VJmin−1} is less than p + 1, set

Jmin = Jmin + 1.

(g) Set iter = 1, Vj = Vj \ (Vj ∩ [0, tJ̄ ,i−1)) (where j = Jmin − 1, . . . , Jmax), and

Wj =Wj \ (Wj ∩ [0, tJ̄ ,i−1)) (where j = Jmin − 1, . . . , Jmax − 1). Find Gridnew

using the mesh refinement step (Step 2) of STOA I with Grid
i
iter = Grid

i−.

(h) Increment iter by 1 and reassign the set Grid
i
iter to Gridnew.

(i) Interpolate the NLP solution given on Grid
i− to Grid

i
iter, which will be our new

initial guess X i
iter for Step 1.

(j) Update the information about the path constraints and the terminal con-

straints.

Step 5. Go to Step 1.

Remark 9. Although STOA II will work for any form of the threshold ǫ(t), we recommend

choosing

ǫ(t) = ǫ̂E(max{0, t − tJ̄,i}), (331)

where ǫ̂ is at least of order hJmin
= 1/2Jmin , and E : [0, 1 − tJ̄,i]→ R

+ such that E(0) = 1,

t ∈ [0, 1], and i = 1, . . . , NH . This choice implies that the threshold is constant and is equal

to ǫ̂ for t ∈ [0, tJ̄ ,i] and varies with time for t ∈ (tJ̄ ,i, 1]. Such a choice stems from the fact

135

that the solution should be calculated with high precision till the initial time of the next

horizon, which in this case would be tJ̄ ,i.

Example 19

In this example, we again consider the re-entry guidance problem of an Apollo-type vehicle

taken from Ref. [112]. The equations of motion during the flight of the vehicle through the

Earth’s atmosphere are as follows:

v̇ = − S

2m
ρv2cD(u)− g sin γ

(1 + ξ)2
,

γ̇ =
S

2m
ρvcL(u) +

v cos γ

R(1 + ξ)
− g cos γ

v(1 + ξ)2
,

ξ̇ =
v

R
sin γ,

ζ̇ =
v

1 + ξ
cos γ,

where v is the velocity, γ is the flight path angle, ξ = h/R is the normalized altitude, h is

the altitude above the Earth’s surface, R is the Earth’s radius, and ζ is the distance on the

Earth’s surface of a trajectory of an Apollo-type vehicle. The control variable is the angle

of attack u. For the lift and drag the following relations hold:

cD = cD0
+ cDL cos u, cD0

= 0.88, cDL = 0.52, (332)

cL = cL0
sinu, cL0

= −0.505. (333)

The air density is assumed to satisfy

ρ = ρ0e
−βRξ. (334)

The values of the constants are

R = 209.0352 (105 ft),

S/m = 50, 000 (10−5 ft2 slug−1),

ρ0 = 2.3769 × 10−3(slug ft−3),

g = 3.2172 × 10−4 (105 ft s−2),

β = 1/0.235 (10−5 ft−1).

136

The cost functional to be minimized that describes the total stagnation point convective

heating per unit area is given by the integral

J(u) =

∫ τf

0
10v3√ρ dτ. (335)

The vehicle is to be maneuvered into an initial position favorable for the final splashdown

in the Pacific. The data at the moment of entry are

v(0) = 0.35 (105 ft s−1), γ(0) = −5.75 deg, (336)

ξ(0) = 4/R (h(0) = 400, 000 ft), ζ(0) = 0 (105 ft). (337)

The data prescribed at the unspecified terminal time tf for this problem are

v(τf) = 0.0165 (105 ft s−1), γ(τf) unspecified, (338)

ξ(τf) = 0.75530/R (h(tf) = 75530 ft), ζ(τf) = 51.6912 (105 ft). (339)

The angle of attack is constrained to be between ±68 deg, that is,

|u| ≤ 68 deg . (340)

We have used STOA II to solve this problem with Jmin = 4, and Jmax = 7. The threshold

used for this problem was

ǫ(t) = 0.01e7 max{0,t−t3,i}, i = 1, . . . , NH . (341)

The other parameters used in the simulation for the mesh refinement step were p = 3 and

Nneigh = 1. A fourth-order implicit Hermite-Simpson scheme [82] was used as a high-order

scheme for discretizing the continuous optimal control problem into an NLP problem. The

algorithm terminated after solving the problem on 8 horizons and the overall CPU time

taken by the algorithm was 41.2 seconds, out of which 22 seconds were used to compute the

solution on the first horizon H1. For sake of brevity, we only show the time histories of the

control u, along with the grid point distribution for different horizons, in Figures 43, 44,

and 45. The number of iterations taken by the algorithm before the algorithm terminated

on each horizon (iterf), the maximum resolution level reached on each horizon (Jf), and

the number of nodes used by the algorithm at the final iteration on each horizon (Nf) are

shown in Table 19.

137

Table 19: Example 19.

Horizon iterf Jf Nf

H1 2 5 24
H2 2 7 27
H3 1 7 24
H4 1 4 11
H5 1 4 9
H6 1 4 7
H7 3 7 17
H8 1 7 13

7.2.3 STOA I vs. STOA II

Both STOA I and STOA II have their own merits. STOA I will work for any user-specified

time intervals (∆τro), whereas the time intervals in STOA II are dyadic and fixed. On the

other hand, STOA II takes full advantage of the multiresolution structure of the grid in the

mesh refinement procedure. Most of the nodes in the grid for the new horizon are the nodes

from the grid of the previous horizon. In STOA II most of the points of Grid
i
1 consist of the

points belonging to Grid
i− ⊂ Grid

i−1, for which the solution is already known. Hence, none

of the previously computed information is lost while going from one horizon to the next.

Therefore, in order to provide an initial guess X i for starting the NLP solver on horizon Hi,

the function values only at few additional points in the vicinity of the current time need

to be interpolated from the solution found on the grid Grid
i−1 during the previous horizon

Hi−1. Moreover, in STOA I the algorithm always begins to iterate from the coarsest grid

VJmin
. In STOA II, since most of the points of Grid

i
1 consist of the points belonging to

Grid
i−, the algorithm need not necessarily start from the coarsest grid, and in fact Grid

i
1

may have nodes from finer scales resulting in faster convergence.

For both STOA I and STOA II, if the path constraints and the terminal constraints

do not change drastically, the algorithm for each successive horizon converges pretty fast

since the solution of the previous horizon is provided as an initial guess for solving the NLP

problem on the current horizon. The CPU times achieved using the current implementation

show the merits of the proposed algorithms in terms of speed. We should mention at

this point that since all the computations presented in this chapter were carried out in

138

MATLAB, the reported CPU times can be significantly reduced by coding the algorithms

in C or FORTRAN.

7.3 Summary

In this chapter, we have proposed two sequential trajectory optimization schemes to solve

optimal control problems with moving targets and/or under dynamically changing environ-

ments in a fast and efficient way. The proposed algorithms autonomously discretize the

trajectory with more nodes near the current time (not necessarily uniformly placed) while

using a coarser grid for the rest of the trajectory in order to capture the overall trend.

Moreover, if the states or the controls are irregular at a certain future time, the mesh is

further refined automatically at those locations as well. The final grid point distributions

for all the horizons and for both the examples considered in this chapter confirm these

observations. Given their simplicity and efficiency, the proposed techniques offer a poten-

tial for online implementation for solving problems with moving targets and dynamically

changing environments.

139

6
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

y

(a) Horizon 1. Trajectory.

0 1 2 3 4 5 6
2

3

4

5

6

7

Time (τ)

j

No. of Points: 9 out of 129

(b) Horizon 1. Grid point distribution.

0 1 2 3 4 5 6 7
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

y

(c) Horizon 2. Trajectory.

0 1 2 3 4 5 6
2

3

4

5

6

7

Time (τ)

j

No. of Points: 9 out of 129

(d) Horizon 2. Grid point distribution.

0 1 2 3 4 5 6 7
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

y

(e) Horizon 3. Trajectory.

0 1 2 3 4 5 6
2

3

4

5

6

7

Time (τ)

j

No. of Points: 13 out of 129

(f) Horizon 3. Grid point distribution.

Figure 39: Example 18 (Target snapshots). Trajectory along with the grid point distri-
butions for horizons 1, 2, and 3.

140

0 1 2 3 4 5 6 7
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

y

(a) Horizon 4. Trajectory.

0 1 2 3 4 5 6
2

3

4

5

6

7

Time (τ)

j

No. of Points: 17 out of 129

(b) Horizon 4. Grid point distribution.

0 1 2 3 4 5 6 7
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

y

(c) Horizon 5. Trajectory.

0 1 2 3 4 5 6
2

3

4

5

6

7

Time (τ)

j

No. of Points: 7 out of 129

(d) Horizon 5. Grid point distribution.

0 1 2 3 4 5 6 7
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

y

(e) Horizon 6. Trajectory.

0 1 2 3 4 5 6
2

3

4

5

6

7

Time (τ)

j

No. of Points: 5 out of 129

(f) Horizon 6. Grid point distribution.

Figure 40: Example 18 (Target snapshots). Trajectory along with the grid point distri-
butions for horizons 4, 5, and 6.

141

0 1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

Time

θ

(a) Horizon 1.

0 1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

Time

θ

(b) Horizon 2.

0 1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

Time

θ

(c) Horizon 3.

0 1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

Time

θ

(d) Horizon 4.

0 1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

Time

θ

(e) Horizon 5.

0 1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

Time

θ

(f) Horizon 6.

Figure 41: Example 18 (Target snapshots). Time history of control θ for all horizons.

142

0 1 2 3 4 5 6 7
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

x

y

STOA I (Target snapshots)
MTOA (Target trajectory known)
STOA I (Target trajectory known)

(a) Trajectory.

0 1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

Time

θ

STOA I (Target snapshots)
MTOA (Target trajectory known)
STOA I (Target trajectory known)

(b) Time history of control θ.

Figure 42: Example 18. Trajectory along with the time history of the control θ using
three different multiresolution strategies.

143

0 100 200 300
−80

−40

0

40

80

Time (τ)

u

(a) Horizon 1. Control u.

0 100 200 300
4

5

6

7

Time (τ)

j

(b) Horizon 1. Grid point distribution.

0 100 200 300
−80

−40

0

40

80

Time (τ)

u

(c) Horizon 2. Control u.

0 100 200 300
4

5

6

7

Time (τ)

j

(d) Horizon 2. Grid point distribution.

0 100 200 300
−80

−40

0

40

80

Time (τ)

u

(e) Horizon 3. Control u.

0 100 200 300
4

5

6

7

Time (τ)

j

(f) Horizon 3. Grid point distribution.

Figure 43: Example 19. Control time history and grid point distributions for horizons 1,
2, and 3.

144

0 100 200 300
−80

−40

0

40

80

Time (τ)

u

(a) Horizon 4. Control u.

0 100 200 300
4

5

6

7

Time (τ)

j

(b) Horizon 4. Grid point distribution.

0 100 200 300
−80

−40

0

40

80

Time (τ)

u

(c) Horizon 5. Control u.

0 100 200 300
4

5

6

7

Time (τ)

j

(d) Horizon 5. Grid point distribution.

0 100 200 300
−80

−40

0

40

80

Time (τ)

u

	

(e) Horizon 6. Control u.

0 100 200 300
4

5

6

7

Time (τ)

j

(f) Horizon 6. Grid point distribution.

Figure 44: Example 19. Control time history and grid point distributions for horizons 4,
5, and 6.

145

0 100 200 300
−80

−40

0

40

80

Time (τ)

u

(a) Horizon 7. Control u.

0 100 200 300
4

5

6

7

Time (τ)
j

(b) Horizon 7. Grid point distribution.

0 100 200 300
−80

−40

0

40

80

Time (τ)

u

(c) Horizon 8. Control u.

0 100 200 300
4

5

6

7

Time (τ)

j

(d) Horizon 8. Grid point distribution.

Figure 45: Example 19. Control time history and grid point distributions for horizons 7
and 8.

146

CHAPTER VIII

THESIS CONTRIBUTION, CONCLUSIONS, AND FUTURE WORK

8.1 Conclusions and Contributions

8.1.1 Hierarchical Multiresolution Adaptive Mesh Refinement for the Solution
of Evolution PDEs

It is well-known that the solution of evolution partial differential equations is often not

smooth even if the initial data are smooth. For instance, shocks may develop in hyperbolic

conservation laws and kinks in Hamilton-Jacobi equations. To capture discontinuities and

irregularities in the solution with high accuracy one needs to use a fine resolution grid.

The use of a uniformly fine grid requires a large amount of computational resources in

terms of both CPU time and memory. Hence, in order to solve evolution equations in a

computationally efficient manner, several adaptive gridding techniques for solving partial

differential equations have been proposed in the literature. Currently, popular adaptive

methods for solving PDEs are: (i) moving mesh methods [1, 2, 4, 7, 8, 38, 39, 50, 91, 98,

105, 106, 136], in which an equation is derived that moves a grid of a fixed number of finite

difference cells or finite elements so as to follow and resolve any local irregularities in the

solution; (ii) the so called “adaptive mesh refinement” method [10, 13, 14, 15], in which

the mesh is refined locally based on the difference between the solutions computed on the

coarser and the finer grids, and (iii) wavelet-based or multiresolution-based methods [3,

16, 68, 69, 75, 76, 87, 139, 140, 141], which take advantage of the fact that functions with

localized regions of sharp transition can be very well compressed. Our proposed method

falls under this latter category.

Recently, Alves et al. [3] proposed an adaptive multiresolution scheme, similar to the

multiresolution approach proposed by Harten [68, 69] and Holmstrom [75] for solving hyper-

bolic PDEs. These approaches share similar underlying ideas. Namely, the first step is to

interpolate the function values at the points belonging to a particular resolution level, from

the corresponding points at the coarser level, and find the interpolative error at the points

147

of that particular resolution level. Once this step has been performed for all resolution

levels, all the points that have an interpolative error greater than a prescribed threshold

are added to the grid, along with their neighboring points at the same level and the neigh-

boring points at the next finer level. The main difference between these approaches is that

in Harten’s approach [68, 69], the solution for each time step is represented on the finest

grid and one calculates the interpolative errors at all the points of the finest grid at each

mesh refinement step. On the other hand, Holmstrom [75] and Alves et al. [3], compute

the interpolative error only at the points that are in the adaptive grid. If a value that

does not exist is needed, Holmstrom interpolates the required function value recursively

from a coarser scale. Alternatively, Alves et al. [3] add to the grid the points that were

used to predict the function values at all previously added points, in order to compute the

interpolative error during the next mesh adaptation.

In this work and Ref. [85, 86], we have proposed a novel multiresolution scheme for data

compression, which results in a higher compression rate compared to the multiresolution ap-

proach by Harten [68, 69, 70] for the same desired accuracy. Subsequently, we developed an

encoding scheme to solve initial-boundary value problems (IBVP) encountered in evolution

PDEs. The proposed multiresolution scheme for data compression works with any of the

interpolation techniques mentioned in Ref. [70]. One of the key features of our algorithm is

that it is a “top-down” (from coarse to fine scale) approach, and we use the most recently

updated information to make predictions. Moreover, our interpolations are not restricted

to the use of only the retained points at the coarser level, but also use the retained points

at the same level (and even the next finer level in the case of solving PDEs). This allows for

a more accurate interpolation which, in turn, leads to fewer points in the final grid. In the

proposed algorithm, we continuously keep on updating the grid as we go from the coarsest

level to finer levels. If the interpolative error at a point that belongs to a particular level is

greater than the prescribed threshold, we add that point to the grid. In the case of solving

PDEs, we also add the neighboring points at the same level and the neighboring points at

the next level to the grid. We make use of the fact that the point at which the interpolative

error is greater than a prescribed threshold, this point is added to the grid and, in addition,

148

it can be used to predict the remaining points at the same level and the levels below it.

Moreover, for refining the mesh for solving evolution PDEs we predict the function value

at a particular point only from the points that are already present in the grid, hence we

avoid recursive interpolations from the coarser scales as is done by Holmstrom [75]. At the

same time we do not need to add any extra points to the grid that are required just for

computing the interpolative errors at the next mesh refinement step, as is done by Alves et

al. [3].

Several examples have demonstrated the stability and robustness of the proposed algo-

rithm. In all examples considered, the algorithm adapted dynamically to any existing or

emerging irregularities in the solution, by automatically allocating more grid points to the

region where the solution exhibited sharp features and fewer points to the region where

the solution was smooth. As a result, the computational time and memory usage can be

reduced significantly, while maintaining an accuracy equivalent to the one obtained using

a fine uniform mesh. We observed speed-up factors of up to 64 (for Jmax = 12) when

compared to the uniform mesh implementation. We also found that the speed-up factors

increased at an approximate rate of 2 with the increase in the resolution level. At the same

time, we have observed savings of up to 43% in terms of the number of grid points and a

gain of about 27% in terms of speed-up factors compared to the approach of Alves et al. [3].

8.1.2 Trajectory Optimization Using Multiresolution Techniques

In this work and Ref. [79, 82], we have proposed a novel multiresolution-based approach

for solving optimal control problems. As mentioned before, the solution of general (realis-

tic) trajectory optimization problems is a challenging task. Analytical solutions are seldom

available or even possible. In all numerical methods for the solution of trajectory opti-

mization problems one needs to compromise between accuracy of the solution, robustness

in terms of convergence, and execution speed. The use of a high resolution (dense) grid

to accurately capture any discontinuities or switchings in the state or control variables re-

quires a large amount of computational resources both in terms of CPU time and memory.

Moreover, a large grid results in a large number of the variables to optimize, which in turn,

149

can lead to ill-conditioning. MTOA automatically and inexpensively generates a grid that

reduces the discretization error with each iteration. As a result, one is able to capture

the solution accurately and efficiently using only a few nodes. The algorithm can handle

state constraints, control constraints, and mixed constraints with ease. All the transition

points in the solution (for example, bang-bang subarcs, or entry and exit points associated

with state or mixed constraints) are captured with high accuracy. The convergence of the

algorithm can be enhanced by initializing the algorithm on a coarse grid having a small

number of variables. Once a converged solution is attained, the grid can be further refined

by increasing the accuracy locally, only at the vicinity of those points that cannot be ac-

curately interpolated by neighboring points in the grid. The methodology thus provides a

compromise between robustness with respect to initial guesses, intermediate and final solu-

tion accuracy, and execution speed. These observations are supported by several numerical

examples of challenging trajectory optimization problems.

Compared to prior similar results in this area [22, 20, 118, 63, 24, 27, 121] the algorithm

proposed in this thesis has several advantages. First, we avoid the solution of a secondary

optimization problem for adding points to the mesh as in Ref. [18, 20, 22]. Only simple

interpolations are needed to refine the mesh, which can be done on the fly. Furthermore, our

algorithm does not involve any integrations, as opposed to the highly accurate integrations

(Romberg quadratures) required in the method by Betts et al. [20], which again can be

computationally expensive for nonlinear dynamics. Finally, our algorithm is capable of not

only adding points to the grid but also removing points from the grid when and where is

needed. Moreover, both the operations of adding and removing points can be done in a single

step. In the pseudospectral knotting method of Ross et al. [118, 63], one needs to know a

priori the approximate number and location of singularities in the solution. These may not

be known beforehand for most problems. The number of nodes to be added to a particular

phase must be defined by the user before starting the algorithm. In our algorithm the user

need not know a priori the number nor the locations of the irregularities in the solution. The

algorithm will automatically detect the regions in the solution that are nonsmooth and it

will add points accordingly when and where is needed. Furthermore, the nonuniform grids

150

of pseudospectral methods result in grid distributions that remain fixed for each phase, since

the location of the nodes are dictated by the zeros of the first derivative of the Legendre or

Chebyshev polynomials, irrespective of the location of the soft knots [118]. Our algorithm

uses a grid that is fully adaptive, embracing any form depending on the irregularities in the

solution. This provides more flexibility in capturing any irregularities in the solution.

From all previous references in this area the work of Binder et al. [24, 27], and Schlegel et

al. [121] are the closest – at least in spirit – to the approach proposed in the current work.

These references use wavelet-based ideas to locate possible singularities in the solution

and refine the grid locally. However, since these references work solely in the wavelet

domain, they may lead to an increase of the overall computational overhead, as one needs

to transform back and forth between the physical and wavelet domain. We avoid this issue

altogether by always working in the physical domain. Nonetheless, by working with dyadic

grids we still take advantage of the major advantage of the wavelet-based analysis, that is,

multiresolution functional representations [70, 103].

8.1.3 Multiresolution Trajectory Optimization Schemes for Problems with Mov-
ing Targets and/or Dynamically Changing Environments

Next, we move on to the optimal control problems with moving targets and/or dynamically

changing environments. A common line of attack for solving nonlinear trajectory optimiza-

tion problems in real time [125, 100, 88, 144] is to break the problem into two phases: an

offline phase and an online phase. The offline phase consists of solving the optimal control

problem for various reference trajectories and storing these reference trajectories onboard

for later online use. These reference trajectories are used to compute the actual trajectory

online via a neighboring optimal feedback control strategy [31, 92, 130, 33] typically based

on the linearized dynamics. This approach requires extensive ground-based analysis and

onboard storage capabilities [94]. Moreover, perturbations around the reference trajectories

might not be small, and therefore applying the linearized equations may not be appropriate.

In order to overcome the above mentioned problems, Kumar and Seywald [94] proposed

to solve the nonlinear trajectory optimization problem online for the whole time interval,

but with high accuracy only near the current time. Kumar and Seywald [94] proposed a

151

dense-sparse discretization technique in which the trajectory is discretized by placing ND

dense nodes close to the current time and NS sparse nodes for the rest of the trajectory. The

state values at some future node are accepted as optimal and are prescribed as the initial

conditions for the rest of the trajectory. The remainder of the trajectory is again discretized

using a dense-sparse discretization technique, and the whole process is repeated again. The

algorithm can be stopped by using any adhoc scheme, for example, it can be terminated

when the density of the dense nodes is less than or equal to the density of the sparse nodes.

Ross et al. [119] also proposed a similar scheme by solving the discretized NLP problem on

a grid with a certain number of nodes and then propagate the solution from the prescribed

initial condition by integrating the dynamics of the system for a specified interval of time.

The values of the integrated states at the end of the integration interval are taken as the

initial condition for solving the NLP problem for the rest of the trajectory, again on a grid

with a fixed number of nodes. The whole process is repeated until the terminal conditions

are met.

In this thesis and Ref. [83, 78], we have developed two sequential trajectory optimization

schemes that autonomously discretize the trajectory with more nodes (finer grid) near the

current time (not necessarily uniformly placed) and use fewer nodes (coarser grid) for the

rest of the trajectory, the latter to capture the overall trend. Furthermore, if the states or

controls are irregular in the vicinity of the current time, the algorithm will automatically

further refine the mesh in this region to capture the irregularities in the solution more

accurately. The generated grid is fully adaptive and can embrace any form depending on the

solution. Given their simplicity and efficiency, the proposed techniques offer a potential for

online implementation for solving problems with moving targets and dynamically changing

environments. However, we would like to point that the neighboring optimal feedback

control strategy is more robust compared to solving the nonlinear programming problem

for trajectory generation.

152

8.2 Future Work

This work lays the foundation for solving optimal control problems using multiresolution

techniques in a fast and efficient way. Apart from what has been done in this dissertation,

there are many directions and unsolved problems which are worth investigating in the future.

8.2.1 Mesh Refinement

The adaptive grid generated in the proposed multiresolution-based algorithm for data com-

pression and the solution of evolution PDEs, MTOA, STOA I, and STOA II depends on

how we select points along the grid, that is, whether we move from left to right or from

right to left across each level. It also depends on the location of the singularity. If the

singularity is located in the middle, then it does not matter whether we move from left to

right or from right to left. The result will be the same nonuniform grid. If on the other

hand, the singularity is not in the middle, then the grid depends on the way in which we

traverse across each level. This suggests that by using a suitable probability distribution

function to choose the order in which the points at each particular level are selected, one

may be able to further optimize the grid.

The threshold ǫ in the proposed multiresolution-based algorithm for data compression

and the solution of evolution PDEs, MTOA, STOA I, and STOA II is level independent.

During the course of this work, it was observed that the interpolative error coefficients

decrease with the increase in the resolution level. The reduction in the interpolation error

is because of the decrease in the distance between the interpolating points as we go to

finer and finer levels. Hence, the future work should investigate the possible use of level

dependent threshold for solving both evolution PDEs and optimal control problems, which

will again help in optimizing the grid further.

8.2.2 Multiresolution Mesh Refinement for the Solution of Evolution PDEs

Follow-up work should concentrate on extending the proposed multiresolution approach for

solving evolution PDEs to multiple dimensions. It is expected that the savings in terms of

CPU time and the number of grid points observed for the single spatial dimension case will

153

be greater in multiple dimensions. One approach in this direction is to work directly with

interpolating functions in higher dimensions and then follow the same approach as for the

one-dimensional case. That is, use the error between the actual and interpolated values from

neighboring points to determine which points to retain in the grid and which to remove.

The challenge is to find a consistent way of selecting neighboring points. Another idea is to

proceed in a dimension by dimension fashion. That is, to compute the interpolative error

coefficients at a particular point using an interpolation operator based on function values

in the intermediate grid along one direction while keeping the other coordinates fixed and

repeating the same for all directions.

In the proposed multiresolution mesh refinement scheme for the solution of evolution

PDEs, the values of the parameters N1 and N2 are considered to be constant across the

spatial as well as temporal domain. Future work should focus on the adaptation of these

parameters in order to further optimize the grid.

In this work, ∆tn is computed based on the Courant-Friedrichs-Levy (CFL) condi-

tion [137] for hyperbolic equations and the von Neumann condition [137] for all other evo-

lution equations. For both CFL condition and the von Neumann condition ∆tn depends

on ∆xmin. Hence, in the proposed algorithm ∆tn changes adaptively depending on ∆xmin,

which also changes adaptively. Therefore, a potential extension of this work is to incor-

porate different values of ∆tn for different grid levels which might further speed up the

computations.

8.2.3 Multiresolution Trajectory Optimization Algorithm

A preliminary error analysis shows that the effect of the proposed multiresolution scheme is

somewhat akin to a local control of the tolerance of the Runge-Kutta integration error. The

error analysis also provides guidelines on how certain parameters needed in the algorithm

(e.g., the order of the interpolating polynomials, the maximum/minimum time steps, etc)

can be chosen for its correct implementation and to yield consistent approximations. Future

work should focus on more quantitative measures for the selection of these parameters, and

well as on providing explicit error bounds both for the unconstraint case as well as for more

154

general cases that include path constraints.

Another problem of interest is to investigate the possible use of different grids for dif-

ferent variables. In the current implementation of MTOA, the grid for all the states and

controls is the same even if the refinement is done based only on controls. The use of differ-

ent grids for different variables should have benefits in terms of the optimality of the grid

and hence should speed up the computations. But at the same time, the use of different

grids for different variables might affect the sparsity of the NLP problem being solved which

plays a crucial role in solving a NLP problem.

8.2.4 Applications of Sequential Trajectory Optimization Algorithms

There are several applications in which the proposed Sequential Trajectory Optimization

Algorithms might prove advantageous and are worth investigating, for example, aircraft

emergency landing and low thrust trajectory generation.

In an aircraft, once an emergency condition arises, effective generation of a safe trajec-

tory (and then following this trajectory) becomes crucial to a safe landing. From the pilots

point of view, emergency trajectory generation is defined as the determination of a course

of action with sufficient detail to describe immediate aircraft dynamic states and required

control activities to ensure a safe landing. Emergency trajectory generation requires a high

level of detail in the near-term and a long time-scale to avoid generating a trajectory that

is later found to be lacking. Generation of a detailed emergency trajectory can therefore

be viewed as a task that may prevent problems such as taking too long to land (important

in smoke and fire situations) or requiring extreme maneuvers to intercept the localizer and

glideslope (important in situations with degraded aircraft stability and maneuverability).

Another example is the low thrust trajectory generation. Constructing the trajectory for

a spacecraft as it transfers from a low earth orbit to a mission orbit is characterized by large

time scales. Since the thrust applied to the vehicle is small in comparison to the weight of

the spacecraft, the duration of the trajectroy can be very long. If a problem is solved from

the initial time to the final time in one go, the resulting NLP problem might go substantially

large to meet reasonable accuracy requirements. Lot of computational resources might be

155

required for solving such a problem with high accuracy. Proposed sequential trajectory

optimization algorithms might prove advantageous in solving such problems by solving

several small scale problems with high accuracy only near the current time.

156

APPENDIX A

NUMERICAL ANALYSIS

A.1 Polynomials and Interpolation

The general form of an n-th degree polynomial is

Pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n, (342)

where n denotes the degree of the polynomial and a0 to an are constant coefficients. There

are n+ 1 coefficients, so n+ 1 discrete data points are required to obtain unique values for

the coefficients.

Definition 7 (Interpolation). An interpolating approximation to a function f(x) is an

expression Pn(x), whose n + 1 degrees of freedom are determined by the requirement that

the “interpolant” agrees with f(x) at each point of a set of n+ 1 interpolation points,

Pn(xi) = f(xi), i = 0, 1, 2, . . . , n. (343)

When a polynomial of degree n, Pn(x), is fit exactly to a set of n+1 discrete data points

(x0, f0), (x1, f1), . . . , (xn, fn), the polynomial has no error at the data points themselves.

However, at the locations between the data points, there is an error which is defined by

Error(x) = |f(x)− Pn(x)|. (344)

It is shown later in Appendix A.1.1 that if f is sufficiently smooth (i.e., is continuously

differentiable at least n+ 1 times) in the interval [x0, xn] then the error term is given by

Error(x) =
f (n+1)(ξ)

(n+ 1)!
Πn

i=0(x− xi), (345)

where x0 ≤ ξ ≤ xn.

Next, we briefly describe the polynomials and the interpolation techniques used in this

work for interpolating a given data set (xi, f(xi)), for i = 0, 1, . . . , n.

157

A.1.1 Divided Difference Polynomials

A divided difference is defined as the ratio of the difference in the function values at two

points divided by the difference in the values of the corresponding independent variable.

Thus, the first divided at point i is defined as

f [xi, xi+1] =
f(xi+1)− f(xi)

xi+1 − xi
. (346)

The second divided difference is defined as

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi
. (347)

Similar expansions can be obtained for divided differences of any order. Also note that

f [xi, xi+1] =
f(xi+1)− f(xi)

xi+1 − xi
=
f(xi)− f(xi+1)

xi − xi+1
= f [xi+1, xi]. (348)

Approximating polynomials for nonequally spaced data can be constructed using divided

differences. Let (x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn)) be the given n + 1 points. Then

the divided difference of orders 1, 2, . . . , n are defined by the relations

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
, (349)

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
, (350)

...

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

xn − x0
. (351)

By definition, f [xi] = f(xi), for i = 0, . . . , n. Furthermore,

f [x, x0] =
f(x)− f(x0)

x− x0
, (352)

therefore

f(x) = f(x0) + (x− x0)f [x, x0]. (353)

Again from the definition of divided differences we have

f [x, x0, x1] =
f [x, x0]− f [x0, x1]

x− x1
, (354)

158

which gives

f [x, x0] = f [x0, x1] + (x− x1)f [x, x0, x1]. (355)

Substituting the value of f [x, x0] from (355) in (353) we get

f(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x, x0, x1]. (356)

Similarly

f [x, x0, x1, x2] =
f [x, x0, x1]− f [x0, x1, x2]

x− x2
, (357)

and therefore

f [x, x0, x1] = f [x0, x1, x2] + (x− x2)f [x, x0, x1, x2]. (358)

Substituting the value of f [x, x0, x1] in (356) we get

f(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2] (359)

+ (x− x0)(x− x1)(x− x2)f [x, x0, x1, x2]. (360)

Proceeding in this way we obtain

f(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

+ (x− x0)(x− x1)(x− x2)f [x0, x1, x2, x3] + · · ·

+ (x− x0)(x− x1) · · · (x− xn)f [x, x0, x1, · · · , xn]. (361)

This formula is called Newton’s form of interpolating polynomial. Let

Pn(x) = f(x0) + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2]

+ (x− x0)(x− x1)(x− x2)f [x0, x1, x2, x3] + · · ·

+ (x− x0)(x− x1) · · · (x− xn−1)f [x, x0, x1, · · · , xn−1]. (362)

Hence, the interpolating error is given by

|f(x)− Pn(x)| = f [x, x0, x1, · · · , xn]Πn
i=0(x− xi). (363)

Moreover, if f is sufficiently smooth (i.e., is continuously differentiable at least n+ 1 times)

in the interval [x0, xn] then [45]

f [x, x0, x1, · · · , xn] =
f (n+1)(ξ)

(n+ 1)!
, x0 ≤ ξ ≤ xn+1. (364)

159

A.1.2 Lagrange Interpolating Polynomial

A Lagrange interpolating polynomial of degree n is given by

Pn(x) =

n
∑

i=0

Ci(x)f(xi), (365)

where Ci(x) are polynomials of degree n which satisfy the condition

Ci(xj) = δij , (366)

where δij is the Kronecker δ-function and are defined as

Ci(x) =

n
∏

j=0,j 6=i

x− xj

xi − xj
. (367)

The n factors for (x− xj) insure that Ci(x) vanishes at all the interpolation points except

xi. As opposed to forward-difference polynomials, the interpolating points xi for Lagrange

interpolation can be evenly spaced or unevenly spaced.

A.1.3 Hermite’s Interpolating Polynomial

The interpolating formulas, considered so far, make use of only function values. We now

give an interpolation formula in which both the function and its first derivative values are

to be assigned at each point of interpolation, that is,

P2n+1(xi) = fi, (368)

P ′
2n+1(xi) = f ′i , (369)

for i = 0, 1, . . . , n. This is referred to as Hermite’s interpolation formula and such a poly-

nomial is given by

P2n+1(x) =
n
∑

i=0

Ui(x)fi +
n
∑

i=0

Vi(x)f
′
i , (370)

where

Ui(x) = [1− 2C ′
i(xi)(x− xi)][Ci(x)]

2, (371)

Vi(x) = (x− xi)[Ci(x)]
2, (372)

and Ci(x) are given by (367).

160

A.1.4 Chebyshev Polynomial

Chebyshev polynomials are eigenfunctions of the following differential equation

(1− x2)
d2y

dx2
− xdy

dx
+ λy = 0, (373)

with eigenvalue λ = n2. There are two solutions which are given as series by:

y1(x) = 1− n2

2!
x2 +

(n− 2)n2(n+ 2)

4!
x4 − (n− 4)(n − 2)n2(n+ 2)(n + 4)

6!
x6 + . . . (374)

and

y2(x) = x− (n − 1)(n + 1)

3!
x3 +

(n− 3)(n − 1)(n + 1)(n + 3)

5!
x5 − . . . (375)

When n is a non-negative integer, one of these series will terminate, giving a polynomial

solution. If n ≥ 0 is even, then the series for y1 terminates at xn. If n is odd, then the

series for y2 terminates at xn. These polynomials are known as the Chebyshev polynomials.

(In fact, polynomial solutions are also obtained when n is a negative integer, but these are

not the new solutions, since the Chebyshev equation is invariant under the substitution of

n by −n.)

Now, for n = 0,

y1(x) = 1, (376)

and if we take x = cos(t), then we have

y1(cos(t)) = 1 = cos(0 · t). (377)

For n = 1,

y2(x) = x, (378)

and if we again take x = cos(t), then

y2(cos(t)) = cos(t). (379)

Similarly, for n = 2,

y1(cos(t)) = 1− 4

2
cos2(t) = cos(2t), (380)

and so on. Hence, Chebyshev polynomial Pn(x) is given by the following equation

Pn(cos(t)) = cos(nt), ∀ n. (381)

161

A.1.5 Legendre Polynomial

Legendre polynomials are the eigenfunctions of the following differential equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ λy = 0, (382)

with an eigenvalue λ = n(n+ 1). The above equation can be written as

d

dx

[

(1− x2)
dy

dx

]

+ n(n+ 1)y = 0. (383)

The above differential equation again has two solutions which are given as series by:

yn
1 (x) = 1− n(n+ 1)

2!
x2 +

(n− 2)n(n+ 1)(n + 3)

4!
x4 (384)

− (n− 4)(n − 2)n(n+ 1)(n + 3)(n + 5)

6!
x6 + . . . (385)

yn
2 (x) = x− (n− 1)(n + 2)

3!
x3 +

(n− 3)(n − 1)(n + 2)(n + 4)

5!
x5 − . . . (386)

Hence, the general solution for an integer n is then given by the Legendre polynomials,

Pn(x) = cn

yn
1 (x), n even,

yn
2 (x), n odd,

(387)

where cn is chosen so as to yield the normalization Pn(1) = 1. Or, alternatively, we can

write

Pn(x) =

yn
1 (x)/yn

1 (1), n even,

yn
2 (x)/yn

2 (1), n odd.

(388)

A.1.6 Neville’s Algorithm

Neville’s algorithm is equivalent to a Lagrange polynomial. It is based on a series of linear

interpolations. The data do not have to be in monotonic order, or in any structured order.

The main advantage of Neville’s algorithm is that it can be very easily programmed for a

computer. Moreover, it will be seen that none of the prior work must be redone, as it would

have to be redone to evaluate Lagrange interpolating polynomials.

Given (n + 1) data points (xi, f(xi)), for i = 0, . . . , n, where the values of x need not

necessarily be equally spaced, then to find the value of f corresponding to any given value

162

of x we proceed iteratively as follows: obtain a first approximation to f(x) by considering

the first two points only; then obtain its second approximation by considering the first three

points, and so on. We denote the different interpolation polynomials by ∆(x) (with suitable

subscripts) so that at the first stage of approximation, we have

∆01(x) =
x− x1

x0 − x1
f0 +

x− x0

x1 − x0
f1. (389)

Similarly, we can form ∆12, ∆23,

Next, we form ∆012 by considering the first three points

∆012(x) =
x− x2

x0 − x2
∆01(x) +

x− x0

x2 − x0
∆12(x). (390)

In the same fashion, we can obtain ∆123, ∆234, Continuing this way, at the nth stage

of approximation we obtain

∆012...n(x) =
x− xn

x0 − xn
∆012...n−1(x) +

x− x0

xn − x0
∆123...n(x). (391)

The Neville’s algorithm for a third degree interpolation has been summarized in Table 20.

x f

x0 f(x0)
∆01(x)

x1 f(x1) ∆012(x)
∆12(x) ∆0123(x)

x2 f(x2) ∆123(x)
∆23(x)

x3 f(x3)

Table 20: Neville’s algorithm for a third-degree interpolation.

Next, we briefly describe the Romberg integration algorithm.

A.2 Romberg Quadrature

When the functional form of the error of a numerical algorithm is known, the error can be

estimated by evaluating the algorithm for two different increment sizes. The error estimate

can be used both for error control and extrapolation.

Consider a numerical algorithm which approximates an exact calculation with an error

that depends on the grid size h. Let us denote the exact calculation by fexact and the

163

approximation by f(h), which also depends on the grid size h. Thus,

fexact = f(h) + Error(h), (392)

where

Error(h) = C1h
n + C2h

n+m + C3h
n+2m + . . . , (393)

n is the order of the leading error term and m is the increment in the order of the following

error terms. Applying the algorithm at two increment sizes, h1 = h and h2 = h/R, gives

fexact = f(h) + C1h
n +O(hn+m). (394)

fexact = f(h/R) + C1

(

h

R

)n

+O(hn+m). (395)

Subtracting (395) from (394) gives

0 = f(h)− f(h/R) + C1h
n − C1

(

h

R

)n

+O(hn+m). (396)

Solving (396) for the leading error terms in (394) and (395) yields

Error(h) = C1h
n =

Rn

Rn − 1
(f(h/R)− f(h)), (397)

Error(h/2) = C1(h/2)
n =

1

Rn − 1
(f(h/R)− f(h)). (398)

The error estimates can be added to the approximate results to yield an improved approx-

imation. This process is called extrapolation. Adding (398) to (395) gives

Extrapolated value = f(h/R) +
1

Rn − 1
(f(h/R)− f(h)) +O(hn+m). (399)

The error of the extrapolated value is O(hn+m).

When extrapolation is applied to numerical integration by the trapezoidal rule where

the successive increment size is one-half of the preceding increment size, that is, R = 2, the

result is called Romberg integration.

The error of the composite trapezoidal rule has the form [74]

Error(h) = C1h
2 + C2h

4 + C3h
6 + (400)

164

Thus, the basic algorithm is O(h2), so n = 2. The following error terms increase in order

in increments of 2. Hence, the error estimation formula (398) becomes

Error(h/2) =
1

2n − 1
(f(h/2) − f(h)). (401)

For the trapezoidal rule itself, n = 2, and equation (401) becomes

Error(h/2) =
1

3
(I(h/2) − I(h)), (402)

where I(h) denotes the integral approximation using the trapezoidal rule with step size h.

Applying the extrapolation formula (399) for R = 2 gives

I(h, h/2) = I(h/2) + Error(h/2) +O(h4). (403)

Equation (403) shows that the result I(h, h/2) obtained by extrapolating the O(h2) trape-

zoidal rule is O(h4).

If two extrapolated O(h4) values are available I(h, h/2), I(h/2, h/4), which requires

threeO(h2) trapezoidal rule results I(h), I(h/2), I(h/4), those two values I(h, h/2), I(h/2, h/4)

can be extrapolated to obtain an O(h6) value I(h, h/2, h/4) by applying (401) with n = 4

to estimate the O(h4) error, and adding that error term to the more accurate O(h4) value.

Successively higher-order extrapolations can be performed until round-off error masks any

further improvements. Each successive higher-order extrapolation begins with an additional

application of the O(h2) trapezoidal rule, which is then combined with the previously ex-

trapolated values to obtain the next higher-order extrapolated result.

With the notation described above, the Romberg integration can be summarized in the

tabular form as follows (Table 21).

Table 21: Romberg quadrature.

I(h)
I
(

h, 1
2h
)

I
(

1
2h
)

I
(

h, 1
2h,

1
4h
)

I
(

1
2h,

1
4h
)

I
(

h, 1
2h,

1
4h,

1
8h
)

I
(

1
4h
)

I
(

1
2h,

1
4h,

1
8h
)

I
(

1
4h,

1
8h
)

I
(

1
8h
)

165

A.3 Derivation of the Defects of Hermite-Simpson Discretization

The usage of Hermite-Simpson combination dates back at least to Kunz (1957) [95] and the

collocation interpretation was provided by Weiss [142].

Consider for simplicity the scalar version of (222)

ẋ = ∆τf(x(t), u(t), t), (404)

where t ∈ [tji,ki
, tji+1,ki+1

] ⊂ G, where G be a non-uniform grid of the form (225). As

before we denote, x(tji,ki
) by xji,ki

. Then we can write the state x(t) on the segment

[tji,ki
, tji+1,ki+1

], using the cubic Hermite interpolating polynomial (370), with n = 1, as

x(t) = Ui(t)xji,ki
+ Ui+1(t)xji+1,ki+1

+ ∆τVi(t)fji,ki
+ ∆τVi+1(t)fji+1,ki+1

. (405)

Therefore,

xji+1/2,ki+1/2
=Ui(tji+1/2,ki+1/2

)xji,ki
+ Ui+1(tji+1/2,ki+1/2

)xji+1,ki+1

+ ∆τVi(tji+1/2,ki+1/2
)fji,ki

+ ∆τVi+1(tji+1/2,ki+1/2
)fji+1,ki+1

, (406)

where xji+1/2,ki+1/2
= x(tji+1/2,ki+1/2

) and

tji+1/2,ki+1/2
=
tji,ki

+ tji+1,ki+1

2
. (407)

For finding Ui(t), Ui+1(t), Vi(t) and Vi+1(t), we first find

Ci(t) =
t− tji+1,ki+1

tji,ki
− tji+1,ki+1

, (408)

C ′
i(t) =

1

tji,ki
− tji+1,ki+1

, (409)

Ci+1(t) =
t− tji,ki

tji+1,ki+1
− tji,ki

, (410)

C ′
i+1(t) =

1

tji+1,ki+1
− tji,ki

. (411)

Hence,

Ui(t) = [1− 2C ′
i(tji,ki

)(t− tji,ki
)][Ci(t)

2]

=

[

1− 2
(t− tji,ki

)

tji,ki
− tji+1,ki+1

] [

t− tji+1,ki+1

tji,ki
− tji+1,ki+1

]2

= (tji,ki
− tji+1,ki+1

− 2t+ 2tji,ki
]

(t− tji+1,ki+1
)2

(tji,ki
− tji+1,ki+1

)3

= (3tji,ki
− tji+1,ki+1

− 2t)
(t− tji+1,ki+1

)2

(tji,ki
− tji+1,ki+1

)3
. (412)

166

Therefore,

Ui(tji+1/2,ki+1/2
) = Ui(tji,ki

+ hji,ki
/2)

= −
[

3tji,ki
− tji+1,ki+1

− 2

(

tji,ki
+
hji,ki

2

)]

(

tji,ki
+

hji,ki
2 − tji+1,ki+1

)2

h3
ji,ki

= −(3tji,ki
− tji+1,ki+1

− 2tji,ki
− hji,ki

)
h2

ji,ki

4h3
ji,ki

= − 1

4hji,ki

(tji,ki
− tji+1,ki+1

− hji,ki
)

= − 1

4hji,ki

(−hji,ki
− hji,ki

)

=
1

2
. (413)

Next we find

Ui+1(t) = [1− 2C ′
i+1(tji,ki

)(t− tji+1,ki+1
)][Ci+1(t)

2]

=

[

1− 2
t− tji+1,ki+1

tji+1,ki+1
− tji,ki

] [

t− tji,ki

tji+1,ki+1
− tji,ki

]2

= (tji+1,ki+1
− tji,ki

− 2t+ 2tji+1,ki+1
)

(t− tji,ki
)2

(tji+1,ki+1
− tji,ki

)3
. (414)

Therefore,

Ui+1(tji+1/2,ki+1/2
) = Ui+1(tji,ki

+ hji,ki
/2)

=
1

h3
ji,ki

[

3tji+1,ki+1
− tji,ki

− 2(tji,ki
+
hji,ki

2
)

](

tji,ki
+
hji,ki

2
− tji,ki

)2

=
1

h3
ji,ki

(3tji+1,ki+1
− tji,ki

− 2tji,ki
− hji,ki

)
h2

ji,ki

4

=
1

4hji,ki

(3hji,ki
− hji,ki

)

=
1

2
. (415)

Next we find

Vi(t) = (t− tji,ki
)[Ci(t)]

2

= (t− tji,ki
)

[

t− tji+1,ki+1

tji,ki
− tji+1,ki+1

]2

. (416)

167

Therefore,

Vi(tji+1/2,ki+1/2
) = Vi(tji,ki

+ hji,ki
/2)

=
hji,ki

2

[

tji,ki
+

hji,ki
2 − tji+1,ki+1

hji,ki

]2

=
hji,ki

2

[

−hji,ki
2

hji,ki

]2

=
hji,ki

8
. (417)

Next we find

Vi+1(t) = (t− tji+1,ki+1
)[Ci+1(t)]

2

= (t− tji+1,ki+1
)

[

t− tji,ki

tji+1,ki+1
− tji,ki

]2

. (418)

Therefore,

Vi+1(tji+1/2,ki+1/2
) = Vi+1(tji,ki

+ hji,ki
/2)

=

(

tji,ki
+
hji,ki

2
− tji+1,ki+1

)

(

tji,ki
+

hji,ki
2 − tji,ki

hji,ki

)2

=
1

4

(

−hji,ki
+
hji,ki

2

)

= −hji,ki

8
. (419)

Hence, (406) reduces to

xji+1/2,ki+1/2
=

1

2
xji,ki

+
1

2
xji+1,ki+1

+ ∆τ
hji,ki

8
fji,ki

−∆τ
hji,ki

8
fji+1,ki+1

=
1

2
(xji,ki

+ xji+1,ki+1
) + ∆τ

hji,ki

8
(fji,ki

− fji+1,ki+1
). (420)

Once we have found xji+1/2,ki+1/2
, we compute1

fji+1/2,ki+1/2
= f(xji+1/2,ki+1/2

, uji+1/2,ki+1/2
, tji+1/2,ki+1/2

), (421)

where uji+1/2,ki+1/2
= u(tji+1/2,ki+1/2

), and integrate across the segment using Simpson’s

quadrature rule [74],

∫ ti+1

ti

ẋdt = xji+1,ki+1
− xji,ki

= ∆τ
hji,ki

/2

3
(fji,ki

+ 4fji+1/2,ki+1/2
+ fji+1,ki+1

). (422)

1It should be noted that uji+1/2,ki+1/2
is an optimization parameter (NLP variable), hence we do not

calculate uji+1/2,ki+1/2
.

168

Hence, the defects of Hermite-Simpson discretization are given by

ζi = xji+1,ki+1
− xji,ki

−∆τ
hji,ki

6
[fji,ki

+ 4fji+1/2,ki+1/2
+ fji+1,ki+1

], (423)

where

fji,ki
= f(xji,ki

,uji,ki
, tji,ki

),

fji+1/2,ki+1/2
= f(xji+1/2,ki+1/2

,uji+1/2,ki+1/2
, tji+1/2,ki+1/2

),

xji+1/2,ki+1/2
=

1

2
[xji,ki

+ xji+1,ki+1
] + ∆τ

hji,ki

8
[fji,ki

− fji+1,ki+1
],

tji+1/2,ki+1/2
=
tji,ki

+ tji+1,ki+1

2
, uji+1/2,ki+1/2

= u(tji+1/2,ki+1/2
),

for i = 1, . . . , N − 1.

169

APPENDIX B

ARZELO-ASCOLI COMPACTNESS CRITERION

Definition 8 (Uniformly Equicontinuous Functions). Let {fk}∞k=1 be a sequence of func-

tions from X ⊂ R
n → R. The sequence {fk}∞k=1 is uniformly equicontinuous if for every

ǫ > 0, ∃ δ > 0 such that for all k and all x, y ∈ X with |x−y| < δ we have |fk(x)−fk(y)| < ǫ.

Theorem 4 (Arzelo-Ascoli Compactness Criterion [54]). Suppose that {fk}∞k=0 is a sequence

of functions from R
n → R, such that

|fk(x)| ≤M (k = 1, . . . , x ∈ R
n) (424)

for some constant M , and that {fk}∞k=1 are uniformly equicontinuous. Then there exists a

subsequence {fkj
}∞j=1 ⊆ {fk}∞k=1 and a continuous function f , such that fkj

→ f uniformly

on compact subsets of R
n.

170

REFERENCES

[1] Adjerid, S. and Flaherty, J. E., “A moving finite element method with error es-
timation and refinement for one-dimensional time dependent partial differential equa-
tions,” SIAM Journal on Numerical Analysis, vol. 23, pp. 778–795, 1986.

[2] Adjerid, S. and Flaherty, J., “A moving mesh finite element method with local
refinement for parabolic partial differential equations,” Computer Methods in Applied
Mechanics and Engineering, vol. 56, pp. 3–26, 1986.

[3] Alves, M. A., Cruz, P., Mendes, A., Magalhães, F. D., Pinho, F. T.,
and Oliveira, P. J., “Adaptive multiresolution approach for solution of hyper-
bolic PDEs,” Computer Methods in Applied Mechanics and Engineering, vol. 191,
pp. 3909–3928, 2002.

[4] Arney, D. C. and Flahetry, J. E., “A two-dimensional mesh moving technique
for time dependent partial differential equations,” Journal of Computational Physics,
vol. 67, pp. 124–144, 1986.

[5] Athans, M. and Falb, P. L., Optimal Control. NY: McGraw-Hill Book Company,
1966.

[6] Babuška, I., Chandra, J., and Flaherty, J. E., eds., Adaptive Computational
Methods for Partial Differential Equations. Philadelphia, PA: SIAM, 1983.

[7] Baines, M. J., Moving Finite Elements. New York: Oxford University Press, 1994.

[8] Baines, M. and Wathen, A., “Moving finite element methods for evolutionary
problems. I. Theory,” Journal of Computational Physics, vol. 79, pp. 245–269, 1988.

[9] Bazaraa, M. S., Sherali, H. D., and Shetty, C. M., Nonlinear Programming:
Theory and Algorithms. NY: John Wiley & Sons, Inc., 1993.

[10] Bell, J., Berger, M. J., Saltzman, J., and Welcome, M., “Three-dimensional
adaptive mesh refinement for hyperbolic conservation laws,” SIAM Journal on Sci-
entific Computing, vol. 15, pp. 127–138, 1994.

[11] Bellingham, J., Kuwata, Y., and How, J., “Stable receding horizon trajectory
control for complex environments,” in AIAA Guidance, Navigation, and Control Con-
ference and Exhibit, 2003. AIAA 2003-5635.

[12] Bellman, R. E., Dynamic Programming. Princeton University Press, Princeton,
1957.

[13] Berger, M. J. and Colella, P., “Local adaptive mesh refinement for shock hy-
drodynamics,” Journal of Computational Physics, vol. 82, pp. 64–84, 1989.

171

[14] Berger, M. J. and Leveque, R., “Adaptive mesh refinement using wave-
propagation algorithms for hyperbolic systems,” SIAM Journal on Numerical Analy-
sis, vol. 35, pp. 2298–2316, 1998.

[15] Berger, M. J. and Oliger, J., “Adaptive mesh refinement for hyperbolic partial
differential equations,” Journal of Computational Physics, vol. 53, pp. 484–512, 1984.

[16] Bertoluzza, S., “Adaptive wavelet collocation method for the solution of Burger’s
equation,” Transport Theory and Statistical Physics, vol. 25, pp. 339–352, 1996.

[17] Betts, J. T., “Survey of numerical methods for trajectory optimization,” Journal
of Guidance, Control, and Dynamics, vol. 21, pp. 193–207, 1998.

[18] Betts, J. T., Practical Methods for Optimal Control using Nonlinear Programming.
Philadelphia, PA: SIAM, 2001.

[19] Betts, J. T., Biehn, N., and Campbell, S. L., “Convergence of nonconvergent irk
discretizations of optimal control problems with state inequality constraints,” SIAM
Journal on Scientific Computing, vol. 23, pp. 1981–2007, 2002.

[20] Betts, J. T., Biehn, N., Campbell, S. L., and Huffman, W. P., “Compensating
for order variation in mesh refinement for direct transcription methods,” Journal of
Computational and Applied Mathematics, vol. 125, pp. 147–158, 2000.

[21] Betts, J. T. and Huffman, W. P., “Trajectory optimization on a parallel proces-
sor,” Journal of Guidance, Control, and Dynamics, vol. 14, pp. 431–439, 1991.

[22] Betts, J. T. and Huffman, W. P., “Mesh refinement in direct transcriptioin meth-
ods for optimal control,” Optimal Control Applications & Methods, vol. 19, pp. 1–21,
1998.

[23] Biehn, N., Campbell, S. L., Jay, L., and Westbrook, T., “Some comments on
DAE theory for IRK methods and trajectory optimization,” Journal of Computational
and Applied Mathematics, vol. 120, pp. 109–131, 2000.

[24] Binder, T., Blank, L., Dahmen, W., and Marquardt, W., “Grid refinement in
multiscale dynamic optimization,” Tech. Rep. LPT-2000-11, RWTH Aachen, Aachen,
Germany, 2000.

[25] Binder, T., Blank, L., Dahmen, W., and Marquardt, W., “Iterative algorithms
for multiscale state estimation, Part 1: Concepts,” Journal of Optimization Theory
and Applications, vol. 111, pp. 501–527, 2001.

[26] Binder, T., Blank, L., Dahmen, W., and Marquardt, W., “Iterative algo-
rithms for multiscale state estimation, Part 2: Numerical investigations,” Journal of
Optimization Theory and Applications, vol. 111, pp. 529–551, 2001.

[27] Binder, T., Cruse, A., Villar, C. A. C., and Marquardt, W., “Dynamic
optimization using a wavelet based adaptive control vector parametrization strategy,”
Computers and Chemical Engineering, vol. 24, pp. 1201–1207, 2000.

[28] Bock, H. G. and Plitt, K. J., “A multiple shooting algorithm for direct solu-
tion of optimal control problems,” in Proceedings of the 9th IFAC World Congress,
(Budapest, Hungary), pp. 242–247, 1984.

172

[29] Boltyanski, V. G., “Maximum principle in theory of optimal processes,” Dok-
lady Akademii nauk SSSR (Proceedings of Academy of Sciences, U.S.S.R.), vol. 119,
pp. 1070–1073, 1958. (Russian).

[30] Brauer, G. L., Cornick, D. E., and Stevenson, R., “Capabilities and applica-
tions of the program to optimize simulated trajectories (POST),” Tech. Rep. NASA
CR-2770, NASA, Feb 1977.

[31] Breakwell, J. V., Speyer, J. L., and Bryson, A. E., “Optimization and control
of nonlinear systems using the second variation,” SIAM Journal on Control, vol. 1,
pp. 193–223, 1963.

[32] Bryson, A. E., “Optimal control - 1950 to 1985,” IEEE Control Systems Magazine,
vol. 16, pp. 26–33, 1996.

[33] Bryson, A. E. and Ho, Y.-C., Applied Optimal Control: Optimization, Estimation,
and Control. Washington: Hemisphere Publishing Corporation, 1975.

[34] Burrus, C. S., Gopinath, R. A., and Guo, H., Introduction to Wavelets and
Wavelet Transforms. NJ: Prentice Hall, 1998.

[35] Butcher, J. C., “Implicit Runge–Kutta processes,” Mathematics of Computation,
vol. 18, pp. 50–64, 1964.

[36] Calise, A. J. and Brandt, N., “Generation of launch vehicle abort trajectories
using a hybrid optimization method,” Journal of Guidance, Control, and Dynamics,
vol. 27, pp. 930–937, 2004.

[37] Calise, A. J., Melamed, N., and Lee, S., “Design and evaluation of a three-
dimensional optimal ascent guidance algorithm,” Journal of Guidance, Control, and
Dynamics, vol. 21, pp. 867–875, 1998.

[38] Carlson, N. N. and Miller, K., “Design and application of a gradient weighted
moving finite element code I: In one dimension,” SIAM Journal on Scientific Com-
puting, vol. 19, pp. 728–765, 1998.

[39] Ceniceros, H. D. and Hou, T. Y., “An efficient dynamically adaptive mesh for
potentially singular solutions,” Journal of Computational Physics, vol. 172, pp. 609–
639, 2001.

[40] Citron, S. J., Elements of Optimal Control. New York: Hotl, Rinehart and Winston,
Inc., 1969.

[41] Crandall, M. G., Evans, L. C., and Lions, P. L., “Some properties of viscosity
solutions of Hamilton-Jacobi equations,” Transactions of the American Mathematical
Society, vol. 282, pp. 487–502, 1984.

[42] Crandall, M. G. and Lions, P. L., “Viscosity solutions of Hamilton-Jacobi equa-
tions,” Transactions of the American Mathematical Society, vol. 277, pp. 1–42, 1983.

[43] Crandall, M. and Lions, P., “Two approximations of solutions of Hamilton-Jacobi
equations,” Mathematics of Computation, vol. 43, pp. 1–19, 1984.

173

[44] Daubechies, I., Ten Lectures on Wavelets. PA: Society for Industrial and Applied
Mathematics, 1992.

[45] de Boor, C., A Practical Guide to Splines, vol. 27 of Applied Mathematical Sciences.
New York: Springer-Verlag, 1978.

[46] Deslauriers, G. and Dubuc, S., “Symmetric iterative interpolation processes,”
Constructive Approximation, vol. 5, pp. 49–68, 1989.

[47] Donoho, D. L., “Interpolating wavelet transforms,” tech. rep., Department of Statis-
tics, Stanford University, Stanford, CA, 1992.

[48] Dontchev, A. L. and Hager, W. W., “The euler approximation in state con-
strained optimal control,” Mathematics of Computation, vol. 70, pp. 173–203, 2000.

[49] Dontchev, A. L., Hager, W. W., and Veliov, V. M., “Second-order runge-kutta
approximations in control constrained optimal control,” SIAM Journal on Numerical
Analysis, vol. 38, pp. 202–226, 2000.

[50] Dorfi, E. A. and Drury, L. O., “Simple adaptive grids for 1-d initial value prob-
lems,” Journal of Computational Physics, vol. 69, pp. 175–195, 1987.

[51] Drikakis, D. and W., R., High Resolution Methods for Incompressible and Low-
Speed Flows. New York: Springer, 2004.

[52] Elnagar, G., Kazemi, M. A., and Razzaghi, M., “The pseudospectral Legendre
method for discretizing optimal control problems,” IEEE Transactions on Automatic
Control, vol. 40, pp. 1793–1796, 1995.

[53] Enright, P. J. and Conway, B. A., “Discrete approximation to optimal trajectories
using direct transcription and nonlinear programming,” Journal of Guidance, Control,
and Dynamics, vol. 15, pp. 994–1002, 1992.

[54] Evans, L. C., Partial Differential Equations. Providence, Rhode Island: American
Mathematical Society, 1998.

[55] Fahroo, F. and Ross, I. M., “Direct trajectory optimization by a Chebyshev pseu-
dospectral method,” Journal of Guidance, Control, and Dynamics, vol. 25, pp. 160–
166, 2002.

[56] Fahroo, F. and Ross, I., “A spectral patching method for direct trajectory opti-
mization,” Journal of the Astronautical Sciences, vol. 48, pp. 269–286, 2000.

[57] Fahroo, F. and Ross, I., “Trajectory optimization by indirect spectral colloca-
tion methods,” in AIAA/AAS Astrodynamics Specialist Conference, (Denver, CO),
pp. 123–129, August 2000.

[58] Feeley, T. S. and Speyer, J. L., “Techniques for developing approximate optimal
advanced launch system guidance,” Journal of Guidance, Control, and Dynamics,
vol. 17, pp. 889–896, 1994.

[59] Gamkrelidze, R. V., “Discovery of the maximum principle,” Journal of Dynamical
and Control Systems, vol. 5, pp. 437–451, 1999.

174

[60] Gelfand, I. M. and Fomin, S. V., Calculus of Variations. Prentice-Hall, N.J., rev.
english ed., 1963. Translated and edited from Russian by R.A. Silverman.

[61] Gill, P. E., Murray, W., and Saunders, M. A., User’s Guide for SNOPT Version
6, A Fortran Package for Large-Scale Nonlinear Programming. Stanford, CA, 2002.

[62] Goldstine, H. H., A History of the Calculus of Variations from the 17th through
the 19th Century. Springer-Verlag, 1980.

[63] Gong, Q. and Ross, I. M., “Autonomous pseudospectral knotting methods for space
mission optimization,” in 16th AAS/AIAA Space Flight Mechanics Meeting, no. AAS
06-151, 2006.

[64] Hager, W. W., “Runge-kutta methods in optimal control and the transformed ad-
joint system,” Numerische Mathematik, vol. 87, pp. 247–282, 2000.

[65] Hairer, E., Norsett, S. P., and Wanner, G., Solving Ordinary Differential Equa-
tions I. Nonstiff Problems. Springer-Verlag, New York, 1987.

[66] Hairer, E., Norsett, S. P., and Wanner, G., Solving Ordinary Differential Equa-
tions II. Stiff and Differential-Algebraic Problems. Springer-Verlag, New York, 1991.

[67] Hargraves, C. R. and Paris, S. W., “Direct trajectory optimization using non-
linear programming and collocation,” Journal of Guidance, Control, and Dynamics,
vol. 10, pp. 338–342, 1987.

[68] Harten, A., “Adaptive multiresolution schemes for shock computations,” Journal
of Computational Physics, vol. 115, pp. 319–338, 1994.

[69] Harten, A., “Multiresolution algorithms for the numerical solution of hyperbolic
conservation laws,” Comm. Pure Appl. Math., vol. 48, pp. 1305–1342, 1995.

[70] Harten, A., “Multiresolution representation of data: A general framework,” SIAM
Journal on Numerical Analysis, vol. 33, no. 3, pp. 1205–1256, 1996.

[71] Harten, A., Enquist, B., Osher, S., and Chakravarthy, S., “Uniformly high-
order accurate essentially non-oscillatory schemes III,” Journal of Computational
Physics, vol. 71, pp. 231–303, 1987.

[72] Herman, A. L. and Conway, B. A., “Direct optimization using collocation based
on high-order Gauss-Lobatto quadrature rules,” Journal of Guidance, Control, and
Dynamics, vol. 19, pp. 592–599, 1996.

[73] Hodges, D. H., Bless, R. R., and Seywald, H., “A finite element method for the
solution of state-constrained optimal control problems,” Journal of Guidance, Control
and Dynamics, vol. 18, pp. 1036–1043, 1995.

[74] Hoffman, J. D., Numerical Methods for Engineers and Scientists. NY: Marcel
Dekker, Inc., 2001.

[75] Holmström, M., “Solving hyperbolic PDEs using interpolating wavelets,” SIAM
Journal on Scientific Computing, vol. 21, pp. 405–420, 1999.

175

[76] Holmström, M. and Waldén, J., “Adaptive wavelet methods for hyperbolic
PDEs,” Journal of Scientific Computing, vol. 13, no. 1, pp. 19–49, 1998.

[77] Huang, W., Ren, Y., and Russell, R. D., “Moving mesh methods based on mov-
ing mesh partial differential equations,” Journal of Computational Physics, vol. 113,
pp. 279–290, 1994.

[78] Jain, S. and Tsiotras, P., “Multiresolution trajectory optimization schemes for
problems with moving targets and dynamically changing environment,” Journal of
Guidance, Control, and Dynamics. To be Submitted.

[79] Jain, S. and Tsiotras, P., “Trajectory optimization using multiresolution tech-
niques,” Journal of Guidance, Control, and Dynamics. Accepted.

[80] Jain, S. and Tsiotras, P., “A solution of the time-optimal Hamilton-Jacobi-
Bellman equation on the interval using wavelets,” in Proceedings of 43rd IEEE Con-
ference on Decision and Control, (Paradise Island, Bahamas), pp. 2728–2733, 2004.

