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Abstract— In this paper, we present a method for finding
a globally optimal path through a colored graph. Optimal
here means that, for a given path, the induced path coloring
corresponds to an equivalent class. A total ordering is placed
over these equivalent classes, and the edge weights are simply tie
breakers within the classes. Optimality is achieved by mapping
the class, or color, of each edge in combination with its weight
to a real number. As a result, optimal paths can be computed
using just the new weight function and standard edge relaxation
methods (e.g. Dijkstra’s Algorithm). The motivation for this
research is the task of planning paths for mobile autonomous
robots through outdoor environments with unknown and varied
terrain.

I. INTRODUCTION

An emerging approach to handling the complexity associ-
ated with robot navigation tasks in unstructured environments
is to decompose the control task into basic building-blocks
[2], [4], [6]. Each atomic building block corresponds to a
particular control law (or mode), defined with respect to
different tasks, sensory sources, or operating points [3]. The
high-level control question then becomes that of concatenat-
ing these building-blocks together in order to meet the global
objectives. The inherently unknown and unstructured nature
of autonomous mobile robots’ environments makes control
particularly challenging, inasmuch as any precomputed op-
timal sequencing of the modes quickly becomes invalidated
(suboptimal or even infeasible) as the environment or the
robot’s knowledge thereof changes.

The work in this paper is based on an exploration of
the different modes in the sense that by trying different
mode strings, the robot builds up a high-level description of
how the selection of particular modes in particular situations
affects the performance of the system, similar to the idea
presented in [7]. We achieve this through so-called Visual
Feature Graphs, where each edge in the graph corresponds
to a particular control law, and each vertex corresponds to
a distinctive feature or place. Such graphs thus describe
how the application of a certain control law takes the robot
from one distinctive feature to the next. As an example,
consider Fig. 1. This way of structuring information about
the environment is especially appealing in outdoor robotics
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applications, where the (distinctive) feature density can be
expected to be fairly low.

Once such a Visual Feature Graph has been produced,
one can plan optimal paths over them, which is the topic
under investigation in this paper. However, since some
distinctive places correspond to areas where the robot is
likely to get stuck (such as mud, brushy vegetation or
quicksand), these places (or vertices) should be avoided.
Other vertices may define places where the robot could
possibly traverse successfully but which should nonetheless
be avoided if more traversable paths are available. We encode
these initial observations in a directed, colored graph G =
(V,E, WE , CV , CE) where

• V is the set of vertices (distinctive places/features).
• E ⊂ V × V is a set of ordered pairs of vertices.
• WE : E → R

+ is a cost associated with each edge.
This cost can for instance be interpreted as distance
travelled or how long it would take to reach the edge’s
target vertex.

• CV : V → K designates a class (i.e. color) CV (v)
to each vertex in the graph. The set of classes
K = {1, . . . , K} corresponds to the different levels of
traversability (or some other encoding of how suitable
that distinctive place is for navigation), as discussed
above.

• CE : E → K designates a class CE(e) for each edge in
the graph. In fact, we will let CE(e) be given by CV (v)
where v is the target vertex of edge e.

The planning problem thus becomes that of finding the best
path over a set of vertices, from the current vertex to the goal
vertex, where “best” is loosely interpreted as minimizing the
total edge-cost while avoiding vertices belonging to “bad”
classes.

Some comments about the notation used in this paper
should be made. We assume that we are given CV , which
assigns a class to a vertex, and the class corresponds to the
traversability of the terrain associated with that distinctive
place. Hence, our graph is a colored graph (following the
notation of [5]), but because it is possibly improperly col-
ored, and a vertex’s color is dictated by terrain quality rather
than, for example, its connectivity, we prefer the term “class”
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over “color”.
We moreover define CE , the class of an edge, to be the

class of the target vertex of the edge. The reason for this is
that it is natural to assign a class to an edge matching where
the edge terminates and the terrain that must be traversed to
go there. (Note that CE could instead be defined based on
the source vertex of an edge with little effect for the purposes
of this paper. It is important, however, that the definition be
consistent.)

