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Existence and Roughness of the Exponential 
Dichotomy for Skew-Product Semiflow in Banach 

Spaces * 

Shui-Nee Chow tand Hugo Leiva t 

Abstract 

In this paper we introduce a concept of exponential dichotomy for skew-product 
semifl.ow in infinite dimensional Banach spaces which is an extension of the clas­
sic concept for evolution operators. This concept is used to study the roughness 
property of the skew-product semiflow. Also, we introduce the concept of discrete 
skew-product and give a necessary and sufficient condition for this discrete skew­
product to have a Discrete Dichotomy. After that, we give necessary and sufficient 
conditions for the existence of exponential dichotomy for skew-product semiflow. 
Moreover we prove that the exponential dichotomy for skew-product semiflow is 
not destroyed by small perturbation. Finally, we apply these results to parabolic 
partial differential equations and functional differential equations. 

Key words. skew-product semifl.ow, exponential dichotomy, discrete skew-product, 
discrete dichotomy, roughness. 
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1 Introduction 

The concept of exponential dichotomy of linear differential equations was introduced by 
Perron in 1930 [24], which is concerned with the problem of conditional stability of a 
system 

x = A(t)x (1.1) 

and the conection with the existence of bounded solutions of the equation 

x = A(t)x + f(x, t) (1.2) 

where the state space is a Banch space X and t --+ A(t) : 1R --+ L(X) is bounded, 
continuous in the strong operator topology. For related work, see Massera and Shaffer 
[21], Hale [8], Levinson [15], Coppel [6], Sacker and Sell [28], [29], [30] and Palmer [22). 

One of the important problems of exponential dichotomies of the equation ( 1.1) is 
its roughness. That is, they are not destroyed by small pertubations of the bounded 
operator A( t ). This was first proved by Massera and Shaffer [21] under the assuption that 
the original operator A( t) is a bounded matrix; for the case that A( t) is not a matrix the 
results still true if A(t) E L(X) where X is and infinite dimensional Banach space and 
can be found in Daleckii and Krein [7]. Also, Palmer (22] proved the following Lemma: 

Lemma 1.1 Let A( t) and B( t) be n x n matrix functions, bounded and continuous on 
[ t 0 , oo). Suppose the system ( 1.1) has an exponential dichotomy on [ t 0 , oo) with projection 
matrix function P(t) and B(t)--+ 0 as t--+ oo. Then the perturbed system 

x = [A(t) + B(t)]x (1.3) 
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also has an exponential dichotomy on [t0 , oo) and if Q( t) is a corresponding projection 
matrix function 

IIQ(t)- P(t)jl-+ 0 as t-+ oo (1.4) 

The need for a new approach arose from the fact that for the linear differential equation 
(1.1) with unbounded operator A(t), the solutions generally speaking, either can not be 
extended in the direction of the negative times, or can be extended, but not uniquely. 
For example, for parabolic partial differential equations many authors have studied these 
problems, (see for example, Henry (11), Kolesov (12] and Xiao-Biao Lin (17D. In the case 
of Henry, he studied the existence and roughness of the exponential dichotomy of the 
following linear differential equation 

x = (Ao + A(t))x (1.5) 

where t -+ A( t) : 1R -+ L( X) is bounded, continuous in the strong operator topology and 
A0 is the infinitesimal generator of an analitic semigroup of bounded linear operator in 
the Banach space X. Henry's results has been generalized by A. Carvalho (2], to the case 
when A0 is the infinitesimal generator of a C0 semigroup instead of an analitic semigroup. 
Both of them used the relation between discrete dichotomies and exponential dichotomies. 

For the case of functional differential equations we can see the work done by Hale­
X.B.Lin (9], H.Rodrigues (27] and M.Lizana (18]. 