[81] Jain, S. and Tsiotras, P., “The method of reflection for solving the time-optimal
Hamilton-Jacobi-Bellman equation on the interval,” in 13th IEEE Mediterranean Con-
ference on Control and Automation, (Limassol, Cyprus), pp. 1062–1067, 2005.

[82] Jain, S. and Tsiotras, P., “Multiresolution-based direct trajectory optimization,”
in Proceedings of 46th IEEE Conference on Decision and Control, (New Orleans, LA),
pp. 5991–5996, 2007.

[83] Jain, S. and Tsiotras, P., “Sequential nonlinear trajectory optimization for moving
targets,” in AIAA Guidance, Navigation and Control Conference and Exhibit, 2008.
Submitted.

[84] Jain, S., Tsiotras, P., and Velenis, E., “Optimal feedback velocity profile gen-
eration for a vehicle with given acceleration limits: A level set implementation,” in
13th IEEE Mediterranean Conference on Control and Automation, 2008. Submitted.

[85] Jain, S., Tsiotras, P., and Zhou, H.-M., “A hierarchical multiresolution adaptive
mesh refinement for the solution of evolution PDEs,” SIAM Journal on Scientific
Computing. Submitted.

[86] Jain, S., Tsiotras, P., and Zhou, H.-M., “Adaptive multiresolution mesh refine-
ment for the solution of evolution PDEs,” in Proceedings of 46th IEEE Conference on
Decision and Control, (New Orleans, LA), pp. 3525–3530, 2007.

[87] Jameson, L., “A wavelet-optimized, very high order adaptive grid and order nu-
merical method,” SIAM Journal on Scientific Computing, vol. 19, pp. 1980–2013,
1998.

[88] Jardin, M. R. and Bryson, A. E., “Neighboring optimal aircraft guidance in
winds,” Journal of Guidance, Control, and Dynamics, vol. 24, pp. 710–715, 2001.

[89] Jiang, G. S. and Peng, D., “Weighted ENO schemes for Hamilton-Jacobi equa-
tions,” SIAM Journal on Scientific Computing, vol. 21, no. 6, pp. 2126–2143, 2000.

176

[90] Jiang, G. S. and Shu, C.-W., “Efficient implementation of weighted ENO schemes,”
Journal of Computational Physics, vol. 126, no. 1, pp. 202–228, 1996.

[91] Johnson, I. W., Wathen, A. J., and Wathen, M. J., “Moving finite element meth-
ods for evolutionary problems. II. Applications,” Journal of Computational Physics,
vol. 79, pp. 270–297, 1988.

[92] Kelly, H. J., “An optimal guidance approximation theory,” IEEE Transactions on
Automatic Control, vol. 9, pp. 375–380, 1964.

[93] Kirk, D. E., Optimal Control Theory: An Introduction. Prentice-Hall, N.J., 1970.

[94] Kumar, R. R. and Seywald, H., “Dense-sparse discretization for optimization and
real-time guidance,” Journal of Guidance, Control, and Dynamics, vol. 19, pp. 501–
503, 1996.

[95] Kunz, K. S., Numerical Analysis. New York: McGraw-Hill, 1957.

[96] Lax, P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical
computation,” Communications on Pure and Applied Mathematics, vol. 7, pp. 195–
206, 1954.

[97] LeVeque, R., Numerical Methods for Conservation Laws. Boston: Birhäuser Verlag,
1992.

[98] Li, R. and Tang, T., “Moving mesh discontinuous Galerkin method for hyperbolic
conservation laws,” Journal of Scientific Computing, vol. 27, pp. 347–363, 2006.

[99] Liu, X. D., Osher, S., and Chan, T., “Weighted essentially non-oscillatory
schemes,” Journal of Computational Physics, vol. 115, no. 1, pp. 200–212, 1994.

[100] Lu, P., “Regulation about time-varying trajectories: Precision entry guidance illus-
trated,” Journal of Guidance, Control, and Dynamics, vol. 22, pp. 784–790, 1999.

[101] Lu, P., “Predictor-corrector entry guidance for low lifting vehicles,” in AIAA Guid-
ance, Navigation and Control Conference and Exhibit, no. AIAA 2007-6425, 2007.

[102] Mallat, S. G., “Multiresolution approximations and wavelet orthonormal bases of
L2(R),” in Transactions of the American Mathematical Society, vol. 315, pp. 69–87,
1989.

[103] Mallat, S. G., “A theory for multiresolution signal decomposition: The wavelet
representation,” IEEE Transactions on Pattern Analysis and Machine Intellegence,
vol. 2, pp. 674–693, 1989.

[104] Meder, D. S. and McLaughlin, J. R., “A generalized trajectory simulation sys-
tem,” in Summer Computer Simulation Conference, Washington, D.C., July 12-14,
1976, Proceedings. (A77-24576 09-66) Montvale, N.J., AFIPS Press, 1976, p. 366-
372. (Mankin, J. B., Gardner, R. H., and Shugart, H. H., eds.), pp. 366–372,
1976.

[105] Miller, K., “Moving finite elements II,” SIAM Journal on Numerical Analysis,
vol. 18, pp. 1033–1057, 1981.

177

[106] Miller, K. and Miller, R. N., “Moving finite elements I,” SIAM Journal on
Numerical Analysis, vol. 18, pp. 1019–1032, 1981.

[107] Oberle, H. J. and Grimm, W., “BNDSCO - A program for the numerical solution of
optimal control problems,” Tech. Rep. DLR IB/515-89/22, Institute for Flight System
Dynamics, German Aerospace Research Establishment, Oberpfaffenhofen, Germany,
1989.

[108] Ohtsuka, T., “Quasi-newton-type continuation method for nonlinear receding hori-
zon control,” Journal of Guidance, Control, and Dynamics, vol. 25, pp. 685–692,
2002.

[109] Osher, S. and Fedkiw, R. P., “Level set methods: An overview and some recent
results,” Journal of Computational Physics, vol. 169, no. 2, pp. 436–502, 2001.

[110] Osher, S. and Fedkiw, R. P., Level Set Methods and Dynamic Implicit Surfaces.
New York: Springer, 2003.

[111] Osher, S. and Shu, C.-W., “High order essentially non-oscillatory schemes for
Hamilton-Jacobi equations,” SIAM Journal on Numerical Analysis, vol. 28, pp. 902–
921, 1991.

[112] Pesch, H. J., “Real-time computation of feedback controls for constrained optimal
control problems. part 2: A correction method based on multiple shooting,” Optimal
Control Applications & Methods, vol. 10, pp. 147–171, 1989.

[113] Petzold, L. R., “Observations on an adaptive moving grid method for one-
dimensional systems for partial differential equations,” Applied Numerical Mathemat-
ics, vol. 3, pp. 347–360, 1987.

[114] Polak, E., “An historical survey of computational methods in optimal control,”
SIAM Review, vol. 15, no. 2, pp. 553–584, 1973.

[115] Rao, A. V. and Mease, K. D., “Eigenvector approximate dichotomic basis method
for solving hyper-sensitive optimal control problems,” Optimal Control Applications
and Methods, vol. 20, pp. 59–77, 1999.

[116] Ross, I. M., “User’s manual for DIDO (ver. pr.1β): A matlab application package
for solving optimal control problems,” Tech. Rep. 04-01.0, Naval Postgraduate School,
Monterey, CA, 2004.

[117] Ross, I. M. and Fahroo, F., “Pseudospectral knotting methods for solving optimal
control problems,” Journal of Guidance, Control, and Dynamics, vol. 27, pp. 397–405,
2004.

[118] Ross, I. M., Fahroo, F., and Strizzi, J., “Adaptive grids for trajectory optimiza-
tion by pseudospectral methods,” in AAS/AIAA Spaceflight Mechanics Conference,
(Ponce, Puerto Rico), pp. 649–668, 2003.

[119] Ross, I. M., Gong, Q., and Sekhavat, P., “Low-thrust, high accuracy trajectory
optimization,” Journal of Guidance, Control, and Dynamics, vol. 30, pp. 921–933,
2007.

178

[120] Russell, R. D. and Shampine, L. F., “A collocation method for boundary value
problems,” Numerische Mathematik, vol. 19, pp. 13–36, 1972.

[121] Schlegel, M., Stockmann, K., Binder, T., and Marquardt, W., “Dynamic
optimization using adaptive control vector parameterization,” Computers and Chem-
ical Engineering, vol. 29, pp. 1731–1751, 2005.

[122] Sendov, B. and Popov, V. A., The Averaged Moduli of Smootheness. Pure and
Applied Mathematics, Chichester: John Whiley & Sons, 1988.

[123] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Sci-
ence. NY: Cambridge University Press, 1999.

[124] Seywald, H., “Trajectory optimization based on differential inclusion,” Journal of
Guidance, Control and Dynamics, vol. 17, pp. 480–487, 1994.

[125] Seywald, H. and Cliff, E. M., “Neighboring optimal control based feedback law for
the advanced launch system,” Journal of Guidance, Control, and Dynamics, vol. 17,
pp. 1154–1162, 1994.

[126] Shen, H. and Tsiotras, P., “Time-optimal control of axi-symmetric spacecraft,”
Journal of Guidance, Control, and Dynamics, vol. 22, no. 5, pp. 682–694, 1999.

[127] Shu, C.-W. and Osher, S., “Efficient implementation of essentially non-oscillatory
shock capturing schemes,” Journal of Computational Physics, vol. 77, pp. 439–471,
1988.

[128] Shu, C.-W. and Osher, S., “Efficient implementation of essentially non-oscillatory
shock capturing schemes II,” Journal of Computational Physics, vol. 83, pp. 32–78,
1989.

[129] Sod, G. A., “A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws,” Journal of Computational Physics, vol. 27, pp. 1–31,
1978.

[130] Speyer, J. L. and Bryson, A. E., “A neighboring optimum feedback control scheme
based on estimated time-to-go with application to re-entry flight paths,” AIAA Jour-
nal, vol. 6, pp. 769–776, 1968.

[131] Speyer, J. L. and Crues, E. Z., “Approximate optimal atmospheric guidance law
for aeroassisted plane-change maneuvers,” Journal of Guidance, Control, and Dynam-
ics, vol. 13, pp. 792–802, 1990.

[132] Stryk, O. v. and Bulirsch, R., “Direct and indirect methods for trajectory opti-
mization,” Annals of Operations Research, vol. 37, pp. 357–373, 1992.

[133] Sussmann, H. J. and Willems, J. C., “300 years of optimal control: From the
brachystochrone to the maximum principle,” IEEE Control Systems Magazine, vol. 17,
pp. 32–44, 1997.

[134] Sweldens, W., “The lifting scheme: A construction of second generation wavelets,”
SIAM Journal on Mathematical Analysis, vol. 29, pp. 511–546, 1998.

179

[135] Sweldens, W. and Schröder, P., “Building your own wavelets at home,” in
Wavelets in Computer Graphics, ACM SIGGRAPH Course Notes, pp. 15–87, 1996.

[136] Tang, H. and Tang, T., “Adaptive mesh methods for one- and two-dimensional
hyperbolic conservation laws,” SIAM Journal on Numerical Analysis, vol. 41, pp. 487–
515, 2003.

[137] Thomas, J. W., Numerical Partial Differential Equations. NY: Springer, 1995.

[138] Thompson, J. F., “A survey of dynamically-adaptive grids in the numerical solution
of partial differential equations,” Applied Numerical Mathematics, vol. 1, pp. 3–27,
1985.

[139] Vasilyev, O. V., “Solving multi-dimensional evolution problems with localized struc-
tures using second generation wavelets,” International Journal of Computational Fluid
Dynamics, vol. 17, no. 2, pp. 151–168, 2003.

[140] Vasilyev, O. V. and Bowman, C., “Second-generation wavelet collocation method
for the solution of partial differential equations,” Journal of Computational Physics,
vol. 165, pp. 660–693, 2000.

[141] Waldén, J., “Filter bank methods for hyperbolic PDEs,” Journal of Numerical Anal-
ysis, vol. 36, pp. 1183–1233, 1999.

[142] Weiss, R., “The application of implicit Runge-Kutta and collocation methods to
boundary value problems,” Mathematics of Computation, vol. 28, pp. 449–464, 1974.

[143] Williams, P., “Application of pseudospectral methods for receding horizon control,”
Journal of Guidance, Control, and Dynamics, vol. 27, pp. 310–314, 2004.

[144] Yan, H., Fahroo, F., and Ross, I. M., “Real-time computation of neighboring
optimal control laws,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2002. AIAA 2002-4657.

180

HIERARCHICAL PATH PLANNING AND CONTROL OF
A SMALL FIXED-WING UAV: THEORY AND

EXPERIMENTAL VALIDATION

A Thesis
Presented to

The Academic Faculty

by

Dongwon Jung

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
December 2007

HIERARCHICAL PATH PLANNING AND CONTROL OF
A SMALL FIXED-WING UAV: THEORY AND

EXPERIMENTAL VALIDATION

Approved by:

Professor Panagiotis Tsiotras,
Committee Chair
School of Aerospace Engineering
Georgia Institute of Technology

Professor George Vachtsevanos
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Eric Feron
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Eric Corban
President
Guided Systems Technologies, Inc.

Professor Eric Johnson
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: 30 October 2007

To my wife, whom I love,

and Elliot, my beloved son.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Panagiotis Tsiotras for providing me with the

opportunity to study and conduct research at one of the best engineering schools in

the country. His constant guidance and encouragement have motivated me to reach

my utmost accomplishment towards professional maturity. For all your support and

concern for me and my family, I am deeply indebted to you for potitive influence you

have had on my life. In addition, I thank the other Ph.D. committee members Dr. Eric

Corban, Dr. Eric Feron, Dr. Eric Johnson, and Dr. George Vachtsevanos for taking

time from their busy schedules to review my thesis and providing valuable suggestions

to improve the quality of the dissertation. I especially extend my appreciation to Dr.

Eric Corban for your kind efforts and sincere concern in regards to my future plans.

This research work has been supported in part by NSF (award no. CMS-0510259)

and by the Georgia Tech President’s Undergraduate Research Awards (PURA) pro-

gram. Their finalcial support is greatly appreciated. I would like to acknowledge all

of my lab-mates and alumni of the Dynamic and Control Systems Lab, Dr. Haijun

Shen, Dr. Xiping Zhang, Dr. Hyungjoo Yoon, Ancil Marshall, Sachin Jain, Atri

Dutta, Efstathios Bakolas, Raghu Cowlagi, Dae-Min Cho for their help and valuable

discussions from I have benefitted tremendously. In particular, I would like to give

special thanks to Dr. Byungmoon Kim who has led me towards the spacecraft exper-

imental research in my early days of Georgia Tech. In addition, I thank to Dr. Brian

Wilson and Dr. Efstathios Velenis who spent time together at the office, Montgomery

Knight building Room 111, listening to my problems, successes, and offering advice.

During the early phase of this research work, I would like to acknowledge the contri-

butions of Emmanuel J. Levy, Debao Zhou, Rebecca Fink, Terry Williams, Jonathan

iv

Moshe, Andrew Earl, Eiji Ozawa, and Jayant Ratti with whom I was able to carry

on this research work. Also, I thank to Dr. Ravi Doraiswami, PRC, Georgia Tech for

advising on the the PCB fabrication and Iven Cornery, Atlanta RC club for willingly

assisting me during the flight tests as a remote pilot.

This acknowledgement is incomplete until I mention other colleagues and alumni

in the control group of AE, Jeong Hur, Dr. Bong-Jun Yang, Dr. Nakwan Kim, Dr.

Suresh Kannan, Dr. Yoonghyun Shin, Dr. Ali Kutay, Dr. Ramachandra Sattigeri,

Jincheol Ha, Seung-Min Oh, Yoko Watanabe, Nimrod Rooz, Jongki Moon, Keumjin

Lee, Allen Wu, Clauss Christmann, Jonathan Muse, Kilsoo Kim, Henrik B. Christo-

phersen, Wayne J. Pickell, and Jeongjun Im, with whom I have enjoyed the time

at Georgia Tech and have learned from interactions. I give special thanks to Dr.

Bong-Jun Yang who gave valuable comments and suggesstions on my dissertation.

At this point I would like to thank all of my Korean fellow students in AE who have

supported and encouraged me morally during the years of Georgia Tech. I would like

to recognize the efforts of Vivian O’Neal, Andrew Carignan and the other dedicated

workers in AE, who provided administrative supports and research assistance.

I would like to express my deep gratitude with all my heart to my parents. Even

from thousands of miles away, your endless support and encouragement have strength-

ened me to complete this long journey for Ph.D. I am also thankful to my parents-in-

law and other family members who have always wished for my success. I don’t think

I could have made the journey without their constant support throughout my whole

academic years. A special thank must be given to my beloved son Elliot Hyunje Jung

who was born on October 29th, 2007. Since he has become our new family member

as an unborn child, he has been a great source of inspiration to me, making even

the most stressful days brigher. Last but certainly not least, I would like to give

thanks to my lovely wife, Eun Ju “Agatha” Song. Your embrace lends me courage

and strength, your smile makes me happy, your passion inspires me, your devotion

v

spurs me to work hard, and your love fulfills me. Through you I have been centered

in all respects of our upcoming life for a harmonious family. You are the best thing

that has ever happened to me.

Dongwon “Thomas” Jung

November 13, 2007

vi

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF SYMBOLS OR ABBREVIATIONS xviii

SUMMARY . xxii

I INTRODUCTION . 1

1.1 Motivation . 1

1.2 Literature Review . 3

1.2.1 Geometric path planning 3

1.2.2 Obstacle avoidance path planning 4

1.2.3 Dynamic path planning . 6

1.2.4 Multiresolution path planning 9

1.3 Outline of Thesis . 10

1.4 Research Contributions . 12

II MULTIRESOLUTION ON-LINE PATH PLANNING 15

2.1 Background . 15

2.2 A Multiresolution Decomposition of W 16

2.2.1 The 2D wavelet transform 16

2.2.2 Fast lifting wavelet transform (FLWT) 18

2.2.3 Wavelet decomposition of the risk measure 21

2.3 Multiresolution Graph Connectivity 22

2.3.1 Computation of adjacency list from the FLWT 22

2.3.2 Cost assignment for A∗ search 30

2.4 Multiresolution Path Planning . 37

vii

2.4.1 Multiresolution path planning algorithm 37

2.4.2 D∗-lite path planning algorithm 39

2.5 Simulation Results . 41

2.5.1 Simulation results for the proposed algorithm 41

2.5.2 Simulation results for the D∗-lite algorithm 44

2.6 Comparison . 44

2.7 Summary . 47

III ON-LINE PATH SMOOTHING USING PATH TEMPLATES 50

3.1 Introduction . 50

3.2 Tight Envelope for B-spline curves 52

3.2.1 Tight envelope for B-spline function 52

3.2.2 Tight envelope for planar B-spline curves 56

3.3 Obstacle avoidance path optimization 58

3.3.1 Channel constraints for obstacle avoidance 58

3.3.2 Smooth curve optimization 61

3.4 Construct path templates for different channels 63

3.4.1 Path rules within a finite horizon 64

3.4.2 Construct B-spline path templates 69

3.5 On-line path smoothing algorithm 70

3.5.1 Stitching the path segments 70

3.5.2 Simulation results of the on-line path smoothing algorithm . 77

3.6 Summary . 79

IV PATH FOLLOWING CONTROL USING BACKSTEPPING AND PARAM-
ETER ADAPTATION . 81

4.1 Introduction . 81

4.2 Problem Description . 82

4.3 Path Following Controller Design 86

4.3.1 Kinematic controller design 86

4.3.2 Roll angle command via backstepping 89

viii

4.3.3 Parameter adaptation . 92

4.4 Simulation results . 94

4.5 Summary . 95

V REAL TIME IMPLEMENTATION OF THE HIERARCHICAL PATH CON-
TROL ALGORITHM USING HARDWARE-IN-THE-LOOP SIMULATION103

5.1 Hardware description . 103

5.2 Hardware-in-the-loop simulation environment 105

5.3 Simulation scenario . 106

5.4 Simulation results . 108

5.5 Summary . 108

VI CONCLUSIONS AND FUTURE RESEARCH 115

6.1 Conclusions . 115

6.2 Future Research . 117

6.2.1 Reusable graph structure 117

6.2.2 Kinodynamically feasible trajectory generation using B-splines118

6.2.3 Trajectory tracking controller design using differential flatness 119

6.2.4 Path planning in three dimensions 121

APPENDIX A UAV AVIONICS DESCRIPTION 123

APPENDIX B INERTIAL ATTITUDE AND POSITION REFERENCE SYS-
TEM DEVELOPMENTS . 142

APPENDIX C MODELING AND HARDWARE-IN-THE-LOOP SIMULA-
TION . 163

APPENDIX D DESIGN OF INNER CONTROL LOOPS 192

REFERENCES . 216

VITA . 229

ix

LIST OF TABLES

1 Computational cost of the proposed algorithm by the on-board autopilot. 45

2 The computational cost comparison between the multiresolution path
planning v/s the D∗-lite. 46

3 Number of self-avoiding walks on an m× n grid 67

4 Path templates for local path instances on the first quadrant. 69

5 Simulation parameters. 95

6 Specifications of the Rabbit RCM-3400 micro-controller module. . . . 123

7 Inertial sensors specifications . 128

8 Specifications of the autopilot sensors. 129

9 Maximum deflection angles for each control surface. 141

10 Digital DATCOM input configuration file of the 1/5 scale Decathlon. 166

11 Static and dynamic stability derivatives and control derivatives esti-
mated from the geometry of the 1/5 scale Decathlon. 167

12 Mass properties identified from experiments 168

13 Results of dynamic modeling of each control surface identified by ex-
periments. 175

14 Body x-axis aerodynamic force coefficient (CX) identification results. 183

15 Body z-axis aerodynamic force coefficient (CZ) identification results. . 183

16 Body y-axis aerodynamic moment coefficient (Cm) identification results.184

17 Body y-axis aerodynamic force coefficient (CY) identification results. 184

18 Body x-axis aerodynamic moment coefficient (C`) identification results. 185

19 Body z-axis aerodynamic moment coefficient (Cn) identification results. 185

x

LIST OF FIGURES

1 Thesis Outline. 11

2 A typical one-stage two-band filter banks used for implementing the
discrete wavelet transform. 19

3 One step decomposition using the lifting scheme with the lazy wavelet. 20

4 Multiresolution representation of the environment according to the dis-
tance from the current location of the agent. 23

5 Multiresolution cell subdivision across different levels. 24

6 Recursive raster scan method for identifying independent cells. 25

7 Basic connectivity properties with respect to the location of the leaf cell. 27

8 Searching an adjacent cell along the left search direction. 28

9 Refined adjacency search algorithm. 29

10 Connectivity relationship constructed from the multiresolution cell de-
composition over three levels. 29

11 Pseudo-code implementation of the adjacency search algorithm. . . . 31

12 Pseudo-code implementation of the adjacency search algorithm: Re-
cursive link connection. 32

13 Pseudo-code implementation of the adjacency search algorithm: Re-
cursive link connection (continued). 33

14 Computational cost for the adjacency search algorithm in terms of data
size. 34

15 Computational cost for the adjacency search algorithm in terms of
window size. 35

16 Pseudo-code implementation of proposed multiresolution path plan-
ning scheme. 38

17 Pseudo-code implementation of D∗-lite path planning scheme. 42

18 Path evolution and replanning. Dashed-dot lines represent the cur-
rently tentative optimal path obtained from the A∗ algorithm, based
on the available multiresolution approximation of the environment at
different time steps. Solid lines reveal the actual path followed by the
agent. 48

xi

19 Path evolution and replanning using the D∗-lite algorithm. Dashed-dot
lines show the currently tentative optimal path obtained from the D∗-
lite algorithm, based on the distance cost outside the high resolution
area. The actual path followed by the agent is drawn by solid lines. . 49

20 B-spline basis functions N3
j over the knot u ∈ [0, 1]. 53

21 Non-negative and convex functions βki. 55

22 One dimensional cubic B-spline bounding envelopes. 56

23 Constructing the envelope of a planar curve from neighboring bounding
boxes. 57

24 Bounding envelopes eL and eR of two-dimensional cubic B-spline . . . 58

25 Signed distance map for an arbitrary polygonal line. The feasible re-
gion is characterized by the negative function values. 60

26 Geometric constraints formulation. The channel is given by two poly-
lines `L and `R, the envelope of the B-spline is drawn by the dashed
lines, which is supposed to stay inside the channel. 61

27 Two optimization results. 63

28 Examples of path sequences starting from the current cell at the center.
We adopt the four-connectivity between cells. The goal cell is supposed
to be located beyond the horizon. Possible path sequences are given as
examples of the optimal path. The path A is written by NENEN· · · , the
path B is EESE· · · , the path C is SSEES· · · , and the path D is WNNWW· · · . 65

29 Local path instances on the first quadrant. From the additional sym-
metry about the diagonal axis, it is possible to transform the path
instance drawn in dashed line (NEENE) to the path instance drawn in
solid line (ENNEN). Path rules are given in order to determine unique
path instances reaching the cell at the top boundary. 66

30 Example incorporating the path templates on a complex path sequence.
Five local path instances are are connected each other to reach the
goal cell. The actual path words are equivalently recovered from the
path templates with corresponding symmetry operations, which are
horizontal(H), vertical(V), diagonal(D) reflections. 69

31 Path templates results from the path optimization using B-spline curves.
Each plot corresponds to the local path instance in Table 4. 71

31 (Continued) Path templates results from the path optimization using
B-spline curves. Each plot corresponds to the local path instance in
Table 4. 72

xii

31 (Continued) Path templates results from the path optimization using
B-spline curves. Each plot corresponds to the local path instance in
Table 4. 73

31 (Continued) Path templates results from the path optimization using
B-spline curves. Each plot corresponds to the local path instance in
Table 4. 74

32 Determine the unique p2 in terms of p0 and p1 in conjunction with the
design parameter Ra. 76

33 Example of stitching the two B-spline curve with a cubic B-spline curve 78

34 On-line path smoothing in conjunction with replanning using D∗-lite
algorithm. Dashed-dot lines represent the currently tentative optimal
path obtained from the D∗-lite algorithm, based on the distance cost
outside the high resolution area. Actual path followed by the agent
is derived from the B-spline path templates, which are represented by
solid lines. 80

35 Definition of the Serret-Frenet frame for the path following problem. . 83

36 Local vector fields generated with respect to two distinct points on the
path. 89

37 Reference path and actual trajectory of the UAV without parameter
adaptation. 96

38 Error states without parameter adaptation. 97

39 Command inputs without parameter adaptation. 98

40 Reference path and actual trajectory of the UAV with parameter adap-
tation. 99

41 Error states with parameter adaptation. 100

42 Command inputs with parameter adaptation. 101

43 Parameter estimate of λφ. 102

44 Block diagram for control hierarchy of the proposed path control algo-
rithm. 104

45 A small fixed-wing UAV equipped with an autopilot for hierarchical
path planning control. 105

46 High fidelity hardware-in-the-loop simulation (HILS) environment that
enables rapid testing of the proposed path planning algorithm. 106

47 Illustration of the on-line implementation of the proposed hierarchical
path control algorithm. 107

xiii

48 Simulation results of the hierarchical path control implementation.
Figures on the right show the close-up view of the simulation. At each
instant the channel is drawn by polygonal lines, where the smooth path
segment from the path templates stays. The actual path followed by
the UAV is drawn on top of the reference path. 109

48 Simulation results of the hierarchical path control implementation.
(cont’d) . 110

48 Simulation results of the hierarchical path control implementation.
(cont’d) . 111

48 Simulation results of the hierarchical path control implementation.
(cont’d) . 112

48 Simulation results of the hierarchical path control implementation.
(cont’d) . 113

49 A 3D screen shot during the simulation. The ground track of the fol-
lowed path is displayed showing that the UAV is avoiding the obstacles
(for this case, it is the high elevation region). 114

50 System architecture of the UAV test-bed. 124

51 Sensor board design layout. The board is 5′′ by 3′′ printed circuit board
(PCB). Four layers include the power plane and the ground plane (Not
shown above). 125

52 Sensor board functional block diagram. 126

53 Assembled autopilot hardware. 127

54 Schematic diagrams of the designed autopilot: Power circuit and the
micro-controller interface. 132

55 Schematic diagrams of the designed autopilot: The rate sensors and
the accelerometers interface. 133

56 Schematic diagrams of the designed autopilot: Z-axis rate and accel-
eration, 3-axis magnetometer interface. 134

57 Schematic diagrams of the designed autopilot: Pressure sensors and
the GPS interface. 135

58 Schematic diagrams of the designed autopilot: A-to-D converter and
the servo switching interface. 136

59 The ground station GUI program. 137

60 Angular rate calibration results. 139

61 Accelerometer calibration results. 139

xiv

62 Effect of hard and soft iron disturbances and compensated magnetome-
ter measurements. 140

63 Two different schemes for the implementation of the complementary
filter. 143

64 Multiple measurements augmentation in the indirect complementary
filter. 145

65 Entire complementary filter setup for pitch and heading angles. . . . 147

66 Kinematic relation at a truly banked turn condition. 147

67 System with a delayed measurement due to sensor latency. 151

68 GPS momentary outage during an aggressive maneuver. 153

69 Attitude estimation filters validation. 156

70 Navigation filter validation. 161

71 Geometric modeling of the 1/5 scale Decathlon used as an input to the
DDATCOM program. 167

72 Torsional pendulum experimental setup for identifying the moment of
inertia. 168

73 APC model airplane propeller 13′′ by 8′′. 170

74 Experimental setup for identifying static thrust force. 170

75 Rotating speed of propeller v/s the throttle command. 171

76 Static thrust comparison for a model propeller 13′′ by 8′′ 172

77 Thrust coefficient cT v/s advance ratio for the selected propeller. . . . 173

78 Various doublet responses for dynamic modeling of the control surfaces. 174

79 A complementary filter in the feedback form. 175

80 Measured state variables during a longitudinal maneuver. 181

81 Measured state variables during a lateral maneuver. 182

82 Validation for the force coefficient CX 183

83 Validation for the force coefficient CZ 184

84 Validation for the moment coefficient Cm. 185

85 High fidelity hardware-in-the-loop (HIL) simulation environment. . . 186

86 Hardware-in-the-loop simulation screen shot 189

xv

87 Root locus plot of the transfer function in Eq. (195) with a unity neg-
ative feedback of the pitch rate ∆q with the positive gain kq. As the
gain increases, the short period mode gets poorly damped. 195

88 Root locus plot of the closed-loop system incorporating the lead com-
pensator of the pitch rate. The closed-loop poles and zeros are shown,
and the squares represent the location of the poles at kq = 0.101. . . . 196

89 Root locus plot of the closed-loop system with the pitch angle PI con-
troller as kθ varies. The squares represent the closed-loop poles at
kθ = 0.855. 197

90 Bode plot of the closed-loop system with the pitch angle PI controller. 198

91 Block diagram of the closed-loop pitch angle controller. The dashed
line denotes the original PI controller implementation, whereas the
dashed-dot line denotes an alternative PI implementation with closed-
loop zero removed. 199

92 Step response of the closed-loop system by a unit pitch reference com-
mand. 199

93 Bode plot of the closed-loop system with the lead compensator. . . . 202

94 Root locus plot of the closed-loop system using a lead and PI com-
pensators as kh varies. The squares represent the closed-loop poles at
kh = 1.22. 203

95 Step response of the closed-loop system by a unit altitude reference
command. 204

96 Integrator antiwindup technique with a single saturation nonlinearity. 204

97 Block diagram of the final closed-loop altitude controller. 205

98 Step response of the closed-loop system with the altitude controller,
comparing the cases of with/without antiwindup scheme. 205

99 Root locus plot of the simplified speed control plant 206

100 Root locus plot of the closed-loop system incorporating the PI speed
controller. The closed-loop poles and zeros are shown, and the squares
represent the closed-loop poles at kVT = 0.773 207

101 Step response of the closed-loop system by a unit speed reference com-
mand. 208

102 Root locus plot of the closed-loop system with the designed yaw washout
damper. The squares represent the closed-loop poles at kr = 0.27. . . 209

xvi

103 The effectiveness of the yaw damper to suppress the dutch roll mode
oscillation. 210

104 Root locus plot of the closed-loop system with the roll damper. The
squares represent the closed-loop poles at kp = 0.075. 211

105 Root locus plot of the closed-loop system with the PI roll angle con-
troller as kφ varies. The squares represent the closed-loop poles at
kφ = 0.128. 213

106 Step response of the closed-loop system by a unit roll angle reference
command. 214

107 Bode plot of the closed-loop system with the roll angle PI controller. 214

108 Entire block diagram for the lateral controllers 215

xvii

LIST OF SYMBOLS OR ABBREVIATIONS

{uk} Non-decreasing knot sequence.

α Angle of attack.

b Span length.

c̄ Aerodynamic reference chord length.

L̄ Aerodynamic moment component about the body x-axis.

L̄w Aerodynamic roll moment about the wind x-axis.

q̄ Dynamic pressure.

β Side slip angle.

eL Left bounding envelope of a two dimensional B-spline curve.

eR Right bounding envelope of a two dimensional B-spline curve.

`L Two dimensional left channel polygon.

`R Two dimensional right channel polygon.

CD Drag coefficient.

C` Rolling moment coefficient.

χ Course angle, inertial speed heading.

CL Lift coefficient.

Cm Pitching moment coefficient.

Cn Yawing moment coefficient.

Cy Side force coefficient.

D Aerodynamic drag force.

δa Aileron deflection angle.

δ(·) Approach angle.

δe Elevator deflection angle.

δr Rudder deflection angle.

ed Cross track error with respect to the path.

xviii

` Control polygon of B-spline.

εp White noise process for roll rate gyro random walk process.

εr White noise process for yaw rate gyro random walk process.

εw White noise process for the wind speed bias random walk process.

es Along track error with respect to the path.

ηE Measurement noise of GPS position fix along the East direction.

ηh Measurement noise of the altitude.

ηN Measurement noise of GPS position fix along the North direction.

ηp Roll rate gyro measurement noise.

ηr Yaw rate gyro measurement noise.

ηw Measurement noise of the airspeed.

FLWT Fast lifting wavelet transform.

g Earth’s gravity constant.

GPS Global Positioning System.

GUI Graphical User Interface.

h Altitude of the UAV.

HILS Hardware in the loop simulation.

J Advance ratio.

Jx Moment of inertia of mass in the body x-axis.

Jxz Product of inertia of mass in terms of the body x-y plane.

Jy Moment of inertia of mass in the body y-axis.

Jz Moment of inertia of mass in the body z-axis.

κ Curvature of the curve.

L Aerodynamic lift force.

λφ Time constant of the first-order roll angle dynamics.

M Aerodynamic moment component about the body y-axis.

Cd Multiresolution cell decomposition.

xix

F Obstacle free configuration space.

G Topological graph structure.

M Collection of m integer distinct risk measure level.

N (x, r) Neighborhood of the location x with distance r.

O Obstacle space.

W Two dimensional world enviroment.

cellG(v) Center of the cell correponding to the node v of the graph G.

nodeG(x) Node of the graph G corresponds to the location x.

rm Risk measure function at the location x = (x, y).

Mw Aerodynamic pitch moment about the wind y-axis.

N Aerodynamic moment component about the body z-axis.

Nd
j jth B-spline basis function of degree d.

ν Auxiliary control input for backstepping controller.

Nw Aerodynamic yaw moment about the wind z-axis.

Ω Rotational speed of propeller.

ω Heading rate of the UAV.

ωe Error state for the heading rate.

p Angular velocity component about the body x-axis.

pb Roll rate gyro bias.

pD Down position of the airplane in the NED frame.

pE East position of the airplane in the NED frame.

φ Roll attitude angle.

pN North position of the airplane in the NED frame.

ψ Heading angle.

q Angular velocity component about the body y-axis.

r Angular velocity component about the body z-axis.

rb Yaw rate gyro bias.

xx

Rp Propeller radius.

S Aerodynamic reference area.

s Arc length parameter.

θ Pitch attitude angle.

U Velocity component in the body x-axis.

u∗j Greville abscissae.

V Velocity component in the body y-axis.

VT Total airspeed in the wind x-axis.

Vw Wind speed state.

W Velocity component in the body z-axis.

λ̂φ Estimate of the λφ.

χ̃ Error course angle.

XA Aerodynamic force component in the body x-axis.

XT Thrust force component in the body x-axis.

Y Aerodynamic side force.

YA Aerodynamic force component in the body y-axis.

YT Thrust force component in the body y-axis.

ZA Aerodynamic force component in the body z-axis.

ZT Thrust force component in the body z-axis.

xxi

SUMMARY

Recently there has been a tremendous growth of research emphasizing control of

unmanned aerial vehicles (UAVs) either in isolation or in teams. As a matter of fact,

UAVs increasingly find their way into military and law enforcement applications (e.g.,

reconnaissance, remote delivery of urgent equipment/material, resource assessment,

environmental monitoring, battlefield monitoring, ordnance delivery, etc.). This trend

will continue in the future, as UAVs are poised to replace the human-in-the-loop

during dangerous missions. Civilian applications of UAVs are also envisioned such as

crop dusting, geological surveying, search and rescue operations, etc.

In this thesis we propose a new online multiresolution path planning algorithm for

a small UAV with limited on-board computational resources. The proposed approach

assumes that the UAV has detailed information of the environment and the obstacles

only in its vicinity. Information about far-away obstacles is also available, albeit less

accurately. The proposed algorithm uses the fast lifting wavelet transform (FLWT)

to get a multiresolution cell decomposition of the environment, whose dimension is

commensurate to the on-board computational resources. A topological graph repre-

sentation of the multiresolution cell decomposition is constructed efficiently, directly

from the approximation and detail wavelet coefficients. Dynamic path planning is

sequentially executed for an optimal path using the A∗ algorithm over the resulting

graph. The proposed path planning algorithm is implemented on-line on a small

autopilot. Comparisons with the standard D∗-lite algorithm are also presented.

We also investigate the problem of generating a smooth, planar reference path

from a discrete optimal path. Upon the optimal path being represented as a sequence

xxii

of cells in square geometry, we derive a smooth B-spline path that is constrained in-

side a channel that is induced by the geometry of the cells. To this end, a constrained

optimization problem is formulated by setting up geometric linear constraints as well

as boundary conditions. Subsequently, we construct B-spline path templates by solv-

ing a set of distinct optimization problems. For application in UAV motion planning,

the path templates are incorporated to replace parts of the entire path by the smooth

B-spline paths. Each path segment is stitched together while preserving continuity

to obtain a final smooth reference path to be used for path following control.

The path following control for a small fixed-wing UAV to track the prescribed

smooth reference path is also addressed. Assuming the UAV is equipped with an

autopilot for low level control, we adopt a kinematic error model with respect to

the moving Serret-Frenet frame attached to a path for tracking controller design.

A kinematic path following control law that commands heading rate is presented.

Backstepping is applied to derive the roll angle command by taking into account

the approximate closed-loop roll dynamics. A parameter adaptation technique is

employed to account for the inaccurate time constant of the closed-loop roll dynamics

during actual implementation.

Finally, we implement the proposed hierarchical path control of a small UAV on

the actual hardware platform, which is based on an 1/5 scale R/C model airframe (De-

cathlon) and the autopilot hardware and software. Based on the hardware-in-the-loop

(HIL) simulation environment, the proposed hierarchical path control algorithm has

been validated through on-line, real-time implementation on a small micro-controller.

By a seamless integration of the control algorithms for path planning, path smooth-

ing, and path following, it has been demonstrated that the UAV equipped with a

small autopilot having limited computational resources manages to accomplish the

path control objective to reach the goal while avoiding obstacles with minimal human

intervention.

xxiii

CHAPTER I

INTRODUCTION

1.1 Motivation

For decades, unmanned aerial vehicles (UAVs) have been considered for replacing

human pilots during various missions. The applications of UAVs are increasing at a

fast pace in military and in law enforcement missions (e.g., reconnaissance, remote

delivery of urgent equipment/material, resource assessment, environmental monitor-

ing, battlefield monitoring, ordnance delivery, etc [28, 113, 93]). Civilian applications

of UAVs are also envisioned (crop dusting, geological surveying, search and rescue

operations, etc). In particular, UAVs play an important role in replacing the human-

in-the-loop during dangerous missions in hazardous or hostile environment.

A typical mission of a UAV is characterized by the requirement of navigating

through or close to way points specified by the mission profile. The way points are

usually specified a priori, and the mission must be completed satisfying certain cri-

teria provided by the mission scenario. These criteria are minimum time, minimum

fuel, minimum danger exposure, and so on. Assuming the domain of interest is fully

characterized a priori, an off-line trajectory planning optimization can be used to ob-

tain a satisfactory solution. However, in case of UAVs flying over hostile environment,

where the domain is not known completely beforehand, UAVs necessarily require more

advanced navigation and guidance capabilities [143, 13, 18]. Both trajectory design

(planning) and trajectory tracking (control) tasks should be completely automated so

that UAVs fly safely while avoiding obstacles and minimizing the exposure to danger.

In addition, pop-up threats that might be encountered during missions need to be

appropriately addressed during trajectory design and execution.

1

In line with the previous observations, it is natural to consider the trajectory

planning problem as having two distinct objectives: The planned trajectory must

eventually reach a final goal (after passing through the way points) skirting known

obstacles, and should take into account any local environment variation, such as pop-

up threats, by an online update of the planned trajectory. The former is considered as

a global trajectory planning algorithm and the latter is as a local trajectory planning

algorithm. The global trajectory planning determines overall performance of the

generated trajectory whereas the local planning guarantees a feasible trajectory that

can be followed by the UAV under dynamic constraints. The idea of combining both

a global and a local algorithm seamlessly when designing a whole trajectory is similar

to what a human pilot does. Given a final destination, the pilot plans the overall

trajectory to be followed toward the destination avoiding known obstacles. Because

distant information provided to the pilot is possibly insufficient to the accuracy than

proximal information, he puts less emphasis on the distant information and utilizes

more reliable local information to decide a feasible trajectory that keeps the airplane

safe and flyable. In this work we plan to develop trajectory design and trajectory

tracking algorithms that imitate ‘human intelligence’ in order to successfully complete

complicated missions assigned to autonomous vehicles.

Assuming perfect knowledge of the environment while designing the trajectory, the

global trajectory planner yields a better solution than the local planner and avoids

local minima. However, the computational cost tends to increase as the problem

size gets bigger. In contrast, a local planner can reduce the number of computation,

but at the cost of a solution which often results in a locally entrapped trajectory.

Thus, the combination of these two methods offers the best compromise between

feasibility and optimality, while minimizing the computational cost so that they could

be implemented in realtime.

2

1.2 Literature Review

1.2.1 Geometric path planning

Guidance, navigation, and control of mobile agents has been an important research

topic for several decades. The applications are enormous in a variety of areas such as

marine craft [108, 40], underwater vehicles [3, 74], unicycle type mobile robots [66],

and unmanned aerial vehicles [102, 5]. The navigation control algorithms reported

in the literature implement way-point following schemes assuming the vehicles are

given a sequence of way-points a priori in the region of interest. These way points

are connected in order to generate smooth path segments [61, 122] in a manner

that they preserve the continuity of the curvature between line and arc segments,

while minimizing the maximum curvature on the curve. A series of cubic splines was

employed in Ref. [56] to connect the straight line segments in a near-optimal manner,

whereas the algorithm presented in Ref. [6] yields extremal trajectories that transition

between straight-line path segments smoothly in a time-optimal fashion.

In two-dimensional vehicle motion subject to non-holonomic constraints, such as

a unicycle type mobile robot, it has been proved in Ref. [38] and [17] that for given

initial and final configurations p0 = (x0, y0, θ0) and pf = (xf , yf , θf), respectively, the

optimal shortest path exists and is one among six types of paths: the paths consisting

of at most three parts which are either straight line segments or arcs of circle of radius

R if the vehicle has a maximum turning rate constraint. This set of path elements

is termed as “Dubins path” and has inspired many researchers on how to design a

feasible path by connecting way-points. Based on this idea, Bui and Souères [21]

proposed new optimality conditions on these paths by computing a partition space

from the two-dimensional plane of the configuration space, Yang and Kapila [151]

exploited parameter optimization methods to solve optimal path planning problems.

A similar geometry-based path planning algorithm is also reported in Ref. [80]. More

recently, a three-dimensional extension of Dubins path was developed in Ref. [126].

3

Although the path planning strategies discussed above yield the optimal (shortest)

paths between way-points for non-holonomic vehicles and yield easy implementation,

one should note that they do not explicitly deal with obstacles possibly existing along

the path segments. This disadvantage becomes apparent in the case when the vehicle

navigates in an environment filled with obstacles where the designed path segments

could collide with the obstacles. As discussed in Ref. [80] it is then necessary to

consider a path planning algorithm that takes into account obstacles avoidance.

1.2.2 Obstacle avoidance path planning

One technique for obstacle avoidance is to use the “artificial potential field” concept.

Khatib [65] presented the earlier result of real-time obstacle avoidance for mobile

robots using this concept. In this method, a mobile robot moves in a potential field

such that the goal is modeled as an attractive force and the obstacles and other

vehicles are modeled as repelling forces. In Ref. [9], local minima of a potential field

are connected in order to build an incremental graph, and the graph is searched to

attain the final goal configuration. In Refs. [85, 14], an artificial potential field serves

as a local holonomic planner to avoid obstacles, of which the output is modified in

a least-squares sense to generate actual commands for the desired motion. Although

potential field methods can produce smooth and dynamically feasible trajectories

at low computational cost, they have several drawbacks. Detecting and avoiding

the obstacles are mostly influenced by proximate obstacles, and the vehicle can get

trapped in a local minimum. Another issue arises from the fact that obstacles are not

modeled as hard constraints. The potential fields are typically modeled as continuous

and differentiable functions, leading to an imprecise description of the obstacle’s shape

and dimension. This restriction could result in unsatisfactory obstacle avoidance when

the vehicle maneuvers through tight environment.

4

In contrast to the local potential field techniques, the so-called global path plan-

ning algorithms, by which the overall workspace is accounted for during motion plan-

ning, can overcome not only the local minima problem but also guarantee tight obsta-

cle avoidance. These algorithms begin with first obtaining a workspace representation

explicitly incorporating the obstacles. A basic and simplest representation is to de-

compose the workspace into cells via a regular grid [141], but more efficient represen-

tations have been developed to reduce the memory cost for storing representations:

Quadtrees [60] have been utilized for two dimensional spaces, and oct-tree [54] for

three dimensional spaces. Roadmap type representations are utilized to extract a

skeleton graph from the workspace, which keeps the connectivity between the nodes

of feature points. Voronoi diagram [69] and Freeways [19] are widely used represen-

tations for global motion planning problem. The visibility graph [84, 101] is another

method for obtaining a graph by connecting the edges (or, vertices) of obstacles from a

given start and end points. Collin’s decompositions [81] or probabilistic roadmaps [64]

also become efficient representation methods for global path planning.

Having the workspace represented by either a partition of finite cells (region) or

a complete graph, a path planning problem is then reduced to finding a sequence

of neighboring cells or nodes in the graph satisfying certain extremal criteria. Sev-

eral optimal searching algorithms have been proposed in the literature. The use of

dynamic programming was proposed in Ref. [130] for a robot manipulator. An evolu-

tionary search method was successfully used to compute near-optimal paths through

obstacles and dynamically changing environment [115, 55]. The randomized rapid-

exploring heuristic search in Ref. [63] forms a subset of stochastic optimization [91] for

a global path planning, in which the search tree is expanded online towards randomly

generated target states. If a graph is obtained for workspace representation, the A∗

algorithm [49], or the Dijkstra’s algorithm [35], are the most common algorithms to

find the shortest path from a given initial node to a given goal node on the graph.

5

Many different versions of this search algorithm have been presented in the literature

for path planning of mobile robots [7, 111, 112, 29, 68, 152].

A path planning algorithm over a dynamic environment has also been proposed

in the literature. In order to deal with a dynamically changing environment, it is

necessary for the path planning algorithm to replan as often as possible in accor-

dance with the new information about the environment. Several replanning strate-

gies have been proposed for locally-directed wandering [110], local modification of

initial path [72], and obstacle perimeter detouring [86]. The D∗ algorithm, proposed

by Stentz [135, 136], is capable of planning a path in unknown or partially known

environment, as it adopts an efficient incremental search scheme to produce an opti-

mal path. The incremental search scheme incorporates the information from previ-

ous searches to find a solution much faster than solving each iteration from scratch.

Subsequently, Koenig and Likhachev proposed the Lifelong Planning A∗ (LPA) [70]

which has been derived from A∗ and adopted for dynamic environment by a reusing

scheme. Furthermore, Koenig and Likhachev presented a D∗-lite algorithm, derived

from the LPA algorithm, which implements the same planning strategy as D∗ but is

algorithmically different.

1.2.3 Dynamic path planning

Most of the search methods discussed above do not incorporate dynamic models of

the vehicles or robots. This, in turn, results in certain local path segments that the

vehicles are hard to follow under kinematic constraints. Several authors have proposed

to smooth these segments by taking the kinematic constraints into account [7, 29],

but no explicit analysis on the optimality variation due to local path smoothing has

been given.

Recently, mathematical optimization has been adopted by many researchers to

6

accommodate dynamic vehicle models in the path planning problems. Nonlinear pro-

gramming was used in Refs. [114, 46] and the use of mixed integer linear programming

(MILP) in the path planning problem was introduced in Refs. [124, 118, 117]. MILP

allows inclusion of integer variables and discrete logic in a continuous linear opti-

mization problem. These variables can be used to model logical constraints such as

obstacle and collision avoidance, while dynamic equations of the vehicles are formu-

lated as dynamic constraints. Although the MILP algorithm in trajectory planning

can systemically handle hard obstacles of rectangular shapes over an entire workspace

and provide a feasible trajectory if one exists, it can not handle the computational

complexity for a large size trajectory planning problem, and the algorithm is not very

useful in dynamically changing environment.

The computational complexity arising from the path planning over an entire

workspace can be reduced by repeatedly solving a constrained optimization prob-

lem online over a finite planning horizon. This scheme is so called model predictive

control (MPC), or receding horizon control (RHC), originated from the chemical pro-

cess industry and has received great attention due to its broader applications over

various research fields. A good survey on MPC/RHC can be found in Refs. [45, 97]

and the relevant texts [24, 4]. In recent years, receding horizon control has been

introduced to solve the problems of trajectory generation and collision avoidance

of multiple vehicles: Fuller et al [43] presented a MPC-based trajectory generation

method for a flight vehicle with nonlinear dynamics by using a feedforward nominal

trajectory to pose a time-varying linear, convex optimization problem. This result

is extended in Refs. [131, 77] to account for obstacle avoidance trajectory planning.

Shim et al [67, 129] proposed a nonlinear model predictive tracking control (NMPTC)

for planning a path under input and state constraints as well as collision avoidance.

More recent publications regarding the implementation of NMPTC for UAVs are

found in Refs. [128, 62]. The benefit of the MPC approach is that it can allow one

7

to effectively handle multi-variable systems with inputs and states constraints while

less computational cost requires.

On the other hand, an alternative receding horizon approach based on MILP was

introduced in Refs. [13, 119]. In this approach, a discrete point mass model was

employed as a finer dynamics model for a two-dimensional vehicle under the velocity

and force limits, which correspond to state and control constraints, respectively. A

finer level of optimization was executed over a fine resolution of planning horizon using

MILP solver, whereas a coarser level of optimization for the shortest path was done

by searching a visibility graph that was expanded from a goal point through edges of

each hard obstacle. These two-step optimizations achieve the shortest path over a long

time-scale while planning a dynamically feasible path over a short time-scale at the

reduced computational cost. In the continuation papers, the authors of Refs. [12, 73]

proposed a stable trajectory for highly complex environment by putting turning circles

at each obstacle’s corner, which takes into account the kinematic constraints of the

maximum turning rate of vehicles. In addition, a safety condition of the algorithm

was imposed by the form of loiter circles as a backup plan in case of the algorithm

failure [123]. Although this algorithm has been successfully tested and executed for

UAV guidance [146, 125], the algorithm has certain underlying weaknesses. First,

because the discrete MILP solver incorporates linearized equations, in conjunction

with binary variables as the constraints of turning circles, velocity and force limits,

and so on, a better accuracy of solution could be obtained from using more binary

variables to accommodate detailed constraint equations. This results in increased

computation time that may not be suitable for realtime implementation. Next, since

the obstacles are limited to rectangular shapes to apply the visibility graph search,

various shapes of obstacles other than rectangles will require a conservative modeling

of obstacles by polygons that completely enclose such obstacles, which might end up

with a conservative path.

8

1.2.4 Multiresolution path planning

The path planning methodology that will be developed in this thesis will involve a

multiresolution workspace representation. One benefit of such representation is that

it is able to handle complex shapes of obstacles other than rectangles [60]. In this

hierarchical representation, the workspace is recursively divided into cells of either

white (obstacle-free region) or black (obstacle region). Since the detail partitioning

is done along the boundary of the obstacles, an arbitrary obstacle shape can be

incorporated into the path planning problem. Finding the shortest path around the

obstacles is obtained by searching over the hierarchical data structure containing the

connectivity information between cells [103]. Extensions of this standard quadtree

data structure were pursued in Refs. [30, 148] to overcome the limitation of generating

a nonoptimal solution when an obstacle is located on or near the boundary of a quad.

In addition, triangular cell decompositions [52] instead of a square cell of the quadtree

are known to provide an alternative method to get around such limitation. Another

benefit of employing multiresolution based path planning is that it can substantially

reduce the complexity of computation by adopting variable resolution grids [11]. The

resolution is set high close to a vehicle and becomes less at far away distance. Taking

care of the connectivity between the non-uniform size neighboring cells, the path

planner could find a high accuracy initial path and replan continuously as the vehicle

moves at reduced computation costs.

Recently, a wavelet-based path planning algorithm has been introduced to effi-

ciently solve the path planning problem on a complex environment. In Refs. [47, 121],

a trajectory was first parameterized using wavelet decomposition and then optimized

for satisfying mission requirements using dynamic optimization methods. Based on

multiresolution active modeling, the planned trajectory was characterized as high

fidelity over the near-term and as approximate over the longer-term. The wavelet

transform can also provide a fast decomposition of the environment at different levels

9

of resolution [33] and it can be used to construct a hierarchical representation of the

workspace as used in Ref. [104]. In a recent paper, Tsiotras and Bakolas [142] pro-

posed to utilize the wavelet transform in a hierarchical on-line path planning problem,

in which the workspace representation has high resolution close to the current position

of the vehicle and low resolution far away. A topological graph is obtained from the

wavelet decomposition online and repeatedly searched for the shortest path using Di-

jkstra’s algorithm. The path planning algorithm is scalable, and can be implemented

in real-time for various computational resources of the agent.

1.3 Outline of Thesis

Having presented the motivation and the related work in the literature, we now

present the main objectives of this thesis. The outline of the overall organization of

the thesis is shown in Fig. 1: In Chapter 2, we present the multiresolution path plan-

ning algorithm. We employ the fast lifting wavelet transform scheme to approximate

a world by a multiresolution cell decomposition. An efficient algorithm for building

the adjacency relationship is presented. In Chapter 3, the on-line path smoothing

algorithm is presented. The path templates are comprised of a set of B-spline curves,

which are computed from the off-line optimization. Given a discrete optimal path

sequence, an on-line path smoothing algorithm is proposed to generate a smooth

reference path to be used for path following control. Design of a nonlinear path fol-

lowing control law is presented in Chapter 4. We present a kinematic path following

controller, which calculates the heading rate command input to the unicycle kine-

matics. The actual roll angle command for a fixed-wing UAV is derived from the

heading rate command using backstepping technique, and the parameter adaptation

scheme is incorporated to deal with the uncertainty of the time constant. In Chap-

ter 5, hardware-in-the-loop (HIL) simulation results of the proposed multiresolution,

10

Chapter II
 Multiresolution Path Planning
 Fast Lifting Wavelet Transform

M12 GPS Receiver

3-axes Magnetic
Compass

3-axes rate,
accelero

m
e

ter

Diff. Pressure

Microcontroller

R
x/

S
e

rv
o

 p
o

rt
s

Chapter III
 On-line Path Smoothing
 B-spline Path templates

Chapter IV
 Nonlinear Path Following Control
 Backstepping and Parameter
 Adaptation Techniques

Chapter V
 Hardware-in-the-loop Simulation

Appendix
 Avionics
 Modeling and Identification
 Estimation Filters
 Inner Loop Controller Design

Figure 1: Thesis Outline.

11

hierarchical path control algorithm are shown. The proposed hierarchical path con-

trol algorithm is implemented on-board the actual hardware platform in real-time by

a seamless integration of the hardware and the software. Finally, Chapter 6 sum-

marizes the main results of this thesis, and enlists several recommendations for the

future research.

1.4 Research Contributions

In this thesis we present both a theoretical development of the hierarchical path

control algorithm and experimental results from the on-line implementation on the

actual system. The following summary enlists the contribution of this work.

• Autonomous path planning for small UAVs imposes severe restrictions on con-

trol algorithm development, stemming from the limitations imposed by the

on-board hardware and the requirement for on-line implementation. We pro-

pose a method to overcome this problem by using a new multiresolution path

planning scheme. The fast lifting wavelet transform incorporating integer arith-

metic is utilized to compute multiresolution representations of the environment,

by taking into account the available computational resources of the agent. In

addition, we show that the connectivity relationship of the graph G that is asso-

ciated with the multiresolution representation can be constructed directly from

the wavelet coefficients. Hence, the proposed multiresolution path planning al-

gorithm is suitable for the on-line, on-board, and real-time implementation on

a small UAV.

• For guidance and navigation control of UAVs, a complete solution which takes

into account the equations of motion in conjunction with kinematic constraints

is far from implementing in real-time, specially for small UAVs equipped with

limited on-board hardware. We propose a path smoothing algorithm using a set

of path templates. Instead of smoothing the entire path from an initial position

12

to the goal position, we smooth the path segments over a finite planning horizon

with respect to the current position of the UAV. This approach is somewhat

similar to the receding horizon control adapted to the path generation purpose.

By incorporating the path templates from off-line optimization, the proposed

smoothing scheme has the advantage of minimal on-line computational cost

since most of computation is done off-line.

• We present a nonlinear path following control algorithm, to regulate the error

distances from a reference path. Based on the kinematic control law for unicycle-

type mobile robot in Refs. [75, 76], a backstepping control law is proposed to

compute the actual roll angle command for a fixed-wing UAV. In addition, in

order to compensate for the inaccurate time constant of the roll angle closed-

loop system, we propose to apply the parameter adaptation technique. The

performance of the proposed path following control law is validated through the

realistic simulation environment, showing that the applicability of the proposed

algorithm on the actual system.

• The proposed hierarchical path control algorithm, which includes the path plan-

ning at the top level hierarchy, the path smoothing in the middle, and the path

following at the bottom level, is experimentally validated through a realistic

hardware-in-the-loop simulation environment. We describe the practical issues

associated with the implementation of the proposed control algorithm, taking

into consideration the actual hardware limitation. With a seamless integration

of the hardware and the software, we demonstrate a real-time validation of the

proposed hierarchical path control algorithm on-board the autopilot.

• The heart of the UAV platform is its autopilot, which consists of a flight control

computer, sensors, actuators, communication devices and peripherals, along

with the associated software. In order to provide maximum flexibility in control

13

law development and implementation, we develop both the hardware and the

low-level and high-level software in-house. We present the detail development

of the autopilot hardware components and the subsystem integration process.

• A complete simulation environment for testing and validating UAV control sys-

tems is presented. With a comprehensive system modeling and experimental

identification of a fixed-wing UAV, a high-fidelity simulation environment is

built, which allows to incorporate a simulation-based testing during the devel-

opment of the hardware and software. In addition, hardware-in-the-loop (HIL)

simulation environment is developed for validating hardware and the software

under realistic conditions. Details on developing user interface and subsystem

modeling are also presented.

• A low cost inertial attitude and position reference system for a small UAV is

presented. The estimation algorithms are simple, yet effective so that a micro-

controller can execute these algorithms within a small time interval. We develop

an algorithm that combines a complementary filter and a Kalman filter for the

Euler attitude angles. A straightforward and innovative way of handling the

data latency and the outage of a GPS sensor is introduced. Finally, a cascaded

position estimation Kalman filter is designed utilizing the attitude estimates to

lower the computational burden with a small performance loss.

14

CHAPTER II

MULTIRESOLUTION ON-LINE PATH PLANNING

2.1 Background

In a typical mission of a UAV, various sensors (e.g., cameras, radars, laser scanners,

satellite imagery) having different range and resolution characteristics are employed

to collect information about the environment the vehicle operates in. A computation-

ally efficient path planning algorithm, specifically adopted for on-line implementation,

should therefore choose the expedient information from all these sensors, and use the

on-board computational resources to design the part of the path (spatial and tempo-

ral) that needs it most. In a nutshell, a computationally efficient algorithm suitable

for on-line implementation should be characterized by a combination of short term

tactics (reaction to unforeseen threats) with long-term strategy (planning towards

the ultimate goal).

In this study, we assume a world environment W ⊂ R
2 that includes the obstacle

space O ⊂ W and the obstacle-free configuration space F = W \ O of all feasible

states. We employ the wavelet transform to perform the required multiresolution

decomposition of W. The fast lifting wavelet transform (FLWT) offers a fast decom-

position of a function at different levels of resolution, which can be twice as fast as

the classical wavelet transform1. Furthermore, the FLWT integer arithmetic can be

implemented to reduce the computational cost dramatically. This makes the FLWT

especially suitable for processing data in a small micro-controller. The use of FLWT

1The computational complexity of the lifting scheme is still of order O(n) where n is the input
data[145], however, the computational time may decrease by half according to wavelet basis.

15

has also the added benefit of allowing the construction of the associated cell connec-

tivity relationship directly from the wavelet coefficients, thus eliminating the need for

quadtree decomposition.

We employ the multiresolution path planning scheme to find an optimal path on

the topological graph G induced by the multiresolution wavelet-based cell decomposi-

tion. Namely, the optimal path from an initial state to a final state may comprise of

cells over different resolutions, depending on the distance from the current position

of the agent. At the finer resolution level, the path is resolved through feasible states,

hence avoiding obstacles. Multiresolution path planning is known to be more flexible,

and computationally efficient for on-line implementation.

2.2 A Multiresolution Decomposition of W
2.2.1 The 2D wavelet transform

The idea behind the wavelet transform is to represent a function f ∈ L2(R) via a

linear combination of elementary basis functions φJ,k and ψj,k as follows

f(x) =
∑

k∈Z

aJ,kφJ,k(x) +
∑

j≥J

∑

k∈Z

dj,kψj,k(x), (1)

where φJ,k(x) = 2J/2φ(2Jx−k) and ψj,k = 2j/2ψ(2jx−k). The choice of J determines

the low resolution, or coarse approximation of f , spanned by the scaling function

φJ,k(x). The rest of L2(R) is spanned by the wavelet functions ψj,k(x) which provide

the higher, or finer resolution details of the function. In other words, when analyzing

the function f at the coarsest level (low resolution), only the most salient features

of f will be revealed. Adding finer levels (high resolution) implies adding more and

more details of the function f . The expansion (1) thus reveals the properties of f at

different levels of resolution[22, 90]. In addition, in the ideal case both the scaling

function and the wavelet function have compact support, i.e., they are non-zero only

on a finite interval. This allows the wavelets to capture the localized features of the

function f .

16

The wavelet transform can be readily extended to the two-dimensional case by

introducing the following families of functions

Φj,k,`(x, y) = φj,k(x)φj,`(y), (2a)

Ψ1
j,k,`(x, y) = φj,k(x)ψj,`(y), (2b)

Ψ2
j,k,`(x, y) = ψj,k(x)φj,`(y), (2c)

Ψ3
j,k,`(x, y) = ψj,k(x)ψj,`(y). (2d)

Given a function f ∈ L2(R2) we can then write

f(x, y) =
∑

k,`∈Z

aJ,k,`ΦJ,k,`(x, y) +

3∑

i=1

∑

j≥J

∑

k,`∈Z

dij,k,`Ψ
i
j,k,`(x, y) (3)

where, for the case of orthonormal wavelets, the approximation coefficients are given

by2

aj,k,` =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) Φj,k,`(x, y) dx dy, (4)

and the detail coefficients by

dij,k,` =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) Ψi
j,k,`(x, y) dx dy. (5)

The key property of wavelets used in this paper is the fact that the expansion (3)

induces the following multiresolution decomposition of L2(R2)

L2(R2) = VJ ⊕WJ ⊕WJ+1 ⊕ · · · (6)

where VJ = spank,`∈Z
{ΦJ,k,`} and Wj = spank,`∈Z

{Ψ1
j,k,`,Ψ

2
j,k,`,Ψ

3
j,k,`} for j ≥ J .

In this study we use the Haar wavelet system for reasons that will become apparent

shortly. The Haar scaling function

φ(x) =

1 if x ∈ [0, 1),

0 otherwise,

(7)

2In the more general case of biorthogonal wavelets, projections on the space spanned by the dual
wavelets and dual scaling functions should be used in (4) and (5).

17

and the Haar wavelet function

ψ(x) =

1 if x ∈ [0, 1/2),

−1 if x ∈ [1/2, 1),

0 otherwise,

(8)

have compact support on [0, 1]. Hence, each scaling function φj,k(x) and wavelet func-

tion ψj,k(x) in the Haar system has support on the dyadic interval Ij,k
4
= [k/2j, (k +

1)/2j] of length 1/2j and does not vanish in this interval [22, 149]. Similarly, we

may associate the two-dimensional scaling function Φj,k,` and the wavelet function

Ψi
j,k,` (i = 1, 2, 3) with the rectangular cell cjk,`

4
= Ij,k × Ij,`.

2.2.2 Fast lifting wavelet transform (FLWT)

Implementing the wavelet transform in practice requires dealing with a discrete signal.

