
SUPPLEMENT TO THE FINAL REPORT

SYSTEMS ANALYSIS OF CHEMICALS AND

ENERGY RECOVERY IN SULFATE PULPING

PROJECT 2893

SEPTEMBER 15, 1971 - SEPTEMBER 14, 1972

Prepared by

PROJECT STAFF

Graduate Students - Purdue University

Peter M. Chase

Edgar F. Jacobi

Laxmi K. Rastogi

Clifford C. Smith

Staff Member - Institute of Paper Chemistry

Dr. Robert A. Holm

I



Staff Members - Purdue University

Dr. Antti J. Koivo

Dr. Theodore J. Williams

Report 4

Institute of Paper Chemistry

Report 50

Purdue Laboratory for Applied Industrial Control

Division of Industrial and Environmental Systems

The Institute of Paper Chemistry

Appleton, Wisconsin 54911

Purdue Laboratory for Applied Industrial Control

Schools of Engineering

Purdue University

West Lafayette, Indiana 47907



I
I

FOREWORD

This Report serves as a Supplement to the Final Report for the

Project Period for Project 2893 of the Institute of Paper Chemistry along

with Purdue University entitled, Systems Analysis of Chemicals and Energy

Recovery in Sulfate Pulping (Report 3, Institute of Paper Chemistry and

Report 45, Purdue Laboratory for Applied Industrial Control, dated Sep-

1* ~tember 14, 1971). As such it closes the reporting of research under this

Project except for the thesis reports of the Purdue University graduate

students involved and any subsequent reports of the Institute concerning

the "dynamics and control of brown stock washers."

fit~ ~This Report discusses several important topics on which research

H< ~had not been completed at the time of the above-mentioned Report. This

includes the characteristics of "pure water" washes for Kamyr digesters;

the possibility of oscillatory responses for multiple-effect, black-liquor

evaporators along with a method for its control; a more complete model

and control system for the causticizing and liquor preparation area; and

further work on the kiln. This is now complete and reported herein.

We wish again to thank the sixteen sponsoring companies of the

3f ~project and particularly their representatives who attended our several

reporting meetings and who guided our efforts through this extended

Ia ~ period of the research.

E^*~~~~~~ ~~ ~Robert A. Holm, Director
Division of Industrial and

Environmental Systems
Institute of Paper Chemistry

WI Theodore J. Williams, Director
Purdue Laboratory for Applied

Industrial Control
Purdue University
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CONCLUSIONS

As stated in the FOREWORD, the present report supplements and com-

pletes the work of the Final Report for the Project Period of Project 2893

of the Institute of Paper Chemistry entitled, Systems Analysis of Chemi-

cals and Energy Recovery in Sulfate Pulping. This work was carried out

jointly by the Institute and by Purdue University. The results reported

here thus are added to those already recorded and do not change any of

those already presented in other ways.

The present work has developed the following additional conclusions

and results:

1. A mechanism has been postulated to explain the oscillations

which occur on some multiple-effect, black-liquor evaporators,

It is based on the very large changes in fluid viscosity and

hence heat transfer coefficients which occur in such systems

due to temperature and composition variations.

2. A feedback control loop included in the control system for

multiple-effect evaporators proposed in the earlier report has

been shown to correct for the oscillations when they occur.

3. The mathematical model for the causticizing and liquor prep-

aration section begun in the previous reporting period has

been completed, and the necessary control system for it has

been devised.

4. The use of clean water as a washing fluid in the Kamyr digester

has shown in simulation its capability to reduce chemical
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loss and decrease evaporator load at the same time. The

details of method and gains are presented In the text.

As previously, these results have been obtained from computer

simulations based on data obtained from the several plants of the project

sponsors. As stated earlier, this work would benefit greatly by being

carried out on data from a single complete mill. Only in this latter

way can the exact total dollar savings possible from the proposals

developed by this research program be evaluated.
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I SECTION I

5 INTRODUCTION

Ils* ~ Project 2893, Systems Analysis of Chemicals and Energy Recovery in

Sulfate Pulping, was developed by the Division of Industrial and Environ-

3| ~mental Systems of the Institute of Paper Chemistry and the Purdue Labora-

tory for Applied Industrial Control of Purdue University during the winter

3l ~ of 1968-69. It was funded by sixteen of the nation's major paper companies

AI ~ during the summer of 1969. The work of the project has been mainly

^I! carried out by the graduate student staff of the Purdue Laboratory under

3|I the direction of the Laboratory's professorial staff with the help of
several of the technical staff of the Institute. The students' work is

lj ~recorded in this Report and its preceding companion volume, the Final

Report for the Project Period, dated September 14, 1972.

I['^ ~Work on this project which was carried out by the Institute staff

1 on their premises has been reported in separate Institute reports. These

have been concerned mainly with the brown stock washers.

|*I~ ~ The work of each of the Purdue students has or will culminate in

the preparation of his graduate thesis. These are published as sep-

I arate reports by the Purdue Laboratory for Applied Industrial Control

3t ~ and distributed to the program-sponsoring companies. The present reports

present all of the important findings of the research. The individual

1 reports will present more details of these, plus the pertinent computer

programs involved, etc.

I
I
5
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SECTION II

A DYNAMIC MATHEMATICAL MODEL OF THE WASH ZONE

OF THE KAMYR DIGESTER AND THE EFFECT

OF A CLEAN WATER WASH

COUNTERCURRENT DIFFUSION WASHING

Washing (the separation of dissolved solids from the cooked chips),

by means of a flow of relatively solids-free liquor countercurrent to the

descending pulped chip mass in a Kamyr digester, has become an increas-

ingly popular industrial practice. It is the purpose of this Section to

provide an adequate mathematical description of the phenomena associated

with this process for the purpose of aiding its automatic control, optimi-

zation, and design.

This manner of washing is often referred to as "diffusion washing"

in that it is supposed that the dissolved solids contained in the liquid

associated with the pulp (that which is within the fiber itself) diffuses

to the free-flowing countercurrent liquor of lower solids concentration.

Fick's second law of diffusion describes this type of mass transport and

analyses and experiments have been carried out to elucidate the form and

parameters of such a solution [l1,2]. However, such a description, although

phenomenologically quite plausible, is mathematically difficult to solve

analytically or to compute by digital means except for the linear dynamic

or the steady state cases. This is because of the introduction of the

spatial variable of chip dimension and the resulting partial differential

equations present.
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A simpler, yet analgous description, is proposed here which elimi-

nates the chip dimension as a variable and thus has the advantage of being

computable in both the non-linear and dynamic form.
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THE PROPOSED MODEL

In the diffusion model the driving force for mass transfer is the

second spatial derivative of concentration. This has boundary conditions

requiring the concentration at the maximum chip dimension to be equal to

that of the free liquor volume. In the spatial dimension of wash zone

length, a two point boundary condition is placed on: (1) the entering chip

liquor concentration at z = O; and (2) the entering wash liquor concentra-

tion at z = L. By mass balance the remainder of the description is evolved

(see Figure 1).

The proposed model replaces the second spatial derivative of con-

centration as a driving force within the chip with a single difference

between average concentration within the chip and that in the free liquor.

When combined with the required mass balance and input boundary conditions,

this description can be written as follows:

Vd aXd xd kA 
LF vdzL(xd -x)

L atU + V ai- -- (x d - xu) (2)

given xd(O) and x (L)

where

x (zt) = entrapped downflow dissolved solids concentration,

lbs/ft 3

x (z,t) = free upflow dissolved solids concentration, lbs/ft3

vd = entrapped downflow liquid flow rate, ft /hr



3iIoz HSY?. ao '1zaOH Ua~ift~l1iSIa

tolj;dn

I I
(,I), 1(.2),x Is A

9s.1n~veodw8al

spjos P8atiossI
Jo 8U01TV.13UgOUOD

samn1IoA

(Vz) x J'Z p

A

~1-I 1 = Z

(O 'z) Pi

p ~~~A
A ~~~A

-.-- -- -.. *--.---- -.- -0 = 

dl ndA

(0)p I, ()OI JUAOU

-9-
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= free upflow liquid flow rate, ft /hr

= total entrapped liquid volume, ft3

= total free liquid volume, ft3

lbs
= mass transfer coefficient, ----

2 hr(lb/ft )ft
= mass transfer area, ft

= length of wash zone, ft

For computation purposes Equations (1) and (2) can be discretized to a

series of lumped sections (see Figure 2).

For n sections the equations are as follows,

kA
= . V (Xd - )

d i i

kA
= -V (xdix )

u i i

vd

d

v
u

u

(xd -X )
i-I i

(xUI -X )
i+l i

i = 1,2,...,n

i = 1,2,...,n

where xd
do

= Xd(0)

x = x (L)
u - u
n+l

The energy balance between the two flows can also be described by energy

diffusion.

Taking the same approach as in the mass transfer case to obtain the

distributed equations,

PdVdCPd d Td keAe

L at + PdVdCpd z -T (Td-Tu) (5)

V
u

Vd

V
u

k

A

L

dxd
di

dt

dx
ui
d-t

(3)

(4)
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Downflow
Pulp and Entrapped Liquid at Temperature

T
i- 1

Wpulp vd at concentration, xdpulp d di

~~! * 'i1

'4

W V d u Volumes
n n n 

Total 
Volume -- x x Concentrations

di u
.d"i u iof Dissolved

V
tot p Solids

Ti Ti Ti Temperatures

¥ 

I

v at Concentration, x
u Ui+l

and Temperature, Ti+i

Upflow

FIGURE 2

TH
I ELEMENT OF DISCRETIZED MODEL
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IpVc oT rT kA
uup u u u e e

IL at +Puup a= ' (Td-T u ) (6)