In the case of M.Lizana, he proved that, if the linear nonautonomous functional dif­
ferential equation 

x(t) = L(t)xt, t ~ 0 (1.6) 

admits and exponential dichotomy on JR+ where L(t) : C = C[[-r, 0], Dr] -+ IIr is a 
linear operator which is uniformly continuous and bounded with respect t on JR.+ in the 
operator norm of the space L(C, JR.n), then it is not destroyed by small perturbation. 
Basically he proved the following: 

Lemma 1.2 If {1.6} has an exponential dichotomy on JR.+ and B(t) is a linear bounded 
operator for t ~ 0 and continuous with respect to t in the operator norm of L( C, IRn), 
IIB(t)ll, ~ f for all t > 0, then 

x(t) = (L(t) + B(t))xt (1.7) 

has an exponential dichotomy on JR.+ if f is sufficiently small. 

The prove of the above Lemma is similar to that for ordinary differential equations 
(see [8], Lemma 5.2, p.p 125-127). 

Also, Lizana proved the following Theorem 

Theorem 1.1 Suppose the above mentioned hypothesis on L are satisfied. If L( t) is 
globally Lipschitz in t with a constant p > 0 sufficiently small and all the roots of the 
characteristic equation detil( t, .A) = 01 where 

Ll(t, .A)= .AI- L(t)(e>.·J) (1.8) 
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verify the condition 
IReA(t)l ~ a > 0, Vt ~ 0 (1.9) 

where a is independent oft, then x(t) = L(t)xt, t ~ 0 has an exponential dichotomy 
on JR+, with some projection operators P( a) and Q( a), the subspace Q( a )X is finite 
dimensional and the dimension is independent of a on JR+. 

All the problems above can be treated in the unifield setting of a linear skew-product 
semiflow. In [31] Sacker-Sell use a concept of exponential dichotomy for skew-product 
semiflow with the restriction that the unstable manifold has finite dimension and they 
give a sufficient condition for the existence of exponential dichotomies for skew-product 
semiflow, which is given by the following Theorem. 

Theor.-~m 1.2 Let 1r = (~,a) be a weakly hyperbolic skew-product semiflow on £ = 
X X e. If codimS(B) = k, BEe (S(B) -stable manifold), then 7r has an exponential 
dichotomy over e. 

This concept is also used by Magalhaes in (19] and (20]. It is not hard to prove that the 
concept of exponential dichotomy used by Sacker-Sell and Magalhaes is stronger than the 
copcept we use here. 

A different characterization of the exponential dichotomy for skew-product flow in 
infinite Banach spaces appears in Rau (25] and (26]. He associates a strongly continuous 
group to the skew-product flow 1r = (~,a) in the following way: 

Given a skew-product flow 7r =(~,a) on£= X X ewe can associate a family {T(t)}telR 
of linear operators on the Banach space C(e, X) defined by 

T(t)f(B) = ~(B · ( -t), t)f(B · ( -t)), Vt E 1R 

for all B E 0 and f E C(e, X). 

(1.10) 

Proposition 1.1 The operator family {T(t)}telR given by {1.10} is a strongly continuous 
group on C(e, X). 

Since 1r = (~,a) is a flow (two side flow) the definition of exponential dichotomy is the 
same as in the finite dimensional case; this allows Rau in (25] to give the following sufficient 
and necessary condition for the existence of exponential dichotomy for skew-product flow 
7r=(~,a). 

Theorem 1.3 {Theorema 12 in {25}} Let {T( t)} telR be the strongly continuous group 
given by ( 1.10). Then the following statements are equivalent: 

(A) 1r = ( ~, a) has an exponential dichotomy over e. 
(B) a(T(t)) n r = 0, Vt =/= 0 
where r denotes the unit circle in c. 
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A similar result as Rau's can be found in Latushkin-Stepin [13], [14] and Antonevich [1]. 
In this paper, first of all, we introduce a concept of exponential dichotomy for skew­

product semiflow weaker than the concepts used by Sacker-Sell and Magalhies. Here we 
allow the unstable manifold to have infinite dimension. On the other hand, ours concept 
is an extension of the classic concept of exponential dichotomy for evolution operators 
used by Henry in [11]. 