The basic step in a typical discrete wavelet transform (DWT) involves the use of filter

banks. Figure 2 shows a discrete signal an filtered by two complementary high- and

low-pass (decomposition) filters ḡ and h̄ before it is down-sampled. The results of

this operation are the next coarser approximation and detail coefficients an−1 and

dn−1, each containing half as many samples as the input signal an. For the inverse

transform, first the signals an−1 and dn−1 are upsampled by inserting zeroes between

every sample. Subsequently, the two signals are filtered by the low- and high-pass

(reconstruction) filters g̃ and h̃, respectively, and then added together. This sequence

of operations results in perfect reconstruction of the original signal an. Details of

the filter bank implementation of wavelet transforms can be found, for instance, in

Refs.[37] and [138].

The fast lifting wavelet scheme, originally introduced in Refs. [139] and [140], is a

new method for building wavelets directly in the time domain, thus avoiding the use

of Fourier analysis. Moreover, the scheme can be extended to construct the so-called

second generation wavelets, which have certain benefits for handling boundary effects,

18

+ anan

ḡ

h̄ ↓ 2

↓ 2

↑ 2

↑ 2 g̃

h̃

dn−1

an−1

Figure 2: A typical one-stage two-band filter banks used for implementing the
discrete wavelet transform.

irregular samples, and arbitrary weight functions[138].

A typical lifting decomposition scheme is depicted in Fig. 3. The first block in this

decomposition splits the original signal an into two disjoint sets of samples containing

the odd and the even indexed samples (Lazy wavelet). Because the even and odd

subsets are correlated to each other locally, each signal is lifted by the opposite signal

after passing through the corresponding operators P and U (the dual and primal

lifting, or prediction and update, respectively). Finally, the results are normalized

with the constants ka and kd, to end up with the approximation and detail coefficients,

an−1 and dn−1, respectively.

For the case of the unnormalized Haar transform, the dual lifting does nothing

more but calculate the difference

dn−1,k = an,2k+1 − an,2k, (9)

whereas the primal lifting calculates the coarser approximation coefficients having

the same average value as the original signal, by updating the even samples using the

previously calculated detail signal as follows

an−1,k = an,2k + dn−1,k/2. (10)

It has been proved that all classical wavelet transforms can be implemented using

the lifting scheme[33]. Most interestingly, the inverse transform is readily found by

reversing the order of the operations and by flipping the signs.

19

+

+

an Split P U

oddn−1

evenn−1

kd

ka

dn−1

an−1

Lazy wavelet Dual lifting Primal lifting

Figure 3: One step decomposition using the lifting scheme with the lazy wavelet.

The lifting scheme has a number of algorithmic advantages, such as faster compu-

tation speed (twice as fast as the usual discrete wavelet transform), in-place calcula-

tion of the coefficients (that saves memory), immediate inverse transform, generality

for extension to irregular problems, etc. In particular, the lifting scheme is applicable

to many applications where the input data consists of integer samples. Unlike the

typical wavelet transform where floating number arithmetic is implicitly assumed,

the lifting scheme can be easily modified to map integers to integers, and is read-

ily reversible to allow perfect reconstruction[23]. This reconstruction is possible by

adopting the sequential transform after modifying Eqs. (9) and (10) as follows[50]

dn−1,k = an,2k+1 − an,2k,

an−1,k = an,2k + bdn−1,k/2c,
(11)

where, b·c is the rounding operator. In the sequel, we use the fast lifting Haar

transform for two-dimensional signals of integer samples using a sequential 2D scheme;

that is, we perform two successive one-dimensional transforms through the rows and

then columns of the input data.

20

2.2.3 Wavelet decomposition of the risk measure

Without loss of generality, we letW = [0, 1]×[0, 1], which is described using a discrete

(fine) grid of 2N × 2N dyadic points. The finest level of resolution Jmax is therefore

bounded by N . It follows from Eq. (3) and the accompanying discussions that the

Haar wavelet decomposition at resolution level J ≥ Jmin is given by

f(x, y) =

2J−1∑

k,`=0

aJ,k,`ΦJ,k,`(x, y) +

3∑

i=1

N−1∑

j=J

2j−1∑

k,`=0

dij,k,`Ψ
i
j,k,`(x, y), (12)

and it induces a cell decomposition ofW of square cells of maximum size 1/2J×1/2J .

Assume now that we are given a function rm :W 7→M that represents the “risk

measure” at the location x = (x, y), whereM is a collection of m integer distinct risk

measure levels defined by

M , {Mi : M1 < M2 < · · · < Mm}. (13)

The obstacle space O is defined as the space where the risk measure values exceed a

certain threshold M , that is,

O = {x ∈ W | rm(x) > M, M ∈M}. (14)

For x ∈ F , we may think of rm(x) as an indication of the proximity of the agent to

the obstacle space, or the probability of x ∈ O.

We construct approximation of W at distinct levels of resolution Jmin ≤ j ≤ Jmax

at ranges rj from the current location of the agent x0 = (x0, y0), in the sense that the

resolution j is used for all points inside the neighborhood

N (x0, rj) , {x ∈ W : ‖x− x0‖∞ ≤ rj}. (15)

where rJmax
≤ rj ≤ rJmin

. By this, we imply that the finer resolution Jmax is used

for points close to the current location, and coarser resolutions at different levels

are used elsewhere, according to the distance from the current location. Hence, the

21

representation of W gets coarser farther away from the current location. Figure 4

illustrates this situation. The choice of Jmax is determined by the requirement that at

this level all cells can be resolved into either free or obstacle cells. The choice of Jmin

as well as the window span rj are dictated by the on-board computational resources.

Let now I(j) , {0, 1, 3, · · · , 2j − 1} and let

K(j) , {k ∈ I(j) | Ij,k ∩ [x0 − rj, x0 + rj] 6= ∅}, (16a)

L(j) , {` ∈ I(j) | Ij,` ∩ [y0 − rj, y0 + rj] 6= ∅}. (16b)

Then the wavelet decomposition of rm, given by

rm(x, y) =
∑

k,`∈I(Jmin)

aJmin,k,`ΦJmin,k,`(x, y) +
3∑

i=1

Jmax−1∑

j=Jmin

∑

k∈K(j)

`∈L(j)

dij,k,`Ψ
i
j,k,`(x, y), (17)

induces, with a slight abuse of notation, the following multiresolution cell decompo-

sition on W

Cd = ∆CJmin

d ⊕ · · · ⊕∆CJmax

d , (18)

where, ∆Cj
d is a union of cells cjk,` of dimension 1/2j × 1/2j.

2.3 Multiresolution Graph Connectivity

2.3.1 Computation of adjacency list from the FLWT

In the previous section we described the construction of a multiresolution cell decom-

position Cd of W in Eq. (18) using the FLWT. We now assign a topological graph

G = (V,E) to Cd as follows. The nodes which belong to the set V represent the

cells cjk,` in Cd and the edges in the set E represent the connectivity relationship be-

tween these nodes. In this section we show that the connectivity of the graph G can

be constructed directly from the wavelet coefficients. Equivalently, we compute the

adjacency list of G directly from wavelet coefficients obtained from the FLWT.

Since the scaling function Φj,k,` and the wavelet functions Ψi
j,k,` (i = 1, 2, 3) of the

2D Haar wavelet are associated with square cells cjk,`, the corresponding approxima-

tion and nonzero detail coefficients encode the necessary information regarding the

22

Figure 4: Multiresolution representation of the environment according to the dis-
tance from the current location of the agent.

23

cj0+1
k′,l′

cj0+1
k′+1,l′

cj0+1
k′,l′+1

cj0+2
k′′,l′′ cj0+2

k′′+1,l′′

cj0+2
k′′,l′′+1

cj0+2
k′′+1,l′′+1

cj0k,l

I II

III IV

Figure 5: Multiresolution cell subdivision across different levels.

cell geometry (size and location). Recall that the approximation coefficients are the

average values of the risk measure over the cells, and the detail coefficients determine

the size of each cell. More specifically, consider a cell cj0k,` at level j0, whose dimension

is 1/2j0×1/2j0 and is located at (k, `). A cell will be called independent if it is associ-

ated with a non-zero approximation coefficient aj0,k,`, while the corresponding detail

coefficients dij,k,` (i = 1, 2, 3) at level j0 ≤ j ≤ Jmax are all zero. Otherwise, the cell is

marked as a parent cell, and is subdivided into four leaf cells at level j0 + 1. If a leaf

cell cannot be subdivided further, it is classified as an independent cell. In Fig. 5, the

top-most parent cell cj0k,` is subdivided into three independent cells at level j0 +1 with

each non-zero approximation coefficient in the quadrant I, II, and III (all zero detail

coefficients). For quadrant IV, the cell is further subdivided into four independent

leaf cells at level j0 + 2.

Assume that we are given the Haar wavelet transform of the risk measure function

rm up to the level Jmin. The coarsest level of the cell dimension is set to Jmin. In Fig. 6,

the initial coarse grid is drawn on the left. The agent is located at x = (x, y) and the

high resolution horizon is given by r. Recalling expressions (16), we distinguish cells

at distinct resolution levels, by starting from a coarse cell cj0k,`, and by determining

24

x = (x, y)

2r

Figure 6: Recursive raster scan method for identifying independent cells.

if the cell either partially intersects or totally belongs to the set N (x, r). The cell

cj0k,` is easily ascertained to satisfy this property by choosing the indices such that

(k, `) ∈ (K(j0),L(j0)). If the cell needs to be subdivided into higher resolution cells,

the inverse fast lifting wavelet transform is first performed on the current cell (local

reconstruction) in order to recover the four approximation coefficients at level j0 + 1

and the corresponding detail coefficients. We then adopt the raster scan method[95]

(zigzag search: I→II→III→IV) to examine each cell inside the parent cell overlapping

with N (x, r). This procedure is recursively repeated until the maximum resolution

level Jmax is reached. Figure 6 illustrates the recursive raster scan search. Once a

cell is recognized as independent, we assign a node in the graph G with the node cost

being the approximation coefficient that represents the average risk measure over the

cell. In addition, the detail coefficients associated with the current cell are all set to

zero; this will provide the necessary connectivity information between the cells later

on.

After a cell has been identified as an independent cell, we search the adjacent cells

in order to establish the adjacency relationship with the current cell. Recall that two

25

cells ci and cj are adjacent if

∂ci ∩ ∂cj 6= ∅, i 6= j,

where ∂ci denotes the boundary of the cell ci. For our case of square cells, this implies

that two cells are adjacent only along the following eight directions: Left, top, right,

bottom, and the four diagonal directions. Following the recursive raster search for cell

identification, the adjacency search requires establishing links between two cells that

have been identified as independent cells. Recalling that the raster search progresses

from left to right and from top to down (zigzag progress) as illustrated in Fig. 6,

we confine the adjacency search to the following directions: Left, top-left, top, and

top-right from the current cell. By doing this, we render half of the links (for eight-

connectivity) to be connected from the current cell, and the remaining links with the

current cell will be connected as the recursive raster scan progresses to the next cells.

In addition, because we deal with cells of different dimensions, it is required to devise

a generic method to find the adjacency relationship between the cells.

Figure 7 illustrates the basic search direction of each leaf cell inside a parent cell.

The dashed arrow points towards an external search region, that is, an adjacent cell

could be found beyond the parent cell, whereas the solid arrow points towards an

internal search region that belongs to the parent cell. In each search, we implicitly

assume that the level of adjacent cells may vary from that of the parent cell to Jmax

(external connection), or from that of the current cell to Jmax (internal connection).

A leaf cell inherits the search region from its parent cells, whose search direction

ends up with one of the solid arrows in Fig. 7. Figure 8 shows this inheritance

property. In Fig. 8 the current cell is chosen to be cj0+2
I . This cell is a leaf cell of the

parent cell cj0+1
IV , which further becomes a leaf cell of the top-most parent cell cj0k,l.

The cell cj0+1
IV is located on the fourth quadrant inside the top-most parent cell cj0k,l so

that the search region for cj0+1
IV ends up with the internal searches at the level j0 + 1,

whose adjacency search property is inherited to the cell cj0+2
I for left, top-left, and

26

I II

III IV

Figure 7: Basic connectivity properties with respect to the location of the leaf cell.

top direction searches. Having ascertained the basic search directions, we refine the

adjacent search looking for opposite cells which must be independent and adjacent

to the current cell. Because the opposite cells of the current cell could have different

dimensions, we establish links by examining the associated detail coefficients of the

opposite cells. Along the left search direction of cj0+2
I , as illustrated in Fig. 8, one

finds that only one independent cell at level j0 + 1 is linked to cj0+2
I .

The adjacency search algorithm refines its search to the higher levels if the op-

posite cell is not an independent cell, that is, if it is comprised of finer cells. This

refinement subsequently forces a search of cells of the finer dimension (level) which are

neighboring to the current cell. Subsequently, the detail coefficients of the opposite

cells are examined in order to find the next finer cell that is adjacent to the current

cell. For the top-left search direction of cj0+2
I , as illustrated in Fig. 9(a), the search

process initially examines the cell cj0+1
I located at the top-left corner of the current

cell through the corresponding detail coefficient. Provided that the detail coefficient

associated with the cell cj0+1
I takes a non-zero value, the cell is not an independent

cell. Subsequently, the cell cj0+1
I is subdivided and the search process repeats at level

27

cj0k,l

cj0+2
I

cj0+1
IV

Figure 8: Searching an adjacent cell along the left search direction.

j0 +2 when the opposite cell to the current cell becomes an independent adjacent cell.

In Fig. 9(a), since there exists no other independent cells along the top-left direction

except the shaded one, a bidirectional link is established between the current and the

opposite cells.

Similarly, for the top search direction, two cells at level j0 + 3 and one at level

j0 +2 are found to be independent and adjacent to the current cell. The bidirectional

links are accordingly connected from the current cell cj0+2
I to those adjacent cells.

Figure 9(b) depicts this situation. Finally, Fig. 10 shows an example of the graph

structure obtained from the multiresolution cell decomposition associated with the

wavelet coefficients. Without loss of generality the nodes are located at the center of

each cell. The solid lines show the connectivity relationship between the cells.

A pseudo code implementation of the adjacency search algorithm is given in

Fig. 11. Note that the subroutine Reconstruct Scan is called recursively to identify

independent cells intersecting with the set N (x0, rj). After a cell identified as an inde-

pendent cell, the adjacency search algorithm continues on establishing the links from

the current cell to adjacent independent cells along Left, Left-Top, Top, and Right-Top

28

cj0k,l

cj0+2
I

cj0+1
IV

(a) Search top-left

cj0k,l

cj0+2
I

cj0+1
IV

(b) Search top

Figure 9: Refined adjacency search algorithm.

Figure 10: Connectivity relationship constructed from the multiresolution cell de-
composition over three levels.

29

direction using the recursive refinements of search level as shown in Figs. 12 and 13.

Because the adjacency search algorithm uses recursive calls in both identification

of cells and establishing links, obtaining the computational complexity for analytical

expression is a non-trivial task. Rather, we estimate the computational complexity

numerically. Suppose the input data to the algorithm are given by an n × n square

image. The computational complexity of fast lifting wavelet transform is known to

be O(N)[145], where N = n2. It should be noted that the computational cost can be

tailored to the available computational resources of the agent due to multiresolution

synthesis, however, it is rational to relate the computational complexity with the

input data size N . For this purpose, we assumed two resolution levels, coarser level

Jrmmin far away from the agent and finer level Jmax close to the agent. Figure 14(a)

shows the computational time in terms of various data size N in conjunction with

a set of different sizes of high resolution window r. From Fig. 14 the numerical

computational complexity of the adjacency search algorithm is deduced as a linear

relationship with respect to the input data size N , or O(N). In contrast, Fig. 15

shows the computational complexity of the algorithm with respect to the window size

r, which turns out to be a quadratic relationship O(r2).

2.3.2 Cost assignment for A∗ search

The A∗ algorithm is a graph search algorithm that finds a path from an initial node to

the goal node in the graph. The algorithm utilizes a heuristic estimate h(v) that ranks

each node v by a best cost estimate to reach the goal from the current node[49]. The

algorithm visits the nodes in the order of the heuristic estimate, so the A∗ algorithm

is known as a best-first search algorithm. The key element of the A∗ algorithm is

that it expands each node from the priority queue that is ordered by (lower value has

higher priority)

f(v) = g(v) + h(v), (19)

30

BEGIN ADJACENCY SEARCH ALGORITHM
{

Initialize graph structure G = (V,E);
Cd ← Compute 2D FLWT(W, Jmin);(
K(Jmin),L(Jmin)

)
← N (x0, rJmin

);
for (k = 0 : kJmin

) {
for (` = 0 : `Jmin

) {
if (k, `) ∈

(
K(Jmin),L(Jmin)

)

Reconstruct Scan(k, `, Jmin, Cd);
else

AddNode EstablishLinks(k, `, Jmin, Cd);
}

}
}
END ADJACENCY SEARCH ALGORITHM

Reconstruct Scan(k, `, j, Cd)
{
Cd ← Compute 2D Inverse FLWT

(
Cd(k, `; j)

)
;(

K(j + 1),L(j + 1)
)
← N (x0, rj+1);

for (k̄ = 2k : 2k + 1) {
for (¯̀= 2` : 2`+ 1) {

if (k̄, ¯̀) ∈
(
K(j + 1),L(j + 1)

)

Reconstruct Scan(k̄, ¯̀, j + 1, Cd);
else

AddNode EstablishLinks(k̄, ¯̀, j + 1, Cd);
}

}
}

AddNode EstablishLinks(k, `, j, Cd)
{

/* Add Node */

v ← cjk,` ∼ aj,k,`;

V (G)← v;
Set dij′,k,` ← 0 , ∀j′ ≥ j;

/* Establish Links */

LinkLeft(k, `, j, Cd);
LinkLeftTop(k, `, j, Cd);
LinkTop(k, `, j, Cd);
LinkTopRight(k, `, j, Cd);

}

Figure 11: Pseudo-code implementation of the adjacency search algorithm.

31

LinkLeft(k, `, j, Cd)
{

cjk,` ← Get current cell(k, `, j, Cd);
js ← Determine basic search level(cjk,`);

(ks, `s)← Get parent cell index(cjk,`, js);
ks = ks − 1; /* To examine left adjacent cell */

LinkLeftRecurrence(cjk,`, ks, `s, js);

}
LinkLeftRecurrence(cjk,`, ks, `s, js)

{
v ← cjk,`;

if (d1
js,ks,`s

= 0) /* Horizontal detail */

/* Adjacent independent cell */

u← cjsks,`s ∼ ajs,ks,`s;

E(G)← (u, v), (v, u); /* Bidirectional links */

else

/* Refine Search */

js ← js + 1;

(ks, `s)← Get refined left adjacent cell index(cjk,`, js);

LinkLeftRecurrence(cjk,`, ks, `s, js);

}

LinkLeftTop(k, `, j, Cd)
{

cjk,` ← Get current cell(k, `, j, Cd);
js ← Determine basic search level(cjk,`);

(ks, `s)← Get parent cell index(cjk,`, js);

ks = ks − 1; `s = `s − 1; /* To examine left-top adjacent cell */

LinkLeftTopRecurrence(cjk,`, ks, `s, js);
}
LinkLeftTopRecurrence(cjk,`, ks, `s, js)

{
v ← cj,k,`;
if (d3

js,ks,`s
= 0) /* Diagonal detail */

/* Adjacent independent cell */

u← cjsks,`s ∼ ajs,ks,`s;

E(G)← (u, v), (v, u); /* Bidirectional links */

else

/* Refine Search */

js ← js + 1;

(ks, `s)← Get refined left-top adjacent cell index(cjk,`, js);

LinkLeftTopRecurrence(cjk,`, ks, `s, js);

}

Figure 12: Pseudo-code implementation of the adjacency search algorithm: Recur-
sive link connection. 32

LinkTop(k, `, j, Cd)
{

cjk,` ← Get current cell(k, `, j, Cd);
js ← Determine basic search level(cjk,`);

(ks, `s)← Get parent cell index(cjk,`, js);
`s = `s − 1; /* To examine top adjacent cell */

LinkTopRecurrence(cjk,`, ks, `s, js);

}
LinkTopRecurrence(cjk,`, ks, `s, js)

{
v ← cjk,`;

if (d2
js,ks,`s

= 0) /* Vertical detail */

/* Adjacent independent cell */

u← cjsks,`s ∼ ajs,ks,`s;

E(G)← (u, v), (v, u); /* Bidirectional links */

else

/* Refine Search */

js ← js + 1;

(ks, `s)← Get refined top adjacent cell index(cjk,`, js);

LinkTopRecurrence(cjk,`, ks, `s, js);

}

LinkRightTop(k, `, j, Cd)
{

cjk,` ← Get current cell(k, `, j, Cd);
js ← Determine basic search level(cjk,`);

(ks, `s)← Get parent cell index(cjk,`, js);

ks = ks + 1; `s = `s − 1; /* To examine right-top adjacent cell */

LinkRightTopRecurrence(cjk,`, ks, `s, js);
}
LinkRightTopRecurrence(cjk,`, ks, `s, js)

{
v ← cj,k,`;
if (d3

js,ks,`s
= 0) /* Diagonal detail */

/* Adjacent independent cell */

u← cjsks,`s ∼ ajs,ks,`s;

E(G)← (u, v), (v, u); /* Bidirectional links */

else

/* Refine Search */

js ← js + 1;

(ks, `s)← Get refined right-top adjacent cell index(cjk,`, js);

LinkRightTopRecurrence(cjk,`, ks, `s, js);

}

Figure 13: Pseudo-code implementation of the adjacency search algorithm: Recur-
sive link connection (continued). 33

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

0.5

1

1.5

2

2.5

3

Data size N = n2

C
om

pu
ta

tio
n

tim
e

[s
ec

]

: r=20
: r=60
: r=150
: r=400

(a) Computational time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

2

4

6

8

10

12

14

16

18
x 10

4

Data size N = n2

N
um

be
r

of
 n

od
es

: r=20
: r=60
: r=150
: r=400

(b) Number of nodes

Figure 14: Computational cost for the adjacency search algorithm in terms of data
size.

34

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Window size [pixel]

C
om

pu
ta

tio
n

tim
e

[s
ec

]

: n=512
: n=1024
: n=1536
: n=2048

(a) Computational time

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18
x 10

4

Window size [pixel]

N
um

be
r

of
 n

od
es

: n=512
: n=1024
: n=1536
: n=2048

(b) Number of nodes

Figure 15: Computational cost for the adjacency search algorithm in terms of win-
dow size.

35

where the cost g(v) is the actual cost of the path up to v, i.e. the sum of the edge

costs from the initial node, and h(v) is the heuristic estimate at v. When a node u is

expanded, the adjacent nodes to the current node are exploited. Let v be the adjacent

node, then it follows that we evaluate the actual cost g(v) to see if the transition from

u to v results in lower cost than any other transitions to v. The algorithm then sets a

back-pointer π(v) by its preceding node u. This process iterates until the goal node

is reached and no other nodes have a lower cost to the goal.

The A∗ algorithm is complete in the sense that it is always guaranteed to find a

solution if a solution exists. In addition, if the heuristic function h(v) is admissible,

that is, it uses an underestimate of the actual cost of reaching the goal, then A∗ is

optimal. Details about the implementation of the A∗ algorithm can be found, for

instance, in Ref. [32].

To the cell decomposition (18) we associate each node v ∈ G o a cell cjk,`. Moreover,

since G is a topological graph, we may associate each node v with some point x ∈ cjk,`.

Without loss of generality, we choose the center of the cell. Let cellG(v) denote the

center of the corresponding cell. If x ∈ cjk,` we will write v = nodeG(x).

To each directed edge (u, v) of G we assign an edge cost, given as

J (u, v) = rm(cellG(v)) + α‖cellG(u)− cellG(v)‖2, (20)

where α ≥ 0 is a weight constant. The first term in (20) is proportional to the

probability that the target node is close to obstacles, while the second term penalizes

the (Euclidean) distance between cellG(u) and cellG(v).

Suppose now that we are given a path of q + 1 consecutive, adjacent nodes in G

as follows

P = (v0, v1, · · · , vq). (21)

We can then assign a traversal cost to each node in the path P, induced by

g(vi) = g(vi−1) + J (vi−1, vi), i = 1, · · · , q. (22)

36

The value of g(vk) represents the (accumulated) cost of the path from v0 to vk (k ≤ q),

i.e. the weight of the edges followed up to vk. We use the following heuristic estimate

h(v) = ‖cellG(v)− cellG(vf)‖∞, (23)

where vf = nodeG(xf).

The A∗ algorithm then finds a path that minimizes the cost in (22) to the goal

node, or determines that such a path does not exist.

2.4 Multiresolution Path Planning

2.4.1 Multiresolution path planning algorithm

The proposed multiresolution path planning algorithm proceeds as follows. Starting

from x(t0) = x0 at time t = t0, we construct using the approach of Section 2.2 a

cell decomposition Cd(t0) of W. A topological graph, and the adjacency list of its

nodes are obtained using the approach of Section 2.3. Let the corresponding graph

be G(t0) and let v0
1 ∈ G(t0) and v0

f ∈ G(t0) be the initial and the goal nodes such

that v0
1 = nodeG(t0)(x0) and v0

f = nodeG(t0)(xf), respectively. Using the A∗ algorithm

we compute a path P(t0) of free and mixed nodes from v0
1 to v0

f in G(t0) assuming

that such a path exists. Let P(t0) be given by an ordered sequence of l0 + 1 nodes as

follows

P(t0) = (v0
0, v

0
1 , · · · , v0

l0−1, v
0
l0

= v0
f). (24)

It is assumed that v0
1 is a free node owing to the high resolution representation of W

close to x0. The agent subsequently moves from v0
0 to v0

1. Let now t1 be the time

the agent is at the location x(t1) = cellG(t0)(v
0
1) and let Cd(t1) be the multiresolution

cell decomposition of W around x(t1) with a corresponding topological graph G(t1).

Applying again the A∗ algorithm we compute a (perhaps new) path in G(t1) from

v1
0 = nodeG(t1)(x(t1)) to v1

f = nodeG(t1)(xf) if such a path exists. Let P(t1) be given by

the ordered sequence of l1 + 1 nodes as follows

P(t0) = (v1
0, v

1
1 , · · · , v1

l1−1, v
1
l1

= v1
f). (25)

37

BEGIN PATH PLANNING ALGORITHM
{

i = 0;
x(ti)← x0;
while ‖x(ti)− xf‖∞ ≥ 1/2Jmax

{
compute rm(x, i) for all x ∈ W;
construct Cd(i) at level Jmin;
construct G(i) =

(
E(i), V (i)

)
;

vi1 ← nodeG(i)

(
x(ti)

)
;

vif ← nodeG(i)(xf);
P(i)← Astar

(
vi1, v

i
f ,G(i)

)
;

if P(i) = ∅

report FAILURE; break;

x(ti+1)← cellG(i)(v
i
2);

Move to x(ti+1);
i← i+ 1;

}
}
END PATH PLANNING ALGORITHM

Figure 16: Pseudo-code implementation of proposed multiresolution path planning
scheme.

The agent subsequently moves to v1
1 at location x(t2) = cellG(t1)(v

1
1) at time t2.

In general, assume the agent is at location x(ti) at time ti. We construct a mul-

tiresolution decomposition Cd(ti) ofW around x(ti) with a corresponding graph G(ti).

The A∗ algorithm yields a path P(ti) in G(ti) of length li + 1,

P(ti) = (vi0, v
i
1, · · · , vili−1, v

i
li

= vif), (26)

where vi0 = nodeG(ti)(x(ti)) and vif = nodeG(ti)(xf). This iteration process terminates

at some time tf when ‖x(tf) − xf‖∞ < 1/2Jmax. At the last step the agent moves

from x(tf) to xf . A pseudo code implementation of the multiresolution path planning

algorithm is given in Fig. 16. Note that the actual path followed by the agent is given

by the sequence of nodes
{
nodeG(t0)

(
x(t0)

)
, nodeG(t1)

(
x(t1)

)
, · · · , nodeG(tf)

(
x(tf)

)}
.

38

2.4.2 D∗-lite path planning algorithm

The D∗ algorithm has been originally proposed by Stentz[135, 136] for planning

a path in unknown or partially known environment. Prior to D∗, several replan-

ning strategies have been proposed to solve dynamic planning problems for locally-

directed wandering[110], local modification of initial path[72], and obstacle perimeter

detouring[86]. Although these methods are complete, they are suboptimal and com-

putationally inefficient. On the contrary, D∗ produces an optimal path by adopting an

efficient incremental search scheme to reduce the time required to replan. In particu-

lar, D∗ is more appropriate when dealing with an environment having a large number

of states, by reusing information from the previous search to find the solution at the

next step. Koenig and Likhachev introduced Lifelong Planning A∗ (LPA)[70] which

employs heuristic estimate like A∗, while reusing information from previous searches

to find a solution much faster than solving each iteration from scratch. Furthermore,

Koenig and Likhachev presented the D∗-lite algorithm, derived from the LPA algo-

rithm, which implements the same planning strategy as D∗ but is algorithmically

different. The D∗-lite algorithm simplifies the maintenance of priority queues, thus it

does not use complicated conditional statements, thus ending up with shorter codes

than the original D∗ algorithm. In the sequel, we employ the D∗-lite algorithm to

the path planning problem on a non-trivial environment. By comparing the D∗-lite

algorithm with the multiresolution path planning algorithm, we discuss the benefits

and shortfalls of using the multiresolution path planning algorithm over the D∗-lite

algorithm.

We apply the Haar wavelet transform up to resolution level J ≥ Jmin to obtain

the wavelet decomposition of rm, given by

rm(x, y) =

2J−1∑

k,`=0

aJ,k,`ΦJ,k,`(x, y) +

3∑

i=1

N−1∑

j=J

2j−1∑

k,`=0

dij,k,`Ψ
i
j,k,`(x, y). (27)

A uniform cell decomposition CJd at level J on W is induced from Eq. (27), and is

39

comprised of cells cJk,` of dimension 1/2J × 1/2J . We adopt the eight-connectivity

relationship between the cells. The connectivity relationship is easily found by book-

keeping the location of each cell through the indices k and `. It should be noted that

the adjacency relationship will remain the same throughout the replanning, but the

edge costs will change incrementally to incorporate the information from the previous

step.

Suppose the agent is equipped only with a proximity sensor that senses the envi-

ronment close to the current location with high accuracy. That is, the sensor provides

information about classification of the neighboring environment by a free region or

obstacle region. Let S(i) be the known region up to t = ti using a sensor with the

range rJ , defined by

S(i) = S(i− 1) ∪N (xi, rJ) (28)

where xi is the current location of the agent at t = ti and N (xi, rJ) represents the

effective sensory region at that moment. In Eq. (28) it is assumed that the agent nav-

igates an initially unknown environment while updating the map from the collected

information. In order to take this process into consideration for replanning, we assign

a conditional cost to each edge (u, v) which depends on the relative location of the

edges to S as follows,

J (u, v) =

rm(cellG(v)) + ‖cellG(u)− cellG(v)‖2, if u, v ∈ S,

‖cellG(u)− cellG(v)‖2, if u, v ∈ W \ S.
(29)

It follows that for the edges outside S we simply impose the traversal cost between

nodes considering the uniform size of cells. With the traversal cost, a general path

planning algorithm such as Dijkstra’s or A∗ simply computes a shortest path from an

initial node to the goal node which might pass through obstacles outside S. Never-

theless, whenever the map is updated using contingent information from the sensor,

we accordingly update the corresponding edge costs by appending the obstacle cost

to each edge as given in (29).

40

The main D∗-lite path planning algorithm proceeds as follows. From the uniform

cell decomposition and the corresponding graph, we solve for an initial path from

v0 = vstart to vgoal assuming only the distance cost for edge weights. Let v1 be the

node next to v0 in the path. The agent subsequently moves from v0 to v1. At time

t = t1 when the agent is located at v1, the algorithm continues to scan the graph for

changed edge costs. If any edge costs have changed, then the algorithm updates the

corresponding edge weights. Subsequently, a new path is computed from v1 to vgoal,

by incorporating the updated edge weights. It should be noted that if no edge costs

have changed the agent moves to the successive node v′ in the previous path that has

the minimum cost J (vlast, v
′) + g(v′).

Similar to A∗, the D∗-lite algorithm also incorporates a heuristic estimate to

choose the nodes from a priority queue. However, as the agent detects changes in

the edge costs, the priority queue should be reordered to render itself consistent.

This might be an expensive task, so instead of reordering the priority queue every

time, Koenig and Likhachev utilizes a dynamic heuristic constant km[71] to keep

the priority queue unaltered regardless of the change of the edge costs. This reduces

the computational overhead, resulting in faster execution. The iteration terminates at

some time tl when the goal node is reached. A pseudo code implementation of the D∗-

lite incremental path planning algorithm is given in Fig. 16. Note that the actual path

followed by the agent is given by the sequence of nodes
{
v0 = vstart, v1, · · · , vl−1, vl =

vgoal

}
.

2.5 Simulation Results

2.5.1 Simulation results for the proposed algorithm

In this section we present simulation results of the proposed algorithm for a non-

trivial scenario. The environment W is an actual topographic (elevation) map of a

US state, shown in Fig. 18. The environment is assumed to be square of dimension

41

BEGIN D∗-LITE PATH REPLANNING ALGORITHM
{

i = 0;
compute rm(x) for all x ∈ W;
construct Cd at level Jmax;
construct G =

(
E, V

)
;

vstart ← nodeG(x0);
vgoal ← nodeG(xf) ;
Initialize();
ComputeShortestPath(vstart, vgoal,G);
vi ← vstart;
vlast ← vi;
while (vi 6= vgoal)
{

i← i+ 1;
vi = argminv′∈Adj(vlast)

(
J (vlast, v

′) + g(v′)
)
;

Move to vi;
Scan graph for changed edge costs;

If any edge costs changed;

{
km ← km + h(vlast, vi);
vlast ← vi;
For all directed edges (u, v) ∈ E with changed edge costs

{
Update the edge cost J (u, v);
UpdateVertex(v);

}
ComputeShortestPath(vi, vgoal,G);

}
}

}
END D∗-LITE PATH REPLANNING ALGORITHM

Figure 17: Pseudo-code implementation of D∗-lite path planning scheme.

42

128×128 units. Hence the finest possible resolution is N = 7. Taking into account

the available memory of the micro-controller, we choose the fine level as Jmax = 6

and the coarse level as Jmin = 3. This makes the total number of nodes in the graph

not to exceed the maximum count of 256 that corresponds to the maximum allowable

variable size of the micro-controller. The ranges at distinct levels of resolution are

selected (r6, r5, r4) = (8, 15, 30) units from the current location. It follows that the

fine resolution at level J = 6 is used inside an area of 16×16 units around the current

location of the agent, and the coarser resolutions at levels J = 5 and J = 4 are used

inside 30×30 and 60×60 units.

The objective of the UAV is to follow a path from the initial position to the

final position while circumventing the obstacles over a certain elevation threshold.

Since the on-line path planning problem at the finest resolution is computationally

prohibitive, the proposed algorithm accommodates the need of the on-line implemen-

tation for the micro-controller by limiting the amount of the information to process,

thus computing an immediate path with high accuracy within the allowable time scale

of the micro-controller.

The results from the multiresolution path planning algorithm are shown in Fig. 18.

Specifically, Fig. 18 shows the evolution of the path at different time steps as the agent

moves to the final destination. Figure 18(a) shows the agent’s position at time step

t = t5 along with the best proposed path to the final destination by a dashed-dot

line at that time. The actual path followed by the agent is drawn by a solid line.

Similarly, Fig. 18(b) shows the agent’s position at time step t = t21. As seen in

Fig. 18(c), the actual path followed by the agent differs from the one predicted in

either Figs. 18(a) or 18(b). This is due to the fact that at time t5 and t21 the agent

does not have complete information for upcoming location up to confident level. In

particular, Fig. 18(b) shows that as the agent gets closer to the obstacle, it recognizes

the presence of obstacles and redirects the path to avoid the obstacle. Finally, the

43

agent reaches the final destination xf in a collision free manner, as seen in Fig. 18(c).

2.5.2 Simulation results for the D∗-lite algorithm

In this section we present simulation results of the D∗-lite path planning algorithm

for the same environment used in the previous simulation. It is assumed that the

agent navigates over the unknown environment, while updating the map with the

information gathered from a proximity sensor. We adopt a uniform cell decomposition

of cell size the Jmax = 6 which is the same to the finest level used in the previous

section. The range of the proximity sensor is chosen r6 = 7, thus resulting in a high

resolution window by a 7×7 square grid.

The results from the D∗-lite path planning algorithm are shown in Fig. 19. Also,

Fig. 19 shows the evolution of the path at different time steps as the agent moves to

the final destination. At each step, the best proposed path is drawn by a dashed-dot

line and the actual path followed by the agent is drawn by a solid line. As seen

in Fig. 19(c), the actual path differs significantly from the one predicted in either

Figs. 19(a) or 19(b). This is attributed to the fact that the environment is unknown

a priori, and the initial path is computed using the distance cost outside the high

resolution horizon. Hence, as shown in Fig. 19(a), the agent is unable to anticipate

the existence of the obstacles outside the high resolution horizon. Nonetheless, as the

agent gets closer to the obstacles, the D∗-lite algorithm effectively replans the entire

path avoiding the obstacles, reaching the final destination.

2.6 Comparison

The proposed multiresolution path planning algorithm was written in C code and

implemented on an on-board autopilot equipped with a Rabbit RCM-3400 micro-

controller. Because the micro-controller has limited computational resources (10,000

instructions per second, and 512 KB RAM for handling variables), the code has

been written giving special attention not only to the accuracy of the output, but

44

Table 1: Computational cost of the proposed algorithm by the on-board autopilot.

Multiresolution cell decomposition using FLWT 452 [msec]
Construct the connectivity relationship and G 292 [msec]
Compute a path using A∗ employing the binary heap 202 [msec]
Average number of nodes of each G ∼200

also to the computational speed during implementation. Specifically, most of the

computations for the proposed algorithm is done using integer arithmetic. Given a

risk measure rm of integer samples, the integer fast lifting wavelet transform provides

the approximation and detail coefficients that are used to construct the adjacency

relationship between cells. The A∗ algorithm is then called to find the shortest path

in the graph associated with the wavelet decomposition.

Table 1 shows the computational cost of the proposed path planning algorithm

using the on-board autopilot. One step of the path planning iteration takes 946 [msec]

for execution. With the knowledge of the execution time of the proposed algorithm,

we actually choose to implement the proposed path planning algorithm on-line every

three seconds. Hence, the autopilot manages not only to execute the basic tasks such

as data acquisition and processing, inner loops control, and etc., but also to plan a

path in a seamless manner.

We compared the computational costs between the proposed multiresolution path

planning algorithm and the D∗-lite algorithm, using different simulation results for

several cases. The simulations were carried out on an IBM-PC (Pentium M 2.0 GHz,

1 GB RAM), based on codes written in C for implementing both path planning

algorithms. The proposed path planning algorithm accomplishes the path planning

objective of reaching the goal in a fewer number of iterations, as shown in Table 2,

than the D∗-lite algorithm. This is due to the fact that the proposed algorithm

effectively manages the information of the coarser resolutions so that a preferred

path is computed over the approximation of W. The D∗-lite algorithm, however,

45

Table 2: The computational cost comparison between the multiresolution path plan-
ning v/s the D∗-lite.

Items Scenario I Scenario II Scenario III Scenario IV Scenario V
D∗-lite Wavelet D∗-lite Wavelet D∗-lite Wavelet D∗-lite Wavelet D∗-lite Wavelet

iteration 35 31 93 50 61 40 123 52 44 43
nodes in G 4096 201 4096 194 4096 192 4096 185 4096 194
Data processing [msec] 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03
Adjacency search [msec] - 0.977 - 0.987 - 0.969 - 0.94 - 0.958
A∗ search [msec] - 0.1 - 0.125 - 0.094 - 0.138 - 0.066
Init. D∗-lite search [msec] 1.87 - 2.03 - 2.03 - 1.87 - 2.03 -
D∗-lite update [msec] 4.1 - 23.8 - 11.3 - 43.9 - 12.7 -
Total Comp. time [msec] 5.97 33.387 25.83 55.6 13.33 42.53 45.77 56.056 14.73 44.032
Computational cost (%) 17.8 100 46.46 100 31.35 100 81.65 100 33.45 100
Memory cost (%) 2037.8 100 2111.3 100 2133.3 100 2214.1 100 2111.3 100

relies on the information at finer resolution which is unveiled up to the current time,

thus requiring the agent to explore the environment and to replan the path along

the movement of the agent. In the worst case, the total number of iterations by the

D∗-lite algorithm increases significantly (e.g. Scenario IV) because of the existence

of unknown obstacles.

The total computation time of the proposed algorithm is obtained by adding

the computation times throughout each iteration. For the D∗-lite algorithm, the

total computation time consists of the time for initializing and updating, which is

shown to be smaller than that of the proposed algorithm. The D∗-lite algorithm is

computationally efficient in the sense that it reuses information from the previous

step. In contrast, most of the computations in the proposed algorithm are devoted

to the construction of the adjacency list at each planning step, as shown in Table 2.

The performance of the proposed algorithm can thus be improved by using, say, four-

connectivity instead of eight-connectivity during the adjacency search algorithm. This

will possibly halve the computation time with little performance degradation. By

the inherent benefit from the multiresolution decomposition, the proposed algorithm

requires little memory as shown in Table 2 compared to D∗-lite. For on-line, on-board

path planning, the proposed algorithm has the advantages of scalability according to

the available on-board computational resources.

46

2.7 Summary

Autonomous path planning for small UAVs imposes severe restrictions on control algo-

rithm development, stemming from the limitations imposed by the on-board hardware

and the requirement for on-line implementation. In this chapter we have proposed

a method to overcome this problem by using a new multiresolution path planning

scheme. The algorithm computes at each step a multiresolution representation of the

environment using the fast lifting wavelet transform. By utilizing most of integer

arithmetic of FLWT, the computational cost is significantly reduced. The idea is to

employ high resolution close to the agent (where is needed most), and a coarse reso-

lution at large distances from the current location of the agent. As an added benefit,

the connectivity relationship of the resulting cell decomposition can be computed di-

rectly from the nonzero detail coefficients of the wavelet transform. The algorithm is

scalable and can be tailored to the available computational resources of the agent.

47

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) t = t5

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) t = t21

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c) t = tf

Figure 18: Path evolution and replanning. Dashed-dot lines represent the currently
tentative optimal path obtained from the A∗ algorithm, based on the available mul-
tiresolution approximation of the environment at different time steps. Solid lines
reveal the actual path followed by the agent.

48

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) t = t14

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(b) t = t30

0 20 40 60 80 100 120

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c) t = tf

Figure 19: Path evolution and replanning using the D∗-lite algorithm. Dashed-dot
lines show the currently tentative optimal path obtained from the D∗-lite algorithm,
based on the distance cost outside the high resolution area. The actual path followed
by the agent is drawn by solid lines.

49

CHAPTER III

ON-LINE PATH SMOOTHING USING PATH

TEMPLATES

3.1 Introduction

Guidance and navigation control of mobile agents has been an important research

topic for several decades. In particular, for unmanned aerial vehicles (UAVs), the

ability of fully automated guidance and navigation control allows the UAVs to ac-

complish missions under various circumstances with minimal human intervention. As

a matter of fact, because of the stringent operational requirements and the restric-

tions imposed on UAVs by autonomy, safety, efficiency, etc., a complete solution to

fully automated guidance and navigation control of UAVs is challenging. Many re-

searchers suggest that breaking the problem into several subproblems such as path

planning, trajectory smoothing, trajectory tracking, and etc., makes it easy to solve

by a hierarchical control structure [93, 10, 94].

It is assumed that a planned path is given by a series of way-points from the top-

level path planner. Traditionally, a simple implementation of the way-points tracking

control is used for guidance purpose. A better implementation of the guidance and

navigation control incorporates a smooth path by taking into account the dynamic

constraints of UAVs. The way-points can then be connected to generate smooth

path segments, which preserves the continuity of curvature between line and arc

segments while minimizing the maximum curvature on the curve [61, 122]. In Ref. [6],

the authors proposed a dynamic trajectory smoothing algorithm by which the path

segments in straight-lines are smoothed to yield an extremal trajectory with explicit

consideration of the kinematic constraint of a fixed-wing UAV.

50

In contrast to the explicit consideration of the kinematic constraint of the UAV,

a spline-based path generation method has been widely adopted when computing the

smooth, dynamically feasible trajectory for UAVs. A series of cubic splines was em-

ployed in Ref. [56] to connect straight line segments in a near-optimal manner. The

authors in Ref. [147] presented an implicit time-parameterization of the trajectory

using a B-spline representation. Designing an obstacle-avoiding B-spline path has

been dealt with by Berglund et al.[15], whereas the real-time modifications of a spline

path is proposed in Ref. [39]. The advantage of employing the (B-)splines in generat-

ing a smooth path is dictated by the fact that the path can be represented by using

smaller number of parameters than using complete description of path. Accordingly,

both for path optimization and for on-line implementation, it is straightforward to

deal with small number of parameters when generating paths that are subject to the

given obstacle constraints at the minimum computational cost.

The obstacle avoidance path planning problem using B-splines involves a con-

strained optimization such that the path should not only avoid forbidden regions

but also become a flyable trajectory. In Ref. [87], a polygonal channel comprised of

piecewise polylines serves as constraint equations while a B-spline curve is optimized

using quadratic programming. This has been made possible by adopting tight linear

envelopes for splines [88], by which a B-spline is represented as an approximate bound-

ing polygon. In their approach, one dimensional B-splines are utilized to describe a

smooth path subject to the channel constraints. In this paper, we extend the results

in Ref. [88] in two dimensions, thus incorporating a two dimensional B-spline curve

instead of a B-spline function. To this end, we formulate an optimization problem

similar to the channel problem in Ref. [87] with constraints being given as geometric

constraints.

Incorporating a high-level path planning algorithm such as D∗-lite, we present a

path smoothing algorithm using a set of path templates. Instead of smoothing the

51

entire path from an initial position to the goal position, we smooth the path segments

over a finite planning horizon with respect to the current position of the UAV. This

approach is somewhat similar to implementing a receding horizon concept in the path

generation stage. To the problem of trajectory generation and collision avoidance,

the receding horizon concept has been successfully implemented showing that it is

an effective way to reduce the computational cost [43, 67, 129]. Each segment of

B-spline curves are then stitched together to the B-spline curve that corresponds to

the next path sequence, thus overall path remains smooth. Although the explicit

dynamics of the UAV are not directly dealt with for smoothing the path segments,

this approach has the advantage of having minimal on-line computational cost since

most of computation is done off-line.

3.2 Tight Envelope for B-spline curves

3.2.1 Tight envelope for B-spline function

An one-dimensional spline function b is expressed by

b(u) =
m∑

j=0

bjN
d
j (u) (30)

where bj are control points and Nd
j (u) are the B-spline basis functions of degree d

which are defined over a non-decreasing knot sequence {uk} such that u0 ≤ u1 ≤

· · · ≤ um+d+1. The number of knots is determined by the sum of the number of

control points (m+ 1) and the B-spline order (d+ 1). The first and the last knots of

the sequence should have multiplicity (d+1) for a B-spline to pass the the first and the

last control points, in such that u0 = u1 = · · · = ud and um+1 = um+2 = · · · = um+d+1,

respectively. The B-spline basis functions are computed by the well-known Cox-de

52

Boor recursion formulas [34] from the degree 0 to d as follows,

N0
j (u) =

1 if uj ≤ u < uj+1,

0 otherwise,

(31a)

Nd
j (u) =

u− uj
uj+d − uj

Nd−1
j (u) +

uu+d+1 − u
uj+d+1 − uj+1

Nd−1
j+1 (u). (31b)

The B-spline basis function has several useful properties. Among them, it is

well known that B-spline basis function has local support [109], that is Nd
j (u) is a

non-zero polynomial over a knot span [uj , uj+d+1), or given any span [uj, uj+1), at

most (d + 1) B-spline basis functions of degree d are non-zero. This local support

property is important to curve design, since it allows to modify the B-spline curve

locally without changing the entire shape. Figure 20 shows the cubic B-spline basis

functions of degree d = 3 over the knot sequence u ∈ [0, 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Knots

N
j3

Cubic B−spline Basis function over the knot [0,1]

: N
0
3

: N
1
3

: N
2
3

: N
3
3

Figure 20: B-spline basis functions N3
j over the knot u ∈ [0, 1].

Let the control polygon of the B-spline ` be defined by piecewise line segments

connecting the control points bj at the Greville abscissae[48],

u∗j =

j+d∑

i=j+1

ui/d, (32)

53

such that at each Greville abscissae it satisfies `(u∗j) = bj . Accordingly, an envelope

of the B-spline specifies a bound on the distance between b and its control polygon

`. This envelope should provide a good estimate of the shape of the B-spline by

approximating the spline using less information. Although a number of bounds for

splines are proposed in the literature, the bound derived in Ref. [99, 88] is known to

be a tight, quantitative bound. Hence, it is possible to approximate the B-splines by

piecewise linear envelopes, as the envelopes carry most of salient information about

the curve itself. In light of this, the envelopes have advantage of being incorporated

in the B-spline optimization problem, thus simplifying the analysis.

The envelopes in Ref. [88] are expressed in terms of the weighted second difference

of the control points,

∆2bj , b′j+1 − b′j where b′j =
bj − bj−1

u∗j − u∗j−1

, (33)

and by the non-negative and convex functions over the interval [u∗k, u
∗
k+1] (k = 0, 1, · · · , m)

as follows,

βki =

∑k
j=i(u

∗
j − u∗i)Nd

j (u) i > k,

∑i
j=k(u

∗
i − u∗j)Nd

j (u) j ≤ k,

(34)

where, k and k denote the index of the first and the last B-spline basis functions which

are nonzero over the corresponding interval, respectively. Subsequently, the distance

between the spline function b and its control polygon ` is calculated as follows,

b− ` =

k∑

i=k

∆2biβki. (35)

Furthermore, by choosing the maximum and minimum variation of the weighted

second difference as ∆−
i = min{0,∆2bi}, ∆+

i = max{0,∆2bi}, we obtain the maximum

offsets in both positive and negative direction with respect to the control polygon,

which, in turn, become the upper and lower bounds of the spline function with respect

54

to the control polygon,

`+
k∑

i=k

∆−
i βki ≤ b ≤ `+

k∑

i=k

∆+
i βki. (36)

Since the βki’s are non-negative and convex function over the corresponding in-

terval [u∗k, u
∗
k+1], the maximum function values occur at each end of the interval, i.e.

at each Greville abscissae. (See Fig. 21). Then the piecewise linear functions e and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Parameter t

S
um

 o
f b

et
a

β

k0

β
k1

β
k2

β
k3

Σ β
ki

Figure 21: Non-negative and convex functions βki.

e that interpolate their values at each Greville abscissa can be employed to provide

tight envelopes of the spline function,

e = `+ L
(∑

∆−
i βki(u

∗
k),
∑

∆−
i βk+1,i(u

∗
k+1)

)
,

e = `+ L
(∑

∆+
i βki(u

∗
k),
∑

∆+
i βk+1,i(u

∗
k+1)

)
,

(37)

where L(·, ·) denotes a linear interpolation between two values. Therefore, the maxi-

mal bounds from the B-spline function to its control polygon are obtained in a simple

form,

e ≤ b ≤ e. (38)

Figure 22 shows a cubic B-spline function b over the knot sequence u ∈ [0, 1]. The

bounding envelopes e and e are drawn by dotted and dashed-dot lines, respectively.

55

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
One dimensional cubic B−spline

Knot parameter

b

: control polygon
: lower env.
: upper env.

Figure 22: One dimensional cubic B-spline bounding envelopes.

3.2.2 Tight envelope for planar B-spline curves

A two dimensional planar B-spline curve b(u) = [b1(u) b2(u)]T is expressed in terms

of the B-spline basis functions,

b(u) =
m∑

j=0

bjN
d
j (u), (39)

where, bj = [b1j b
2
j]

T are the control points. It is also assumed that the B-spline curve

is clamped at the first and last control points by assigning the (d+ 1) multiple knots

at each the first and last knots.

At each Greville abscissa u∗k, the one-dimensional bound by Eq. (38) constitutes a

two-dimensional bounding box, whose ith axis is determined by the one-dimensional

envelope as

ei(u∗k) ≤ bi(u∗k) ≤ ei(u∗k) i = 1, 2. (40)

Let this axis-aligned bounding box be denoted by Sk, then the curve segment b(u),

u ∈ [u∗k, u
∗
k+1], lies in a convex combination of Sk and the consecutive box Sk+1 owing

to the linearity of e and e, which is denoted by

Hk = L(Sk, Sk+1). (41)

56

Sk−1

Sk

Sk+1
bk−1

bk

bk+1

`k−1
L

`kL
uk
L

`k−1
R

`kR

uk
R

Figure 23: Constructing the envelope of a planar curve from neighboring bounding
boxes.

Note that Hk is rendered as a convex hull of Sk and Sk+1, which is circumscribed by

the edges of Sk and Sk+1, and lines connecting the corners of Sk and Sk+1. Let vki ,

i = 1, · · · , 4, be the line segments connecting corresponding corners of Sk and Sk+1.

Hence, vk1 connects the lower left corner of Sk to the lower left corner of Sk+1, vk2

connects the lower right corner of Sk to the lower right corner of Sk+1, and so on.

Figure 23 shows these line segments. As mentioned above, the convex hull Hk over the

knot u ∈ [u∗k, u
∗
k+1] consists of parts of the edges of Sk and Sk+1 and exactly two extra

line segments `kL and `kR chosen among vki . The line segments `kL and `kR are separated

by the line that connects the control points bk and bk+1, thus `kL is denoted a left

envelope line segment and `kR is a right envelope line segment. These line segments

`kL and `kR, k = 0, · · · , m are joined together to form piecewise linear envelopes of

the B-spline curve eL and eR, respectively. It might be the case, however, where two

line segments do not intersect each other such as the line segments `k−1
R and `kR in

Fig. 23. In order to form piecewise linear envelopes by a set of line segments, those line

segments are extended to find the intersection point uk
R. Consequently, the envelopes

eL and eR are determined by a set of line segments between the intersection points

uk
L and uk

R. Figure 24 shows an example of two-dimensional bounding envelopes of

57

the given B-spline curve, which reveals that the entire B-spline curve stays inside the

envelopes of eL and eR.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.2

0.4

0.6

0.8

1

1.2

x

y

: Control polygon
B−spline

Figure 24: Bounding envelopes eL and eR of two-dimensional cubic B-spline .

3.3 Obstacle avoidance path optimization

3.3.1 Channel constraints for obstacle avoidance

We formulate an optimization problem to calculate a smooth curve which avoids a

prescribed obstacle region. We adopt a B-spline curve, due to the inherent smoothness

property of B-spline, as a reference path to the UAV. Hence, the path given by a B-

spline curve is rendered a flyable path by the agent. In particular, we let the path

be placed inside a feasible channel, thus avoiding the obstacle region. The channel

separates the obstacle and feasible regions by two distinct polygonal lines to yield

geometric constraints for optimization problem.

In Ref. [87], linear inequality constraints are incorporated in the B-spline function

optimization. Given input channel polygon, the inequality expressions are formulated

in conjunction with the lower and upper envelopes e and e of the B-spline function

such that the B-spline function should stay between the polygons. On the other hand,

because we deal with a planar B-spline curve in this research, the channel constraints

58

are formulated as geometric constraints. Hence, the given geometric channel should

contain the envelopes of the B-spline curve.

To this end, we first introduce a signed distance-map function f(x; `), x ∈ R
2

with respect to a polygonal line ` to provide a metric for geometric constraints of the

channel problem as follows,

f(x; `) , s ·min{d1, d2}, (42)

where, d1 ∈ D1 = {‖x− ci‖, i = 0, · · · , q} is the distance from x to a corner point ci

of the polygonal line `i, d2 ∈ D2 = {d(x, `i), i = 0, · · · , q − 1} is the perpendicular

distance from x to the line segment `i that connects two consecutive corner points ci

and ci+1, and s is a sign value which decides the location of the point x with respect

to ` as follows,

s =

+1, x ∈ O,

0, x ∈ `,

−1, x /∈ O.

(43)

Figure 25 shows this distance-map function value with respect to the given zig-zag

shape polygonal line. Far-away points from the line have bigger values, whereas points

close to the line yield smaller values. The information about the relative location of

the points with respect to the polygonal line is determined by its sign.

In order to formulate the inequality constraints as similar to those in Ref. [87],

first of all, it follows from Fig 23 and accompanying discussions that the envelopes

of a planar B-spline curve are characterized by the feature points uk
L and uk

R of the

envelopes eL and eR, respectively. Hence, if all these points are placed inside the

feasible region, then each bounding box at u = u∗k of the B-spline curve will be

completely contained in the feasible channel. Let `L and `R be the polygonal lines

representing the obstacle boundaries, then the feature points uk
L and uk

R at each

59

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 25: Signed distance map for an arbitrary polygonal line. The feasible region
is characterized by the negative function values.

Greville abscissa u = u∗k should satisfy the following inequality relations,

f(uk
L; `L) ≤ 0, (44a)

f(uk
R; `R) ≤ 0, (44b)

where k = 0, · · · , m.

Meanwhile, recall the fact that the envelopes of the B-spline curve are determined

by the convex hull of each bounding box. Then the concave corner points of the

obstacle boundaries, as marked by triangles in Fig. 26, should be excluded from the

envelopes of the B-spline curve. To this end, we formulate inequality expressions

utilizing the distance-map function in conjunction with the concave corner points

and the piecewise linear envelopes as follow,

f(cLvl ; eL) ≥ 0 (45a)

f(cRvm ; eR) ≥ 0 (45b)

where, l = 1, · · · , nLv and nLv is the number of concave corner points of `L. Similarly,

m = 1, · · · , nRv and nRv is the number of concave corner points of `R. Note that the

60

Sk−1

Sk

Sk+1

`L

`R

uk−1
L

uk
L

uk+1
L

uk−1
R

uk
R

uk+1
R

cLvl
cLvl+1

cRvm cRvm+1

Figure 26: Geometric constraints formulation. The channel is given by two polylines
`L and `R, the envelope of the B-spline is drawn by the dashed lines, which is supposed
to stay inside the channel.

positive condition in Eqs. (45) implies that the corner points are located outside the

boundary envelopes of the B-spline curve. Consequently, the inequality constraints in

Eqs. (44) and (45) ensure that the envelope of the B-spline stays between the channel,

as depicted in Fig. 26.

3.3.2 Smooth curve optimization

We consider designing a smooth curve using a quartic B-spline, whose basis func-

tions are computed from Eq. (31b) as degree 4 polynomials in terms of the knot

parameter u. Hence, the quartic B-spline basis function preserves its continuity up

to the third order derivative, thus resulting in the continuity of the derivative of cur-

vature d/du(κ). Without loss of generality, the knot parameter is selected u ∈ [0, 1],

and the first and last knots have multiplicity 5 such as u0 = · · · = u4 = 0 and

um+1 = · · · = um+5 = 1. Accordingly, the B-spline curve will be clamped at, or pass

through, the first and last control points.

For the optimization, we manipulate (m + 1) control points of the B-spline as

bj = [b1j b
2
j]

T (j = 0, · · · , m), which have direct influence on the shape of the curve.

The number of control points is chosen along the complexity of the curve shape. In

61

general, the curve shape is closely related to the given channel geometry, subsequently

the number of control points can be opted for the minimum number required to get a

B-spline curve inside the channel. The knot sequence is initially given arbitrary non-

decreading numbers in (0, 1) by taking into account the number of control points,

then can be altered with knot insertion if the envelopes of the B-spline curve need to

be refined [87].

Two different performance indices are adopted to compute curves for attaining

distinct optimization goals. In order to keep the B-spline curve as close as possible

to a straight line, for which ∆2bj = 0, we employ the cost function

J1 =
m−1∑

i=1

(∆2bj)
T(∆2bj), (46)

which implicitly minimizes the curvature variation of B-spline curve, thus resulting

in a smooth B-spline curve. On the other hand, we suppose that the arc length of the

B-spline curve is approximately captured by the total length of the control polygon

`. Hence, for the shortest path, we employ the cost function as the sum of the length

of the piecewise control polygon,

J2 =

m−1∑

i=0

‖`i‖2. (47)

The constraints for the optimization problem is comprised of both equality con-

straints and inequality constraints. The equality constraints stipulate boundary con-

ditions for position, heading, and curvature at each end point at u0 = 0 and um+5 = 1

as follows,

b(0) = p0 , b(1) = pf , (48a)

ψ(0) = ψ0 , ψ(1) = ψf , (48b)

κ(0) = κ0 , κ(1) = κf , (48c)

where ψ(u) and κ(u) are the heading and the curvature of the B-spline curve at each

62

knot parameter. Inequality constraints are obtained from Eqs. (44) and (45) as the

channel constraints.

The path optimization problem is formulated as follows. Given a knot sequence

{uk}, two polygonal lines for channel geometry, and boundary conditions for each

end point, find a B-spline curve which minimizes the cost function in Eqs. (46) or

(47) subject to the equality constraints in Eqs. (48) and the inequality constraints in

Eqs. (44) and (45).

Figure 27(a) shows the optimization result using the cost function in Eq. (46).

The constructed quartic B-spline curve is drawn by a solid line, and the envelopes

are drawn by dashed lines. The B-spline as well as the envelopes stay inside the

specified channel polygon. For the case of the shortest path using the cost function

in Eq. (47), Fig. 27(b) reveals that the computed B-spline curve is rendered shorter

than the previous case.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

Length = 5.12798

x

y

(a) A smooth curve in the channel

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

Length = 4.99475

x

y

(b) A shortest curve in the channel

Figure 27: Two optimization results.

3.4 Construct path templates for different channels

In this section we propose to construct path templates to be utilized for on-line

path smoothing. The templates contain a set of planar B-spline curves which are

then used for local path segments to avoid obstacles. An obstacle-free discrete path

63

sequence is provided by a high-level path planner [59], which constructs a channel

as the obstacle-free region delimited by polygonal lines. Taking into consideration

all possible combinations of path sequences, we solve a number of path optimization

problems subject to different channel constraints, computing a set of quartic B-splines.

The path templates are used for on-line path smoothing in conjunction with the

high-level path planning algorithm in order to generate a smooth path which avoids

obstacles.

3.4.1 Path rules within a finite horizon

Suppose a world environment W ⊂ R
2 is decomposed into a uniform cell decompo-

sition which consists of square cells ck,` of dimension 1/2J × 1/2J at resolution level

J . We adopt the four-connectivity between cells, hence the high-level path planner

computes an optimal path as a sequence of cells from the current cell to the goal

cell. The path sequence is written in a path word by which the transitions toward the

North, South, East, and West directions between two cells can be encoded by N, S, E,

and W, respectively. We specify the range of interest within four-cell horizon from the

current cell, as shown in Fig. 28. If the goal cell is located outside the horizon, then

an optimal path sequence is computed in a such manner that the path eventually

passes through one of the cells at the horizon boundary. Let a local path sequence

from the current cell to reach the boundary cells be a local path instance. If a path is

supposed to visit each cell only once, the number of possible combinations for local

path instance turns out to be finite. In addition, taking advantage of the symmetry

about the x-axis (East direction) and y-axis (North direction), we investigate the

local path instances restricted on one quadrant of the 7×7 cell grid.

Without loss of generality, we consider the local path instances on the first quad-

rant, as shown in Fig. 29. From the square cell geometry, it follows that we can also

take advantage of the symmetry about the diagonal axis. Hence, as shown in Fig. 29,

64

A

B

C

D

Figure 28: Examples of path sequences starting from the current cell at the center.
We adopt the four-connectivity between cells. The goal cell is supposed to be located
beyond the horizon. Possible path sequences are given as examples of the optimal
path. The path A is written by NENEN· · · , the path B is EESE· · · , the path C is
SSEES· · · , and the path D is WNNWW· · · .

two path instances of ENNEN and NEENE are similar to each other so that they are

considered to be derived from the same local path instance.

Subsequently, we only investigate the local path instances from the current cell

to one of the top boundary cells c0,3, c1,3, c2,3, and c3,3 shown in Fig. 29. Any

local path instances can then be derived from these path instances by applying the

symmetric operations along the horizontal, vertical, diagonal axes. Among all possible

combinations of path sequences to reach the top boundary cells, we describe the

necessary path rules to determine a unique local path instance, which are enlisted as

follows,

1. (Terminal conditions) Suppose a local path instance is restricted inside the

first quadrant, that is, it never goes outside the horizon before it reaches a

terminal cell on the top boundary. The terminal cell should be one of the top

boundary cells, except the cell c3,3. The reason for this is attributed to the

four-connectivity between cells; The path instance that reaches c3,3 necessarily

65

c0,3 c1,3 c2,3 c3,3

c3,2

c3,1

c3,0c0,0

c0,1

c0,2

Figure 29: Local path instances on the first quadrant. From the additional sym-
metry about the diagonal axis, it is possible to transform the path instance drawn
in dashed line (NEENE) to the path instance drawn in solid line (ENNEN). Path rules
are given in order to determine unique path instances reaching the cell at the top
boundary.

passes the adjacent boundary cell either c2,3 or c3,2, thus we regard the path

instances to the cell c3,3 as a subset of the path instances to c2,3 and exclude

from the consideration. In order to come up with a path sequence that reaches

the terminal cell, the corresponding path word should have certain numbers of

occurrence of N, S, E, and W satisfying the following conditions,

∑(
#N−#S

)
= 3,

∑(
#E−#W

)
=

0 for c0,3,

1 for c1,3,

2 for c2,3.