given Td(O ) and TU(L) as boundary conditions, and

| where

Td(zt) temperature of combined pulp and entrapped liquid, OF

3l* T (z,t) = temperature of upflow liquid, OF

PdCp = heat capacity of combined downflow, ft-
dd dft °F

P c > heat capacity of upflow, BTU
*u pft F

ke heat transfer coefficient, BTU
*I~~~~ hr °F ft

A a heat transfer area, ft

I If it is assumed that there will be negligible temperature differ-

ences between liquid and pulp within a section (keAe is very high relative

to energy capacity flow), a discretized energy balance can be written

3| ~ as follows

dT. [Cpt vd + (xd vd+Wpulp)Cp Ti_1 + (pCp +x c )VuTi+
- iw "LU Pwi

dt (V +Vd) V V 
U-r d/ d u pulp

c + (Xd 1 +x u + -L+ cDCe P n + (din + n n np

. i = 1,2,...,n (7)
* ~~~~where ~i(7)

where

| T =o Td(O)

Tn+1 T (L)

~I ~ and

I
I
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C

Pt

Wpulp

Wpulp

c

PW

= density of liquid, lbs/ft 3

=heat capacity of liquid, BTU

lb °F

= pulp mass flow rate, lbs/hr

= total pulp mass in wash zone, lbs

heat capacity of pulp and dissolved solids, BTU

lb °F

To provide a more comprehensive description and to provide a

better means of validation against actual digester operation and design

data, the model was expanded to include the quench zone. This was

done by letting the first lumped section have not only free liquor inputs

from the countercurrent upflow, but also cocurrent downflow at the same

temperature and concentration conditions as the entrapped downflow (see

Figure 3).

The equations for this new section replacing Equations 4 and 7

(for i = 1) are as follows:

dx kA v (v -v d)
U1 u Vtot.vd)

(Xu - - (x (x -)dt V d V u (Xu2-ul) + u/n d u 1 -V1u/n 2 1 Vu/n O U1

dT [ Cpto + ( doVtot+pulp)cpw T + (oC +x c )v T
1 (Vu to d(oXupd W 0Ptu2 Pw[ + x v 

dt (V +Vd) IVd Vd Wvulp
p c u 5+lp)Pt0 - + ( x -- + x - -+ nlp - n, n + ,' n u 1 n n

p 1 

where, vtot = total liquid volumetric

The extraction per cent solids

relation:

ext

feed rate to digester top, ft /hr.

(before flashing) is given by the

x
u 1

xu +Pt

I
I
I
I
I
I
I
I

I
I

(8) g

I
(9)

I

I

I
I

I

I
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Total Flow at Temperature T

Total Liquid Flow

( . a- A. n(

Concentrations
of Dissolved

Solids

Temperatures

..

d -- totd --
Concentration Concentration

dO xd

I
V

u
n

x
U1

A \

To
Steaming
Vessel

I Flash
Tank I

I To

Condenser

I ' Flash
--> 'Tank 2

v at
u

Concentration
x

U2

and Temperature
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To

Evaporators
at Per Cent

Solids,
x
evap

FIGURE 3

QUENCH ZONE ELEMENT OF DISCRETIZED MODEL

Wpulp

I

Volumes V
w

n

I

Vd
n

Xd

T1
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The flashing of the extraction flow first to the steaming vessel

conditions and then finally to atmospheric conditions for feeding to the

evaporators is given by the relationships;

x
ext (11)

flash I - C p ext+Cp (lext) ](T-v) v/H

Flash

x = (12)
X*evap I - [ flahl+Cp ( flahl)](Tsv-212 )/969.7 (2)

The total amount of solids per air dry ton of pulp as existing in

the blow flow is calculated from the downflow exiting conditions, the

given composition of the filtrate, and the blow line consistency as:

[Cblwliq-Vd(Xd +PtLfil+ VdXd

S/ADT 1.1 /200(13)
1. Wpulp/200 0

where

w - » ( 1 L. - l)wplp, blow liquor mass flow, lbs/hr
blwliq cbl pulp'

Xfil - solids content of filtrate,%/1OO

c l a consistency of pulp in blow line, lbs fAD pulp

where H = heat of vaporization of steam at steaming vessel
vapv

conditions, BTU/lb.
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CALCULATION OF PARAMETERS

To estimate the mass of pulp that is contained in the washing zone,

one can use the equation:

* *
W , = v , t* (14)Wpulp = Wpulp R 4)

where

pulp = pulp flow rate, lbs/hr

tR = residence time, hr

and * denotes that the measurement of the variable was made under steady

state conditions and will be referred to as the reference case.

It will be assumed that, in general, this mass will not change

appreciably for any reason during the period of observation.

* * * *
w .= 60 V .S p Y (15)

pulp 'Vcm Scm bd (

where

V = chip meter volume, ft /revolution
cm

S = chip meter speed, RPMcm
lbs ODW

Pbd = chip bulk density, -
ft

Y = yield, %/100

Define the compaction factor, kc, as

* *
60.V .S *t

cm cm R
kc V (16)

tot

This can be interpreted as the number of cubic feet needed to be fed to

fill a cubic foot within the digester.
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The volume occupied by pulp substance only is

V -pulp (17)
W PWSOws

where

p = density of pure wood pulp substance, lbs/ft3
ws

The entrapped volume of liquid can be calculated from a knowledge

of the specific volume of water swollen pulp, 1, and the specific volume
PW

1
of pure wood pulp substance, -- , as:

1 pul pV = (L ---- )W (18)
d Pw Pws pulp

Let this volume of entrapped liquid be defined as the crictical moisture

of pulp, mcrit, where:

( 1
p (-Pw

m"critI P =
Pw-- - - (19)

mcrit 1 (19) 

Pw Pws

also

1 1 I crit 1

Pw Pws ( crit Pt

Thus, in terms of mcrit

crit
d (l-mcrit)P, Wpulp 

The remaining volume is thus the free or void volume.

V = V -V tou tot -W -d
(21)
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Flow rates, in terms of pulp flow rate, can be calculated as follows:

vd = (L - ' wp
Ow Pws pulp

or

m crit
vd P( mcrit) pulp

and

(24)
)f wul

v = vd + pu l
u d pJ0~,

where

f
lbs dilution of weak black liquor

dilution factor,b bone dry pulp
lb bone dry pulp

Note: v u b 0 for f > 0.

In the steady state, Equations (1) and (2) are written

6x d

az

ax u

az

kJ

d (Xd-Xu)

k'(
v XdX u )u

given

xd(O) = Xd and xu(L) = x
d UL

where

k ^kAk '= L
L

Let

AX = Xd-u

and

(I = k'( 1 - 1)V V
d u

(22)

(23)

(25)

(26)
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Then substituting Equation 32 into 28

xd -x 

Again by conservation of mass

z

xd(z) = Xd L '~x-~-

0

where n is the dummy integration variable.

integrating and simplifying again

Xd z)
- =~I -

Kd

From Equation

then

xd(z)

And since, a

Kd(z)

d0

K

(l-7-) (I-e -M)

1_vd -~.L
I -

V

35, if u>> Vd

.e-,z

d u

-k-z

Vd
(37)

(33)

(34)

(35)

and x = 0,

(36)
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The same special case, i.e., (v > vd, and x

solved for he diffusion model 
solved for the diffusion model [21.

xd(z) 8
x =T L
dO 0 n=l

W 0), has been

21 exp[-(2n-1)2 r2 - t]

(2n-l) Lcc

(38)

where

L = chip thickness, ft
c 2

ft 2

J- = diffusion coefficient, hr

For values of - t sufficiently large (say > 0.1), Equation 38
L

reduces to

xd(t) 8
x -7 e
d

2

C

By making the observation that

VdL kA
z = - t, and k = -

d

Equation 37 becomes

xd(t)
= e

xdo

kA
V t

d

with the obvious time constant association of

2
kA 2

d L
c

(39)

(40)

(41)
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An effort was made to calculate the mass transfer coefficient by

a means other than that of an equivalence to the diffusion model. An

analysis was made of the temperature dependence of mass transfer coef-

ficients. From [6] the mass transfer coefficient is given by

k 1 JD V / ' 5 (42)

where

jD Colburn "j factor"

S = Schmidt number
C

v = linear velocity of flow

The Schmidt number has the form

S = i- (43)
c pt.::

where

= - viscosity

p = density

i' = diffusivity

and It and p will both vary with temperature,

Using the expression

T1 , 2

'2 T2 p1

or

T2 1Ui/
=/, - (44)

2 Ti 2
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where T1 2 are temperatures in oK.

The temperature dependence of, k, can be calculated from tabular

values of y, . , p, etc. (See Table I and Figure 4.)

This temperature dependence was approximated by piecewise linear

segments and was used in the simulation. It will be noted that the

temperature dependence of the mass transfer coefficient is strong. It

will be noted that in the case of the diffusion model the dependence is

exponential.
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TABLE I

VALUES USED TO ESTABLISH TEMPERATURE

DEPENDENCE OF MASS TRANSFER COEFFICIENT

=0.012

= 300 ft/hr

= 2930 K

= 1.005 centipoise

-5 ft 2
=5.84Xl10 w

k T(F) P, ~~viscosity, lbs se Specific gravity, S.G.

1.74 XIO3 100 142.0 0.993

o.335X10-2 150 89.1 0.980

0.835X10-2 200 67.7 0.962

0.259XI1& 1 250 47.6 0.940

0.537X10'1 300 38.2 0.919

0.975X10-1 350 31.8 0.890

i~v

k ~~1.5

where S =
c

lb 2

hr lb/ft ft

(2.39) (O.00479)"
(62.4) (SG) (Qs)

where b = TkI.±1~15/[T 1(0.00479)p~1

where Tk = f(T-32)/1.81 + 273

Note: Values are taken from [6].

T: 1
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SIMULATION PARAMETERS

Two digesters, one at each of two different reference production

rates, were studied with the simulation used in this study. Johnsson r5$

also provided data on washing in the steady state for two different pro-

duction rates. A typical modern digester was also simulated in our study.

The values used are summarized in Table II.
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SIMULATION RESULTS

Equations 5 and 6 show a temperature difference between upflow and

downflow masses which forms the driving force for energy transfer between

the flows. An attempt was made to validate the assumption that there was

a negligible temperature difference between the flows at any given posi-

tion by simulating the discretized equivalent to Equations 5 and 6 with

estimates of k and A.
e e

Ae was estimated by taking the specific surface of a 1/2" x 1" x 1/8"

chip (Sw = 354 ft /ft ) and multiplying by the estimated volume of wood

(in chip form) contained in the zone. That latter volume is estimated by

taking the oven dry wood equivalent of the pulp in the zone and dividing

by the density of wood as a log, i.e.,

kcbdVtot
chip 0log

Olog

Hence

A = SV ,(46)e w chip (46)

For values of

k = 2.66
C

Pbd 11.4 lbs/ft 3

log = 33 lbs/ft3
Plog

Vtot = 19070 ft3
tot

and

A - 6.2 x 10 ft
e
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BTU
Even for k = 10 BT--U (a ridiculously low value), temperature dif-

~e , hr OF ft

ferences of no more than 2°F could be generated. It was, therefore, con-

cluded that s single temperature would suffice, and hence Equation 7 would

provide a suitable description of the temperature profile in the wash

zone.

With the model form thus complete, both the high and low production

cases of Johnsson were run to establish the necessary mass transfer area

to fit his measured data. A summary of those runs are given in Table III.

Concentration and temperature profiles are shown in Figures 5 and 6..

By comparing the mass transfer coefficient and the mass transfer

area product which were found by fitting Johnsson's data r5] with the mass

transfer coefficient as derived and the product given by the time con-

stant association of Equation 41, it was found that they were in reasonable

agreement.

After establishing the mass transfer area, a number of combinations

of dilution factors, wash temperatures, and filtrate solids content were

tried to determine the sensitivity of the blow line solids to each of

these parameters. The results of these simulations are summarized in Table

IV and shown graphically in Figure 7.

A typical modern digester has a much larger wash zone than that

studied by Johnsson [51 with a correspondingly longer residence time.

Such a typical modern digester was studied for the clean water wash case.

Various dilution factors were tried. The results are summarized in Table

V and shown graphically in Figure 8. Concentration and temperature pro-

files for ) = 3.3 and -if 0.5 are shown in Figures 9 and 10.
ff
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TABLE III

FIT OF JOHNSSON'S [5] HIGH AND LOW PRODUCTION DATA

Concentration within
Chips at End3of
Wash(lbs/ft )

Extraction
Solids(%.)

Low Production Case

Johnsson's Data

Model Calculation (S w = 47.25)

Model Calculation (S = 32.5)

High Production Case

Johnsson's Data

Model Calculation (S = 47.25)

Model Calculation (S w = 61)

1.93

1.55

1.93

2.56

2.96

2.56

14.4

14.5

15.9

15.5

_ _ 
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TABLE IV

BLOW LINE SOLIDS SENSITIVITY

Filtrate Blow Line
Dilution Wash Temp. Solids Solids

Factor, T ,F x lb/ft bs/ADT
UL XUL 

2.04 266 1.9 612 (160 Unwashed
from Pulp)

266 0 74.4

1.0 -: 275 0 66.8
Johnsson's 
High . 284 0 58.3
Production
Case

266 0 59.0

2.04 , 275 0 47.4

284 0 38.2

266 0 53.9
2.5

275 0 42.1

Low i 2.62 266 1.2 362 (86.5 Unwashed
Production from Pulp)
Case 

, 2.62 266 0 19.6
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* FIGURE 7

THE EFFECT OF DILUTION FACTOR AND WASH TEMPERATURE

3 ON BLOW LINE SOLIDS FOR JOHNSSON'S

HIGH PRODUCTION CASE WITH CLEAN WATER WASH



-36-

TABLE V

CLEAN WATER WASH FOR A TYPICAL MODERN DIGESTER

Dilution Factor Blow Line Solids, lbs/ADT Pulp

3.3

3.0

2.0

1.0

0.5

Note; All run at T
UL

1.53

1.82

3.75

10.2

19.1

=2650F.
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DISCUSSION OF RESULTS

It is clear that using clean water has a significant effect in

reducing the unwashed solids exiting the digester. It is worthwhile noting

that the "dirty" filtrate used in previous washing practice contributes

approximately 75% of the solids leaving the digester with the pulp in the

blow line. In addition to not returning solids to the washers, clean

water wash also lowers the amount of the original solids which were in the

unwashed pulp by 63% to 77% for Johnsson's cases, even though the resi-

dence time is rather short. For the much longer residence time of the

typical modern digester, the results are even more dramatic. Typical

design solids loss with brown stock washing and a dilution factor of 3.3

is 66 lbs/ADT. Clean water wash reduces it to 1.53 lbs/ADT with no

brown stock washing. Even going to a dilution factor of 0.5, the losses

from the digester are still only 29% of the design case using "dirty"

water and brown stock washing.

The temperature dependence of the mass transfer coefficient is

also apparent in that raising the wash temperature from 266 F to 284 F

provides a 22%-35% reduction in unwashed solids.
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ECONOMICS OF WASHING

A significant fraction of the total expense of Kraft pulp produc-

tion is due to chemical loss because of incomplete washing. In bleachable

pulps this chemical loss is further magnified by the bleaching chemical

required to neutralize the unwashed chemicals and to bleach dissolved

lignin left in the washed pulp. Current practice attributes to incomplete

washing, 15-50 lbs of required chemical makeup (in the form of Na2SO 4) per

air dry ton of pulp produced. At 1.6¢/lb, this represents $0.24-$0.80/ADT.

For a production capacity of 1000 ADT/day, this amounts to $72,000-

$240,000/year in chemical loss due to incomplete washing alone.

For a 58% yield and a chemical charge of 0.194 lbs Active Alkali/lb

oven dry wood, the above example represents a loss of 1.1%-3.6%. To main-

tain this level of performance, however, it is generally required to use

2-3 tons of water/ADT pulp during the operation of the vacuum drum washers.

This water is the carrier of the recovered chemicals, and therefore is

a dilution to the black liquor fed to the evaporators. Assuming a steam

economy of 5.0 and an energy cost of $0.35/10 BTU, this represents an

additional cost of $0.27-$Oo40/ADT in energy to use wash water. In prac-

tice, the profitability of the Kraft recovery cycle depends in large part

on obtaining a good balance between the cost of lost chemical and the

energy cost necessary to recover that chemical.

An optimal balance, in the steady state, can be determined by

matching the incremental cost of energy to recover chemicals by washing

to the incremental savings in chemicals. By plotting the losses versus

the dilution factor to achieve those losses (as in Figure 8), where the
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slope of the curve represents the incremental savings, and the increment

energy cost is a linear function of dilution factor, a graphical matchir

of slopes can yield the optimal dilution factor.

For the typical modern digester and the above costs, the optimal

dilution factor is approximately 0.5. At this dilution factor with the

losses predicted, a savings over typical design values of 24 lbs Na2 SO4

(salt cake) and 1.X106 BTU per air dry ton of pulp produced can be

achieved. This represents $0.77/ADT.

I
:al I

I
I
I
I
I
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I
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CONCLUSIONS

Clean water wash cannot only reduce chemical loss by better wash-

ing, it can do it with less water and thus with lower energy costs. At

the near optimal dilution factor of 0.5 for the typical modern digester,

clean water wash represents 24 lbs Na2SO4 (salt cake) and 1.1X10 BTU

savings per air dry ton of pulp produced or $0.77/ADT over current

designs.

For a typical design production rate of 1110 ADT/day and a 300-day

production year, clean water wash can thus save $256,000/yr for a modern

digester.

It is worth noting that, since the wash upflow is the source of

energy removal for quenching, a lower dilution factor (see Figures 9 and

10) shows a distinctly higher temperature profile. This will result in

"cooking" in the wash zone. The effects of this "extra" cooking, of

course, can be computed and compensated for by an adjustment of the lower

heater temperature.
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SECTION III

OSCILLATORY RESPONSES IN MULTIPLE-EFFECT,

BLACK LIQUOR EVAPORATORS

AND THEIR CONTROL

INTRODUCTION

At the time of the presentation of the Final Report of the IPC-

Purdue Project, Dr. Donald B. Brewster of Measurex, Inc. brought to our

attention the fact that the strong black liquor concentration from a multi-

effect evaporator system without a feedback controller from strong black

liquor concentration has been known to oscillate with an amplitude of

the order of 5% and with a period of about 10 to 15 minutes (similar

oscillations have also been observed in a multi-effect evaporator system

in Orange, Texas). A realistic dynamic model should also exhibit these

same oscillations under these same operating conditions. Such a model may

then lead to the answer of the questions--how and why do these oscillations

arise? The oscillations can then be avoided by an improved design of an

evaporator system, and/or attenuated by a good control scheme.

The model previously presented ll) has been modified to show this

effect and the feedback controller in the control scheme is enough to

counteract these oscillations.
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THE EXISTENCE OF EVAPORATOR OSCILLATIONS

Reference [71 gives the response of the strong black liquor concen-

tration of three multi-effect evaporators to step changes in the concen-

tration of weak black liquor, in mass flow rate of weak black liquor,

and in steam mass flow rate. These experimental results do not show any

oscillations. Furthermore, a dynamic model derived on the basis of

references [5], [12 - 143 cannot exhibitunderdamped oscillations.

No reference has been found in the literature which mentions the

control of oscillations in the concentration of strong black liquor from

a multi-effect evaporator system. However, two references, [9] and [121,

deal with pulsation of flows. Reference 9 describes a pulsation of flows

observed through a Kestner one-tube evaporator (with internal diameter

15 mm and length 2.2 meters - this gives the length to diameter ratio

about the same as that for the LTV evaporators used in Kraft paper mills)

carrying water as the vaporizing fluid. Water enters the bottom of the

tube at the same temperature as that in the upper boiling section. This

reference also states that the amplitude of the oscillations could not be

measured because of irregularities in the amplitudes, and that the pulse

frequency varies both with the temperature difference between the heating

steam and the water - water vapor mixture in the tube, t , and with the
app,

non-boiling section length in the tube. The range of frequencies 20 - 35/

minute (for 20% - 70% non-boiling section length, and for 50C - 15°C Ata )

of flow oscillations is much higher than that required to produce a period-

icity of 10-15 minutes in strong black liquor concentration from a sextuple

evaporator system.
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Reference [12] gives the pulsating temperature profiles observed in

a pilot 4-tube climbing film evaporator. The authors found that these

pulsations occur only under restricted conditions of liquor feed super-

heat (between 5°C and 20°C) and of heat flux (less than 10 KW/m ). In

this pulsation, a pulse consists of two stages, the first, a slow building

of a temperature pulse (i.e., the liquor temperature increases along the

length of the tube with time); and second, a rapid collapse of the temper-

ature pulse. In the first stage no flow of black liquor takes place out

of the tube, and the liquor level slowly rises to the top of the tube.

As soon as the liquor reaches the top of the tube, the second stage begins,

i.e., the liquor in the tube and in the main liquor box flashes, and in

the process ejects the liquid quickly out of the tube. The authors also

give a simplified mathematical model of the building of the pulse.

However, since the liquid which is suddenly released forms a layer

of liquid in the vapor space which opposes any further flashing of liquor

in systems similar to the low pressure effects at Owens-Illinois plant at

Orange, Texas, this mechanism does not seem to be the reason for the

oscillations in strong black liquor concentration at that plant.