Second, we introduce the concept of Skew-Product Sequence and give a necessary and 
sufficient condition for this sequence to have discrete dichotomy. 

Third, we apply the above results to prove roughness. We also give a necessary and 
sufficient condition for a linear skew-product semiflow to has an exponential dichotomy. 

Finally, we consider some examples as applications of these results. 

2 Preliminaries 

In this section we shall present some definitions, notations and results about Skew Product 
Semiflow in infinite Banach spaces, as well as the definition of exponential dichotomy for 
the skew-product semiflow which is one of the most important concept of this paper. 

2.1 Linear Skew-Product Semiftow 

We begin with the notion of skew-product semiflow on the trivial Banach bundle £ = 
X X e where X is a fixed a Banach space (the state space) and e is a compact Hausdorff 
space. 

Definition 2.1 Suppose that u(B, t) = B ·tis a flow one, i.e., the mapping (B, t)-+ B · t 
is continuous, B · 0 =Band B · (s + t) = (B · s) · t, for all s, t E JR. 

A linear skew-product semiflow 7r = (4>, u) on£ = X X e is a mapping 7r(x, B, t) = 
(4>(B, t)x, B.t) fort~ 0, with the following properties: 

(1) 4>(B, 0) =I, the identity operator on X, for all BE 9 

(2) limt-o+ 4>(B, t)x = x, uniformly in B. This means that for every x E X and every 
E > 0 there is aS= S(x,E) > 0 such that I'I4>(B, t)x- xU~ E, for all BEe and 0 ~ t ~c. 

- .,;1''·-

(3) 4>(B, t) is a bounded linear operator from X into X that satisfies the cocycle identity: 

4>(B, t + s) = 4>(B.t, s)4>(B, t) BE 0, 0 ~ s, t. (2.1) 

( 4) for all t ~ 0 the mapping from£ into X given by 

(x, B) -+ 4>(B, t)x 

is continuous. 

The properties (2) and (3) imply that for each (x, B) E £ the solution operator t -+ 

4>( B, t )x is right continuous for t 2:: 0. In fact : 

II4>(B, t + h)x- 4>(B, t)xll = II[4>(B · t, h)- 1]4>(B, t)xll 
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which goes to 0 as h goes to o+. 

For any subset F C Ewe define the fiber 

F(B) := {x EX: (x, B) E F}, BE 0. (2.2) 

So E(B) =X x {B}, BE 0. If U C 0, then we define 

F( U) := U F( B). 
BEU 

Also we define 
Eo = {(x, B) E E: x = 0} 

the zero fi her. 

Proposition 2.1 Let 1r = ( tP, u) be a linear skew-product semiflow on E. Then there 
exists constants M ;:::: 1, a > 0 such that 

lltP( B, t)ll ~ Meat B E 0, t E JR+. 

Proof First we claim that there is 6 > 0 such that 

M = sup{lltP(8, t)ll : 8 E 0, 0 ~ t ~ 6} < oo 

For the purpose of contradiction. Let us assume that there are sequences On E 0, tn E JR+ 
such that tn --+ o+ and lltP(Bn, tn)ll > n. The Banach-Steinhaus Theorem (Uniform 
Boundedness Principle) implies that there is x E X such that 

is unbounded . This contradicts the fact that 

lim tP(8,t)x = x 
e-o+ 

uniformly in BE 0. Therefore M < oo. 
On the other hand we have that tP(B, 0) =I, so M;:::: 1. 
Now fix t E JR+. Let m be an integer satisfying m ~ t/6 ~ m+ 1, i.e., 6m ~ t ~ 6m+6. 
Then for any BE 0 we have 

lltP(8, t)ll - lltP(8, t- 6m + 6m)ll 

- lltP(8 · 6,(t- 6m) + 6(m -1))tP(8,6)11 

Now putting Bo = B, 81 = 8o · 6, B2 = 81 · 6, · · · Bm = 8m_1 · 6; we get the following: 

lltP(B, t)ll - lltP(Bm, t- Bm)tP(8m-1, 8) · · · tP(B1, 6)tP(8o, 6)11 

< um+t = M.Ar" ~ M.Mt/6 • 
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If we put a= lln(M), then 