2. (Self-avoiding path) The path must visit each cell exactly once, and never in-

tersect itself. From this rule, we explicitly prevent a pathological case such as

a cyclic loop from being considered in the templates. This type of path can be

described by a self-avoiding walk [89] on a 4 × 4 cell grid. The total number

of self-avoiding walks on an m × n grid, which starts from a corner and ends

at the opposite corner by only horizontal and vertical steps, is computed using

66

Table 3: Number of self-avoiding walks on an m× n grid

m, n 2 3 4 5
2 2 4 8 16
3 4 12 38 125
4 8 38 184 976
5 16 125 976 8512

a recurrence relation [42]. Table 3 gives the first few numbers of such walks

for small m and n. Similarly, the number of candidate of self-avoiding paths

from the current cell c0,0 to the top boundary cells is calculated from Table 3

utilizing recurrence relationship. Among these candidates, only certain number

of self-avoiding path will be considered in the path templates.

3. (Path optimality) The high-level path planning algorithm is supposed to provide

an optimal path sequence. The optimal path sequence is calculated as such that

it minimizes the accumulated transition cost from the current node to the goal

node. Typically, an directed edge cost is assigned to each transition of N, S, E,

W, taking into account the cost associated with the cells as follows,

J (u, v) = f(v) + αg(u, v), (49)

where, f is a positive obstacle cost associated with the target cell v, g is (Eu-

clidean) distance cost between u and v, and α ≥ 0 is a weight constant. Consider

now the path word ENW which represents the transition among four cells u, v,

w, and z in order. The accumulated cost for this transition is computed by

J (u, v) + J (v, w) + J (w, z) > J (u, z), (50)

which turns out to be greater than the direct transition cost from u to z by a

single path sequence N. It follows that the transition ENW is not an optimal, and

neither of ESW, NES, NWS, etc. Consequently, we disregard any non-optimal path

sequence when investigating the candidates of self-avoiding paths.

67

When establishing the previous path rules, we assumed that the local path instance

necessarily ends up the top boundary cells, without escaping the quadrant. In certain

cases, however, the path sequence might be rather provided in such way that it comes

to cross the quadrants. In other words, the path sequence which starts from the

current cell at the center of grid, is comprised of cells in more than two quadrants.

If this is the case, we can infer that the path sequence will finally exit the finite

horizon after passing through at least two quadrants, which makes it difficult to

take advantage of the symmetry of the templates. In particular, the number of

templates will increase, if one wants to consider all possibilities of inter-quadrant

transitions, thus losing the benefit of using templates. In order to retain the symmetry

of templates, we append additional cells between the quadrants to be considered as

terminal cells other than the top boundary cells. Applying the path rules to a 7× 7

cell grid (thus 4 × 4 cell grid for the first quadrant), only the cell c0,2 (See Fig. 29)

can be considered as an additional terminal cell. The other cells on the axis can not

be terminal cells since the local path instances reaching them would conflict with the

path rules. Then any possible local path instances starting from the center cell to

c0,2, certainly satisfying the path rules, are appended to the path templates.

The path templates for local path instances on the first quadrant are summarized

in Table 4. Figure 30 shows an example of utilizing the path templates on a given path

sequence. The starting cell is located in the middle area, where the path sequence is

computed avoiding the shaded obstacle cells. In order to reach the goal cell, five local

path instances are required as they are connected one another at one cell. Since each

local path instance is written in path word, the corresponding path templates are in-

corporated with required symmetry operations, which are horizontal(H), vertical(V),

diagonal(D) reflections, in order to adopt the templates to the actual path words.

68

Table 4: Path templates for local path instances on the first quadrant.

Destination cell Path words
c0,3 NNN ENNWN EENNWWN

c1,3 NNEN NENN ENNN EENNWN

c2,3 NNEEN NENEN ENNEN

NEENN ENENN EENNN

c0,2 ENNW EENNWW

2

S 1

3

G

5

4

Path # Path words Template Operations

1 ENNW ENNW -
2 WWSSS EENNN H, V
3 ESEE NENN H, D
4 ENENN ENENN -
5 NNWN NNEN V

Figure 30: Example incorporating the path templates on a complex path sequence.
Five local path instances are are connected each other to reach the goal cell. The
actual path words are equivalently recovered from the path templates with corre-
sponding symmetry operations, which are horizontal(H), vertical(V), diagonal(D) re-
flections.

3.4.2 Construct B-spline path templates

The B-spline path templates are composed of a set of B-spline curves which is sup-

posed to be placed inside the channels. By assumption of the high resolution rep-

resentation of W, the cells of the optimal path sequence are regarded as a feasible

region for the agent to fly safely. Hence, the shape of the channel is determined from

the optimal path sequence by taking into account the square cell geometry, as the

border lines around the cells of the local path instance are joined together to yield

a channel polygon consisting of polylines (Left, Right) for the channel constraints.

The boundary conditions of each B-spline curve are chosen, for the convenience sake,

69

such that the B-spline curve starts from the center of the first cell of the local path

instance, ends at the center of the last cell of the local path instance. The heading

angles at each end of the curve is chosen such that the tangent vector at the point

directs toward the center of the next adjacent cell, whereas the curvature values are

set to be all zero. Hence, we manage to solve the optimization problem discussed in

Section 3.3 for minimizing one of the cost in Eqs. (47) and (46), or combination of

both. Figure 31 shows the results of optimization for path templates using B-splines

corresponding each local path instance shown in Table 4.

3.5 On-line path smoothing algorithm

In this section, we present an on-line path smoothing algorithm incorporating the B-

spline path templates. Given a discrete path sequence from a high-level path planner,

each instance of the B-spline path templates becomes a part of the smooth path.

Hence, the on-line path smoothing algorithm connects these path segments resulting

in the smooth path over the entire section.

3.5.1 Stitching the path segments

Along with the earlier discussion, two B-spline curves which are chosen from the path

templates meet each other at one junction point. Due to the different boundary con-

ditions with respect to tangent direction at each end of the curves, it follows that

a heading angle discontinuity occurs at the junction point. Hence, in order to get

a smooth path segment over two consecutive B-spline curves, we should stitch them

with a transient B-spline curve, hence preserving the continuity property over dis-

tinct B-spline curves. To this end, we let pa and pb be the points on the leading and

the following B-spline curves, respectively, other than the end points. Suppose the

transient curve intersects these points at its own end points, then it follows that pre-

serving continuity condition over distinct B-spline curves is assured by imposing the

continuity conditions at these points. Hence, the transient curve, which is supposed

70

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 1

(a) NNN

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 2

(b) ENNWN

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 3

(c) EENNWWN

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 4

(d) NNEN

Figure 31: Path templates results from the path optimization using B-spline curves.
Each plot corresponds to the local path instance in Table 4.

71

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 5

(e) NENN

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 6

(f) ENNN

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 7

(g) EENNWN

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 8

(h) NNEEN

Figure 31: (Continued) Path templates results from the path optimization using
B-spline curves. Each plot corresponds to the local path instance in Table 4.

72

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 9

(i) NENEN

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 10

(j) ENNEN

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 11

(k) NEENN

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 12

(l) ENENN

Figure 31: (Continued) Path templates results from the path optimization using
B-spline curves. Each plot corresponds to the local path instance in Table 4.

73

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 13

(m) EENNN

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 14

(n) ENNW

−2 −1 0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8
Template curve: 15

(o) EENNWW

Figure 31: (Continued) Path templates results from the path optimization using
B-spline curves. Each plot corresponds to the local path instance in Table 4.

74

to stitch two distinct B-spline curves, satisfies the continuity conditions not only for

position but also for heading angle and curvature value at each end.

The minimum order of the B-spline curve that satisfies the continuity conditions

described above is four. Subsequently, we employ a transient cubic B-spline curve

which is defined on a fixed clamped knot vector, u = [0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1].

Hence, the unknown parameters for determining this transient B-spline curve are six

control points, among which the first three control points are related to the boundary

conditions associated with the leading B-spline curve, and the rest are related to

the boundary conditions associated with the following B-spline curve. Suppose the

boundary conditions at the intersection point with the leading B-spline curve are given

as follows. The intersection point is specified by pa = [xa, ya], the heading angle at

pa is given ψa, and the curvature value is given κa. Let the control points be given

pi = [xi, yi], i = 0, · · · , 5, on which we impose the following boundary conditions,

xa = x0, (51a)

ya = y0, (51b)

ψa = tan−1

(
y′0
x′0

)
. (51c)

where, x′0 and y′0 are the derivative with respect to the knot parameter at the control

point p0. Note that, with the adopted clamped knot vector above, the cubic B-spline

basis functions evaluated at the knot u = 0 are computed as follows,

b0 b1 b2 b3 · · ·

N3
i (0) 1 0 0 0

N3
i
′
(0) −9 9 0 0 · · ·

N3
i
′′
(0) 54 −81 27 0

(52)

Hence, the first derivative at p0 is evaluated with the knot parameter u = 0 as follows,

x′0 = −9x0 + 9x1, (53a)

y′0 = −9y0 + 9y1. (53b)

75

From Eqs. (51c) and (53), it follows that

x1 = xa +Ra cosψa, (54a)

y1 = ya +Ra sinψa, (54b)

where Ra is the distance between p0 and p1 as a design parameter. In addition, we

impose the curvature boundary condition as follows

κa =
x0

′y0
′′ − y0

′x0
′′

(
x′0

2 + y′0
2
)3/2 , (55)

where, x0
′′ and y0

′′ are the second derivative with respect to the knot parameter at

p0. Using Eqs. (52) and (53) after algebraic manipulation results in the following

expression regarding x2 and y2,

−x2 sinψa + y2 cosψa = 3R2
aκa + ya cosψa − xa sinψa. (56)

In order to solve for x2 and y2, we adopt an additional equation in terms of x2 and y2

which determines a unique solution of x2 and y2 as follows. Suppose p⊥
2 is the point

at the distance 2Ra along the line p0p1 from p0 (See Fig. 32). The control point

p2 can then be chosen uniquely by imposing the additional condition such that the

projection of p2 onto the line p0p1 ends up with the design point p⊥
2 . It follows that

pa = p0
Ra

Ra

p1 p⊥
2

p2

ψa

Figure 32: Determine the unique p2 in terms of p0 and p1 in conjunction with the
design parameter Ra.

76

with extra algebraic manipulation, we obtain the additional equation as follow,

x2 cosψa + y2 sinψa = 2R + xa cosψa + yaψa. (57)

In a similar manner, we impose the boundary conditions at the end of the transient

B-spline as follows. With the cubic B-spline basis functions evaluated at the knot

u = 1,

· · · x2 x3 x4 x5

N3
i (1) 0 0 0 1

N3
i
′
(1) · · · 0 0 −9 9

N3
i
′′
(1) 0 27 −81 54

(58)

and the given boundary conditions such that the intersection point is specified by

pb = [xb, yb], the heading angle at pb is given ψb, and the curvature value is given κb,

we obtain the following formulas to determine the three control points,

x5 = xb, (59a)

y5 = yb, (59b)

x4 = xb − Rb cosψb, (59c)

y1 = yb − Rb sinψb, (59d)

− x3 sinψb + y3 cosψb = 3R2
bκb + yb cosψb − xb sinψb, (59e)

x3 cosψb + y3 sinψb = −2Rb + xb cosψb + yb sinψb. (59f)

Figure 33 shows an example of stitching the two B-spline curve derived from the path

templates by a transient cubic B-spline.

3.5.2 Simulation results of the on-line path smoothing algorithm

In this section we present simulation results of the on-line path smoothing in conjunc-

tion with the D∗-lite path planning algorithm. It is assumed that the agent navigates

over the unknown environment, while updating the map with the information gath-

ered from a proximity sensor. The world data is given by 256× 256 pixels. We adopt

77

1.5 2 2.5 3 3.5 4 4.5

4.5

5

5.5

6

6.5

7

pa

pb

Figure 33: Example of stitching the two B-spline curve with a cubic B-spline curve

a uniform cell decomposition of cell size 8×8 pixels at the level J = 5. The range

of the proximity sensor is chosen to be r5 = 28, thus resulting in the high resolution

window by a 7×7 square cell grids.

The results from the on-line path smoothing algorithm with the D∗-lite path

planning algorithm are shown in Fig. 34. Specifically, Fig. 34 shows the evolution

of the path at different time steps as the agent moves to the final destination. At

each step, the best proposed path is drawn by a dashed-dot line and the actual path

followed by the agent is drawn by a solid line. In each step a channel is drawn

by thin polylines that correspond to the discrete path sequence. The actual path

is constructed by joining the smooth path segments derived from the B-spline path

templates. TheD∗-lite algorithm updates occur whenever the agent approaches closed

to the end of each path segment, giving a (possibly new) path sequence. Subsequently,

the previous curve and the newly derived B-spline curve are stitched with a transient

B-spline curve. This process is repeated until the UAV reaches the final destination,

as shown in Fig. 34(c)

78

3.6 Summary

In this chapter, we presented the on-line path smoothing algorithm incorporating

the path templates for generating a smooth path derived from the high-level path

planner. The path templates are comprised of a set of B-spline curves, which have

been obtained from the off-line optimization in the manner that each path instance

stays inside the prescribed channel, hence the path efficiently avoids obstacles outside

channels. In conjunction with the high-level path planning algorithm, the on-line

implementation of the proposed algorithm involves finding the corresponding path

segments and stitching them together while preserving the continuity of the curve.

The simulation results with the D∗-lite path planning algorithm validates the effec-

tiveness of the proposed algorithm, having minimal on-line computational cost to get

a smooth path for UAV to fly along.

79

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

(a) t = t14

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

(b) t = t30

0 50 100 150 200 250

0

50

100

150

200

250
0 50 100 150 200 250

0

50

100

150

200

250

(c) t = tf

Figure 34: On-line path smoothing in conjunction with replanning using D∗-lite
algorithm. Dashed-dot lines represent the currently tentative optimal path obtained
from the D∗-lite algorithm, based on the distance cost outside the high resolution
area. Actual path followed by the agent is derived from the B-spline path templates,
which are represented by solid lines.

80

CHAPTER IV

PATH FOLLOWING CONTROL USING BACKSTEPPING

AND PARAMETER ADAPTATION

4.1 Introduction

Modern UAVs are envisioned to replace human pilots in various missions. In order

to accomplish these missions with minimal human intervention, the operation of a

UAV should be fully automated from the top level of path planning, down to the

inner control loop level. At the top level of the control hierarchy, the path planning

algorithm computes a rough approximation of the optimal path toward the goal. A

path generation algorithm then smooths the path yielding a dynamically feasible,

flyable path, by taking into account the kinematic constraints of the UAV. Finally,

the path following algorithm is responsible for guiding the UAV to stay close to the

designed path.

Various control approaches in the literature have been proposed to address the

path following problem: Niculescu [102] introduced a lateral track control law, Park et

al. [106] proposed a simple, yet effective, nonlinear control logic and demonstrated it

experimentally, Ren and Beard [116] considered the problem of constrained trajectory

tracking, Nelson et al. [100] proposed a path following control using vector fields to

guide the UAV on the desired path, and Rysdyk [120] proposed a guidance law based

on the ‘good helmsman’ behavior.

Motivated by the method proposed in Ref. [96], kinematic control laws have been

used to regulate the distance error from the reference path for unicycle-type mobile

robots [75, 76]. The key aspect of the proposed algorithms in Refs. [75, 76] is that

the control laws explicitly incorporate the controlled motion of a ‘virtual target’ to

81

be tracked along the path. In this chapter, we present a nonlinear path following

algorithm, which is an extension of the one by [75] for UAV path following control.

We apply a standard backstepping technique to compute the roll angle command from

the heading rate command of the kinematic control law. A parameter adaptation

technique is then proposed to compensate for the inaccurate time constant of the roll

closed loop, yielding robust performance during controller implementation. The path

following control algorithm is validated through a high-fidelity hardware-in-the-loop

simulation (HILS) environment to show the applicability of the presented algorithm

on the actual system.

4.2 Problem Description

A fixed-wing UAV is equipped with a low-level autopilot with on-board sensors that

provides feedback control for attitude angles, air speed, and altitude. In a typical

search mission, the air speed and the altitude are kept constant, so that the UAV

stays inside the safe flying envelope. Suppose that the inertial speed (V) and the

course angle (χ; inertial speed heading) are directly measured using an on-board

GPS sensor. A simplified kinematic model in the two dimensional plane is given as

follows,

ẋ = V cosχ,

ẏ = V sinχ,

χ̇ = ω,

(60)

where (x, y) denotes the inertial position, and ω is the heading rate of the UAV. By

expressing the equations of motion in terms of the ground speed and the course angle,

the effect of the wind velocity on the dynamics is removed. Furthermore, by using in-

ertial measurements for path planning control, wind disturbance is naturally rejected

so that the performance of path following controller can be improved significantly.

For a fixed-wing UAV at a banked-turn maneuver with no sideslip, and assuming

82

replacemen

I

X

Y

s

p

q

r

χ

V

χf

Fṡ

ed

es

Figure 35: Definition of the Serret-Frenet frame for the path following problem.

that |φ| < φmax < π/2, the heading rate ω is induced by the roll angle φ with the

inertial speed V as follows,

ω =
g

V
tanφ, (61)

where the roll angle is assumed to be controlled by an inner PID loop. Properly tuned

PID gains result in closed-loop roll dynamics which resemble a first-order system,

φ̇ =
1

λφ
(φc − φ), (62)

where φc is the roll angle command and λφ > 0 is the time constant.

Consider now a UAV flying along a planar path as shown in Fig. 35. Denote the

inertial position of the UAV by p = [x y]T ∈ R
2. The geometric path is defined in

terms of the arc-length parameter s. For any given s, the inertial position of the point

on the path associated with s is denoted by q(s) ∈ R
2, at which the Serret-Frenet

frame is attached, and moves along the path with speed ṡ. The x-axis of the Serret-

Frenet frame is aligned with the tangent vector to the path at q(s) and has an angle

χf(s) with respect to the inertial frame I. Let the error vector e in the Serret-Frenet

frame be decomposed in the along-track error es and the cross-track error ed. Then

the inertial error vector r = p−q(s) expressed in the Serret-Frenet frame is obtained

83

by

e = RT(χf)
(
p− q(s)

)
, (63)

where,

R(χf) =

cosχf − sinχf

sinχf cosχf

 , (64)

is the rotation matrix from the Serret-Frenet frame to the inertial frame.

By differentiating Eq. (63) with respect to time, it follows that

ė = ṘT(χf)
(
p− q(s)

)
+ RT(χf)

(
ṗ− q̇(s)

)
, (65)

where,

Ṙ(χf) = R(χf)S(χ̇f), (66)

where, S(χ̇f) is the skew-symmetric matrix,

S(χ̇f) =

0 −χ̇f
χ̇f 0

 . (67)

It follows from Eq. (60) that

ṗ = R(χ)

V

0

 . (68)

Notice that q̇ is the time derivative of the point q(s), whose speed is represented by

ṡ when expressed in the Serret-Frenet frame. It follows that

q̇ = R(χf)

ṡ

0

 . (69)

Subsequently, by substituting Eqs. (68) and (69) in Eq. (65), we obtain,

ė = −S(χ̇f)e + R(χ− χf)

V

0

−

ṡ

0

 , (70)

84

where RT(χf)R(χ) = R(χ− χf).

Let now the error course angle χ̃ be defined by

χ̃ , χ− χf . (71)

Hence, we obtain the time derivative of χ̃,

˙̃χ = χ̇− χ̇f = ω − χ̇f , (72)

where

χ̇f ,
dχf
dt

=
dχf
ds

ds

dt
= κ(s)ṡ, (73)

and κ(s) is the curvature of the path at q(s).

The error kinematic model of a fixed-wing UAV for the path following problem

with respect to the Serret-Frenet frame is summarized as follows,

ės = V cos χ̃− (1− κ(s)ed)ṡ, (74a)

ėd = V sin χ̃− κ(s)esṡ, (74b)

˙̃χ = ω − κ(s)ṡ. (74c)

From Eqs. (74), the path following problem reduces into a problem of driving the

errors to zero as the UAV approaches the given path. In Ref. [96], the point q is

found by projecting p on the path, assuming the projection is well defined. Hence,

the control law derived in [96] requires a stringent restriction on the initial position

of q in order to avoid singularities. In contrast, Lapierre and Soetanto[75] proposed

to employ a moving Serret-Frenet frame along the path, which effectively provides an

extra control parameter ṡ allowing q(s) to evolve along the error states. This control

parameter then mitigates the stringent restriction on the initial condition arose in

[96].

85

4.3 Path Following Controller Design

In this section we present a nonlinear path following control logic, which steers the

UAV to the reference path with an inaccurately known time constant λφ. Beginning

with the derivation of a kinematic control law for the heading rate command, we

employ backstepping to derive a roll control command for a fixed-wing UAV, which,

in turn, induces an equivalent control effort by the kinematic control law. In addition,

we apply a parameter adaptation technique to deal with the inaccurately known time

constant.

4.3.1 Kinematic controller design

Following a similar approach as in Ref. [75], we first derive a kinematic control law

for the heading rate. We introduce a bounded differentiable function with respect to

the cross-track error ed, as follows

δ(ed) = −χ∞ e
2ked − 1

e2ked + 1
(75)

where, k > 0 and χ∞ ∈ (0, π/2)[96]. This function is so-called the approach angle,

since it provides the desired relative course transition of the UAV to the path as

a function of the cross-track error ed. When the cross-track error ed is zero, the

approach angle vanishes, thus imposing the condition that the course angle of the

UAV must be tangential to the path. The positive constant k sets the effectiveness

of the transient maneuver during approach. The approach angle provides a behavior

similar to that of a ‘good helmsman’[120] since it satisfies the following condition:

ed sin
(
δ(ed)

)
≤ 0, for all ed. (76)

This condition steers the UAV to the path along the correct direction (turn left when

the UAV is on the right side of the path, and turn right in the opposite situation).

The kinematic controller for path following using the error kinematic model in

Eq. (74) is given below.

86

Proposition 1 Consider the kinematic error model of the UAV described in Eq. (74)

and the approach angle δ(ed) defined as in Eq. (75). Assume that the speed of the

UAV is non-negative and suppose that the reference path is parameterized by the arc-

length s, and that at each s the variables κ, es, ed, and χf are well defined. Then,

the following kinematic control law,

ω = −kω
(
χ̃− δ(ed)

)
+ κ(s)ṡ+ δ′(ed)

(
V sin χ̃− κ(s)esṡ

)

− edV

γ

(
sin χ̃− sin

(
δ(ed)

)

χ̃− δ(ed)

)
, (77a)

ṡ = kses + V cos χ̃, (77b)

where ks, kω and γ are positive constants, asymptotically drives es, ed, and χ̃ towards

zero.

Proof Let V1 be a positive definite and radially unbounded Lyapunov function[96],

V1 =
1

2γ

(
e2s + e2d

)
+

1

2

(
χ̃− δ(ed)

)2
. (78)

In the Lyapunov candidate function adopted, the first term captures the distance

between the UAV and the path, and the second term intends to steer the error

course angle χ̃ to the approach angle δ(ed), which forces the UAV to follow a desired

transition profile.

Differentiating V1 with respect to time, we get

V̇1 =
1

γ

(
esės + edėd

)
+
(
χ̃− δ(ed)

)(
˙̃χ− δ̇(ed)

)

=
1

γ

{
es
(
V cos χ̃− (1− κ(s)ed)ṡ

)
+ ed

(
V sin χ̃− κ(s)esṡ

)}

+
(
χ̃− δ(ed)

){
ω − κ(s)ṡ− δ′(ed)

(
V sin χ̃− κ(s)esṡ

)}

=
1

γ
es(V cos χ̃− ṡ) +

1

γ
edV sin

(
δ(ed)

)

+
(
χ̃− δ(ed)

){
ω − κ(s)ṡ− δ′(ed)

(
V sin χ̃− κ(s)esṡ

)
+
edV

γ

sin χ̃− sin
(
δ(ed)

)

χ̃− δ(ed)

}
.

(79)

87

Using the control law for ω and ṡ from Eqs. (77) yields,

V̇1 = −ks
γ
e2s +

edV

γ
sin
(
δ(ed)

)
− kω

(
χ̃− δ(ed)

)2 ≤ 0. (80)

Note that V1 is radially unbounded, hence the set Ωc = {V1(es, ed, χ̃) ≤ c} is a

compact, positively invariant set. Let E1 be the set of all points in Ωc where V̇1 = 0.

The set E1 is given by E1 = {(es, ed, χ̃) ∈ Ωc|es = ed = 0 and χ̃ = δ}. Noticing

that δ(·) is a function of the cross-track error ed, one can easily verify that any point

starting from the set E1 will remain in the set, or the set E1 is an invariant set. Hence,

by the LaSalle’s invariance principle, we conclude that every trajectory starting in Ωc

approaches E1 as t→∞. Therefore,

lim
t→∞

es = 0, lim
t→∞

ed = 0, and lim
t→∞

χ̃ = δ(ed)→ 0, (81)

since ed → 0 and δ(ed)→ 0.

Remarks. The objective of the closed loop system is to steer the error states

towards zero, so that the UAV follows the virtual target moving on the path. It

should be noted that the approach angle plays an important role, in steering the

UAV to the reference path by constructing a vector field with respect to a reference

point on the path to guide the UAV to the path, as shown in Fig. 36. As mentioned

earlier, the moving reference frame in conjunction with the extra control command ṡ

helps the errors converge to zero. In particular, the term kses in Eq. (77b) ensures the

convergence of es to zero, providing the momentum induced by the moving virtual

target. Figure 36 shows the vector fields with respect to the corresponding reference

points on the path, which takes into account the relative momentum induced by the

virtual target (drawn by dashed arrows). During implementation, the new location

of the virtual target on the path is propagated using the expression in Eq. (77b)

via a numerical integration scheme, such as the forward Euler method. Hence, if

the reference path is well defined in terms of the arc-length parameter s, then the

88

A

B

Figure 36: Local vector fields generated with respect to two distinct points on the
path.

corresponding variables es, ed, χf , and κ as also well defined, and thus the proposed

path following algorithm is well-posed.

4.3.2 Roll angle command via backstepping

In this section, we apply backstepping to compute the roll control command from the

heading rate command of the kinematic controller of the previous section.

For a fixed-wing UAV flying at a constant altitude, a roll angle command is often

used for heading control. A simple way to compute the roll angle command directly

from the heading rate command ωd is using the kinematic relationship in Eq. (61),

φd = tan−1

(
V ωd
g

)
. (82)

Note that the actual response of the roll angle differs from the desired value of Eq. (82),

but it can be approximated by a first-order system described in Eq. (62). Taking into

account the approximated model of Eq. (62), one can design a steering logic for the

roll angle command φc in order to achieve ω → ωd via φ→ φd. Following the standard

89

backstepping technique [134], we introduce an auxiliary control input ν for the roll

angle by augmenting the error model in Eq. (74) with φ̇ = ν. Thus, the system is

given as follows,

ės = V cos χ̃− (1− κ(s)ed)ṡ, (83a)

ėd = V sin χ̃− κ(s)esṡ, (83b)

˙̃χ =
g

V
tanφ− κ(s)ṡ, (83c)

φ̇ = ν, (83d)

where the auxiliary control input ν is associated with the roll command by

ν =
1

λφ

(
φc − φ

)
. (84)

Suppose that the desired heading rate ωd is obtained from Eq. (77a) and let ωe ,

ω−ωd = (g/V) tanφ−ωd be an error state for the heading rate, whose time derivative

is given as follows

ω̇e =
g

V
φ̇ sec2 φ− ω̇d. (85)

Proposition 2 Consider the kinematic error model of the UAV described in Eq. (83)

and the approach angle δ(ed) defined in Eq. (75). Assume that the speed of the UAV

is non-negative and suppose that the reference path is parameterized by the arc-length

s, and at each s the variables κ, es, ed, and χf are well defined. Then, the control

input,

ν =
V

g sec2 φ

(
− keωe − χ̃+ δ(ed) + ω̇d

)
, (86)

where ke is a positive constant and ωd is given in Eq. (77a), asymptotically drives es,

ed, and χ̃ towards zero, while ω → ωd.

Proof Let V2 be an augmented Lyapunov candidate function given by,

V2 = V1 +
1

2
ω2
e . (87)

90

where V1 is given in Eq. (78). Differentiating with respect to time, one obtains

V̇2 = V̇1 + ωeω̇e

=
1

γ
es(V cos χ̃− ṡ) +

1

γ
edV sin

(
δ(ed)

)

+
(
χ̃− δ(ed)

){ g
V

tanφ+ ωd − ωd − κ(s)ṡ− δ′(ed)
(
V sin χ̃− κ(s)esṡ

)

+
edV

γ

sin χ̃− sin
(
δ(ed)

)

χ̃− δ(ed)

}
+ ωe

(
g

V
φ̇ sec2 φ− ω̇d

)
.

(88)

By the definition of ωe, and substituting the desired ωd from Eq. (77a) and ṡ from

Eq. (77b), the term inside of the bracket collapses to

V̇2 =− ks
γ
e2s +

edV

γ
sin
(
δ(ed)

)
− kω

(
χ̃− δ(ed)

)2
+ ωe

(
g

V
φ̇ sec2 φ+ χ̃− δ(ed)− ω̇d

)
.

(89)

Choosing φ̇ through the auxiliary control input in Eq. (86), that is,

φ̇ = ν =
V

g sec2 φ

(
− keωe − χ̃+ δ(ed) + ω̇d

)
, (90)

results in,

V̇2 = −ks
γ
e2s +

edV

γ
sin
(
δ(ed)

)
− kω

(
χ̃− δ(ed)

)2 − keω2
e ≤ 0. (91)

The last inequality implies, in particular, that es, ed, χ̃ and ωe are bounded. Further-

more, δ(ed) is also bounded from Eq. (75) since ed is bounded. It is also easy to show,

using Eq. (77a), that ωd is bounded. To this end, notice that all signals in the rhs of

Eq. (77a) except the last are bounded. Moreover, since the last term is arranged by

sin χ̃− sin
(
δ(ed)

)

χ̃−
(
δ(ed)

) = sinc

(
1

2

(
χ̃− δ(ed)

))
cos

(
1

2

(
χ̃ + δ(ed)

))
(92)

and the sinc function is bounded, the last term in the rhs of Eq. (77a) is also bounded.

Since ωd and ωe are bounded, it follows that |φ| < π/2 and the control Eq. (86) is

well defined.

To complete the proof, note that V2 is radially unbounded, hence the set Ωd =

{V2(es, ed, χ̃, ωe) ≤ c} is a compact, positively invariant set. Let E2 be the set of

91

all points in Ωd where V̇2 = 0. The set E2 is given by E2 = {es = ed = 0, χ̃ =

δ, and (g/V) tanφ = ωd}. Noticing that δ(·) is a function of the cross-track error

ed, one can easily verify that any point starting from the set E2 will remain in the

set, i.e., E2 is an invariant set. By the LaSalle’s invariance principle, we have that

every trajectory starting inside the set Ωd approaches E2 as t → ∞. Therefore,

limt→∞ es = 0, limt→∞ ed = 0, and limt→∞ χ̃ = 0 since δ(ed) → 0. We also have

(g/V) tanφ→ ωd as t→∞.

4.3.3 Parameter adaptation

Note that the actual roll angle command is computed from Eq. (62) and (86),

φc = λφν + φ, (93)

where, λφ is the time constant of the system.

In practice, λφ is determined by the characteristics of the UAV airframe and PID

gains, thus it is not known accurately. The actual roll command φ̂c is then computed

by

φ̂c = λ̂φν + φ, (94)

where λ̂φ is an estimate of λφ.

In order to compensate for any uncertainty in λφ, we apply a parameter adaptation

technique. To this end, let V3 be a candidate Lyapunov function defined by

V3 , V2 +
1

2

1

kaλφ
λ̃2
φ, (95)

where V2 is given in Eq. (87) and λ̃φ , λφ − λ̂φ is the parameter estimate error.

Differentiating with respect to time, we get

V̇3 = V̇2 +
1

kaλφ
λ̃φ

˙̃
λφ

= −ks
γ
e2s +

edV

γ
sin
(
δ(ed)

)
− kω

(
χ̃− δ(ed)

)2

+ ωe

(
g

V
φ̇ sec2 φ+ χ̃− δ(ed)− ω̇d

)
+

1

kaλφ
λ̃φ

˙̃
λφ.

(96)

92

The actual value of φ̇ is calculated from Eq. (62) in conjunction with the actual roll

command in Eq. (94) and ν given in Eq. (86). Subsequently, substituting the actual

φ̇ into Eq. (96), we get

V̇3 = −ks
γ
e2s +

edV

γ
sin
(
δ(ed)

)
− kω

(
χ̃− δ(ed)

)2 − λ̂φ
λφ
keω

2
e

+ ωe
λ̃φ
λφ

(
χ̃− δ(ed)− ω̇d

)
+

1

kaλφ
λ̃φ

˙̃
λφ.

(97)

Choose
˙̃
λφ as,

˙̃
λφ = −kaωe

(
χ̃− δ(ed)− ω̇d

)
, (98)

where ka is a positive constant. It follows that

V̇3 = −ks
γ
e2s +

edV

γ
sin
(
δ(ed)

)
− kω

(
χ̃− δ(ed)

)2 − λ̂φ
λφ
keω

2
e ≤ 0. (99)

Assuming λφ is constant, the parameter update law is readily obtained from Eq. (98)

as follows,

˙̂
λφ = kaωe

(
χ̃− δ(ed)− ω̇d

)
. (100)

Proposition 3 Let the control law in Eqs. (77) and (86). With the parameter update

law given by Eq. (100) the actual roll command of Eq. (94) guarantees that the signals

es, ed, and χ̃ asymptotically tend to zero, while (g/V) tanφ→ ωd.

Proof In order to prove the proposition notice that limt→∞ V3(t) exists since V3 is

bounded from below and is non-increasing. It therefore suffices to show that V̇3 is

uniformly continuous, in which case we can invoke Barbalat’s lemma to ensure that

limt→∞ V̇3(t) = 0.

To this end, consider the expression of V̇3 in Eq. (99), from which it follows that

ed, es, χ̃, ωe, λ̂φ, and λ̃φ are all bounded. As with the proof of Proposition 2, it

follows from (77b) that ṡ is bounded, and from (77a) that ωd is bounded as well. The

boundedness of ωd and ωe imply that |φ| < π/2. Using (83) we conclude that ės, ėd, ˙̃χ

are also bounded. Differentiating Eq. (77a) with respect to time, one can show that

93

all terms are bounded, while the last term is also bounded since the derivative of

the sinc function is bounded (see also Eq. (92)). Hence, it can be shown that ω̇d is

bounded. Furthermore, δ(ed) and its time derivative δ̇(ed) = δ′(ed)ėd are bounded. A

straightforward calculation shows that

ω̇e =
λ̂φ
λφ

(
− keωe − χ̃+ δ(ed)

)
− λ̃φ
λφ
ω̇d. (101)

From the previous equation it follows that ω̇e is bounded. Furthermore,
˙̂
λφ is also

bounded from (100). Consider now the expression for V̈3, given by

V̈3 = −ks
γ
esės +

V ėd
γ

sin
(
δ(ed)

)
+
V ed
γ
δ̇(ed) cos

(
δ(ed)

)

− 2kω
(
χ̃− δ(ed)

)(
˙̃χ− δ̇(ed)

)
− λ̂φ
λφ
keωeω̇e,

(102)

where, all expressions in the rhs of the equation have been shown to be bounded. It

follows that V̈3 is bounded and hence V̇3 is uniformly continuous. Applying Barbalat’s

lemma, it follows that V̇3 → 0 as t→ 0.

4.4 Simulation results

This section illustrates the performance of the derived path-following control law. The

reference path is given by a quartic B-spline over a non-decreasing knot parameter u

which is monotonic to the arc-length s. Hence, we can compute q(s), χf (s), and κ(s)

in terms of the knot parameter as follows,

χf (s) = tan−1 y
′

x′
, κ(s) =

x′y′′ − x′′y′
(x′2 + y′2)3/2

. (103)

where (·)′ and (·)′′ are the derivatives with respect to u. The knot parameter is

propagated along with Eq. (77b) as follows,

du

dt
=

ds

dt

/ds

du
= ṡ/

√
x′2 + y′2. (104)

The parameters used in the simulations are shown in Table 5. We present the results

from two simulations. In the first case, we calculate the roll angle command from

94

Table 5: Simulation parameters.

V = 20 [m/s] k = 0.01
ks = 0.4 kω = 0.001
|φmax
c | = π/6 ke = 1.1
ka = 0.7 γ = 4000
λφ ≈ 1.1

Eq. (93) using a time constant λφ = 0.5 which is known inaccurate. Without param-

eter adaptation, as shown in Fig. 37, we observe a sluggish and low damped response

of the actual trajectory. The error variables are shown in Fig. 38, and the command

inputs are shown in Fig. 39.

In the second case, we calculate the roll angle command from Eq. (94) with the

parameter update law of Eq. (100). Figures 40-43 show the results. The error states

tend to zero asymptotically as shown in Fig. 41. As the command inputs are shown

in Fig. 42, the roll angle command is limited within ±π/6, hence the UAV is un-

able to exactly follow the path where the curvature exceeds the maximum curvature

achievable by the UAV at the speed of 20 [m/sec]. Nevertheless, the path follow-

ing control law forces the UAV converge to the path asymptotically after a short

transient. Finally, Fig. 43 displays the time history of the estimate of λφ.

4.5 Summary

In this chapter a nonlinear path following control law has been developed for a small

UAV using backstepping of the heading rate command. The kinematic control law

realizes cooperative path following control such that the motion of a virtual target is

controlled by an extra control input to help the convergence of the error variables. A

roll command that gives rise to the desired heading rate has been derived by taking

into account the inaccurate system time constant with parameter adaptation scheme.

From a high-fidelity hardware-in-the-loop (HIL) simulation results, the presented al-

gorithm is validated for the applicability to the actual UAV.

95

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

: Ref. path
: Position

East [meter]

N
or

th
[m

et
er

]

Figure 37: Reference path and actual trajectory of the UAV without parameter
adaptation.

96

0 10 20 30 40 50 60 70 80
−140

−120

−100

−80

−60

−40

−20

0

20

: e
s

: e
d

Time [sec]

E
rr

or
st

at
es

[m
]

(a) Track errors

0 10 20 30 40 50 60 70 80
−40

−30

−20

−10

0

10

20

30

40

50

60

Time [sec]

E
rr

or
co

u
rs

e
an

gl
e

[d
eg

]

(b) Course angle error

Figure 38: Error states without parameter adaptation.

97

0 10 20 30 40 50 60 70 80
−20

−10

0

10

20

30

40

50

Time [sec]

K
in

em
at

ic
co

n
tr

ol
ω
d

[d
eg

/s
]

(a) Heading rate command

0 10 20 30 40 50 60 70 80
−40

−30

−20

−10

0

10

20

30

40

: φ
c

: φ

Time [sec]

R
ol

l
an

gl
e

an
d

co
n
tr

ol
[d

eg
]

(b) φ v/s φc

Figure 39: Command inputs without parameter adaptation.

98

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

: Ref. path
: Position

East [meter]

N
or

th
[m

et
er

]

Figure 40: Reference path and actual trajectory of the UAV with parameter adap-
tation.

99

0 10 20 30 40 50 60 70 80
−140

−120

−100

−80

−60

−40

−20

0

20

: e
s

: e
d

Time [sec]

E
rr

or
st

at
es

[m
]

(a) Track errors

0 10 20 30 40 50 60 70 80
−40

−30

−20

−10

0

10

20

30

40

50

60

Time [sec]

E
rr

or
co

u
rs

e
an

gl
e

[d
eg

]

(b) Course angle error

Figure 41: Error states with parameter adaptation.

100

0 10 20 30 40 50 60 70 80
−10

0

10

20

30

40

50

Time [sec]

K
in

em
at

ic
co

n
tr

ol
ω
d

[d
eg

/s
]

(a) Heading rate command

0 10 20 30 40 50 60 70 80
−30

−20

−10

0

10

20

30

40

: φ
c

: φ

Time [sec]

R
ol

l
an

gl
e

an
d

co
n
tr

ol
[d

eg
]

(b) φ v/s φc

Figure 42: Command inputs with parameter adaptation.

101

0 10 20 30 40 50 60 70 80
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time [sec]

E
st

im
at

ed
p
ar

am
et

er
of
λ
φ

Figure 43: Parameter estimate of λφ.

102

CHAPTER V

REAL TIME IMPLEMENTATION OF THE

HIERARCHICAL PATH CONTROL ALGORITHM USING

HARDWARE-IN-THE-LOOP SIMULATION

In this chapter we present on-line, real-time hardware-in-the-loop simulation results

of the hierarchical path control algorithm using a small micro-controller. The con-

trol hierarchy, as depicted in Fig. 44, consists of path planning (Chapter 2), path

smoothing (Chapter 3), and path following control (Chapter 4).

At each stage of the control hierarchy, the required commands for the next stage

are calculated, which finally drives the control surfaces of the fixed-wind UAV. The

information regarding the world is initially given to the autopilot by a two dimensional

elevation map. With the given initial position of the UAV, the user can choose any

arbitrary goal position for the UAV to fly safely. Details of the implementation are

discussed in the sequel.

5.1 Hardware description

A UAV research platform, as shown in Fig. 45, has been developed to support the

UAV research. The development of the hardware and software was done completely

in-house to have a full access to the entire system. The on-board autopilot is equipped

with a micro-controller, sensors and actuators, along with the communication devices.

The micro-controller adopted in this research was chosen to be a Rabbit RCM-3400

module which runs at 30 MHz clock speed equipped with 512 KB RAM for data and

512 KB ROM for program.

103

Path Planning Wavelet decomposition
A* Graph Search

Path Smoothing B-splines
Path templates

Path Following Backstepping
Parameter adaptation

Autopilot Estimation filters
Low level controllers

Discrete path sequence

Local smooth path reference

Roll angle command

Aircraft dynamics

Current position
Goal position

Figure 44: Block diagram for control hierarchy of the proposed path control algo-
rithm.

104

M12 GPS Receiver

3-axes Magnetic

Compass

3
-a

x
e
s

 ra
te

,
a
c

c
e
le

ro
m

e
te

r

Diff. Pressure

Microcontroller

R
x

/S
e

rv
o

 p
o

rt
s

Figure 45: A small fixed-wing UAV equipped with an autopilot for hierarchical path
planning control.

5.2 Hardware-in-the-loop simulation environment

A realistic hardware-in-the-loop simulation (HILS) environment has also been de-

veloped to validate the UAV autopilot hardware and software development utilizing

Matlabr and Simulinkr. A full 6-DOF nonlinear aircraft model is used in conjunc-

tion with a linear approximation of the aerodynamic forces and moments, along with

Earth gravitational (WGS-84) and magnetic field models. Detailed models for the

sensors and actuators have also been incorporated. Four independent computer sys-

tems are used in the hardware-in-the-loop simulation (HILS) as illustrated in Fig. 46.

A 6-DOF simulator, the flight visualization computer, the autopilot micro-controller,

and the ground station computer console are involved in the simulation. Further

details about the UAV platform, autopilot and HILS set-up are described in the

105

Appendices.

Computer

Wireless RF Modem

HIL Bridge
(RS232)
BinaryStates

Control

autopilot

Visualization
(UDP)

Flight
Dynamics
Simulator

Flight
Dynamics

Visualization
RC to
USB

Adpator

900MHz
Wireless
Binary

Ground
Station

;FlightGear v1.9
;Cockpit view

;Matlab/Simulink
;6DOF nonlinear model
;Real-time simulation
;Remote pilot switching

;Flight control executable
- Inner/Outer loop controller
;Sensor data processing (20Hz)
;Communication to GS ;Ground station GUI

;Communication to autopilot
;Data logging / monitoring
;High-level controller

;RS232 Simulink library
;Real-time Simulink execution
;Bi-directional communication

Figure 46: High fidelity hardware-in-the-loop simulation (HILS) environment that
enables rapid testing of the proposed path planning algorithm.

5.3 Simulation scenario

The environment W is the elevation map of a certain area in US state. The en-

vironment is assumed to be square of dimension 128×128 units, which corresponds

to 9600×9600 meters in actual size. Taking into account the available memory of

the micro-controller, we choose the fine resolution level as Jmax = 6 and the coarser

resolution level as Jmin = 3. Cells at the fine resolution have dimensions 150×150

meters, which is slightly larger than the minimum turning radius of the fixed-wing

UAV. The minimum turning radius is approximately calculated for the UAV flying

at the constant speed of VT = 20 [m/sec] with the bounded roll angle |φ| ≤ 30◦,

resulting in Rmin ≈ 70 [meter].

The objective of the UAV is to follow a path from the initial position to the

final position while circumventing the obstacles over a certain elevation threshold.

Figure 47 illustrates the detail on-line implementation of the proposed path control

algorithm. Initially, the UAV is loitering around the initial position p0 until when

106

A

B

C

D

E

F

G

H

I

p0

pf

pa

pb

Step Task description
A Initially, the UAV is loitering around the initial position with the circle radius Rl
B Calculate the the first path segment from p0 to pa
C Break away from the loiter circle, start to follow the first path segment
D Calculate the second path segment from pa to pb, and a transient path connecting two paths
E UAV is on the transient path
F Calculate the third path segment, and a transient path
G UAV is approaching the goal position, no path calculated
H The goal is reached, end of the path control, get on the loitering circle
I UAV is loitering around the goal position pf

Figure 47: Illustration of the on-line implementation of the proposed hierarchical
path control algorithm.

a local path segment from p0 to pa is computed (Step A,B). Subsequently, the path

following controller is engaged to follow the path (Step C,D). At step D, the UAV

replans to compute a new path from the intermediate location pa to the goal, resulting

in the second local path segments from pa to pb. The first and second path segments

are stitched by a transient B-spline path assuring the continuity condition at each

intersection points (marked by black squares). This process iterates until the final

position pf is reached (Step H), when the UAV engages to loiter around the goal

location.

107

5.4 Simulation results

Figure 48 shows the simulation results of the hierarchical path control implementation.

Specifically, figures on the right side show the close-up view of the simulation. The

channels are drawn by polygonal lines, and the UAV smoothly follows the reference

path avoiding the possible obstacles outside the channels. Consequently, the UAV

reaches the final destination in a collision free manner, as seen in Fig. 48(o).

Figure 49 shows a 3D screen shot during the simulation. The ground track of the

followed path is displayed showing that the UAV is avoiding the obstacles (for this

case, it is the high elevation region) effectively.

5.5 Summary

We implement the hierarchical path control of a small UAV on the actual hardware

platform. Based on the high fidelity hardware-in-the-loop (HIL) simulation environ-

ment, the proposed hierarchical path control algorithm has been validated through

the on-line, real-time implementation on a small micro-controller. By a seamless

integration of the control algorithms for path planning, path smoothing, and path

following, it has been demonstrated that the UAV equipped with a small autopi-

lot having limited computational resources manages to accomplish the path control

objective to reach the goal while avoiding obstacles with minimal human intervention.

108

0 50 100
0

20

40

60

80

100

120

(a) t = 27.5 [sec]

0 50 100
0

20

40

60

80

100

120

(b) t = 64.5 [sec]

0 50 100
0

20

40

60

80

100

120

(c) t = 126.5 [sec]

Figure 48: Simulation results of the hierarchical path control implementation. Fig-
ures on the right show the close-up view of the simulation. At each instant the channel
is drawn by polygonal lines, where the smooth path segment from the path templates
stays. The actual path followed by the UAV is drawn on top of the reference path.

109

0 50 100
0

20

40

60

80

100

120

(d) t = 156.5 [sec]

0 50 100
0

20

40

60

80

100

120

(e) t = 222.0 [sec]

0 50 100
0

20

40

60

80

100

120

(f) t = 265.0 [sec]

Figure 48: Simulation results of the hierarchical path control implementation.
(cont’d)

110

0 50 100
0

20

40

60

80

100

120

(g) t = 274.0 [sec]

0 50 100
0

20

40

60

80

100

120

(h) t = 333.0 [sec]

0 50 100
0

20

40

60

80

100

120

(i) t = 358.5 [sec]

Figure 48: Simulation results of the hierarchical path control implementation.
(cont’d)

111

0 50 100
0

20

40

60

80

100

120

(j) t = 386.5 [sec]

0 50 100
0

20

40

60

80

100

120

(k) t = 429.0 [sec]

0 50 100
0

20

40

60

80

100

120

(l) t = 492.5 [sec]

Figure 48: Simulation results of the hierarchical path control implementation.
(cont’d)

112

0 50 100
0

20

40

60

80

100

120

(m) t = 528.0 [sec]

0 50 100
0

20

40

60

80

100

120

(n) t = 532.0 [sec]

0 50 100
0

20

40

60

80

100

120

(o) t = 591.5 [sec]

Figure 48: Simulation results of the hierarchical path control implementation.
(cont’d)

113

Figure 49: A 3D screen shot during the simulation. The ground track of the followed
path is displayed showing that the UAV is avoiding the obstacles (for this case, it is
the high elevation region).

114

CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

Autonomous control for small UAVs imposes severe restrictions on the control algo-

rithm development, stemming from the limitations imposed by the on-board hardware

and the requirement for on-line implementation. In this thesis we have proposed a

new hierarchical control scheme for the navigation and guidance of a small UAV for

obstacle avoidance. The multi-stage control hierarchy for a complete path control al-

gorithm is comprised of several control steps: Top-level path planning, mid-level path

smoothing, and bottom-level path following controls. In each stage of the control hi-

erarchy, the limitation of the on-board computational resources has been taken into

account to come up with a practically feasible control solution. We have validated

these developments in realistic non-trivial scenarios.

In Chapter 2 we proposed a multiresolution path planning algorithm. The algo-

rithm computes at each step a multiresolution representation of the environment using

the fast lifting wavelet transform. The main idea is to employ high resolution close

to the agent (where is needed most), and a coarse resolution at large distances from

the current location of the agent. It has been shown that the proposed multiresolu-

tion path planning algorithm provides an on-line path solution which is most reliable

close to the agent, while ultimately reaching the goal. In addition, the connectivity

relationship of the corresponding multiresolution cell decomposition can be computed

directly from the the approximation and detail coefficients of the FLWT. The path

planning algorithm is scalable and can be tailored to the available computational

resources of the agent.

115

The on-line path smoothing algorithm incorporating the path templates is pre-

sented in Chapter 3. The path templates are comprised of a set of B-spline curves,

which have been obtained from solving the off-line optimization problem subject to

the channel constraints. The channel is closely related to the obstacle-free high reso-

lution cells over the path sequence calculated from the high-level path planner. The

obstacle avoidance is implicitly dealt with since each B-spline curve is constrained

to stay inside the prescribed channel, thus avoiding obstacles outside the channel.

By the affine invariance property of B-spline, each component in the B-spine path

templates can be adapted to the discrete path sequence obtained from the high-level

path planner. We have shown that the smooth reference path over the entire path

can be calculated on-line by utilizing the path templates and path stitching scheme.

The simulation results with the D∗-lite path planning algorithm validates the effec-

tiveness of the on-line path smoothing algorithm. This approach has the advantage

of minimal on-line computational cost since most of computations are done off-line.

In Chapter 4 a nonlinear path following control law has been developed for a

small fixed-wing UAV. The kinematic control law realizes cooperative path following

so that the motion of a virtual target is controlled by an extra control input to help

the convergence of the error variables. We applied the backstepping to derive the

roll command for a fixed-wing UAV from the heading rate command of the kinematic

control law. Furthermore, we applied parameter adaptation to compensate for the

inaccurate time constant of the roll closed-loop dynamics. The proposed path fol-

lowing control algorithm is validated through a high-fidelity 6-DOF simulation of a

fixed-wing UAV using a realistic sensor measurement, which verifies the applicability

of the proposed algorithm to the actual UAV.

Finally, the complete hierarchical path control algorithm proposed in this thesis is

validated thorough a high-fidelity hardware-in-the-loop simulation environment using

the actual hardware platform. From the simulation results, it has been demonstrated

116

that the proposed hierarchical path control law has been successfully applied for path

control of a small UAV equipped with an autopilot that has limited computational

resources.

6.2 Future Research

In this section, several possible extensions of the work presented in this thesis are

outlined.

6.2.1 Reusable graph structure

The proposed path planning algorithm involves calculating the multiresolution cell

decomposition and the corresponding graph structure at each of iteration. Hence, the

connectivity graph G(t) changes as the agent proceeds toward the goal. Subsequently,

let x ∈ W be a state (location) which corresponds to nodes of two distinct graphs as

follows

cellG(ti)(v
i
m) = cellG(tj)(v

j
n), i 6= j (105)

By the respective A∗ search on those graphs, the agent might be rendered to visit x

at different time steps of ti and tj , i 6= j. As a result, a cyclic loop with respect to x is

formed for the agent to repeat this pathological loop, while never reaching the goal.

Although it has been presented that maintaining a visited set might be a means of

avoiding such pathological situations[142], it turns out to be a trial-and-error scheme

is not a systemical approach. Rather, suppose that we could employ a unified graph

structure over the entire iteration, which retains the information from the previous

search. Similar to the D∗-lite path planning algorithm, the incremental search over

the graph by reusing the previous information results in not only overcoming the

pathological situation but also reducing the computational time. In contrast to D∗

or D∗-lite algorithms where a uniform graph structure is employed, a challenge lies

in building the unified graph structure from a multiresolution cell decomposition.

Specifically, it includes a dynamic, multiresolution scheme for constructing the graph

117

connectivity between nodes at different levels. The unified graph structure will evolve

itself as the agent moves, while updating nodes and edges associated with the mul-

tiresolution cell decomposition from the FLWT. If this is the case, we might be able

to adapt the proposed path planning algorithm to an incremental search algorithm,

hence taking advantages of both the efficient multiresolution connectivity (due to

the FLWT) and the fast computation (due to the incremental search by using the

previous information).

6.2.2 Kinodynamically feasible trajectory generation using B-splines

In this thesis, we utilized a B-spline representation of the reference path for the path

smoothing purpose. In general, B-spline curves provide only information in spatial

terms without taking into account evolution in terms of time, thus they are not useful

to represent state references that are dependent on time. This aspect imposes severe

restrictions on designing control algorithms for time critical applications. On the

other hand, several authors in the literature [147, 39] proposed to adapt B-spline

to explicitly deal with the time variable to design a smooth trajectory subject to

the kinematic constraints of the vehicles. Let us consider the following unicycle-like

kinematic equations of motion,

ẋ = v cosψ, (106a)

ẏ = v sinψ, (106b)

ψ̇ = ω, (106c)

Suppose the reference trajectory can be represented by a B-spline curve in terms of

the curve parameter u,

r =
(
xd(u), yd(u)

)
. (107)

118

It follows from the basic theory of differential geometry for curves[25] that the speed

of the agent is determined by,

v(u) =

√(
dxd
du

)2

+

(
dyd
du

)2

, (108)

and the curvature is calculated as

κ(u) =
x′′dy

′
d − y′′dx′d

(x′2d + y′2d)3/2
, (109)

where (·)′ and (·)′′ denote the first and second order derivative with respect to u,

respectively. The angular velocity can be determined using Eqs. (106) as

ω =
ÿẋ− ẏẍ
ẋ2 + ẏ2

, (110)

and can be represented using Eqs (108) and (109) as follows,

ω = κ(u)v(u) (111)

The kinematic constraints of the vehicles are given by

|ω| ≤ ωmax, (112)

and v ∈ [vmin, vmax], using Eqs. (111) and (112), we get

vmin ≤ v ≤
(ωmax

κ

)
. (113)

Subsequently, an off-line optimization problem can then be formulated taking into

consideration the kinematic constraints shown in Eqs. (112) and (113). The path tem-

plates which explicitly deal with the kinodynamical constraints such as the bounded

flight speed or the minimum turning radius are constructed from a set of off-line

optimization problems.

6.2.3 Trajectory tracking controller design using differential flatness

In this thesis, we proposed the path following control law for tracking a reference

path. Although the path following control algorithm was successfully implemented

119

to follow a smooth reference path, no explicit consideration of vehicle dynamics and

the kinematic constraints of a fixed-wing UAV was given. Furthermore, a non-zero

constant speed of the UAV was assumed, hence it is not possible for the UAV to track

the time-stamped trajectory using the proposed path following controller. In order to

take into account the trajectory tracking capability of the UAV in conjunction with

the vehicle dynamics, we consider a simplified kinematic model in the two dimensional

plane as follows,

ẋ = u1 cosχ, (114a)

ẏ = u1 sinχ, (114b)

χ̇ = u2, (114c)

where (x, y) denotes the inertial position and χ is the inertial heading angle. The

control inputs u = [u1 u2]
T consist of the forward flight speed and the heading rate of

the UAV, respectively. Given a reference trajectory, we design a control law for the

flight speed and the heading rate commands. To this end, we let z = [z1 z2]
T be an

output of the system,

z1 = x, z2 = y. (115)

It follows from Eqs. (114a) and (114b) that

tanχ =
ẏ

ẋ
, (116)

which shows that the system state x = [x y χ]T is represented by the output as

follows,

x =

z1

z2

tan−1
(
ż2
ż1

)

(117)

The vehicle forward flight speed is obtained from Eqs. (114a) and (114b), which yields

the control input u1 expressed in terms of the output as follows,

u1 =
√
ẋ2 + ẏ2 (118)

120

By differentiating Eq. (116) with respect to time and using trigonometry, we obtain

the expression for u2 in terms of the output

u2 =
ÿẋ− ẏẍ
ẋ2 + ẏ2

. (119)

The control vector u is represented by the output as follows,

u =

u1

u2

 =

√
ż2
1 + ż2

2

z̈2ż1−ż2z̈1
ż2
1
+ż2

2

 (120)

Therefore, the system in Eq. (114) is proved differentially flat in conjunction with

the flat output z = [x y]T, since each state and control input can be expressed in

terms of the flat output and its higher derivatives,

x = X (z1, z2, ż1, ż2), (121a)

u = W(z1, z2, ż1, ż2, z̈1, z̈2) (121b)

Now, given a desired trajectory in terms of x(t), ẋd(t), ẍd(t), we can design a

trajectory tracking control law in the flat space E = {X ,W}, explicitly dealing with

the input constraints of the forward flight speed, as specified by

vmin ≤ u1 ≤ vmax, (122)

and the bounded heading rate as follows,

|u2| ≤ ωmax. (123)

6.2.4 Path planning in three dimensions

The proposed path planning algorithm is based on the assumption that the UAV

is restricted to navigate through a two dimensional environment, that is, the UAV

flies at constant altitude while avoiding in-plane obstacles. On the other hand, by

allowing the UAV to change altitude during the mission, we can take the advantage

of three dimensional maneuvers of the UAV to plan a realistic three dimensional path

121

that avoids 3D obstacles effectively. To this end, without loss of generality, we let

W = [0, 1]× [0, 1]× [0, 1]. We assume that we are given a 3D function RM :W 7→M

that represent the risk measure at the location x = (x, y, z). This three dimensional

function is tailored to capture not only the aspect of 3D risk measure depending on

the operational altitude but also the attainable maneuverability of the UAV between

distinct altitudes. We apply the multidimensional FLWT on this function, which

results in the the following decomposition,

RM(x, y, z) =

2J−1∑

k,`,m=0

aJ,k,`,mΦJ,k,`,m(x, y, z) +

8∑

i=1

N−1∑

j=J

2j−1∑

k,`,m=0

dij,k,`,mΨi
j,k,`,m(x, y, z),

(124)

where ΦJ,k,`,m(x, y, z) and Ψi
j,k,`,m(x, y, z), i = 1, · · · , 8 are families of function, which

are derived from a linear combination of both the scaling function φ(·) and the wavelet

function ψ(·) in each coordinate. Subsequently, we are able to obtain the multireso-

lution, three dimensional cell decomposition of W, which is further associated with

a topological graph structure with a connectivity information. It is then imperative

that we extend the approach discussed in Chapter 2 in order to construct the con-

nectivity relationship of the graph by utilizing the corresponding approximation and

detail coefficients of the FLWT. Consequently, the rest of 3D path planning collapses

to finding an optimal sequence of cells in the graph structure in conjunction with

standard graph search methods such as A∗ or Dijkstra’s algorithm.

122

APPENDIX A

UAV AVIONICS DESCRIPTION

A.1 System Architecture

The overall architecture of the UAV system is shown in Fig. 50. The main subsystems

are the autopilot, the ground station, and the interconnection between the two. The

on-board autopilot is equipped with a micro-controller, sensors and actuators, along

with the communication devices that allow full functionality for autonomous control.

The micro-controller provides data acquisition, processing, and communication with

the ground station. It also runs the main control software. Table 6 shows the detail

specification of the micro-controller. The on-board sensors include angular rate sen-

sors for three axes, accelerometers for three axes, a three-axis magnetic compass, a

GPS sensor, an engine RPM sensor, absolute and differential pressure sensor, battery

voltage sensor, and temperature sensor.

Table 6: Specifications of the Rabbit RCM-3400 micro-controller module.

Parameters Values
Clock speed 29.4MHz

Programmable memory 512KByte
Data memory 512KByte
Analog Inputs Eight channels Single-Ended, 11bit resolution
Serial ports Six configurable asynchronous/SPI SDLC

Timers Ten independent 8bit timers
Pulse-Width Modulators four independent 10bit free-running counters

Power consumption Max. 100mA at 3.3V operation
Size 1.37′′ × 1.16′′ × 0.31′′

123

GPS Receiver

IMU Sensors

Absolute
position

Inertial
Measurements

Pressure
Measurements

Wireless RF ModemWireless RF Modem

Control surface
command

RS232

Serial

RS232

Serial

900MHz Wireless
Data Link

115kbps Serial Ground Station
(Notebook computer)

RF Receiver

Radio Frequency
Link

FCC (Rabbit
Microcontroller)

Remote pilot
Stick command

Figure 50: System architecture of the UAV test-bed.

A.2 Autopilot

The autopilot box contains all hardware components, such as the micro-controller,

all sensor ICs, signal conditioning circuitry, data acquisition devices, and the wireless

modem board.

A.2.1 Sensor Board

The microprocessor, sensors and associated electronics were integrated on a custom-

designed and fabricated four-layer 5′′ by 3′′ printed circuit board (PCB). Figure 51

shows the detail layout of the four-layer sensor board for the top and bottom lay-

ers. The sensor board is equipped with three single-chip rate gyros, three two-axis

accelerometers, a three-axis magnetometer, two pressure sensors, and a GPS receiver

interfacing to the micro-controller module. It also includes the power regulating

circuitry that supplies power for all electronic components. Figure 52 shows the func-

tional diagram of the sensor board and Fig. 53 shows the top and side views of the

completed sensor board with all components assembled.

A.2.2 Inertial Sensors

Three ADXRS150 angular rate sensors from Analog Devices provide three-axis body-

fixed angular rate measurements. Measurements of linear accelerations in all three

124

(a) Top layer design

(b) Bottom layer design

Figure 51: Sensor board design layout. The board is 5′′ by 3′′ printed circuit board
(PCB). Four layers include the power plane and the ground plane (Not shown above).

125

Figure 52: Sensor board functional block diagram.

126

M12 GPS Receiver

3-axes Magnetic
Compass

3-axes rate,
accelero

m
eter

Diff. Pressure

Microcontroller

R
x/

S
er

vo
 p

o
rt

s

(a) Top view

Abs. Pressure

Backup Bat .

Spectra 910 Wireless Modem

Rate gyroAccelerometer

(b) Side view

Figure 53: Assembled autopilot hardware.

127

Table 7: Inertial sensors specifications

Parameters Values Remarks
MEMS angular rate sensor, Analog Device ADXRS150

Dynamic range ±150 ◦/sec
Sensitivity 12.5±10% mV/◦/sec

Sensitivity nonlinearity 0.1% FS from the best fit line

Rate Noise Density 0.05 ◦/sec/
√

Hz
Bandwidth DC to 2 kHz

MEMS linear acceleration sensor, Analog Device ADXL202
Dynamic range ±2 g 1 g = 9.81 m/sec2

Sensitivity 312 mV/g
Sensitivity nonlinearity 0.2% FS from the best fit line

Acceleration Noise Density 200 µg/
√

Hz
3dB Bandwidth DC to 6 kHz Maximum

3-axis magnetometer, Honeywell HMC2003 module
Dynamic range ±2 gauss

Sensitivity nonlinearity 0.5% FS from the best fit line
Resolution 40 µgauss
Bandwidth 1 kHz

axes are provided by three ADXL202 dual-axis accelerometers from Analog Devices.

A three-axis magnetometer module HMC2003 from Honeywell Solid State Electronics

Center (SSEC) is employed to obtain absolute orientation angles with respect to the

Earth by sensing Earth’s magnetic field. Table 7 displays the detail specification of

the inertial sensors. A GPS receiver (Motorola OnCore M12) has been used to provide

absolute position of the UAV in the Earth-fixed Earth-centered (EFEC) coordinate

frame. The output data of the GPS sensor is directly connected to a serial port on

the micro-controller using the standard NMEA format or Motorola’s native binary

format at a rate of 1 Hz.

A.2.3 Other Sensors

An MPXV5004D differential pressure sensor that can measure pressures up to 3.92 kPa

was used in conjunction with a custom-made pitot-tube, attached under the left

128

Table 8: Specifications of the autopilot sensors.

Sensors Range Resolution 1-σ noise
Accelerometer ±2 g 0.004 g 0.025 g
Rate gyro ±150 ◦/sec 0.1 ◦/sec 0.4 ◦/sec
Magnetometer ±2 gauss 1.22 mgauss 4 mgauss
Absolute pressure Above sea level 2.75 m 3 m
Differential pressure 79.2 m/sec 1.40 m/sec 1.5 m/sec
Servo Position ±60 deg 0.5 deg

wing to obtain the airspeed. The altitude of the airplane is obtained from the pres-

sure differential referred by the ground level, as it is measured during flight via an

MPXAZ4115 pressure sensor.

Engine thrust can be approximately calculated from the knowledge of the en-

gine RPM. The engine RPM is measured by attaching two very small magnets (1/4′′

diameter) on the back plate of the spinner, and by using a non-contact hall-effect

sensor that is fixed on the cowling of the airplane. The hall sensor generates elec-

trical pulses whenever the magnet passes in front of it as the propeller spins. By

measuring the time interval between each pulse the micro-controller can calculate the

engine/propeller speed with a resolution of 1 rpm.

