
Simplifying the topology of volume datasets: an

opportunistic approach

Andrzej Szymczak and James Vanderhyde

College of Computing

Georgia Tech

{andrzej, jamesv}@cc.gatech.edu

Understanding isosurfaces and contours (their connected components) is important for the analy-

sis as well as effective visualization of 3D scalar fields. The topological changes that the contours

undergo as the isovalue varies are typically represented using the contour tree, which can be ob-

tained from the input scalar field by collapsing every contour to a single point. Contour trees are

known to provide useful information, allowing one to find interesting isovalues and contours, speed

up computations involving isosurfaces or contours, or analyze or visualize the scalar field’s qual-

itative structure. However, the applicability of contour trees can, in many cases, be problematic

because of their large size.

Morse theory relates the contour topology changes to critical points in the underlying scalar

fields. We describe a simple algorithm that can decrease the number of critical points in a regularly
sampled volume dataset. The procedure produces a perturbed version of the input volume that
has fewer critical points but, at the same time, is guaranteed to be less than a user-specified
threshold away from the input volume (in the supremum norm sense). Because the input and
output volumes are close, the algorithm preserves the most stable topological features of the scalar
field. Although we do not guarantee that the number of critical points in the output volume is
minimum among all volumes within the threshold away from the input dataset, our experiments

demonstrate that the procedure is quite effective for a variety of input data types. Apart from
reducing the size of the contour tree, it also reduces the topological complexity of individual

isosurfaces.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry and

Object Modeling; Curve, Surface, Solid, and Object Representations; I.3.6 [Computer Graph-

ics]: Methodology and Techniques; Graphics Data Structures and Data Types

Additional Key Words and Phrases: Isosurface, Topology, Genus

1. INTRODUCTION

We propose a simple method allowing one to perturb a regularly sampled scalar
field by an amount bounded by a prescribed threshold so that its topological com-
plexity (the number of critical points) is reduced. As a result, both the size of the
contour tree (which describes the topological changes that contours undergo as the
isovalue is varied) and the topological complexity of individual isosurfaces decrease.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and

notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0730-0301/20YY/0100-0001 $5.00

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 ·

Algorithms such as the one proposed in this paper can be a useful part of the scalar
field analysis pipeline, making the contour topology of large and complex datasets
easier to comprehend and, in particular, opening new applications for contour trees
as tools for understanding and visualizing the qualitative structure of scalar fields.

The approach we take in this paper is a direct extension of the isosurface topology
simplification algorithm introduced in [Szymczak and Vanderhyde 2003], and it is
based on a topology-preserving voxel removal as the fundamental primitive opera-
tion. The goal of [Szymczak and Vanderhyde 2003] is to simplify the topology of a
single isosurface. In order to do that, we remove (‘carve’) the voxels in order of de-
creasing value (a dual variant would do the same in the opposite order). Assuming
that the isovalue of interest is 0 and voxels in the volume bounded by the isosurface
are negative, we remove only positive voxels and put a bound on the number of
topology-altering voxel removals (which, in most practical cases, turns out to be
equivalent to imposing a bound on the genus of the output isosurface). We also
require that topology-altering removals are performed only if topology-preserving
ones are not possible. After the procedure terminates, we change the values of all
uncarved positive voxels to negative, obtaining a volume close to the input volume
but with a topologically simplified isosurface.

In this paper, we eventually carve all voxels. We perform a topology-altering
removal of a voxel of value I only if no voxels having value above I − τ can be
removed while preserving the topology, where τ is a user-specified threshold. After
the carving procedure terminates, we alter the voxel values to make them decrease
with the carving order. The procedure proposed here does not necessarily lead
to optimal results (i.e. leave the minimum number of critical points), but our
experiments show that it performs quite well for a variety of input data types.
We also discuss a multipass variant of our algorithm that decreases the number of
voxels having different values in the input and output volumes.

2. RELATED WORK

In this section, we discuss the relation of our results to other topology simplification
algorithms. We also give an overview of the work on scalar field topology that
motivated this paper.

2.1 Topology simplification

Reduction of topological complexity has been an active research topic in recent
years. Several algorithms, suitable for many different types of input data have been
proposed. Below, we focus on the algorithms most related to ours.

An algorithm for removing handles from 3D surfaces is described in [Guskov
and Wood 2001]. It works by finding non-contractible loops in the surface, cutting
the surface along these loops and triangulating the resulting boundary loops. An
algorithm based on the same principle but tailored to work with isosurfaces in
volume data has been proposed in [Wood et al. 2002]. The paper [Szymczak and
Vanderhyde 2003] achieves the same goal by first computing the signed distance
transform for the isosurface and then executing the carving procedure outlined in
Section 1. An essentially identical algorithm developed for binary volume data had
been introduced in [Aktouf et al. 2002]. Similar ideas had been used to preserve
the topology of level sets in [Han et al. 2001; 2002].

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

· 3

Topology is the main focus of the work discussed above. However, there is a large
body of work on combining geometry and topology simplification. For CAD models,
a method of simplifying both geometrically and topologically has been proposed in
[El-Sana and Varshney 1997]. In the volumetric domain, low pass filtering can be
seen as a simple way of removing noise from the data, including the topological
noise. However, it may cause undesirable loss of detail and it does not provide
control over the amount of perturbation. Methods allowing control or preservation
of the isosurface topology as the underlying scalar field is simplified are described
in [Gerstner and Pajarola 2000; Chiang and Lu 2003a].