0 

Remark 2.1 The theory we present here extends easily to Banach bundles which are 
locally product spaces. A Banach bundle £ with fiber X over a base space e with 
projection Pis denoted by(£, X, e, P), or £for short, and is defined as follows: 

(1) X is a fixed Banach space and e is a compact Hausdorff space. 

(2) The mapping P: £ ~ e is continuous. 

(3) For each 8 E e, p-1 (8) = £(8) is a Banach space, which is referred to as the fiber 
over 8. , 

( 4) For each 8 E e, there is an open neighborhood U of 8 in e and a homeomorphism 
r : p- 1(U) ~ X x U such that, for each 71 E U, p-1 is mapped onto X x {71} and 
T: p-1 (71) ~X x {71} is a linear isomorphism. 

(5) The norms 11 · II = II · lis on the fiber p-1 (8) vary continuously in 8. One can use the 
local coordinate notation ( x, 8) to denote a typical point in a Banach bundle £. 

2.2 Projectors and Subbundles 

A mapping P: £ ~ £ is said to be a projector if P is continuous and has the form 
P( x, 8) = ( P( 8)x, 8), where P( 8) is a bounded linear projection on the fiber £( 8). 

For any projector P we define the range and null space by 

n = R.(P) = {(x,8) E £: P(8)x = x} 

N = N(P) = {(x,8) E E: P(8)x = 0} 

The continuity of P implies that the fibers R.(8) andN(8) vary continuously in 8. This 
also means that P( 8) is strongly continuous in 8. The following result can be found in 
Sacker-Sell (31]. 

Lemma 2.1 Let P be a projector on £, then n and N are closed subsets in £ and we 
have 

'R(8) n N = {0}, 'R(8) + N(8) = £(8) 8 E e. 

Definition 2.2 A subset V is said to be a subbundle of£, if there is a projector P on £ 
with the property that 'R(P) = V; in this case W = N(P) is a complementary subbundle. 
i.e., £ = V + W as a Whitney sum of subbundles. 

For the proof of the following lemma see [31]. 
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Lemma 2.2 Let V C E with the properties: 

( 1) V is closed. 

(2} V( B) is a linear subspace of E( B) for all B E e. 
(9} codimV(B) is finite for all BE e. 
(4) codimV(B) is locally constant on e. 
Then V is a subbundle of E. 

2.3 The Stable, the Unstable and Initial Bounded Sets. 

8 

Definit .ion 2.3 A point (x, B) E E is said to have a negative continuation with respect to 
71" if then~ exists a continuous functions¢ : ( -oo, 0] ---+ E satisfying the following properties: 

( 1) ¢( t) = ( ¢~ ( t), B · t) where ¢~ : (-oo, 0] ---+ X 

(2) ¢(0) = (x, B) 

(3)¢(s)EE(B·s) foreach s~O 

(4) 11"(</J(s), t) = ¢(s + t) for each s ~ 0, and 0 ~ t ~ -s 
In this case the function ¢ is said to be a negative continuation of the point ( x, B). 

For any negative continuation ¢ and any r ~ 0, we define ¢.,.( t) = ¢( r + t) for - oo < 
t < -T. 