The airplane’s control surfaces are actuated with the help of a series of DC servo

motors. To obtain command input information for model identification purposes

we should have accurate knowledge of the deflection angles of all the aerodynamic

surfaces (elevator, rudder, ailerons) as well as the throttle setting. These are obtained

by measuring the voltage of the potentiometer connected by mechanical link to each

DC servo motor. This approach allows to measure the control surfaces deflections

with a resolution of 0.5 [deg]. Details from the calibration of potentiometers for

accurate deflection angles are given in Section A.4.3.

Table 8 summarizes the specifications, operational range, resolution, and noise

performance of the autopilot sensors.

129

A.2.4 Communication Modem

The UAV has two main remote communication links (a third, independent link which

is used to provide live video is not described here). The first link (RF band) uses

the standard communication channel between the remote control (Futaba) and the

airplane. The second link provides the main data communication backbone between

the airplane and the ground station (see Section A.3). These two links are kept

completely separate for safety reasons. A Spectra 910 wireless modem was utilized

to set up a data communication link between the autopilot and the ground station.

The Spectra 910 operates in the license-exempt 900 MHz frequency band utilizing

frequency-hopping spread-spectrum, and is capable of providing reliable wireless data

transfer up to distance of 25 miles LOS under ideal conditions (at maximum trans-

mitting power). The interface with the micro-controller is achieved via a standard

RS-232 serial communication at a maximum baud rate of 115200 bps.

A.2.5 Servo Motor Control

The micro-controller has four independent PWM outputs that generate reference com-

mand to the motors in pulse form with a varying pulse width according to the desired

position. The frequency of the pulse was identified by 75 [Hz], and the duty-ratio

(the ratio between [On] time versus [Off] time of the pulse) changes from 5% to 15%

for the maximum allowable positions in positive and negative direction, respectively.

To achieve seamless integration (as well as switching back and forth) between au-

topilot and remote control action the native signal commands from the R/C receiver

are merged with the PWM generated output from the micro-controller using a mul-

tiplexer. Switching of the multiplexer is being toggled by the remote pilot using a

switch on the Futaba transmitter.

130

A.2.6 Schematics

In this section, detail electronic designs of the autopilot are presented. The RCM-

3400 micro-controller module is interfaced through 64 pins (34 pins×2), as shown

in Fig. 54(a). The micro-controller has seven ports (PA-PG) which are associated

with various functionality of the micro-controller, allowing the interface to external

peripherals. The autopilot adopts three independent drop-down power regulators for

supplying 3.0V, 3.3V, and 5.0V, as shown in Fig. 54(b). Figures 55-56 show the

detail interface circuits for the inertial sensors. The interface circuits for two pressure

sensors are shown in Fig. 57(a), and the serial interface for both the M12 GPS module

and the Spectra 910 is depicted in Fig. 57(b).

Figure 58(b) shows the schematic diagram for the control switching capability

between the autopilot and the remote pilot stick command using a multiplexer.

A.3 Ground Station

The ground station consists of a laptop computer with a wireless communication

modem. The laptop runs a Windows-based Graphical User Interface (GUI) program

developed in-house, shown in Fig. 59. The ground station program provides real-time

flight information by displaying all relevant system parameters, sensor readings, etc.

A graphical dashboard representing a virtual horizon, altitude and speed has been

adopted in the GUI panel to show all information graphically. A map of the area of

the UAV’s operation can be overlaid on the map panel in order to provide the user

with the navigational details of the UAV via GPS data. The ground station program

is also capable of coordinating the autonomous flight of the airplane by providing

high level navigation control command via way-points on the map specified by the

operator.

131

(a) Micro-controller interface circuits.

(b) Power regulators circuits.

Figure 54: Schematic diagrams of the designed autopilot: Power circuit and the
micro-controller interface.

132

(a) ADXL202 interface circuits.

(b) ADXRS150 interface circuits.

Figure 55: Schematic diagrams of the designed autopilot: The rate sensors and the
accelerometers interface.

133

(a) ADXL202 and ADXRS150 interface circuits.

(b) HMC2003 interface circuits.

Figure 56: Schematic diagrams of the designed autopilot: Z-axis rate and accelera-
tion, 3-axis magnetometer interface.

134

(a) MPXV5004D and MPXAZ4115 pressure sensor interface circuits.

(b) M12 oncore GPS receiver and the Spectra 910 interface circuits.

Figure 57: Schematic diagrams of the designed autopilot: Pressure sensors and the
GPS interface.

135

(a) Analog-to-Digital converter interface circuits.

(b) Servo switching circuits.

Figure 58: Schematic diagrams of the designed autopilot: A-to-D converter and the
servo switching interface.

136

Figure 59: The ground station GUI program.

137

A.4 Hardware Evaluation/Calibration

A.4.1 Inertial Sensor Calibration

A static test was performed to determine the initial biases and the static noise level

of each sensor. The sensor outputs were measured while the autopilot was completely

stationary, and by performing a statistical analysis on the recorded data over time,

the initial biases and 1-σ noise levels were obtained. The static noise characteris-

tics of all sensor correlated favorably with the specification provided by the sensor

manufacturer, and summarized in Table 8.

The actual scale factors for each accelerometer can be found by taking two mea-

surements with the accelerometer’s measurement axis pointed directly towards (+1g)

or opposite (-1g) to the Earth. The scale factors can then be found from the difference

of two measurements factored by the known gravity change (2g).

The scale factors of the angular velocity sensors were found by placing the au-

topilot on a three-axis rotational platform [57]. The platform is equipped with a

high-performance angular rate gyro and an inertial measurement unit (IMU) which

is capable of measuring angular velocities and linear accelerations in all three-axes

with an accuracy better than 0.03 [deg/sec], and 0.001 [g], respectively. After the au-

topilot was securely mounted on the platform, the platform was set in motion while

both signals from the autopilot and from the high-performance platform sensors were

recorded. The rate sensor outputs were then compared, and a least square fit was

employed to find the best scale factor of the autopilot rate sensors. Figure 60 shows

the result from this approach. In addition, Fig. 61 shows the validation of estimated

scale factors and biases for the accelerometers on this platform. From the plots, it

is asserted that the correlation between the two sets of signals is satisfactory for our

purposes.

138

0 50 100 150 200 250 300
−20

0

20

Time [sec]
p

[d
eg

/s
ec

] : UAV on−board sensor
: Reference (RG32 Rategyro)

0 50 100 150 200 250 300
−20

0

20

Time [sec]

q
[d

eg
/s

ec
] : UAV on−board sensor

: Reference (RG32 Rategyro)

0 50 100 150 200 250 300
−40

−20

0

20

40

Time [sec]

r
[d

eg
/s

ec
]

: UAV on−board sensor
: Reference (RG32 Rategyro)

Figure 60: Angular rate calibration results.

0 50 100 150 200 250 300
−0.5

0

0.5

Time [sec]

a x [g
]

: UAV on−board sensor
: Reference (IMU Raw accelerometer)

0 50 100 150 200 250 300
−0.5

0

0.5

Time [sec]

a y [g
]

: UAV on−board sensor
: Reference (IMU Raw accelerometer)

0 50 100 150 200 250 300
0.9

0.95

1

1.05

1.1

Time [sec]

a z [g
]

: UAV on−board sensor
: Reference (IMU Raw accelerometer)

Figure 61: Accelerometer calibration results.

139

A.4.2 Magnetometer Calibration

The magnetometer can provide absolute orientation and it is not affected by motion

constraints. On the other hand, it is susceptible to magnetic disturbances from nearby

permanent magnets or ferrous materials that locally distort the Earth magnetic field.

Magnetic distortion can be categorized as hard iron or soft iron effects [27]. These

effects become evident as the magnetometer is rotated in the horizontal plane. By

plotting the two measured signals in the body-axis frame, the hard iron distortion

appears as a shift of the origin in the phase plot (Xh vs. Yh), whereas soft iron effects

appear as a distortion of a circle to an ellipse in the Xh vs. Yh plane. Figure 62 shows

the hard and soft iron distortions and the compensated magnetometer outputs.

−200 −150 −100 −50 0 50 100 150 200 250

−150

−100

−50

0

50

100

150

200

X
h
 magnetic field [gauss]

Y
h m

ag
ne

tic
 fi

el
d

[g
au

ss
]

: Compensated
: Raw measurements

Figure 62: Effect of hard and soft iron disturbances and compensated magnetometer
measurements.

140

Table 9: Maximum deflection angles for each control surface.

Control surface +Range -Range
Aileron δa 21.8 deg -21 deg
Elevator δe 28 deg -29.6 deg
Rudder δr 16 deg -20.7 deg
Throttle δt Full open (1) Full closed (0)

A.4.3 Control Surface Deflection Calibration

One can get the actual angle of the servo motor from the corresponding voltage level of

the external potentiometer linked to the DC servo motors. Therefore, the deflection

angles for each control surface can be determined from each servo’s position. An

angle meter was used to set the actual deflection angles by a specific amount, while

measuring the voltage output from the potentiometer. After several commands were

applied to the servo motor, the conversion factors from potentiometer voltage level to

actual deflection angle for each control surface were found. In addition, the maximum

allowable deflections for each control surface were determined experimentally as well.

The results are summarized in Table 9.

A.5 Summary

We have summarized the efforts undertaken to design and build a low-cost autopilot

for a small UAV. The focus from the very start has been to design and assemble as

much of the hardware and electronics in house as possible. This choice was opted

for in order to achieve the full accessibility to the entire system, so the developed

autopilot satisfies not only the stringent size and weight constraints to fit in a small

UAV but also it can provide full functionality for an autonomous UAV operation.

141

APPENDIX B

INERTIAL ATTITUDE AND POSITION REFERENCE

SYSTEM DEVELOPMENTS

B.1 Attitude estimation

The sensors involved in a strapdown attitude and heading reference system are rate

gyros, accelerometers and magnetometers. These sensors measure the three-axis an-

gular rates, three-axis apparent acceleration (gravity minus inertial acceleration), and

Earth’s magnetic field with respect to the body frame. In order to obtain the best

estimate of the attitude angles from the available sensors, it is imperative to blend

these measurements in a seamless manner by taking into account the different signal

specifications for each sensor.

B.1.1 Complementary filter

Complementary filters have been widely used to combine two independent noisy mea-

surements of the same signal, where each measurement is corrupted by different types

of spectral noise[20]. The filter provides an estimate of the true signal by employing

two complementary high-pass and low-pass filters. Figure 63(a) shows the case of

using a complementary filter to obtain an estimate x̂(t) of x(t) from the two mea-

surements xm(t) and ẋm(t). Notice that xm(t) is the measurement of the signal with

predominantly high-frequency noise n1(t) and ẋm(t) is the measurement with low-

frequency noise n2(t) as follows

xm(t) = x(t) + n1(t) and ẋm(t) = ẋ(t) + n2(t). (125)

From Fig. 63(a), it is apparent that the Laplace transform of the estimate can be

written as

142

+

+

xm

ẋm

1
τs+1

τs
τs+1

x̂1
s

(a) Direct complementary filter

+

+
+

-

xm

ẋm

x̂1
s

1
τ

(b) Indirect complementary filter

10
−2

10
−1

10
0

10
1

10
2

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency [rad]

M
ag

ni
tu

de
 [d

B
]

Low pass
High pass
Combined

(c) Frequency magnitude plot for the
output of a complementary filter

Figure 63: Two different schemes for the implementation of the complementary
filter.

143

X̂(s) =
1

τs+ 1
X(s) +

τs

τs+ 1
X(s)

︸ ︷︷ ︸
Signal terms

+
1

τs+ 1
N1(s) +

τs

τs+ 1

(1

s
N2(s)

)

︸ ︷︷ ︸
Noise terms

(126)

The noise terms in both channels are effectively suppressed by the first order low-

and high- pass filter with the time constant τ . The frequency response plot shown in

Fig. 63(c) illustrates the contribution of each frequency channel to the output, where

the cutoff frequency is chosen as 1 [rad/sec]. The time constant τ is selected according

to the noise characteristics of each channel such that the estimate x̂ is obtained by

integrating ẋm over frequencies ω � 1/τ , whereas for frequencies ω � 1/τ , x̂ tracks

xm. At frequencies near 1/τ the estimated output x̂ is a combination of the two

channels, which appears as a hump in Fig. 63(c). The estimate approximates the

true signal faithfully over most of the frequency range.

In order to implement a complementary filter on a micro-controller, a discrete

version of the high-pass and low-pass filters should be written in software by taking

into consideration the sampling period of the micro-controller. The filter coefficients

of the discrete filters are related to the cutoff frequency τ , which forces the user to

recalculate the coefficients of both filters, if necessary. Instead, an alternative form

of the complementary filter can be used as depicted in Fig. 63(b). The filter transfer

function remains the same as in Eq. (126) but the feedback structure of the filter

simplifies the filter implementation on a micro-controller. It also allows easy tuning

for acceptable performance when low cost sensors are used. In addition, this feed-

back structure can be easily adapted to deal with multiple measurements. Figure 64

illustrates the case when using two low frequency channels. A tuning parameter

αk ∈ [0, 1] sets the relative weight between the signals xm1
and xm2

. By choosing the

more reliable measurements the filter takes advantage of multiple measurements to

calculate the best estimate.

144

+

+
+

-

+

-

+

xm1

ẋm

xm2

x̂1
s

1
τ

1
τ

αk

1− αk

Figure 64: Multiple measurements augmentation in the indirect complementary
filter.

B.1.2 Pitch and heading angle estimation

The low frequency dominant pitch angle is directly calculated from accelerometer

outputs because the accelerometer is able to measure the gravity vector minus the

inertial acceleration (the apparent acceleration, ~g−~aI) with respect to the body axes.

In steady-state flight conditions, the accelerometers output mostly the gravity vector

since the inertial acceleration is negligible at the steady state. Then the pitch angle

is calculated from the accelerometer output a = [ax ay az]
T as follows

θL = − sin−1

(
ax
g

)
. (127)

The low frequency dominant heading angle is determined by two different sources: the

GPS sensor and the magnetometer. The GPS sensor used in this research provides an

absolute heading information ψGPS at a low rate (1 Hz), the output of the three-axis

magnetometer m = [mx my mz]
T with respect to the body axes provides a heading

145

measurement ψL at a much higher rate according to the following relationship[26]

ψL =

π − tan−1(my/mx) if mx < 0,

2π − tan−1(my/mx) if mx > 0, my > 0,

− tan−1(my/mx) if mx > 0, my < 0,

π/2 if mx = 0, my < 0,

3π/2 if mx = 0, my > 0,

(128)

where mx andmy are the projected magnetic field components on the horizontal plane

that can be calculated by transforming m through the rotation matrix C(φ, θ) ,

(
C1(φ)C2(θ)

)T
. If the pitch angle θ and the roll angle φ are not available, their

estimates θ̂ and φ̂ can be used instead, to yield

mx = mx cos θ̂ +my sin φ̂ sin θ̂ +mz cos φ̂ sin θ̂

my = my cos φ̂−mz sin φ̂

(129)

The high frequency dominant pitch and heading angles are inferred from the attitude

kinematics equations,

θ̇ = q cos φ̂− r sin φ̂

ψ̇ = (q sin φ̂+ r cos φ̂)/ cos θ̂

(130)

where, ω = [p q r]T is the onboard rate gyro measurement.

Figure 65 illustrates the block diagram for the combined complementary filters

for pitch and heading angle estimation. As discussed earlier, the filters can be tuned

for acceptable performance via the parameters τθ and τψ for pitch and heading angle,

respectively. The relative weight for the heading angle between the magnetometer

and the GPS sensor is imposed by the parameter αψ ∈ [0 , 1] in order to put more

emphasis on the measurement that seems to be close to the true heading. A detailed

description regarding the adaptive tuning of αψ is given later.

146

+
-

+

+

+

+

+

-

+

-

+

a

ω

φ̂, θ̂

m

θL

θ̇

ψ̇

ψL

ψGPS

1
τθ

1
τψ

1
τψ

αψ

1− αψ

1
s

1
s

T (φ, θ, q, r)

ψ̂

θ̂Tilt
angle:
Eq. (127)

Heading
angle:
Eq. (128)

Figure 65: Entire complementary filter setup for pitch and heading angles.

B.1.3 Roll angle estimation

The roll angle can also be estimated from a complementary filter using high frequency

dominant information for φ̇ via the attitude kinematics and low frequency dominant

information from the kinematic relationship of the airplane at a banked condition.

As illustrated in Fig. 66, if an airplane is in a purely banked, coordinated turn con-

ψ̇

L
φ

φ

yb
zb

as = VT ψ̇

~g

−~g

Figure 66: Kinematic relation at a truly banked turn condition.

dition (no side acceleration along body y-axis), then the roll angle is approximately

147

computed by the following relation assuming no wind[41],

sinφ =
ψ̇VT
g

(131)

where VT is the flight speed and g is the gravitational acceleration. This equation

can be further approximated using sinφ ≈ φ and ψ̇ ≈ r as

φ =
rVT
g
. (132)

Then the low frequency dominant roll angle is approximated from Eq. (132) with the

yaw rate from the yaw gyro and the flight speed from the pitot tube. In reality, the

estimate from Eq. (132) tends to be biased since it utilizes the direct gyro output

which is vulnerable to drift. Over a long period of time the estimate will deviate

owing to this yaw rate bias[105]. To compensate for this bias, a Kalman filter was

designed as follows.

In general, the fast roll dynamics of the airplane allow to use a linear approxima-

tion for the roll kinematics φ̇ = p. The roll rate gyro measurement pm is assumed to

be corrupted by the roll rate bias pb as well as measurement noise ηp,

pm = p+ pb + ηp.

The biases for both roll and yaw gyros are modeled as random walk processes

driven by Gaussian white noise processes. It follows that the equations of the filter

dynamics are given by

φ̇ = pm − pb − ηp,

ṗb = εp,

ṙb = εr.

(133)

The measurement model of the Kalman filter includes the yaw gyro output and

the rate of heading angle change induced from the heading angle measurement by the

148

GPS sensor. The yaw rate gyro measurement rm contains a bias rb and measurement

noise ηr

rm = r + rb + ηr. (134)

Hence the yaw rate measurement is related to the roll angle, using Eq. (132), as

follows,

rm =
g

VT
φ+ rb + ηr. (135)

On the other hand, because the GPS sensor provides the heading angle at one sec-

ond interval, the rate of heading angle change ψ̇ is calculated through numerical

differentiation. It follows from Eq. (131) that

ψ̇m =
g cos φ̂

V ∗
T

φ+ ηψ̇, (136)

where, V ∗
T is the flight speed obtained from the GPS sensor, ηψ̇ is the measurement

noise, and φ̂ is the current roll angle estimate. Equations (135) and (136) become the

measurement model for roll angle Kalman filter. The Kalman filter is implemented

in a discrete format on the micro-controller using a sampling period ∆t:

• Time update

– Project ahead

x̂−
k = Φkx̂k−1 + [∆tpkm 0 0]T,

P−
k = ΦkPk−1Φ

T

k + Qk,

(137)

where,

Φk =

1 −∆t 0

0 1 0

0 0 1

, x̂k =

φ̂k

p̂bk

r̂bk

.

• Measurement update

149

– Compute Kalman gain

Kk = P−
k H?

k
T
(
H?
kP

−
k H?

k
T + R?

k

)−1
, (138)

– Update estimate with measurements

x̂k = x̂−
k + Kk(z

?
k −H?

kx̂
−
k), (139)

– Compute error covariance for updated estimate

Pk = (I−KkH
?
k)P

−
k , (140)

where, ? = s, f .

Note that the measurement update for GPS is done once every second at which the

new ψ̇m becomes available, whereas the measurement update for the yaw rate gyro

occurs at a high update rate. These two measurement updates are coordinated such

that each update is completed whenever the corresponding measurement becomes

available: a fast update for rmk and a slow update for ψ̇mk as follows,

• Fast update

zfk = rmk , Hf
k =

[
g

VT
0 1

]
, (141)

• Slow update

zsk = ψ̇mk , Hs
k =

[
g

VT
cos φ̂−

k 0 1

]
. (142)

The process noise covariance matrix Qk and measurement noise covariance matrix

Rk are determined from the noise characteristics of each signal by assuming that the

noise processes are uncorrelated to each other, as follows

Qk = diag
(
E
[
η̄2
p ε̄2p ε̄2r

])
,

Rf
k = E

[
η̄2
r

]
, Rs

k = E
[
η̄2
ψ̇

]
,

(143)

where the overbar variables represent the discrete noise sequences at the sampling

period of ∆t such that they have equal noise strength as the continuous noise process,

and E[·] calculates the mean-square noise strength.

150

B.1.4 Dealing with GPS latency and GPS lock

The GPS receiver employed in this research has an inherent data latency, which

causes the output of the GPS sensor to be delayed by a certain amount of time.

The position and velocity output from the GPS sensor at the kth time step are

processed internally based on the satellite range measurements at the epoch of the

(k− 1)th time step. Combining the latency due to the internal data processing along

with the communication latency, the time delay of the position output is observed to

be about 0.1 [sec] and the delay of the velocity output about 1.1 [sec][98]. The GPS

sensor also provides the heading angle based on the internal velocity estimate. Hence,

the measurement of ψGPS is also delayed by 1.1 [sec]. Unless this delay is properly

compensated, substantial errors will arise during the estimation process.

Figure 67 illustrates graphically the issue of delay. Assume that the measurement

is delayed by N samples. Then the measurement z∗k at t = tk represents the state

of the N prior sample z∗k = H?
k−Nxk−N . Several arrangements to incorporate delays

into the Kalman filter framework have been suggested in the literature[8, 79]. One

approach is to simply recalculate the complete time-trajectory of the filter throughout

the delayed period when a delayed measurement is received. The large memory cost

for storing the intermediate states over the delayed period and the corresponding

increased computational cost prevent delayed measurements from being incorporated

directly in a real-time estimation algorithm. Another approach to account for delayed

System
states

Filter
states

xk−N
N ·∆t

xk

x̂k−N x̂k

z∗k

Hk−N x̂k−N tktk−N

Figure 67: System with a delayed measurement due to sensor latency.

measurements is to make use of the state estimate corresponding to the delayed

151

measurement at t = tk−N , i.e., x̂k−N in a buffer. When the delayed measurement

z∗k becomes available at the time t = tk, an innovation that is calculated from the

delayed measurement and the delayed state estimate in the buffer is blended with the

current estimate state in the standard Kalman measurement update as follows,

x̂k = x̂−
k + Kk(z

∗
k −Hk−N x̂k−N). (144)

Compared to the case of a wrong innovation calculated from the delayed measurement

and the current state estimate x̂−
k (no delay compensation) as in Eq. (139), this

approach forces the correct innovation to be used in the measurement update and

then yields a better estimate. It is, however, a sub-optimal solution[79].

The estimation filters presented in the previous section assumed that the GPS

measurement is always available. However, the GPS output is locked when a GPS

outage occurs, failing to provide successive information. The situation gets even worse

if the UAV performs aggressive motion such as a sharp turn at high speed. During

such an outage, the GPS output is held at the previous valid output. Figure 68

demonstrates the real measured GPS data when the UAV performs a sharp turn by

a remote pilot. The plot shows that at t = 2711.2 [sec] the GPS heading angle is held

to the previous value of -90 [deg]. The value is kept until t = 2714.2 [sec] when a new

(possibly valid) heading angle is provided by the GPS sensor. Because the attitude

estimation algorithm presented earlier utilizes the heading angle measurement from

the GPS sensor, an incorrect heading information from the GPS sensor due to a GPS

outage would result in a wrong estimation of the heading angle in the complementary

filter. Moreover, this would lead to a wrong estimation of the roll angle from the

Kalman filter.

One possible remedy to this is to use intermitently the heading information from

the magnetic compass for a short time period (i.e., during GPS outage). Even though

any local magnetic distortion due to the existence of ferrous materials near the mag-

netic compass yields a small offset in the magnetic heading information, the magnetic

152

2708 2709 2710 2711 2712 2713 2714 2715 2716
-140

-120

-100

-80

-60

-40

-20

0

Time [sec]

ψ
 [

de
g]

ψGPSk

ψ̂k

ψGPSk−1

Figure 68: GPS momentary outage during an aggressive maneuver.

heading information can provide continuous heading measurement to the filtering al-

gorithm even when a GPS outage occurs. Whenever the complementary filter detects

the GPS heading angle being held constant, it first modifies the weighting parameter

αψ to put more emphasis on the magnetic heading information. As the αψ approaches

one, the magnetic heading information is used more exclusively in the complemen-

tary filter, while the GPS heading information is ignored. A update logic for a new

weighting parameter α∗
ψ is simply given by

α∗
ψ = αψ + (1− αψ)λ (145)

where, λ ≥ 1 controls the rate of change of weighting parameter. Once the GPS is

back to normal operation, the weighting parameter will restore the specified value for

a normal operation. After the complementary filter computes the heading estimate

during a GPS outage, the Kalman filter can make use of the heading estimate from

the complementary filter in order to obtain the rate of change of the heading angle.

Figure 68 describes the use of heading estimate from the complementary filter to

compute the rate of heading angle change during a GPS outage. Notice that at

153

t = 2711.2 sec, a GPS outage occurs and the heading angle is held fixed. Then the

Kalman filter switches to using the heading estimate ψ̂k instead of the false heading

ψGPSk
to calculate the rate of change of the heading angle as follows,

ψ̇∗
k = (ψ̂k − ψGPSk−1

). (146)

The use of estimated heading continues until the GPS sensor yields correct heading

information at t = 2714.2 [sec].

B.1.5 Attitude filter validation

The previous algorithm was written in C codes and implemented as an S-function in

the Matlab/Simulink environment. This enables the actual C codes to be validated

for any errors and tuned before used for the UAV. A complete non-linear 6-DOF

Simulink model[58] is used to simulate the full dynamics of the UAV. The inertial

sensor measurements are emulated to have close correlation to the real sensors used

in the UAV in terms of signal specifications and noise characteristics. The gain

parameters for the pitch and heading complementary filters were chosen as

τθ = 2, τψ = 0.5, αψ = 0.4.

The process noise covariance matrix and the noise covariance matrix for the Kalman

filter were carefully chosen in consideration of the noise characteristics of the sensors

as follows

Qk = diag
([

0.022 0.0012 0.012
])
,

Rf
k = 0.022, Rs

k = 0.052.

(147)

Two internal PID controller loops were designed for roll angle control and pitch

angle control with the associated stability augmentation dampers. The filter out-

puts are fed back to the corresponding PID controllers and validated in the closed

loop. Figure 69 shows the comparison between true values and estimated values.

154

In Figs. 69(a) and 69(c) a doublet roll angle reference command was used to excite

the lateral motion of the airplane, while the pitch attitude is held constant at zero.

Both the complementary filter and the Kalman filter operate properly. However, a

transient time lag in the estimation process is observed when the UAV changes its

orientation quickly, which leads to the increased estimation error shown in the right

side of Fig. 69 during the transients. Nonetheless, the filter converges to the correct

angle after the UAV comes into steady state. Figure 69(b) shows the pitch angle

estimation when a doublet pitch angle reference command was used to excite the

longitudinal motion of the UAV, while the roll angle is controlled to zero.

B.2 Position Estimation

In this section a filter for estimating the absolute position of the UAV in the north-

east-down (NED) inertial reference frame is developed. A typical attitude heading

reference system/inertial navigation system (AHRS/INS) makes use of the accelerom-

eter output in conjunction with the full equations of motion to propagate the inertial

position and velocity from acceleration measurements using a Kalman filter. How-

ever, the dimension of this complete Kalman filter is too large to be implemented on

a micro-controller and run in real-time. Instead of using the full equations of motion,

the navigation equations are used to propagate the position from the flight speed

measurement. The position filter is cascaded with the attitude filters so as to allow

separate filter tuning and at the same time to reduce the computational cost with

minimal loss of performance.

B.2.1 Filter formulation

The navigation equations of a 6-dof airplane[137] are used to obtain the position

filter equation. Using the rotational transform matrix from the body-axes (B) to the

155

0 10 20 30 40 50 60 70 80 90 100
−20

−15

−10

−5

0

5

10

15

20

Time [sec]

B
an

k
an

gl
e

[d
eg

]

: Estimated
: True

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

8

10

Time [sec]

B
an

k
er

ro
r

[d
eg

]

(a) Roll angle filter performance

0 10 20 30 40 50 60 70 80 90 100
−10

−5

0

5

10

15

Time [sec]

P
itc

h
an

gl
e

[d
eg

]

: Estimated
: True

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

Time [sec]

P
itc

h
er

ro
r

[d
eg

]

(b) Pitch angle filter performance

0 10 20 30 40 50 60 70 80 90 100
−200

−150

−100

−50

0

50

100

150

200

Time [sec]

H
ea

di
ng

 a
ng

le
 [d

eg
]

: Estimated
: True

0 10 20 30 40 50 60 70 80 90 100
−20

−15

−10

−5

0

5

10

15

20

Time [sec]

H
ea

di
ng

 e
rr

or
 [d

eg
]

(c) Yaw angle filter performance

Figure 69: Attitude estimation filters validation.

156

inertial frame (N), the navigation equations are given by

ṗN

ṗE

ṗD

=

vN

vE

vD

=

[
BCN

]T

U

V

W

. (148)

Assume that the angle of attack and side slip angle are small, the velocity components

expressed in terms of the body-axes are approximated by

U ≈ VT , V,W ≈ 0. (149)

The flight speed VT , if it is measured from a pitot tube, includes the inertial speed

(relative ground speed) and the wind speed. The relative ground speed is only to be

integrated to propagate the inertial position. The wind speed is dependent on the

flight condition, so is added to the position filter as an extra state to account for

the pitot speed measurement. A random walk model for the wind speed variation is

assumed, driven by a Gaussian white noise process as follows,

V̇w = εw. (150)

The speed measurement VTm from the pitot tube contains the inertial speed, the wind

speed, and the measurement noise ηw,

VTm = VT + Vw + ηw. (151)

The attitude angle information used in Eq. (148) is provided separately by the attitude

filters. This cascaded configuration of the attitude and position filters reduces the

complexity arising from the coupling of the variables. It therefore yields a simple

position estimation filter with minimal order. It follows from Eq. (148), (149), and

(151) , that the equations of filter dynamics are given by

ṗN

ṗE

ṗD

V̇w

=

cos θ cosψ

cos θ sinψ

− sin θ

0

(VTm − Vw) +

νN

νE

νD

εw

, (152)

157

where, [νN νE νD]T is the process noise vector of ηw being projected onto the NED

frame.

The measurement model for the position estimation filter is described as follows.

The North position pNm and the East position measurements pEm are provided by the

GPS sensor at an update rate of 1 Hz,

pNm = pN + ηN ,

pEm = pE + ηE ,

(153)

where ηN and ηE are the measurement noise for the North and East directions, which

are assumed to be the Gaussian.

Altitude information with good accuracy is attainable using a barometric altime-

ter. The one used in our UAV platform has minimum three-meter resolution and

a higher update rate. The down position measurement pDm with a corresponding

Gaussian noise is obtained by,

pDm = −h + ηh. (154)

Having multiple measurements at different update rates, the discrete position Kalman

filter implementation at a specified sampling period ∆t on a micro-controller is given

as follows.

• Time update

– Project ahead

x̂−
k = Φkx̂k−1 + Vw[∆t sin θ̂k cos ψ̂k ∆t cos θ̂k sin ψ̂k −∆t sin θ̂k 0]T,

P−
k = ΦkPk−1Φ

T

k + Qk,

(155)

158

where,

Φk =

1 0 0 −∆t cos θ̂k cos ψ̂k

0 1 0 −∆t cos θ̂k sin ψ̂k

0 0 1 ∆t sin θ̂k

0 0 0 1

, x̂k =

p̂Nk

p̂Ek

p̂Dk

V̂wk

.

• Measurement update

– Compute Kalman gain

Kk = P−
k H?

k
T
(
H?
kP

−
k H?

k
T + R?

k

)−1
, (156)

– Update estimate with measurements

x̂k = x̂−
k + Kk(z

?
k −H?

kx̂
−
k), (157)

– Compute error covariance for updated estimate

Pk = (I−KkH
?
k)P

−
k , (158)

where, ? = s, f .

Each update is performed whenever the corresponding measurement becomes

available: a fast update and a slow update.

• Fast update

zfk = −hk, Hf
k =

[
0 0 1 0

]
, (159)

• Slow update

zsk =

pNmk

pEmk

 , Hs

k =

1 0 0 0

0 1 0 0

 . (160)

159

The process noise covariance matrix QN and measurement noise covariance matrix

RN are determined from the noise characteristics of each signal,

QN = diag
(
E
[
ν̄2
N ν̄2

E ν̄2
h ε̄2w

])
,

Rf
N

= E
[
η̄2
h

]
, Rs

N
= diag

(
E
[
η̄2
N η̄2

E

])
,

(161)

where the overbar variables represent the discrete noise sequences at a sampling period

of ∆t having equal noise strength as the continuous noise process, and E[·] calculates

the mean-square noise strength.

B.2.2 Navigation filter validation

The navigation filter was written in C code as an S-function of the Matlab/Simulinkr

environment, as described in Section B.1.5. The process covariance matrix and the

noise covariance matrix for the navigation filter were carefully chosen based on the

noise characteristics of the sensors as follows

QN = diag
([

22 22 22 0.012
])
,

Rf
N

= 22, Rs
N

= diag
([

32 32
])
.

(162)

An open loop steering command for the UAV to perform an eight-shape maneuver

was used, which in turn results in a doublet bank angle command as a reference to the

roll PID controller. Figure 70 shows the performance of the navigation filter. Overall,

the navigation filter works very well by providing a series of estimation values for the

main control loop at a high rate (20 Hz) despite the low update rate of the GPS sensor

(1 Hz). The North and East position estimates appear to have certain corrections

periodically, which can be explained by the fact that during no GPS output update,

the heading estimation from the attitude filters is used to propagate the position

estimation. However, the time lag of the heading output from the attitude filters

causes the navigation filter to use non-ideal heading information during propagation

of the states. This results in a drifted position estimate at one second after when

160

0 10 20 30 40 50 60 70 80
−150

−100

−50

0

50

100

150

200

250

300

Time [sec]

N
or

th
 p

os
iti

on
 [m

]

: Estimated
: True

(a) North position

0 10 20 30 40 50 60 70 80
−100

−50

0

50

100

150

200

250

300

350

Time [sec]

E
as

t p
os

iti
on

 [m
]

: Estimated
: True

(b) East position

0 10 20 30 40 50 60 70 80
−308

−306

−304

−302

−300

−298

−296

−294

−292

−290

Time [sec]

D
ow

n
po

si
tio

n
[m

]

: Estimated
: True

(c) Down position

−100 −50 0 50 100 150 200 250 300 350

−100

−50

0

50

100

150

200

250

East position [m]

N
or

th
 p

os
iti

on
 [m

]

: Estimated
: True

(d) North-East position

Figure 70: Navigation filter validation.

a new GPS measurement becomes available. The navigation Kalman filter works to

update the filter states according to the new GPS measurement in order to dump

out the drift and to provide the best estimate of position at all times. In addition,

the altitude of the UAV is controlled by the altitude PID controller loop along with

the doublet reference command, which enables the position filter to be validated with

respect to the down position. The Kalman filter works properly while estimating the

vertical position despite the noisy barometric altitude measurement.

B.3 Summary

A simple, yet effective attitude and position estimation algorithm has been developed

for use with a low-cost UAV autopilot. Utilizing a complementary filter for estimating

161

the pitch and heading angles, dramatically reduces the computational burden. A

minimal dimension Kalman filter estimates the roll angle. An algorithm for handling

GPS lock is given and is tested to show the feasibility of real-time implementation

with delayed GPS measurements. A cascaded position filter is also derived, and it

is shown to be effective at incorporating the slow GPS output in order to provide

a high update rate position solution. Results from both simulation and hardware

validation show that the execution times of the estimation algorithms are well within

the capability of the micro-controller (about 10 [msec] for the attitude filters and 3

[msec] for the navigation filter).

162

APPENDIX C

MODELING AND HARDWARE-IN-THE-LOOP

SIMULATION

C.1 Equations of Motion of a Fixed-Wing Aircraft

The standard 6-dof equations of motion for a conventional aircraft are used for model-

ing and simulation of a small UAV. Flat Earth approximation[137] provides a reason-

able modeling assumption when the vehicle operates over a small area. The body-axes

equations are as follows:

Force equations:

U̇ = rV − qW − g sin θ + (XA +XT)/m, (163a)

V̇ = −rU + pW + g sin φ cos θ + (YA + YT)/m, (163b)

Ẇ = qU − pV + g cosφ cos θ + (ZA + ZT)/m, (163c)

Moment equations:

Jxṗ− Jxz(ṙ + pq) + (Jz − Jy)qr = L̄, (164a)

Jyq̇ + (Jx − Jz)pr + Jxz(p
2 − r2) = M, (164b)

Jzṙ − Jxz(ṗ− qr) + (Jy − Jx)pq = N, (164c)

Kinematic equations:

φ̇ = p+ tan θ(q sin φ+ r cosφ), (165a)

θ̇ = q cosφ− r sinφ, (165b)

ψ̇ = (q sinφ+ r cosφ)/ cos θ, (165c)

163

Navigation equations:

ṗN = Ucθcψ + V (−cφsψ + sφsθcψ) +W (sφsψ + cφsθcψ), (166a)

ṗE = Ucθsψ + V (cφcψ + sφsθsψ) +W (−sφcψ + cφsθsψ), (166b)

ṗD = −Usθ + V sφcθ +W cφcθ, (166c)

where the definition of each variable is found in Ref. [137].

The aerodynamic forces and moments are obtained from the dimensionless aero-

dynamic coefficients at a given flight condition as follows,

XA = q̄SCX , YA = q̄SCY , ZA = q̄SCZ , (167a)

L̄ = q̄SbC`, M = q̄Sc̄Cm, N = q̄SbCn. (167b)

The analysis of the aerodynamic behavior of the aircraft, however, is better under-

stood in the stability axes, or wind axes, system. In particular, the aerodynamic forces

are easily handled in the wind axes, which is given in terms of the angle of attack α

and the sideslip angle β. Hence, the force equations in wind-axes are introduced as

follows[137],

mV̇T = T cos(α+ αT) cosβ −D +mg1, (168a)

mβ̇VT = −T cos(α + αT) sin β − Cw +mg2 −mVT rs, (168b)

mα̇VT cosβ = −T sin(α + αT)− L+mg3 +mVT (q cosβ − ps sin β), (168c)

where, VT is total air speed, ps and rs are the pitch and yaw rates projected on the

stability axes, m is the mass of the vehicle, and g1, g2, and g3 are the projections of

the gravitational acceleration on the wind axes system. The aerodynamic forces are

lift (L), drag (D), and cross wind force (Cw) while T is the thrust force exerted on

the aircraft.

C.1.1 Aerodynamic coefficients for forces and moments

The aerodynamic forces and moments have a complex dependence on a number of vari-

ables resulting in complicated nonlinear correlation between each variable. Building

164

up the aerodynamic forces and moments as a linear sum of contributing components

provides a mathematically convenient way of representing the aerodynamic forces and

moments for a specified flight condition. By the same token, dimensionless aerody-

namic coefficients, which are associated with the stability and control derivatives in

terms of independent parameters have been widely used to represent the aerodynamic

characteristic of an aircraft:

CD = CD0 +
(CL − CL0)

2

πeAR
+ |CDδeδe|+ |CDδaδa|+ |CDδrδr|, (169a)

CY = Cyββ + Cyδaδa + Cyδr δr +
b

2VT
(Cypps + Cyrrs), (169b)

CL = CL0
+ CLαα + CLδeδe +

c̄

2VT
(CLα̇α̇ + CLqq), (169c)

Cm = Cm0 + Cmαα + Cmδeδe +
c̄

2VT
(Cmα̇α̇ + Cmqq), (169d)

C` = C`ββ + C`δaδa + C`δr δr +
b

2VT
(C`pps + C`rrs), (169e)

Cn = Cnββ + Cnδaδa + Cnδr δr +
b

2VT
(Cnpps + Cnrrs), (169f)

where, e is the Oswald coefficient, AR is the main wing aspect ratio.

C.1.2 Numerical modeling of aerodynamic coefficients

The stability and control derivatives shown in Eqs. (169) determine the aerodynamic

characteristic of the aircraft, and can be estimated or identified through wind tunnel

tests or via flight tests. Despite the fact that the wind tunnel test gives accurate re-

sults, a complete solution for all derivatives is not always feasible from the wind tunnel

test alone. Hence, it is beneficial to obtain these derivatives from empirical data, if

possible. The United States Air Force (USAF) has developed the stability and con-

trol compendium (DATCOM)[150], a large collection of information combining both

classical aerodynamic analysis and experimental data. The digital DATCOM[16] is

the digital version of DATCOM, a computer program which was originally written

165

in Fortran and ported afterwards to ANSI C. It incorporates the classical aerody-

namic equations with empirical corrections from experimental data for various air-

craft to compute the aerodynamic stability and control derivatives of the aircraft. The

DDATCOM is useful in predicting the stability and control derivatives for preliminary

aircraft designs or developing a high fidelity flight simulation[44]. The DDATCOM

takes an input file containing the aircraft configuration and geometric parameters,

the flight condition, the mass properties, and so on. The input configuration file of

the UAV airframe used in this research is shown in Table 10.

Table 10: Digital DATCOM input configuration file of the 1/5 scale Decathlon.

Properties value units
Mass (m) 5.6132 [kg]

Aerodynamic reference area (S) 0.6558 [m2]
Longitudinal reference length (c̄) 0.3215 [m]

Lateral reference length (b) 2.04 [m]
Free stream airspeed (VT) 20 [m/sec]

Flight path angle (γ) 0 [deg]
Altitude (h) 300 [m]

The geometric configuration of the UAV airframe was accurately measured and

entered in the DDATCOM input file. This included the total weight, the shape of the

wing/tail airfoil section, a cylindrical modeling of the fuselage section, the center of

gravity location, the placement of wing/tails, and etc. Figure 71(a) shows the UAV

airframe, a commercial Decathlon R/C model, and Fig. 71(b) shows the detailed

CAD model of the airframe. With the geometric data supplied, the DDATCOM

computes the static stability derivatives, the dynamic stability derivatives, and control

derivatives for both the aileron and the elevator. The control derivatives associated

with the rudder and the stability derivatives associated with the yawing moment are

not computed from the DDATCOM. These derivatives can be estimated using the

method proposed in Ref. [132]. The stability and control derivatives calculated from

166

(a) (b)

Figure 71: Geometric modeling of the 1/5 scale Decathlon used as an input to the
DDATCOM program.

the DDATCOM are summarized in Table 11.

Table 11: Static and dynamic stability derivatives and control derivatives estimated
from the geometry of the 1/5 scale Decathlon.

CD0
CL0

CLα CLα̇ CLq Cyβ Cyp Cyr
0.028 0.062 5.195 1.22 4.589 -0.2083 0.0057 0.0645∗

Cm0
Cmα Cmα̇ Cmq C`β C`p C`r Cnβ

0.0598 -0.9317 -2.897 -5.263 -0.0377 -0.4625 0.0288 0.0116
Cnp Cnr CDδe CDδa CDδr CLδe Cyδa Cyδr

-0.0076 -0.0276 0.0418 0.0† 0.0† 0.2167 0.0† 0.1096∗

Cmδe C`δa C`δr Cnδr Cnδa
-0.8551 -0.2559 0.0085† 0.0035 -0.0216†

† : approximately zero assumed, ∗ : estimation from the Reference [132].

C.1.3 Mass properties modeling

The mass properties can be properly estimated from a computational analysis with

a help of CAD program. In contrast to the a CAD modeling, the mass properties

have been identified experimentally based on the actual platform. The total weight

of the UAV was measured using a precise scale, and the center of gravity location was

carefully determined in the body axes with respect to the base point at the center

of propeller. The mass moment of inertia about each principal axis were identified

167

d l

Figure 72: Torsional pendulum experimental setup for identifying the moment of
inertia.

experimentally using the formula[53]

J? =
gT 2

md
2m

4π2l
, ? = x, y, z (170)

where, d is the distance from the center of gravity to the point at which the suspension

wire is vertically connected, Tm is the period of a small perturbed rotational motion

captured by the rate gyros, and l is the length of the wire from the ceiling. Figure 72

illustrates the detail torsional pendulum experimental setup. After careful alignment

of the aircraft to the horizontal plane and equal distance for each anchor point to the

center of gravity, the moments of inertia were identified in the direction of x-, y-, z-

of the body axes, as Jx, Jy, and Jz, respectively. Table 12 summarizes the final mass

properties from experiments.

Table 12: Mass properties identified from experiments

Properties symbols values
Mass m 5.6132 [kg]

Center of mass location in body axes [rx ry rz] [−0.47 0 − 0.012] [m]
Moment of inertia [Jx Jy Jz] [0.4497 0.5111 0.8470] [kg ·m2]

168

C.1.4 Engine and propeller modeling

The UAV is powered by a two-stroke internal combustion engine with a fixed pitch

propeller. Since the thrust force is always acting on the airplane to overcome the drag

even during steady level flight, comprehensive understanding on the thrust producing

mechanism for the propeller-engine enables a faithful mathematical model for the

simulation. The model engine is an O.S. FX 91 that delivers the maximum 2.8

horse power (HP) at a rotational speed of 16000 [rpm] with a propeller of 13 inches

in diameter and 8 inches in propeller pitch distance. As a complete modeling of the

engine with the propeller is beyond our scope, a simplified modeling of the thrust force

exerted on the aircraft is given as follows. Assume that the engine is overpowered

providing any required power to the propeller. Hence, the thrust is solely dependent

on the propeller aerodynamics.

The aerodynamics of the propeller can be understood by a combination of the

lift and drag force along its cross-sectional plane. The analysis of the aerodynamic

forces along the propeller is based on the geometry of the propeller. The geometry

for an APC model propeller of 13 inches in diameter by 8 inches in pitch distance is

shown in Fig. 73. The static thrust can be computed from a program, JavaProp[92],

which is written based on the blade element theory[78, 2]. With the geometry of

the propeller is specified a priori, it calculates the produced thrust in terms of the

rotating speed of the propeller. On the other hand, an experiment was conducted to

identify the actual static thrust at different throttle command δt ∈ [0, 1]. Figure 74

illustrates a simple experimental setup using a spring scale to directly measure the

static thrust. The static thrust was approximately gauged at the steady state with a

RPM reading at the given throttle command. Figure 75 shows the measured RPM

v/s input throttle command. While the solid line represents actual measurements,

the dashed line represents the best fitting curve that is obtained from a polynomial

169

(a) Horizonal and vertical view.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

P
itc

h
[m

et
er

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

r/R

c/
R

(b) Geometry of an APC propeller (chord length
and pitch distance).

Figure 73: APC model airplane propeller 13′′ by 8′′.

T

Figure 74: Experimental setup for identifying static thrust force.

170

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
750

800

850

900

950

1000

1050

1100

1150

1200

1250

δ
t

Ω
 [r

ad
/s

ec
]

Experiment
:Poly fit

Figure 75: Rotating speed of propeller v/s the throttle command.

fit in least-square sense as follows,

Ω = −534.8δ2
t + 1247.5δt + 536.5 [rad/sec]. (171)

Figure 76 compares the actual static thrust measured with the calculated thrust

from the JavaProp. Figure 76 shows that the estimated thrust has similar trend as

such that the thrust increases quadratically as the rotational speed increases. The

shortage of thrust by the experiment can be attributed to the fact that the down-

stream after the propeller is hindered by the fuselage cross section, which affects to

reduce the mass flow rate thus less thrust generated. By a simple correction, the

numerical thrust can be scaled to the actual thrust by the following relation, which

was also plotted by a dashed line in Fig. 76.

Tex = 1.2407 · Tth − 8.4742 [N]. (172)

171

7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000
0

5

10

15

20

25

30

Prop RPM

S
ta

tic
 T

hr
us

t [
N

]

: Theoretical
: Measured
: Scaled

Figure 76: Static thrust comparison for a model propeller 13′′ by 8′′

The dynamic thrust, on the other hand, is quite complicated to be estimated di-

rectly from the propeller geometry. In general, the thrust force during flights depends

not only on the rotational speed of the propeller but also on the forward flight speed

(incoming wind speed). The forward flight speed reduces an effective angle of attack

to the airfoil cross section, thus eventually reducing generated thrust force. This

aspect will continue until a certain combination of RPM and forward flight speed at

which no thrust is generated and changes its sign for an opposite direction (wind mill

effect). In order to take into account this aspect, the advance ratio (J) should be

introduced to incorporate the effect of forward flight speed as follows,

J =
πVT
ΩRp

, (173)

where, Rp is the propeller radius in meters and Ω the rotational speed in [rad/sec].

From the JavaProp, the thrust coefficient (cT) was obtained in terms of the ad-

vance ratio (J) as shown in Fig. 77. This dimensionless coefficient is related to the

172

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Advance ratio

T
hr

us
t c

oe
ffi

ci
en

t

Figure 77: Thrust coefficient cT v/s advance ratio for the selected propeller.

actual thrust by the following relation,

Tth =
4

π2
ρΩ2R4

pcT (174)

where, ρ is the air density. Hence, the actual thrust can be estimated from Eqs. (172)

and (174) using an approximation of cT at a given advance ratio value that is com-

puted from the flight speed and the rotational speed of propeller at each instant.

In addition, the dynamic characteristic of thrust generation is modeled by a trans-

fer function from throttle command (δt) to the thrust output. The transfer function is

experimentally identified by a first order low pass filter with the time constant 0.3333

[sec], which lumps together various effects such as servo motor dynamics, engine dy-

namics, and propeller aerodynamics.

C.1.5 Actuator modeling

The control surfaces of the UAV are actuated by four identical R/C servo motors.

Each servo arm is coupled to the corresponding control surface via mechanical links.

173

66 66.5 67 67.5 68 68.5 69
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [sec]

δ a [d
eg

]

(a) Aileron

30.5 31 31.5 32 32.5 33 33.5 34

−10

−5

0

5

10

Time [sec]

δ e [d
eg

]

(b) Elevator

39.5 40 40.5 41 41.5 42 42.5 43
0.2

0.25

0.3

0.35

0.4

0.45

Time [sec]

δ t

(c) Throttle

48 48.5 49 49.5 50 50.5 51

−10

−5

0

5

10

Time [sec]

δ r [d
eg

]

(d) Rudder

Figure 78: Various doublet responses for dynamic modeling of the control surfaces.

Hence, in order to obtain the dynamic characteristics of the control surface deflec-

tion, several doublet responses were recorded for each control surface. Figure 78

shows these responses. Deflection angles of the control surfaces are measured by the

potentiometers linked to the servo motor. It appears that an R/C servo motor nearly

performs a dead beat control action. Thus, a first-order low pass filter combined with

both slew rate limit and control saturation results in a good actuator model. Table 13

summarizes the results of dynamic modeling of the control surfaces.

C.2 Estimation of Aerodynamic Angles

The angle of attack and the sideslip angle are significant states describing the aero-

dynamics of the airplane. Specifically, these angles are required for identification of

174

Table 13: Results of dynamic modeling of each control surface identified by experi-
ments.

Control surface +Range -Range Slew rate
Aileron δa 21.8 deg -21 deg 106.5 deg/sec
Elevator δe 28 deg -29.6 deg 129.4 deg/sec
Rudder δr 16 deg -20.7 deg 141.2 deg/sec
Throttle δt Full open (1) Full closed (0) 2.5 /sec

+

+
+

-

xm

ẋm

x̂1
s

1
τ

Figure 79: A complementary filter in the feedback form.

aerodynamic force and moment coefficients. For exact measurements, it is necessary

to install appropriate air data sensors on-board the aircraft. However, it is some-

times difficult to install such apparatuses on a small UAV. Another approach, used

here, is to determine the aerodynamic angles using inertial sensor measurements.

In this section, the aerodynamic angles are estimated from raw inertial acceleration

measurements using an approach similar to the one presented in Refs. [31, 51].

C.2.1 Filter formulation

Complementary filters have been widely used for combining two independent noisy

measurements of a same signal, where each measurement is corrupted by different

types of spectral noise[20]. Figure 79 shows a complementary filter that uses two

measurements xm(t) and ẋm(t) to obtain an estimate x̂(t) of x(t). The time constant

τ is selected according to the noise characteristics of each channel such that the

estimate x̂ is contributed by integration of ẋm over frequencies ω � 1/τ , whereas for

frequencies ω � 1/τ , x̂ tracks xm.

In order to employ a complementary filter in the estimation of the aerodynamic

175

angles, one needs to find the aerodynamic angles and their derivatives computed from

the inertial measurements. Using a small angle approximation for α and β during

a steady state flight condition, the body z-axis accelerometer output azm measures

approximately the thrust force and the aerodynamic force in the wind-axes as follows

mazm
∼= FT sin(α+ αT) + L. (175)

It follows from Eq. (168c) that the time derivative of the angle of attack is obtained

by

α̇m =
g − azm
VT

+ q. (176)

The thrust force components in Eq. (175) can be further neglected from the assump-

tion of small angle of attack and the thrust vector aligned to the body x-axis. Knowing

that the lift force L is represented by the dimensionless coefficient of Eq (169c), one

can obtain the angle of attack from the accelerometer output and the aircraft states

using the following relation

αm =
1

CLα

(m
q̄S
azm −

c̄CLα̇
2V 2

T

(g − azm)− CL0
− CLδeδe −

c̄q

2VT
(CLα̇ + CLq)

)
. (177)

It should be noted that a priori knowledge of the stability and control derivatives

used in Eq. (177) is important to get a correct estimate of the angle of attack. These

parameters can be supplied by the method discussed in Section C.1.1.

For the sideslip angle estimation, the body y-axis accelerometer output aym mea-

sures approximately the thrust force and the aerodynamic force as follows

maym
∼= FT cos(α + αT) sin β + Cw, (178)

where Cw is the cross-wind force component. With a small angle approximation of

α and β during a steady-state flight condition at small θ, it follows that g2 ≈ g sinφ

and rs ≈ r in Eq. (168b). Hence the time derivative of the sideslip angle yields

β̇m =
1

VT

(
g sinφ− aym

)
− r. (179)

176

The thrust force components in Eq. (178) can also be neglected along the same reason

discussed above. Assuming that the cross-wind force component Cw in Eq. (168b) is

related to the body force component YA by Cw ∼= −YA, it follows from Eq. (169b)

that the sideslip angle is obtained from the accelerometer output and the aircraft

states using the following relation

βm = − 1

Cyβ

(m
q̄S
aym + Cyδr δr +

b

2VT

(
Cypp+ Cyrr

))
. (180)

The estimates of the angle of attack and the sideslip angle are then computed from

Eqs. (176),(177),(179) and (180) using the complementary filters, as illustrated in

Fig. 79.

C.3 Identification for Aerodynamic Force/Moment Coeffi-

cients

In this section, the stability and control derivatives of the UAV are identified from

the actual flight test data. In contrast to the discussion in Section C.1.1, the aero-

dynamic coefficients with respect to the body-axes system will be dealt with in the

following formulation due to the fact that measurements are obtained via body-fixed

inertial sensors. As discussed already, these coefficients are assumed to be linear in

terms of each contributing component, so a linear parameterization is adopted as the

identification model structure.

C.3.1 A linear parameterization

The measurements for model identification are provided by the on-board sensor suite.

Among these sensors, accelerometers and rate gyros capture the dynamic behavior of

the UAV, which yields the aerodynamic force coefficients expressed in the body axes

as follows,

CX =
m

q̄S
axm −

T

q̄S
, CY =

m

q̄S
aym, CZ =

m

q̄S
azm. (181)

177

where the thrust force was assumed to be only exerted along the body x-axis and is

modeled as a function of the rotating speed of the propeller and the forward flight

speed as discussed in Section C.1.4, as follws

T = f(ρ, Ω, VT). (182)

The aerodynamic moment coefficients are obtained as follows

C` =
L̄

q̄Sb
, Cm =

M

q̄Sc̄
, Cn =

N

q̄Sb
, (183)

where L̄, M and N are calculated from Eqs. (164a), (164b) and (164c) using the

body rate measurements ω = [p q r]T and the corresponding numerical differentiation

ω̇ = [ṗ q̇ ṙ]T.

A linear regression model structure was opted for by taking into account the decou-

pled longitudinal and lateral dynamics of the aircraft. Hence, decoupled longitudinal

and lateral derivatives are associated with each aerodynamic coefficient as follows,

CX = Cx0
+ Cxαα + Cxq

c̄

2VT
q + Cxδeδe (184a)

CY = Cy0 + Cyββ + Cyp
b

2VT
p+ Cyr

b

2VT
r + Cyδaδa + Cyδr δr (184b)

CZ = Cz0 + Czαα+ Czq
c̄

2VT
q + Czδeδe (184c)

C` = C`0 + C`ββ + C`p
b

2VT
p+ C`r

b

2VT
r + C`δaδa + C`δr δr (184d)

Cm = Cm0
+ Cmαα + Cmq

c̄

2VT
q + Cmδeδe (184e)

Cn = Cn0
+ Cnββ + Cnp

b

2VT
p+ Cnr

b

2VT
r + Cnδaδa + Cnδr δr (184f)

The stability and control derivatives are unknown parameters to be identified, so

the model structure in Eqs. 184 yields the following linear parameterization for each

aerodynamic coefficient,

z = θTx, (185)

where, z is a measurement scalar and can be obtained from Eq. (181) or (183) for

each aerodynamic coefficient, θ is a unknown parameter vector, and x is a regressor

178

matrix of which entries are comprised of the measurements from sensors along with

the right-hand-side of Eqs. (184).

The problem of batch identification is to find θ that satisfies Eq. (185). A best fit

is obtained using a batch process utilizing a set of measurements z(k) and x(k)T as

follows

X =

x(1)T

x(2)T

...

x(n)T

, z =

z(1)

z(2)

...

z(n)

. (186)

The best fit is obtained from the least-square optimization problem,

min
θ
‖z−Xθ‖2, (187)

whose solution is

θ̂ = (XTX)−1Xz. (188)

C.3.2 Identification from flight test data

Flight test data were collected during maneuvers initiated from a trim condition of

steady and straight level flight by exciting each control surface. Doublet-like open-

loop commands to each control surface were issued by a remote pilot for each case.

Upon the assumption of decoupled longitudinal and lateral dynamics, the aileron or

rudder doublets were executed for identifying the lateral coefficients (CY , C`, and Cn)

whereas the elevator doublet commands were executed for identifying the longitudinal

coefficients (Cm, CX , and CZ). The sensor measurements were sampled at 20 [Hz] and

were processed a posteriori to remove measurement noises or biases. For estimating

the aerodynamic angles and attitude angles for building the regressor matrices, the

estimation filters which were discussed in Section C.2 and Appendix B were utilized

for off-line calculation of those variables.

Two typical sets of measured (or estimated) states for longitudinal and lateral

179

identification are shown in Figs. 80 and 81. The initial regression models given in

Eq. (184) were first attempted for each identification, however, after several trials it

was realized that slight modifications on the regression model structures in Eq. (184)

result in better identification results. The modified regression model is then rear-

ranged as follows,

CX = Cx0
+ Cxq

c̄

2VT
q + Cxδeδe, (189a)

CY = Cy0 + Cyββ + Cyp
b

2VT
p+ Cyr

b

2VT
r, (189b)

CZ = Cz0 + Czαα + Czα̇
c̄

2VT
α̇+ Czq

c̄

2VT
q, (189c)

C` = C`0 + C`ββ + C`p
b

2VT
p+ C`δaδa, (189d)

Cm = Cm0
+ Cmαα + Cmα̇

c̄

2VT
α̇ + Cmq

c̄

2VT
q + Cmδe δe, (189e)

Cn = Cn0
+ Cnββ + Cnp

b

2VT
p+ Cnr

b

2VT
r + Cnδaδa + Cnδr δr. (189f)

Several data sets have been selected for each identification process to assure the

correctness of the results. Subsequently, the identified parameters are found to be

consistent in each case within a reasonable bound of the estimation error. The iden-

tified parameter estimates for longitudinal coefficients are shown in Tables 14-16.

Note that the error value given inside the brackets represents the 1-σ standard devi-

ation of the estimation error which provides the confidence interval of the estimate.

The longitudinal coefficients result mostly in good agreement as the numerical mod-

els were validated against experiment data taken from different maneuvers shown in

Figs. 82-84. Tables 17-19 summarize the identified parameter estimates for lateral

coefficients.

C.4 Hardware in the Loop Simulation Development

This section describes the details of developing a realistic simulation environment

based on Matlab/ Simulinkr. A complete 6-DOF nonlinear aircraft model with a

180

326 328 330 332 334 336 338
−8

−6

−4

−2

0

2

4

6

8

Time [sec]

E
le

va
to

r
[d

eg
]

(a) Elevator command

326 328 330 332 334 336 338
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time [sec]

N
or

m
al

 a
cc

el
er

at
io

n
[g

ra
vi

ty
]

(b) Normal acceleration

326 328 330 332 334 336 338
−6

−5

−4

−3

−2

−1

0

1

2

3

4

Time [sec]

A
O

A
 [d

eg
]

(c) Angle of attach

326 328 330 332 334 336 338
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [sec]

P
itc

h
an

gl
e

[d
eg

]

(d) Pitch angle

326 328 330 332 334 336 338
−40

−30

−20

−10

0

10

20

30

40

Time [sec]

P
itc

h
ra

te
 [d

eg
/s

ec
]

(e) Pitch rate

326 328 330 332 334 336 338
21

22

23

24

25

26

27

28

29

Time [sec]

A
ir

sp
ee

d
[m

/s
ec

]

(f) Air speed

Figure 80: Measured state variables during a longitudinal maneuver.

181

3800 3802 3804 3806 3808 3810 3812 3814 3816
−8

−6

−4

−2

0

2

4

6

Time [sec]

A
ile

ro
n

[d
eg

]

(a) Aileron command

3800 3802 3804 3806 3808 3810 3812 3814 3816
−6

−4

−2

0

2

4

6

8

Time [sec]

R
ud

de
r

[d
eg

]

(b) Rudder command

3800 3802 3804 3806 3808 3810 3812 3814 3816
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Time [sec]

A
O

S
 [d

eg
]

(c) Sideslip angle

3800 3802 3804 3806 3808 3810 3812 3814 3816
−60

−40

−20

0

20

40

60

80

Time [sec]

R
ol

l r
at

e
[d

eg
/s

ec
]

(d) Roll rate

3800 3802 3804 3806 3808 3810 3812 3814 3816
−50

−40

−30

−20

−10

0

10

20

30

40

50

Time [sec]

Y
aw

 r
at

e
[d

eg
/s

ec
]

(e) Yaw rate

3800 3802 3804 3806 3808 3810 3812 3814 3816
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time [sec]

S
id

e
ac

ce
le

ra
tio

n
[g

ra
vi

ty
]

(f) Side acceleration

Figure 81: Measured state variables during a lateral maneuver.

182

Table 14: Body x-axis aerodynamic force coefficient (CX) identification results.

Estimates [Error, %] Cx0
Cxq Cxδe

Case 1 -9.441e-3 [3.1] -13.64 [7.9] -0.5413 [7.4]
Case 2 -9.576e-3 [3.1] -14.66 [5.6] -0.6207 [4.7]
Case 3 -7.331e-3 [6.1] -19.46 [7.4] -0.8219 [6.2]
Case 4 7.348e-3 [6.2] -15.34 [6.3] -0.6543 [5.3]
Case 5 -7.747e-3 [5.6] -17.38 [5.7] -0.7881 [4.7]

364 366 368 370 372 374 376 378
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time [sec]

C
X

Measured
:Model

Figure 82: Validation for the force coefficient CX .

Table 15: Body z-axis aerodynamic force coefficient (CZ) identification results.

Estimates [Error, %] Cz0 Czα Czq Czα̇
Case 1 -0.2522 [2.3] -2.746 [8.0] -42.03 [9.0] 81.3 [4.9]
Case 2 -0.2588 [1.4] -2.874 [5.9] -43.94 [7.4] 77.91 [4.7]
Case 3 -0.2670 [1.2] -2.848 [4.6] -43.86 [5.7] 63.4 [4.7]
Case 4 -0.2309 [3.0] -2.561 [9.3] -49.08 [9.3] 64.67 [8.9]
Case 5 -0.2609 [1.4] -3.173 [5.2] -45.84 [8.6] 72.71 [5.9]

183

866 868 870 872 874 876 878
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Time [sec]

C
Z

Measured
:Model

Figure 83: Validation for the force coefficient CZ .

Table 16: Body y-axis aerodynamic moment coefficient (Cm) identification results.

Estimates [Error, %] Cm0
Cmα

Cmq
Cmα̇

Cmδe

Case 1 -1.09e-3 [13.1] -0.1963 [5.1] -3.962 [13.1] 4.941 [4.6] -0.2639 [7.4]
Case 2 -1.58e-3 [12.6] -0.2073 [6.6] -3.758 [17.6] 5.069 [6.0] -0.2442 [9.8]
Case 3 -2.15e-3 [14.7] -0.2757 [6.4] -2.664 [18] 4.281 [8.2] -0.2063 [7.2]
Case 4 -1.46e-3 [28.3] -0.2636 [6.0] -4.323 [14.7] 5.224 [5.4] -0.244 [6.3]
Case 5 -5.80e-4 [104.8] -0.1976 [9.6] -4.567 [19.5] 5.747 [6.2] -0.2086 [11.2]

Table 17: Body y-axis aerodynamic force coefficient (CY) identification results.