Figure 1 shows an analog record of strong black liquor concentration

from a sextuple effect evaporator system at Owens-Illinois, Inc., Orange,

Texas. The concentration shows a periodicity of about 10 minutes, and so

does the flow rate of steam. The primary steam pressure remains almost

constant throughout the duration of the record, Moreover, the other

input variables such as mass flow rate, and the concentration of weak

black liquor, and the vacuum in the last effect are not expected to cause

these oscillations. Therefore, it follows that the evaporator system

under these operating conditions behaves like an underdamped system.
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OSCILLATORY RESPONSE OF MULTI-EFFECT EVAPORATORS

OSCILLATORY DYNAMIC MODEL

| The linear dynamic model [11] neglected:

|I~ ~ 1. Variations of heat transfer coefficient with black liquor

8g«~~ ~temperature and concentration.

2. Variations in non-boiling section lengths.

3. Variations in the enthalpy of black liquor entering and

|£$~~ ~leaving the main liquor box.

3|* ~It is also known that the heat transfer coefficient of an evaporator

increases with the increasing temperature of vaporizing liquor and with

1E ~ the decreasing concentrations of vaporizing liquor l[ - 4], and [10]. Now,

3 if the temperature increases due to some disturbance, the heat transfer

coefficient of an evaporator slowly increases, which in turn slowly in-

I creases the concentration of black liquor coming out the effect. The

increased concentration will slowly decrease the heat transfer coefficient.

|I eHowever, since the vapors generated in an effect are fed to the next

g effect, and from the next to its next and so on in a series fashion, the

increasing and decreasing heat transfer coefficients may produce oscilla-

5t ~tory concentration of strong black liquor under some particular operating

conditions of multi-effect evaporators.

5 The dynamic model in [11] was, therefore, modified to include the

three above mentioned variations. Furthermore, because under an oscilla-

tory condition, some of the variables may vary over a wider range than is

I

I
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allowed for in a linearized model, a non-linear dynamic model is used for

studying the oscillations in strong black liquor concentration.

MODIFICATIONS IN THE DYNAMIC MODEL

The linear dynamic model as given in [11] is overdamped, and will

not show underdamped oscillations. In order to improve the dynamic model

of multi-effect evaporator system given in [1ll, the following assumptions

in that model are modified.

1. In [11], the non-boiling section length was assumed to be a

constant for each effect. The non-boiling section length, LN,

in the actual evaporator varies depending upon the amount of

sensible heat the liquor requires to reach the boiling point.

The velocity of liquor in a non-boiling Section is small, about

4-6 ft/sec, thus the transport lag TDNBS for the liquor to flow
DNBS

through the non-boiling section varies with the non-boiling

section length LN. At present the variation in LNis included,

but the variation in time delay TDNBS is neglected. Since the

variable LN represents the physical non-boiling section length

in an evaporator, the computed non-boiling section length is

limited by the total tube length LT (i.e., the whole tube

length is a non-boiling section, and no evaporation takes place

in that effect) and by 0.0 (i.e., the liquor enters the non-

boiling section at a temperature higher than the boiling

temperature, and flashing of liquor takes place -- part of

its heat goes into evaporating liquor) as shown in Figure 2.



-51-

0. L LN Computed

FIGURE 2

LIMITER CHARACTERISTIC FOR

NON-BOILING SECTION LENGTH, LN

I

LN
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Boiling poinl

I 1 j94 f67
F EVFIF. 131 'F. 131 and

1211 IF

IE!TEII]E[I VIlE

.5 10 1520 25 30 35 'IC

Per cent tWWI sohids

,4.-.2110 F

) '45 50 55 60

I Io:t-tir,,I,(er eovilici'llits in !iui.. ,rating tillite

Operating Data for the Evaporatioin
of Sulfite-pulp Liquor
7-l....d."i,. i.d. irkic. wt-, 8 ft. 0 in. I....

Li. I or tr, I.jra. u r, I'. -2 1 I -2 f1 1 94 67- 1* 31 -
:r. drop, *IF. 21 36 20 25 4

..........I... 8-12 45.-'' 1 3-17 id23 245
A~q'r.,x. vi., -it V . ~ 1405 6-0 1. 1. 2 1.68
Avg. Hl~ V- v i)y. ft., I .115 7.6 7.9 7. 1 9.4
A, 4. pr"'.,r,r.dr~t. ft. i1i) ... 14.11 24.0 15. 2 19.1 22 6

(from Refer~ence I.)

800 :- 

=) 600 -

' 500

4005 TFwjTj
8 10

At 0Deq F
15 20

talce ( ilk. X>2 ft.) jacketed by rcau.
densinig 8I.IIlig~

(from Reference 10 )

2110F

J)j 800-
-C-

00

'0 I

c, 0
0

i-ia-. 5

±7
51 0F

- LIQor at 210 *F

140 F

1-1- -�-.;
1

I

I



-56-

coefficient increases with increasing temperatures). Also,for a

liquor temperature of 211 0F, the heat transfer coefficient for

10% solids lies above that for 50% solids (i.e., heat transfer

coefficient decreases with increasing concentrations). The

conclusion that heat transfer coefficient increases with in-

creasing sulphite liquor temperature is also indicated by

Figure 6.

Since heat transfer varies as a function of black liquor

temperature and its concentration, one can express the heat

transfer coefficient, UN, in the non-boiling section by

UN = UNfl 0+(ToBLO-BLO) + aC(CBL Out,MLB BLN)] (2)

and the heat transfer coefficient in the boiling section by

UB - -UB-O+T](TBLO-TBLO + OC(CBLo CBLO)] (3)

where overscore represents the steady state value. aT and PT

represent fraction change of heat transfer coefficients per

degree change of temperature in non-boiling and boiling sections.

TBLO CBLO, and CBLN represent boiling temperature of liquor,

concentration of strong black liquor leaving a vapor space, and

concentration of weak black liquor entering main liquor box

(MLB), respectively. Since the heat transfer coefficient in-

creases with increasing black liquor temperature and decreases

with increasing black liquor concentration, aT and PT take

positive values, and aC and PC take negative values. In

I
1,I

1-I
I
I
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I
I
I

I
I
I
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I
addition, the computed linearized heat transfer coefficient

tfb~ ~values for large upsets may become too large to be realistic,

or become negative. To avoid these possibilities, limiter

|IO~ ~characteristics (with positive upper and lower bounds) are

i included with Equations (2) and (3).

3. In [111, the model neglects the changes in the enthalpy of the

|1C-~ ~liquor entering the main liquor box, and in the liquor leaving

|*E~ ~the main liquor box. The effect of main liquor box on the

enthalpy is express by

dHBL Out,MLB t MBLN i i
dt i i [HBLN(t)-HBL OutMLB t (4)1I O''' -"_Z~rIn~)uBLN VMLB eff

|i ~where HBL OutMLB' HBLN' MN and VML B eff represent the en-

g1 thalpy of liquor entering MLB, the mass flow rate of black liquor

flowing in, and the effective volume for mixing in MLB res-

* ~pectively.

4, The sensible heat is transferred from the steam to the black

liquor, as the liquor rises to the interface through the non-boiling

section during the time interval TDNBS (TDNBS is assumed to be

constant to simplify an iterative computation into a recursive

|I~~ ~~computation, as given by Equation (5)). This heat transfer was

f"*~ ~approximated by a quasi-steady state energy balance Equation

(34) in r11). In the modified model, computed non-boiling

| section length is obtained as

I
I
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tJ MDBLN(t )dt

DNBSLN comp(t) = t[ ~(t -sc -%Lo5)· tf TDNBS UNDT i ) 'tB') i ') ]dt [

BL,interface (t)-HBL Out,MLB(tTDNBS)l (5)

where HBLinterface is the enthalpy of boiling black liquor.

DT is the area of heat transfer divided by LT. TSTcHis the

temperature in a steam chest. The value of non-boiling section

is then computed according to Figure 2.
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RESULTS OF DIGITAL COMPUTER SIMULATIONS FOR CONSOLIDATED PAPER,

INC., WISCONSIN RAPIDS PLANT

The non-linear dynamic model included in [11] was modified to

include Equations (2-5). The model was then set up for the sextuple

effect evaporator system at Wisconsin Rapids, and the equations were solved

on the CDC 1700 computer.

Simulations were carried out for various sets of values of parameters

,C and AT (pC C' , and PT C oT for the results given in this section) as

plotted in Figure 7. Parameter domain in which oscillations occur is

approximately indicated by the cross-hatching.

Figure 8 shows the simulations of strong black liquor concentration

correspondong to three sets of values of parameters lying on line AB, on

which OC remains unchanged, but the value of parameter aT varies. The

input to the system is a pulse of weak black liquor concentration which

changes from 15% to 16% during the time interval 1.0 - 6.0 minutes. As

the parameter aT is increased, the strong black liquor concentration be-

comes more oscillatory, and becomes more underdamped.

Figure 9 shows simulations of strong black liquor concentration

corresponding to four sets of values of parameters lying on line CD, on

which the parameter QT remains the same, but parameter %C varies. The

input pulse of the weak black liquor concentration is the same as for the

previous figure; however, it is found that the period of strong black

liquor concentration decreases as the magnitude of C increases.

Figure 10 shows the influence of non-boiling section time delays

on the period of oscillations in strong black liquor concentration. Input
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to the system is again a pulse of weak black liquor concentration which I
changes from 157 to 16% during the interval, 0.0-5.0 minutes. It is seen 

from Figure 10 that the period of oscillations in strong black liquor

concentration increases with increasing values of time delays, and it |

decreases with the decreasing values of time delays. The time delays of

approximately 1.0-5.0 minutes occur in non-boiling sections. The value of I
a time delay depends on the non-boiling section length, which in turn 3
depends on the amount of sensible heat required by the liquor to reach

the boiling temperature. If pre-heaters, and/or post-heaters are present, 

they would reduce the non-boiling section length. Therefore, it can be

said that the period of oscillations is a function of both the operating 5
conditions of the plant and the design of pre-heaters and post-heaters, etc.

Figure 11 shows that once a system oscillates for a disturbance of 

input for a set of parameters aC and aT, it oscillates also for other |

input disturbances. Pulse inputs applied are -0.1 psi in steam pressure,

+1.0% in weak black liquor concentration, and -30°F in weak black liquor

temperature. Since the system can oscillate even due to a very small

pulse disturbance in steam pressure, the system is underdamped and usual '

disturbances present in the system will keep it oscillating as long as

the operating conditions remain unchanged.

I
I

I
a_

g/.A
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MODIFICATIONS TO THE MODEL TO SIMULATE THE ORANGE, TEXAS

PLANT OF OWENS-ILLINOIS INCORPORATED

In this sextuple-effect evaporator system the feed is split and

part of the liquor is fed forward towards high pressure effects (Effect 1)

and part of the liquor is fed backwards towards low pressure effects

(Effect 6), where it is concentrated and pumped forward with the remainder

of the weak black liquor feed.

The non-linear model [11] for an evaporator system had already been

modified by the inclusion of Equations (2-5) developed from the model of

the Wisconsin Rapids Plant. The dynamic model developed for the Orange,

Texas plant was further expanded by including elements representing con-

densate flash, liquor flash, pre-heaters and post-heaters in the system.

Limits were also placed on the variations in heat transfer coefficients

caused by large swings in the concentration and temperature of black liquor.

FLASH TANKS

The concentrated black liquor and steam chest condensate are flashed

to a lower pressure in liquor and condensate flash tanks (or condensate

flash chambers in Effects 3, 4, 5, and 6). The heat thus released evap-

orates some water in the flash tank into steam. This flashed steam is

then lead to the steam chest of an effect operating at a lower pressure

than the one from which the liquor or condensate came. This flashed steam

thus improves the general steam economy of the evaporator system.

In modeling the flash tanks, the mixing of condensate (or black

liquor) is neglected. The material and energy balance equations for a

flash tank can then be written as

I
I
I

I
I
I
I
I
I

I

I
I
I
I
I
I
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I
I MFlash in IFlash in . 1Flash out HFlash out

+ "Steam Flashed Steam Flashed (6)

and

l lsI"Flash in 4Flash out + MSteam Flashed (7)

Ii~ where Flash in' iFlash out' ad HSteam Flashed mass flow races of

condensate (or black liquor) in, condensate (or black liquor) out, and

steam flashed, respectively. Hlash in' HFlash out' and HSteam Flashed

*C ~ are the enthalpies of the three fluids in question.

In the model it is assumed that the flashed steam is at the pressure

1 of the steam chest to which it is led, and that the condensate leaves at

the saturation temperature of the steam. (In the case of liquor flash,

£' ~ the black liquor leaves at the saturation temperature of the steam plus

1 the boiling point rise.)

g PRE-HEATERS (AND POST-HEATERS)

Pre-heaters (post-heaters) consist of a few per cent total volume

of the tubes in any one effect. The incoming black liquor is isolated

5 from the evaporating liquid in that effect, and is heated under forced-

circulation. Since the area of corss-section to flow is much smaller for

~| ~ pre-heaters (post-heaters) than for the regular evaporation region, the

flow velocities and thus the heat transfer coefficients through the pre-

I heaters (post-heaters) are considerably higher than those in the non-boiling

js2 ~ section. The use of pre-heaters (post-heaters)- therefore reduces the non-

boiling section length in that effect (in the next effect forward for

|* ~ post-heaters), and thereby provides a higher overall heat transfer

coefficient.

U
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The equation for heat transfer through pre-heater, QPre heater(an

QPo theaterr, is analogous to the equation used for the non-boiling

section, and can be expressed as

QPre-heater

Upre-heater

APre-heater

TSTCH

TBL Pre-heate

UPre-heater Apre-heater(TSTCH'TBL Pre-heater in )

- The heat transfer coefficient of pre-heater

which may be estimated from Sieder-Tate

correlations.

= Area of heat transfer.

- Temperature of steam in the steam chest.

r in The temperature of black liquor flowing to

pre-heater.

The temperature of black liquor flowing out of the pre-heater car

then be computed as

BL Pre-heater out
QPre-heater

TBL Pre-heater in +

CPBL MBL Pre-heater

He re -heater out' BL Pre-heater ' L are the temperature c

black liquor flowing into the pre-heater, CpBL(t), the specific heat of

the black liquor, and mass flow rate of black liquor through the pre-hee

Because of the higher velocities the transport lags in flowing

through the pre-heaters (and post-heaters) are relatively small, and may

be lumped with the transport lag in the non-boiling section of that effe

(of the next effect forward in case of post-heater).

1

I

I
I
I

I I

I

(9) 1

III
if "

Lter. I

Y I

1

I

I
I
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| UPre-heater m UPre-heater[l'04T (T BL Pre-heater in YBL Pre-heater in)

| + C(CBL Pre-heater in" CBL Pre-heater in)] (10)

Ig where CBL Pre-heater in is the concentration of black liquor flowing into

pre-heater.

5 The expressions for heat transfer for the temperature of the black

liquor flowing out, and for the heat transfer coefficient present in the

- post-heaters are written in an analogous manner to Equations (8-l1).

I LIMITS ON VARIATIONS OF HEAT TRANSFER COEFFICIENTS

i It was mentioned earlier that the computed linearized heat transfer

coefficient values for large upsets as computed by Equations 2-3 may become

£ too large to be realistic, or may even become negative. In order to avoid

5 these possibilities, the maximum change in heat transfer coefficient due

to either of the two variables (the concentration and temperature of

| black liquor) is limited to + 50%, and the minimum value of heat transfer

coefficient is also restricted to a value greater than or equal to one-

i third of its steady state value in the simulations included in this

I* ~ section. This was sufficient to prevent unrealistic effects in the evap-

orator response.

I
I
I

I
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A CONTROL SCHEME TO COUNTERACT OSCILLATIONS

The Orange, Texasevaporator system is controlled by a PI analog

controller whose task is to maintain a nearly constant pressure in the

steam chest of the first effect. Since this type of controller does not

make use of the error in concentration of strong black liquor as its

feedback signal, it can neither maintain the concentration of strong black

liquor within a small range, nor attenuate any oscillations arising from

the opposing effects of the temperature and concentration of the strong

black liquor on evaporator heat transfer coefficients. Figure 12 gives

the results of a simulation of the strong black liquor concentration from

the first effect with heat transfer coefficient parameters _T - 0.05 and

oC = -4.00 The input disturbance to the system was a step change of one

per cent (15.0% to 16.0%) in the concentration of weak black liquor occurring

at a time of one minute . It may be seen that the concentration of strong

black liquor oscillates with a period of about 28 minutes, and varies in

the range 45.2% - 48.8%. Figure 13 presents results similar to Figure 7

for the Orange Texas Plant.

A PI feedback control loop from strong black liquor concentration

as used in our proposed digital control scheme can be shown to be sufficient

to attenuate the resulting oscillations. For this example, a PI control

loop which varies the mass flow rate of weak black liquor as a function of

strong black liquor concentration was used. Figure 14 gives the resulting

simulation of strong black liquor concentration when such a PI feedback

control loop is added to the Orange, Texas evaporator system. The input

disturbance is again a step change from 15% to 16% in the concentration
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of weak black liquor occurring at a time of one minute, i.e.,the same as

the disturbance for the simulation of Figure 12. It is seen that strong

black liquor concentration is heavily damped, and any oscillations present

die out within a very few cycles. Moreover, the range of variation of

strong black liquor concentration is 47.8% - 48.6%, a considerable reduc-

tion from 45.2% - 48.8% for the system without the proposed feedback

control loop.

It may be recalled that the control schemes proposed in the final

project report [11] do include a feedback control loop from strong black

liquor concentration, and therefore the oscillations in strong black

liquor concentration, if any, will be damped out by the feedback control

loops.

1,

I
1I

I
III
I
I
I

III
I
I1I
I



-75-

REFERENCES CITED

1. Perry, J. H., Chemical Engineers Handbook, pp. 11-24 to 11-42, McGraw-
Hill, Inc., New York, N.Y., 1963.

2. Badger, W.L., and Banchero, J.T., Introduction to Chemical Engineering,
pp. 177-243, McGraw-Hill, Inc., New York, N.Y.,-T935.

3. Standiford, F.C., "Evaporation," Chemical Engineering, Vol. 70, No. 25,
pp. 159-176, December 9, 1963.

4. Bergstrom, R.E., and Kleinman, G., "Concentration of Black Liquor,
Chemical Recovery in Alkaline Pulping Processes," TAPPI Monograph
Series No. 32, Edited by Whitney, R.P., 1968.

5. Andre, H., and Ritter, R.A., "Dynamic Response of a Double Effect
Evaporator," Can.J.Ch.E., Vol. 46, pp. 259-264, August 1968.

6. Galtung, F.L., and Williams, T.J., "A Survey of the Status of the
Mathematical Modeling of the Chemical Recovery Section of a Kraft
Paper Mill," Purdue Laboratory for Applied Industrial Control, Report
Number 23, July 1969.

7. Koistinen, R., "Haihduttamon Dynaaminen Malli," Chapter IX, Publica-
tion No. 13-69, Educational Center of Finnish Engineering Societies,
Helsinki, 1969.

8. Vyukov, I.E., Makarov, V.F., and Righinashvili, G.H., "Mathematical
Model of an Evaporator Unit of Sulphate Cellulose Plant," Proceedings
of All Union Scientific Research Institute of Paper Industry, Vol. 54,
pp.- 7 -4T0, 199.(Th(e Reference has been translated here trom Russian.)

9. Wills, W.R., "Experimental and Theoretical Studies of Long Tube Vert-
ical Evaporators," Svensk Papperstidning, rg 67, No. 11, pp. 457-466,
15 June 1964.

10. McAdams, W.H., Heat Transmission, McGraw-Hill, Inc., New York, N.Y.,
pp. 294-338, 194T.

11. Project Staff, "The Multi-Effect Evaporator Control System," pp. 52-
77, and "A Dynamic Model of the Multi-Effect Evaporator," pp. 203-224,
in Systems Analysis of Chemicals and Energy Recover in Sulphate
Pulping, IPC Report No. 3, PLAIC Report No. 45, 1971.

12. Gundmundson, C., and Olauson, L., "Harmful Pulsation Phenomenon in a
Climbing Film Evaporator with Superheated Feed," Svensk Papperstidning,
arg 74, No. 7, pp. 197-200, 15 April 1971.



1’ ._ 
1 
I 
I 
1 
1 
,I 
D 
I 
I 
I 
1 
I 
I 
1 
I 
1 
I 
,t 



-77-

SECTION IV

A MATHEMATICAL MODEL OF THE LIQUOR PREPARATION SYSTEM

AND A PROPOSAL FOR ITS AUTOMATIC CONTROL

INTRODUCTION

The primary functions of the liquor preparation system within the

kraft pulping chemical recovery process may be summarized as follows:

1. To produce a clarified white liquor at the required flow