To make more concrete what we mean by “best path”
and “bad classes”, let us first establish the basic goal behind
this research. We want to be able to use existing solutions to
the find-path problem (e.g. Dijkstra’s Algorithm), where,
when given a colored graph G (as defined above), we are
asked to plan a path over the edges between two specified
vertices (for example, see [8]). Our goal here is to find a
weight mapping UE : E �→ R

+, whereby global properties of
the graph (including its constituent classes) are incorporated
into UE , with the result that the simpler new weighted graph
(V, E, UE) can be planned over without having to involve
semantic symbols, i.e. the vertex classes.

This paper presents a method for determining UE and
an optimal path over the new graph that is in fact optimal
also over the original colored graph. Here, “best” does not
correspond to a simple minimum edge-cost path, but rather,
as already pointed out, a path that is optimal within the set
of paths of the lowest “path class”. The next section causally
motivates the problem we solve in this paper, and Section III
presents a formal problem statement. The remainder of the
paper is organized as follows: In Section IV, we present our
solution, i.e. the derivation of an appropriate the mapping
UE . Sections V and VI provide theorems and proofs, and
Section VIII finalizes the discussion with conclusions.

II. MOTIVATION

In this section, we present a situation where we could
naturally define distinctive terrain features. This example
should be thought of as simply a motivating example, rather
than a realistic, full-scale robotics application. Fig. 1 depicts
an outdoor environment populated with six different terrain
types (listed in decreasing traversability): roadway, pathway,
field, forest, mud, and marsh. Marked in the figure are
start and goal vertices. What is the best route over this
environment?

What we know from experience is that wheeled robots
drive efficiently over roadways and pathways, and reasonably
well in fields, but have trouble in forests, and are practically
stuck in mud or marsh. Three paths are overlaid on the figure,
showing potential routes to the goal. Route 1 is the shortest,
but passes through a forest region (for specifics, see Table
1). Route 2 is longer but avoids the forest regions, passing at
worst through a field. Route 3 is similar to Route 2, but is in
the field regions less. We intuitively come to the conclusion
that Route 3 is the best of the three.

Consider Fig. 2, which is a graphical representation of
Fig. 1. Routes 1-3 are marked on the graph. We will use
the developments in the following sections to show that we

can use standard edge relaxation methods on a simple graph
(V,E, UE), and in so doing, identify Route 3 as the best
path among Routes 1-3.

It is our intention within this work that the difference
amenest classes should represent something that could not
be reflected as a well-defined or well-posed transform on
edge cost. In fact, we will impose a total ordering on the
path classes and simply use the edge weights to break intra-
class ties. A good example might be to define class based
on what’s necessary for the robot’s safe operation. In regions
where the robot may totally fail its mission, such situations
(may) need to be completely avoided if at all possible - if
any alternative route is available. This work is targeted at
tractable path planning for these types of scenarios.

III. PROBLEM DEFINITION

Define an edge eij ∈ E as the ordered pair (vi, vj) with vi,
vj ∈ V ; the edge passes in the direction from vi �−→ vj . Let
the path p be a string of edges over G which connects some
v0 to vF , the first and last vertices of the string. The edges
of p are ordered such that the n-th edge passes from vertex
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Fig. 1. An example environment with 6 terrain classes; roads are the most
easily traversed, followed by paths, fields, forests, mud, and marsh. Three
feasible paths between the start and goal vertices are shown.

Route Road Path Field Forest Mud Marsh
Number Edges Edges Edges Edges Edges Edges

1 0 1 5 3 0 0
2 1 7 4 0 0 0
3 0 9 3 0 0 0

TABLE I

THE NUMBER OF EDGES PER CLASS FOR PATHS 1-3 FROM FIG. 2.