Estimates [Error, %] Cy0 Cyβ Cyp Cyr
Case 1 -2.645e-2 [2.8] -0.1275 [5.7] 1.144 [10.1] 1.039 [10.2]
Case 2 -2.946e-2 [1.9] -0.1485 [4.7] 0.5335 [14.0] 0.8015 [12.5]
Case 3 -2.566e-2 [3.6] -0.1825 [3.7] 0.6247 [18.6] 0.7222 [15.4]
Case 4 -2.597e-2 [4.5] -0.1634 [5.2] 1.151 [16.1] 0.8016 [16.4]
Case 5 -2.786e-2 [3.3] -0.1561 [4.5] 1.036 [11.7] 0.8627 [15.2]

184

3072 3074 3076 3078 3080 3082 3084 3086
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time [sec]

C
m

Measured
:Model

Figure 84: Validation for the moment coefficient Cm.

Table 18: Body x-axis aerodynamic moment coefficient (C`) identification results.

Estimates [Error, %] C`0 C`β C`p C`δa
Case 1 -3.652e-4 [10.1] -1.305e-2 [4.9] -1.239e-2 [36.7] -1.362e-2 [15.2]
Case 2 -2.629e-4 [17.2] -9.19e-3 [8.2] -2.566e-2 [25.5] -1.517e-2 [18.5]
Case 3 3.90e-4 [11.9] -7.61e-3 [6.6] -3.499e-2 [19.1] -1.752e-2 [16.8]

Table 19: Body z-axis aerodynamic moment coefficient (Cn) identification results.

Estimates [Error, %] Cn0
Cnβ Cnp

Case 1 -7.571e-4 [11.1] 1.179e-2 [9.4] -6.768e-2 [15.2]
Case 2 2.180e-4 [31.4] 5.986e-3 [16.7] -0.1077 [10.5]
Case 3 -3.244e-4 [24.9] 1.029e-2 [13.7] -3.968e-2 [27.1]
Case 4 1.822e-4 [53.3] 1.005e-2 [13.9] -9.096e-2 [15.7]

Estimates [Error, %] Cnr Cnδa Cnδr
Case 1 -0.1322 [12.3] -3.065e-2 [14.3] -5.691e-2 [9.1]
Case 2 -6.577e-2 [22.5] -4.902e-2 [10.2] -4.107e-2 [11.9]
Case 3 -8.447e-2 [20.6] -1.712e-2 [26.8] -3.841e-2 [14.6]
Case 4 -9.061e-2 [17.3] -4.827e-2 [13.0] -5.221e-2 [10.5]

185

linear approximation of the aerodynamic forces and moments is used to simulate

realistic dynamic behavior of the aircraft. The nonlinear aircraft model also involves

the detail modeling of subsystems such as sensors and actuators using experimental

data. In addition, the external pilot command input and the flight visualization

enable the simulation to be used as a virtual flight test.

The actual autopilot hardware is placed inside the simulation loop in order to test

and validate both the hardware and the on-board software. Four independent com-

puter systems were used in the hardware-in-the-loop (HIL) simulation as illustrated

in Fig. 85: the 6-DOF simulator, the flight visualization computer, the autopilot

micro-controller, and the ground station computer console. A detail description for

this setup is given below.

Computer

Wireless RF Modem

HIL Bridge
(RS232)
BinaryStates

Control

autopilot

Visualization
(UDP)

Flight
Dynamics
Simulator

Flight
Dynamics

Visualization
RC to
USB

Adpator

900MHz
Wireless
Binary

Ground
Station

;FlightGear v1.9
;Cockpit view

;Matlab/Simulink
;6DOF nonlinear model
;Real-time simulation
;Remote pilot switching

;Flight control executable
- Inner/Outer loop controller
;Sensor data processing (20Hz)
;Communication to GS ;Ground station GUI

;Communication to autopilot
;Data logging / monitoring
;High-level controller

;RS232 Simulink library
;Real-time Simulink execution
;Bi-directional communication

Figure 85: High fidelity hardware-in-the-loop (HIL) simulation environment.

C.4.1 A 6-DOF simulator

A full 6-DOF nonlinear model for the aircraft was built in Matlab/Simulinkr envi-

ronment. The 12 states differential equations of motion in Eqs. (163)-(166) are uti-

lized in conjunction with an approximation of the aerodynamic forces and moments

via component buildup. The stability and control derivatives are either obtained in

186

the manner as discussed in Section C.1.2 or Section C.3. The stability and control

derivatives from the geometry of the aircraft can be chosen during the early phase

of development, however, once these derivatives have been identified experimentally,

the identified values are used for realistic simulation results. The 6-DOF nonlinear

model becomes more realistic by employing a standard atmospheric model, an Earth

and gravity model (WGS-84), and an Earth magnetic field model[144]. The output

states from the simulator are processed to emulate real sensors accounting for sensor

latency, random walk bias, and measurement noise. After digitized according to the

word size of the micro-controller (12 bit, 4096 steps), the sensor values are transmit-

ted to the autopilot via a serial communication. In a similar manner, the navigation

states are processed for data latency and measurement noise and encapsulated in a

binary GPS packet identical to the actual GPS sensor output. This packet is also

transmitted to the autopilot at low update rate (1 Hz) via the serial communication.

In the HIL environment, the autopilot functions identically as in a real flight test,

while computing control commands to each control actuator. These commands are

sent back to the 6-DOF simulator in order to drive the actuator model of the control

surface. Each control surface was modeled as a first order system with a rate limiter

and saturation limit, whose parameters were identified experimentally. Consequently,

a simulation loop is formed between the 6-DOF simulator (software) and the autopilot

(hardware) exchanging the simulated data back and forth.

C.4.2 User interface

An R/C transmitter is connected to the 6-DOF simulator for recording remote pilot

stick commands: Four channels for control surface commands (δa, δe, δt and δr) and

two auxiliary commands for toggling between autonomous control mode and remote

pilot mode. The remote pilot stick commands can override the autopilot control

command at any time by switching the commands to the actuator models at user’s

187

choice. In this case, a simulation for an open loop maneuver can be conducted along

the remote pilot input to validate the dynamic characteristic of the aircraft model.

In order to visualize the simulation, we adopted the use of FlighGear[1], an open-

source flight simulator for a visualization tool. The FlightGear is a flight simulator

framework, which has been widely used in various research environment[107, 127, 36,

133]. Although it provides a total simulation environment in conjunction with the

internal flight dynamics models, we used the FlightGear as a visualization tool com-

bining with the 6-DOF simulator already developed. By doing this, the FlightGear

receives the simulated states from the simulator at a fixed update rate to constantly

refresh the virtual scenes that have been generated along the user’s convenient view

angles.

The ability to record the pilot stick command with visualizing via the FlightGear

allows the simulation environment to replace a real experiment to save time and effort.

An open loop behavior of the UAV can be tested and validated by a remote pilot via

the user friendly input device, and the closed loop control performance can be verified

and demonstrated by conducting virtual experiments in advance to the real flight test.

Figure 86 shows a computer screen shot taken during the HIL simulation visualizing

the dynamic behavior of the UAV, while displaying the corresponding state variables

in the scopes.

C.4.3 Data communication and synchronization

The 6-DOF simulator exchanges the sensor and control command signals with the

autopilot via a serial communication between the two. The sensor output data in-

clude 16 different sensor outputs from rate gyros, accelerometers, magnetometers,

and etc., and are packed into a custom-designed binary packet. The binary packet

begins with a designated header to distinguish between different packets and ends

by a trailer for data consistency check. The serial communication is configured for a

188

Figure 86: Hardware-in-the-loop simulation screen shot

baud rate 115200 bps, which allows communicating by transmitting the sensor packet

of 39 bytes at 20 Hz as well as the GPS packet of 54 bytes at 1 Hz update rate. The

control command data from the autopilot are composed of four PWM commands

for each actuator, resulting in a binary packet of 11 bytes in length associated with

header and trailer to be transmitted at 20 Hz update rate. The HIL bridge shown

in Fig. 86 was then incorporated into the 6-DOF Simulink model to handle the bidi-

rectional communication with a help of the serial communication block toolbox[82].

In addition, a dedicated S-function block is utilized to send simulated output to the

FlightGear[144]. The S-function block bundles the simulated data with a user defined

protocol (UDP) for small size of a data packet to ensure less communication overhead

over the network. Real time visualization is then made possible unless the network

latency is significant. To minimize the network latency, one should locate two hosts

189

(for 6-DOF simulation and 3-D visualization) within a local area network (LAN),

or if the computer resources permits one can configure to use a single computer for

visualizing and running the 6-DOF simulation on the same machine.

Because the multiple systems are involved in the HIL simulation, it is all important

to keep the execution timing among these systems properly synchronized during the

entire simulation period for data compatibility among them. Besides, a real-time

execution is necessary for the simulation to be in accord with the pilot input and the

visualization at correct time step. Although the 6-DOF simulator was written in a

Simulink model running at non real-time, a real time execution was accomplished by

utilizing the Realtime block toolbox[83] in the simulation. This toolbox is based on

the simple concept that if the current hardware cycle time is lower than the desired

simulation step time, the block simply hold the current execution until the desired

time step is triggered. For a real time simulation, the basic simulation time step of

the 6-DOF simulator is carefully chosen at 100 [Hz] taking into consideration both

the computational overhead and the faithful simulation results for accurate dynamic

characteristics of the UAV. A different sampling rate at 20 [Hz] was utilized for the

serial communication block and the FlightGear S-function block. The synchronization

of the data was implicitly dealt with in a manner that the main simulation loop of

the 6-DOF simulator polls each communication block at a fixed interval during the

simulation, whereas the autopilot and the FlightGear receive the packets passively.

C.5 Summary

A hardware-in-the-loop simulation environment has been built to validate hardware

and software development of the autopilot for a small UAV. A full 6-DOF nonlin-

ear dynamic model has been used in conjunction with the linear approximation of

the aerodynamic forces and moments. A batch parameter identification method has

been used to determine the stability and control derivatives of the UAV using flight

190

test data. Detailed models for the sensors and actuators were incorporated in the

simulation along with the capability of real-time 3-D visualization and external pilot

interface. The hardware-in-the-loop simulation is an indispensable tool for perform-

ing simulated flight tests in support of avionics development and validation of control

laws for small UAVs with minimal cost and effort.

191

APPENDIX D

DESIGN OF INNER CONTROL LOOPS

D.1 Decoupled linear model

For the design purpose of inner loop controls of the UAV, we employ a decoupled lin-

ear model, which has been built from stability and control derivatives. The stability

and control derivatives of the UAV utilized in this research have been experimen-

tally identified through the approach described in Appendix C. The resulting linear

model is composed of two linear systems which describe the longitudinal and lateral

dynamics of the UAV:

Longitudinal dynamics

ẋLong = ALongxLong +BLonguLong, (190)

where the state vector xLong and the control input uLong are defined by

xLong = [∆α ∆q ∆vT ∆θ]T, uLong = [∆δe ∆δt]
T,

and the symbol ∆ denotes a perturbed representation of the corresponding variables.

The system matrices were obtained from the stability and control derivatives,

ALong =

−7.1264 0.9497 −0.0485 0.0

−122.8676 −4.2920 −0.0261 0.0

4.1512 −0.0398 −0.1935 −9.81

0 1.0000 0.0 0.0

, (191a)

BLong =

−0.2953 −0.0174

−83.4069 0.8221

−1.3732 6.1044

0.0 0

. (191b)

192

Lateral dynamics

ẋLat = ALatxLat +BLatuLat, (192)

where the state vector xLat and the control input uLat are defined by

xLat = [∆β ∆φ ∆p ∆r]T, uLat = [∆δa ∆δr]
T,

and the system matrices were obtained from the identified stability and control deriva-

tives as follows,

ALat =

−0.3301 0.4897 0.0570 −0.9939

0.0 0.0 1.0 0.0570

−35.4688 0.0 −16.8528 0.1524

2.7315 0.0 −1.1105 −0.5340

, (193a)

BLat =

0.0 0.1494

0.0 0

−182.2395 9.2613

−9.4423 −7.7841

. (193b)

The servo actuators were modeled as first-order systems with a corner frequency

of 10 [rad/sec] as identified experimentally. By convention, the positive control sur-

face deflections are supposed to generate negative aerodynamic moments about each

corresponding axis (roll moment by aileron, pitch moment by elevator, and yaw mo-

ment by rudder). In order to use a negative feedback structure of the classical control

design method, we define different control inputs ua, ue, and ur for aileron, elevator,

and rudder, respectively. Subsequently, we take into account not only the actuator

dynamics but also the sign convention of control inputs to come up with the actuator

193

models as follows,

∆δa = −10
s+10

∆ua, (194a)

∆δe = −10
s+10

∆ue, (194b)

∆δt = 10
s+10

∆ut, (194c)

∆δr = −10
s+10

∆ur. (194d)

D.2 Longitudinal controllers design

In this section, we describe a detail design of inner loop controllers for the longitudinal

dynamics of the UAV. The longitudinal controllers comprise a pitch controller and a

speed controller, which calculate the elevator command input (∆ue) and the throttle

command input (∆ut), respectively.

D.2.1 Pitch controller

We design the pitch controller starting from a pitch damper. The open-loop transfer

function from the elevator command input (∆ue) to the pitch rate (∆q) is obtained

from Eqs. (191) and (194b) as follows,

∆q

∆ue
=

834.07s(s+ 6.645)(s+ 0.2394)

(s+ 10)(s+ 5.721± 10.706i)(s+ 0.085± 0.6141i)
, (195)

which reveals the natural frequency of the phugoid mode is 0.6199 [rad/sec] (damping

ratio is 0.1371) and the natural frequency of the short period mode is 12.1391 [rad/sec]

(damping ratio is 0.4713). It also shows the natural frequency of the servo actuator

by 10 [rad/sec] (damping ratio is 1.0). Figure 87 shows a root locus plot of this

transfer function with a unity negative feedback of the pitch rate with a positive

gain kq, which shows that the short period poles get poorly damped as kq increases

towards infinity. In order to improve the damping characteristics of the short period

mode, a lead compensator is added in the feedback path with a compensator pole of

s = −16 to minimize the influence of the compensator pole on the open loop plant.

194

−16 −14 −12 −10 −8 −6 −4 −2 0
−60

−40

−20

0

20

40

60
Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

Figure 87: Root locus plot of the transfer function in Eq. (195) with a unity negative
feedback of the pitch rate ∆q with the positive gain kq. As the gain increases, the
short period mode gets poorly damped.

The pole/zero ratio is carefully chosen by eight, hence the compensator is given by

Gq(s) = kq
s + 2

s+ 16
, (196)

where the compensator gain is chosen kq = 0.101 in order for the short period mode

damping to be close to the critical damping ratio. The closed loop transfer function

from a commanded pitch rate (∆qr) to the pitch rate (∆q) after closing the lead

compensator is calculated as follows,

∆q

∆qr
=

834.07s(s+ 16)(s+ 0.2394)(s+ 6.645)

(s+ 9.145± 12.196i)(s+ 9.578± 3.844i)(s+ 0.083± 0.599i)
. (197)

Figure 88 shows the root locus plot incorporating the designed lead compensator in

the feedback path. With the lead compensator, the phugoid mode does not change

much, yet the short period mode become properly damped as resulting in the natural

frequency of 15.2441 [rad/sec] and the damping ratio of 0.6.

Having designed the pitch damper, we design a pitch attitude controller that forms

an outer loop of the system given in Eq. (197). To this end, a transfer function from

195

−16 −14 −12 −10 −8 −6 −4 −2 0
−60

−40

−20

0

20

40

60
Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

Figure 88: Root locus plot of the closed-loop system incorporating the lead compen-
sator of the pitch rate. The closed-loop poles and zeros are shown, and the squares
represent the location of the poles at kq = 0.101.

the commanded pitch rate (∆qr) to the pitch angle (∆θ) is obtained by

∆θ

∆qr
=

834.07(s+ 16)(s+ 0.2394)(s+ 6.645)

(s+ 9.145± 12.196i)(s+ 9.578± 3.844i)(s+ 0.083± 0.599i)
. (198)

The transfer function appears to be a Type-0 system that has no integrator pole in

the characteristic equation. Hence, in order to remove a steady state error of the

pitch angle we design a proportional integral (PI) controller. The PI controller with

the zero located at s = −1.73 is given as follows,

Gθ(s) = kθ
s+ 1.73

s
, (199)

yields the phugoid poles are located at s ≈ −1.6 ± 1.9i of the closed-loop system

with the proportional gain kθ = 0.855, which provides a critical damping of phugoid

mode (see Fig. 89(b) for the root locus plot of the closed-loop system). Figure 89(a)

shows the entire root locus plot of the closed-loop system, where the short period

poles are also properly damped. In addition, the Bode plot of the closed-loop system

is displayed in Fig. 90, which shows that the closed-loop system has the gain margin

of 12.4 [dB] and the phase margin of 51.6 [deg].

196

−35 −30 −25 −20 −15 −10 −5 0 5 10 15
−30

−20

−10

0

10

20

30
Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

(a) Entire display of the root locus plot of the closed-loop system.

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5

−3

−2

−1

0

1

2

3

Root Locus Editor (C)

Real Axis

Im
ag

 A
xis

(b) Magnified display of the root locus plot showing the phugoid poles
around the origin.

Figure 89: Root locus plot of the closed-loop system with the pitch angle PI con-
troller as kθ varies. The squares represent the closed-loop poles at kθ = 0.855.

197

10
−2

10
−1

10
0

10
1

10
2

10
3

−270

−225

−180

−135

−90

−45

0

P.M.: 51.4 deg
Freq: 3.69 rad/sec

Frequency (rad/sec)

P
ha

se
 (

de
g)

−120

−100

−80

−60

−40

−20

0

20

40

60

G.M.: 12.6 dB
Freq: 13.7 rad/sec
Stable loop

Open−Loop Bode Editor (C)

M
ag

ni
tu

de
 (

dB
)

Figure 90: Bode plot of the closed-loop system with the pitch angle PI controller.

The final closed-loop transfer function from the pitch angle reference command

(∆θr) to the pitch angle (∆θ) becomes,

∆θ

∆θr
=

713.13(s+ 0.24)(s+ 1.73)(s+ 6.65)(s+ 16)

(s+ 0.22)(s+ 1.67± 1.94i)(s+ 6.41± 10.01i)(s+ 10.62± 6.42i)
, (200)

which reveals that the natural frequency of the phugoid mode ends up with 2.5539

[rad/sec] (damping ratio 0.6541), and the natural frequency of the short period mode

becomes 11.8813 [rad/sec] (damping ratio 0.5392). Figure 91 illustrates the final

implementation of the pitch attitude controller including the pitch damper. The

proportional term of the PI controller is fed from the feedforward signal ∆θe as drawn

by a dashed line and is added together with integral term. A step response of the

closed-loop system by a unit pitch reference command is shown by a dashed line in

Fig. 92. The performance of the PI controller is given by an overshoot 120% and a

zero steady state error with the settling time of 2.9 [sec].

By the PI implementation discussed above, the integrator pole of the controller

introduces an additional zero in the closed-loop system. Excessive overshoot arises

198

- - -

+

∆h

∆θ

∆q
Plant

Gq(s)

∆δe∆ue∆qr −10
s+10kθ

1.73
s

∆θr ∆θe

Figure 91: Block diagram of the closed-loop pitch angle controller. The dashed
line denotes the original PI controller implementation, whereas the dashed-dot line
denotes an alternative PI implementation with closed-loop zero removed.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [sec]

T
he

ta
 [r

ad
]

: Original PI
: Closed loop zero removed

Figure 92: Step response of the closed-loop system by a unit pitch reference com-
mand.

199

from this closed-loop zero, thus degrading the overall performance (see Fig.92 for the

dashed response). On the other hand, an alternative PI implementation which does

not induce a closed-loop zero can be incorporated in the manner that the proportional

term of the PI is fed from the feedback signal of ∆θ[137] as shown in Fig. 91 by a

dashed-dot line. By this implementation, it is easy to verify that the characteristic

equation of the closed-loop remains same, while the zero induced from the integrator

pole is removed from the closed-loop system. The step response of this implementation

is shown in Fig. 92, where the overshoot of the step response is reduced at the cost

of slow rise time while attaining approximately same settling time. Consequently,

since the latter PI implementation (no closed-loop zero) results in the tight control

bound with a smooth transition, it is likely to be a better choice for the actual

implementation.

D.2.2 Altitude Controller

After closing the inner loop pitch controllers discussed in the previous section, we

obtain an open-loop plant for the purpose of altitude controller design. Incorporating

the PI controller implementation that removes the closed-loop zero, we obtain a

transfer function from the pitch reference angle command (∆θr) to the altitude (∆h)

as follows,

∆h

∆θr
=

−87.37(s+ 0.14)(s+ 16)(s+ 39.42)(s− 49.59)

s(s+ 0.20)(s+ 1.76± 1.93i)(s+ 6.44± 9.95i)(s+ 10.51± 6.61i)
. (201)

It follows from Eq. (201) that due to a non-minimum zero in the transfer function,

it is anticipated that an excessive proportional feedback gain might cause instability

of the system. Hence, in order to improve the performance of the transient response

while ensuring the stability of the system, a lead compensator is adopted as follows,

GhL(s) = 0.3
s+ 2.5

s+ 20
, (202)

which results in the gain margin 13.1 [dB] and the phase margin 79.8 [deg] of the

closed-loop system. The lead compensator improves the transient response, however,

200

it reduces the low frequency gain by -27 dB. As a result, a steady-state error to a

unit ramp input will grow accordingly. In order to boost the low frequency gain and

thus reduce the steady-state error, a PI compensator is adopted, albeit it adds small

phase lag in the higher frequency range, as follows

Gh(s) = kh
(s+ 0.495)

s
, (203)

where the proportional gain of the PI controller is chosen kh = 1.22.

Figure 94 is the root locus plot of the altitude feedback using the lead and the

PI compensators as kh varies. With the chosen gain kh = 1.22, the final closed-loop

transfer function from the altitude reference command (∆hr) to the altitude (∆h)

yields,

∆h

∆hr
=

−31.98(s + 0.14)(s + 0.495)(s + 2.5)(s + 16)(s + 39.42)(s − 49.59)

s(s + 0.15)(s + 0.54 ± 0.51i)(s + 1.0± 1.96i)(s + 6.49± 10.14i)(s + 10.71 ± 6.49i)(s + 19.99)
,

(204)

where the phugoid poles are located at s = −0.54 ± 0.51i, which gives the natural

frequency of 0.742 [rad/sec] with the damping ratio of 0.731. The gain and phase

margin plot of the closed-loop system is shown in Fig. 93, giving the margins by 9.31

[dB] and 45 [deg], respectively. From the step response shown in Fig. 95, the closed-

loop system has a fast rise time but an undesirable overshoot. It follows from the

arguments in the previous section, the excessive overshoot is caused by the induced

closed-loop zero due to the PI controller. This overshoot is then relaxed by imple-

menting the other PI controller, where the altitude signal is fed back before/after the

the integrator block. The closed-loop system ends up with the same closed-loop char-

acteristic equations yet the closed-loop zero removed. Hence, as shown in Fig. 95, the

overshoot performance is improved by 110% compared to 130% with no closed-loop

zero removal, by sacrificing the transient performance with the increased rise time

about 2.5 [sec].

201

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−180

0

180

360

P.M.: 45.2 deg
Freq: 1.01 rad/sec

Frequency (rad/sec)

P
ha

se
 (

de
g)

−300

−250

−200

−150

−100

−50

0

50

100

G.M.: 9.72 dB
Freq: 2.77 rad/sec
Stable loop

Open−Loop Bode Editor (C)

M
ag

ni
tu

de
 (

dB
)

Figure 93: Bode plot of the closed-loop system with the lead compensator.

D.2.3 Integrator antiwindup

The altitude controller computes the pitch reference command for the inner loop

pitch angle controller. In order to prevent the reference command from exceeding the

acceptable range of the pitch controller, we put a saturation block after the altitude

controller. The saturation limit for the pitch reference is chosen as |∆θcmax
| < 30

[deg], thus the actual pitch angle of the vehicle is controlled within a linear region

of operation. Because we introduced a voluntary saturation limit to the output of

the altitude controller, the integral control action of the altitude controller might

be saturated whenever a large altitude error occurs. Subsequently, the accumulated

integral error terms cannot be removed until when the altitude error gets small,

resulting in a substantial overshoot.

The solution to this problem is the integrator antiwindup, which turns off the

integral action as soon as the saturation occurs. Figure 96 illustrates a block diagram

that implements the integrator antiwindup technique using a nonlinearity. As soon

202

−40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

10

20

30

40

50
Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

(a) Entire display of the root locus plot of the altitude closed-loop
system.

−5 −4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3
Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

(b) Magnified display of the root locus plot showing the phugoid poles
around the origin.

Figure 94: Root locus plot of the closed-loop system using a lead and PI compen-
sators as kh varies. The squares represent the closed-loop poles at kh = 1.22.

203

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [sec]

A
lti

tu
de

 [m
et

er
]

: Closed−loop zero removed
: Closed−loop zero

Figure 95: Step response of the closed-loop system by a unit altitude reference
command.

as the saturation occurs, the feedback loop around the integrator reacts rapidly to

keep e1 at zero. The antiwindup gain Ka should be chosen to be large enough so

that the antiwindup circuit is capable of following e while keeping the output from

saturating.

-

+

-

+++
uc ue1e

K
TI
s

Ka

Figure 96: Integrator antiwindup technique with a single saturation nonlinearity.

Figure 97 shows the entire block diagram of the closed-loop altitude controller

incorporating the integrator antiwindup scheme. Figure 98 shows the step response of

the closed-loop system with/without the antiwindup scheme. It should be noted that

the altitude controller implemented with the antiwindup element has substantially

204

- - -

+

-

+

-- -

++

h

θ
q

Plant

Gq

δeueqr −10
s+10kθ

1.73
s

θr θe

kh

0.495
s

ka

hr
GhL

Figure 97: Block diagram of the final closed-loop altitude controller.

0 5 10 15 20 25 30 35 40 45 50
−10

0

10

20

30

40

50

60

70

80

Time [sec]

A
lti

tu
de

 [m
et

er
]

: Non Anti−windup
: Anti−windup

Figure 98: Step response of the closed-loop system with the altitude controller,
comparing the cases of with/without antiwindup scheme.

less overshoot compared to the response of the original PI controller implementation.

D.2.4 Airspeed controller

An open-loop transfer function from the throttle command input (∆ut) to the airspeed

(∆VT) is obtained including the actuator dynamics using Eqs. (191) and (194c) as

follows,

∆VT
∆ut

=
61.0413(s+ 0.07)(s+ 5.67± 10.75i)

(s+ 10)(s+ 0.09± 0.64i)(s+ 5.72± 10.71i)
. (205)

205

−15 −10 −5 0 5
−8

−6

−4

−2

0

2

4

6

8
Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

Figure 99: Root locus plot of the simplified speed control plant

Since the short period mode poles appears to be located close to the complex zeros,

they could be cancelled out for the sake of simplicity. The simple transfer function is

then given,

∆VT
∆ut

=
61.0413(s+ 0.07)

(s+ 10)(s+ 0.09± 0.64i)
. (206)

As shown in the root locus plot (see Fig. 99), due to the zero close to the origin

(s = −0.07), the DC gain of the plant is relatively small,

Kp = lim
s→0

∆VT (s)

∆ut(s)
= 1.023, (207)

which results in a large steady state error 1/(1 + Kp) ≈ 0.5 when using the unity

negative feedback scheme. In order to reduce the steady state error while improving

the performance of the speed controller, a PI controller was adopted with PI zero at

s = −1.53,

GVT (s) = kVT
s+ 1.53

s
. (208)

Figure 100 shows the root locus plot of the closed-loop system with the airspeed

controller. The PI zero at s = −1.53 in conjunction with the chosen gain kVT = 0.773

206

−15 −10 −5 0 5
−8

−6

−4

−2

0

2

4

6

8
Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

Figure 100: Root locus plot of the closed-loop system incorporating the PI speed
controller. The closed-loop poles and zeros are shown, and the squares represent the
closed-loop poles at kVT = 0.773

pushes the conjugate poles around the origin to s = −1.92±2.13i to yield a damping

ratio of 0.671. Figure 101 shows the step response of closed-loop system with the

designed PI controller. The step response of the closed-loop system with the closed-

loop zero removal PI implementation is also shown in Fig. 101, as the overshoot

performance is improved at the cost of reduced rise time.

D.3 Lateral controllers design

In this section, we present a detail design of inner loop controllers for lateral-directional

dynamic motion of the UAV. The roll and yaw dynamics are not, in general, decou-

pled from each other, the augmented control system design in the sequel should be

incorporated with multivariable system analysis, for two control inputs of aileron and

rudder, and two or more lateral outputs.

207

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [sec]

S
pe

ed
 [m

/s
ec

]

: PI
: Zero removed

Figure 101: Step response of the closed-loop system by a unit speed reference
command.

D.3.1 Yaw damper

The purpose of the yaw damper is to use the rudder to generate a yawing moment

that opposes any yaw rate that builds up from the dutch roll mode. In a coordinated

steady-state turn where the yaw rate is non-zero constant, the use of the yaw damper

is found to be contradicting to the turn maneuver. A washout filter is used to com-

promise the tendency of turning and the yaw rate damping, by which the yaw rate

signal due to the coordinated turn is differentiated and vanishes during steady-state

turning condition. In contrast, the yaw rate signal due to the dutch-roll dynamics,

which is assumed to be relatively high-frequency, is utilized in the yaw damper to

suppress the dutch-roll mode. The wash out filter is given in the form of a first order

high pass filter as follow,

Gw(s) =
∆rw
∆r

=
τws

1 + τws
, (209)

where the time constant τw is determined by τw = 1.0 by taking into account the

natural frequency of the inherent dutch-roll mode of the UAV.

208

−8 −7 −6 −5 −4 −3 −2 −1 0 1

−3

−2

−1

0

1

2

3

4

Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

Figure 102: Root locus plot of the closed-loop system with the designed yaw washout
damper. The squares represent the closed-loop poles at kr = 0.27.

Figure 102 shows the root locus plot of the closed-loop system with the yaw

washout damper in the feedback path. The washout gain is chosen kr = 0.27, hence

the dominant dutch-roll poles end up with s = −1.0±1.55i with the damping ratio of

0.543. Figure 103 shows the performance of the yaw damper in conjunction with the

washout filter. The aileron doublet command is used to excite the dutch-roll motion,

and the yaw damper suppresses the residual roll rate effectively as well as the residual

yaw rate, from the roll and yaw dutch roll coupling.

D.3.2 Roll controllers

The roll controllers consist of the roll rate damper and the roll angle controller. The

roll-damping loop is less critical and is closed first. An open loop transfer function

from the aileron command input (∆ua) to the roll rate output (∆p) is obtained from

using Eqs. (193) and (194a) as follows,

∆p

∆ua
=

1822.4(s− 0.027)(s+ 0.449± 2.131i)

(s+ 0.064)(s+ 0.364± 2.465i)(s+ 10)(s+ 16.926)
, (210)

209

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

Time [sec]

R
ol

l r
at

e
[r

ad
/s

ec
]

: No washout
: Washout
Aileron Doublet

Figure 103: The effectiveness of the yaw damper to suppress the dutch roll mode
oscillation.

which reveals that the plant has a non-minimum phase zero, thus excessive gain will

lead to a unstable closed-loop pole. Figure 104 shows the root locus plot of the unity

feedback with positive roll damping gain kp, which indicates that a large gain will push

the spiral pole to the right half plane to end up with a unstable pole. Consequently,

the gain of the roll damper is chosen kp = 0.075 to make the closed-loop system

stable.

The closed-loop transfer function from the commanded roll rate (∆pr) to the roll

rate (∆p) after closing the roll damper is calculated as follows,

∆p

∆pr
=

1822.4(s− 0.027)(s+ 0.93± 0.97i)(s+ 5.02± 1.13i)

(s+ 0.048)(s+ 1.0± 1.55i)(s+ 4.77± 1.05i)(s+ 10)(s+ 17.12)
. (211)

With the designed roll damper, we design a roll angle controller that forms an outer

loop of the system given in Eq. (211). In general, the roll angle is not measured

directly from the inertial sensors but estimated from the attitude Kalman filter as

developed in Appendix B. Since the filter introduces the time latency, the delay effect

of the filter should be taken into consideration in designing the roll angle controller.

210

−20 −15 −10 −5 0 5
−15

−10

−5

0

5

10

15
Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

Figure 104: Root locus plot of the closed-loop system with the roll damper. The
squares represent the closed-loop poles at kp = 0.075.

Subsequently, the filter is modelled by a first-order low-pass filter from the actual

bank angle (∆φ) to the estimated bank angle (∆φ̂) as follows,

Gf(s) =
∆φ̂(s)

∆φ(s)
=

1

τfs+ 1
, (212)

where the time constant τf is chosen as τf = 0.5 which corresponds the 0.5 [sec] time

latency identified a priori.

After closing the roll damping loop, the open loop plant from the roll rate com-

mand input (∆pr) to the estimated roll angle (∆φ̂) is obtained as follows,

∆φ̂

∆pr
=

3655.6(s+ 0.91± 0.98i)(s+ 5.02± 1.06i)

(s+ 0.048)(s+ 1.00± 1.55i)(s+ 2)(s+ 4.77± 1.05i)(s+ 10)(s+ 17.12)
.

(213)

Because the plant has no integrator (type 0), a PI controller is designed to remove

the steady state error as follows,

Gφ(s) = kφ
s+ 0.05

s
. (214)

Figure 105 shows the root locus plot of the closed-loop system with the roll angle

PI controller. Because the closed-loop system has two dominant modes around the

211

origin, the gain kφ is carefully chosen kφ = 0.128, after evaluating the time response

of the closed-loop system. Figure 106 shows the step response of the roll angle closed-

loop system. In addition, the Bode plot of the closed-loop system is displayed in

Fig. 107, which shows that the closed-loop system has the gain margin of 10.6 [dB]

and the phase margin of 63.3 [deg].

Figure 108 shows the entire block diagram of the closed-loop system for lateral

controllers.

D.4 Discrete implementation

For the discrete implementation, the control sampling rate is first determined by

20 [Hz] taking into account the computational throughput of the RCM-3400 micro-

controller. Note that the dynamics of the UAV is much slower than 20 [Hz], we

assume that at this sampling rate the most dynamic characteristics are captured by

the on-board sensors. The discrete implementation of the controller is computed by

incorporating the bilinear mapping (Tustin’s method) as follows,

s =
2

T

z − 1

z + 1
, (215)

where T = 0.05 is used for the 20Hz sampling frequency.

The discrete version of the controller, as an example by the roll angle PI controller,

can be obtained as follows,

∆pr
∆φe

= kφ
s+ TI
s

∣∣∣∣∣
s=40 z−1

z+1

=
40kφ(z − 1) + kφTI(z + 1)

40(z − 1)

=
(kφ + 0.025kφTI) + (−kφ + 0.025kφTI)z

−1

1− z−1
.

(216)

Consequently, the control at time step k is obtained from the inverse z-transform,

∆pr[k] = ∆pr[k− 1]+ (kφ+0.025kφTI)∆φe[k] + (−kφ +0.025kφ.TI)∆φe[k− 1] (217)

212

−20 −15 −10 −5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

10
Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

(a) Entire display of the root locus plot of the roll angle closed-loop
system.

−6 −5 −4 −3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Root Locus Editor (C)

Real Axis

Im
ag

 A
xi

s

(b) Magnified display of the root locus plot showing two dominant
modes around the origin.

Figure 105: Root locus plot of the closed-loop system with the PI roll angle con-
troller as kφ varies. The squares represent the closed-loop poles at kφ = 0.128.

213

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [sec]

R
ol

l a
ng

le
 [r

ad
]

Figure 106: Step response of the closed-loop system by a unit roll angle reference
command.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−360

−270

−180

−90

P.M.: 63.3 deg
Freq: 1.64 rad/sec

Frequency (rad/sec)

P
ha

se
 (

de
g)

−200

−150

−100

−50

0

50

G.M.: 10.6 dB
Freq: 3.67 rad/sec
Stable loop

Open−Loop Bode Editor (C)

M
ag

ni
tu

de
 (

dB
)

Figure 107: Bode plot of the closed-loop system with the roll angle PI controller.

214

- -

-

+

r

φ

p
Plant

Gw

δr

δa

−10
s+10

−10
s+10

ur

ua

kp

kφ0.05
s

φc φe

φ̂
Gf(s)

kr

Figure 108: Entire block diagram for the lateral controllers

215

REFERENCES

[1] “FlightGear Flight Simulator,” Oct. 2007. http://www.flightgear.org/.

[2] Adkins, C. N. and Liebeck, R. H., “Design of Optimum Propellers,” Journal
of Propulsion and Power, vol. 10, no. 5, pp. 676–682, 1994.

[3] Aguiar, A. P. and Pascoal, A. M., “Way-point Tracking of Underactuated
AUVs in the Presence of Ocean Currents,” in Proceedings of the 10th Mediter-
ranean Conference on Control and Automation, (Lisbon, Portugal), July 2002.

[4] Allgöwer, F. and Zheng, A., Nonlinear Model Predictive Control, vol. 26 of
Progress in Systems and Control Theory. Basel, Germany: Birkhäuser Verlag,
2000.

[5] Anderson, E. P. and Beard, R. W., “An Algorithmic Implementation of
Constrained Extremal Control for UAVs,” in AIAA Guidance, Navigation, and
Control Conference and Exhibit, (Monterey, Canada), Aug. 2002. AIAA 2002-
4470.

[6] Anderson, E. P., Beard, R. W., and McLain, T. W., “Real-Time Dy-
namic Trajectory Smoothing for Unmanned Air Vehicles,” IEEE Transactions
on Control Systems Technology, vol. 13, pp. 471–477, May 2005.

[7] Arinaga, S., Nakajima, S., Okabe, H., Ono, A., and Kanayama, Y., “A
Motion Planning Method for an AUV,” in Proceedings of the 1996 Symposium
on Autonomous Underwater Vehicle Technology, (Monterey, CA), pp. 477–484,
June 1996.

[8] Bak, M., Larsen, T., Norgaard, M., Andersen, N., Poulsen, N., and
Ravn, O., “Location Estimation using Delayed Measurements,” in Proceed-
ings of the 5th International Workshop on Advanced Motion Control (AMC98),
pp. 180–185, June-July 1998.

[9] Barraquand, J., Langlois, B., and Latombe, J.-C., “Numerical Potential
Field Techniques for Robot Path Planning,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 22, pp. 224–240, Mar.-Apr. 1992.

[10] Beard, R. W., McLain, T. W., Goodrich, M., and Anderson, E. P.,
“Coordinated Target Assignment and Intercept for Unmanned Air Vehicles,”
IEEE Transactions on Robotics and Automation, vol. 18, pp. 911–922, Dec.
2002.

216

[11] Behnke, S., “Local Multiresolution Path Planning,” in RoboCup 2003: Robot
Soccer World Cup VII, vol. 3020 of Lecture Notes in Computer Science, pp. 332–
343, Berlin: Springer, 2004.

[12] Bellingham, J., Kuwata, Y., and How, J., “Stable Receding Horizon Tra-
jectory Control for Complex Environments,” in AIAA Guidance, Navigation,
and Control Conference and Exhibit, (Austin, TX), Aug. 2003. AIAA 2003-
5635.

[13] Bellingham, J., Richards, A., and How, J. P., “Receding Horizon Con-
trol of Autonomous Aerial Vehicles,” in Proceedings of the American Control
Conference, (Anchorage, AK), pp. 3741–3746, May 2002.

[14] Bemporad, A., Luca, A. D., and Oriolo, G., “Local Incremental Plan-
ning for a Car-Like Robot Navigating among Obstacles,” in Proceedings of
IEEE International Conference on Robotics and Automation, (Minneapolis,
MN), pp. 1205–1211, Apr. 1996.

[15] Berglund, T., Jonsson, H., and Söderkvist, I., “An Obstacle-avoiding
Minimum Variation B-spline Problem,” in Proceedings of International Confer-
ence on Geometric Modeling and Graphics, pp. 156–161, July 2003.

[16] Blake, W. B., “Prediction of Fighter Aircraft Dynamic Derivatives using Dig-
ital Datcom,” in Third Applied Aerodynamics Conference, (Colorado Springs,
CO), Oct. 1985. AIAA-1985-4070.

[17] Boissonnat, J. D., Cérézo, A., and Leblond, J., “Shortest Paths of
Bounded Curvature in the Plane,” in Proceedings of 9th IEEE International
Conference on Robotics and Automation, 1992.

[18] Bortoff, S. A., “Path planning for UAVs,” in Proceedings of the American
Control Conference, (Chicago, IL), pp. 364–368, 2000.

[19] Brooks, R. A., “Solving the Find-Path Problem by Good Representation of
Free Space,” IEEE Transactions on System, Man, and Cybernetics, vol. 13,
no. 3, pp. 190–193, 1983.

[20] Brown, R. G. and Hwang, P. Y. C., Introduction to Random Signals and
Applied Kalman Filtering with Matlab Exercises and Solutions. New York, NY:
John Wiley & Sons, 3rd ed., 1997.

[21] Bui, X.-N. and Souères, P., “Shortest Path Synthesis for Dubins Non-
holonomic Robot,” in Proceedings of IEEE International Conference on
Robotics and Automation, vol. 1, (San Diego, CA), pp. 2–7, May 1994.

[22] Burrus, C. S., Gopinath, R. A., and Guo, H., Introduction to Wavelets
and Wavelet Transforms. Upper Saddle River, New Jersey: Prentice Hall, 1998.

217

[23] Calderbank, A. R., Daubechies, I., Sweldens, W., and Yeo, B.-L.,
“Wavelet Transforms That Map Integers to Integers,” Applied and Computa-
tional Harmonic Analysis, vol. 5, no. 3, pp. 332–369, 1998.

[24] Camacho, E. F. and Bordons, C., Model Predictive Control. London, UK:
Springer-Verlag, 1999.

[25] Carmo, M. D., Differential Geometry of Curves and Surfaces. Prentice Hall,
1976.

[26] Caruso, M. J., “Application of Magnetic Sensors for Low Cost Compass Sys-
tems.” Honeywell technical article. http://www.ssec.honeywell.com/magnetic/.

[27] Caruso, M. J., “Applications of Magnetoresistive Sensors in Navigation Sys-
tems.” Honeywell technical article. http://www.ssec.honeywell.com/magnetic/.

[28] Chandler, P. and Pachter, M., “Research Issues in Autonomous Control of
Tactical UAVs,” in Proceedings of the American Control Conference, (Philadel-
phia, PA), pp. 394–398, 1998.

[29] Chandler, P. R., Rasmussen, S., and Pachter, M., “UAV Cooperative
Path Planning,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, (Denver, CO), Aug. 2000. AIAA-2000-4370.

[30] Chen, D. Z., Szczerba, R. J., and Uhran, J. J., “A Framed-Quadtree
Approach for Determining Euclidean Shortest Paths in a 2-D Environment,”
IEEE Transactions on Robotics and Automation, vol. 13, no. 5, pp. 668–681,
1997.

[31] Colgren, R. D. and Martin, K. E., “Flight Test Validation of Sideslip
Estimation using Inertial Accelerations,” in AIAA Guidance, Navigation, and
Control Conference and Exhibit, (Denver, CO), Aug. 2000. AIAA-2000-4448.

[32] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Intro-
duction to Algorithms. The MIT Press, 2nd ed., Sept. 2001.

[33] Daubechies, I. and Sweldens, W., “Factoring Wavelet Transform into Lift-
ing Steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3, pp. 247–
269, 1998.

[34] de Boor, C., A Practical Guide to Splines, vol. 27 of Applied mathematical
sciences. New York, NY: Springer-Verlag, 1978.

[35] Dijkstra, E., “A Note on Two Problems in Connexion with Graphs,” Nu-
merische Mathematik, vol. 1, pp. 269–271, 1959.

[36] Dimock, G. A., Deters, R. W., and Selig, M. S., “Icing Scenarios with
the Icing Encounter Flight Simulator,” in the AIAA 41st Aerospace Sciences
Meeting and Exhibit, (Reno, NV), Jan. 2003. AIAA-2003-23.

218

[37] Donoho, D. L., “Smooth Wavelet Decompositions with Blocky Coefficient
Kernels,” in Recent Advances in Wavelet Analysis, pp. 1–43, Academic Press,
1993.

[38] Dubins, L. E., “On Curves of Minimal Length with a Constraint on Average
Curvature, and with Prescribed Initial and Terminal Positions and Tangents,”
American Journal of Mathematics, vol. 79, pp. 497–516, 1957.

[39] Dyllong, E. and Visioli, A., “Planning and Real-time Modifications of a
Trajectory Using Spline Techniques,” Robotica, vol. 21, pp. 475–482, 2003.

[40] Encarnacao, P. and Pascoal, A., “Combined Trajectory Tracking and
Path Following: An Application to the Coordinated Control of Autonomous
Marine Craft,” in Proceedings of the 40th IEEE Conference on Decision and
Control, (Orlando, FL), pp. 964–969, Dec. 2001.

[41] Etkin, B. and Reid, L. D., Dynamics of Flight: Stability and Control. New
York, NY: John Wiley and Sons, 3rd ed., 1996.

[42] Finch, S. R., Mathematical Constants, ch. 5, pp. 331–339. Cambridge, Eng-
land: Cambridge University Press, 2003.

[43] Fuller, J., Seto, D., and Meisner, R., “Optimization-Based Control
for Flight Vehicles,” in AIAA Guidance, Navigation, and Control Conference,
(Denver, CO), Aug. 2000. AIAA 2000-4055.

[44] Galbraith, B., “DATCOM Predicted Aerodynamic Model,” July 2004.
http://www.holycows.net.

[45] Garcia, C. E., Prett, D. M., and Morari, M., “Model Predictive Control:
Theory and Practice – A Survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[46] Geiger, B. R., Horn, J. F., DeLullo, A. M., Long, L. N., and Niess-

ner, A. F., “Optimal Path Planning of UAVs Using Direct Collocation with
Nonlinear Programming,” in AIAA Guidance, Navigation, and Control Confer-
ence and Exhibit, (Keystone, CO), Aug. 2006. AIAA 2006-6199.

[47] Godbole, D., Samad, T., and Gopal, V., “Active Multi-Model Control
for Dynamic Maneuver Optimization of Unmanned Air Vehicles,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation, vol. 2,
pp. 1257–1262, 2000.

[48] Greville, T. N. E., Theory and Applications of Spline Functions. New York,
NY: Academinc press, 1968.

[49] Hart, P. E., Nilsson, N. J., and Raphael, B., “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions on Sys-
tems Science and Cybernetics, vol. 4, pp. 100–107, 1968.

219

[50] Heer, V. K. and Reinfelder, H.-E., “A Comparison of Reversible Methods
for Data Compression,” in Medical Imaging IV: Image Processing, vol. Proc.
SPIE Vol. 1233, pp. 354–365, 1990.

[51] Heller, M., Myschik, S., Holzapfel, F., and Sachs, G., “Low-cost Ap-
proach based on Navigation Data for Determining Angles of Attack and Sideslip
for Small Aircraft,” in AIAA Guidance, Navigation, and Control Conference
and Exhibit, (Austin, TX), Aug. 2003. AIAA-2003-5777.

[52] Hwang, J. Y., Kim, J. S., Lim, S. S., and Park, K. H., “A Fast Path
Planning by Path Graph Optimization,” IEEE Transactions on Systems, Man,
and Cybernetics–Part A: Systems and Humans, vol. 33, no. 1, pp. 121–128,
2003.

[53] Inman, D. J., Engineering Vibration. Englewood Cliffs, New Jersey: Prentice
Hall, 1996.

[54] Jackins, C. L. and Tanimoto, S. L., “Oct-tree and Their Use in Rep-
resenting Three Dimensional Objects,” Computer Graphics and Information
Processing, vol. 14, no. 3, pp. 249–270, 1980.

[55] Jia, D. and Vagners, J., “Parallel Evolutionary Algorithms for UAV Path
Planning,” in AIAA 1st Intelligent Systems Technical Conference, (Chicago,
IL), Sept. 2004. AIAA 2004-6230.

[56] Judd, K. B. and McLain, T. W., “Spline Based Path Planning for Un-
manned Air Vehicles,” in AIAA Guidance, Navigation, and Control Conference
and Exhibit, (Montreal, Canada), Aug. 2001. AIAA 2001-4238.

[57] Jung, D. and Tsiotras, P., “A 3-DoF Experimental Test-Bed for Integrated
Attitude Dynamics and Control Research,” in AIAA Guidance, Navigation, and
Control Conference, (Austin, Texas), 2003. AIAA 2003-5331.

[58] Jung, D. and Tsiotras, P., “Modelling and Hardware-in-the-loop Simulation
for a Small Unmanned Aerial Vehicle,” in AIAA Infotech at Aerospace, (Rohnert
Park, CA), May 2007. AIAA Paper 07-2763.

[59] Jung, D. and Tsiotras, P., “Multiresolution On-Line Path Planning for
Small Unmanned Aerial Vehicles,” in American Control Conference, 2008. sub-
mitted.

[60] Kambhampati, S. and Davis, L. S., “Multiresolution Path Planning for Mo-
bile Robots,” IEEE Journal of Robotics and Automation, vol. 2, pp. 135–145,
Sept. 1986.

[61] Kanayama, Y. and Hartman, B. I., “Smooth Local Path Planning for
Autonomous Vehicles,” in Proceedings of IEEE International Conference on
Robotics and Automation, vol. 3, pp. 1265–1270, May 1989.

220

[62] Kang, Y. and Hedrick, J. K., “Design of Nonlinear Model Predictive Con-
troller for a Small Fixed-Wing Unmanned Aerial Vehicle,” in AIAA Guidance,
Navigation, and Control Conference and Exhibit, (Keystone, CO), Aug. 2006.
AIAA-2006-6685.

[63] Karata, T. and Bullo, F., “Randomized Searches and Nonlinear Program-
ming in Trajectory Planning,” in Proceedings of the 40th IEEE Conference on
Decision and Control, (Orlando, FL), pp. 5032–5037, Dec. 1994.

[64] Kavraki, L. and Latombe, J.-C., “Randomized Preprocessing of Configu-
ration for Fast Path Planning,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation, vol. 3, (San Diego, CA), pp. 2138–2145,
May 1994.

[65] Khatib, O., “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots,” International Journal of Robotics Research, vol. 5, no. 1, pp. 396–404,
1986.

[66] Kim, B. and Tsiotras, P., “Time-Invariant Stabilization of a Unicycle-Type
Mobile Robot: Theory and Experiments,” in IEEE Conference on Control Ap-
plications, (Ancorage, AL), pp. 443–448, Sept. 2000.

[67] Kim, H. J., Shim, D. H., and Sastry, S., “Nonlinear Model Predictive Track-
ing Control for Rotorcraft-based Unmanned Aerial Vehicles,” in Proceedings of
the American Control Conference, (Anchorage, AK), pp. 3576–3581, May 2002.

[68] Kim, J., Pearce, R. A., and Amato, N. M., “Extracting Optimal Paths
from Roadmaps for Motion Planning,” in Proceedings of the IEEE International
Conference on Robotics and Automation, vol. 2, pp. 2424–2429, Sept. 2003.

[69] Klein, R., Concrete and Abstract Voronoi Diagrams, vol. 400 of Lecture notes
in Computer Science. Berlin, Germany: Springer-Verlag, 1989.

[70] Koenig, S. and Likhachev, M., “Incremental A∗,” in Advances in Neural
Information Processing Systems, pp. 1539–1546, 2002.

[71] Koenig, S. and Likhachev, M., “D∗ Lite,” in Proceedings of the National
Conference of Artificial Intelligence, pp. 476–483, 2002.

[72] Korf, R. E., “Real-Time Heuristic Search,” Artificial Intelligence, vol. 42,
pp. 189–211, 1990.

[73] Kuwata, Y. and How, J. P., “Stable Trajectory Design for Highly Con-
strained Environments using Receding Horizon Control,” in Proceedings of the
2004 American Control Conference, (Boston, MA), pp. 902–907, June-July
2004.

221

[74] Lapierre, L., Soetanto, D., and Pascoal, A., “Nonlinear Path Follow-
ing with Applications to the Control of Autonomous Underwater Vehicles,” in
Proceedings of the 42nd IEEE Conference on Decision and Control, (Maui, HI),
pp. 1256–1261, Dec. 2003.

[75] Lapierre, L. and Soetanto, D., “Nonlinear Path-following Control of an
AUV,” Ocean Engineering, vol. 34, pp. 1734–1744, 2007.

[76] Lapierre, L., Zapata, R., and Lepinay, P., “Combined Path-following and
Obstacle Avoidance Control of a Wheeled Robot,” The International Journal
of Robotics Research, vol. 26, pp. 361–375, Apr. 2007.

[77] Lapp, T. and Singh, L., “Model Predictive Control Based Trajectory Opti-
mization for Nap-of-the-Earth (NOE) Flight Including Obstacle Avoidance,” in
Proceedings of the 2004 American Control Conference, (Boston, MA), pp. 891–
896, June-July 2004.

[78] Larrabee, E. E., “Practical Design of Minimum Induced Loss Propellers,”
in Society of Automotive Engineers, Business Aircraft Meeting and Exposition,
(Wichita, KS), Apr. 1979.

[79] Larsen, T., Andersen, N., Ravn, O., and Poulsen, N., “Incorporation of
Time Delayed Measurements in a Discrete-time Kalman Filter,” in Proceedings
of the 37th IEEE Conference on Decision and Control, vol. 4, pp. 3972–3977,
Dec. 1998.

[80] Larson, R. A., Pachter, M., and Mears, M. J., “Path Planning by Un-
manned Air Vehicles for Engaging an Integrated Radar Network,” in AIAA
Guidance, Navigation, and Control Conference and Exhibit, (San Francisco,
CA), Aug. 2005. AIAA 2005-6191.

[81] Latombe, J.-C., Robot Motion Planning. Boston, MA: Kluwer Academic
Publishers, 1991.

[82] Leonardo Daga, “RS232 Blockset for Simulink,” Dec. 2004.
http://digilander.libero.it/LeoDaga/Simulink/RS232Blockset.htm.

[83] Leonardo Daga, “RT Blockset for Simulnk,” Dec. 2004.
http://digilander.libero.it/LeoDaga/Simulink/RTBlockset.htm.

[84] Lozano-Perez, T. and Wesley, M. A., “An Algorithm for Planning
Collision-Free Path Among Polyhedral Obstacles,” Communications of the
ACM, vol. 22, no. 10, pp. 560–570, 1979.

[85] Luca, A. D. and Oriolo, G., “Local Incremental Planning for Nonholonomic
Mobile Robots,” in Proceedings of IEEE International Conference on Robotics
and Automation, vol. 1, (San Diego, CA), pp. 104–110, May 1994.

222

[86] Lumelsky, V. and Stepanov, A., “Dynamic Path Planning for a Mobile
Automaton with Limited Information on the Environment,” IEEE Transactions
on Automatic Control, vol. 31, pp. 1058–1063, Nov. 1986.

[87] Lutterkort, D. and Peters, J., “Smooth Paths in a Polygonal Channel,”
in Proceedings of the fifteenth Annual Symposium on Computational Geometry,
(Miami Beach, FL), pp. 316–321, 1999.

[88] Lutterkort, D. and Peters, J., “Tight Linear Envelopes for Splines ,”
Numerische Mathematik, vol. 89, pp. 735–748, Oct. 2001.

[89] Madras, N. and Slade, G., The Self-Avoiding Walk. Boston, MA:
Birkhäuser, 1993.

[90] Mallat, S. G., “A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 2, pp. 674–693, July 1989.

[91] Marti, K. and Qu, S., “Path Planning for Robots by Stochastic Optimization
Methods,” International Journal of Intelligent and Robotic Systems, vol. 22,
pp. 117–127, June 1998.

[92] Martin Hepperle, “JavaProp - Design and Analysis of Propellers.”
http://www.mh-aerotools.de/airfoils/javaprop.htm.

[93] McLain, T., Chandler, P., and Pachter, M., “A Decomposition Strategy
for Optimal Coordination of Unmanned Air Vehicles,” in Proceedings of the
American Control Conference, (Chicago, IL), pp. 369–373, 2000.

[94] McLain, T. W. and Beard, R. W., “Coordination Variables, Coordination
Functions, and Cooperative Timing Missions,” Journal of Guidance, Control,
and Dynamics, vol. 28, no. 1, pp. 150–161, 2005.

[95] Mertz, P. and Gray, F., “A Theory of Scanning and Its Relation to the
Characteristics of the Transmitted Signal in Telephotography and Television,”
Bell System Technical Journal, vol. 13, pp. 464–515, 1934.

[96] Micaelli, A. and Samson, C., “Trajectory Tracking for Unicycle-type
and Two-Steering-Wheels Mobile Robots,” Tech. Rep. 2097, INRIA, Sophia-
Antipolis, Nov. 1993.

[97] Morari, M. and Lee, J., “Model Predictive Control: Past, Present, and
Future,” Computers and Chemical Engineering, vol. 23, no. 4, pp. 667–682,
1999.

[98] Motorola, Inc., Motorola GPS Products - Oncore User’s Guide, Aug. 2002.
Revision 5.0.

223

[99] Nairn, D., Peters, J., and Lutterkort, D., “Sharp, Quantitative Bounds
on the Distance Between a Polynomial Piece and its Bézier Control Polygon,”
Computer Aided Geometric Design, vol. 16, pp. 613–631, 1999.

[100] Nelson, D. R., Barber, D. B., McLain, T. W., and Beard, R. W.,
“Vector Field Path Following for Small Unmanned Air Vehicles,” in Proceedings
of the 2006 American Control Conference, (Minneapolis, MN), pp. 5788–5794,
June 2006.

[101] Neus, M. and Maouche, S., “Motion Planning using the Modified Visibility
Graph,” in Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, vol. 4, (Tokyo, Japan), pp. 651–655, Oct. 1999.

[102] Niculescu, M., “Lateral Track Control Law for Aerosonde UAV,” in 39th

AIAA Aerospace Sciences Meeting and Exhibit, (Reno, NV), Jan. 2001. A01-
16013.

[103] Noborio, H., Naniwa, T., and Arimoto, S., “A Quadtree-Based Path-
Planning Algorithm for a Mobile Robot,” Journal of Robotic Systems, vol. 7,
no. 4, pp. 555–574, 1990.

[104] Pai, D. K. and Reissell, L.-M., “Multiresolution Rough Terrain Motion
Planning,” IEEE Transactions on Robotics and Automation, vol. 14, no. 1,
pp. 19–33, 1998.

[105] Park, S., Avionics and Control System Development for Mid-Air Rendezvous
of Two Unmanned Aerial Vehicles. Ph.d. thesis, Massachusetts Institute of
Technology, Boston, MA, Feb. 2004.

[106] Park, S., Deyst, J., and How, J. P., “A New Nonlinear Guidance Logic for
Trajectory Tracking,” in AIAA Guidance, Navigation, and Control Conference
and Exhibit, (Providence, RI), Aug. 2004. AIAA-2004-4900.

[107] Perry, A. R., “The FlightGear Flight Simulator,” in USENIX Annual Tech-
nical Conference, UseLinux SIG sessions, (Boston, MA), June-July 2004.

[108] Pettersen, K. Y. and Lefeber, E., “Way-point Tracking Control of Ships,”
in Proceedings of the 40th IEEE Conference on Decision and Control, (Orlando,
FL), pp. 940–945, Dec. 2001.

[109] Piegl, L. and Tiller, W., The NURBS Book. Monographs in Visual Com-
munication, Berlin Heidelberg: Springer-Verlag, 2 ed., 1997.

[110] Pirzadeh, A. and Snyder, W., “A Unified Solution to Coverage and Search
in Explored and Unexplored Terrains using Indirect Control,” in IEEE Inter-
national Conference on Robotics and Automation, vol. 3, pp. 2113–2119, May
1990.

224

[111] Podscedkowski, L., “Path Planner for Nonholonomic Mobile Robot with
Fast Replanning Procedure,” in Proceedings of the 1998 IEEE International
Conference on Robotics & Automation, (Leuven, Belgium), pp. 3588–3593, May
1998.

[112] Podsedkowski, L., Nowakowski, J., Idzikowski, M., and Visvary, I.,
“Modified A∗ Algorithm Suitable for Online Car-like Mobile Robot Control,” in
Proceedings of the First Workshop on Robot Motion and Control, pp. 235–240,
June 1999.

[113] Prasanth, R., Bošković, J., Li, S.-M., and Mehra, R., “Initial Study
of Autonomous Trajectory Generation for Unmanned Aerial Vehicles,” in Pro-
ceedings of the 40th IEEE Conference on Decision and Control, (Orlando, FL),
pp. 640–645, 2001.

[114] Raghunathan, A. U., Gopal, V., Subramanian, D., Biegler, L. T.,
and Samad, T., “Dynamic Optimization Strategies for Three-Dimensional
Conflict Resolution of Multiple Aircraft,” Journal of Guidance, Control, and
Dynamics, vol. 27, no. 4, pp. 586–594, 2004.

[115] Rathbun, D., Kragelund, S., Pongpunwattana, A., and Capozzi, B.,
“An Evolution Based Path Planning Algorithm for Autonomous Motion of
a UAV Through Uncertain Environments,” in Proceedings of the 21st Digital
Avionics Systems Conference, vol. 2, pp. 8D2(1)–8D2(12), 2002.

[116] Ren, W. and Beard, R. W., “Trajectory Tracking for Unmanned Air Vehicles
with Velocity and Heading Rate Constraints,” IEEE Transactions on Control
Systems Technology, vol. 12, pp. 706–716, Sept. 2004.

[117] Richards, A. and How, J., “Aircraft Trajectory Planning with Collision
Avoidance using Mixed Integer Linear Programming,” in Proceedings of the
American Control Conference, (Anchorage, AK), pp. 1936–1940, 2002.

[118] Richards, A., How, J., Schouwenaars, T., and Feron, E., “Plume
Avoidance Maneuver Planning Using Mixed Integer Linear Programming,” in
AIAA Guidance, Navigation, and Control Conference and Exhibit, (Montreal,
Canada), Aug. 2001. AIAA-2001-4091.

[119] Richards, A., Kuwata, Y., and How, J., “Experimental Demonstrations of
Real-time MILP Control,” in AIAA Guidance, Navigation, and Control Con-
ference and Exhibit, (Austin, TX), Aug. 2003. AIAA 2003-5802.

[120] Rysdyk, R., “UAV Path Following for Constant Line-Of-Sight,” in 2nd AIAA
Unmanned Unlimited Conference and Workshop and Exhibit, (San Diego, CA),
Sept. 2003. AIAA-2003-6626.

[121] Samad, T., Gorinevsky, D., and Stoffelen, F., “Dynamic Multiresolu-
tion Route Optimization for Autonomous Aircraft,” in Proceedings of the IEEE

225

International Symposium on Intelligent Control, (Mexico City, Mexico), pp. 13–
18, Sept. 2001.

[122] Scheuer, A. and Laugier, C., “Planning Sub-Optimal and Continuous-
Curvature Paths for Car-Like Robots,” in Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, (Victoria, B. C.,
Canada), pp. 25–31, Oct. 1998.

[123] Schouwenaars, T., How, J., and Feron, E., “Receding Horizon Path
Planning with Implicit Safety Guarantees,” in Proceedings of the 2004 American
Control Conference, (Boston, MA), pp. 5576–5581, June-July 2004.

[124] Schouwenaars, T., Moor, B. D., Feron, E., and How, J., “Mixed In-
teger Programming for Multi-Vehicle Path Planning,” in Proceedings of the
European Control Conference, (Porto, Portugal), pp. 2603–2608, 2001.

[125] Schouwenaars, T., Valenti, M., Feron, E., and How, J., “Implemen-
tation and Flight Test Results of MILP-based UAV Guidance,” in 2005 IEEE
Conference on Aerospace, pp. 1–13, Mar. 2005.

[126] Shanmugavel, M., Tsourdos, A., Zbikowski, R., and White, B. A.,
“3D Dubins Sets Based Coordinated Path Planning for Swarm of UAVs,” in
AIAA Guidance, Navigation, and Control Conference and Exhibit, (Keystone,
CO), Aug. 2006. AIAA 2006-6211.

[127] Shaw, A., Barnes, D., and Summers, P., “Landmark Recognition for Lo-
calisation and Navigation of Aerial Vehicles,” in Proceedings of the IEEE Inter-
national Conference on Intelligent Robots and Systems, pp. 42– 47, Oct. 2003.

[128] Shim, D. H., Chung, H., Kim, H. J., and Sastry, S., “Autonomous Ex-
ploration in Unknown Urban Environments for Unmanned Aerial Vehicles,” in
AIAA Guidance, Navigation, and Control Conference and Exhibit, (San Fran-
cisco, CA), Aug. 2005. AIAA 2005-6478.

[129] Shim, D. H., Kim, H. J., and Sastry, S., “Decentralized Nonlinear Model
Predictive Control of Multiple Flying Robots,” in Proceedings of the 42nd IEEE
Conference on Decision and Control, (Maui, HI), pp. 3621–3626, Dec. 2003.

[130] Shin, K. and McKay, N., “A Dynamic Programming Approach to Trajectory
Planning of Robotic Manipulators,” IEEE Transactions on Automatic Control,
vol. 31, no. 6, pp. 491–500, 1986.

[131] Singh, L. and Fuller, J., “Trajectory Generation for a UAV in Urban Ter-
rain, using Nonlinear MPC,” in Proceedings of the American Control Confer-
ence, (Arlington, VA), pp. 2301–2308, June 2001.

[132] Smetana, F. O., Computer Assisted Analysis of Aircraft Performance, Sta-
bility, and Control. New York: McGraw-Hill, 1984.

226

[133] Sorton, E. F. and Hammaker, S., “Simulated Flight Testing of an Au-
tonomous Unmanned Aerial Vehicle Using FlightGear,” in Infotech@Aerospace,
(Arlington, VA), Sept. 2005. AIAA 2005-7083.