rate and concentration consistent with pulp production requirements.

2. To separate, wash, and dewater calcium carbonate (CaCO3) mud

to prepare it for calcination.

In a typical liquor preparation system, the first function is

performed by a causticizing reaction between slaked lime (Ca(OH)2) and

the sodium carbonate (Na2CO3) recovered in the smelt from the furnace.

The second function is typically performed by a series of unit operations

involving mechanical separations such as gravity settling or filtration

or a combination of these. The system modeled in this study involves

a combination of gravity settling and filtration.

The model is used to find out which variables in the system are

the most critical for a dynamic control scheme for improving the per-

formance of the kraft recovery system.

A flow diagram for a typical kraft pulp mill liquor preparation

system is shown in Figure 1. The smelt production of the recovery furnace

is the primary input variable for this system. The smelt is dissolved
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i to make green liquor and is transferred via density control to a

I clarifier. Green liquor is made up primarily of sodium carbonate (Na2CO3)

and sodium sulfide (Na2S) and some suspended solids such as carbon

3 particles, iron compounds, and pieces of refractory lining, which are

all picked up by the smelt in the recovery furnace. These suspended

I solids, which are called dregs, are removed in the green liquor clarifier.

3I ~ From the clarifier, the green liquor is pumped to a storage tank. From

the storage tank it is transferred via flow and temperature control to

lR aslaking/causticizing.

Reburned and make-up lime (CaO) is added to the green liquor in

I the slaker. The subsequent causticizing reaction forms sodium hydroxide

(NaOH) from the Na2CO3 to make white liquor for the cooking of wood chips

in the digester. From causticizing, the raw white liquor is pumped to

| the white liquor clarifier where the CaCO3 precipitate formed in the

causticizing reaction settles out. The clarified white liquor is

5B transferred to white liquor storage for use in the digester.

A~I ~The underflow CaCO3 from the white liquor clarifier is mixed

with dilute filtrate and fresh water and transferred to the CaC03 mud

3 washer settler. The overflow from the mud washer is called weak wash.

The weak wash is recycled for the dissolving of the smelt to form green

I~ ~ liquor. The underflow from the mud washer is stored and then dewatered

3* and washed on a pre-coat filter. The CaCO3 cake is conveyed to the

calciner (usually a lime kiln) where C02 is driven from the CaCO3 to

I form CaO (reburned lime) for recycling to slaking/causticizing.

I

I
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SLAKING/CAUSTICIZING

The purpose of the slaking/causticizing process is to convert 

the Na2CO3 in the green liquor to sodium hydroxide (NaOH) to produce 

white liquor. The reaction proceeds in two stages. The first stage

reaction, known as slaking, involves the addition of quicklime (CaO) to 3
green liquor where it reacts with the water to form calcium hydroxide

(Ca(OH)2) and heat. The reaction equation is as follows: 

CaO + H20 - Ca(OH)2 + 486 B.t.u. per lb. CaO (1) 3
In the second stage, the Ca(OH)2 which was formed in slaking reacts I
with Na2C03 as written in the following chemical equation:

K I
Ca(OH) 2 + Na2C03 - 2 NaOH + CaCO3 (2)

Although the reactions are written in two stages, they actually overlap

because part of the causticizing occurs almost coincidentally with the |

slaking. The causticizing reaction is reversible and thus proceeds in

either direction depending upon the relative concentrations of the I

reactants and products. Because the CaCO3 is less soluble than the I

Ca(OH)2, the causticizing reaction proceeds to the right. However,

because of the reversibility, all of the Na2C03 cannot be converted to |

NaOH regardless of the amount of lime used. The extent of conversion is

called the causticizing efficiency (C.E.) and is defined as I

C.E. = NaOH + NaCO X 100% (expressed as Na20) (3) 

. aOH . -Na2CI

I

I
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The causticizing efficiency depends on the concentration of sodium

3| compounds in the green liquor entering the slaker. Lower concentrations

produce higher conversion, because in stronger solutions the NaOH

* ~progressively reduces the solubility of Ca(OH)2. This continues until

I ~there are not enough calcium ions present to exceed the solubility limit

of CaCO3.

3I| ~The slaking/causticizing reaction occurs in a series of four stirred

tank reactors. The first is called the slaker. Quicklime is added to

~1 the green liquor in the slaker to form Ca(OH)2 . The slaking reaction occurs

almost instantaneously compared to the causticizing reaction. The slaker

has a retention time of about ten minutes. The three causticizing tanks

have retention times of 30 to 40 minutes each.

In the course of development of the slaking/causticizing model,

several approaches were attempted. The first approach tried was

essentially like the one described in Reference(l)in which a chemical

kinetic model of slaking and causticizing was used for each of the four

tanks. That is, a set of five differential equations involving mass

flow dynamics and chemical kinetics was solved simultaneously in each of

the four tanks. Each tank also had a differential equation for temperature.

This model gave satisfactory results, but the amount of computation time

involved was substantial because of the small step size required for the

slaking reaction and because of the complexity of the differential

equations. This type of model would be satisfactory if one wanted to

conduct a more detailed study of slaking/causticizing per se, but that is

not the objective in the present study. Rather, the goal is to model

the overall liquor preparation system.

I
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The second approach tried was to assume that the causticizing

reaction was diffusion limited (which it actually is because the reaction -

progresses depending on the solubilities and relative concentrations of 

the reactants and products). A set of differential equations describing

only the chemcial kinetics of slaking and causticizing was solved until 

chemical equilibrium was reached, and the results were used as inputs to

a flow dynamic model of the causticizing tanks.

The kinetic equations are given as follows: |

d aol = -KlXcaO (4)

d [XCa(OH) = 25)
dt K~XCaO K2rXCa(OH)2XNa2C03 + K21 XNaOHX CaC03 (5)

dt = K2 OXC k Xa(OH)XNCO + K21X NaOH aCO (6) |

d IXNaOH2CJ 

dt - 22rXCa(OH) 2 XNa2 C03 2K2 1 X NaOHXCaCO3

XdOt = K2rXCa(OH)2XNa 2 C3 - K21X NaOHXCaCO (8) 

where: 

XCaO = Concentration of CaO, moles/liter

XCa(OH)2 = Concentration of Ca(OH) 2 , moles/liter 

XNa2C 3 = Concentration of Na2C03, moles/liter

I

I
I
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3 XNaOH = Concentration of NaOH, moles/liter

XCaCO3 Concentration of CaCO3, moles/liter

I* K1 Rate constant for slaking reaction

1 £~K2r = Rate constant for right-directed causticizing reaction

K21 = Rate constant for left-directed causticizing reaction

This approach gave good results but was unsatisfactory because 50

I to 100 iterations of the kinetic model were required for each step in

the flow model.

| The final approach was to assume that the slaking reaction

3 occurred instantaneously relative to the causticizing reaction, and that

the causticizing reaction was diffusion limited. This approach is

| similar to that of Glazunov (2). The equilibrium causticizing

condition is solved for, using a simple steady state approach. The

*I following simplifying assumptions were made for the approximate model:

3 1. Perfect mixing.

2. Slaking reaction occurs instantaneously relative to causticizing.

| 3. Causticizing reaction is diffusion limited.

4. Only slaking and causticizing reactions occur.

*1~~ 5:. The slaking and causticizing tank temperatures do not deviate

I more than +10° F. from their nominal values. (See Figure 2.)

6. Steam flow added to heat green liquor equals water evaporation

| rate in slaking/causticizing.

7. Heat loss because of radiation and convection is negligible.

* 8. Energy input because of agitation is negligible.

3 9. No losses of material.

I
I
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From Equation (2), one can derive the steady state equation for

the equilibrium causticizing condition. Let the concentrations of

Ca(OH)2, Na2C03, NaOH, and CaCO3 be denoted by XCa(OH)2, XNa2C03,

XNaOH, and XCaC03 respectively. Suppose that in the green liquor

entering causticizing we have

XCa(OH)2 a moles/liter*

XNa2C03 b moles/liter

XNaOH = c moles/liter

XaCO3 d moles/liter (9)

Then, when equilibrium has been reached, we have

XCa(OH) = a - n moles/liter

XNa2C0 3 e b - n moles/liter

XNaOH = c + 2n moles/liter

XCaCO3 = d + n moles/liter (10)

*Concentration is expressed in moles per liter because of the extreme
simplicity of using the numbers expressed in these units when solving
the chemical equations. Conversion to concentration in terms of pounds
per cubic foot is simply made by multiplying the concentration in moles
per liter as follows:

L 2 321 [molecular weight] [ (11)

If further conversion to mass fraction in LB/LB is desired, simply
multiply the concentration in pounds per cubic foot by the ratio of the
total volumetric flow rate (Q, FT3/HR) and the total mass flow rate
(W, LB/HR) as follows:

LBXtot Ql1 ) (12)I-Bfct 1 W
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where n is the number of moles of each constituent that has been used 

up or generated in the causticizing reaction for each liter of solution.

Further more, we know that at equilibrium: I

(XNaOH) (XCaC03) (13) 

XNa2C) (XCa(OH) 2

where Ke is the equilibrium constant for the causticizing reaction. Data

on the equilibrium constant has been gathered by several investigators. 

The most comprehensive work has been done by Kobe and Wilkinson (3). 

They show that Ke is strongly dependent on the dissolved chemical

concentration (particularly Na2C03) of the green liquor. Their data, |

modified somewhat by actual operating data (See Figure 3 and Reference (2)),

indicate that a linear regression can be made of Ke on the total I
titratable alkali (TTA)* over the practical operating region. The 

relationship which yields good results When compared to operating data is

Ke = 400 - (TTA) (4)

The effect of temperature on K e follows the Van't Hoff Equation: I

(ln Ke) A H (15) 

dt RT 

where A H is the heat of the causticizing reaction at the absolute

temperature T, and R is the universal gas constant. In the causticizing I
reaction, the heat of reaction is very small, Therefore, the temperature 

*TTA = Na2CO3 + NaO + Na2S expressed as LB Na20/FT3 .

I

I
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has only a slight influence on Ke. In addition, as Figure 2 shows,

under normal operating conditions, the 2<% limits for the slaking/

causticizing temperature is about ±3° F. Thus, the effect of temperature

on Ke has not been included in this model.

Substituting Equations(10) into Equation (13)yields the following

polynomial expression for n:

4n3 + (4c + 4d - K )n2 + (c + 4cd + Ke ia + bt )n

+ (cd - Keab)= (16)

Because a, b, c, d, and Ke are all known, Equation (16)is solved for n,

using the Newton-Raphson Method. The method requires only three to five

iterations for each step of the flow dynamic model.

The flow dynamic model is a simple set of linear differential

equations. The causticizing tanks are regarded as three serially

connected flow-through vessels with ideal mixing. The results of the

solution of Equations (10) and (16) are used as inputs to the flow model.

Also tracked in the flow model are the concentrations of Na2S and Na2SO4

which do not enter into the slaking/causticizing reaction. The equations

for the first tank are

F (out) r (in) (out) 1
d ^C9a(OH)J 1 [ka(OH)2 - XCa(OH)1 (17)

dt T

where: 7 = V/Q, hours

V = Volume of tank, ft3

Q = Liquor outlet flow rate, ft3/hr
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Equations identical to (10) are written for XNa2COt XNaOH' XCaC03

XNa2S, and XNa2SO4 * The outputs of the first tank are used as inputs to

I the second tank, and so on. The flow dynamic equations are repeated three

3* ~times, one set for each causticizing tank. This gives a total of 18

differential equations for the three tanks, but they are very simple.

3 An energy balance is done around the entire alaking/causticizing

process to keep track of the temperature. The basic equation is given as:

dT = Hin - Hout 18)

3 where: Hin = WCaOIH + WTCpTI + WCaOIpcaOTCaO, Btu/hr.

23|I RHout = K2H2 wlVXNa2CO3XCa(OH)2 + WTopT , Btu/hr.

3I ^GWCaO A = Active or available lime, lb/hr.

*I ^WCadoI = Total lime input flow, lb/hr.

I H1 = Heat of reaction of lime in slaking, Btu/hr.

WT = Green liquor input flow, lb/hr.

Cp = Specific heat of green liquor, Btu/lb-°R.

~I T TI = Temperature of input green liquor, °R.

I CPCO == Specific heat of lime, Btu/lb-°R.

TCaO = Temperature of input lime, "R.

39 ~ K2 = Rate constant for right-directed causticizing reaction.

3 *The complete set of equations is given under "Overall Model."
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H2 = Heat of causticizing reaction, Btu/lb.

ewl = Liquor density, lb/ft3.

WT = White liquor output flow, lb/hr.

T = Slaking/causticizing temperature, °R.

m = 1-fss of material in slaking/causticizing, lb. 3
The "activity" or "availability" of the lime being used in slaking/ I

causticizing is a very important consideration. When CaCO3 is calcined,

the particles are somewhat porous because of the emission of C02. Hence, I

water can penetrate the particles more readily in slaking. If the CaO I

is not completely burned, the porosity may not develop as well, which

would tend to slow down the slaking reaction. If the CaO is burned at |

too high a temperature, its porosity is greatly diminished; and slaking

will be slow, or it may effectively stop. Therefore, when the lime is I

being metered into the slaker, the availability or activity of the 3
lime must be taken into consideration. This aspect of slaking/causticizing

will be discussed further in the section on controllers. |

I
I
I
I
I
I
I
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SOLIDS SETTLING MODEL

Another aspect of the slaking/causticizing process which is just

as important as the causticizing conversion, from a practical point of

view, is the settleability of the CaCO3 precipitate (lime mud) produced

(References 4, 5, 6, 7, 10). To begin with, the settling rate of the

lime mud has a direct effect on the white liquor clarity. Secondly,

because lime recovery (calcining) is an integral part of the liquor

preparation system, particularly the slaking/causticizing process, the

degree of preparation of lime mud for calcining is ultimately reflected

back to the slaking/causticizing process. The degree of preparation

is mainly dependent upon the lime mud particle size.

Fine particle lime mud is difficult to wash and dewater. This

is a critical problem because proper preparation of lime mud in terms of

caustic soda removal and moisture removal is required prior to calcining.

The caustic soda content of the mud must be reduced to a low level

(usually less than 1% soda as Na2O), or severe ring and ball formation

will occur in the mud reburning process. Typically, the lime mud is

washed in sedimentation unit similar to the white liquor clarifier.

Finally, the poor-settling mud is transferred to a vacuum pre-coat filter.

This filter does the final washing and dewatering of the lime mud. As

mentioned previously, there is a strong relationship between settleability

and lime mud particle size, the smaller particles being harder to settle.

These small particles have a larger specific surface area which increases

the filtration resistance. Therefore, the vacuum dewatering process is

retarded, and the shower water spplied cannot penetrate the cake properly.

Hence the kiln receives a mud that has a higher moisture content and a

higher soda content.
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The lime mud free settling rate can be approximated by using

Stoke's Law. It assumes slow settling speeds, viscous friction between I

the mud particles and the liquid, and independent settling of spherical I

particles of up to 0.1 mm. in diameter. These stipulations generally

agree with the conditions occurring in areas of free settling in lime 3
mud settlers. Stoke's Law is stated as

u D- 2(e s (19) 

where 3
D = Particle diameter (ft)

g = Acceleration of gravity (ft/sec2 ) I
u = Settling rate (ft/sec) 3
/y == Viscosity of the liquid (lb/ft-sec)

sQ= Density of dry suspended solids (lb/ft3 ) |

=1 Density of the clear liquid (lb/ft3 )

As Equation (19) shows, the particle size has a strong influence on the 3
settling rate. 3

In the dynamic modeling of the settler unit operation, two methods

of defining the mud particle size, based on the conditions in causticizing |

and in calcining, were investigated. The first method was to consider

causticizing as a crystallization process where the CaCO3 particles grow I
at a rate dependent on the concentration and temperature of the causticizing 3
solution. However, very little data are available in the literature

as to the applicability of a crystallization model in causticizing, 3
while a considerable wealth of empirical and laboratory data is available

regarding the dependence of free settling velocity on several parameters

I

I
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in causticizing and calcining. A particle size is easily inferred from

free settling velocity by using Stoke's Law.

Several authors have dealt with the problem of determining the

effects of different variables in slaking, causticizing, and calcining

on the mud free settling velocity (6, 8, 9 and 10). Figures 4

through 8 show the results of experiments conducted by K. Kinzner (6).

By comparison with the data obtained by other investigators, it can be

safely assumed that the general relationships established by Kinzner

in these curves are correct. However, the liquor samples he used were

taken from a Kraft pulp mill recovery system for straw pulping. Straw

has about the same lignin content as hardwood, but has a higher silica

content than wood. Silica will generally result in smaller mud particles

and thus poorer mud settleability. Thus, it is likely that Kinzner's

curves show less sensitivity to some of the causticizing and calcining

variables than curves derived from non-straw pulping recovery systems.

In any event, it is recommended that separate experimentation be

conducted at each individual pulp mill site where a solids settling

model of this type is intended to be used. According to Kinzner's

technique, the experimental effort required is small. Figure 4 shows

the effect of causticizing time and temperature on the lime mud free

settling velocity. It is evident from Figure 4 that the longer caus-

ticizing times result in a slower settling mud, probably because the

added agitation decreases the flocculated particle size. That increased

amounts of agitation in causticizing are detrimental to mud settling

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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has been established by Dorr and Bull (9) and Knowles (10). The top

graph of Figure 5 shows the effect of overliming. Too much lime is

detrimental to the settling rate. Evidently, overliming produces fine

particles of CaO and Ca(OH)2 in the causticized liquor which do not

settle out readily. The bottom graph of Figure 5 shows the effect of

changing the proportion of the green liquor flow being added to the

slaker (the remainder being added directly to the classifier). The

proportion added to the slaker is rarely below 40% in practice. Figure

6 shows the effect of the green liquor concentration (entering the

slaking/causticizing reaction) on the mud settling velocity.

Calcining has a substantial effect on the size and structure of

the lime mud particle. The effect of the CaO particle size on the

settling rate of CaCO3 has been established by Olsen and Direnga (8).

In general, the larger the CaO particle entering slaking/causticizing,

the faster the settling of the CaCO 3. The results shown in Figures 7

and 8 indicate agreement with the results of Olsen and Direnga. That is,

that calcining time and temperature affect the CaO particle size which

in turn affects the CaCO3 particle size and its settling characteristics.

The very large calcining temperature and calcining time results in a

larger, more dense, CaO particle, as indicated by Figures 7 and 8.

It should be noted that in practice a calcining temperature much above

2000°F. (1 1100° C.) will result in a lime particle that is too dense

and too large to slake properly. The classifier rejects (grits)

increase when calcining at a higher temperature. Thus, the lime losses

I
I
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are also higher. Therefore, it is recommended to calcine at temper-

atures between 1800° and 20000F. (1000 - 1100°C.). (See Figure 8 and

Reference (7).)

Therefore, by using the data as given in Figures 4 through 8,

one can establish a regression equation for the free settling velocity

Usi:

Usim = f(tc, Tc, L, G, G tK TK) (20)

where

G - Green liquor to Slaker (.)

G - Green liquor concentration (gr/liter)

L = Lime quantity (%)

T - Causticizing temperature (°C.)

t i Causticizing time (hrs)

T - Calcining temperature (°C.)

t K - Calcining time (hrs)

Under normal circumstances, the free settling velocity of the mud as