2.2 Descriptions of topology of scalar fields

The work described in this paper has been mainly motivated by the need for simple
and comprehensible descriptions of the topology of scalar fields that are needed for
large and complex data. Scalar field topology is most commonly described using
the contour tree, a special case of the Reeb graph [Reeb 1946]. Contour trees
have received a significant amount of interest in recent years. Efficient algorithms
for computing contour trees are described in [Carr et al. 2003; Chiang and Lu
2003b; Tarasov and Vyalyi 1998; Pascucci and Cole-Mclaughlin 2002]. The method
allowing to label contour tree edges with the Betti numbers and the numbers of
boundary loops of the corresponding contours is described in [Pascucci and Cole-
Mclaughlin 2002] and [Berglund and A.Szymczak 2004]. Contour trees have found
applications in scalar field visualization, where they can help accelerate isosurface
extraction [Bajaj et al. 1998], find contours with user-defined properties [Bajaj et al.
1997] or provide a framework for interactive exploration of the scalar fields [Carr
et al. 2004; Carr 2004].

Unfortunately, typical volume data (especially obtained using a physical acqui-
sition technique) may have a very large number of critical points. The flexible
isosurface technique [Carr et al. 2004] allows to simplify the contour tree by ap-
plying elementary operations like leaf pruning or vertex removal until it becomes
more comprehensive and therefore useful for interactive exploration of contours.
The goal of this paper is similar, but we focus on computing a perturbation of the
scalar field, within a user-specified threshold, that would reduce its number of crit-
ical points. By superimposing the threshold on the perturbation, we ensure that
the persistent (in the sense equivalent to [Edelsbrunner et al. 2002; Edelsbrunner
et al. 2001; Bremner et al. 2003]) topological features are present in the output vol-
ume. Although our procedure is not guaranteed to remove all features of persistence
lower than the threshold, we have successfully used it to substantially reduce the
topological complexity of a number of test datasets (Section 6). At the same time,
it is very easy to implement. We believe it can represent a practical (albeit, at this
point, only single-resolution) alternative to the Morse-Smale complex described in
[Edelsbrunner et al. 2003], which is commonly regarded as challenging to implement
in practice. Moreover, our method seems to be relatively easy to extend to higher
dimensions. We are planning to report on the performance of such an extension
elsewhere.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

4 ·

3. PRELIMINARY DEFINITIONS

Before we describe our algorithm in detail, we need to introduce the necessary
terminology. The input dataset is a regularly sampled volume of resolution nx ×
ny × nz, in which the spacing between the samples in the x, y and z dimensions is
equal to dx, dy and dz (respectively). By a voxel we shall mean an axis-oriented
parallelepiped centered at one of the samples and with edge lengths of dx, dy and
dz in dimensions x, y and z. This means that there are nxnynz voxels and they
are in one-to-one correspondence with the samples (their centers). Therefore, we
shall think of each voxel as having a value (equal to the value at its corresponding
sample).

Let S0 be the set of all voxels. Below we shall consider subsets S ⊂ S0. Each
subset S defines:

(a). A solid in R3, the union of all voxels in S. This solid will be denoted by |S|.

(b). A surface in R3, the isosurface corresponding to the isovalue of 0, computed
using the algorithm of [Bhaniramka et al. 2000] assuming that the values at the
voxels in S are all equal to −1 and the values of all voxels in S0 \ S are equal to 1.
This isosurface is denoted by 〈S〉.

Note that the topology of 〈S〉 is the same as the topology of the isosurface computed
using the algorithm of [Bhaniramka et al. 2000] assuming that the values of all voxels
in S are arbitrary but lower than the isovalue and the values of all voxels outside
S are arbitrary but higher than the isovalue. Specific values of voxels do influence
the geometry of the isosurface, but they do not alter its topology. Throughout this
paper, all isosurfaces we discuss are computed using the algorithm of [Bhaniramka
et al. 2000].

4. THE SINGLE-PASS ALGORITHM

Our algorithm takes a regularly sampled volume dataset and a user-specified persis-
tence threshold τ as its input. It produces a volume dataset of the same resolution,
in which value of every voxel V is in [I − τ, I], where I is the value of V in the
original volume. If desired, by adding τ/2 to the value of each voxel one can obtain
a volume in which the voxel values are within τ/2 from the values of the corre-
sponding voxels in the input volume. The output volume will, in practice, have less
critical points and simpler isosurfaces than the input volume.

The procedure is a sweep algorithm, in which voxels are processed in order of
decreasing value. For each voxel we consider its removal (carving) from the cur-
rent voxel set S (initially, all voxels). Such a removal may cause 〈S〉 to change
the topology. Assuming that every voxel is actually removed, voxels for which a
topology change occurs are the critical voxels. Our procedure works by perturbing
the carving order of voxels: keeping it close to ordering by value, but at the same
time attempting to decrease the number of topology-altering voxel removals.

Persistence, as introduced in [Edelsbrunner et al. 2001], measures the ‘life span’
of topological features resulting from such topology changes. For example, if a
topologically nontrivial cycle is created as a result of removal of a voxel V and,
later on, it disappears as a result of removal of another voxel W , then the life
span of that cycle can be defined as the difference of the values of W and V .