Now we shall define the following sets: 

M := {(x, B) E E: (x, B) has a negative continuation ¢} 

U := {(x, B) E M : there is a negative continuation ¢ of (x, B) satisfying II<P~(t)ll ---+ 

0 as t---+ -oo} 

B+ := {(x, B) E E: supt2:0 II~(B, t)xll < oo} 

B~ := {(x, B) E M : (x, B) has a unique bounded negative continuation ¢} 

B- := {(x, B) E M :there is a negative continuation ¢ of (x, B) satisfying supt~o II<P~(t)ll < 
oo} 

S := {(x,B) E E: II~(B,t)xll-+ 0 as t---+ oo} 

The set U is called unstable set, S is the stable set and B is the initial bounded set. 
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Remark 2.2 The theory described here does allow for the possibility that the linear 
operator ~(8, t) need not be one-to-one for some t ~ 0, i.e., ~(8, t) may has a nontrivial 
null space. Because of this, it maybe possible for a point (x, 8) E £ to have more than 
one negative continuation. It is easy to see that if ~(8, t) is one-to-one for all t > 0 ,then 
every negative continuation is unique. Uniqueness of negative continuations is a common 
feature in the study of partial differential equations, see for example, Temam [32] and 
Hale [10]. 

For all (x, 8) E 8~ we shall denote the unique bounded negative continuation, by 
~(8, t)x, t ~ 0; this defines an extension of the mapping~- It is clear that for each 8 E 9 
the fiber 8~(8) is a linear subspaces of £(8) and ~(8, t)x is linear in x for each t ~ 0, i.e., 
~(8, t) is a linear mapping from 8;(8) to B;(8 · t) fort ~ 0. 
Moreover, the co cycle identity 

~(8,t + s)x = ~(8 · t,s)~(B,t)x s,t E lR 

is valid for all ( x, 8) E 8~. 

2.4 Exponential Dichotomy for Linear Skew-Product Semiflow 

Now we shall introduce a new concept of exponential dichotomy for skew-product semiflow 
in infinite dimensional Banach spaces which is an extension of the concept given by Henry 
in {11). 

Definition 2.4 A projector P on £ is said to be invariant if it satisfies the following 
property 

P(8 · t)~(8, t) = ~(8, t)P(8) t ~ 0, 8 E e (2.3) 

Definition 2.5 We shall said that a linear skew-product semiflow 1r on £ has an expo­
nential dichotomy over an invariant set e, where e c e, if there are constants 
k ~ 1, f3 > 0 and invariant projector P such that for all 8 E e we have the following: 

(1) ~(8, t): N(P(8))-+ N(P(8 · t)), t ~ 0 is an isomorphism with inverse: 

~(8 · t, -t): N(P(8 · t))-+ N(P(8)), t ~ 0 

(2) II~( 8, t)P( 8)11 ~ ke-~t, t ~ o 
(3) U~(8, t)(I- P(8)jl ~ kef3t, t ~ 0 

where ~(8, t)(I- P(8)) is well defined fort~ 0 since N(P(8)) = 'R(I- P(8)). 

Proposition 2.2 If 1f = ( ~, q) is a linear skew-product semiflow on £ = X X e which 
admits an exponential dichotomy over e, then one has that 8 = £o and the corresponding 
projector P is such that 

'R = S(e), N = U(e) 
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and 
£ = 'R.(P) + N(P) = S(S) + U(S) 

{the Whitney sum of two subbundles} 

10 

Proof Let P be the corresponding projector and consider (x, B) E B. Set y = P(B)x and 
z = (I- P(B))x. Then each one of the trajectories <P(B, t)x, <P(B, t)y and <P(B, t)z 
has a negative contiuation q;x, </Jll and q;z respectively. In fact, if q;x is the negative 
continuation of <P(B, t), then: 

( 1) q;x ( 0) = X 

(2) q;x(t + s) = q,(B · s, t)</;x(s), 0 ~ t ~ -s 

(3) q,(t7 · s, t)<Pz(s) = q,(B, t + s)x, 0 ~ -s ~ t. 

From here it is easy to prove that 

<f;Y(s) = P(B · s)</Jx(s) and q;z(s) =(I- P(B · s))<Pz(s) 

for all s ~ 0. Therefore 

So 
IIYII ~ kd3tii</Jxll, Vt ~ 0. 