determined from operating data is in the range of 1.25 to 2.00 ft/hr

(see Reference (10)). This agrees with the laboratory data obtained by

Kinzner (6).

A linear regression model was developed using the data of Figures

4 through 8. Where the relationships are bnteably nonlinear, a linear
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approximation was made over the normal operating range. In Figure 5,

for per cent of green liquor to slaker, the range 40% to 100% was used.

In Figure 7, a nominal calcining temperature of 1800° F. (1000° C.) was

assumed, and a linear approximation over the 0-2 hour range was made. In

Figure 8, linear approximation over the 1650 ° to 2000° F. (900° to 1100° C.)

range was made for the effect of calcination temperature on usi. The

resulting linear multiple regression is

Usim = 4.73213 - .1155tc - .00272Tc - .00833L + .00633G

- .03629Gc - .00195TK + .3 571tK (21)

where

Usim - free settling velocity, m/hr

usi = Usim/.3048, ft/hr

This model produced very good results over a wide range of

operating conditions in the overall system simulation which will be

discussed later under simulation results.

In the modeling of the settler dynamics, two approaches were

attempted. The first was to solve for the solids concentration profile

as a two point boundary value problem. However, because of the moving

discontinuities in the solids concentration profile (See Reference 11.),

the model became too complex and the computation time prohibitive.

The second approach was to use empirical data obtained from

settling tests as recommended by Galtung and Williams (1). A very

comprehensive study of settling and thickening in kraft recovery sys-

tems was conducted by Jernqvist (12, 13, 14, and 15). Jernqvist

developed the theory and the necessary experimental data for the settling

I
I
I
I
I
I
I
I
I
I
1
I
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of CaCO3 mud using the concept of solids flux. The basic approach is

to use actual mud-containing liquor samples in batch settling tests.

The data from these tests are used to derive a solids flux curve for the

mud. To obtain the procedure for the graphical construction of a solids

flux curve and the theory necessary to relate the flux curve to what

actually happens in settling dynamics, see References(12, 13, 14, and 15),

A typical solids flux curve for CaC03 mud is shown in Figure 9.

The independent variable is the concentration. Note that between 0. and

lo0 moles/liter concentration the curve is almost linear. This represents

the region in which free settling occurs. Above 1.0 moles/liter there

is a nonlinear region for the dependence of solids flux on concentration.

This region depicts the phenomenon of hindered settling.

Figure 10 shows a typical settling velocity vs. concentration

curve for CaCO3 mud. This curve can be obtained from the superimposed

solids flux curve by dividing each ordinate value of the solids flux

by the corresponding concentration. Between 0. and 1.0 moles/liter, the

settling velocity is essentially independent of the concentration (free

settling). Between 1.0 and 3.0 moles/liter, the settling velocity

decreases with an increase in concentration in an essentially linear

fashion.

Figure 11 illustrates what happens to the settling velocity and

solids flux curves when changes in mud particle size occur at the settler

inlet. A family of curves results, one for each average particle size.

Note that as the concentration increases, there is less of an effect of

the particle size on the settling velocity. That is, under conditions

of hindered settling where the particles are interfering with each other

more and more, the effect of the particle size diminishes.
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Figure 12 shows a concentration profile for an 1-foot-high settler

which is overloaded. Ct is the concentration of solids in the overflow,

C2 is the concentration of solids from the inlet level to the overflow

level, Ccrit is the critical concentration which has been exceeded

leading to overload condition, and Cu is the underflow concentration.

Figure 13 shows a concentration profile for the same settler,

but this time it is in an underload condition. Ct is now practically

zero. Note that in the underload condition the concentrations C2 and Ccrit

disappear from the profile, and C1 appears between the inlet level and

the underflow level (or the compression level).

Figure 14 illustrates graphically how each of the levels of

concentration shown in Figures 12 and 13 are obtained. Points fl and f2

on the ordinate axis represent the inlet flux and the underflow flux,

respectively. The positions of these two points illustrate the overload

condition which can be represented as a simple steady state balance:

t Ct i Co QCu (22)
A A A

where

QO = Overflow, ft3 /hr

Qu = Underflow, ft3/hr

Qi = Inflow, ft 3 /hr

A = Area of settling tank,, ft2

Ct = Concentration of solids in overflow, mol/lit

Cu = Concentration of solids. in.underflow,, mollit.

Co = Concentration of solids in inflow,, mol/lit
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The location of Point fl is defined by the underflow flux QuCu/A. The

location of Point f2 is defined by the inlet flux QiCo/A. Figure 14

shows that f2 is higher than fl, and therefore we have a condition where

the settler cannot handle all of the solids properly; and some must go

'out with the overflow.

The slope of Line 11 is given by the underflow bulk velocity

(occurring between the inlet level and the underflow outlet), -Qu/A.

Once the slope of 11 is established, 11 is moved upward until it is just

tangent to the solids flux curve. This tangent point establishes the

critical concentration Ccrit (and the critical velocity vcrit). The

points on the two axes at which the 11 intercepts occur when the tangent

point has been reached represent the underflow flux (ordinate) and the

underflow concentration (abscissa). These are Points fl and Cu, respectively.

The three Points fi, Ccrit, and Cu together establish the maximum load

condition for the settler. If the influx is greater than fl, as is shown

by f2 in Figure 14, the settler is overloaded, and it is easy to solve

for the overflow solids concentration by using Equation(22). The point

where Line 11 intersects the solids flux curve to the left of the "hump"

defines the concentration C1.

The slope of the Line 12 is given by the overflow bulk velocity

(occurring between the inlet level and the overflow level), Q/A. The

horizontal axis intercept for 12 is a distance Ct to the right of the

origin. The point at which 12 intersects the solids flux curve establishes

the concentration C2.

Line 11 in Figure 14 represents an underload condition for the

settler. The influx, QiCo/A, has dropped to Point f2, and 11 has dropped

to the position 11.
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I Note that Cu decreases somewhat (to C') because the slope of 11

|* remains the same. The concentration C1 is that which corresponds to C1

of the solids profile in Figure 13. Concentration Cu can be found by

I observation of Figure 14. We can write

I _ ' C (23)

A C - C

where C1 V = solids flux corresponding to C1, Solving Equation 23 for C' we

I have

= Cl(vi A/Qu + 1) (24)

I
The dynamic model of solids settling involves the use of a

I combination of approximations to the solids flux curve, the corresponding

( ~ approximate settling velocity curve, and a set of simple differential

equations.

)~~| In the development of the dynamic model, several assumptions were

made:

I 1. No horizontal gradients of the variables.

2. No chemical reactions.

3. Uniform temperature (i.e., adiabatic process).

|*)~ 4. The density of the clear liquid and of the dry solids does

not change.

I The key step in the model solution is establishing the critical

flux and the corresponding Ccrit. A polynomial approximation of the solids

flux curve between the concentrations 3.0 and 5.0 moles/liter was made

| for this purpose:

| Xf = Ko + K1C + K2C2 + K3C3 (25)
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where

Xf = Solids flux, mole-ft/liter-hr

Ko = 4.50689 + Usi/17.*

K1 = -2.44376

K2 = 0.46562

K3 = -0.03023

C = Solids concentration, mol/lit.

Recall that the slope of 11 in Figure 14 was crucial in finding the tangent

point with the solids flux curve. Thus a procedure is used in which the

derivative of the solids flux curve is compared to the slope of 11 (given

by -Qu/A):

dX = K1 + 2K2C + 3K3C2 (26)
dC

Whore the absolute value of the difference between dXf/dC and -Qu/A is

minimum gives the location and value of Ccrit. The critical flux is

then obtained using Equation (25). The underflow concentration, then,

is given by:

Cu = (XfritA)/Qu + Ccrit (27)

The influx, QiCOA, is used to find C1 by solution of the

differential equation for solids flux:

dt = [QiCo/A - (Us + vb)Cj (28)
dt I

*Note the dependence of Ko on the mud particle size.
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where

s(U si

= (Ui/2)(3 - C1 ) + 0.1(C1 - 1)

if C1 < 1

if C1 > 1

Vb = Qu/A, ft/hr

A test is made using Equation (22) to see if the overload condition

exists. Suppose the settler has been in an underload condition for some

time, as shown in Figure 13. Then there is a sudden increase in solids

influx (or the mud particle size decreases, changing the flux curve).

Suppose the change causes an overload condition. Cu will remain the

same, but the interface at the one foot level in Figure 13 will begin to

move upward at critical concentration with a velocity vc ft/hr:

(Qu/A)Cu - (Q./A)C o
Vc =

Cu

When the interface reaches the inlet level, a new interface at a concen-

tration of C2 will appear above the inlet level and move up to the overflow

level at a velocity vd ft/hr:

d = 2 - (Qo/A)

where v2 is the hindered settling velocity corresponding to C2 on the

solids flux curve. (See Figure 14.) v2 is obtained by solving two

independent nonlinear equations in the two unknowns C2 and v2 simultaneously.

First of all, by observing the intersection of 12 with the solids flux

*Equation (29) represents a piecewise linear approximation of the
settling velocity curve. (See Figure 10.)

(29)*

I
I
I
I
I
I
I
I
I
I
I

1)

I
I
I

(30)

(31)

1
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curve in Figure 14, we can write

C2v2 - (o/A)(C 2 - Ct) (32)

Secondly, C2 and v2 must obey the settling velocity relationship given by

v2 = (Usi/2)(3 - C2) + O.1(C 2 - 1) (33)

Equations (32) and (33) are combined leading to a quadratic equation for C2:

(.5U i - .1)C22 + (Q0/A - 1.5Usi + .1)C2 - QoCt/A = 0. (34)

When the interface at concentration C2 reaches the overflow,

solids at a concentration Ct begin to appear in the overflow. The profile

corresponding to this condition appears in Figure 12.

Now suppose a change occurs such that the settler is underloaded.

This could be brought about by a decrease in the influx, an increase in'

particle size, or an increase in Qu. The interface of concentration C2

at the overflow begins to move downward toward the inlet level, and Ct

decreases toward zero. The downward velocity ve is given by:

(%/A)Cu - (Q/A)Co
v e = - (35)

C2

After the C2 interface has reached the inlet level, the interface of

concentration Ccrit will begin to move downward toward the compression

zone level at a velocity given by:

(QA)C - (Qi/A)Co
Vf =-ci ----- (36)

Ccrit - C1
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The interface velocities vc, Vd, Ve, Vf are used to obtain time

| ~ constants for an approximate delay model for the settling tank. The

settler is divided up into a series of 17 one-half-foot-high tanks, 6

~| for above the inlet and 11 for below the inlet. The concentration of

3» solids in each tank is solved for as in a series of ideally mixed tanks.

This method provides a satisfactory approximation to the delay dynamics

(movement of the solids-liquid interface). The set of differential

equations for the overload condition is given below:

dxi _ 1 (37)3= (Xi+l - xi) = 1,5
I3--dt rd

where

d o.5/Vd, hrs.

6* = I C2 if x7 Ccrit

IB ( 0 if x 7 0.

I1 . .d/i 1 (Xi+l - Xi) i .7,16 (38)

where

-a = 0-5/Vc hrsO

I X =17 Crit

"_~ ~A block diagram depicting the dynamic information flow in the

simulation for the overload condition is shown in Figure 15.

I

I

I
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"TURN ON" Ct if X, Z. 1
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FIGURE 15. INFORMATION FLOW FOR OVERLOAD DYNAMICS
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The set of differential equations for the underload conditions is

given as:

- (xi-l - xi) i = 2,6 (39)
dt Te

where

'e = O.5/ve, hrs.

xl ° o. (if Ct o 0.)

dxi 1 
dt -f (X-1 - xi)

i = 8,17 (40)

where

f - 0.5/vf, hrs.

x7, if X66 2 

x`=
x7 " C1, if X6 O -O

A block diagram for the underload simulation is given in Figure 16.

For each dynamic iteration, at the beginning of the settler sub-

routine, a test is made to see if the condition is overload or underload

by seeing if Ct is greater than zero using Equation (22);

1. Overload, if Ct > 0.

2o Underload, if Ct S O.

It should be noted that a special case exists when an underload

condition is created by an increase in the underflow from Q to %, and

when the settler initially is at maximum load or overload. Until the

Ccrit interface drops to the one foot level, Cu drops to C' according to

the equation:

I
I
I
I
I

I

I
I
I
I

I
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- Q. if 0t = 0
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FIGURE 16. INFORMATION FLOW FOR UNDERLOAD DYNAMICS
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I -Xfcrit g:-crit- = - 1 (41)
C - Ccrit A

where xfcrit Crcritrit Once the Ccrit interface reaches the

compression zone, Cu drops even further to Cu according to the equation:

*ci vl Q (42)

I4- C 1-C A

I
I

I

I

I
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LIME MUD PRE-COAT FILTER MODEL

As mentioned previously in the discussion of the solids settling

model, caustic soda removal and water removal from the lime mud is very

critical prior to calcining. The unit process which is normally used

to perform dewatering and to contribute to washing the mud is the pre-

coat filter.

Several authors have dealt with the problem of vacuum pre-coat

filtration. Textbooks which deal extensively with this problem are given

by References( 23, 16, and 17). A recent paper by Tiller (18),

supplies a survey of work that has been done in filtration theory and

practice.

There are two general approaches to modeling vacuum filtration.

The first is a rather detailed procedure involving the use of a two

point boundary value problem solution for the porosity and filtration

resistance. The second approach is a simpler approximate method which

relies on empirical data. Because there is a significant amount of

empirical data available for cake filtration for CaCO3 , and because of

the complexity of the first approach, the second method is used for this

model. The second method was also used by Adler (24) in his overall steady

state model of the recovery system. The model equations used in this

study are similar to Adler's, except that the model for filtration

resistance has been extended to include the effects of changes in the

lime mud particle size.

The following assumptions were made in deriving the approximate

model:

1. Flow of filtrate through pores in cake is laminar (large filter

drum area).
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20 The temperature of the entering lime mud and the shower

wash water is essentially constant

3. Constant pressure filtration.

4. The amount of solids passing completely through the cake with

the filtrate is negligible

5. Washing with shower water is effected through mixing rather

than by displacement. This approach to modeling a shower wash is

recommended by Perry in his derivation of the pulp washer model. (See

Reference 9) )

6. The resistance of the filter medium is negligible compared to

the resistance of the cake.

A block diagram for the lumped approximation of the pre-coat filter

model is shown in Figure 16A.

The basic equation for constant pressure filtration is developed

in References (23,16, and 17), It involves the use of the Kozeny-Carman

Equation which is a Reynolds number-friction factor relation. The

resulting equation gives a relationship for the rate of generation of

filtrate:

dV 1tg c(AP)f 1
Qf = = A . .. 4 t

LX c/tc

where

(43)

dt = Filtrate generation rate, ft3/min

A = Area of filter drum, ft2

t = 60, sec/min

gc = Gravity constant, ft-lbm/lbf-sec2

I
I
I

1
I
I
I

I
I

I
I
III
I
I
I

I
I
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AP = Pressure drop across filter cake, lb/ft2

f = Fractional area of drum submerged in slurry, ft2/ft2

Xc = Pounds of solids deposited in the cake per cubic foot of

filtrate generated, lb/ft3

s =s Filtration resistance, ft/lbm

/t = Viscosity of filtrate, lbm/ft-sec

t c = Reciprocal of drum turning rate, min/rev.

The parameter Xc is obtained via a mass balance. If Xc is the mass of the

particles deposited in the filter per unit volume of filtrate, in pounds per

cubic feet, the mass of solids being filtered per unit of time is QfXc, and

then)

W a QfXc Q X
c C e i XX (44)

c ass fBloI of dry solids, lbs/min

X - Concentration of solids in slurry fed to the filter, lbs/ft3
ma

Furthermore,

wm = emn - efQf (45)

where

Qm a Flow of mud slurry to the filter, ft3/min

am = Mud slurry density, lb/ft3

Pf = Filtrate density, lb/ft 3

Qf = Flow of filtrate, ft3/min

The filtration resistance, o(, is the most critical item in Equation (43).

The resistance depends on the cake porosity and on the surface-volume ratio

(specific surface) of the particles in the mud cake. Furthermore, because

I
I
I
I
i
I
I

I

I
Ii
I
i
I

I

I

I

Y
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the cake is compressible, o( will also depend on the pressure drop

across the cakes The empirical relation based on experimental results

for CaCO3 filtration (See Reference (23)) is

o< C= o((Ap) s (46)

where

s = compressibility factor, = 0.3 for CaCO3.

Also,

(S)2
0Co K1 l (23 (47)

where

K1 Constant of proportionality, '5.0

= Porosity of cake

S - Specific surface of cake particle, ft 2 /ft 3

e s = Density of CaCO3 particles, lb/ft 3

h = Reciprocal of sphericity of particles

Experimental data have shown that E ~ 0.77 for CaCO3 . (See

Reference (18~) Furthermore, it has been shown that porosity is closely

related to sphericity. (See Reference(17.) Sphericity is defined as

the area of the sphere having the same volume as the particle divided

by the area of the particle. Experimental data in Reference(17)shows

that for C - 0.8, h - 5.0. A value of h = 5.13 yielded results which

compared well to operating data in this model.

The specific surface of the cake particles can be written

S=Sp/vp= 7Dp2 /[TDp37 6/D p (48)
LrrDl

where Dp mean diameter of the mud particles, ft.
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3 cThe parosity, €, is also dependent of A P because CaC03 mud is

2 B moderately compressible Empirical results (See Reference(i8)) show that:

(49)= ' o (A P) (

where A Z O0o034 for CaCO3

|I ·"~,Also,

I 0 = 1 - KpDp 3 (50)

where p is a constant proportional to the number of particles contained

1 ~~within a volume whose sides have characteristic dimension 1. The particles

have mean diameter Dp. (See Reference(16))

From Equations (47), (48), and (50) above, it is seen that c( is

| strongly related to the mud particle size.

A typical lime mud slurry particle size distribution is given in

Reference 20, Page 105) The mean diameter for the typical mud particles

is about 10/<o A typical free settling velocity for lime mud is

i lo15 ft/hro (See References(6 and 10)) Therefore, through the use of a

3| constant multiplying factor in Stokes' Law, we can infer a mean particle

diameter, Dp, from the free settling velocity Usi:

| U8s =Kj^si J2Dp (51)

| Using typical values for uji, Dp, Qp, ef, and , we get that

K8s 2ol8 X 1060 Therefore,

3 = ts/[ 1cUsi 1 }i (52)

I
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Because Qp, f, and / do not vary appreciably, we can write

I
Dp U Ji/Kq , ft. (53)

I
where

Ks(ep - f)
Kq S8 gC/'-

The mud filter model used in this study has no dynamics. The

time constants involved are very small compared to those of slaking/

causticizing and solids settling. Therefore, the use of steady state

equations is justified. At each time iteration of the overall model, 

a new value for the filtration resistance, o(, is generated using

Equations (46) through (50), and (53). Then follows solution of the

three Equations (43) through (45) for the three unknowns Qf, Xc, and Wlm. 

Substituting Equation (44) into (43) yields

QX FKt 2 g (AP)f
fmXm L2ic (

Qf =A LXct/At (54) 

Furthermore, if we write I

[Kt2gc(AP)f (55 1

I
Equation (54) becomes 3

QmXm Y (56)
f' X I

or
2 X
C ,= C

Qm * YQX ? 8
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Finally, we can write,

QmxmI 2c - Y (57)

Recall that X is the mass of solids deposited per cubic foot of filtrate

generated in the filter. Qf is now easily obtained using Equation 44. The

ratio, Wc/Wlm gives the per cent solids by weight going to the kiln.
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OVERALL MODEL

A block diagram of the overall liquor preparation system modeled

in this study is given in Figure 17. The basic flows within the system

are as discussed in the introduction to this section of the report.

Note that the primary inputs to the system are

1o Smelt and steam at smelt dissolving.

20 Lime at slaking/causticizing.

3o Fresh water

a. at mud mix tank for makeup.