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

· 5

Algebraic topological tools (homology theory) make this definition fully precise
[Edelsbrunner et al. 2001], allowing to express the creation and disappearance of
cycles in purely algebraic terms. In 2D, persistence essentially trivializes: it reduces
to describing how connected components of the set S and its complement split or
join as the voxels are being removed [Edelsbrunner et al. 2002; Bremner et al. 2003].
Algorithmically, this is done by employing the union-find datastructure, in a way
similar to the split and join tree algorithm of [Carr et al. 2003]. However, in higher
dimensions no comparably simple and computationally efficient (at least in the
worst case) approach is known. Morse-Smale complexes [Edelsbrunner et al. 2003]
are a direct generalization of the framework that was implemented with success
in 2D in [Edelsbrunner et al. 2002; Bremner et al. 2003], but they are much more
complex in 3D and so far have not been implemented in practice.

Our algorithm attempts to find a way around this complexity by making simple
opportunistic decisions. Whenever we are considering a voxel V for removal but
we detect that it would cause a topological change, we delay the removal, hoping
to find a different removal order that would remove V without the need for any
topology altering voxel removals. Clearly, such a delay should be bounded by the
user-specified bound on the error τ . More precisely, if the values of two voxels in
the input volume differ by more than τ , the one with the larger value must be
removed first. This idea motivates the carving procedure described below.

4.1 Carving

We use a priority queue of voxels in order to determine their processing order.
Initially, the value of a voxel is used as its priority and the priority queue contains
all voxels. The set S, subject to the carving operations, is initialized to hold all
voxels, i.e. to S0.

We iteratively take a voxel V off the queue. If that voxel does not belong to
S, it is ignored and we proceed to the next voxel. Otherwise, we test whether the
removal of V from S would preserve or change the topology of 〈S〉. (This test is
described in detail in Section 4.2.)

In the first case, V is removed from S. We also update the priority queue by
inserting into it all voxels for which the removal of V might have changed the
outcome of the topology preservation test. The test depends on the status of all
voxels in the 26-neighborhood of V (i.e. whether they had been carved before or
not). Therefore, we need to insert all neighbors of V that belong to S into the
queue. The values of the inserted voxels are used as their priorities. Note that the
same priority queue update is performed each time a voxel is removed from S.

In the second case (i.e. when removing V from S would change the topology of
〈S〉), what we do depends on whether the priority of the voxel is equal to its value
I or not. If it is, we push the same voxel back onto the queue with priority I − τ .
Intuitively, this means delaying its removal in hope of finding a way to remove it
without topological change later on. Setting the priority to I − τ ensures that the
maximum delay until V is actually removed is bounded by τ .

If the priority of V is different from I, V is a delayed voxel. Its priority has to
be equal to I − τ . In this case, we remove the voxel even though this might change
the topology of 〈S〉 and update the priority queue as described earlier. The voxel
V will be critical in the output volume if its removal alters the topology of 〈S〉.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

6 ·

4.2 Testing for topology change

The test for topology preservation of 〈S〉 under the removal of a voxel V that we
use in the carving procedure is a simple extension of the tests used in [Aktouf et al.
2002; Han et al. 2001; 2002; Szymczak and Vanderhyde 2003].

If V is an interior voxel of the domain, i.e. V ⊂ int |S0|, it is in fact exactly the
same. Let I(V,S) denote the intersection of the boundary of V (denoted by δV)
and |S \ {V }|. Removal of V from S does not change the topology of 〈S〉 if and
only if both I(V,S) and its complement in δV , i.e. δV \ I(V, S) have exactly one
connected component.

If V is a boundary voxel, the test described above is not sufficient. For example,
if S = S0, then any boundary voxel would pass the topology preservation test
described above (provided nx, ny, nz ≥ 2). However this is not correct: removing
such a voxel would create a component in 〈S〉, and therefore change its topology. Let
B(V) = δV ∩ δ|S0| be the intersection of the voxel’s boundary and the boundary of
the domain. It is not hard to see that the removal of V from S preserves the topology
of 〈S〉 if and only if each of the two sets: I(V,S) and I ′(V,S) = I(V,S) ∪ B(V) as
well as their complements in δV all have exactly one connected component.

Clearly, these tests can be completed in constant time. In practice, one can use
a binary lookup table to speed up the running time of the test. We implement the
table as follows. For a voxel, we consider all subsets of the set of voxels in its 26-
neighborhood. Such subsets are in one-to-one correspondence with binary sequences
of length 26 and therefore can be indexed by integers in the range 0 . . . 226 − 1.
Consider the intersection of the boundary of the voxel and the union of all voxels
in the subset corresponding to an integer i ∈ {0 . . . 226 − 1}. We set the i-th entry
of the lookup table to 1 if and only if both that intersection and its complement
relative to the voxel’s boundary each have one connected component. With the
lookup table described above, one can decide whether removal of a voxel V from S
preserves the topology as follows. Consider the following two subsets of the the set
of all neighbors of V :

(i). the set of all neighbors of V that are in S

(ii). the set of all neighbors of V that are either in S or outside the domain.

The removal of V from S does not change the topology of 〈S〉 if and only if the
entries of the lookup table corresponding to both of the above sets are equal to 1.

The lookup table described above requires 226 bits or 8MB of memory. Clearly,
it is possible to reduce the number of configurations and therefore also the size of
the lookup table by exploiting symmetry, but implementing this does not appear to
be worthwhile in practice, at least in the 3D case. It is interesting to note that in
the 4D case, the full lookup table would require 280 bits and therefore seems to be
unpractical at the time of this writing. A simple implementation of the 4D variant
of the topology preservation test can be based on the connected component count
and the Euler characteristics using the idea of [Delfinado and Edelsbrunner 1995].