Note how Path 1 has edges in the Forest class, while Paths 2 & 3 do not.
Also, note how Path 3 has fewer Field edges than Path 2.
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Fig. 2. A combinatorial representation G = (V, E, WE , CV , CE) of the
environment from Fig. 1. The discs represent vertices, with labels identifying
the class of the vertex. Edges are depicted as undirected for the sake of
clarity. Note that Paths 2 and 3 partially overlap.

vn to vn+1, with n ∈ {1, . . . , length(p)} and length(p) is
the length of p.

Partition the set of vertices V into subsets based on class,
such that

V =
K⋃

k=1

Vk, (1)

where
Vk =

{
v ∈ V

∣∣ CV (v) = k
}

(2)

and where K is the number of classes. Similarly, partition
the set of edges E, such that

E =
K⋃

k=1

Ek, (3)

where

Ek =
{

eij = (vi, vj) ∈ E
∣∣ vj ∈ Vk

}
. (4)

The set of all acyclic paths connecting vs to vg (the start
and goal vertices) is denoted by Π. (We could more precisely
call this Π(vs, vg), but omit the arguments for the sake of
clarity.) Let Πk be the set of paths where the highest vertex
class included in each path within Πk is exactly k. In other
words,

Πk =
{

p ∈ Π
∣∣ N(p, k) > 0 & N(p, l) = 0, ∀l > k

}
, (5)

with
N(p, k) = card({e ∈ p

∣∣ CE(e) = k}) (6)

being the number of edges of the path p that are of class k.
(Here, card()̇ denotes cardinality.) Furthermore, let

Πi
k =

{
p ∈ Πk

∣∣ N(p, k) = i
}

(7)

be the set of k-class paths with exactly i edges of class k.
Now, when asked to plan a path between vs and vg , we

define the (not necessarily unique) optimal path p∗ as one
satisfying the following criteria:

1) Let
κ = min

k∈{1,...,K}
(Πk �= ∅), (8)

and hence Πκ is the set of all paths with the minimum
maximum-vertex-class in Π. The optimal path p∗ is in
Πκ.

2) Let
Pκ = arg min

p∈Πκ

N(p, κ). (9)

So, Pκ is the set of paths in Πκ with the fewest number
of κ-class vertices. The optimal path p∗ is in Pκ.

3) Let
Pκ−1 = arg min

p∈Pκ

N(p, κ − 1). (10)

Pκ−1 is the set of paths in Pκ with the fewest number
of (κ − 1)-class vertices.

4) Similarly,
Pi = arg min

p∈Pi+1

N(p, i), (11)

where i = {1, . . . , κ − 1}. Path p∗ is in all Pi.
5) Finally, if card(P1) > 1, we wish that

p∗ = min
p∈P1

(∑
e∈p

WE(e)
)
. (12)

Consequently, we have a recursive problem definition,
with the optimal path belonging to recursively dependant
sets of paths, based on edge classes. What we desire is a
formulation of a new edge-weight function UE that encodes
this semantic information about the edge classes and incor-
porates the original weight function WE . In finding it, we
will obtain a p∗ satisfying Criteria 1-5, without having to
worry about vertex classes. In fact, one can think of this
construction as imposing a total order on the path classes,
with Πi

k < Πj
l for all l > k, and Πi

k < Πj
k for all j > i, and

so on.
Criteria 1-5 take into account all paths in the graph

between the start and goal vertices. Hence, a selection of UE

finding p∗ with respect to these specifications accounts for all
such paths, and consequently, accounts for global properties
of the graph’s vertices and each vertex’s class. Note that
some modification of WE(e) based only on the immediate
neighbors of e ∈ E would be insufficient to guarantee the
solution of p∗ via an algorithm like Dijkstra’s Algorithm.
That is, locally modifying WE does not incorporate the
(global) information needed to satisfy criteria 1-5.