bo at precoat filter for washing mud cake.

c. at inlet to precoat filter for mud density control.

The primary system outputs are

1o White liquor to digester holding tank.

2. Dewatered mud to calcining (kiln).

Four standard automatic controls* are included in the present model:

1. Density control of green liquor leaving smelt dissolving.

2. Temperature control of green liquor entering slaking/

causticizing (190' F.).

3. Density control of the lime mud mix entering the precoat filter.

4. Flow control of lime mud mix entering the precoat filter.

One non-standard automatic control loop was used in this simulation. It

meters active lime into the slaker based on a measurement of the lime

causticizing power and based on the measurement of Na2C03 concentration

in the green liquor. Further discussion on the design and operation of

this simple feedforward controller is given in the section on control

*These automatic controls are standard in that they are typically
used as standard equipment in liquor preparation systems.
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The general method used in modeling the overall system is one of

solids balance and volume balance. The volume balance method was used

primarily because of the large amount of storage capacity in the liquor

preparation system. The storage tanks and storage capacities of the

settling tanks dominate the dynamics of the system. Furthermore, the

slaking/causticizing reaction computations are done much more simply

when the concentrations are expressed in moles per unit volume. Therefore,

it is most convenient to express flow rates in volume per unit time, and

concentrations in mass per unit volume. Because of this, the units of

the concentrations will be different from those used in the overall

steady state model (24). However, the conversion from concentrations

in terms of mass per unit volume to mass fractions is simple and is

given in the introduction to this section of the report.

For the sake of simplicity, the temperatures of the liquors at

the various unit processes throughout the liquor preparation system

(with the exception of slaking/causticizing and calcining) are assumed

to be at an average of 180° F. The corresponding density of water is

60.5 lb/ft3. It is also assumed that solids which dissolve completely

in the liquor cause only a negligible increase in the volume of the

liquor after dissolution.

I

I
I
I

I
I
I
I
I

I
I
I
I
I
I
I
I
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|I 1 o Smelt Dissolving

In smelt dissolving, medium pressure steam is applied to the smelt

3| coming out of the furnace to help break it up so that it will dissolve

more readily. The smelt is made up primarily of Na2CO3 , Na2S, and Na2 SO4.

A small amount of inert matter is carried with the smelt, but that is

| ignored in the present model. This should not affect the results of

the overall system simulation significantly. Weak wash liquor from

I storage is fed to the dissolving tank to dissolve the smelt. The weak

3* wash contains small concentrations of NaOH, Na2S, Na2C03, and Na2SO4.

In terms of state variables coming out of the weak liquor tank:

I »( wl) v(wwl) y(wwl) y(wwl) y(wwl) (58)
soda Na2CO3 + NaOH + Na2S + Na2 SO

I
where

X(wl)
Xso(wd) = total dissolved solids in weak wash liquor, lb/ft3

(wwl)
XaXX) = concentration of NaXX in weak wash liquor, lb/ft3

wwl = weak wash liquor

I|9 ~Therefore the mass flow of soda going into smelt dissolving in

3* ~ the weak wash is

W(tml) = X(WWl) (59)
soda soda Ww

~I where Q is the flow rate of weak wash in ft3/hr. The flow rate of green

liquor out of smelt dissolving is determined by the mass flow of smelt, the

| mass of soda in the weak wash, and by the desired green liquor density.

The density can be expressed as a concentration of total soda. Thus,

Q(sdt) (W + W(wl))/x(sdt) (60)
gl sm soda soda

I!
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where

Q(sdt) green liquor flow rate, ft 3 /hr
gl

Wnm - mass flow of smelt, lb/hr

Xsoda)= desired soda concentration in green liquor, lb/ft3

sdt = smelt dissolving tank

The flow of weak wash liquor is, therefore:

Q ̂  Q(sdt) - Wt/60.5 (61)
wvl gl St

where Wat is the mass flow rate of steam in lb/hr.

An alternate method of modeling the green liquor density control

(sdt) (sdt)
would be to specify the flow, Qg d, in addition to Xsoda Qwwl would

then be determined by an iterative procedure in which the error between

the actual soda (density) and the desired soda (density) would be

minimized. This alternate method is more complicated than the method

used above. In practice, the process operator tries to fix 4dt ) .

However, if a change in the smelt generation rate occurs, he eventually

must change the green liquor flow rate or else overfill (or empty) the

green liquor storage tank. A computer logic diagram (in FORTRAN) for

the iterative procedure is given in Figure 18.

The dynamics of the density control are not included in this model

because the time constants involved are less than one-tenth of those

of the storage tanks in the rest of the system. Thus, control is

effectively instantaneous.
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SPECIFY: W814
GUMS8: INITIAL QJWL
COMPUTE: XQA

+

FIGURE 186 ITERATIVE PROCEDURE FOR GREEN LIQUOR DENJSITY CONTROL

I

� I
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The concentrations of dissolved soda flowing out of smelt

dissolving is given by:

X(dt) (wwl) /Q(sdt)
Na2CO3 a2C Na2CO3Qwwlw/gl

X(sdt) = (wwl)Q /o(sdt)
NaOH ' aOH wwl 'gl

(adt) /(W +(wwl) )/(sdt)
"Na2S Na2S Na2S e1 w Qgl

(sdt) (W (wwl) (sdt) (62)
a2SO4 (WNa2SO4 + Na2SO Qwl gl -

where

WNaXX = mass flow of NaXX in smelt, lb/hr 

XNaXX = concentration of NaXX in, lb/ft 3

The mass flow of green liquor is

w(sdt) = W + W + (60.5 + X (w l) )Qw (63)
gl sm st soda

No dynamics are included in smelt dissolving because of the small

tank retention time compared to that of the tanks in the rest of the system.
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| 22. Green Liquor Storage

The green liquor storage tank and the green liquor clarifier

|I ~dynamics were modeled as a unit with some delay and some mixing.

Because the underflow in the green liquor clarifier is so small (about

1% of the inflow), dregs production and underflow soda losses were

considered to be constant. Thus, the model for green liquor storage

and clarification considers only the flow-through dynamics for soda.

I The storage equation is

dV(glc) _ Q(sdt) _ Q(glc) (64)
i dt gl gl

I
where

| v asV = volume of green liquor in storage, ft3

glc = green liquor clarifier

aI The total retention time is

| -(glc) = v(glc)/Q(glc) (65)
'gl

~1 For the delay, divide -(glc) by 3:

(glc) t(glc) ( gl glc) /3glc) . (66)

I The dynamic equations in state variable form for the dissolved solids

1g concentrations are

( (sdt) _ (glc)

I_ (__(dt X3)/(gl)'-3 NaOH 3 

I
I
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* ,(sdt)
( -24 x5)/ It,~*'

~6 (X2 - X6)/ lC) 

;r7 = (x3 - x7)/,gc

~8 (X4 - x/ T(glc)

-I= (x5 - xl)/t2(glc)

k.= (X6, - xl)/ T3(glc)

:cii= (x7 - 3/(Jc 

X12 = (XS - 12)/%8C3

- X ~ )Qglc (67)I

whereI

i= dxj/dt3

X (g X 0 ,the output concentration of Na2003 from green

liquor-clarification, lb/ft3

XNOH lb/ft3

X 1 2 ~ x(glc lb/ft3

(~gic) l/t 

lb/ft3~~~~~~~
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3- Slaking/Causticizing

The reaction model for slaking/causticizing is given by Equations

(10),(14) and (16). The outputs of green liquor clarification, X (glc )

are converted from units of lb/ft3 to units of moles/liter as per the

footnote in the introduction to this section of the report. Lime is

added at the slaker, and it is assumed that all of the active lime is

converted to Ca(OH) 2 . It is assumed that the amount of inactive lime is

essentially constant and does not affect the results significantly.

Therefore, the amount of inactive lime is not tracked in the system. The

outputs of the reaction model serve as inputs to the flow dynamic model.

Assuming that the causticizing tanks are of equal volume, and rC( c) is

the total retention time, we have that:

(c ) = WC) ' C ) /3 1(C ) /3 9 1) (68)

In state variable form, the flow dynamics are

= ((scr) (C)

Ca(OH) 22C - x_5)/ ( c)

(ss= f)r)
16 = (XMaOH - x16)/ 1c

(scr) (c)
7 = 'Xca0 3 - x 7)/ ( c)

= N(S ~ ) x l (c)
9 "ma2SO, - X19)/ 1
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X20 =(x34 - I2)/~

X22 =(x16 X22)/.'? 3
X23 (xV. - X.)

k4 = (X18 - X2)/TIC)

C25 = (x19 - 32) 2c

X26 = (2.- I26/3c
C-27 = (X21 - X27)/Z(C) 1
C28 =(X22 - X,) 3 

X29 = (Yx23 - I2 /,3c

x3O = (X24 - x 3 O)lPrC)

C31= (x2 - ~3l)/ -C.( (69)1

heescr =slaking/causticizing reaction

X26 = ~(H2 the output concentration of Ca(OH)2 fromI

causticizing, mol/lit.3
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1NacO 3 mol/lit

I XNOH,~~~(c mol/lit

I X29 ~~~~X(0 , mol/lit

3 '~~~i30 XNI s' 1110/lit

3 ~ ~ 5i=X1~~~( 0 4, mel/lit

1 ~~~~The 32nd state variable, x3 2 , is the slaking/causticizing

3 ~~tem~perature described by the differential Equation (18).

When the lime is added at slaking/causticizing, there is a

3 ~~slight increase in the total volume of the liquor because of the

formation of CaCO3 precipitate. Thus, at the outlet of causticizing

I ~~we have

(c) =(glc) + 0 003Wai.1 (70)

I ~~The density of the liquid part of white liquor at the outlet of

causticizing is given by:

e~~c) (()c+K (c) c) ~ (1I eOKCX~aO KO.IXaOH 2Sa 2 S + KSOXa 2SO4

3 ~~where

Kc Kqq(106), converts Na2CO3 in moles/liter to Na2CQ3 'in-lb/ft3

Kqq = (28.32/454) lit er-lb



-140-

KOH Kqq(40)

=2 K (78)

KSO Kqq(14.2)

The concentration of suspended solids in the outlet white liquor is

X(C) RCA Y(c) + K X(C) (72)
Sol CAH'Ca(OH)2 CACO CaCO3

where

KCAOH -Kqq(74)

KCACO =Kqq(100)

Data on the specific gravity of precipated CaCO3 slurries was obtained

from the TAPPI Standards (See Reference(24 ) and from Reforence (22). A

polynomial regression of these data gives

e(c) = 'e(c) alla 2 L(l+ a, [3 (73)

where

a1 = 0.7188691

a 2 = -0.0028773

a3= 0.0000213

Therefore, in Equation (18)

m = Wl (74)

W(C) e(c)Q(c) (75)
WI Wl Wl
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The flow dynamics for Usi (particle size) in causticizing are

* 33 (U -i 33 1)/

x34 = (x33 - 34)/ c)

35 (x34 - x5)/3) (76)

where

X35 = the characteristic settling velocity at the outlet of

causticizing, ft/hr.
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4. White Liquor Clarification

The weighted average molecular weight of the suspended solids

entering the white liquor clarifier (settler) from causticizing is given by:

() 74 () + 100 () )/(X() + () (77)
avg Ca(OH) 2 CaCO3 Ca(OH) 2 CaC

The underflow flow rate is about 28% of the input flow rate. Thus,

(wIc) = 028 (c) (78)

The overflow flow rate is

Q(wlc) () (wlc) (79)

The corresponding bulk velocities inside the clarifier tank are

v(wIc) = (c)/A ( wl c )

(wlc) = wlc )/A(wlc)
u

v(wlc) Q(wlc)/A(wlc) (80)
0 0o o~~~~~~~~~~~()

where A is the area of the white liquor clarifier. Note that Q)

corresponds to Qi in Equation (22). The details of the solids settling

for white liquor clarification are given in the solids settling model

discussion in this section of the report. The flow dynamics for the

overflow dissolved solids are

56 = (N(cO) - (wc)
3 6 - ( a2CO3 - 6/
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~3 (XI1B x3) (lcI -~~~~~~~~~. )/ jtWlC)

x4 1 =(x OH 7~4 2

)/(Wlc)

= -Wc

X43 = (x39 - 42)/ ,2(wic)

where

I = ~~~~~~1.5 ft/v0, hs

I 1~~~~~~(Wlco)x40 =Na2C 3 concentration of Na2CO.3 in white ii3 ~~~~~~~~overflow, mol/lit.

x41 Na OH /lt

(Wc)mol/lit.

1 x X~~~~~(Wico),mllt
x43 = NaS 1/it

The flow rate Q(w1c) and the concentrations (Wc)repre

3 ~~characteristics of the white liquor going to the digester

of white liquor is given in terms of parts of solids per 

(81)

quor in the

sent the

* The clarity

million.
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(Wico) 1X16

PPM (Wlco) m C Mavg(1X06
(S. G.) (10oo) (82)

where

Ct = concentration of solids in overflow, mol/lit. (See Equation 22. )

S.G. = specific gravity of white liquor

The flow dynamics for the underflow dissolved solids are

i* = (0V Wlc)
X44 = (xCO00 - x44) / 3

x .4 - x )/ I (W"
-4 5, ?aOH 45 ~3

;46 = (XN(ac) -

X~, (X(C)
147 ' Na2S04

-6 3

4/ 3r

:4,8 X44 - 48)/4

~49 '4 5 - /,.

X = (X4 6 - X50/I4(wC

x51 = (x47 - X5)/ C(Wlc)

x52(x 4 8 - (wic)

~52 (X8 -x 5 2 )/ ' 5

I4= (x5 - x4)/r5'"

(x Vr(wlc)
55= (x - 5 5

I
I
I
I
I
I
I
I
I
I

(83)
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where

=' T = T5= 2 f t/v,,9 hrs.

52-Na2C13 , the concentration of Na2CO3 in the underflow

withh the mud), mol/lit.

(Wlcu), moi/ut.
x3 XNaOH

(wcu mol/lit.

'5 (wlcu), mol/lit.

The flow dynamics for particle size in the #,hite liquor clarifier

under flow are

156 = (x5 - 5)3

157 = ( 5b - 5 4

= - x)/X(Wlc) (83a)

where

'C58 = characteristic settling velocity at underflow of white

liquor clarifier, ft/hr.
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5. Lime Mud Mix Tank

The lime mud mix tank is very small compared to the other tanks I
in the system, so no dynamics were included for it. Fresh water and 3
filtrate from the mud precoat filter are added to the underflow slurry

from the white liquor clarifier. The fresh water flow rate is given by: 3
Q() = mw) Q(mf) (wlc) (84)
fr + %l S I

where 3
Q(m) = fresh water flow rate to mud mix tank, ft 3 /hr.

q(m) = mud washer underflow, ft 3 /hr.

Q(mf) = filtrate flow from mud filter, ft3/hr.

I
The total flow of wash water added to the mud slurry is

(nn) (mm) (mf) (85) 
sh fr + Qf(8

where h) = wash water flow to mud mix, ft 3 /hr.

The concentration of dissolved solids in the wash water is given by:

(wsh) I (mf)
1Na 2Co3 m1 Na 2CO3

(wsh) D v(mf)
X 02S =l1 a2So4 I

(wsh) (mf) (86)

~XNa2S°O4 =1XNa2SO4~I

I
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where

D1 = Qf wsh

wsh =4 concentration in wash water

mf -=4 concentration fram mud filter

The total flow rate from the mud mix tank to the mud washer (settler) is

The concentrations of dissolved solids in the Qmm flow are

(87)

= (Q~lc)J~1cu ) +(mm) (Wsh) )~QZX~a-0 3 

(mm) WIc) (Wlcu) (mm) (wsh)"iaH =+ (X; ~aOH + %sh N~aOH )Q

I~a2S K XN2S

(mm) - (VIc) (wlcu)
Va2O4~'(% XN"SO4

(mmi) (wsh)).
4Zs XNS 2-

+ (mm) (wsh) )/QshXNSO qb (88)

The mud solids concentration in the QMM flow is

(89)X~ nm) WI C) ( Vi c

where

Ou = concentration of solids in white liquor clarifier underflow,

mol./lit. (See Equation 22.)

(mm)
VNa2003
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6. Muid Washing

The Mud washer underflow flow rate is about 19% of the input

flow rate. Thus,

%(mw) 
L1 = 0.19Qmm

The overflow flow rate is

Q(mw) = (mw)

The corresponding bulk velocities inside the settler tank are

vi = Q 1.A(w

V(mW) _m)A(W

v(MW) =-Q(mw)/A(mw)
0 0

Note that Qm corresponds to Qj in Equation 22. The flow dynamics

for the overflow dissolved solids are

159 Na2CO3

c60 =(XN(lO. - x60)/ -~mw)

X. (mm)

X62 = (mm)(XNr2 30

V (/w)

- X62 /C1

(90)

(91)

(92)

I
I
I
I
I
I
I
I 

I
I
I
I
I
I
I
I
I
I
I

- x ) / 't (mw)
59 1
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(mu)I~~~~~6 =6 (x59 - x 6 3 )/z'2

-64 (x60 - x6 4 )/ zr2(W

3 ~~~~~~~~~~(mw)
65= (x 6 l -x6) 2

I c~~~66 = (x 62 - x 6 6 )/C 2 (3

where

I ~~~~'l= 't2 1.5 ft/v0, rs

x63XNO) concentration of Na2CO3 in mud washer overflow, mol/lit.

I K~~~~64 = XaOH M nol/lit.

I K~~~~65 XN 8 '

X66 XNa'SOO mol/lit.

The flow rate Q 0 and the concentrations represent the character-

istics of the weak wash liquor going to the weak liquor storage tank and

3 ~subsequently to smelt dissolving.

The flow dynamics for the washer underflow dissolved solids are

U - (X~~~~~~"' ~ T -

~67 -XNmamCO0 3 - 67 3

,,(mm) (mW)
X68 XaNOH '8 

(mm) ~~(mu)1 ~~~~69 XNa 2S '69)/T
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;i70 X=a2O

X-71 (x67 - x~)/ t4

x~72 =(X 68 - x72 /7'4

x73 =(x69 -x73 )/l 4(

-;74 =(zO -x74)/'r4mw

X-75 - (x7 - x75 )/ 

-~-6 ~--(X7 - ~d ,tXmw)
.5

X477 =(x73-x77 )/?.r5

x78 =(x74 x 7,8'5(

? " 14 - 5 = 2 f t/vu, hrs.

(mwut)
x5= XNa2CO3 the concentration of Na2CO3 in the underfiow

(with the mud), mol/lit.

X(aOH , mol/lit.

=XmSO) mol/li~t.

where

(94)

I
I1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- x7o-) / ',3(mw)
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I. ~7. Lime iud Storage and Mud Density Control

The mud tank storage equation is

=dV(mS) (mw) ( ms)
X79 dt 9% %

where

V = volume of mud storage, ft

ms = mud storage

The total retention time is

I (Ma) 3 V(ms)/ (ms) (96)

The mud tank is continuously stirred. Therefore, the dynamics for

3* concentrations of dissolved solids are

1 (= rwu) 8 (ms)
-80 ("Na2CO3 - o8)/

-x = (X(Wu) _ )/' (ms)
1xBl %NaOH - l 

X82 = (XNa2S - X82)/ 

83 0 (%aSO - 83)/t(ms) (97)

I
where

| ILs 2= X= 18Co , concentration of Na2C03 in outlet of mud storage, mol/lit.

I s 81 naO) mol/lit.*1 - ^ - "NaOH'

(ms) on
x82 t-a2s mol/lit.

! y83 (ms) mol/lit.
. (ma)83 mo /l2sot.
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The flow dynamics for mud solids is 

x4 - X8 4 )/) - (98)

where Cu is as defined in Equation 22, and 

i84 = concentration of solids in the storage tank outlet, mol/lit.

The flow dynamics for the particle size in the mud washer under- 3
flow and subsequent storage tank outlet flow is

= (x _ )/ (mw)

X'86 (X85 -xg 6)/t 4

X87 (x36 - X87)/ 5

%8 - (x87 - X88)/t. (99)

where

x88 = characteristic settling velocity at outlet of mud storage, ft/hr.

The concentration of mud solids converted to lb/ft3 is 

x (s) -iv (100)X(ol) Kqqx84Mavg (100)

The soda concentration of the mud slurry at outlet of mud storage is |

X(ms)= (ms) ) K (m) + K x(ms)K () (101)
soda COXa2CO3 + -OINaOH + 2S-Na2S + SO a2S4 

The corresponding liquor density without suspended solids is |

(ms) = x(m) + 60.5, lb/ft 3 (102) 
lo soda

I

I



-153-

The corresponding total slurry density is

(ins) (Ms) (M) r (ms) 2 .[X(m)] (103)
m = elo + alxsol +.a2 [Xsol] + a3 a (103)

where al, a2, and a3 are defined in Equation 73.

The lime mud slurry flow rate and density are controlled prior

to the pre-coat filter. Thus, Qfil and e(f l ) are specified. Fresh

water is used to dilute the slurry to the desired density e(fil). The

The flow rate from mud storage is then given by:

- il) 11 m+ ( ) - e (fil)A il 6- (104)

The dilution flow is given by:

IQ = Q(fil) - Q(ms) (105)
Qdil m m

The concentrations of dissolved solids going to the filter is

I|x (fil) - D (ms)
Na2C03 2XNa 2 CO3

(fil) D (ms)
x JaOH 2 aOH

y(fil) =D (ms)
* 1 Na 2 S 2a 2S

(fl) = D (s ) (106)
*| 'a2SO4 2 4Na2SOzl

where

D - Q(M)/Q(fil)3* 2 m m

I
I
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The suspended solids concentration to the filter is

x(fil) DX(ms ) (107)
sol 2 sol

The soda concentration, the corresponding liquor density and

total slurry density going to the filter is

X(fil) = nX ( s ) .
soda 2 soda

(fil) = x(fil) + 60.5
1 soda

(fil) =e(fil) .a(fil) [X(fi)] 3 [X(fil)] (o108)
m S o1 +2 aol S [xLfol J ( 1

I
The per cent suspended solids going to the filter is

p(fil) o100 (X ( f i l)/ e (fil)) (109) I
sol sol "m

I
I
I
I
I

I
I
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1 8. Lime Mud Pre-coat Filter

3|I ~The equations for pre-coat filtration are given under the main

heading "Lime Mud Pre-coat Filter Model" in this section of the report.

As shown in Figure 16, the pre-coat filter is modeled as a dewatering

3| filter followed by an ideally mixed tank (for washing) and another

dewatering filter in series. The mass flow of suspended solids going

| .to the filter is given by:

3I w fi ) =- W(f(f) i fil), b/hr (110)
sol sol ha '

I Solution of Equation (57) gives the filtrate flow rate, Qf. In

3 . Equation 57,

*- x (fil)f 1

X =X(^ (111)fil)
m sol

3 The flow rate remaining after first dewatering is

.ef =Q(fil) - Qf (112)

3 The flow resulting after wash water is added is

wshng = Qleft + Q (113)

where Qw = wash water flow rate, ft3/hr.

I
I
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The soda concentration, suspended solids concentration, and mud

slurry density going to final dewatering is given by: 

(f ) - fl
XNaCO3 3~2O

(f) D(fil)
%'OH DXOH

XNSO = D3X~f")

D3 ieft/Qwshng

1 
= ~" + 60.5

so sol' /Qshing

a1 X5ol ( 2i

I
I

+ a2 Nx0} 2 + a3 %[xrl)1I (114) I
A second solution of Equation (57) gives the filtrate generated

after wash, QfN* In Equation (57)

eZ= e~f

Qm = wshnS

(fil)
XM Xsol 2

I
I
I
I
I
I
I
I
I

= e

I
I
I
I

(115) .I
I
II

e (fil)
M2
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The total flow of filtrate leaving the mud filter is given by

The soda concentrations in the filtrate are

(zuf)

(Mf)
VNa 2 S

(Mf)
Va~SC

(fil)
(QfyXiaoH

= (fil)
= Qf Na-S

(fiu

.)+ cN O )IQ(f)

+ QNX) (MfH

+ Q a24S)/Q4ff

1'04
+ (f) )/Q(Mf)

The density of the filtrate is

= (mf)
KCOXNaCO + K ( 4 ) + K (mf) + KS (Mf 

The total mass flow of mud cake going to calcining is

W(mf)
m

= Q(fnye (fil) - Q(Mif) Q (Mf
1 + 60.5QW (119)

Per cent suspended solids in the mud cake to calcining is given by:

P(mf) 
aol

(120)100 (W(fii),W(zuf).)
Sol , m

The soda in the mud cake (expressed as Na2 O equivalents) is

~~)= 62Kqq ) + 33K Y 6 Kq ~ I';( 21qq Na2CO3 qq62KaO ~ 2 + 6 2Kqq Ma~ o

(116)

e (mf )

(117)

(118)

X(cake)
Soda (121)
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The mud solids in the cake is (as NA2O)

-= (62/Mfl ) (W("')/ [0Qsn - Qwj )avg Sol whg N

The per cent soda in the cake as NA2O is

P(cake) - 10 ~X~cae)/(X(cake) + i(cake)]soda soda ~soda Sol

I
I

(122) I
I

(123)

I
I
I

I~~~~~~~~~~~~~~
I
I

I

I
I
I

x(cake)
Sol
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9*Weak Wash Storage

The storage equation for the weak wash tank:

dV(w) (niW)