4.3 Updating the voxel values

After the carving procedure terminates (i.e. all voxels are removed from S), we
alter the voxel values to make their ordering by decreasing value identical to the

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

· 7

Fig. 1. Snapshots of the carving process for the single-pass algorithm (top row) and the second

pass of the multipass algorithm (bottom row) for the signed distance function for the torus. Both

procedures require the same number of topology changes (only one of them is shown in the figure).

The carving order produced by the multipass algorithm much better reflects the ordering of voxels

by value. The new values of voxels computed using the algorithm described in Section 4.3 are

also closer to the original values of voxels for the multipass algorithm than for the single-pass

algorithm. Notice that the single pass algorithm assigns the same (only infinitesimally different)
values to all voxels on the ‘membrane’ that initially closes the through-hole in the torus but is
eventually decided to be pinched because of high persistence of the saddle in its center.

carving order. In order to do that, we scan voxels in the order they were carved,
keeping track of the minimum value of a voxel seen so far (including the current
one). For every voxel, we set its new value to this minimum value. Clearly, that
minimum value does not have to strictly decrease as we move from voxel to voxel
and therefore degeneracies (like two neighboring voxels with the same value) might
result. We use the carving order to resolve such degeneracies: whenever values of
two voxels in the output volume are compared and they turn out to be equal, we
declare the value at the one that has been carved first larger. This is equivalent
to simulating a perturbation of values by an infinitesimal quantity that is strictly
decreasing with respect to the carving order.

Notice that the value of a voxel in the output volume cannot be larger than the
value of the same voxel in the input volume. Moreover, every voxel having value I
is removed before any voxel with value less than I − τ . This proves the following
statement.

Observation 1. If the value of a voxel in the input volume is I then the value
of the same voxel in the output volume has to be in [I − τ, I].

5. ITERATIVE IMPROVEMENT OF THE CARVING ORDER

The single pass algorithm already achieves the goals laid out for this paper: it signif-
icantly decreases the number of critical points (Section 6) and keeps the maximum
error between the input and output volume within the user specified threshold.
However, the carving order computed by the single pass algorithm is clearly sub-
optimal, as shown in Figure 1. In this section we describe a procedure that can
improve the carving order, making it closer to the ordering of voxels by value. This
improved order will also cause a smaller number of voxel values to be changed in
the update phase (Section 4.3).

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

8 ·

5.1 Multipass algorithm: underlying idea

The first pass of the algorithm is identical to the single-pass version of Section 4.
Each pass aims to improve the carving order of the previous pass, while attempting
to preserve the structure and order of its topological events. The overall structure
of each of the passes is the same. We use a priority queue of voxels as in the single
pass variant. Initially, all voxels are inserted into the queue with priority equal
to their value in the input volume (updating the values described in Section 4.3 is
performed after the last pass) and we set S := S0. Let C be the set of all critical
voxels in the volume produced in the preceding pass (recall that such voxels are
defined by the carving order used in that pass and can be determined as all voxels
whose removal alters the topology of the isosurface 〈S〉). In a loop, we extract
a voxel V from the queue and consider it for removal from S. The removals are
governed by the following rules:

1. The voxels in C have to be removed in the same order as in the preceding pass.
Note that this order is the same as their ordering by value in the input volume.

2. If a voxel W was removed after a voxel V ∈ C in the preceding pass, W has to
be removed after V also in the current pass. Basically, this means that, right after
(and right before) the removal of a voxel V ∈ C, the set of uncarved voxels in the
current pass is a superset of the set of uncarved voxels in the preceding pass right
after (before) the removal of V .

3. If the value of a voxel V in the original volume exceeds the value of a voxel W
in the original volume by τ or more, V has to be removed before W in the current
pass. This is done to ensure that Observation 1 holds after updating the voxel
values based on the traversal order used in any (in particular, the final) pass.

4. Unless prevented by the rules 1., 2. or 3., a voxel whose removal does not
change the topology of 〈S〉 or a voxel in C whose set of neighbors in S is the same as
in the previous pass at the moment of its removal is decided to be removed as soon
as it is considered for removal. In particular, this means that the topology changes
induced by the removal V in the current and previous passes are equivalent. Our
early implementation actually compared the topological changes introduced by the
two removals, but this turned out to offer little advantage over simply comparing
the neighborhoods.

Note that, in general, it is possible that removals of some voxels that do not belong
to C alter the topology of 〈S〉 (which means that new critical voxels are introduced
in passes other than the first one). However, we found out that it is very uncommon:
in fact, new critical points are rarely found even in the second pass. Our current
implementation always terminates after two passes. The second and later passes
(if used) are described in more detail below.

5.2 Algorithm statement

Before we start a new pass, we compute C, the set of critical voxels relative to
the carving order from the preceding pass. Let the voxels in C (in order of being
carved in the preceding pass) be V1, V2, . . . Vk. Let Ni be the set of all voxels in
the 26-neighborhood of Vi that were carved after Vi. Let Vi be the set of all voxels

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

· 9

Fig. 2. Slices through the fluid simulation dataset.

Fig. 3. Slices through the CT scan dataset.

carved no later than Vi but (if i > 1) after Vi−1 for i ∈ {1, 2, . . . , k}. Clearly, the
sets Vi form a decomposition of the set of all voxels S0 into disjoint subsets.

We initialize the set S (the set of voxels not carved yet) to the set of all voxels
S0. We use a counter i to keep track of the next voxel in C to be carved (initially,
1). We insert all voxels in V1 into the queue, using their values as priorities. Until
the priority queue becomes empty, we extract a voxel V from the queue. Now, the
action depends on that voxel:

(i). If V does not belong to S, we ignore it and proceed to the next voxel.