[134] Spooner, J. T., Maggiore, M., Raúl Ordóñez, and Passino, K. M.,
Stable Adaptive Control and Estimation for Nonlinear Systems. New York, NY:
A John Wiley & Sons, Inc., 2002.

[135] Stentz, A., “Optimal and Efficient Path Planning for Partially-Known En-
vironments,” in Proceedings of the IEEE International Conference on Robotics
and Automation, vol. 4, pp. 3310–3317, May 1994.

[136] Stentz, A., “Map-based Strategies for Robot Navigation in Unknown En-
vironments,” in Proceedings AAAI 1996 Spring Symposium on Planning with
Incomplete Information for Robot Problems, (Menlo Park, CA), pp. 110–116,
1996.

[137] Stevens, B. L. and Lewis, F. L., Aircraft Control and Simulation. Hobokren,
NJ: John Wiley & Sons, 2nd ed., 2003.

[138] Sweldens, W. and Schröder, P., “Building Your Own Wavelets at Home,”
in Wavelets in Computer Graphics, pp. 15–87, ACM SIGGRAPH Course notes,
1996.

[139] Sweldens, W., “The Lifting Scheme: A New Philosophy in Biorthogonal
Wavelet Constructions,” in Wavelet Applications in Signal and Image Process-
ing III, pp. 68–79, 1995.

[140] Sweldens, W., “The Lifting Scheme: A Construction of Second Generation
Wavelets,” SIAM Journal on Mathematical Analysis, vol. 29, no. 2, pp. 511–546,
1997.

[141] Thorpe, C. E., “Path Relaxation: Path Planning for a Mobile Robot,” in
National Conference on Artificial Intelligence, 1984.

[142] Tsiotras, P. and Bakolas, E., “A Hierarchical On-Line Path Planning
Scheme using Wavelets,” in Proceedings of the European Control Conference,
(Kos, Greece), July 2007.

[143] Twigg, S., Calise, A., and Johnson, E., “On-line Trajectory Optimization
for Autonomous Air Vehicles,” in AIAA Guidance, Navigation, and Control
Conference, (Austin, TX), pp. AIAA 2003–5522, 2003.

[144] Unmanned Dynamics, http://www.u-dynamics.com/, AeroSim User’s Guide -
Aeronautical Simulation Blockset Ver. 1.2.

[145] Uytterhoeven, G., Roose, D., and Bultheel, A., “Wavelet transforms
using lifting scheme,” technical report ita-wavelets report wp 1.1, Katholieke
Universiteit Leuven, Belgium, Apr. 1997.

227

[146] Valenti, M., Schouwenaars, T., Kuwata, Y., Feron, E., and How,

J., “Implementation of a Manned Vehicle - UAV Mission System,” in AIAA
Guidance, Navigation, and Control Conference and Exhibit, (Providence, RI),
Aug. 2004. AIAA 2004-5142.

[147] Vázquez G., B., Sossa A., J. H., and Dı́az-de-León S., J. L., “Auto
Guided Vehicle Control Using Expanded Time B-splines,” in IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, vol. 3, (San Antonio,
TX), pp. 2786–2791, Oct. 1994.

[148] Vörös, J., “Low-cost Implementation of Distance Maps for Path Planning
using Matrix Quadtrees and Octrees,” Robotics and Computer Integrated Man-
ufacturing, vol. 17, pp. 447–459, 2001.

[149] Walnut, D. F., An Introduction to Wavelet Analysis. Boston: Birkhäuser,
2002.

[150] Williams, J. E. and Vukelich, S. R., “The USAF Stability and Control
DATCOM,” tech. rep., McDonnell Douglas Astronautics Company, St Louis,
MO, 1979. AFFDL-TR-79-3032.

[151] Yang, G. and Kapila, V., “Optimal Path Planning for Unmanned Air Vehi-
cles with Kinematic and Tactical Constraints,” in Proceedings of the 41st IEEE
Conference on Decision and Control, (Las Vegas, NV), pp. 1301–1306, Dec.
2002.

[152] Yang, H. I. and Zhao, Y. J., “Trajectory Planning for Autonomous
Aerospace Vehicles amid Known Obstacles and Conflicts,” Journal of Guid-
ance, Control, and Dynamics, vol. 27, pp. 997–1008, Nov.-Dec. 2004.

228

VITA

Dongwon Jung was born in Chungju, Korea, on January 1973. He received a bache-

lor’s and a master’s degrees at the Seoul National University, Seoul, Korea in 1998 and

2000, respectively. In Fall 2001, he began his studies for a Ph.D degree in the School

of Aerospace Engineering at Georgia Institute of Technology, Atlanta, Georgia, USA.

His current research interest is to develop control algorithms for embedded sys-

tems that take into account the limited hardware resources, including multiresolution

path planning, path generation/tracking, and validation of control algorithms through

experiments.

229

A Hierarchical On-Line Path Planning Scheme
using Wavelets

A Thesis

Presented to the Academic Faculty

by

Efstathios Bakolas

In partial fulfillment

of the requirements for the degree of

Master of Science

in Aerospace Engineering

School of Aerospace Engineering

School of Aerospace Engineering

Atlanta, Georgia 30332-0150 U.S.A.

May, 2007

A Hierarchical On-Line Path Planning Scheme
using Wavelets

Approved by:

Dr. Panagiotis Tsiotras (Advisor)

Aerospace Engineering

Georgia Institute of Technology

Dr. Eric Feron

Aerospace Engineering

Georgia Institute of Technology

Dr. Magnus Egerstedt

Electrical and Computer Engineering

Georgia Institute of Technology

Date Approved: March 26, 2007

Epigraph

“... instead of the great number of precepts of which logic is composed, I believed

that the four following would prove perfectly sufficient for me, provided I took

the firm and unwavering resolution never in a single instance to fail in observing

them.

The first was never to accept anything for true which I did not clearly know

to be such; that is to say, carefully to avoid precipitancy and prejudice, and to

comprise nothing more in my judgement than what was presented to my mind so

clearly and distinctly as to exclude all ground of doubt.

The second, to divide each of the difficulties under examination into as many

parts as possible, and as might be necessary for its adequate solution.

The third, to conduct my thoughts in such order that, by commencing with

objects the simplest and easiest to know, I might ascend by little and little, and, as

it were, step by step, to the knowledge of the more complex; assigning in thought

a certain order even to those objects which in their own nature do not stand in a

relation of antecedence and sequence.

And the last, in every case to make enumerations so complete, and reviews so

general, that I might be assured that nothing was omitted.”

“Discourse on the Method of Rightly Conducting One’s Reason and of Seeking

Truth in the Sciences”,

Descartes René,

translation of Discours de la méthode,

Gutenberg Project at http://www.gutenberg.org.

iii

Acknowledgements

I wish to express my appreciation to Dr. P. Tsiotras, Dr. M. Egerstedt and

Dr. E. Feron, members of my Master Thesis committee, for their true interest in

evaluating this work.

Furthermore, I would like to thank the A. Onassis Public Benefit Foundation,

of which I have been a scholarship recipient for the last two years. This research

work has been supported in part by NSF (award no. CMS-0510259) and ARO

(award no. W911NF-05-1-0331). Their financial support is greatly appreciated.

Finally, I owe the greatest debt of gratitude to my family for the moral and

emotional support they have provided me, especially during the years of my aca-

demic studies. Their affluent help has been a strong motivation and source of

inspiration for continuing to fight for my ideals and ambitions. For these reasons

I dedicate this work to them as the least token of appreciation.

iv

Contents

Epigraph iii

Acknowledgements iv

List of Tables viii

List of Figures xi

Summary xii

1 Introduction 1

1.1 Introduction . 1

1.2 The Path Planning Problem . 2

1.2.1 Planning Inside Continuous Spaces 2

1.2.2 Planning Inside Discrete Spaces 4

1.3 Thesis Motivation and Objectives of The Proposed Path-Planning

Schemes . 7

1.3.1 Introduction . 7

1.3.2 Thesis Motivation . 8

1.3.3 Thesis Objectives . 8

1.3.4 The Multiresolution Hierarchical Approach 9

1.3.5 Literature Review . 10

1.4 Thesis Overview . 11

2 Technical background 13

2.1 Introduction . 13

2.2 Cell Decomposition . 13

v

2.3 Graph Representation . 14

2.4 The 2D Wavelet Transform . 16

2.5 Description of Dijkstra’s Algorithm 18

3 Multiresolution Path planning Using Rectangular Cell Decom-

positions 20

3.1 Introduction . 20

3.2 Wavelet decomposition of the risk measure 21

3.3 Cost Assignment . 23

3.4 Multiresolution Path planning . 25

4 Multiresolution Path Planning Using Sector Decompositions 28

4.1 Introduction . 28

4.2 From Rectangular to Sector Cell Decompositions 30

4.3 World Space in the New Coordinate System 32

4.4 A Multiresolution Decomposition Scheme of the Risk Measure . . 33

4.5 Sector-based Multiresolution Path Planning 35

5 Time Scheduling and Smooth Trajectory Generation 38

5.1 Introduction . 38

5.2 Unicycle Kinematic Model under Dynamic Extension 39

5.3 Reference Signal Specification . 43

5.4 Trajectory Generation and Time Scheduling Over a Receding Hori-

zon . 46

6 Simulation Results 50

6.1 Introduction . 50

6.2 Simulation Results of the First Scenario for the First Path Planning

Scheme . 51

6.3 Simulation Results of the Second Scenario for the First Path Plan-

ning Scheme . 54

6.4 Simulation Results of the Second Path Planning Scheme 57

6.5 Simulation Results of Trajectory and Time Scheduling Scheme . . 60

7 Conclusions and Future Work 67

vi

Bibliography 71

vii

List of Tables

2.1 Cell characterization for the decomposition depicted in Fig. 2.1. 15

viii

List of Figures

1.1 A path generated by a short visibility/exploration horizon planning

scheme. 8

2.1 Quadtree decomposition scheme. Right figure depicts the world W
where the white areas correspond to F and black to OB. In the left fig-

ure we see the obtained cell decomposition after we apply the quadtree

algorithm. 15

2.2 The 8-connectivity adjacency scheme. 16

3.1 Multiresolution representation of the environment according to the dis-

tance from the current location of the agent. 22

3.2 Cost assignment for each node u of the directed graph G. 24

3.3 Pseudo-code implementation of proposed multiresolution path planning

scheme. 27

4.1 Sensors have different ranges, fields of view and resolution. Ideally, the

algorithm that processes this data should conform to this topology. . . 29

4.2 A cell decomposition based on the available sector approximation of

the environment obtained by the on-board sensor devices of the agent

(denoted with the blue dot). In order to resolve the geometry of the

arc-boundary of each sector the standard quadtree algorithm generates

a large number of cells at close to the boundaries of these arcs. 30

4.3 A cut annulus in the (x, y) plane is mapped to a rectangle in the (r, θ)

plane using a polar (conformal) mapping. 31

ix

4.4 A multiresolution approximation of the rectangular domain in (r, θ) sys-

tem defined by the radii rmin and rmax under the inverse conformal

mapping gives a multiresolution sector approximation of an annulus cut

defined by the same radii. 33

4.5 Pseudo-code implementation of proposed multiresolution path planning

scheme. 37

6.1 Plot of risk measure (elevation) for the whole configuration space using

a 512 × 512 unit cell resolution. 52

6.2 Path evolution and replanning at time t = t15, t = t50 and t = tf . . . 53

6.3 Plot of the risk measure function for the second scenario. Areas with

red color correspond to the obstacle space. The point ‘A’ denotes the

initial state x0 and point ‘B’ denotes the final state xf 55

6.4 Final path for the second scenario. For such highly fragmented environ-

ments it is advisable to also include a penalty on the euclidean distance

between successive nodes of the path. 56

6.5 Plot of the original risk measure function where dark green area corre-

spond to areas of high risk whereas the yellow ones to low risk areas. 58

6.6 Path evolution. Figures show the actual path followed by the agent

which finally reaches the final destination at t = tf 59

6.7 Plot of the on-line generated smooth trajectory passing close to the xi

points of the corresponding path P(tj) generated by the first planning

scheme (denoted with ’+’) at specified instants of time tj for the 1st

scenario. 61

6.8 Plot of the states evolution of the system under the feedback law. . . 62

6.9 Plot of the input components (i.e. velocity v and angular velocity ω)

versus time. 62

6.10 Plot of the on-line generated smooth trajectory passing close to the xi

points of the corresponding path P(tj) generated by the planning scheme

(denoted with ’+’) at specified instants of time tj for the fragmented

environment scenario. 63

6.11 Plot of the states evolution of the system under the feedback law. . . 64

6.12 Plot of the input components (i.e. velocity v and angular velocity ω)

versus time. 64

x

6.13 Plot of the on-line generated smooth trajectory passing close to the xi

points of the corresponding path P(tj) generated by the second planning

scheme (denoted with ’+’) at specified instants of time tj 65

6.14 Plot of the states evolution of the system under the feedback law. . . 66

6.15 Plot of the input components (i.e. velocity v and angular velocity ω)

versus time. 66

xi

Summary

The main objective of this thesis is to present a new path planning scheme for

solving the shortest (collision-free) path problem for an agent (vehicle) operating

in a partially known environment. We present two novel algorithms to solve the

planning problem. For both of these approaches we assume that the agent has

detailed knowledge of the environment and the obstacles only in the vicinity of

its current position. Far away obstacles or the final destination are only partially

known and may even change dynamically at each instant of time. The path

planning scheme is based on information gathered on-line by the available on-

board sensor devices. The solution minimizes the total length of the path with

respect to a metric that includes actual path length, along with a risk-induced

metric. In order to obtain an approximation of the whole configuration space at

different levels of fidelity we use a wavelet approximation scheme. In the first

proposed algorithm, the path-planning problem is solved using a multi-resolution

cell decomposition of the environment obtained from the wavelet transform. In

the second algorithm, we extend the results of the the first one by using the

multiresolution representation of the environment in conjunction with a conformal

mapping to polar coordinates. By performing the cell decomposition in polar

coordinates, we can naturally incorporate sector-like cells that are adapted to the

data representation collected by the on-board sensor devices.

Our approach is motivated by many typical navigation problems for autonomous

vehicles, where a plethora of sensory devices used (e.g., cameras, radars, laser

scanners, satellite imagery) usually have different ranges and resolutions. The

proposed algorithms provide a computationally efficient path planning scheme

which is able to combine the information provided by all the sensors in such a

way that the computational resources are used on that part of the path (spatial

and temporal) that needs them most.

xii

The proposed planning scheme takes full advantage of any local information

around the agent’s current position. This allows the construction of a directed

weighted graph of the approximated free space, the dimension of which is adapted

to the on-board computational resources. By searching this graph we find the

desired shortest path to the final destination using the Dijkstra’s algorithm, pro-

vided that such a path exists. The path is a finite ordered sequence of visiting

points corresponding to a polygonal line connecting the initial and goal destina-

tion. When dynamic constraints on the agent’s motion are taken into considera-

tion this polygonal line may be dynamically infeasible. Therefore, we introduce

an on-line scheme which generates a collision-free, smooth trajectory. The tra-

jectory passes sufficiently close to the points of the path at specified instants of

time (time scheduling). For this scheme we employ a kinematic ground vehicle

model to describe the agent’s equations of motion and then apply some ideas of

the input/output linearization theory (IOL) for MIMO systems to accomplish the

trajectory generation and time scheduling tasks.

Finally, several simulations are presented to test the efficiency of the proposed

path planning and trajectory generation schemes using non-trivial scenarios.

xiii

Chapter 1

Introduction

1.1 Introduction

The path planning problem has been under intense investigation for many years

in several research areas, ranging from operation research, vehicle navigation, net-

work optimization, etc. In the area of the autonomous vehicle navigation a major

distinction between different path planning problems is based on whether the in-

formation about the operating environment is known a priori or is updated with

time. In the first case, the problem is known as a static path planning problem

whereas, the second case corresponds to a dynamic problem (see [1]). From an

application point of view, dynamic problems are more interesting than static ones

since autonomous vehicles typically have on-board sensors that obtain informa-

tion about the operating environment dynamically. On the other hand, dynamic

problems are more challenging, since they require the use of algorithms that can

be implemented on-line. In the past, this kind of implementation was restricted

by hardware limitations, and therefore the path designers had to rely more or less

on off-line solutions. With the recent significant advances in computing technol-

ogy, real time implementation of path planning algorithms has become easier. As

a result, new path planning schemes which can be implemented “on the fly” have

appeared over the past decade. Path planning schemes using feedback control

laws and the D∗ algorithm are some of the most significant examples of this era.

In this work we deal with the vehicle navigation problem where the vehicle (e.g.,

ground vehicle, UAV) is operating inside a partially known environment W .

1

In the next section we introduce the reader to some basic concepts of the path

planning problem and present some significant results that have appeared in the

literature and are relevant to our problem.

1.2 The Path Planning Problem

The general framework for the path planning problem is as follows: given a topo-

logical space F ⊂ W of admissible states xF , find a path connecting the prescribed

initial state x0 ∈ F with the destination state xf ∈ F such that the path lies com-

pletely inside F . The construction of such a path can take place using either a

continuous representation of W or a discrete one. Seeing the problem from the

geometrical point of view (no kinematic or dynamic constraints) a sufficient con-

dition for a solution path to exist is that the space F is polygonally (or path)

connected, i.e. that for any two configuration inside F there exist a path which

lies completely inside F connecting these two configurations. In discrete topolo-

gies like finite graph structures comprised of nodes, a sufficient condition is that,

for any two nodes in F , there exists a sequence of nodes, adjacent to each other,

connecting these two nodes.

1.2.1 Planning Inside Continuous Spaces

In applications where dynamic constraints are taken into consideration the most

natural approach is to work with continuous spaces. Then the path planning can

be treated as a two boundary value problem (the fixed final point and free final

time problem) where application of standard control techniques, such as optimal

control theory (see [2]), can be employed.

We define the configuration space W ⊂ R
n to be the space that contains all

the possible states x of the agent such that

W = F ⊕O, (1.1)

where F denote the space of all admissible states xF known as the free configura-

tion space and O the obstacle configuration space which contains all the unfeasible

states. Finally, we denote with U the function space of all admissible inputs u

which take values in the space U ⊂ R
m. Let’s assume that the dynamics that

2

govern the motion of the agent are given in the form

ẋ(t) = f(x(t), u(t)), x(0) = x0 t ≥ 0 (1.2)

where we consider the time invariant case for simplicity. We additionally assume

that the space F is open and connected and the function f satisfies a Lipschitz

condition for all x ∈ F . The condition on F being a region (open and connected

subset of R
n) is equivalent to the polygonally connected requirement (see [3])

introduced earlier whereas the Lipschitz condition on f is needed so that a solution

path always exist (but may not be unique, see [4]). Then the path finding problem

is the one of finding a control input function u ∈ U[0,tf] that drives the agent from

the initial state x0 to the final state xf in finite time tf , while the whole trajectory

from x0 to xf lies entirely on F .

If an optimal feedback control cannot be derived for our problem then the

optimal control solution may not be plausible from the application point of view.

This is due to the sensitivity that may be exhibited to variations of the initial and

final configurations or to any environment parameters. One popular technique

to proceed is the potential function method (see [5, 6]). The potential functions

are scalar functions φ : F 7→ R which attains their global minimum at the final

destination state. These sufficiently smooth functions, known also as navigation

functions, provide control laws in feedback form which result in smooth collision

free trajectories which may given in closed mathematical expressions (analytic

solutions). For these reasons navigation function are very efficient for real time

implementation. The feedback control law is given by

u(t) = −K∇φ(x(t)) (1.3)

where ∇φ(x) denotes the gradient vector of the navigation function at state x

where K ∈ R is a gain matrix. With ẋ(t) = f(x(t),−K∇φ(x(t))) = f̃(x(t)) be the

closed loop dynamics, the trajectory x(t) of the agent at some time t is now given

by

x(t) = x0 +

∫ t

0

f̃(x(τ))dτ. (1.4)

A drawback of this approach is the existence of local minima or even stationary

points which may not allow the agent to reach its destination even though a

solution path may exist. Under some specific assumptions on the geometry of

3

the working environment, the structure of obstacles, and the agent’s governing

equations of motion, results that guarantee that the trajectory of an agent driven

by a feedback control law induced by a potential function converges to the desired

destination were first presented in [7, 8]. The approach used in the latter method is

the construction of a function which attains its minimum value at the destination

state. The final state in this case is the unique isolated minimum of φ(x) which

additionally corresponds to an asymptotically stable equilibrium of the closed

loop dynamics. Thus, when the agent’s configuration is arbitrarily close to the

destination state, the agent practically halts there. However, the construction

of the potential function in arbitrary geometries of either the configuration or

obstacle space without local minima other than the destination state is not an easy

task and general results have not been found. Additionally, the task of finding

an appropriate potential function becomes more complicated as the complexity of

the agent’s governing equations is increased.

1.2.2 Planning Inside Discrete Spaces

Due to the existence of many shortest path and network minimization algorithms,

planning inside discrete spaces has become very popular in many path planning

applications. The discrete space X , which is the equivalent of the continuous

configuration W , is defined as the countable collection of all possible states x such

that

X = Xfree ⊕Xunfeasible

where Xfree and Xunfeasible denote the corresponding subcollections of all feasible

and unfeasible states x ∈ X respectively. Let now xk be the state at some time tk,

then the state at the next time step tk+1 is given by

xk+1 = f(xk, uk) (1.5)

where uk is an action applied at time tk to the agent with uk ∈ U , where U
denotes the countable collection of all available admissible inputs, and f is a state

transition function

f : X × U 7→ X

which behaves as the ‘dynamics’ of this discrete system. The problem then be-

comes one of finding the appropriate sequence of actions ui which will drive the

4

agent form an initial state x0 ∈ X to the final destination xf ∈ X after a finite

number of steps.

A common method to pass from the real environment (continuous space) to

the discrete world is by using cell-based approximations of the environment and

then employ a graph representation scheme. By transcribing the free space F on

a graph G the problem reduces to one of finding a sequence of adjacent nodes in

the graph G from the starting node to the destination node. These nodes form a

connected sequence of nodes of the graph, provided that such a sequence exists. In

case where more than one feasible solutions exist, optimization criteria determine

the one that will qualify for the agent’s path. The problem is therefore reduced

to a network minimization or a graph search problem. Algorithms that find a

solution to the graph search problem or prove that the problem has no solution

are called exact or complete algorithms (e.g. Dijkstra’s algorithm, A∗ algorithm,

see [9, 10]). These path planning algorithms will find the solution even when the

polygonal connected condition for the entire free space F is not satisfied, provided

of course that a solution exists for the specific choice of the initial and final node.

Furthermore, in case where there does not exist a polygonally connected subset of

F that contains the initial and final nodes, then Dijkstra’s algorithm and the A∗

algorithm will determine that the specific problem is infeasible. Another category

of planning algorithms are the heuristic algorithms which generate a solution while

aiming at lower computational complexity (see [6, 5]).

All the algorithms we mentioned in the previous paragraph are mostly used to

solve static problems. On the other hand, dynamic problems require appropriate

modifications to the original static path planning schemes. The basic idea is

to deal with the dynamic problem as a sequence of different static problems.

Each one of these static problems corresponds to the planning problem inside the

environment representation of the specific time step (continuous replanning). A

more straightforward approach for the dynamic problem is the D∗ algorithm (or

Stentz’s algorithm) which is presented in [11]. The D∗ algorithm is the first path

planning algorithm for discrete spaces which deals exclusively with the dynamic

problem while having significant advantages over the other available dynamic

schemes (e.g. reduced computational complexity, optimality in the global sense).

In Stentz’s algorithm the operating environment is assumed to be partially known

5

and therefore the transition costs between nodes of the corresponding graph are

originally unknown. The agent’s sensors provide information about the agent’s

immediate environment and this information is processed in a heuristic way. This

allows the construction of the true operating map with reduced computational

complexity. Subsequently, the algorithm uses a graph search approach, which

can be characterized as a dynamic extension of Dijkstra’s algorithm, in order

to find the optimal solution in a complete way. Improved versions of the D∗

algorithm, namely the delayed D∗ and the D∗ lite algorithms, are presented in

[12, 13] respectively.

An important issue that should be dealt within the discrete approach is the

“smoothness” requirement of the generated path, since in realistic situations the

vehicle under dynamic constraints has to follow a smooth trajectory. In the lit-

erature (see [14]) one can find modified shortest path algorithms which assign an

additional penalty cost when the angle between two successive arcs of the path is

larger than a threshold angle θmax. By imposing this “smoothness” constraint, the

sequence of nodes that solve the network minimization problem form a smooth

enough polygonal line joining x0 and xf . Then, one can directly proceed to the

trajectory planning problem by determining the linear and angular velocities re-

quired to drive the agent to the goal destination. The resultant trajectory has

to be close enough, in a pointwise sense, to the polygonal path that the graph

search algorithm found. This requirement is a direct consequence of the polygo-

nal connected requirement for the space F since no other curve except from the

polygonal path is guaranteed to lie completely inside F .

The most important difficulty of the graph search approach lies in the dimen-

sionality of the problem. To elucidate this point, let us assume that we implement

an on line path planning scheme where all the data of the environment are avail-

able at all times. On the other hand, the available computational resources are

limited due to hardware limitations. It is obvious that the higher the amount of

data processed, the more accurate the solution path will be. Thus, the dimension

of G (i.e., the number of nodes) becomes very large as the fidelity of the approx-

imation of F and/or W increases. Furthermore, the increase in the number of

the nodes of the graph is very likely to increase the adjacency relations between

different nodes. In all cases, the graph search task becomes more demanding and

6

the problem more computationally complex. Sooner or later, the computational

resources on-board the agent reach their limit; hence, an accurate solution cannot

be generated as often as desired, and therefore the agent capacity to deal with

rapidly changing situations is also limited.

1.3 Thesis Motivation and Objectives of The Pro-

posed Path-Planning Schemes

1.3.1 Introduction

From the previous observations, a dynamic path planning scheme which can han-

dle changes in the vicinity of the agent while requiring a reduced amount of

computational resources will be useful in many applications in the field of UAV,

UGV navigation and robot motion planning. One straightforward approach to

deal with this problem is to design a path planning algorithm based solely on lo-

cal information of the configuration space. In that case replanning is easier than

with global methods; there exist obstacle configurations nonetheless, where such

local methods are not guaranteed to find a solution even if such a solution exists.

This situation is depicted in Fig. 1.1 where the agent starting from ‘A’ fails to

find the route to the goal destination ‘B’ when the visibility/exploration horizon

of its sensors are not sufficient large. As the exploration horizon is increased,

the construction of a collision-free path becomes more likely. The increase of the

exploration horizon, however, comes at the expense of an increase of the required

on-board computational resources. Therefore, a path planning algorithm based

on local information may not be efficient in practice unless the initial and final

states are sufficiently close to each other (see [1]). On the other hand, global

path-planning algorithms in realistic situations, where the agent’s computational

resources are limited, are restricted to use coarse representations of the whole en-

vironment. Thus, the global information approach fails to take into consideration

the high fidelity information in the vicinity of the agent’s current position. Subse-

quently, the real time implementation of a global path-planning scheme becomes

problematic since the agent is not appropriately sensitive to crucial changes in its

immediate environment.

7

B

A

Figure 1.1: A path generated by a short visibility/exploration horizon planning scheme.

1.3.2 Thesis Motivation

Strong motivation for this thesis is the design of a path planning scheme where

the operating environment of the vehicle is assumed to be only partially known.

This motivation comes from many applications of autonomous vehicle navigation

problems, where the assumption of global knowledge of the environment is an

overconservative approach. One can think of an unmanned aerial vehicle operating

in a hostile environment with the mission to identify an enemy target, where areas

of high risk are not known a priori. Based on the information gathered by the

on-board sensor devices, the UAV should find the route to the destination while

avoiding to get close to areas of high risk. It is evident that its ability to react

immediately to an obstacle or popup threat is crucial to the success of its mission.

In this case, as with many other applications of vehicle navigation, different sensor

devices can provide information of the environment in the vicinity of the vehicle.

The information obtained by different devices should be weighted appropriately,

since the sensors, (cameras, radars, laser scanners, satellite imagery, etc.) have

different ranges and resolutions.

1.3.3 Thesis Objectives

In this work, we introduce two hybrid local/global path planning algorithms that

use district levels of fidelity (resolution) of the environment at different distances

8

from the agent’s current position. The first planning scheme uses cell decom-

positions of the agent’s operating environment constructed using wavelets and

standard quadtree decompositions. The second scheme, finds the solution path

using sector cell approximations. This is a more natural approach given the sector

like topology of the areas scanned on-line by the on-board sensors of the vehicle.

In the sequel, when we will use the term the “path planning scheme” we will refer

to the general idea of multiresolution path planning lying behind both of these

algorithms. In cases where we want to distinguish between the two, we do so

explicitly.

The goal of the proposed path planning scheme is to find a sequence of points

in the world W (operating environment of the vehicle) that the agent should visit

in order to reach the final destination xf (perhaps not accurately known a priori).

The initial state x0 is assumed to be prescribed whereas the final time is a free

parameter of the problem. All the points of the sequence should lie in a polygonally

connected subspace of the free configuration space F . This requirement is needed

so that the polygonal line that connects the points of the sequence lies completely

inside F .

Since the resultant path of the planning scheme is a finite sequence of ordered

points, the next step is to introduce a methodology for generating a smooth trajec-

tory under dynamic constraints. We employ a kinematic ground vehicle model to

obtain the equations of motion of the agent, and additionally we introduce a tra-

jectory generating scheme using some basic ideas from input/output linearization

theory (IOL) for MIMO systems (see [15]). This scheme produces a smooth curve

passing sufficiently close to the visiting points of the path at specified instants of

time (time scheduling).

1.3.4 The Multiresolution Hierarchical Approach

The success of a multi-resolution path planning algorithm hinges on its ability to

compute the obstacle boundaries well in advance and with sufficient accuracy, by

keeping a balance between an overconservative approximation of the environment

and the computation of a collision-free path.

In this work we use wavelets to obtain multiresolution approximations of the

configuration space at different distances from the vehicle. The computational

9

complexity of the wavelet transform is of order O(n) where n is the input data [16]

while even than the Fast Fourier Transform has complexity of order O(n log2 n).

Therefore the wavelet transform provides a very fast decomposition of the envi-

ronment at different levels of resolution. From the output of the wavelet transform

we construct cell-based approximations (rectangular or sector-like) of the whole

environment W having high/fine resolution close to the current position of the

vehicle and low/coarse resolution far away. The number of resolution levels, their

scale, and range can all be readily adapted at each time step to yield graph

representations that are commensurable to the available on-board computational

resources.

We employ the hierarchical path planning principle to find the optimal path

on a topological graph G induced by the previous cell decomposition. Namely, the

path may contain mixed nodes at all resolution levels except the finer resolution

level, where it is assumed that nodes can be confidently resolved as either free or

occupied. Mixed nodes, on the other hand are not known with certainty whether

they belong to the free or the obstacle space. Hierarchical path planning is known

to be more flexible than methods that search only through free nodes [17]. In

hierarchical path planning the mixed nodes are subsequently resolved to free or

occupied nodes, as the agent gets closer to the obstacles and more information

about their shape and location becomes available.

1.3.5 Literature Review

Several multi-resolution or hierarchical algorithms have been proposed in the lit-

erature for path planning [18, 19] The majority of those use some form of quadtree

decomposition of the environment. One drawback of quadtree-based decomposi-

tions is that a finer resolution is used close to the boundaries of all obstacles,

regardless of their distance from the agent. This tends to waste computational

resources. One of the central references in the context of quadtree-based cell de-

compositions is perhaps [19], where the authors present a hierarchical path plan-

ning scheme based on a multistage quadtree decomposition. Both free and mixed

nodes are included in the search, which is conducted using the A∗ algorithm. A

path to the target is first computed using a coarse grid and subsequently refined

using information from higher resolution levels, uniformly along the path. Even

10

though this technique is efficient and easy to implement, it fails to take full ad-

vantage of the local information around the agent. Wavelets for multi-resolution

decomposition of the environment have also been used in [18]. The approach in

[18] combines a more efficient model for the local behavior of the approximation,

with improved computational characteristics, compared to the one proposed in

[19]. The main emphasis in [19] is to construct a smooth path. This is easily

achieved by the information provided by the detail coefficients in the wavelet ex-

pansion. The smoothness requirement is then embedded in the transition cost of

the agent. The reference most closely related to our approach is [20]. Therein,

the author also uses the idea of coarse/fine grid at close/far distances from the

current location of the agent in order to avoid the demerits of uniform grids or

standard quadtrees. Nonetheless, no connection with wavelets is attempted. In

addition, the multiresolution scheme in [20] requires a rather careful handling of

the cell connectivity at the boundaries between two different resolution levels.

This is handled automatically in our approach.

1.4 Thesis Overview

In this section we briefly describe each chapter in this thesis by and we point out

interrelationships between these chapters.

Chapter 2: Technical background

We discuss some basic notions from topology, graph theory and wavelet approxi-

mation theory and we present Dijkstra’s algorithm and the elementary theory of

the quadtree decomposition algorithm. These topics are important for a deeper

understanding of the subsequent chapters. A reader familiar with these concepts

can skip this chapter in a first reading.

Chapter 3: Multiresolution Path planning Using Rectangular Cell De-

compositions

We introduce the first path planning scheme of this thesis. The proposed algo-

rithm constructs the shortest path based on rectangular cell decompositions of the

world space W induced by a Haar wavelet multiresolution approximation scheme

of a risk measure function defined over W .

Chapter 4: Multiresolution Path Planning Using Sector Decomposi-

11

tions

We present the second path planning scheme of this thesis, which is a natural

extension of the algorithm presented in Chapter 3. Now the planning takes place

in sector-cell decompositions of the world W . This approach is compatible with

the specific form of data obtained by on-board sensors of an autonomous vehicle.

Chapter 5: Time Scheduling and Smooth Trajectory Generation

We discuss ways to generate a smooth trajectory passing sufficiently close to the

visiting points given by the path planning scheme presented in the previous two

chapters. We wish this closeness requirement to be satisfied at specific time in-

stants. We first introduce a kinematic model to describe the equations of motion of

the agent, and we subsequently specify an appropriate speed profile to accomplish

the trajectory generation and time scheduling tasks. Ideas from input/output

linearization theory for MIMO systems are employed to achieve this objective.

Chapter 6: Simulation Results

We present simulation results to test the efficiency of the two proposed planning

algorithms and the trajectory generating and time scheduling scheme.

Chapter 7: Conclusions and Future Work

We discuss the conclusions from our approach to the path planning problem. Ideas

and possible extensions are also briefly discussed.

12

Chapter 2

Technical background

2.1 Introduction

In this chapter we present some basic notions that we will use extensively in this

work. First, we present the basic theory of cell decomposition schemes, which are

typically used in robot motion planning application [5, 6] and we describe how we

incorporate the cell decomposition approach in our problem. Then we introduce

the elementary theory of the wavelet transform. In this work we employ wavelet

schemes to obtain cell decompositions of the working environment with special

localized attributes. Furthermore, we present the basic ideas behind the Dijkstra’s

algorithm which we use to solve the shortest path problem. For a more detailed

presentation of the shortest path problem the reader is encouraged to consult the

suggested references relevant to this topic [21, 9].

2.2 Cell Decomposition

An m-cell decomposition Cd of W is a finite collection of m cells

Cd = {ci ∈ W : i = 1, . . . ,m} (2.1)

with the following properties:

1. W =
⋃m

i=1 ci

2. int(ci)
⋂

int(cj) = ∅

13

A cell decomposition algorithm generates a collection of cells by creating se-

quences of nested cells. One popular algorithm to accomplish this decomposition

is the quadtree decomposition algorithm. The goal of this algorithm is the con-

struction of a collection of square cells which contains only empty or full cells. In

order to present the way the algorithm constructs these sequences, let us suppose

that initially we have only one mixed cell c1 that encloses the world W with `1 be

the length of each of its sides. Then by bisecting each of the sides of the cell c1 we

take four new cells ci, with i = 1, . . . , 4 with corresponding side length `i = `1/2 .

The cell c1 is the parent node and ci are the children nodes of the corresponding

expansion tree of depth k = 2. Since the aim of the cell decomposition algorithm

is to generate only empty or full cells the algorithm will continue to subdivide each

mixed cell creating four new cells with sides of length `i = `1/2
k−1, where k the

depth of the corresponding expansion tree. The algorithm will terminate either

when there no mixed cells or the resulting expansion tree reaches a predetermined

depth.

Given two cell decompositions Cd and C′
d of W we say that C′

d is a finer, or

higher resolution decomposition of W than Cd if and only if for every cell ci ∈ Cd

there exists an integer pi > 1 such that ci =
⋃pi

l=1 c′l where c′l ∈ C′
d.

We may define the following three categories of cells:

1. empty cells, when ci ∩ O = ∅

2. mixed cells, when ci ∩ O 6= ∅

3. full cells, when ci ⊆ O.

We will say that two cells ci and cj are adjacent if

∂ci ∩ ∂cj 6= ∅, i 6= j, (2.2)

where ∂ci denotes the boundary of the cell ci. A cell decomposition of a square

environment is presented in Fig. 2.1. The corresponding to this decomposition

free, mixed and full cells are given in the Table 2.1.

2.3 Graph Representation

To a cell decomposition Cd we will associate a directed graph G = (V,E) with

nodes V and edges E, known as the connectivity graph, such that:

14

Figure 2.1: Quadtree decomposition scheme. Right figure depicts the world W where

the white areas correspond to F and black to OB. In the left figure we see the obtained

cell decomposition after we apply the quadtree algorithm.

Table 2.1: Cell characterization for the decomposition depicted in Fig. 2.1.

Full Cells A4, B3, C4

Mixed Cells A2, A3, B1, B2, B3, B4, C2, C3, D2

Free Cells A1, C1, D1, D2, D3

1. The nodes of G correspond to the free and mixed cells of Cd

2. The edges of G correspond to cells that are adjacent to each other

It is easy to see that G is a topological graph [5].

In this work we use the 8-connectivity scheme to define adjacency relationships

between nodes. This is an immediate result of the equation (2.2). This adjacency

scheme is presented in Fig. 2.2. To each ordered pair inside E we associate a cost of

transition. In our path planning scheme the order of a transition is important for

the cost assignment procedure, i.e the connectivity graph is in our case a directed

graph.The procedure of cost assignment is described in detail in the subsequent

chapters. Finally, the reader interested in a deeper understanding of topics from

graph theory should refer to [22, 23, 24].

15

Figure 2.2: The 8-connectivity adjacency scheme.

2.4 The 2D Wavelet Transform

The idea behind the theory of the wavelet transform is to represent a function

f ∈ L2(R) as a summation of elementary basis functions φJ,k and ψj,k as follows

f(x) =
∑

k∈Z

aJ,kφJ,k(x) +
∑

j≥J

∑

k∈Z

dj,kψj,k(x), (2.3)

where φj,k(x) = 2j/2φ(2jx − k) and ψj,k = 2j/2ψ(2jx − k). In the ideal case both

φ(x) (scaling function) and ψ(x) (mother wavelet) have compact support or they

decay very fast outside a small interval so they can capture localized features of

f . The first summation in (2.3) gives a low resolution, or coarse, approximation

of f . The second term in (2.3) gives the difference (details) between the original

function and its low resolution approximation. For example, when analyzing a

signal at the coarsest level (low resolution) only the general, most salient, features

of the signal will be revealed. The index j denotes the resolution level. For each

increasing index j, a higher, or finer resolution term is added, which adds more

and more details. The expansion (2.3) thus reveals the properties of f at different

levels of resolution [25, 26, 27].

This idea can be readily extended to the two-dimensional case by introducing

16

the following families of functions

Φj,k,`(x, y) = φj,k(x)φj,`(y) (2.4)

Ψ1
j,k,`(x, y) = φj,k(x)ψj,`(y) (2.5)

Ψ2
j,k,`(x, y) = ψj,k(x)φj,`(y) (2.6)

Ψ3
j,k,`(x, y) = ψj,k(x)ψj,`(y) (2.7)

Given a function f ∈ L2(R
2) we can then write

f(x, y) =
∑

k,`∈Z

aJ,k,`ΦJ,k,`(x, y)

+
3

∑

i=1

∑

j≥J

∑

k,`∈Z

di
j,k,`Ψ

i
j,k,`(x, y)

(2.8)

where, for the case of orthonormal wavelets the approximation coefficients are

given by

aj,k,` =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) φj,k,`(x, y) dx dy (2.9)

and the detail coefficients by

di
j,k,` =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) Ψi
j,k,`(x, y) dx dy. (2.10)

In the more general case, biorthogonal wavelets projections on the space spanned

by the dual wavelets and dual scaling functions should be used in (2.9) and (2.10).

The key property of wavelets used in this work is the fact that the expansion (2.8)

induces the following decomposition of L2(R
2)

L2(R2) = VJ ⊕Wdetail
J ⊕Wdetail

J+1 ⊕ · · · (2.11)

where VJ = span{φJ,k,`}k,`∈Z and similarly Wdetail
j = span{ψ1

j,k,`, ψ
2
j,k,`, ψ

3
j,k,`}k,`∈Z

for j ≥ J .

By using the Haar family of wavelets, each scaling function φj,k(x) and wavelet

function ψj,k(x) in the Haar system is supported on the dyadic interval Ij,k
4
=

[k/2j, (k + 1)/2j] of length 1/2j and does not vanish in this interval [25, 28].

Subsequently, and via the tensor product in (2.4), we may associate the functions

Φj,k,` and Ψi
j,k,` (i = 1, 2, 3) in the 2D case with the square cell cj

k,`

4
= Ij,k × Ij,`.

17

2.5 Description of Dijkstra’s Algorithm

A popular algorithm to find the shortest path between two nodes u and v of a

graph G is the Dijkstra’s algorithm. Dijkstra’s algorithm is considered as one

of the most efficient algorithms when a path between two nodes of a graph is

needed (see [1]). Even though it is based on a greedy strategy the Dijkstra’s

algorithm always finds the optimal solution, provided that such a solution exists.

Additionally, depending on the sparsity of the adjacency matrix and the particular

implementation it is computationally more appealing than other standard shortest

path algorithms, like the Bellman-Ford algorithm, see [9].

Below, we shall briefly present the basic principles of Dijkstra’s algorithm.

Given a graph G, we associate to a transition from the node vi−1 to the node vi of

this graph a nonnegative cost J (vi−1, vi). The exact cost assignment procedure

shall be described in the subsequent chapters where we introduce the multireso-

lution path planning scheme. The goal of the algorithm is to find the sequence of

1 + md nodes P = (v0 = s, v1, . . . , vmd
= d), that the agent has to visit, starting

from the initial node s until reaches the destination node d, while at the same the

total cost

H(d) =

md
∑

j=1

J (vj−1, vj) (2.12)

is minimized whenever v0 = s. We call P the shortest path. It is clear that the so-

lution path P inside the graph G is a function of the initial and final nodes. When

part of the optimal path P is known we define the optimal weight Ĥ(uk, uk+n) to

be the sum

Ĥ(vk, vk+n) =
n+k
∑

j=k+1

J (vj−1, vj), (2.13)

where all the nodes appearing in the transition costs of the sum are elements of

the optimal part of the path. When vk is the starting node s then we denote the

optimal weight between s and the node vk+n = u as Ĥ(u). Dijkstra’s algorithm

finds Ĥ(u) for all u ∈ V until the value of Ĥ(d) is known. This is accomplished

with a help of a list S which contains all the nodes u for which Ĥ(u) is known.

At each iteration the algorithm picks one element w from V which is not in S

and is closest to the finite set S. The node w is then an element of the list S.

The way that the algorithm assigns the optimal value to the last node w which

18

was inserted in the list S is based on the principle of relaxation. To see how

the principle of relaxation works we let u,w be two adjacent nodes and assume

that the set Sx(u,w)
4
= {x ∈ V : x is adjacent to bothu,w} is nonempty. Let

x ∈ Sx(u,w), then the principle is defined by the following inequality

H(u, v) ≤ H(u, x) + H(x, v). (2.14)

In the case where u ∈ S the principle of relaxation states that H(u,w) = Ĥ(u,w)

provided that the inequality (2.14) holds for every node x ∈ Sx. Otherwise

Ĥ(u, v) = minx∈Sx
{H(u, x) + H(x, v)}. For details the reader can refer to [9].

19

Chapter 3

Multiresolution Path planning

Using Rectangular Cell

Decompositions

3.1 Introduction

In this chapter we introduce an innovative approach to the path planning problem

using ideas from wavelet theory. With this approach the agent is capable of

reacting immediately to situations where the collision avoidance requirement is

violated (i.e an obstacle is revealed to be in the agent’s vicinity) or a threat

suddenly appears (popup threat) while approaching the goal destination. The

proposed algorithm assumes that far away obstacles or threats should not have

a large effect on the vehicle’s immediate motion, since either these regions will

never be visited by the agent or more accurate and reliable information about

them will become available when the agent gets closer to them while approaching

the final destination. So high resolution information is needed only for the area in

the vicinity of the agent’s current position. This allows one to construct a graph

with fewer nodes than the case where the whole environment is represented in a

uniform fashion. One should note that the approach of using a different resolution

to approximate the working environment is also based in practical issues since in

many typical navigation problem a plethora of sensory devices used (e.g., cameras,

radars, laser scanners, satellite imagery) have different ranges and resolutions. A

20

computationally efficient path planning algorithm should be able to combine the

information provided by all these sensors in such a way that the computational

resources are used on that part of the path (spatial and temporal) that needs

them most. Additionally, information about far away obstacles is taken into some

consideration providing the planning scheme with a mechanism which “pulls” the

agent to the final destination (long-term strategy).

The resultant solution-path of this algorithm is the one that minimizes the

total length of the path with respect to a metric that includes actual path length

along with a risk-induced metric. The risk-induced metric depends on the avail-

able environment representation and the way is defined is presented in detail in

Section 3.3.

3.2 Wavelet decomposition of the risk measure

Without loss of generality, we take W = [0, 1] × [0, 1], which is described using a

discrete (fine) grid of 2N × 2N dyadic points. The finest level of resolution Jmax

is therefore bounded by N . It follows from the previous discussion that the Haar

wavelet decomposition of a function f defined over W at resolution level J ≥ Jmin

f(x, y) =
2Jmin−1
∑

k,`=0

aJmin,k,` ΦJmin,k,`(x, y)

+
3

∑

i=1

J−1
∑

j=Jmin

2j−1
∑

k,`=0

di
j,k,`Ψ

i
j,k,`(x, y)

(3.1)

induces a cell decomposition of W of square cells of size 1/2J × 1/2J .

Assume now that we are given a function rm : W 7→ [0, 1] that represents the

“risk measure” at the location x = (x, y). For instance, one may choose

rm(x) =

(dmax − miny∈O ‖x − y‖∞)/dmax, if x ∈ F ,

1, if x ∈ O,
(3.2)

where dmax
4
= maxx∈F miny∈O ‖x− y‖∞. Alternatively, one may think of rm as the

probability that (x, y) ∈ O.

Let us also assume that we have m distinct risk measure levels, say M1 <

M2 < · · · < Mm where Mi ∈ [0, 1], i = 1, . . . ,m.

21

We will use the ‖ · ‖∞ norm to measure distances in W . Consequently, all

points within range r from the current location of the agent are given by

N (x, r)
4
= {y ∈ W : ‖x − y‖∞ ≤ r}. (3.3)

Suppose now that we are given the desired levels of resolution of W as Jmin ≤
j ≤ Jmax where Jmin, Jmax ∈ {1, . . . , N}, with corresponding ranges r(j) from the

agent’s current location. By this we mean that we wish all points y ∈ N (x, r(Jmax))

to be described by resolution Jmax, all points y ∈ N (x, r(j − 1))\N (x, r(j)) to be

described by resolution j, where Jmin < j ≤ Jmax, and all points y 6∈ N (x, r(Jmin +

1)) to be described by resolution Jmin. Since we require finer resolution closer to

the agent we assume, of course, that r(j − 1) > r(j). The situation is depicted in

Fig. 3.1.

Figure 3.1: Multiresolution representation of the environment according to the distance

from the current location of the agent.

The choice of Jmax is dictated by the requirement that at this level all cells

can be resolved into either free or occupied cells. The choice of Jmin as well as the

22

values of r(j) are typically dictated by the on-board computational resources.

We obtain the distinct resolution levels at the given required distances from

the current location of the agent by applying the Haar wavelet transform to rm.

The use of Haar wavelets is mainly dictated by the choice of the norm in (4.5).

To this end, let I(j)
4
= {0, 1, . . . , 2j − 1} and let

K(j)
4
= {k ∈ I(j) : Ij,k ∩ [x0 − r(j), x0 + r(j)] 6= ∅},

L(j)
4
= {k ∈ I(j) : Ij,` ∩ [y0 − r(j), y0 + r(j)] 6= ∅}.

The wavelet decomposition of rm, given by

rm(x, y) =
∑

k,`∈I(Jmin)

aJmin,k,` ΦJmin,k,`(x, y)

+
3

∑

i=1

Jmax−1
∑

j=Jmin

∑

k∈K(j)

`∈L(j)

di
j,k,`Ψ

i
j,k,`(x, y)

(3.4)

induces, via a slight abuse of notation, the following cell decomposition on W

Cd = ∆CJmin

d ⊕ · · · ⊕ ∆CJmax

d . (3.5)

where, ∆Cj
d is a union of cells cj

k,` of dimension 1/2j × 1/2j.

3.3 Cost Assignment

Each cell cj
k,` in the cell decomposition has a value val(cj

k,`) ∈ {M1, . . . ,MN},
which for the case of Haar wavelets is the weighted average of the risk measure

function over the cell. Following the hierarchical approach, we divide the cells in

three categories: free cells if val(cj
k,`) < m1, full cells if val(cj

k,`) > m2, and mixed

cells if m1 ≤ val(cj
k,`) ≤ m2, where m1,m2 ∈ {M1, . . . ,MN} are given.

To the cell decomposition G having as nodes V (G) all the cells with val(cj
k,`) ≤

m2. The edges E(G) of G correspond to the adjacency relationships of V (G),

as usual. Clearly, there is an one-to-one correspondence between the elements

of V (G) and the free and mixed cells of Cd. We write v ∼ cj
k,` to denote this

correspondence. Moreover, since G is a topological graph we may associate each

node v ∈ V (G) with any point x ∈ cj
k,`. Without loss of generality we choose the

23

center of the cell. Let cellG(v) denote the center of the corresponding cell in this

case. Finally, if x ∈ cj
k,` we will write v = nodeG(x) where v ∼ cj

k,`.

To each edge (u, v) ∈ E(G) we assign a cost J (u, v), which is the cost of

transitioning from node u to node v. We may use the transition cost as follows

J (u, v) = rm(cellG(v)). (3.6)

That is, the cost of transitioning from node u to the adjacent node v depends only

on the risk measure of the final node, v and is independent of the starting node

u. This situation is depicted in Fig. 3.2. Note that, in general, J (u, v) 6= J (v, u).

v

J (v,w)

vv

J(v,u)

ÂÂ

J (v,z)

w

J (w,v)

66

z

J (z,v)

JJ

u

J (u,v)

__&%
'$

ith risk measure level

Figure 3.2: Cost assignment for each node u of the directed graph G.

Another alternative would be to choose the transition cost so as to also pe-

nalize the (euclidean) distance between cellG(u) and cellG(v). In this case the cost

becomes

J (u, v) = rm(cellG(v)) + α‖cellG(u) − cellG(v)‖2. (3.7)

where α ≥ 0 is a weight constant. The larger the α the more emphasis we place

on a shorter path.

Suppose now that we are given a path of q consecutive, adjacent nodes in G as

follows P = (v0, v1, . . . , vq). We can then assign a cost to each node in the path

P , induced by the two-node transitioning cost, iteratively, via

H(vi) = H(vi−1) + J (vi−1, vi), i = 1, . . . , q. (3.8)

The value of H(vk) represents the (accumulated) cost of the path from v0 to

vk (k ≤ q). The shortest path problem is then to find a path that minimizes the

accumulated cost from the initial to the destination node, or determine that such

a path does not exist.

24

3.4 Multiresolution Path planning

The proposed multiresolution path planning algorithm proceeds as follows. Start-

ing from x(t0) = x0 at time t = t0, we construct using the approach of Chapter 2,

a cell decomposition Cd(t0) of W . Let the corresponding graph be G(t0) and let

v0
1 ∈ G(t0) and v0

f ∈ G(t0) be the initial and final nodes, respectively such that

v0
1 = nodeG(t0)(x0) and v0

f = nodeG(t0)(xf). Using Dijkstra’s algorithm (or any other

similar algorithm) we find a path P(t0) in G(t0) of free and mixed nodes from v0
1

to v0
f assuming that such a path exists. Note that areas far away from the agent’s

current position are likely to be represented by cells of relative high size.Let the

path P(t0) be given by the ordered sequence of l0 nodes as follows

P(t0) = (v0
1, v

0
2, · · · , v0

l0−1, v
0
l0

= v0
f).

It is assumed that v0
2 is free owing to the high resolution decomposition of W close

to x0. The agent subsequently moves from v0
1 to v0

2. Let now t1 be the time the

agent is at the location x(t1) = cellG(t0)(v
0
2) and let Cd(t1) be the multiresolution

cell decomposition of W around x(t1) with corresponding topological graph G(t1).

Applying again Dijkstra’s algorithm we find a (perhaps new) path in G(t1) from

v1
1 = nodeG(t1)(x(t1)) to v1

f = nodeG(t1)(xf) if such a path exists. Let P(t1) be given

by the ordered sequence of l1 nodes as follows

P(t0) = (v1
1, v

1
2, · · · , v1

l1−1, v
1
l1

= v1
f).

The agent subsequently moves to x(t2) = cellG(t1)(v
1
2) at time t2.

In general, assume the agent is at location x(ti) at time ti. We construct a

multiresolution decomposition Cd(ti) of W around x(ti) with corresponding graph

G(ti). Dijkstra’s algorithm yields a path P(ti) in G(ti) of mixed and free noes of

length li,

P(ti) = (vi
1, v

i
2, · · · , vi

li−1, v
i
li

= vi
f),

where vi
1 = nodeG(ti)(x(ti)) and vi

f = nodeG(ti)(xf) if such a path exists. The

process is continued until some time tf when ‖x(tf) − xf‖ < 1/2Jmax , at which

time the algorithm terminates. At the last step the agent moves from x(tf) to xf .

Note that the actual path x(t0), x(t1), . . . , x(tf) followed by the agent is given by

the sequence of nodes nodeG(t0)(x(t0)), nodeG(t1)(x(t1)), . . . , nodeG(tf)(x(tf)). Since

25

the connectivity graph G(t) changes at each time step, it is therefore possible that

the same state x may be visited twice since it may correspond to nodes of two

distinct graphs. That is, it is possible that

cellG(ti)(v
i
k) = cellG(tj)(v

j
m), i 6= j. (3.9)

This will cause the agent to repeat the previous (optimal) decision ending up in a

continuous loop. In order to avoid such pathological situations, we maintain a list

LVisited = {x(t0), x(t1), . . . , x(ti)} of all visited states up to the current time step ti.

At the next time step ti+1 we remove from V (G(ti+1)) all nodes v such that

cellG(ti+1)(v) ∈ LVisited. (3.10)

A pseudo-code implementation of the above algorithm is given in Fig. 3.3.

26

begin path planning algorithm

{
i = 0;

xi ←− x0;

{LVisited} = {∅};
(while ‖xf − xi‖ > ε)

{
compute rm(x, i) for all x ∈ W;

construct Cd(i);

construct G(i) = (E(i), V (i));

(if LVisited is nonempty)

for v ∈ V (i)

xv(i) = cellG(i)(v);

if xv(i) ∈ LVisited

extract v from V (i);

for all u adjacent to v

remove (v, u) from E(i);

end if;

end if;

vi
1 ←− nodeG(i)(x0);

vi
f ←− nodeG(i)(xf);

P(i) ←− Dijkstra(vi
1, v

i
f , V (i), E(i));

if P(i) = {∅}
report FAILURE;

break;

xi(1) = cellG(i)(v
i
1);

xi(2) = cellG(i)(v
i
2);

{LVisited} ←− {LVisited}
⊕{xi(1), xi(2)};

xi+1 ←− xi(2);

i ←− (i + 1);

x0 ←− xi(2);

}
}
end path planning algorithm

Figure 3.3: Pseudo-code implementation of proposed multiresolution path planning

scheme.

27

Chapter 4

Multiresolution Path Planning

Using Sector Decompositions

4.1 Introduction

In path-planning problems information about the environment is obtained us-

ing either on-board or off-board sensors. Some of this information is provided

off-line and some is gathered on-line. Furthermore, most typical sensor devices

provide sector-like representations of the environment (see Fig. 4.1). This type

of information is not in the most efficient form for the majority of planning al-

gorithms, which employ rectangle or square cell approximations, typically using

quadtrees [19, 17, 29]. Such approximations are not compatible to the sector based

representations obtained by most sensor devices.

In this chapter we present a planning algorithm as an extension of the results

of the previous chapter. In the proposed path planning scheme we employ a con-

formal mapping to devise a hybrid local/global path planning algorithm using

sector cell decompositions instead of decompositions that employ only rectangu-

lar or square cells. Sector cells are compatible to the on-board sensors and thus

process the data more efficiently, in a manner that does not contradict its original

sector-based form. We provide approximations with special localized attributes

by combining efficiently data from sensors of different resolutions and ranges. Fur-

thermore, in the algorithm of Chapter 3 the whole environment was assumed to be

known á priori and the wavelet approximation scheme allowed us to plan the path

28

r1
r2

r3

Figure 4.1: Sensors have different ranges, fields of view and resolution. Ideally, the

algorithm that processes this data should conform to this topology.

using only a small fraction of the available information. This results in a reduced

number of computations that can be handled by the available computational re-

sources on-board the vehicle. Contrary to the planning algorithm of Chapter 3,

the proposed methodology in this chapter employs on-line data of the agent’s im-

mediate environment as it is obtained by the on-board sensors. This approach

is the most natural way to deal with the navigation problem of an autonomous

vehicle operating in an unexplored environment, for which no prior knowledge is

available.

In the next section we introduce a methodology for obtaining sector cell de-

compositions given rectangular cell decompositions using conformal mapping. In

Section 4.3 we describe the way we represent hierarchically the new world space

W in the new coordinate system induced by the conformal mapping. The new

multiresolution decomposition scheme of the risk measure in the new coordinate

system is described in Section 4.4. Finally, in Section 4.5 we present in detail the

new sector-based multiresolution path planning algorithm.

29

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

Figure 4.2: A cell decomposition based on the available sector approximation of the

environment obtained by the on-board sensor devices of the agent (denoted with the blue

dot). In order to resolve the geometry of the arc-boundary of each sector the standard

quadtree algorithm generates a large number of cells at close to the boundaries of these

arcs.

4.2 From Rectangular to Sector Cell Decompo-

sitions

It is assumed that the available information of the surrounding area of the agent

is given by the superposition of circular or conical sectors obtained by different

sensor devices as depicted in Fig. 4.1. This information about W needs to be

processed by the path planner to compute a collision free path. In order to do

so, the path-planning algorithm typically computes a cell decomposition of the

environment. As can be easily observed by Fig. 4.2, if rectangular cells are used

(as with any quadtree-based approach) the algorithm may waste computational

resources by subdividing the cells in order to resolve the sector boundaries.

A simple way to overcome this difficulty is to employ a conformal mapping to

map the sector cells to rectangular cells in a new coordinate system. The latter

approach is proposed in this chapter. The motivation for this idea is simple. Let

30

2π

r

θ

r = rmin

r = rmin

r = rmax
r = rmax

x
A
BΓ

∆
O′ A′

B′Γ′

∆′

y

O

Figure 4.3: A cut annulus in the (x, y) plane is mapped to a rectangle in the (r, θ)

plane using a polar (conformal) mapping.

us assume that R is a sector domain in the (x, y) plane specified by the radii rmin

and rmax and the angles θmin and θmax. Mapping this domain to the (r, θ) plane

using the polar transformation one obtains a rectangular domain R′ defined by

the same radii and angles. If the angle varies from θmin = 0 up to θmax = 2π the

whole annulus cut defined by the radii rmin and rmax is mapped to a rectangular

cell in the (r, θ) plane as shown in Fig. 4.3.

More precisely, recall that the polar coordinates r, θ are related to x and y via

the equations

x = r cos θ, y = r sin θ, (4.1)

where the Jacobian of the transformation is given by

J =
∂(x, y)

∂(r, θ)
= r,

and thus J > 0 provided that r > 0. Thus, the inverse transformation (x, y) 7→
(r, θ) exists for r > 0.

The closed curve defined by the union of the circles C1 = {(x, y) ∈ R
2, x2+y2 =

r2
min}, C2 = {(x, y) ∈ R

2, x2 + y2 = r2
max} and the line segment L = {(x, y) ∈

R, rmin ≤ x ≤ rmax} (traversed twice), maps to a rectangle r = rmin, r = rmax, θ =

0, θ = 2π in the (r, θ) plane. Alternatively, the area inside a rectangle defined by

r = rmin, r = rmax, θ = θmin, θ = θmax where 0 ≤ θmin ≤ θmax ≤ 2π is mapped via

the inverse transformation to the intersection of two sectors defined by rmin, θmin

and rmax, θmax respectively in the (x, y) plane.

31

Thus, given a sector cell decomposition in the (x, y) plane, a rectangle cell

decomposition can be obtained in the (r, θ) plane via the polar coordinate trans-

formation (4.1). Conversely, if we have a multiresolution approximation of the

rectangular domain in the (r, θ) plane, then by applying the inverse mapping, the

rectangular area can be approximated by a collection of cells forming a sector

domain in the (x, y) plane, as seen in Fig. 4.4.

4.3 World Space in the New Coordinate System

Let f be a function f : Domain(f) = W 7→ R and let Imagef (W) = {f(x) : x ∈
W} ⊆ R. In order to map the set W×Imagef (W) to the polar coordinate system

we proceed as follows.

First, we discretize W using a uniform grid of dimension 2N × 2N . For each

point (xi, yi), (1 ≤ i ≤ 2N) we compute the corresponding (ri, θi) point in polar

form using the following equations:

ri =
√

(xi − x0)2 + (yi − y0)2,

θi = atan2(yi − y0, xi − x0),
(4.2)

where (x0, y0) is the agent’s current position and (ri, θi) is the distance and an-

gle position with respect to the agent. Let φ(x0,y0) : R
2 7→ R × S1. We can

then associate to each pair (ri, θi) the function value f(xi, yi), that is, f ′(ri, θi) =

f(φ(x0,y0))(xi, yi)) = f(xi, yi).

The next step is to obtain a multiresolution (rectangular) cell approximation

of the function f ′ in W ′. As we shall see in the next section, the wavelet transform

provides us with such a multiresolution cell based approximation in any rectan-

gular domain. Based on this cell decomposition we can proceed with the design

of our path planning algorithm working entirely in the W ′ domain by applying

the wavelet-based path planning algorithm of Chapter 3.

32

2π

rmin

rmin

rmax

rmax r x

yθ

OO

Figure 4.4: A multiresolution approximation of the rectangular domain in (r, θ) sys-

tem defined by the radii rmin and rmax under the inverse conformal mapping gives a

multiresolution sector approximation of an annulus cut defined by the same radii.

4.4 A Multiresolution Decomposition Scheme of

the Risk Measure

Without loss of generality, in the work we take W = [0, 1] × [0, 1]. Using the

conformal mapping of section 4.2, W is mapped to D′ in the polar coordinate

system. The new domain however, is not rectangular. Assuming without loss of

generality (renormalize W , if necessary) that D′ ⊂ [0, 1] × [0, 1], we let [0, 1] ×
[0, 1]\D′ lie completely inside the obstacle configuration space O′ in the (r, θ)

domain. Thus, by adding this artificial obstacle corresponding to the boundary of

D′ we can assume that the world W ′ in the polar coordinate system to be again

W ′ = [0, 1] × [0, 1].

We describe W ′ using a discrete (fine) grid of 2N×2N dyadic points. The finest

level of resolution Jmax is therefore bounded by N . It follows from the previous

discussion that the Haar wavelet decomposition of a function f ′ defined over W ′

33

at resolution level J ≥ Jmin, given by,

f ′(r, θ) =
2Jmin−1
∑

k,`=0

aJmin,k,` ΦJmin,k,`(r, θ)

+
3

∑

i=1

J−1
∑

j=Jmin

2j−1
∑

k,`=0

di
j,k,`Ψ

i
j,k,`(r, θ)

(4.3)

induces a cell decomposition of W ′ of square cells of size 1/2J × 1/2J in the (r, θ)

coordinate system.

Assume now that we are given a function rm : W 7→ [0, 1] that represents the

“risk measure” at the location x = (x, y). For instance, one may choose

rm(x) =

(dmax − miny∈O ‖x − y‖2)/dmax, if x ∈ F ,

1, if x ∈ O,
(4.4)

where dmax
4
= maxx∈F miny∈O ‖x − y‖2. Alternatively, one may think of rm as

the probability that (x, y) ∈ O. The function rm can be defined over W ′, i.e

rm′ : W ′ 7→ [0, 1] .

All points within range ρ from the current location of the agent, when expressed

in the (r, θ) system, are given by

N (ρ)
4
= {(r, θ) ∈ W ′ : |r| ≤ ρ, θ ∈ [−θmin, θmax]}. (4.5)

The region that corresponds to N (ρ) in the (r, θ) coordinate system is a strip

of width equal to ρ and height θmax − θmin. For simplicity, in this work we will

assume that θmin = −π and θmax = π.

Suppose now that we are given the desired levels of resolution of W ′ as Jmin ≤
j ≤ Jmax where Jmin, Jmax ∈ {1, . . . , N}, with corresponding ranges ρj from the

agent’s current location. By this we mean that we wish all points (r, θ) ∈ N (ρJmax
)

to be described by resolution Jmax, all points (r, θ) ∈ N (ρj−1)\N (ρj) to be de-

scribed by resolution j, where Jmin < j ≤ Jmax, and all points (r, θ) 6∈ N (ρJmin+1)

to be described by resolution Jmin. Since we require finer resolution closer to the

agent we assume, of course, that ρj−1 > ρj.