Now, we break the task of finding p∗ into three subprob-
lems:

Subproblem 1: Find UE : E �→ R
+ such that, correspond-

ing to Criteria 1, the cost of paths belonging to class k (i.e.
p ∈ Πk) should always be greater than the cost of paths
belonging to class k − 1. By the cost of a path p, we mean

c(p) =
∑
e∈p

UE(e). (13)
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Subproblem 2: Find UE : E �→ R
+ such that, correspond-

ing to Criteria 4, the cost should be higher for the path which
has more edges in class k than other paths which have the
same number of edges for all classes greater than k.

Subproblem 3: Find UE : E �→ R
+ such that, cor-

responding to Criteria 5, for paths that have the same
number of edges in all classes, the optimal path minimizes∑

e∈p WE(e). In other words, paths that are equivalent
according to class are distinguished based on the original
edge weighting.

This leads us to the main problem under consideration in
this paper, namely:

Problem 1: Find UE : E �→ R
+ such that the optimal

path p∗ over the weighted graph (V,E, UE) is also optimal
over the original colored graph according to the optimality
Criteria 1-5.

The overall implication of these subproblems is three-fold:
1) Subproblem 1 implies that the passage of a path

through a k-class vertex makes that path less desirable
than every path that visits vertices of class strictly less
than k, without regard to how long or costly such
paths may be or how many vertices they include; vertex
classification bears strong meaning.

2) Subproblem 2 implies that the passage between ad-
jacent vertices of the same class has more meaning
than simply the weight of the edge joining them. The
number of hops in a vertex class along a path has more
impact than the length of the path.

3) The last subproblem implies that while vertex classifi-
cation is the primary factor in determining an optimal
path, the regular edge cost WE is still required where
vertex classification of two paths is identical.

IV. THE NEW EDGE-WEIGHT FUNCTION, UE

Define the modified weight function

UE(e) = WE(e) + σi + γi, (14)

with
σi =

∑
e∈Ei

WE(e), (15)

γi = (1 + ni−1)(σi−1 + γi−1), (16)

and
γ1 = 0, (17)

where ni = card(Ei) denotes the number of edges in Ei,
Finally, let CΠk

be

CΠk
=

{
c(p)

∣∣ p ∈ Πk

}
, (18)

the set of costs for the paths in Πk, where, as before,

c(p) =
∑
e∈p

UE(e). (19)

We shall demonstrate in the following sections that this
recursive definition of γi is just what we need to solve
Problem 1.

V. LEMMAS

Two lemmas will prove useful for the next section.

Lemma 5.1: The maximum cost of Πk is less than γk+1.
Proof:

For an acyclic path which never visits any vertex v with
CV (v) > k, the highest possible cost of the path corresponds
to one that includes every edge e ∈ E where CE(e) ≤ k
(though it may be that no such path exists). That is,

max(CΠk
)

≤
k∑

i=1

∑
e∈Ei

UE(e)

=
∑
e∈E1

UE(e) +
∑
e∈E2

UE(e) + . . . +
∑

e∈Ek

UE(e)

= (
∑
e∈E1

WE(e) + n1(σ1 + γ1)) +

+(
∑
e∈E2

WE(e) + n2(σ2 + γ2)) +

+ . . . + (
∑

e∈Ek

WE(e) + nk(σk + γk))

= (σ1 + n1(σ1 + γ1)) + (σ2 + n2(σ2 + γ2)) +
+ . . . + (σk + nk(σk + γk))

= (1 + n1)(σ1 + γ1) + (σ2 + n2(σ2 + γ2)) +
+ . . . + (σk + nk(σk + γk))

= (γ2) + (σ2 + n2(σ2 + γ2)) +
+ . . . + (σk + nk(σk + γk))

= (γ3) + (σ3 + n3(σ3 + γ3)) +
+ . . . + (σk + nk(σk + γk))

. . .

= (γk−1) + (σk−1 + nk−1(σk−1 + γk−1)) +
+(σk + nk(σk + γk))

= (γk) + (σk + nk(σk + γk))
= γk+1

Lemma 5.2: The minimum cost of Πk is greater than σk+
γk.