;89 =t 0 ~

The storage retention time is

The soda concentration flow dynamics are given by:

19 o = (x r - 190)! (WW

i1l,= (X.(W.. - X91)/ ZC(wr)

192 = (xZ

(X2SO4

194

- 192)/ z 1~w

- x93)! t/ w

(Yx90 - (w)4 

=:9 (x-9 -x9) 2)

196 =('92 - x96)' QZw

197 = (X93 - "97)/ tV

where N3 = z2 -- C V2, bra.

=~W1 concentration of Na2 CO3 in weak wash liquor

(126)

(124)

(125)
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95=(Wwl)
'9 "a-OH

X'96 (wi)a-2

(wwi)
=9 X~a2SO4



=161-

PROPOSED CONTROL SYSTEM FOR THE LIQUOR PREPARATION SYSTEM

The basic control objectives for the liquor preparation system are

1. To provide a clear white liquor, with a high, uniform strength,

to the digester.

2. To control mud particle size so that (1) the clarity in the

first objective may be attained, and (2) the lime mud may be adequately

washed and dewatered prior to calcining.

Figure 19 shows the results of a 40-hour simulation run starting

at steady stats using the dynamic model described in this section. As

Figure 19 indicates, the two control objectives listed above are somewhat

contradictory. At a very high liquor strength (TTA - 9.0), the overflow

of the white liquor clarifier was very "cloudy" (suspended solids -

13000 PPM). At hour zero of the run, the density control set point at

smelt dissolving was changed from a specific gravity of 1.195 to 1.18.

(The smelt production rate remained constant.) The TTA at causticizing

dropped to 8.o3 The overloaded white liquor clarifier became underloaded

because mud particle size increased as the green liquor strength entering

causticizing decreased. At 24 hours, the clarity had improved to less

than 100 PPMo The soda content of the lime mud going to the kiln held

at about 2.3% for 24 hours after the change was made, but then dropped

to lo95% at 40 hours and was continuing to drop.

The sharp dip in the clarity at three hours was caused by the sudden

increase in green liquor flow rate which decreased the causticizing time

and increased the particle size. However, high strength green liquor

still in storage caused an increase in the active lime flow rate at

slaking because of the increased green liquor flow rate. This increased

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
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the total solids flux entering the clarifier, and the clarity became worse

between hours 3 and 6. After the stronger liquor passed from storage

and from causticizing, the active lime addition dropped, as did the mud

influx, while the mud particle size increased (by about 15%).

The 2.3% soda loss in the mud cake amounts to a loss of about

15 lb. Na20/(T/D). This is about a factor of three times above what it

should be. (Normal soda losses in the mud cake range from 0.5 to 1.0%.)

However, as the green liquor strength decreases, the soda loss at the mud

filter decreases, because the larger mud particles decrease the specific

surface area and thus decrease the filtration resistance.

These results point out the need for a "trade-off" type of control

system which will keep the white liquor strength high, but not too high,

so that clarity, mud moisture content, and mud soda content can be

maintained within reasonable limits.

Figure 20 shows the results of some simulation runs using the

steady state causticizer model. The results help to explain why increasing

the white liquor strength by adding excess lime will decrease the

settleability of the resulting lime mud. First of all, as expected, the

white liquor strength does increase, as does the causticizing efficiency.

However, as the bottom curve shows, there is also a significant increase

in the equilibrium concentration of Ca(OH)2 (about a 50% increase at 12%

excess lime over that at 0% excess). The resulting mud solids concentration

in the liquor to the white liquor clarifier will be higher at 12% excess

lime by about 8%. Furthermore, the Ca(OH)2 particles are quite small

compared to CaCO3 particles. Thus, the average settling velocity of the

mud will also decrease. Both of these conditions will contribute to

overloading of the settlers and the mud filter.
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Most pulp mill operators understand the need to control rud particle

size They also understand that there must be some trade-off made between

the desire for a high strength white liquor in terms of active alkali or

effective alkali, and the settleability and washability of the lime mud.

Usually, a sample of causticized liquor is taken manually every hour to

determine the strength. The sample is titrated using the A, B, and C

titration tests. (For a description of these tests, see Reference(4, pp.

672-678)) The results of these three tests yield the concentrations of

Na2C03, NaOH, and Na2S. Based on the results of these tests the operator

will often adjust the lime feed rate to improve the causticizing conversion.

In some pulp mills the operator will also take a sample of causticized

liquor to perform a settling rate test. For example, the operator fills

a 500 cco graduate with liquor from the first causticizer. After it has

stood for five minutes, the percentage of clear liquor is recorded as

settling rate. Operating experience has shown that 35 to 45% clear liquor

in five minutes is indicative of a good mud settling rate. The main

thrust behind this test is to let the operator know that he may have

"over-limed" the liquor fed to the slaker.

However, as Figures 4 through 8 show, there are several other factors

besides overliming which will cause poor mud settleability. Thus, the

liquor uniformity and mud uniformity depend upon the operators and their

skill in correlating various items of information made available to them

by recorders, meters, and mechanical and chemical tests. This is a monumen-

tal task for one or two operators who usually have other tasks to perform.

Figure 21 shows a control scheme that should relieve the operator of

considerable guesswork. These control functions would be implemented in

the direct digital controller. The causticizing and mud particle size con-

troller loop receives the following measurements:
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I
1. Lime activity (manual entry)

1 2, Green liquor Na2C03 concentration (automatic titrator)

1*F~ ~3. Mud settleability (manual entry)

4. White liquor active alkali (manual entry)

3 5. Green liquor storage tank level (level sensor)

6. Green liquor flow rate (magnetic flowmeter)

The controller uses these measurements to compute setpoints for:

3 1. Green liquor density

2. Green liquor flow rate

5r| ~3. The lime feed rate

^ \t ~The setpoints which the operator enters are

1. Initial AA target

1 2. Initial excess lime target (usually 0%)

3. Green liquor storage tank level

3 The limits which the operator enters are

1 AA (high and low)

2o Usi (low)

3 3. Green liquor density (high and low)

4° Excess lime (high and low)

l 5o Green liquor tank level (high and low)

The general philosophy behind this control scheme is to maximize the

I* AA content of the white liquor within the AA high and low limits while
l maintaining at least a minimum mud free settling velocity (particle size).

The settling velocity parameter is updated about once an hour using

3 the equation:

|I ^,( i Be - 0o1155tc - 0.00833L - .03629Gc (127)

I
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where

Bo is a "constant" parameter

tc, L, Gc are as defined in Equation (20)

Note that Equation (127) is similar to Equation (21) except that

the initial constant, the per cent of green liquor to slaking (G), the

causticizing temperature (Tc), the calcining temperature (TK), and the

calcining time (tK) are all considered as constants. Their nominal

values along with their appropriate slope factors are lumped into the

"constant" parameter Bo o Under normal circumstances G, Tc, TK, and tK

do not change significantly.*

However, to make sure the Bo parameter is updated periodically, a

simple identification scheme is included in the particle size controller.

The basic block diagram for the identification of Bo is shown in Figure 22

in FORTRAN symbols. The controller monitors the green liquor density,

the green liquor flow rate, and the lime feed setpoint for a period of

six hours. Simultaneously, the operator takes settleability samples from

the first causticizer every hour. The free settling rate is entered

manually for each sample. If the density, flow rate, and feed rate have

not changed significantly for the past six hours, the system is considered

to be at steady state, and Bo is updated as shown in the compute block

If the system is not at steady state, an indicator is set so that the main

program will return to the identification program every half-hour or so

until a steady state is reached and a new Bo is computed. The values of

*There are other disturbance conditions which affect Bo, such as the
silica content of the make-up lime and the silica content of the smelt
coming from the furnace.
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tc, L, and Gc are computed in the main program using exponentially filtered

~(C) x(Glc)values for Q(, X(Na C0 , and lime causticizing power (A ao), The equations are

tc = V(C)/Q(?)

(wlc)
Gc = 2Na2C03 , (gr/liter)

D(A) =A D
CaO CaO CaO

(A) = S D (A )
aO Ca O CaO CaO

L - W(A[GQ(c)(56/454) (128)

where

D(A = density of active lime, lb/ft3

DC = total density of lime, lb/ft3

(A)
WCaO = actual active lime flow, lb/hr

SCaO = set point for turning rate of lime screw conveyor, RPM

FCaO = volumetric flow of lime per revolution of the conveyor, ft3/Rev

The minimum particle size control algorithm serves as the "master"

control. Figure 23 illustrates the idea. If the computed free settling

velocity, Usiff, exceeds the minimum value, the AA setpoint is "bumped" by

0.05 lb. Na20/ft , unless the AA is already at the upper control limit. If

AA is at the upper limit, an alarm message is given. If the U iff is less

than Usimin' by less than 0.1 ft/hr in absolute value, nothing is done. This
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deadband is provided so that oscillations will not occur when AA is near the

upper limit and USiff is near the lower limit. Next the program checks to

see if the green liquor tank level is within the control band. If the tank

level is not satisfactory, the tank level control program is called, which

adjusts the green liquor flow rate appropriately to bring the level into the

control band. (See Figure 24.) Once the tank level is in control, the

program checks to see if the green liquor density is above the lower limit.

The tank level and density are checked because the control method

intends to decrease the density and thus increase the green liquor flow

rate. Both of these actions should improve the particle size (decreases

density and decreases causticizing time). If the density is below the

lower limit, an indicator is set to tell the excess lime control program

(XLIME) to decrease the excess active lime. Simultaneously, an alarm is

given to inform the operator that the green liquor density is at the lower

limit. Under this condition, the control computer will decrease the excess

lime in an effort to increase the mud particle size rather than decrease

the green liquor density and increase the flow rate. If the green liquor

density is satisfactory, the AA setpoint is bumped down by 0.05 lb. Na20/ft
3

unless the AA is already at the lower limit, in which case an alarm mes-

sage is given; and no change is made to the AA set point.

Reducing (or increasing) the AA setpoint will ultimately result in

a reduction (or an increase) in the green liquor density set point, as

Figure 25 shows. An automatic instrument or the process operator takes

samples of white liquor at the first causticizer at least once every

hour. The measured AA is entered into the computer controller by the

instrument or by manual entry. These numbers are filtered and stored.
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GL1VE - - /DDC PI CONTR #1 G---.L. FLOW SET POINT
\_ _ _ _ _ _ _ ._ FOR DDC LOOP RECORD

FIGURE 24. GREEN LIQUOR STORAGE TANK LEVEL CONTROL
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-',4 PI CONTROLLER #2 ' . G,.L. DIMITY SET POIN
FOR DDC LOOP RECORD

FIGURE 25. ACTIVE ALKALI (AA) CONTRO L

AAERR
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When the AA control program is entered, a check is made to see if the

AA error is within a predetermined deadband. If it is, no changes are

made. If the measured AA is above the desired AA by too much, the

appropriate error is applied at the input to a cascade digital PI

control 1lgorithm which adjusts the green liquor density setpoint.

If the measured AA is below the desired by too much, the program first

checks to see if the free settling velocity of the mud is below the

lower limit. If it is, an alarm massage is given, and a recommendation

is made to lower the AA target. If ULsff is satisfactory, the green

liquor density is checked to see if it is at the high limit. If it

is, the green liquor density is not increased, but excess lime is in-

creased in order to increase the AA. Otherwise, the modified error

signal is applied to the digital PI density control algorithm. Note

that a continued decrease (or increase) in the AA setpoint by the par-

ticle size control program will ultimately decrease (or increase) the

green liquor density.

Zeeause of the relatively long delay between the smelt dissolving

tank end the first causticizer, control actions for the AA control loop

will have to be delayed appropriately. The delay time can be identified

approziastely, because the storage and piping dimensions are known, the

green liquor storage tank level is known from measurement, and the green

liquor flw rate is known from measurement.

Figure 26. show the control scheme for increasing or decreasing

the exsees lite (above or below the theoretical lime required). The

input to the p5rogsa include
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l1 Active lime flow

2o Na2CO3 concentration

3. Green liquor flow rate.

The active lime flow rate is computed in the main program based on

periodic manual entries of the lime causticizing power. The Na2C03

concentration is obtained from an automatic titrator. Green liquor flow

rate is obtained from the magnetic flowmeter.

The XLIME program first computes the present level of excess lime

and compares this with the high and low limits for excess lime. If

either limit has been reached, an alarm is given and no further changes

are made. Based on which of the INCLIM or LIMDEC indicators are on, the

excess lime parameter (EXL) will be appropriately bumped up or bumped

down by 2%.

Figure 27 shows the program for lime flow control. The inputs are

1. Lime causticizing power (filtered manual entry measurement)

2. Na2CO3 concentration (filtered titrator measurement)

3. Green liquor flow rate (filtered flowmeter measurement)

4, Nominal lime density (DENOM)

5o Excess lime setpoint from XLIME program.

The active lime flow needed is given by:

wA 'laO 10 + XL)/1] n gl (56/4 54 )

D(A) = A D
CaO CaO CaO

S = W(A (D(A) ) (129)
CaO Ca' CaO CaO
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LINE DENSITY

_ _~I IL ,

CTN=( (100.+XL)/100. )*INACO*QGL*56./454.

ACTDEN -CAUPOW*DENNOK( 

RPH = ACTLN/(ACTDEN*FT3PUR)

RPM - RPH/60. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(POINT TO LINE
\CONMOR SPE

FIGURE 270 LIME FLOW CONTROLI
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Note that the only new instrumentation required for this controller

is an automatic titrator for the Na2 CO3 concentration of green liquor.

An automatic instrument is needed here because of the frequency and

regularity of measurement which is required for the lime flow rate control

loop. The green liquor flowmeter, densitometer, tank level indicator,

and the lime screw conveyor tachometer are already standard instruments in

typical pulp mills. The green liquor density controller, flow controller,

and lime screw feed controller are standard analog controllers. The

operators are required to make only the standard tests they already make

in most mills. Figure 28 illustrates schematically where the instruments

would be located with respect to the various unit operations.

Figure 29 shows an actual one-month history for the variability of

white liquor active alkali 0 at a typical pulp mill. The data were

taken at Owens-Illinois, Orange, Texas. Samples of white liquor were

taken from the first causticizer every hour. A, B, and C titration tests

were run manually. The resulting 2 6 limits are about +9% of the mean

value. With the present controller, the upper and lower limits on the

AA could be set at +6%. Assuming that the top limit for AA for the

particular pulping conditions at the digester is about at the upper 2 S

limit, we can expect to make an upward target shift of 3% for AA with the

new controller.
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SECTION V

FURTHER RESULTS IN THE OPTIMIZATION

AND CONTROL OF THE ROTARY LIME KILN

INTRODUCTION

This report is an extension of the work on the control of the

rotary lime kiln described in the previous report (1). It contains a

mathematical formulation for the steady state optimal control problem for

the kiln, a method for its numerical solution, and the results obtained

from its application to the kiln studied in this research. A discussion

of the design of the dynamical controllers for the kiln is also included.

The optimal steady state operating conditions are such that the

value of the output (free lime) produced per hour is maximized and, simul-

taneously, the cost of the fuel consumed per hour is minimized.

Mathematically, the problem is to compute the minimal value of a

quadratic cost functional, which is specified by the fuel rate, the

product output rate, and their attendant commercial costs. Besides pro-

viding economical operating conditions, it may b? expected that such an

optimal mode of operation will also reduce kiln maintenance and improve

the uniformity of the product.
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MATHEMATICAL FORMULATION OF THE STEADY STATE EQUATIONS

PLANT EQUATIONS

The time-invariant steady state equations for the process are

obtained by setting the partial derivatives of the rotary lime kiln var-

iables in Equation 60 (1) to zero. The time-invariance follows from the

assumptions that: (a) the control variables are constant; (b) the

parameter values (i.e., heat transfer coefficients, etc.) do not change

with time; and (c) the spatial boundary conditions are constant with

respect to time (i.e., the gas and burden mass variables associated with

the rotary lime kiln are constant at the point at which they enter the

kiln). Thus, the following equations describe the system:

d [q(o] = f(q,u4) , te[,,] (1)

qi(Po) 1 a i - 1,2,3 and 7 (2)

qi(f) X b i i a 4,5,6 and 8 (3)

where q( = col [Xcco3 X CaO' ' YO2 YW co2 T, Tg] is an 8 h

order column vector defined on the interval [o, tf]; the argument, 4,

represents the axial position on the interval specified by the cold end

(4 = 4o ) and hot end (4 -af) of the rotary lime kiln. The function f(')

is derived from Equation 60 (1) by setting aq/3t equal to zero. The

function f (.) is vector-valued and of dimension 8*; it is piecewise con-

tinuous and differentiable with respect to the arguments q, u and 4. The

vectors col [al, a 2 , a3, a7] and col [b4, b5, b6, b8 ] are the values

*In the steady state, qq(,), is constant for all 4.
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of the burden states and gas states, respectively, as they enter the kiln.

The control u is a column vector of dimension 2 given by

ul fuel flow rate (lb/hr)

u - » (4)

U2 nitrogen flow rate (lb/hr)

OPTIMIZATION OF STEADY STATE KILN BEHAVIOR AS A

MINIMIZATION PROBLEM

To evaluate the operation of a lime kiln, a measure of the per-

formance, or a cost functional, is defined by the following considerations:

The value of the free lime output, u3 q2 (Lf), of the rotary lime kiln is to

be maximized. Also, the cost of the fuel, u, should be minimized with

respect to the control variables. The output of free lime from the kiln,

u3q2(<) is the (mathematical) product of u3, the calcinable mass flow

rate entering the kiln, and q2 (4f), the pounds of free lime per pound of

calcinable mass at the hot end of the kiln. The controls which are to be

determined in order to optimize the chosen performance criterion are: ul,

the fuel flow rate; and u2, the nitrogen gas flow rate.

On the basis of these considerations, a performance criterion for

the evaluation of the operation of the rotary lime kiln is chosen as

follows:

2 2

J(u,u 2 ) -= wf[Ul] - wp[q2 (Lf)u3] (5)

The first term on the right-hand side of Equation 5 represents the

dollar cost of the fuel per hour. The second term is the negative of the
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dollar cost, on the open market, of the lime output of the rotary lime

kiln per hour. The negative sign has been chosen because the minimization

of the negative dollar cost of lime is equivalent to the maximization of

the positive dollar value of lime. In the second term, q2(
4f), is the

pounds of lime per pound of calcinable mass at the hot end of the rotary

lime kiln, and u3 is the specified calcinable mass flow rate into the

rotary lime kiln. The selected cost coefficients in Equation 5, w and

2
wf, have units of $ - hr/(lb) . If desired, the cost coefficients can be

chosen to give the measure of performance of the rotary lime kiln in units

of dollars per ton of air dryed pulp ($/t.a.d.p.) instead of in units of