(ii). If the removal of V does not change the topology of S, we remove V , update
the queue (i.e. insert all neighbors of V belonging to S which were removed before
Vi in the preceding pass into the queue; values of the inserted voxels are used as
their priorities). Then we proceed to the next voxel.

(iii). If V = Vi ∈ C and the intersection of all voxels in the 26-neighborhood of
V and S is equal to Ni (note that the first voxel falls into this category), we remove
V from S, increment i and push all voxels in Si onto the queue (using their values
as priorities). Then we proceed to the next voxel.

(iv). If the priority of V is equal to its value I and the conditions in (ii) and
(iii) fail, we push it back onto the queue with priority I − τ . Then we proceed to
the next voxel.

(v). If the priority of V is different from its value (in which case it has to be
equal to I − τ), we remove V from S and update the queue as in (ii). Additionally,
if V ∈ C, we increment i and push all voxels in Si onto the queue (using their values
as priorities). Then we proceed to the next voxel.

6. RESULTS

We have tested our algorithm for a number of volume datasets. Below, we focus
our attention on three representative datasets: an approximate signed distance
function from the well-known the Buddha model [Curless and Levoy 1996] sampled

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

10 ·

Threshold original 1 3 5 10 15 20 30

Critical Points 23832 209 95 71 43 25 17 3

CT nodes 12531 82 40 30 16 10 6 2

β0 and β1 7, 22 1, 14 1, 12 1, 12 1, 10 1, 6 1, 4 1, 0

Altered voxels (1 iteration) N/A 20244 40809 65750 152173 241968 353392 417176
Altered voxels (after 2 iterations) N/A 16477 22030 24310 98853 134575 195835 417135

Table I. Results for the signed distance volume for the Buddha model. We used 0 as the isovalue

for isosurfaces whose Betti numbers are listed in the table. The isosurfaces were always closed

(therefore β2 = β0).

Threshold original 0.5 2.5 4.5 8.5 16.5 32.5 64.5 128.5 256.5

Critical
points 321483 198467 82818 47671 21873 7450 1988 482 56 2

CT nodes 130425 63706 20718 10796 4608 1814 574 152 24 2

β0 507 507 362 260 182 124 60 17 2 1
β1 2786 2786 2450 2079 1500 811 180 38 2 0
β2 402 402 269 178 111 67 24 5 0 0

Altered voxels
(1 pass) N/A 0 241597 611270 695387 809054 950320 1069321 1134626 1129825

Altered voxels
(2 passes) N/A 0 232670 608357 693583 800258 931539 1037439 1127575 1129825

Table II. Results for fluid simulation dataset (Betti numbers shown correspond to isovalue 127.5).
Note that the intensities of all voxels are integers and therefore only infinitesimal perturbation is

performed for τ = 0.5 – this is why the reported count of altered voxels is zero.

Threshold original 0.05 0.1 0.2 0.6 1.0 1.4 2.0

Critical points 584879 46346 7780 1395 166 92 53 2

CT nodes 274338 24953 4713 853 65 32 16 2

β0 1081 417 245 82 14 7 6 1

β1 3339 997 381 109 25 2 1 0

β2 886 307 165 41 2 1 0 0

Altered voxels (1 pass) N/A 1172476 1432351 1513028 3171618 3878776 4481524 4487685
Altered voxels (2 passes) N/A 1157489 1408416 1561595 3148997 3861051 4450089 4487685

Table III. Results for the CT scan; Betti numbers of isosurface for isovalue of 0.7 are shown.

on a 181 × 181 × 434 grid (it has positive values inside the Buddha and negative
values outside), a 256 × 256 × 128 time slice of a fluid dynamics simulation and
a 241 × 281 × 191 subvolume of a chest CT scan. On an 850MHz Pentium III
machine, our implementation of the two-pass algorithm requires up to about 6
minutes to complete for each of the three datasets. The datasets vary substantially
in character: the first two are synthetic, the last one is acquired. Synthetic datasets
are known to be easier for topological algorithms as they contain less topological
noise [Carr 2004]. The signed distance function is relatively simple while the fluid
simulation dataset is quite complex (Figure 2). The CT scan volume, like most
acquired datasets, is noisy: it contains a high number of low persistence critical
points. Slices through the CT scan volume are shown in Figure 3.

First, we compare several performance characteristics of our algorithm for each
of the three datasets and for a variety of persistence thresholds:

(a). The number of critical points in the output dataset

(b). The number of contour tree nodes in the output dataset (after removing all
regular nodes, i.e. nodes having one neighbor above and one neighbor below)

(c). The Betti numbers of the isosurface corresponding to an arbitrarily selected
isovalue

(d). The number of voxels in the output volume that have a different value than
in the input volume (we think of it as a measure of the amount of change applied
to the data); we compare these numbers for the one-pass and two-pass version of

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

· 11

Fig. 4. Isosurfaces corresponding to the isovalue of zero for thresholds 1, 10, 15, 20 and 30.

Fig. 5. Snapshots of the carving procedure for τ = 20. Note that all surfaces throughout the

process are connected and have genus between 0 and 2.

our algorithm. When comparing the voxel values, we disregard the infinitesimal
perturbation.

The results for each of the three models are shown in Tables I, II and III. The
tables show that our procedure can highly reduce the number of critical points in
a volume dataset and the size of its contour tree. In particular, for all datasets
the maximum simplification has a small number of critical points (2 or 3). This is
true for most datasets we experimented with, except for those described in Section
6.1. The tables also demonstrate that the isosurfaces in the output volume are
also topologically simplified. Finally, the signed distance datasets demonstrate the
usefulness of the second pass: the two-pass version of the algorithm alters fewer
voxel values. The difference is much smaller for all other, less regular, datasets.