The choice of Jmax is dictated by the requirement that at this level all cells

should be resolved into either free or occupied cells. The choice of Jmin as well

34

as the values of ρj are typically dictated by the sensor specifications and/or the

on-board computational resources.

We obtain the distinct resolution levels at the given required distances from

the current location of the agent by applying the Haar wavelet transform to rm′.

To this end, let I(j)
4
= {0, 1, . . . , 2j − 1} and let

K(j)
4
= {k ∈ I(j) : Ij,k ∩ [0, ρj] 6= ∅},

L(j)
4
= {k ∈ I(j) : Ij,` ∩ [θmin, θmax] 6= ∅}.

The wavelet decomposition of rm′, given by

rm′(r, θ) =
∑

k,`∈I(Jmin)

aJmin,k,` ΦJmin,k,`(r, θ)

+
3

∑

i=1

Jmax−1
∑

j=Jmin

∑

k∈K(j)

`∈L(j)

di
j,k,`Ψ

i
j,k,`(r, θ)

(4.6)

induces, via a slight abuse of notation, the following cell decomposition on W ′

Cd = ∆CJmin

d ⊕ · · · ⊕ ∆CJmax

d (4.7)

where, ∆Cj
d is a union of square cells cj

k,` in the (r, θ) domain of dimension 1/2j ×
1/2j. Furthermore, by applying the inverse mapping based on the analysis of

section 4.2 we obtain a sector decomposition Sd of W , where Sd is defined as

Sd = ∆SJmin

d ⊕ · · · ⊕ ∆SJmax

d (4.8)

where, ∆SJ
d is the image under the inverse conformal mapping of ∆CJ

d , with

Jmin ≤ J ≤ Jmax.

4.5 Sector-based Multiresolution Path Planning

The proposed multiresolution path planning algorithm takes place completely in

the (r, θ) coordinate system. The agent in this system remains at the origin at all

times. Let x′ = (r, θ). Assuming therefore that x′ = (0, 0) at t = t0, we construct

using the approach of Section 4.4, a cell decomposition Cd(t0) of W ′. Denote by

G(t0) be the corresponding connectivity graph. Using Dijkstra’s algorithm (or any

35

other similar algorithm) we then find a tentative path P(t0) in G(t0) of free and

mixed nodes which connects the initial node to the final node in G(t0). The path

P(t0) is therefore an ordered sequence of nodes

P(t0) = (v1
1, v

1
2, · · · , v1

`1−1, v
1
`1

= v1
f). (4.9)

where v1
i = nodeG(t0)(x

′
i) and x′i = cellG(t0)(v

1
i) is a representative, arbitrary point

of the cell that corresponds to node v1
i . For simplicity, we will assume that x′i is

the center of the cell.

The first cell in the sequence (4.9) is the cell that contains the origin and the

final cell in the sequence is the cell that contains the final destination (rf , θf)

provided that such a sequence exists. Since we assume high resolution inside

N (ρJmax
) it is natural to assume that the first two cells in Cd(t0) corresponding to v1

1

and v1
2 are free for a feasible path. The agent subsequently moves from cellG(t0)(v

1
1)

to cellG(t0)(v
1
2). This means that only the points x′1 and x′2 will actually be visited by

the agent. In order to find the subsequent points of the actual path to be followed

we apply a continuous replanning scheme. This is accomplished by constructing

a cell decomposition Cd(tk) at each next time step tk > t0, (k = 1, 2, . . .), and by

inserting in the list of the visiting points only the point x′k = cellG(tk)(v
k
2) which

corresponds to the second node of the tentative path P(tk). We repeat the process

until the goal is inside the second cell of P(tk).

Since the approach does not eliminate the possibility that the same point may

be revisited during the subsequent replanning, thus resulting in an endless loop, we

overcome this issue by keeping a list of all points already visited and by removing

the corresponding nodes form the graph G(tk) at each time step tk. A pseudo-code

implementation of the above algorithm is given in Fig. 4.5.

36

begin path planning algorithm

{
x
′
0 = 0;

i = 0;

xi ←− x0;

{LVisited} = {∅};
(while ‖xf − xi‖ > ε)

{
compute rm(x, i) for all x ∈ W;

compute rm(x′, i) for all x
′ ∈ W ′ via conformal mapping;

construct Cd(i) on W ′ topology ;

construct G(i) = (E(i), V (i));

(if LVisited is nonempty)

for v ∈ V (i)

x
′
v(i) = cellG(i)(v);

if xv(i) ∈ LVisited

extract v from V (i);

for all u adjacent to v

remove (v, u) from E(i);

end if;

end if;

vi
1 ←− nodeG(i)(x

′
0);

vi
f ←− nodeG(i)(x

′
f);

P(i) ←− Dijkstra(vi
1, v

i
f , V (i), E(i));

if P(i) = {∅}
report FAILURE;

break;

x
′
i(1) = cellG(i)(v

i
1);

x
′
i(2) = cellG(i)(v

i
2);

{LVisited} ←− {LVisited}
⊕{x′i(1), x′i(2)};

x
′
i+1 ←− x

′
i(2);

i ←− (i + 1);

compute xi+1 via inverse conformal mapping;

x0 ←− xi+1;

}
}
end path planning algorithm

Figure 4.5: Pseudo-code implementation of proposed multiresolution path planning

scheme.

37

Chapter 5

Time Scheduling and Smooth

Trajectory Generation

5.1 Introduction

As we have seen in Chapters 3 and 4 the output of the proposed path planning

scheme at each time step tj is a path P(tj). This path is defined as a finite

ordered sequence of visiting points xi, where i belongs to some index set I(tj).

These points form at each time tj a polygonal line which lies completely inside

the free space F . The engineering problem that subsequently appears is to derive

control laws that result in this polygonal trajectory curve. The difficulty of this

problem is due to the dynamic constraints imposed by the equations of motion

of the agent. These constraints make the tracking of the polygonal ,and thus

non smooth, trajectory a “mission impossible”. In this section we examine ways

to generate smooth trajectories when the equations of motion of the agent are

specified by a unicycle kinematic model (ground vehicle model). Our objective is

that the generated trajectory passes sufficiently close to the xi points at specified

instants of time (time scheduling).

38

5.2 Unicycle Kinematic Model under Dynamic

Extension

The unicycle kinematic model is given by the following equations:

ẋ(t) = v(t) cos(θ(t)) (5.1)

ẏ(t) = v(t) sin(θ(t)) (5.2)

θ̇(t) = ω(t) (5.3)

where x, y are the coordinates of the unicycle, θ is the orientation of the vehicle

(velocity vector orientation) and v and ω are the control inputs of the system.

Specifically, v is the speed of the vehicle defined by the following equation

v(t) =
√

ẋ(t)2 + ẏ(t)2. (5.4)

Furthermore, ω is the angular velocity of the agent due to the change of vehicle

orientation. Since the output we wish to track is the position of the agent we

choose the outputs of our system to be

h1(t) = x(t) (5.5)

h2(t) = y(t) (5.6)

The system can be written in the form ẋ(t) = f(x) + g(x)u with

x(t) =

x1(t)

x2(t)

x3(t)

=

x(t)

y(t)

θ(t)

,

f(x) =

0

0

0

, g(x) =

(

cos(x3) sin(x3) 0

0 0 1

)T

, u(t) =

(

v

ω

)

,

where the output is written in the form

y(t) = h(x(t))

where

h =

(

h1(t)

h2(t)

)

=

(

x(t)

y(t)

)

.

39

Our goal then is to find the admissible inputs v, ω which achieve asymptotic

tracking of the system output to a desired reference signal

h̃ref =

(

xref(t)

yref(t)

)

.

Since the system in (5.1)-(5.3) is nonlinear, in order to achieve asymptotic

tracking our first thought is to try to apply input/output feedback linearization

(i.e. IOL, see [15]). Unfortunately, the relative degrees r1, r2 for the specific choice

of inputs and outputs are found to be ill defined. To see this, let Lφz(x) = ∂z
∂x

φ(x)

denote the Lie derivative of z with respect to φ along φ (where φ and z are

sufficiently smooth functions). Then, after routine calculations we have for the

first output

Lcol1(g)h1(x) = cos(x3) (5.7)

Lcol2(g)h1(x) = 0 (5.8)

and for the second one

Lcol1(g)h2(x) = sin(x3) (5.9)

Lcol2(g)h2(x) = 0 (5.10)

where the notation col1(g) is used for the ith column of g. Therefore, the decou-

pling matrix corresponding to (5.1)-(5.3) is given by

α =

(

Lcol1(g)h1 Lcol2(g)h2

Lcol1(g)h1 Lcol2(g)h2

)

=

(

cos(x3) 0

sin(x3) 0

)

. (5.11)

where the notation

From (5.11) we observe that the matrix α is always singular and thus we

cannot find a region in R
3 where both r1 and r2 are non zero. Therefore, appli-

cation of output tracking via input/output feedback linearization (IOL) theory is

impossible.

A proposed methodology in the literature (see [15]) to overcome this problem

is to achieve well-defined relative degree via dynamic extension. The idea is to

transform the system dynamics in such a way that all the Lie derivatives in the

expressions (5.7) - (5.10) vanish. In that case, both r1 and r2 are at least equal to

40

one. The most desirable case is to achieve r1 + r2 = n, where n is the dimension

of the new system dynamics. In that case, the system is said to have trivial

zero dynamics and therefore no internal instability phenomena appear. The term

zero dynamics describes these modes of the system that do not allow the original

dynamical system to be brought into a fully linear and controllable form via

state feedback and coordinate transformation. If however, 2 ≤ r1 + r2 < n then

because the decoupling matrix is nonsingular our system can be separated into

two subsystems in cascade form after the application of the feedback linearization

theory. The first one is a controllable linear system, whereas the second subsystem

is formed by the remaining zero dynamics which cannot be reached directly by

the input. Explicit or implicit interconnections between these two subsystems

are possible. Thus, in order to guarantee that the system does not exhibit any

internal instability the remaining zero dynamics have to be stable in the sense of

Lyapunov.

In our case, we proceed by considering the speed v to be an additional state

of the system dynamics and

ṽ =
dv

dt
(5.12)

to be the new control input component in place of v, or in other words the speed

v(new state) is the output of an integrator driven by the new control input ṽ.

Then, the system dynamics (5.1)-(5.3)become:

ẋ(t) = v(t) cos(θ(t)) (5.13)

ẏ(t) = v(t) sin(θ(t)) (5.14)

θ̇(t) = w(t) (5.15)

v̇(t) = ṽ(t) (5.16)

The system can be written in the form ˙̃x(t) = f̃(x̃(t)) + g̃(x̃(t))ũ(t) with

x̃(t) =

x̃1(t)

x̃2(t)

x̃3(t)

x̃4(t)

=

x(t)

y(t)

θ(t)

v(t)

,

41

f̃(x̃(t)) =

0

0

0

, g̃(x̃(t)) =

(

0 0 0 1

0 0 1 0

)T

, ũ(t) =

(

ṽ(t)

w(t)

)

,

where the output is as before written in the form

ỹ(t) = h̃(x̃(t))

where h̃ =

(

h̃1(t)

h̃2(t)

)

=

(

x(t)

y(t)

)

.

Repeating the Lie derivatives calculations for the dynamically extended system

we get for the first output

Lcol1(g̃)h̃1(x̃) = 0 (5.17)

Lcol2(g̃)h̃1(x̃) = 0 (5.18)

and for the second one

Lcol1(g̃)h̃2(x̃) = 0 (5.19)

Lcol2(g̃)h̃2(x̃) = 0 (5.20)

so the relative degrees r1 and r2 are well defined and both of them greater than

or equal to one. Therefore, we can continue the calculations for higher order Lie

derivatives to obtain for the first output

Lcol1(g̃)h̃1(x̃) = cos(x̃3)) (5.21)

Lcol2(g̃)h̃1(x̃) = −x̃4 sin(x̃3) (5.22)

and for the second one

Lcol1(g̃)h̃2(x̃) = sin(x̃3) (5.23)

Lcol2(g̃)h̃2(x̃) = x̃4 cos(x̃3) (5.24)

Therefore the corresponding decoupling matrix to the dynamically extended uni-

cycle (5.13)-(5.16) is given by

α̃ =

(

Lcol1(g̃)h̃1 Lcol2(g̃)h̃2

Lcol1(g̃)h̃1 Lcol2(g̃)h̃2

)

=

(

cos(x̃3) −x̃4 sin(x̃3)

sin(x̃3) x̃4 cos(x̃3)

)

. (5.25)

42

We observe that the matrix α̃(x̃) is non singular for all x̃ ∈ R
4 with x̃4 6= 0 and

furthermore, the relative degrees are r̃1 = r̃2 = 2. Thus, we have r1 + r2 =

n = 4 and the system is input/output linearizable with trivial zero dynamics.

Notice that the condition x̃4 6= 0 in our specific choice of the system outputs is a

smoothness requirement for the curve that the agent has to follow.

Finally, the control input vector that achieves the output tracking, provided

that x̃4 6= 0, is given by

ũ(t) = ã−1(ν̃(t) − b(x̃(t))) (5.26)

where

b̃(x̃(t)) =

(

L2
f̃
h̃1(x̃(t))

L2
f̃
h̃2(x̃(t))

)

=

(

0

0

)

and

ν̃(t) =

(

ν̃1(t)

ν̃2(t)

)

with

ν̃1(t) = −k11(h̃1(x̃(t)) − xref(t)) − k12(Lf̃ h̃1(x̃(t)) − ẋref(t)) + ẍref(t) (5.27)

ν̃2(t) = −k21(h̃2(x̃(t)) − yref(t)) − k22(Lf̃ h̃2(x̃(t)) − ẏref(t)) + ÿref(t). (5.28)

In the expressions (5.27)-(5.28) k11, k12, k21, k22 are constants chosen such that

the binomials

P1(s) = s2 + k12s + k11 (5.29)

P2(s) = s2 + k21s + k22 (5.30)

(5.31)

are Hurwitz.

5.3 Reference Signal Specification

As we have described in the previous section, the output of our system is the (x, y)

coordinates of the agent’s position. Additionally, the path P of the path planning

scheme we have presented so far is comprised of a finite number of visiting points

Xi in order to reach the goal destination. Therefore, the desired system output

43

should be a curve ~r(ξ) = (xref(ξ), yref(ξ)) , where ξ is the curve parameter, which

passes through or arbitrary close to those points. Additionally, we know that

the space W is a polygonally connected space and thus the polygonal line that

connects all the points Xi in P lies completely in W . Based on this observation,

the curve ~r(ξ) we select as the desired path of the vehicle should be a smooth

curve which at the same time remains as close as possible to the original polygonal

line. The smoothness requirement of the curve is imposed by the tracking scheme

we are employing. Furthermore, the requirement to stay close to the polygonal

lines comes from the collision avoidance constraint which requires the generated

trajectory to lie at all times inside W . The most natural way to proceed is to

try to approximate the polygonal line (or part of it as we shall see later) using

either a polynomial or a spline interpolation scheme. The degree of the polynomial

used and the number of points lying on the polygonal line for the interpolation

is correlated to the closeness of the the reference curve to the polygonal line we

wish to approximate.

Designing our reference curve to be close to the polygonal line may be an

overconservative approach since a trajectory which lies inside the free world W
with more plausible characteristics (e.g. a curve with less sharp corners) may exist.

However, the generation of a collision free trajectory which is at the same time

compatible with the system dynamics and the admissible inputs in the framework

of the path planning problems we are dealing with in this work is still an open

problem. Here we tacitly assume that there exist admissible inputs v and w such

that the true system response under those inputs is the reference curve

~r(ξ) = (xref(ξ), yref(ξ)).

In order to proceed, we shall employ some basic theory of differential geometry

for curves (see [30]). The velocity of the agent is given by

~V (ξ) =
d~r(ξ)

dξ
=

∥

∥

∥

∥

d~r(ξ)

dξ

∥

∥

∥

∥

~T(ξ) (5.32)

where

~T(ξ) =
1

∥

∥

∥

d~r(ξ)
dξ

∥

∥

∥

d~r(ξ)

dξ

is the unit tangent vector of the curve ~r(ξ).

44

The speed of the agent is the norm of the velocity, i.e.

v(ξ) =

∥

∥

∥

∥

d~r(ξ)

dξ

∥

∥

∥

∥

=

√

(

dx(ξ)

dξ

)2

+

(

dy(ξ)

dξ

)2

. (5.33)

We can alternatively express the speed as v = ds
dξ

where s is the arc length of the

curve between the points ~r(ξ) and ~r(ξ0) which is given by

s(ξ) =

∫ ξ

ξ0

∥

∥

∥

∥

d~r(z)

dz

∥

∥

∥

∥

dz. (5.34)

At this point we observe that the speed v, which appears either as one of the

inputs in the original unicycle equations (5.1)-(5.3) or as one of the states in the

dynamically extended model equations (5.13)-(5.16), is solely specified by the ẋ, ẏ

quantities. Thus, given a perfect tracking capacity scheme as the one we employ,

the speed is prescribed by the reference outputs xref, yref (or more precisely by

the time derivatives of the them). In other words, after any transient phenomena

have disappeared from the system response, we expect the speed to be

v(ξ) =

√

(

dxref(ξ)

dξ

)2

+

(

dyref(ξ)

dξ

)2

.

Therefore, the speed depends only on the choice of the curve parameter ξ. On

the other hand, the geometric curve that passes through the points xi of the path

P has infinitely many different parameterizations. The question that rises in this

context is how we choose the curve parameter ξ.

The way to proceed is simple. Since we expect from the vehicle not only to

pass sufficiently close to the points xi of the path P(tj) but additionally, to achieve

this at instants of time tj that we specify. Therefore, the curve parametrization ξ

has to specify a velocity profile compatible with this requirement. Let us assume,

without loss of generality, that we wish our agent to move with constant unit speed

throughout the whole route to the goal destination. In that case, the curve has to

be parameterized by the natural length s (intrinsic parametrization of the curve),

where the parameter s was defined in (5.34). If xi and xi+1 are two successive

points in P(tj), then the time txi→xi+1
required for the agent to move from xi and

xi+1 is given by the arc length of the resulting path

∆sxi→xi+1
=

∫ si+1

si

∥

∥

∥

∥

d~r(z)

dz

∥

∥

∥

∥

dz = si+1 − si

45

since always
∥

∥

∥

d~r(s)
ds

∥

∥

∥
= 1. In other words, in this case there is no distinction

between time and intrinsic parametrization of the curve.

We can extend this approach in the case where we wish the agent to move

with varying speed other different parts of the path. A straightforward approach

is to assign a higher speed when the vehicle is inside areas of high risk measure

rm and lower ones otherwise. Thus, let m be the number of the district levels

of the risk measure M1,M2, . . . ,Mm over the world W and let v ∈ [vmin, vmax]

where vmin ≥ ε > 0 where the tolerance ε is sufficiently large to guarantee that

the speed never equals zero due to the constraint that the matrix α̃ in 5.25 is non

singular. We then divide [vmin, vmax] also to m district levels and by employing a

linear model we associate to the path that lies inside the region

Di
4
= {(x, y) ∈ W : Mi−1 ≤ rm(x, y) ≤ Mi}

the speed value

vi = vmin +

(

i − 3

2

)

vmax − vmin

m − 1
. (5.35)

The parametrization of the corresponding part of the curve lying in Di is conse-

quently

ξ =
s

vi

(5.36)

since then ds
dξ

= vi.

5.4 Trajectory Generation and Time Scheduling

Over a Receding Horizon

Let us assume that x(ti) is the agent’s current position and let P(ti) be the solution

path (i.e. ordered sequence of mj distinct points xj with j = 1, . . . ,mj) to the

goal destination xf based on the environment representation of time ti. Since x(ti)

is the first point in P(ti), we approximate the polygonal line connecting the first

three points, namely x(ti) = x1, x2, x3 of the path P(ti) with a smooth curve ~r(ξ)

which is the reference output of our system as described in the Section 5.3 . Then

we execute the trajectory tracking scheme presented in Section 5.2 for time t1→2,

i.e. the time required for the agent to move from x(ti) to x2 which is given by

t1→2 =

∫ s2

s1

ds

v(s)
. (5.37)

46

Assume that x1 = ~r(ξ1) ∈ D1 and x2 = ~r(ξ2) ∈ D2 and let ~r(ξ12) be the point

corresponding to the intersection D1

⋂D2

⋂

~r(ξ) for ξ ∈ (ξ1, ξ2). Since the agent

moves for the most part with constant velocity v1 or v2 as long as it is inside D1

and D2 respectively, the time t1→2 can be estimated by

t1→2 '
∫ s12

s1

ds

v1

+

∫ s2

s12

ds

v2

. (5.38)

and because inside D1 and D2 the s and ξ parameters are connected by the relation

5.36 the previous expression reduces to

t1→2 ' ξ2 − ξ1. (5.39)

After the execution of trajectory tracking scheme over a time interval t1→2 the

agent’s new configuration is x(ti+1) where ti+1 = ti + t1→2. At this time instant we

compute the new path P(ti+1) using the path planning scheme of Chapters 3 or 4,

where the point x(ti+1) is now the first point of P(ti+1). We simply repeat the pro-

cedure already described until after some finite time tf the agent’s configuration

is arbitrarily close to the goal destination xf , i.e.

‖x(tf) − xf‖ ≤ ε (5.40)

for some sufficiently small positive ε.

When one tries to implement this approach should be very careful since one of

the assumptions of the tracking scheme we use was that the reference signal is twice

differentiable. Thus, the curve parametrization should not result in discontinuous

jumps of the speed (i.e. discontinuity of
∥

∥

∥

dr(ξ)
dξ

∥

∥

∥). However, the agent’s transition

from D1 to D2 results in a discontinuous jump on the agent’s velocity. In order to

eliminate this pathology induced by the curve parametrization (5.36) we propose

a new parametrization for the part of the curve that corresponds to the transition

from D1 to D2. This parametrization is given by

ξ =
2s

v1(1 − tanh(s−s12

δ
)) + v2(1 + tanh(s−s12

δ
))

, (5.41)

where δ is a sufficiently small positive number.

The time scheduling scheme presented in this section can be seen as an implicit

way to impose input constraints. Actually, the way we approach the problem is

to prescribe the speed with which the agent moves along the curve. Since perfect

47

tracking in realistic simulation may not be achieved as fast as we want, the time

scheduling procedure may not be perfectly accurate. However, it is a design issue

to achieve at least a velocity profile v(t) such that for the part of the trajectory

which lies inside the area Di the average actual velocity over the time period ∆tDi

(i.e period for which the agent remains inside the area Di) is sufficiently close to

the vi value given by (5.35), i.e

∣

∣

∣

∣

∣

∫

∆tDi

v(t)dt

∆tDi

− vi

∣

∣

∣

∣

∣

≤ ε0 (5.42)

for some sufficiently small positive ε0.

Alternatively, in problems where the time scheduling is not an important de-

sign objective we can alternatively impose constrains on the angular velocity con-

trol input using similar ideas as those presented in this section. In particular, the

angular velocity using equations (5.1)-(5.3) can be written as

ω =
ÿẋ − ẍẏ

ẋ2 + ẏ2
(5.43)

provided that ẋ2 + ẏ2 6= 0. Since the speed of the agent is given by (5.33) and

additionally the curvature of the trajectory curve is

κ =
|ÿẋ − ẍẏ|
(ẋ2 + ẏ2)

3

2

(5.44)

the angular velocity can be written as

ω = sign(ÿẋ − ẍẏ)
κ√
v
. (5.45)

Therefore, the magnitude of ω is given by

|ω| =
κ√
v
. (5.46)

Because the curvature κ is an invariant of the curve under arbitrary curve parametriza-

tion ξ, the only way to impose constraints over the magnitude of the angular

velocity is by finding an appropriate profile for the speed of the vehicle along

the solution path. To this end, let us assume that the magnitude of the angular

velocity should satisfy the following condition

|ω| ≤ ωmax (5.47)

48

where v ∈ [vmin, vmax] as in Section 5.3. Then, equations (5.46) and (5.47) imply

that
(

κ

ωmax

)2

≤ v ≤ vmax (5.48)

or equivalently
(

κ

ωmax

)4

≤ ẋ2 + ẏ2 ≤ v2
max. (5.49)

In case we want to incorporate the time scheduling task to the above prob-

lem formulation, then we expect the appearance of conflicts between the design

objectives and the problem constraints. Therefore, the solution of such a prob-

lem requires a more complex and powerful methodology compared to the time

scheduling scheme presented so far.

49

Chapter 6

Simulation Results

6.1 Introduction

In this chapter we present simulation results of the proposed path planning scheme

and the smooth trajectory generation and time scheduling scheme.

For the first planning algorithm we present the results for two non-trivial

scenarios. In both cases, the environment is assumed to be a square of dimension

512 × 512 units. Hence N = 9 is the finest resolution possible. For simplicity,

for both scenarios only two levels of resolution have been chosen to represent the

environment. Inside an area of 100 × 100 unit cells we employ a high resolution

approximation and outside this area we employ a low resolution approximation of

W .

All the above assumptions hold in the second planning scheme. The only

difference here is that the high resolution area corresponds to the area inside a

disk of radius 100 pixels. This is the area of 100 × 512 unit cells in the (r, θ)

plane when it is mapped to the (x, y) plane. Outside this area we employ a low

resolution approximation of W ′.

Simulation for the smooth trajectory and time scheduling scheme are presented

for all the scenarios of the two algorithms.

50

6.2 Simulation Results of the First Scenario for

the First Path Planning Scheme

In the first scenario, the environment W is an actual topographic (elevation)

map of a certain US state with fractal-like characteristics, shown in Fig. 6.1.

The blue color in this figure corresponds to areas of obstacles whereas the initial

configuration of the agent is denoted by A and the desired final configuration is

denoted by B. The objective is for the agent (e.g., a UAV) to follow a path from

A to B while flying as low as possible, and below a certain elevation threshold.

Areas with bright colors in Fig. 6.1 correspond to areas of low risk (elevation in

this case) and darker colors correspond to areas of high risk (elevation in this

case) that should be avoided. Solving the path-planning problem on-line at this

resolution is computationally prohibitive.

In order to apply the proposed multiresolution scheme we choose five distinct

risk measure levels M1, . . . ,M5, equally spaced between 0 and 1. The two levels

with the highest values (M4 = 0.75 and M5 = 1) denote the obstacle space; that

is, m2 = 0.75. The rest three levels M1, . . . ,M3 denote feasible states. Level M1

represents the unoccupied, most desirable states and we thus chose m1 = M1.

The results from the multiresolution path-planning algorithm using a fine res-

olution level Jmax = 5, and a low resolution at level Jmin = 3 are shown in Fig. 6.2.

Specifically, Fig. 6.2 shows the evolution of the path at different time steps as the

agent moves to the final destination. Figure 6.2(a) shows the agent’s position at

time step t = t15 along with the best proposed path to the final destination at

that time. Similarly, Fig. 6.2(b) shows the agent’s position at time step t = t50

along with the best proposed path to the final destination at that time. As seen

in Fig. 6.2(c), the actual path followed by the agent differs significantly from the

one predicted in either Figs. 6.2(a) or 6.2(b). This happens because at time t15

and t50 the agent does not have complete information outside the high resolution

zone, and the predicted path actually penetrates the obstacle space O. At time

t50, for example, the agent – being far from any obstacle – fails to anticipate the

upcoming collision. As the agent gets closer to the obstacle however, and new

information is gathered, the existence of the obstacle forces the agent to redirect

its path. The agent reaches the final destination xf in a collision free manner, as

51

seen in Fig. 6.2(c). The actual path followed lies inside areas with a low elevation

level, which verifies the optimal nature of the path.

A

B

0

0.25

0.5

0.75

1

Figure 6.1: Plot of risk measure (elevation) for the whole configuration space using a

512 × 512 unit cell resolution.

52

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

0

0.25

0.5

0.75

1

(a) t = 15

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

0

0.25

0.5

0.75

1

(b) t = 50

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

0

0.25

0.5

0.75

1

(c) t = 62

Figure 6.2: Path evolution and replanning at time t = t15, t = t50 and t = tf .

53

6.3 Simulation Results of the Second Scenario

for the First Path Planning Scheme

In the previous scenario the cost to be minimized along the path is derived solely

from the risk measure shown in Fig. 6.1. When the environment is very frag-

mented, this cost may result in excessively long, meandering paths. To avoid

this problem for a cluttered environment as the one shown in Fig. 6.3 we add

an additional term that also penalizes the total length of the path. This allows

the agent to prefer short paths in the euclidean sense. Four distinct risk measure

levels M1,M2,M3,M4 are chosen for the scenario shown in Fig. 6.3, as follows

M1 = 0,M2 = 0.25,M3 = 0.75, and M4 = 1. Here we let again M2 = 0.75 and

M1 = 0. Hence values above 0.75 denote obstacles, shown in red color in Fig. 6.3.

The final path obtained using the proposed multiresolution path-planning algo-

rithm is shown in Fig. 6.4.

54

A

B

0

0.25

0.75

Figure 6.3: Plot of the risk measure function for the second scenario. Areas with red

color correspond to the obstacle space. The point ‘A’ denotes the initial state x0 and

point ‘B’ denotes the final state xf .

55

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

0

0.25

0.75

1.0

Figure 6.4: Final path for the second scenario. For such highly fragmented envi-

ronments it is advisable to also include a penalty on the euclidean distance between

successive nodes of the path.

56

6.4 Simulation Results of the Second Path Plan-

ning Scheme

In this section we present simulation results of the second proposed algorithm for

a non-trivial scenario. The environment is assumed to be square of dimension

512×512 units. Hence N = 9 is the finest resolution possible. For simplicity, only

two levels of resolution have been chosen to represent the environment. Inside

an area of 100 × 100 unit cells in the (r, θ) system we employ a high resolution

approximation and outside this area we employ a low resolution approximation of

W ′.

The initial and final positions of the agent are also shown in this figure. The

objective is for the agent (e.g., a UAV) to follow a path from A to B while flying as

low as possible, and below a certain elevation threshold. Areas with bright colors

in Fig. 6.6 correspond to areas of low risk (elevation in this case) and darker colors

correspond to areas of high risk (elevation in this case) that should be avoided.

Solving the path-planning problem on-line at this resolution is computationally

prohibitive.

In order to apply the proposed multiresolution scheme we choose six distinct

risk measure levels M1, . . . ,M6, spaced between 0 and 1. The two levels with the

highest values (M5 = 0.9 and M6 = 1) denote the obstacle space; that is, m2 = 0.9.

The rest four levels M1, . . . ,M4 denote feasible states. Level M1 represents the

unoccupied, most desirable states and we thus chose m1 = M1.

The results from the multiresolution path-planning algorithm using a fine res-

olution level Jmax = 5, and a low resolution at level Jmin = 3 are shown in Fig. 6.5.

Specifically, Fig. 6.6 shows the evolution of the path at different time steps as the

agent moves to the final destination.

57

A

B

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Figure 6.5: Plot of the original risk measure function where dark green area correspond

to areas of high risk whereas the yellow ones to low risk areas.

58

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

(a) t = 10

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

(b) t = 22

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

(c) t = tf

Figure 6.6: Path evolution. Figures show the actual path followed by the agent which

finally reaches the final destination at t = tf .

59

6.5 Simulation Results of Trajectory and Time

Scheduling Scheme

In this section we present the results of the trajectory generation and scheduling

scheme we presented in Chapter 5. Actually, we shall reproduce the results of

the simulation for all the scenarios of the two proposed path planning algorithms,

presented in the previous two sections, using the kinematic unicycle model.

To simplify the computations we require in all cases the vehicle to move with

constant unit speed as long as it is inside the free world F . The reference output

signals (reference curve) correspond to a smooth approximation of the polygonal

line of the path P . In Figures 6.7-6.9 we see the simulation results on the first

scenario of the first planning scheme. In Figures 6.10-6.12 we see the simulation

results on the scenario with the environment full of obstacles of the first planning

scheme. Finally, in Figures 6.13-6.15 the simulation results of the trajectory

generation scheme for the scenario of the second planning scheme are presented.

We observe that the generated trajectory in all cases achieves the closeness

requirement to the final path P (polygonal line) that the planning schemes give

us. This guarantees that the resulting smooth curve lies completely inside the

free world F . Additionally, the trajectory at the specified time instants tj (time

scheduling) passes sufficiently close to the visiting points xi of the corresponding

available path P(tj). Furthermore, the implicit constraint on the agent’s speed

is achieved in a satisfactory degree in the sense of condition (5.42) with ε0 be in

the order of 10−3. Any deviation or oscillation phenomena that appear are due to

the transient response of the system during the error regulation procedure. These

are mostly due to the on-line implementation nature of our scheme since a small

deviation in the initial conditions (especially the ones for the orientation θ) from

those that correspond to the reference curve may result in a transient response for

each time we execute the trajectory generation scheme. This transient response

is decaying very fast and it is a design issue to make it practically disappear.

60

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Figure 6.7: Plot of the on-line generated smooth trajectory passing close to the xi

points of the corresponding path P(tj) generated by the first planning scheme (denoted

with ’+’) at specified instants of time tj for the 1st scenario.

61

0 100 200 300 400 500
0

500

t

x
[p

ix
el

]

system x(t) response
reference point x−coordinate

0 100 200 300 400 500
0

500

t

y
[p

ix
el

]

system y(t) response
reference point y−coordinate

0 100 200 300 400 500

−4

−2

0

2

t

θ
[r

ad
]

Figure 6.8: Plot of the states evolution of the system under the feedback law.

0 100 200 300 400 500

−2

0

2

4

t[sec]

ω
 [r

ad
/s

ec
]

0 100 200 300 400 500

0

0.5

1

1.5

2

t [sec]

sp
ee

d
u

[p
ix

el
/s

]

Figure 6.9: Plot of the input components (i.e. velocity v and angular velocity ω) versus

time.

62

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Figure 6.10: Plot of the on-line generated smooth trajectory passing close to the xi

points of the corresponding path P(tj) generated by the planning scheme (denoted with

’+’) at specified instants of time tj for the fragmented environment scenario.

63

0 50 100 150 200 250 300 350 400 450

200

400

t

x
[p

ix
el

]

system x(t) response
reference point x−coordinate

0 50 100 150 200 250 300 350 400 450

100

200

300

t

y
[p

ix
el

]

system y(t) response
reference point y−coordinate

0 50 100 150 200 250 300 350 400 450
0

2

4

t

θ
[r

ad
]

Figure 6.11: Plot of the states evolution of the system under the feedback law.

0 50 100 150 200 250 300 350 400 450

−2

0

2

t[sec]

ω
 [r

ad
/s

ec
]

0 50 100 150 200 250 300 350 400 450

0

1

2

3

t [sec]

sp
ee

d
u

[p
ix

el
/s

]

Figure 6.12: Plot of the input components (i.e. velocity v and angular velocity ω)

versus time.

64

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

Figure 6.13: Plot of the on-line generated smooth trajectory passing close to the

xi points of the corresponding path P(tj) generated by the second planning scheme

(denoted with ’+’) at specified instants of time tj .

65

0 100 200 300 400 500 600 700
0

100

200

300

t

x
[p

ix
el

]

system x(t) response
reference point x−coordinate

0 100 200 300 400 500 600 700

200

400

t

y
[p

ix
el

]

system y(t) response
reference point y−coordinate

0 100 200 300 400 500 600 700

−4

−2

0

t

θ
[r

ad
]

Figure 6.14: Plot of the states evolution of the system under the feedback law.

0 100 200 300 400 500 600 700

−4

−2

0

2

t[sec]

ω
 [r

ad
/s

ec
]

0 100 200 300 400 500 600 700
−1

0

1

2

t [sec]

sp
ee

d
u

[p
ix

el
/s

]

Figure 6.15: Plot of the input components (i.e. velocity v and angular velocity ω)

versus time.

66

Chapter 7

Conclusions and Future Work

In this work we have proposed an on-line hierarchical path planning scheme for

navigating an autonomous agent inside an unknown environment based on in-

formation obtained by its available on-board sensor devices. The idea is to use a

higher resolution close to the agent where is needed most, and a coarser resolution

at large distances from the current location of the agent. This is motivated by

the natural observation that for on-line implementations it is not prudent from a

computational point of view to compute a solution with great accuracy over large

ranges of over a very long time horizon. The planning scheme is scalable and can

be tailored to the available computational resources of the agent. An extension

of the original idea motivated by practical consideration is also presented. In

this extension, a sector-based multiresolution decomposition of the environment

is computed at each step. This decomposition is adapted to the on-board sen-

sor data using the wavelet transform in conjunction with a conformal mapping

to new (polar) coordinates. The multiresolution approach allows the agent to

blend information arising from different sensors at different ranges and resolu-

tions. Furthermore, some dynamical considerations for the agent comes into play

by employing a kinematic unicycle model. In order to produce smooth trajecto-

ries compatible with the dynamic constraints we introduce a smooth trajectory

generation and time scheduling scheme using some basic ideas of IOL theory for

MIMO systems.

The proposed methodology can be further expanded towards different direc-

tions. One important issue is to investigate how it is possible to reduce the

67

computations required to obtain a solution at a given instant of time if previous

information is used appropriately. Additionally, the problem of smooth trajectory

generation and time scheduling can be examined for more complicated kinematic

or even dynamic models for the agent under control input constraints (especially

for the angular velocity). In order to obtain a solution for the constrained prob-

lem the range and resolution of the information obtained by the agent’s sensors

may have to be appropriately modified. In this case, the robustness of the pro-

posed scheme under these possible modifications is another crucial issue which is

strongly correlated with how efficient the path planning scheme is for real time

implementation. These possible extensions of the baseline methodology presented

in this thesis will be addressed in the future along with the exploration of other

research horizons in the framework of the path planning problem for autonomous

vehicles.

68

Bibliography

[1] Y. K. Hwang and N. Ahuga, “Gross motion-planning–a survey,” ACM Com-

puting Surveys, vol. 24, no. 3, pp. 219–291, 1992.

[2] M. Athans and P. Falb, Optimal Control, An Introduction to the Theory and

Its Application. New York: Dover, 2007.

[3] R. Bartle, The Elements of Real Analysis. New York: Wiley Sons Inc.,

second ed., 1976.

[4] H. Khalil, Nonlinear Systems. New Jersey: Prentice Hall, third ed., 2002.

[5] J. Latombe, Robot Motion Planning. Boston, MA: Kluwer Academic Pub-

lishers, 1991.

[6] S. Lavalle, Planning Algorithms. New York, NY: Cambridge University Press,

2006.

[7] D. Koditschek, “Exact robot navigation by means of potential functions:

Some topological considerations,” in IEEE Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, pp. 1–6, 1987.

[8] D. Koditschek and E. Rimon, “Robot navigation functions on manifolds with

boundary,” in Advances Appl. Math., vol. 11, pp. 412–442, 1990.

[9] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms.

McGraw Hill and MIT Press, second ed., 2001.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths,” in IEEE Transactions on Systems

Science and Cybernetics SSC4), pp. 100– 107, 1968.

69

[11] A. Stentz, “Optimal and efficient path planning for partially-known envi-

ronments,” in IEEE Proceedings of the IEEE International Conference of

Robotics and Automation, pp. 3310–3317, 1994.

[12] A. Ferguson, D. Stentz, “The delayed d* algorithm for efficient path replan-

ning,” in IEEE Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), pp. 2045– 2050, 2005.

[13] M. Koenig, S. Likhachev, “Improved fast replanning for robot navigation in

unknown terrain,” in IEEE Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), vol. 1, pp. 968– 975, 2002.

[14] S. Murphey, S. Uryasev, and M. Zabarankin, “Trajectory optimization in a

threat environment,” Research Report 2003-9, pp. 22–45, 2003.

[15] A. Isidori, Nonlinear Control Systems. Berlin: Springer - Verlang, third ed.,

1995.

[16] I. Daubechies and W. Sweldens, “Factoring wavelets transforms into lifting

steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3, 1998.

[17] T. Lozano-Perez and M. Wesley, “Automatic planning for planning collision-

free paths among polyhedral obstacles,” in IEEE Trans. Syst., Man, Cybern.,

vol. 11, pp. 681–698, 1981.

[18] D. Pai and L. Reissell, “Multiresolution rough terrain motion planning,” in

IEEE Transactions on Robotics and Automation, vol. 14, pp. 19–33, 1998.

[19] S. Kambhampati and L. Davis, “Multiresolution path planning for mobile

robots planning for mobile robots,” IEEE Journal of Robotics and Automa-

tion, pp. 135–145, 1986.

[20] S. Behnke, “Local multiresolution path planning,” Lecture Notes in Computer

Science, 2004.

[21] D. Bertsekas, Dynamic Programming and Optimal Control, vol. 1. Cam-

bridge, MA: Athena Scientific, 1995.

[22] B. Bollobas, Modern Graph Theory. New York: Springer, 1998.

70

[23] C. Godsil and G. Royle, Algebraic Graph Theory. New York: Springer, 2001.

[24] R. Diestel, Graph Theory. New York: Springer, third edition ed., 2006.

[25] C. Burrus, R. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet

Transforms. New Jersey, NJ: Prentice Hall, 1998.

[26] S. Mallat, “A theory for multiresolution signal decomposition, the wavelet

representation,” in IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 2, 1989.

[27] A. Cohen, Numerical Analysis of Wavelet Methods, vol. 32. Amsterdam:

Elsever Science, 2003.

[28] D. Walnut, An Introduction to Wavelet Analysis, vol. 32. Boston: Birkhauser,

2003.

[29] P. Tsiotras and E. Bakolas, “A hierarchical on-line path-planning scheme

using wavelets,” in European Control Conference, (Kos, Greece), July 2–5

2007.

[30] M. Do Carmo, Differential Geometry of Curves and Surfaces. New Jersey:

Prentice Hall, 1976.

71

Findings

The advantages of multi-resolution and wavelet-based strategies were demonstrated in the following
application areas.

Multiresolution Grid Generation for Hyperbolic PDE’s: We developed a novel multi-
resolution adaptive mesh refinement algorithm for solving general pde’s of hyperbolic type (e.g.,
Hamilton-Jacobi equations). Hyperbolic pde’s may exhibit non-smooth solutions even if the initial
data is smooth. We have investigated adaptive gridding techniques using multiresolution ideas
in order to represent solutions of partial differential equations of the Hamilton-Jacobi type. The
motivation for investigating HJ pde’s stems from (i) their use in deriving optimal feedback problems
and (ii) the fact that often the solution of a pde of the Hamilton-Jacobi type is not smooth, even
if the given initial conditions are smooth.

To capture the discontinuity and/or nonsmoothness in the solution we need to use a high resolution
grid, locally, close to this discontinuity. Hence in order to solve these problems in a computationally
efficient way, the computational grid should adapt in space and in time to reflect local changes in
the solution. The proposed algorithm dynamically adapts the grid to any existing or emerging
irregularities in the solution, by refining the grid only at places where the solution exhibits sharp
features. The net result is a grid with a fewer number of nodes (about 30% less for one-dimensional
problems), when compared to adaptive grids generated by other techniques.

Table 1 shows an error comparison between the use of a uniform and a non-uniform grid for one of
the examples in [1].

Table 1: L1 error and computational times for uniform vs. adaptive mesh.
Uniform Mesh Adaptive Mesh

Jmax Ng in VJmax tcpu (s) Ng at tf in Gridnew E1(u) tcpu (s) Speed Up

8 28 + 1 = 257 2.7106 31 7.1991 × 10−3 0.5835 4.6454

9 29 + 1 = 513 9.3851 34 7.1717 × 10−3 1.2737 7.3684

10 210 + 1 = 1025 36.6631 37 7.7397 × 10−3 2.6622 13.7717

11 211 + 1 = 2049 223.8606 40 7.7220 × 10−3 6.0399 37.0636

12 212 + 1 = 4097 804.9415 43 7.8012 × 10−3 12.6301 63.7320

Additional details of the approach with more examples can be found in [1, 2] and [3].

Multiresolution Trajectory Optimization: For direct trajectory optimization problems, one
typically transcribes the optimal control problem into a nonlinear programming (NLP) problem
and then one solves the resulting NLP problem on a given grid. Good accuracy requires a dense
(fine) grid, whereas computational speed requires a thin (coarse) grid. Real-time or nearly real-
time calculation of optimal controllers necessitates fast computations with minimum degradation
in accuracy. We have developed a novel multiresolution-based approach for solving trajectory opti-
mization problems. The original optimal control problem is solved using a direct method, thereby
being transcribed into a nonlinear programming (NLP) problem that is solved using standard NLP
codes. The novelty of the proposed approach (Multiresolution Trajectory Optimization Algorithm
- MTOA) hinges on the automatic calculation of a suitable, nonuniform grid over which the NLP
problem is subsequently solved. This tends to increase numerical efficiency and robustness. Control
and/or state constraints are handled with ease, and without any additional computational com-
plexity. The proposed algorithm is based on a simple and intuitive method to balance conflicting
objectives, such as accuracy of the solution, convergence, and speed of computations. The benefits
of the proposed algorithm over uniform grid implementations are demonstrated with the help of

(a) (b)

(c) (d)

Figure 1: Comparison of our method (left column) with the one in (M.A. Alves, P. Cruz, A. Mendes, F.D.
Magalhaes, F.T. Pinho, and P.J. Oliveira, “Adaptive Multiresolution Approach for Solution of Hyperbolic
PDEs,” Comput. Methods Appl. Mech. Eng., 191 (2002), pp. 3909–3928) (right column); Figures (a) and
(b) show the solution obtained with each method; Figures (c) and (d) compare the corresponding number
of grid points. We obtain the same accuracy albeit using fewer grid points.

several nontrivial examples. Figures 2 and 3 show typical grids resulting from the application of
MTOA.

The algorithm automatically, and with minimal effort, generates a nonuniform grid that reduces the
discretization error with each iteration. As a result, one is able to capture the solution accurately
and efficiently using a relatively small number of points. All the transition points in the solution (for
example, bang-bang subarcs, or entry and exit points associated with state or mixed constraints) are
captured with high accuracy. The convergence of the algorithm can be enhanced by initializing the
algorithm on a coarse grid having a small number of variables. Once a converged solution is attained,
the grid can be further refined by increasing the accuracy locally, only at the vicinity of those points
that cannot be accurately interpolated by neighboring points in the grid. The methodology thus
provides a compromise between robustness with respect to initial guesses, intermediate and final
solution accuracy, and execution speed. These observations are supported by several numerical
examples of challenging trajectory optimization problems.

A preliminary error analysis shows that the effect of the proposed multiresolution scheme is some-
what akin to a local control of the tolerance of the Runge-Kutta integration error. The error
analysis also provides guidelines on how certain parameters needed in the algorithm (e.g., the order

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

Time (τ)

x

Analytical
Numerical

(a) Iteration 8: Time history of x.

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (τ)

v

Analytical
Numerical

(b) Iteration 8: Time history of v.

Figure 2: Time history of x, v at the final iteration of MTOA.

0 0.2 0.4 0.6 0.8 1
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Time (τ)

u

Analytical
Numerical

(a) Iteration 8: Time history of u.

0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9

10

Time (τ)

j

No. of Points: 61 out of 1025

(b) Iteration 8: Grid point distribution.

Figure 3: Time history of u along with the grid point distribution at the final iteration of MTOA.

of the interpolating polynomials, the maximum/minimum time steps, etc) can be chosen during
implementation and to yield consistent approximations. Details can be found in [4, 5].

As a natural extension of the baseline algorithm, we have also proposed two sequential trajectory
optimization schemes to solve optimal control problems with moving targets and/or under dynam-
ically changing environments in a fast and efficient way. The proposed algorithms autonomously
discretize the trajectory with more nodes near the current time (not necessarily uniformly placed)
while using a coarser grid for the rest of the trajectory in order to capture the overall trend. More-
over, if the states or the controls are irregular at a certain future time, the mesh is further refined
automatically at those locations as well. The final grid point distributions for all the horizons and
for both the examples considered in this paper confirm these observations. Given their simplicity
and efficiency, the proposed techniques offer a potential for online implementation. Details can be
found in [6, 7].

Path-Planning: For path planning problems, we have used wavelets to perform hierarchical

multi-resolution for navigating an autonomous agent inside an environment full of obstacles. Our
method uses higher resolution close to the agent (where it is needed most) and a coarser resolution
at large distances from the current location of the agent. Since the range and resolution levels can
be chosen by the user, the algorithm results in search graphs of known a priori complexity. The
approach is motivated by the observation that for on-line implementation it is not prudent from
a computational point of view to find a solution with great accuracy over large ranges and over a
very long time horizon.

The approach allows the construction of a directed weighted graph the dimension of which can
be adapted to the on-board computational resources. By searching this graph we find the desired
shortest path to the final destination using Dijkstra’s algorithm, provided that such a path exists.

The algorithm is scalable and can be tailored to the available computational resources of the agent.
Furthermore, we have developed an algorithm for computing the adjacency matrix directly from
the wavelet decomposition, without the need to perform an additional quadtree decomposition on
the reconstructed function [8, 9, 10]. Our numerical experiments have shown that this approach
speeds up the whole path-planning process.

Figure 4: Multiresolution representation of the environment according to the distance from the current
location of the agent.

We have applied this algorithm and have solved path-planning problems in challenging environ-
ments of realistic data (topographic maps) as well as in cluttered environments with fractal-like
characteristics (see Fig. 5). Details can be found in [11, 10, 12].

In [13] we have extended the results of [11], by employing a conformal mapping to devise a hybrid
local/global path planning algorithm using sector cell decompositions instead of decompositions
that employ only rectangular or square cells. Sector cells are compatible to the on-board sensors,
and thus process the data more efficiently, in a manner that does not contradict its original sector-
based form. We provide approximations with special localized attributes by combining efficiently
data from sensors of different resolutions and ranges. Furthermore, in the work of [11] the whole
environment was assumed to be known a priori and the wavelet approximation scheme allowed us
to plan the path using only a small fraction of the available information.

In [14] a path planning algorithm is proposed that constructs a cell decomposition at several levels of

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

(a) t = t15

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

(b) t = t50

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

(c) t = tf

Figure 5: Path evolution and replanning. Figures on the left show the currently tentative optimal path
obtained from Dijkstra’s algorithm, based on the available multiresolution approximation of the environment
at different time steps. Figures on the right show the actual path followed by the agent.

resolution (cell sizes) and constructs an optimal path to the destination from the current location
of the agent. At each step the algorithm iteratively refines a coarse approximation to the path
through local replanning. The replanning process uses previous information to refine the original
cell channel in the immediate area of the path. This is done efficiently using the wavelet coefficients.
Numerical tests show a speed-up of an order of magnitude over the baseline algorithm with minimal
impact on the overall optimality of the resulting path. A comparative study with the well-known
D* algorithm is also provided.

Multiresolution for Level Set Methods: We have developed a new multi-resolution gridding
scheme to accelerate level set methods for solving pdes. Level set (LS) methods have been widely
used for solving certain types of partial differential equations appearing in many applications, such
as computing optimal feedback strategies, image segmentation, computer graphics, etc. In most LS

(a) (b)

Figure 6: Schematic illustration of the local replanning algorithm. From [14].

applications on-line processing is not critical. For control applications, on the other hand, one needs
to be able to solve certain equations in real-time or nearly real-time. Feedback control using video
signals, for instance, requires fast and efficient segmentation of a sequence of images at 30 Hz or
faster. We have developed an algorithm that implements an adaptive grid along the interface of the
level set curve; this is in addition to existing level set implementations that generate adaptive grids
only normal to the interface, such as narrow band methods. The idea is to use an adaptive grid
whose resolution depends on the curvature of the contour. While the resulting grid is adaptively
refined along the interface at the locations where the curvature is high, it remains coarse along the
interface at the locations where the curvature is low. The grid also remains coarse in the region far
away from the interface, thus saving a significant amount of computations. Numerical examples
show that about 10 time steps often suffice to obtain high-quality segmentation if the curvature
penalty is not high. The result was a significant speed-up of computations when applied to image
segmentation problems. Details can be found in [15, 16].

Experimental Demonstration: A UAV platform has been developed that is used to implement
the hierarchical, wavelet-based path-planning algorithm. The development of the hardware and
software was done completely in-house by Georgia Tech graduate and undergraduate students. The
overall architecture of the UAV system is shown in Fig. 7.

GPS Receiver

IMU Sensors

Absolute
position

Inertial
Measurements

Pressure
Measurements

Wireless RF ModemWireless RF Modem

Control surface
command

RS232

Serial

RS232

Serial

900MHz Wireless
Data Link

115kbps Serial Ground Station
(Notebook computer)

RF Receiver

Radio Frequency
Link

FCC (Rabbit
Microcontroller)

Remote pilot
Stick command

Figure 7: Hardware system configuration schematic of the UAV test bed. All hardware integration, elec-
tronics and associated software was developed in-house by Georgia Tech students. A hardware-in-the-loop
simulation set-up was also developed to enable rapid testing of the control laws.

The main subsystems are the autopilot, the ground station, and the interconnection between the
two. The on-board autopilot is equipped with a micro-controller, sensors and actuators, along

with the communication devices that allow full functionality for autonomous control. The micro-
controller (Rabbit RCM-3400 at 30 MHz, 512 KB RAM) provides data acquisition, processing, and
communication with the ground station. It also runs the main control software. The on-board
sensors include three-axis angular rate sensors, three-axis accelerometers, a three-axis magnetic
compass, a GPS sensor, an engine RPM sensor, absolute and differential pressure sensors, battery
voltage, fuel level and temperature sensors. Details can be found in [17] and [18].

A very detailed nonlinear 6-dof model of the platform was developed. The aerodynamic derivatives
of the UAV airframe were computed and linearized models about trim positions were used for low
level (PID) control design. We designed the navigation and guidance estimation filters that process
the measurements from the on board sensors. In order to reduce the computational overheard,
two cascades of complementary and Kalman filters have been developed; this reduces significantly
the computational cost when compared to the implementation of a centralized, fully populated
extended Kalman filter.

A hardware-in-the-loop (HIL) simulation environment was developed to support and validate the
UAV autopilot hardware and software development. The HIL simulation incorporates a high-fidelity
dynamic model that includes the sensor and actuator models, from the identified parameters from
experiments. A user-friendly graphical interface that incorporates external stick commands and
3-D visualization of thevehicle’s motion completes the simulation environment. The hardware-in-
the-loop setup is an indispensable tool for rapid certification of both the avionics hardware and the
control software, while performing simulated flight tests with minimal cost and effort.

Owing to the limited computational resources of the UAV, we have followed an offline/online ap-
proach to generate smooth, reference paths, given a family of discrete optimal paths. In conjunction
with a path representation by a finite sequence of square cells, the generated path is supposed to stay
inside a feasible channel, while minimizing certain performance criteria. Constrained optimization
problems are formulated subject to geometric (linear) constraints, as well as boundary conditions
in order to generate a library of B-spline path templates. As an application to the vehicle motion
planning, the path templates are incorporated to represent local segments of the entire path as
geometrically smooth curves, which are then joined with one another to generate a reference path
to be followed by a closed-loop tracking controller. The on-line path generation algorithm incorpo-
rates the path templates such that continuity and smoothness are preserved when switching from
one template to another along the path. The approach is shown pictorially in Fig. 8 Combined with
the D∗-lite path planning algorithm, the proposed algorithm provides a complete solution to the
obstacle-free path generation problem in a computationally efficient manner, suitable for real-time
implementation. The approach is explained in detail in [22].

We have used this UAV platform to test the multiresolution path planning algorithms developed
in this work. Details can be found in [19, 9, 18, 20, 21, 23].

References

[1] S. Jain, P. Tsiotras, and H.-M. Zhou, “Adaptive multiresolution mesh refinement for the
solution of evolution PDEs,” SIAM Journal of Scientific Computing, (accepted) 2008.

[2] S. Jain and P. Tsiotras, “Adaptive multiresolution mesh refinement for the solution of evolution
pdes,” in 46th IEEE Conference on Decision and Control, (New Orleans, New Orleans LA),
Dec. 12-14 2007.

2

S 1

3

G

5

4

Path # Path words Templates Operations
1 ENNW ENNW -
2 WWSSS EENNN H, V
3 ESEE NENN H, D
4 ENENN ENENN -
5 NNWN NNEN V

Figure 8: Example incorporating the path templates on a complex path sequence. Five local path
instances are connected to one another in order to reach the goal cell. The actual path words are
recovered from the path templates with the corresponding symmetry operations of the horizontal
(H), vertical (V), or diagonal (D) reflections.

[3] S. Jain, Multiresolution Strategies for the Numerical Solution of Optimal Control Problems.
Ph.D. Thesis, Aerospace Engineering,, Georgia Institute of Technology, Atlanta, GA, May
2008.

[4] S. Jain and P. Tsiotras, “Multiresolution-based direct trajectory optimization,” in 46th IEEE
Conference on Decision and Control, (New Orleans, LA), pp. 5991–5996, Dec. 12–14 2007.

[5] S. Jain and P. Tsiotras, “Multiresolution-based direct trajectory optimization,” Journal of
Guidance Control, and Dynamics, vol. 31, no. 5, pp. 1424–1436, 2008.

[6] S. Jain and P. Tsiotras, “Sequential multiresolution trajectory optimization for moving tar-
gets,” in AIAA Guidance, Navigation, and Control Conference, (Honolulu, HI), Aug. 18-21
2008. AIAA Paper 2008-6980.

[7] S. Jain and P. Tsiotras, “Sequential multiresolution trajectory optimization schemes for prob-
lems with moving targets,” Journal of Guidance, Control, and Dynamics, 2008. (under review).

[8] R. Cowlagi and P. Tsiotras, “Beyond quadtrees: Cell decomposition for path planning using
the wavelet transform,” in 46th IEEE Conference on Decision and Control, (Orleans, LA),
pp. 1392–1397, Dec. 12–14 2007.

[9] D. Jung and P. Tsiotras, “Multiresolution on-line path planning for small unmanned aerial
vehicles,” in American Control Conference, (Seattle, WA), pp. 2744–2749, June 11-13 2008.

[10] P. Tsiotras, “Multiresolution hierarchical path-planning for small UAVs,,” in European Control
Conference, (Kos, Greece), July 2-5 2007.

[11] P. Tsiotras and E. Bakolas, “A hierarchical on-line path-planning scheme using wavelets,” in
European Control Conference, (Kos, Greece), pp. 2806–2812, July 2–5 2007.

[12] E. Bakolas, “A hierarchical on-line path planning scheme using wavelets,” M.S. Thesis, School
of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, March 2006.

[13] E. Bakolas and P. Tsiotras, “Multiresolution path planning via sector decompositions com-
patible to on-board sensor data,” in AIAA Guidance, Navigation, and Control Conference,
(Honolulu, HI), 2008. AIAA Paper 2008-7238.

[14] R. Cowlagi and P. Tsiotras, “Multiresolution path planning with wavelets: A local replanning
approach,” in American Control Conference, (Seattle, WA), pp. 1220–1225, June 11-13 2008.

[15] B. Kim, P. Tsiotras, and H.-M. Zhou, “Image segmentation using a fast multi-resolution level
set method,” Technical Report, Georgia Institute of Technology, Atlanta, GA, November 2006.

[16] B. Kim and P. Tsiotras, “Image segmentation on cell-center sampled quadtree and octree
grids,” in Wavelet Applications in Industrial Processing VI, (San Jose, CA), Jan. 18–22 2009.

[17] D. Jung, D. Zhou, R. Fink, T. Williams, J. Moshe, and P. Tsiotras, “Design and development
of a low-cost test-bed for undergraduate education in UAVs,” in 44th IEEE Conference on
Decision and Control/European Control Conference ECC 2005, (Seville, Spain), pp. 2739–
2744, Dec. 12–15 2005.

[18] D. Jung and P. Tsiotras, “Inertial attitude and position reference system development for a
small UAV,” in AIAA Infotech at Aerospace, (Rohnert Park, CA), May 7–10 2007. AIAA
Paper 07-2763.

[19] D. Jung, Hierarchical Path Planning and Control of a Small Fixed-Wing UAV: Theory and
Experimental Validation. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, Dec.
2007.

[20] D. Jung and P. Tsiotras, “Modelling and hardware-in-the-loop simulation for a small unmanned
aerial vehicle,” in AIAA Infotech at Aerospace, (Rohnert Park, CA), May 7–10 2007. AIAA
Paper 07-2768.

[21] D. Jung, J. Ratti, and P. Tsiotras, “Real-time implementation and validation of a new hierar-
chical path planning scheme for UAVs via hardware-in-the-loop simulation,” in International
Symposium of Unmanned Aerial Vehicles (UAV’08), (Orlando, FL), June June 23-24 2008.

[22] D. Jung and P. Tsiotras, “On-line path generation for small unmanned aerial vehicles using
B-spline path templates,” in AIAA Guidance, Navigation, and Control Conference, (Honolulu,
HI), Aug. 18-21 2008. AIAA Paper 2008-7135.

[23] D. Jung and P. Tsiotras, “Bank-to-turn control for a small UAV using backstepping and
parameter adaptation,” in 17th IFAC World Congress, (Seoul, South Korea), pp. 4406–4411,
July 6-11 2008.

Research and Education Activities

Research Activities

The overall objective of this research was to apply multi-resolution and wavelet-based techniques
to solve the following problems:

• Development of adaptive gridding in the time-domain in order to enhance the numerical
accuracy and execution speed of trajectory generators for dynamical systems. Optimal control
problems can be cast as parameter optimization (nonlinear programming) problems via direct
transcription and then solved on the grid points. The computational complexity and accuracy
of the solution depends on the number and distribution of these grid points. By developing
adaptive gridding algorithms we will be able to increase speed and enhance robustness.

• Development of multiresolution methods for the solution of Hamilton-Jacobi pdes for solving
optimal feedback control problems. Often the solution of a pde of the Hamilton-Jacobi type
is not smooth, even if the given initial condition is smooth. To capture the discontinuity in
the solution we need to use a high resolution grid. Hence in order to solve these problems in
a computationally efficient way, the computational grid should adapt to reflect local changes
in the solution.

• Development of multiresolution decomposition and reconstructions of the environment to re-
duce the computational complexity for optimal path-generation in the presence of obstacles.
For the case of UAVs in particular, one requires increased automation, beyond the traditional
control systems. The autonomous operation of UAVs requires both trajectory design (plan-
ning) and trajectory tracking (control) tasks to be completely automated. If these tasks are
to be computed on-line exactly this seems to be a unsurmountable undertaking using current
computer technology. On the other hand, it is rarely necessary to be able to compute the
route of an aircraft to within seconds or meters several hours into the future. High accuracy
is desirable (and possible) only for the immediate future. Of course, it is not enough to only
address the near-term problem; the overall mission objectives should be accommodated, al-
though further out segments of the route may be optimized with progressively lesser accuracy.
A multi-scale algorithmic hierarchy suitable for on-line implementation thus emerges. Namely,
computation with high accuracy locally, around the current position and for the immediate
future, and computation of decreased accuracy elsewhere and for longer time horizons.

• Application of multiresolution strategies on level set (LS) methods for solving Hamilton-
Jacobi equations for optimal feedback control and image segmentation problems. The most
significant advantage of the level set formulation is that it can easily handle the topological
changes of the interfaces, such as splitting, merging, appearing and vanishing. Level set meth-
ods have been widely used in many applications including computer vision, image processing,
material science, fluid dynamics, control, and medical science. Level set methods can be used
to track the boundaries of obstacles in the environment. The level set approach can be used
to deal with emerging new obstacles or with changes of existing obstacles as the vehicle moves
along its path. The accuracy and speed of current LS methods can be improved by using
multiresolution methods (e.g., adaptive gridding) along the interface of the zero level set, as
well as normal to the interface (traditional narrow band method).

• Development of a small UAV platform in order to experimentally validate the proposed multi-
resolution approaches, by performing autonomous navigation and control. The main challenge

here is the (intentionally) limited computational resources on board this small UAV. The
autopilot microprocessor memory and speed requirement do not allow the implementation of
algorithms that do not scale well with the number of grid points or the number of constraints.
This notion of “hardware-driven” control algorithm development is central throughout this
work.

Education Activities

One of the students (E. Bakolas), who was partially supported from this project, completed the
requirements for an MS degree in Aerospace Engineering in the Spring of 2007. Mr. Bakolas
successfully defended his MS thesis in front of a committee composed of the PI, Prof. Eric Feron
(AE) and Prof. Magnus Egerstedt (ECE) on March 26, 2007. The title of his thesis was “A
Hierarchical On-Line Path Planning Scheme using Wavelets.” Mr. Bakolas is currently enrolled in
the Ph.D. program at Georgia Tech.

A second student (S. Jain), who was fully supported from this NSF project, completed his Ph.D.
degree in Aerospace Engineering in the Spring of 2008. Mr. Jain successfully defended his Ph.D.
dissertation on March 7, 2008 in front of a committee composed of the PI, Prof. H.-M. Zhou
(Math), Prof. JVR Prasad (AE), Prof. Anthony Calise (AE), Prof. Ryan Russell (AE), and Prof.
Magnus Egerstedt (ECE). The title of this doctoral dissertation was “Multiresolution Strategies
for the Numerical Solution of Optimal Control Problems.”

A third student (D. Jung), who was fully supported from this NSF project, completed his Ph.D.
degree in Aerospace Engineering in the Fall of 2008. Mr. Jung successfully defended his Ph.D.
dissertation on October 30, 2007 in front of a committee composed of the PI, Prof. G. Vachtsevanos
(ECE), Prof. Eric Johnson (AE), Dr. Eric Corban (GST), and Prof. Eric Feron (AE). The title
of this doctoral dissertation was “Hierarchical Path Planning and Control of a Small Fixed-wing
UAV: Theory and Experimental Validation.”

Six undergraduate students were involved with the design of the UAV platform, the ground station,
and the UAV autopilot.