dollars per hour ($/hr.).

The problem is to find the optimal controls, ul - u1 , and,

*
u2 = u2 , which simultaneously minimize the performance index given by

Equation 5 and satisfy the process equations, Equations 1, 2, and 3.
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3I MnETHOD OF SOLUTION

5BI~ ~In order to find the optimal values of u1 and u2 which minimize the

measure of performance, J(ul,u2) given by Equation 5, a grid search in the

* *
ulu2 space was performed. It is noted that optimal values of ul and u2

are constants, and not time-functions. To perform this grid search, two

algorithms are needed. One algorithm systematically generates values of

u1 and u2 in a specified region of u u2 - space. Then, the other algorithm

solves the rotary lime kiln steady state equations, Equations 1, 2, and 3

3* v(which constitute a two-point boundary value problem), for the specified

values of u1 and u2. This latter algorithm will now be described in detail.

CONSTRUCTION OF AN ALGORITHM FOR SOLVING A

I| ~ TWO-POINT BOUNDARY VALUE PROBLEM

3I~~ ~ It should be observed that the plant Equations 1, 2, and 3, by

themselves, constitute a two-point boundary value problem (TPBVP). Indeed,

the temperature of the gas and the composition of the gas are given at the

5* ~ firing end of the rotary lime kiln by Equation 3, whereas the temperature

of the burden mass and the composition of the burden mass are specified at

3I ~the feed end of the kiln by Equation 2. Therefore, the first step in

construction of the algorithm which performs a grid search in the u u2 -

*I ~ space on the performance measure J(ul,u2), given by Equation 5 is to have

3t ~ available an efficient computational scheme to solve the TPBVP. Such a

scheme has been derived in this research. In the interests of space in

3* ~ this report, it will be presented in the thesis report to follow (4).

The algorithm is shown to approximate quasi-linearization by using a first-

~I ~order approximation to the state transition matrix of the linearized state

equations (4).
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When a complete combustion of the fuel and a complete evaporation

of the water from the burden mass are assumed, the efficiency of the

algorithm for solving the TPBVP can be enhanced. From the assumption

that the combustion of the fuel is complete, the quantity, q4(40o) the

pounds of oxygen per pound of nitrogen leaving the rotary lime kiln can

be calculated from the following equation:

q4(40) - 0.316 - 4.0(u1/u2) (6)

where 0.316 is the ratio (by weight) of oxygen to nitrogen in air, which

enters the hot end of the kiln; the factor 4.0 is the ratio of the weight

of oxygen consumed by the complete combustion of a unit weight of fuel

(methane). This quantity (u /u2) has units of pounds of fuel per pound

of nitrogen.

From the additional assumption that all of the water evaporates

from the burden mass on its way down the kiln, the value of q5 (
4 o) (the

pounds of water vapor per pound of nitrogen leaving from the cold end of

the rotary lime kiln) is given by:

q5 (4 0 ) q3(oj) (U3/u2 ) + 2.25(ul/u2 ) (7)

where q3(o ) is the weight of water per pound of calcinable mass entering

the rotary lime kiln; u3 is the specified flow rate of calcinable mass

into the kiln; the factor 2.25 equals the pounds of water vapor formed du4

to the complete combustion of one pound of fuel (methane); and the divisi,

by u2 normalizes the variables u3 and ul to pounds per pound of nitrogen,

I
I1
'I
I
I
I
I
I
t
I
1(I
I
I
IB

n *I

I

I

I

I
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Therefore, by use of Equations 6 and 7, only the values of q6(< ),

the pounds of carbon dioxide per pound of nitrogen leaving the kiln, and

q8(t ), the temperature of the gas leaving the rotary lime kiln, are

unknown at the cold end of the kiln. Thus, given values for the controls

u1 and u2 , the algorithm which solves the TPBVP is as follows:

(i) Guess values for q6 (t 0 ) and q (4o).

(ii) Integrate Equation 1.

(iii) Perturb qn(40,), the value of q6 (4) in the nth iteration,
Aq6(4f) Aq8(

4f)
and integrate Equation 1 to determine -- i I and i .

(iv) Perturb q8(4 0), the value of q8(o ) in the nth iteration,

q 6(4f) aq8(4f)
and integrate Equation 1 to determine - t) and 

A(q6(4f), 8(4f) ) n+,
(v) Set 2 ('o) 6q(),q8(4) ) and determine q6 n o)

n+l
and q8 (4o), the values of q6 (40) and q8(4o) in the

,.nl t h iteration.

(vi) Integrate Equation 1.

(vii) If 10 llql (f)-b 61) + Iql (4,f)-b 8 l < 6, a small previously

chosen constant, then accept q n+l( as the solution to

Equations 1, 2, and 3. If Iq+1(4f)-bg| + 103 (|q6(4f)-b6| 6,

return to step (iii) and repeat the computational cycle.

In the actual program, 6 was chosen to be 10 2 and the perturbations

on the values of q6 (%) and q8 (4 ) were 10- and 0.1, respectively. A
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flowchart of the subroutine, called QUASI, which solves the TPBVP associ- |

ated with the rotary lime kiln is displayed in Figure 1. 

The subroutine found a solution in 4 or 5 iterations using an

average of 1.5 seconds per iteration on a CDC 6500 computer. The conver- -

gence appears to be quadratic (which is also a trait of quasi-linearization)

and occurs for initial guesses of q8 (t ) "reasonably close" (+ 200
0F) to 1

the true value of q8(4 ).

GRID SEARCH FOR BEST OPERATING POINT

I
With the use of this algorithm for the solution of the TPBVP, a

grid search can be performed. First, a range of values for the nitrogen |

gas flow rate, u2, is chosen. As the source of the nitrogen being inducted

into the kiln is air, the rate of flow of oxygen into the kiln is determined 

by u2 . Thus, the maximum flow rate of the fuel, ul, which will undergo I

complete combustion in the kiln can be determined. Then, a range of values

for the fuel flow rate between zero and the maximum flow rate of the fuel 3
must be specified. The algorithm which performs a grid search can now be

summarized: 3
(i) Choose a maximum and minimum value of u2, umax 2 and umin2 , 3

respectively.

(ii) Choose a maximum and minimum value of ul, umaxl(u2) and

umin 2(u2), respectively. |

(iii) Choose a number of values of u2, N2, according to I

uj u 2 + (umax2-umin 2 j O,,., -
U2 umin2 + N-,-1 J, j«Ol,%-2N-
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Q go Initial Guess of q(4,)

DELTA = The 8 Used in Stopping Rule of Algorithm

N = order of the System of Differential Equations

QD =col[a1,a 20a3b4bbab 7 78b

START

DIMENSION Q(8)

REAL NORM

ITER - 0

Is q 8(4df YES

too high

[ERROR6 -n QM(6,251)-QD(6)

ERRORS m QJ4(8,25l)-QD(8)I

NRM =ABS (ERRiORS) + 
NO I L E 3*ABS(ERJOR6) 

IReduce q8(41,)
Q(8) =0.75*Q(8)

+o. 25*Q(6)

Determine q6 1 (4,) and

qn+' (4 O) and solve

the system equations

SUBROUTINE S0LU(O .N1

Determine ERROR6'

ERRORS, and NORM

f-ITER - ITER + IL-

FIGURE I

OF SUBROUTINE QUASI(QDDELTASN)

[Solve steady states
kiln equations

S UBROUJTINE 
SOLU(Q ,N)J

* Perturb q 6 (4) and

q(jto get matrix

A[q 6(4,f) I,q8(Lf)]

A[q6(4,0 ) ,q8 "4d I

1I-

WRITE NORM, ITER,

FLOWCHART

]

ES NORM

.LT.DELTA

I
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This generates N2 values of u2 equally spaced between umin2

and umax2 as shown

umin2

0
U2

I .I I __

1 2 3
U2 U2 U2 U2

uaiax 2

N2 -1
"2

U2

(iv) Choose a number of values of ul, N1, according to

i
u 1 = umin +

1 ~~~1

(umax -uminl)
N-1 i, i-0,1,2,... ,N1-1
N1-

The N1 values of u1 generated by this scheme are shown

graphically as follows

umin 1

0

u1uni 
-+-

I I I
1 2 3

U1 U1 U1

IN1 -2
U1u 1

umax1

N 1-1
u1

u 1

i i
(v) Solve the plant Equations 1, 2 and 3 and determine J(u 1 ,u 2 )

in Equation 5, i - 0, 1, ... , N1-1 and j = 0, 1, ... , N2 -1.

(vi) Plot the value of the performance index, J(ul,u2), over the

region of interest and choose the values of u1 and u2 which

yield the "best" value of J(Ul,u2).
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SIMULATION RESULTS OF THE GRID SEARCH TECHNIQUE

The results of the grid search in ulu2 - space are shown in Figure

2 for the quadratic performance index defined by Equation 5. The ordinate

is scaled both in dollars per hour ($/hr) and in dollars per ton of air-

dried pulp ($/t.a.d.p.). The abscissa is normalized with respect to the

maximum amount of fuel that theoretically could be completely combusted,

umax . The value of umaxl is a function of the nitrogen gas flow rate, u2,

in pounds per hour. The specific formula for umax1 is

Uawx1 ° (0.316) (u2)/4 (8)

where (as before) 0.316 is the pounds of oxygen per pound of nitrogen in

air and the factor 4 is due to four pounds of oxygen being necessary for

the complete combustion of one pound of the fuel, here methane gas.

From Figure 2, it can be seen that for a given value of u2 there

is a definite local minimum. For values of u2 less than approximately

13,500 pounds of nitrogen gas per hour, the point of minimum cost will

occur to the right of the line ul/umax1 = 1.0.

Comparison of Figure 3 and Figure 2 shows that the shape of the

linear cost curves in u u2 - space are quite similar to the shape of the

quadratic cost curves. In particular, the minima of the cost function for

a given value of u2 occur at the same value of ul/umax . This coincidence

of minimum points takes place for two reasons - the judicious choice of

constants w and wf in Equation 5, and the narrow range (1100-1500 lbs/hr)

of u over these minima occur.
of u1 over which these minima occur.
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J(u1 pu 2)

[$/hr]

I 10.0

-2.004 
f -20.0.

-30.0o

-40.0 -

0 .6 0.7 0.8 0.9 1.0

FIGURE 2

QUADRATIC PERFORMANCE MEASURE CURVES INu12 SPACE

I

I
I
I
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C(u ,u )

[6/t.ao~d.P] (/r
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22,000
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I,
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ul 1 ma
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FIGURE 3 
GRAPH OF LINEAR COST IN THE u1u2SPACE



-198-

The actual costs of operating a rotary lime kiln in dollars per

hour are given by an expression of the form

C(u1,U2) cf 1 -Cp(U 3q2(4f)) (9)

where c is the purchase price of lime in dollars per pound, and cf is

the cost of the fuel in dollars per pound. Consequently, the constants

wf and w for Equation 5 are chosen as follows:
P

2 cf

w f (10)
est(u )

2 c
w ----aP-- (11)

P est(u 3q2 (4f))

where est(ul) is the estimate of the rate of fuel consumption and

est(u3q2(Lf)) is the estimate of the free lime produced by the kiln

during optimal steady state operation.

The estimates used to determine the values of wf and w were 1,250
P

pounds per hour for the fuel being combusted and 5,000 pounds per hour for

the rate of free lime being produced. The actual values of fuel rate,

nitrogen gas flow rate, calcination rate and costs per hour determined at

the minima of Figures 2 and 3 are given in Table I.

The numerical values which are obtained with the quadratic cost

are close to the values obtained with a linear cost. More importantly,

an operating point which yields a lower quadratic cost than another oper-

ating point also yields a lower linear cost than the other operating

point.
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TABLE I

RESULTS OF THE OPTIMIZATION OF

THE ROTARY LIME KILN

N2 CH4 Calcination Quadratic Linear

Flow Rate Flow Rate Rate Cost Cost
(lbs/hr) (lbs/hr) (lbs/hr) ($/hr) ($/hr)

28,000 1,490 5,000 -23.35 -27.65

26,000 1,430 5,000 -25.40 -28.55

24,000 1,375 5,000 -27.30 -29.43

22,000 1,320 5,000 -29.00 -30.20

20,000 1,265 5,000 -30.80 -31.03

18,000 1,210 5,000 -32.75 -31.85

16,000 1,165 5,000 -33.70 -32.53

14,000 1,100 5,000 -35.50 -33.50

1 . C 

= 4.0xlO-6

= 2.4x10 5

$-hr/lb2;

$-hr/lb2;$-hr/lb 

c
p

Cf

l.OxlO2 $/lb

- 1.5x10l 2 $/lb

u4 = 1-1/8 rpm

w
p

'f
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For the given constant values of u2p the minima shown in Figures 2

and 3 are obtained at values of ul over the range 1,490 to 1,100 pounds

per hour. The closer the estimates of the values of u1 and u3q2(
4 f), in

Equations 10 and 11 are to the actual values at any operating point of the

rotary lime kiln, the closer to each other are the values of the linear

and quadratic cost functions with respect to each other. Moreover, if the

estimates of ul and u3q2(4f) are equal to the actual values of ul and

u3q2( f), then Equations 10 and 11 imply that the linear and quadratic

cost functions are equal.

To facilitate a discussion of the sensitivity of the cost curves

of Figure 3 with respect to fuel costs and lime costs, three features are

defined for each of the cost curves obtained for a constant value of u2.

The minimum is defined as the point on the cost curve for a constant value

of u2 at which the cost is lowest. The region of overburning is the region

to the right of the minimum, where more fuel is being combusted in the

rotary lime kiln than is necessary for the complete calcination of CaCO 3.

The region of incomplete calcination is the region to the left of the

minimum which corresponds to insufficient fuel being combusted in the kiln

to cause complete calcination.

The linear cost in the neighborhood of a minimum is sensitive to

changes in both the cost of fuel and the cost of lime; however, the values

of ul/umaxl and u2 at which a minimum occurs are quite insensitive to

changes in fuel and lime costs. For example, the highest minimum in

Figure 3 is at u /umaxl = 0.676 and u 2 = 28,000 lb/hr. At this point, the

net linear cost, given by Equation 9 with cp = l.O¢/lb and cf = 1.5¢/lb,

is -$27.65/hr. The quantity -$27.65/hr is the sum of -$50.00/hr for the
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5,000 pounds per hour product of the kiln and $22.35/hr for 1,490 pounds

of fuel per hour (see Table I) being combusted in the kiln. The linear

cost at these values of ul/umaxl and u2 will be less than the linear cost

in the region of overburning (i.e., the points on the curve u2 - 28,000 lb/hr

for which ul/umax > 0.676) for all positive values of fuel cost.

The linear cost at ul/umaxl 0.676 and u2 - 28,000 lb/hr will be

less than the linear cost in the region of incomplete calcination (i.e.,

u2 = 28,000 lb/hr and ul/umaxl < 0.676) for all ratios of cf to c less

than u3 to u1 (which equals 5000/1490 - 3.35/1). If the ratio of cf to c

is greater than the ratio of u3 to ul, then it would be less expensive to

purchase free lime than to expend fuel to calcine the calcium carbonate in

this rotary lime kiln. This conjecture and the conjecture of the preceding

paragraph are graphically displayed in Figures 4 and 5.

At the other minima of the curves of Figure 3, the sensitivity of

the minima with respect to the cost coefficients c and cf will be less
P f

than the sensitivity at the minimum specified by the point ul/umaxl = 0.676

and u2 - 28,000 lb/hr. This lessening of sensitivity with respect to cost

coefficient occurs because less fuel is consumed at these other minima as

shown by Table I. For example, at the point u2 - 16,000 lb/hr and

u/umlax 1 0.92, the ratio of u3(5,000 lb/hr) to ul (1,165 lb/hr) is 4.27.

Therefore, the ratio of cf to c must be greater than 4.27 or the value of
p

u1/uax1 which gives a minimum will remain the same.

In addition to a low cost of operation, other desirable character-

istics for the operation of a kiln are a high product quality and a low

rate of pollution. The operation of a rotary lime kiln generates pollutants

in five major forms: carbon monoxide, sulfur dioxide, dust particles in
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C(u 1 ,u2 [4/hr.]

u 5,000 lb./hr.= o/lb

cf ~~~~~~~~~p
0. 0

-2000 Cp lo1/lb.

-40.0 c = 2o/lb.

-60.0 C(u 1 'u2) =CfU cp(u3 q2(d))

0.6 0.? 0.8 0.9 1.0

FIGURE 5

EFFECT OF COST OF LIME 0ON LINEAR COST CURVE (U2 - 28,000)
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the exhaust gases, overburnt lime and uncalcined lime.

The product quality is increased and the last three forms are

lessened in the course of finding a minimum to the cost function as

defined by Equation 5. Namely, at the minimum, only enough fuel is com-

busted to completely calcine all of the calcium carbonate flowing through

the kiln and the total gas flow through the kiln (and hence the gas

velocity) is as low as possible. It has been found (2) that dust particles

are picked up by a gas stream from a solid at a rate proportional to the

cube of the gas velocity.

The problem of production of sulfur dioxide is dependent upon the

efficiency of the washing of the lime mud in the lime mud washer. It has

been the author's experience that the sulfur dioxide (measured by titra-

tion) produced in the rotary lime kiln increases drastically when the flow

of lime mud to the washer exceeds a certain limit. In the particular kiln

for which data was available, this limit was u3 equal to 7,000 pounds of

calcinable mass per hour. Therefore, the problem is primarily one of

specifying a lime mud washer of sufficient capacity. This problem could

be further aggravated if large fluctuations of the flow of lime mud to the

washer occur.

The production of carbon monoxide can be relieved by allowing a

slight excess of nitrogen gas flow into the rotary kiln. This will

guarantee enough oxygen to allow complete combustion to take place in the

kiln. For example, if the ratio ul to umaxl equals 0.9, then the excess

of oxygen in the combustion zone of the kiln is 2.3%, which should be

sufficient to eliminate most carbon monoxide.
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The rotational speed of the kiln, u4, is not varied in this opti-

mizing procedure because the rotational speed of the kiln on which the data

was collected could only assume one or the other of two discrete values.

Therefore, by assigning to u4 the possible discrete values, the optimal

one could be obtained. The calcinable mass flow rate, u3, was not varied,

either, because the lime mud (CaCO3) generated in the kraft chemical

recovery cycle must either be calcined at the rate at which it is generated

in the recausticizing process, be stored, or be rejected from the kraft

mill as a potential pollutant to the water treatment system of the mill.

Examination of Figures 3 and 6 indicates that the CaCO3 can be calcined

in the rotary lime kiln to yield lime (CaO) much more cheaply than to pur-

chase lime commercially. Thus, lime mud should not be ejected from the

recovery cycle as an effluent. It will not have to be stored in any

greater quantity than that needed to have a sufficient inventory on hand

to enable the kiln to be transferred from one optimal steady state oper-

ating point to another optimal steady state operating point.
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I
DESIGN OF DYNAMIC OPTIMAL CONTROLLERS FOR

3I ~ THE ROTARY LIME KILN

3*1~ ~The controllers for the rotary lime kiln will be designed for two

typical situations: (1) to voluntarily change the operating point of the

~I ~lime kiln from one set-point to another; and (2) to keep the values of

*3 ~ the system variables as close as possible to the desired values specified

by this set-point in order to optimize its optimization as described above.

3*1~ ~The mathematical model (plant equations) to be used in the design

of the controllers is governed for case (i) by Equations 60 through 65 of

Reference (1) and for case (ii) by the linearized equations which result

from the linearization of these same equations about an operating point.

The controller for case (i) is called a primary controller and that for

case (ii), a secondary controller. The following variables have been

chosen as the basic controls: fuel rate, nitrogen gas rate, and burden

mass feed rate.

Due to the absence of more complete instrumentation on the kiln,

an open loop optimal control is first determined for both cases (i) and

(ii). In case (i), this open loop optimal control is approximated by an

"optimal control generator" as shown in Figure 7. This "optimal control

generator" uses the present set-point and the specified (future) set-point

in order to generate the optimal control-input function. The "optimal

control generator" also produces the simulated values of the available

measurements, z(4,it), as a function of time. These simulated values of

measurements are compared to the actual values of the available measure-

ments. Analarm condition is indicated when the differences between expected

and actual measurements become too great.

I
L -___ _____________ _______________________
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In case (ii), the secondary controller is a feedback controller as

shown in Figure 8. The present set points for the operation of the kiln

are used to determine steady state profiles of the kiln variables versus

length. The simulated values of the available measurements on the kiln,

z(,i), are also computed. The difference between these simulated values,

Z(ti)i and their respective actual values of measurements, z(ti), is the

input to the secondary controller. The parameter values of the secondary

controller are adjusted according to an off-line computer optimization

based on the set-points and the steady state profiles of the rotary lime

kiln. The output of the secondary controller is a correction, u(t) to

the value of the set-point of the kiln, u. The resultant of this correction,

u(t), is a physically realizable control-input function which uses the

performance of the open-loop control as a reference in the design.

The determination of the optimal open-loop control is performed by

solving the necessary conditions for the optimal solution of both cases

(i) and (ii).

I
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