Isosurfaces corresponding to isovalue of 0 for different simplified versions of the
signed distance dataset are shown in Figure 4. Snapshots of the carving process (or,
equivalently, isosurfaces in the output volume corresponding to different isovalues)
are shown in Figure 5. Contour trees for the topologically simplified CT scan
(rendered using graphviz [Gansner et al. 1993; Gansner and North 2000]) are shown
in Figure 6.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

12 ·

Fig. 6. Contour trees for the topologically simplified CT scan (thresholds: 0.3, 0.5, 1.0, 1.6).

Fig. 7. A section through the MRA dataset (left) and images obtained from it by thresholding

using small thresholds to show the noise.

6.1 Hard cases

We found out that the behavior described above is typical for relatively well-behaved
datasets. However, we noticed that data containing flat and noisy regions may lead
to worse results, in particular causing our algorithm to generate a large number of
critical points even for very large thresholds (larger than the dynamic range of the
input data). An example slice through such dataset (an MRA scan of the head) is
shown in Figure 7. The resolution of this particular dataset is 256× 256× 60. Our
algorithm produced 37 critical points and 10 nodes in the simplified contour tree
even for thresholds larger than the dynamic range of the dataset.

In the hard cases such as the one discussed above, we recommend removing the
noise before using the algorithm described in this paper to simplify the topology.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

· 13

Even very crude denoising like simply applying the box filter greatly improves the
performance of our algorithm. In fact, for all realistic datasets we tested it on it
enables reduction of the number of critical points to under 4 for large thresholds.

6.2 Quality of output: discussion and experimental evaluation

Our algorithm is not optimal: the number (and total complexity) of critical points in
the output volume may not be minimum over all volumes within the threshold from
the input volume. Below, we discuss a number of examples leading to suboptimal
output. Then, we discuss experimental comparison of the topological complexity
of the volume produced by our algorithm to a theoretical lower bound.

6.2.1 Examples illustrating suboptimality. Our procedure preserves the location
of the global maximum of the input volume. If the global maximum is not on the
boundary, it generates a volume with at least 3 critical points for any threshold:
one corresponding to the global maximum, one corresponding to the point where
the contour (or one of the contours if there are more than one) hits the boundary
as the isovalue is decreased and one at the global minimum. On the other hand,
if perturbation by more than the dynamic range of the dataset is allowed, it is
possible to perturb the input volume to obtain one with only two critical points.

A more consequential example can be built based on one of the topological spaces
that are contractible but not collapsible, like the House of two rooms [Steen and
Seebach 1995]. The idea is similar to the one used in [Szymczak and Vanderhyde
2003]. Take the House of two rooms with walls only one voxel thick, and with
no voxels that can be removed from it while preserving the topology. It can be
obtained from the cube (union of all voxels) by means of topology-preserving carving
operations. Assign values to voxels so that they decrease with the carving order.
Let m be the lowest of these values. Assign an arbitrary value less than m to every
voxel of the House. It is not hard to see that, regardless of the threshold, our
procedure will be carving the House. At the moment only the voxels in the House
walls are left, no one can be removed without a topology change and a critical point
will be generated. By embedding several Houses in a volume as described above
we can build volumes for which our procedure would generate an arbitrarily high
number of critical points for any threshold.

Yet another example leading to suboptimal output is shown in Figure 8. If the
set S at some stage of carving is as shown on the left of the Figure, there are at
least two substantially different ways for the carving to proceed until S consists of
only red voxels:

a. Perform a topology-altering removal of a grey voxel (other than the one that
remains on the right of Figure 8), followed by six topology-preserving removals of
grey voxels, leading to the set S shown on the right of the Figure. Then, carve
all voxels other than the red ones. This requires two additional topology-altering
operations.

b. Remove one of the yellow voxels (altering the topology) and then all voxels
other than red ones (this is possible without any additional topology-altering voxel
removals).

Notice that the first carving order leads to 3 critical points, while the second carving

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

14 ·

Fig. 8. An example showing a possibility of suboptimal output. Left: two views of the set S

at some moment of the carving procedure. None of the voxels shown is on the boundary of the

dataset. The values of all the red voxels are 0. The values of all other voxels are τ + 1, so

that they all have to be removed before any of the red voxels. Right: a set obtained from the

set shown on the left by means of one topology-altering removal of a grey voxel followed by 6

topology-preserving grey voxel removals.

order generates only 1 critical point. By slightly changing the values of the non-red
voxels one can, in fact, force the first carving order and therefore suboptimal output
of our algorithm.

6.2.2 Experimental comparison to theoretical lower bound. In order to asses the
quality of output of the opportunistic approach to topology simplification, we set
up a simple experiment. We produced a small 32× 32× 16 dataset by subsampling
the fluid simulation dataset used in Section 6. Then, we applied the box filter to
obtain its smoother versions. The intensities of voxels in all the test volumes were
integers in [0, 255]. In order to be able to use the available homology computation
tools as well as the theoretical results on persistence, we used a variation of the
algorithm, which, instead of postponing carving voxels which would change the
topology of 〈S〉, postpones carving voxels which would alter the topology of |S|.
One could think of this procedure as an opportunistic way to minimize the number
of topological changes to the volume inside an isosurface (or the set of points with
value below the isovalue – frequently called the sublevel set) that happen as the
isovalue is varied from the maximum to the minimum value over the entire dataset.