Proof:
Conceptually, the path in Πk with minimum cost visits

the fewest vertices possible and the weight of the edges on
this path are minimal. So such a path would, in principle,
visit exactly one k-class edge and a minimum of other edges.
There are two possible cases:

Case 1: If CV (vg) = k, (where vg is the goal vertex) then
the minimal path would be just vs → vg (if such a path
existed). So,

min(CΠk
)

≥ UE(esg)
= WE(esg) + σk + γk

> σk + γk
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Case 2: If CV (vg) �= k, then the minimal path would be
vs → vj → vg , where vj ∈ Vk. So,

min(CΠk
)

≥ UE(esj) + UE(ejg)
= (WE(esj) + σk + γk) +

+(WE(ejg) + σCV (vg) + γCV (vg))
> σk + γk

In both cases, we find

min(CΠk
) > σk + γk. (20)

VI. THEOREMS

Theorem 6.1:

max(CΠk−1) < min(CΠk
). (21)

Proof:
Simply taking Lemmas 5.1 and 5.2 together, we find

max(CΠk−1) ≤ γk < σk + γk < min(CΠk
) (22)

Theorem 6.2: The cost of traversing a k-class path with
j k-class vertices is always less than a k-class path with
(j + 1) k-class vertices, where k is the highest class on the
two paths. In other words,

max(CΠj
k
) < min(CΠj+1

k
).

Proof: First, we assume card(Ek) > j.

max(CΠj
k
)

≤
k−1∑
i=1

∑
e∈Ei

UE(e) + worst j-length path in Ek

<
k−1∑
i=1

∑
e∈Ei

UE(e) + j(σk + γk) +
∑

e∈Ek

WE(e)

= γk + j(σk + γk) + σk

= (j + 1)(σk + γk)

min(CΠj+1
k

)
≥ best (j + 1)-length path in Ek

> (j + 1)(σk + γk)

Hence,
max(CΠj

k
) < min(CΠj+1

k
). (23)

This proves the theorem.

Theorem 6.1 establishes that UE solves Subproblem 1. In
other words, a path in Πk always has lower cost than a path in

Πk+1. Theorem 6.2 establishes that UE solves Subproblem 2.
UE also solves Subproblem 3, by noting that for a path p

c(p) =
∑
e∈p

UE(e) (24)

=
∑
e∈p

(WE(e) + σCE(e) + γCE(E)), (25)

and that for two paths p1 and p2 with the same numbers of
edges over all the classes, the difference between the cost of
the two paths reduces to the difference of the sum of their
edge weights. That is,

c(p1) − c(p2) =
∑
e∈p1

WE(e) −
∑
e∈p2

WE(e). (26)

By solving each of the three subproblems, UE solves Prob-
lem 1.

VII. IMPLEMENTATION

Fig. 3 shows a screenshot taken from the GRITSlab [1]
graph planning software library corresponding to the graph
depicted in Fig. 2. Here, edge weights have been assigned
according to UE , and Dijkstra’s algorithm has been run over
the resulting graph. The dark line pointing out of each node
indicates the next node to be taken on the optimal path to
the goal (which is located in the lower right-hand corner).

Fig. 3. Screenshot from the GRITSlab [1] graph planning software library
of the example from Fig. 2.

The thick line starting from the robot (upper left-hand
corner) and ending at the goal correctly identifies Route 3
as the optimal path over this weighted colored graph. The
code needed to implement UE is straight-forward and follows
directly from equations 14-17.

VIII. CONCLUSIONS

We are able to find optimal paths over a directed colored
graph G = (V, E, WE , CV , CE), by transforming it into
(V,E, UE), and applying standard edge relaxation algo-
rithms. The resulting optimal path over (V,E, UE) is also
optimal over G in the sense that it matches our criteria
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specified in Criteria III:1-5. This transformation has been
motivated by the need to navigate a mobile robot through
an outdoor environment populated with regions of relatively
distinct and identifiable terrain.
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