Since q;x(t) is bounded and fJ > 0, then y = 0. 
From the definition of exponential dichotomy we have that 

<P(B, t): N(P(B)) ~ N(P(B · t)), t ~ 0 

is an isomorphism with inverse: 

<P(B · t, -t): N(P(B · t)) ~ N(P(B)), t ~ 0. 

Since 'R.(I- P(B)) = N(P(B)), then we get the following: z =(I- P(B))x E N(P(B)) 
and 

Hence 

z = <P(B·t,-t)<P(B,t)z 
= <P(B · t, -t)<P(B, t)(I- P(B))x 
- <P(B · t, -t)(I- P(B · t))<P(B, t)x, t ~ 0. 

liz II ~ ll<P(B · t, -t)(I- P(B · t))llll<P(B, t)xll 
~ ke-IHII<P(B,t)xll, t ~ 0. 

Since <P(B, t)x is bounded fort ~ 0 and fJ > 0, then z = 0. Therefore x = y + z. which 
means that B = Eo. This implies that S n U = Eo. 
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Clearly we have that 
'R(P) c S, N(P) c U 

and 
£ = x x e = 'R(P) +N(P). 

Then 
'R(P) == S and N(P) = U. 

0 

Corolary 2.1 The projector P associated with the exponential dichotomy of 1r = (~'a) 
is uniquely determined. 

Proof Assume that we have another projector Q associated with the exponential di­
chotomy of 1r == (~,a). Then Q( x, 8) = ( Q( 8)x, 8) where Q( 8) is a linear bounded 
Projection on X. 
From the previous lemma we get that 

'R(P(8)) = R(Q(8)), N(P(8)) == N(Q(8)), 8 E e. 

This implies that P(8) == Q(8), 8 E e. Therefore P(x,8) = Q(x,8), (x,8) E £. 

0 

Lemma 2.3 Assume 1r = ( ~, a) has an exponential dichotomy over e with constants 
{3, k and corresponding projector P. Then the following holds: 

(1} j,IP( 8))11 ~ k, 8 E e 
{2} If we define 

G(O,t,s)={ 

then 

~(8 · s, t- s)P(8 · s), 
<P(8 · s, t- s)(I- P(8 · s)), 

IIG(8,t,s)ll ~ ke-/31t-•l, t,s E JR. 

Proof Follows from the definition of exponential dichotomy. 

3 Discrete Skew-Product 

if t ~ s 
if t ~ s 

(2.4) 

(2.5) 

0 

Here we shall introduce the concept of discrete skew-product and present some results 
relative to discrete dichotomy for such skew-product, so as existence and preserving of 
the discrete dichotomy under small perturb.ation. 
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3.1 Discrete Dichotomy 

We begin this subsection with the concept of discrete skew-product which appears in 
natural way when we discretize the skew-product semifiow on time. 

Definition 3.1 Let u(B, t) =B. t, t E 1R be a flow on e. A mapping -rr : E X z ---+ E is 
called discrete skew-product if it can be written as follows: 

i(x,B,n) = (~n(B)x,B ·n), (x,B) E £, n E Z. 

where ~n( B) E L(Jt) and has the following properties 

(1) thece ·exists p > 0 such that 

ll4>n(B)II < p, for all n E z, BE e. 

(2) for each n E Z the mapping from E to X given by (x, B)---+ 4>n(B)x is continuous. 

Remark 3.1 In principle a discrete skew-product -rr is not a semifiow since there is not 
relation between <I>n(B)'s. However, in section 4 we shall define a discrete skew-product 
for which we do have relation between the <I>n( B)'s. Also, we do not need to assume that 
4>n( B) is invertible in whole the space X. 

Now we shall introduce two concepts of discrete dichotomy over e. 

Definition 3.2 (pointwise discrete dichotomy) We shall say that a discrete skew­
product -fi- has a pointwise discrete dichotomy over e if for each B E e, there exist 
MB, aB < 1 and a family of projections Pn( B) on X such that 

( 1) <I>n( B)Pn( B) = Pn+I ( B)4>n( B), n E Z. 