Our main motivation is to compare the total complexity of topology changes in
the simplified volume (with threshold τ) to the total number of persistent homology
generators in the input volume. To measure the total complexity of the topology
changes that sublevel sets undergo we use the following quantity:

κτ =
∑

V ∈S0

dim coker H∗(iV) (1)

where the summation extends over all voxels V and iV is the inclusion map of the
union L<

V of all voxels having value strictly lower than V in the simplified volume

into the union L≤
V of all such voxels and V . Note that L<

V (respectively, L≤
V) could

be equivalently defined as the union of all voxels that remained in S right after
(respectively, right before) V was carved during simplification. In all computations,
we use homology with coefficients taken from the field of real numbers. Notice that
the summation can be restricted to all critical voxels without changing the result
(if iV is a homotopy equivalence, the corresponding summand of Equation 1 is

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

· 15

Box filter iterations τ 8 16 32 64

4 κτ 6,8,2 5,4,0 2,2,0 1,1,0

ξτ 6,8,2 5,4,0 2,2,0 1,1,0

1 κτ 23,103,47 9,44,14 1,9,2 1,2,0

ξτ 22,95,47 9,43,12 1,8,2 1,2,0

0 κτ 58,468,266 25,240,151 6,87,49 1,13,6

ξτ 57,334,243 21,160,140 6,63,42 1,10,5

Table IV. Comparison of κτ and ξτ (in dimensions zero, one and two) for different values of the

persistence threshold τ . The table on the right has been obtained for subsampled fluid simulation

dataset and the table on the left for its smoothed version.

vanishes). κτ measures the total number of homology generators of |S| ’destroyed’
during the carving procedure: each summand of Equation 1 counts the number of
linearly independent generators in L≤

V that cannot be represented as cycles in L<
V .

We compare κτ to the number of all persistent homology generators in the input
dataset. The persistent generators are computed as the following sum:

ξτ =
∑

n∈{0,1,...,255}

rank H∗(jn+1,n+1+τ) − rank H∗(jn,n+1+τ), (2)

where jp,q is the inclusion map of the union of voxels with value less or equal to
p (denoted by Sp) into the union of voxels having value less or equal to q (i.e.
Sq). Each summand of (2) contributes the codimension of im H∗(jn,n+1+τ) relative
to im H∗(jn+1,n+1+τ), or the number of generators that need to be added to the
set of generators of im H∗(jn,n+1+τ) in order to obtain a set of generators for
im H∗(jn+1,n+1+τ). Notice that the added generators are persistent (they belong
to H∗(Sn+1+τ)). Moreover, they can be represented as cycles in H∗(Sn+1) and are
created when the isovalue increases over n + 1, since they cannot be represented as
cycles in H∗(Sn). In particular, they correspond to persistent cycles in the sense
of [Edelsbrunner et al. 2002]. We conclude that Equation (2) expresses the total
number of all cycles of persistence τ or more.

It is a simple exercise in homology theory to show that ξτ ≤ κτ . The performance
of our algorithm can be evaluated by examining the difference between κτ and ξτ .
In the case of our test dataset, the results are shown in Table IV. All the homology
computations were performed using the CHomP package [Pilarczyk 2004; Kaczynski
et al. 2004; Mischaikow et al. 2004]. For the smoothest version of the test dataset
(4 iterations of the box filter), κτ and ξτ were the same for all tested thresholds,
which means that our procedure performed optimally. For the one of intermediate
smoothness, differences between κτ and ξτ appeared, but they remained rather
small. Finally, for the noisiest, unfiltered test dataset, the differences were much
larger, although the total κτ (sum of κτ over homology of all dimensions) still
generally remained within 30 per cent from the ξτ .

7. CONCLUSION AND FUTURE WORK

We have presented a simple-to-implement procedure allowing computation of a
perturbation of a volume dataset having significantly fewer critical points. Several
interesting variations of our algorithm could possibly be of interest for specific
applications. For example, instead of attempting to remove the voxels so that
introduction of critical points is avoided, one might want to avoid only critical

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

16 ·

points of certain types, as in the experiment described in Section 6.2. One could
make the threshold τ depend on a sample, its intensity or the intensity distribution
of its neighborhood, rather than keeping it constant throughout the entire dataset.
In time-dependent data, it might be of interest to avoid topology changes of contours
as they evolve in time.

Clearly, topologically simpler volumes may be easier to use in concrete applica-
tions: since they have fewer contours, more precise and computationally expensive
shape descriptors may be used to find the ones with desired characteristics. Smaller
datastructures are needed to keep isosurface seeds (like path seeds described in
[Carr 2004]). Simplified contour trees become easier to visualize and compare. In
particular, it would be interesting to apply tree matching algorithms to find cor-
respondences between critical points in different volumes; this is a fundamental
problem in numerous applications.

Improvements of the procedure described in this paper could incorporate smooth-
ness measures into the voxel priorities, attempting to reduce the sensitivity of the
procedure to noise mentioned in Section 6.1. Finally, it would be interesting to per-
form a rigorous comparison to the techniques based on Morse Complexes as well
as a rigorous analysis of how effective our procedure is in removing low persistent
topological features.

REFERENCES

Aktouf, Z., Bertrand, G., and Perroton, L. 2002. A three-dimensional holes closing algo-
rithm. Pattern Recognition Letters, 523–531.

Bajaj, C., Kreveld, M. V., Oostrum, R. V., Pascucci, V., and Schikore, D. R. 1998. Contour
trees and small seed sets for isosurface traversal. Tech. Rep. UU-CS-1998-25, Department of
Computer Science, Utrecht University.

Bajaj, C., Pascucci, V., and Schikore, D. 1997. The contour spectrum. In Proc. IEEE
Visualization 1997. 167–175.

Berglund, N. and A.Szymczak. 2004. Making contour trees subdomain-aware. In Proceedings

of the 16th Canadian Conference on Computational Geometry (CCCG’04). 188–191.

Bhaniramka, P., Wenger, R., and Crawfis, R. 2000. Iso-contouring in higher dimensions. In

IEEE Visualization 2000. 267–273.

Bremner, P.-T., Edelsbrunner, H., Hamann, B., and Pascucci, V. 2003. A multi-resolution

data structure for two-dimensional mores-smale functions. In Proc. IEEE Visualization 2003.
139–146.

Carr, H. 2004. Topological manipulation of isosurfaces. Ph.D. thesis, University of British

Columbia.

Carr, H., Snoeyink, J., and Axen, U. 2003. Computing contour trees in all dimensions. Com-

putational Geometry 24, 75–94.

Carr, H., Snoeyink, J., and van de Panne, M. 2004. Simplifying flexible isosurfaces using local

geometric measures. In Proc. IEEE Visualization 2004.

Chiang, Y. and Lu, X. 2003a. Progressive simplification of tetrahedral meshes preserving all

isosurface topologies.

Chiang, Y.-J. and Lu, X. 2003b. Simple and optimal output-sensitive computation of contour

trees. Tech. Rep. TR-CIS-2003-02, Polytechnic University. June.

Curless, B. and Levoy, M. 1996. A volumetric method for building complex models from range

images. In Proc. of SIGGRAPH 1996. 4–9.

Delfinado, C. J. A. and Edelsbrunner, H. 1995. An incremental algorithm for betti numbers

of simplicial complexes on the 3-sphere. Computer Aided Geometric Design 12, 7, 771–784.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

· 17

Edelsbrunner, H., Harer, H., and Zomorodian, A. 2001. Hierarchical morse-smale complexes

for piecewise linear 2-manifolds. In Symp. on Computational Geometry. ACM, ACM Press,

New York, NY, USA, 70–79.

Edelsbrunner, H., Harer, J., Natarajan, V., and Pascucci, V. 2003. Morse-smale complexes

for piecewise linear 3-manifolds. In Proc. 19th Ann. Sympos. Comput. Geom. 361–370.

Edelsbrunner, H., Letscher, D., and Zomorodian, A. 2002. Topological persistence and

simplification. Discrete Comput. Geom. 28, 511–533.

El-Sana, J. and Varshney, A. 1997. Controlled simplification of genus for polygonal models.

In Proc. IEEE Visualization ’97, R. Yagel and H. Hagen, Eds. 403–412.

Gansner, E. R., Koutsofios, E., North, S. C., and Vo, K.-P. 1993. A technique for drawing

directed graphs. IEEE Transactions on Software Engineering 19, 3, 214–230.

Gansner, E. R. and North, S. C. 2000. An open graph visualization system and its applications

to software engineering. Software-Practice and Experience 30, 11, 1203–1233.

Gerstner, T. and Pajarola, R. 2000. Topology preserving and controlled topology simplifying

multiresolution isosurface extraction. In Proc. IEEE Visualization 2000, T. Ertl, B. Hamann,

and A. Varshney, Eds. 259–266.

Guskov, I. and Wood, Z. 2001. Topological noise removal. In Proc. Graphics Interface 2001,

B. Watson and J. W. Buchanan, Eds. 19–26.

Han, X., Xu, C., and Prince, J. L. 2001. A topology preserving deformable model using level sets.

In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR2001). 765–770.

Han, X., Xu, C., and Prince, J. L. 2002. A topology preserving geometric deformable model

and its application in brain cortical surface reconstruction. In Geometric Level Set Methods in
Imaging, Vision and Graphics, S. Osher and N. Paragios, Eds. Springer Verlag.

Kaczynski, T., Mischaikow, K., and Mrozek, M. 2004. Computational Homology. Applied

Mathematical Sciences, vol. 157. Springer-Verlag.

Mischaikow, K., Mrozek, M., and Pilarczyk, P. 2004. Graph approach to the computation

of the homology of continuous maps. Foundations of Computational Mathematics, to appear .

Pascucci, V. and Cole-Mclaughlin, K. 2002. Efficient computation of the topology of level

sets. In Proc. IEEE Visualization 2002. 187–194.

Pilarczyk, P. 2004. Homology software. http://www.math.gatech.edu/~ chom/.

Reeb, G. 1946. Sur les points singuliers d une forme de pfaff compl‘ement integrable ou d une
fonction numerique. Comptes Rendus de L Academie ses Seances, Paris 222, 847–849.

Steen, L. A. and Seebach, J. A. 1995. Counterexamples in Topology. Dover Publications.

Szymczak, A. and Vanderhyde, J. 2003. Extraction of topologically simple isosurfaces from
volume datasets. In Proc. IEEE Visualization 2003. 67–74.

Tarasov, S. P. and Vyalyi, M. N. 1998. Construction of contour trees in 3d in o(n log n) steps.
In Proc. 14th Ann. Sympos. Comput. Geom.

Wood, Z., Hoppe, H., Desbrun, M., and Schröder, P. 2002. Isosurface topology simplification.
Tech. Rep. MSR-TR-2002-28, Microsoft Research.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