( 2) <I> n (B) : N ( P n (B)) ---+ N ( P n+ 1 (B)), n E Z 
is an isomorphism with inverse: 

4>n(B)-1 
: N(Pn+t(B))---+ N(Pn(B)). 

(3) Define 4>n,~n(B) := <I>n-l(B)4>n-2(B) ... 4>~n(B), and <I>~n,~n(B) := J, n > m. Then 

ll4>n,~n(B)P~n(B)xll :S MBa~-~nllxll, n :S mE Z. 

(4)II<I>n,~n(B)(J- P~n(B))xll :S Msa8-nllxll, n < m; n,m E Z 

where <I>n,~n(B)(J- P~n(B)) is well defined by (2) since R(I- P~n(B)) = N(P~n(B)). 
In particular, if m = 0 we get 

ll4>n,o(B)Po(B)xll ~ Msa~llxll, n ~ 0, 

and 
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Definition 3.3 (uniform discrete dichotomy) We shall say that a discrete skew­
product i has a uniform discrete dichotomy over e, if in definition 3.2 Ms and as are 
independent of 8 E 0 (Ms = M, as= a). 

Remark 3.2 It is easy to check the following properties: 

for n > m ~ k. 

4>n,n-1 ( 8) = 4>n-1 ( 8); 4>n,r( 8)4>r-1 ( 8) = 4>n,r-1 ( 8). 

for all r ~ n, m, k E Z and 8 E 0. 

(3.1) 

(3.2) 

(3.3) 

Lemma 3.1 Let i : £ x Z --+ £ be a discrete skew-product . If for a sequence y = 
{Yn} in X and 8 E 0 we have 

Xn+1 = 4>n( 8)xn + Yn, n E z. (3.4) 

Then 
n-1 

Xn == 4>n,m( 8)xm + 2:: 4>n,k+1 ( 8)yk, n > m E z (3.5) 
k=m 

Proof 
The case m = n- 1 is easy. In fact, from part (3) of definiton 3.2 we have that 

n-1 
Xn = 4>n-1 ( O)xn-1 + Yn-1 = 4>n-1 ( 8)xn-1 + '2:: 4>n,k+1 ( 8)Yk· 

k=n-1 

Assume that (3.5) is true form= r < n. Then we shall prove it is true also form= r -1. 
In fact, 

n-1 
Xn = 4>n,r(8)xr + '2:: 4>n,k+1(8)yk 

k=r 
and Xr = 4>r-1Xr-1 + Yr-1· Therefore, using Remark 3.1 we get the following 

n-1 
Xn = 4>n,r(8)[4>r-1(8)xr-1 + Yr-1] + 2:: <I>n,k+I(8)yk 

k=r 
n-1 

- 4>n,r( 8)4>r-1 ( 8)xr-1 + 4>n,r( 8)Yr-1 + 2:: 4>n,k+l ( 8)yk 

n-1 
- 4>n,r-1 ( 8)xr-1 + '2:: 4>n,k+1 ( 8)yk 

k=r-1 

0 
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Lemma 3.2 Assume the discrete skew-product i: Ex Z ~ E has a pointwise discrete di­
chotomy over e with the corresponding M 8 , o.8 and projections Pn(B). Then the following 
holds: 

(a) IIPn(B)Il ~ M6, n E z, 8 E e 
(b) We define the discrete Green's function as follows 

G (B) { 4>nm(B)Pm(B), 
n,m = - 4>n:m(B)(J- Pm(B)), 

Then 

n~m 

n<m. 

IIGn,m(B)II ~ M6o.~n-ml, () E e, n,m E z 
Proof It follows from the definition 3.2 of pointwise discrete dichotomy. 

(3.6) 

(3.7) 

0 

Corolary 3.1 Assume the discrete skew-product i : E x Z ~ E has a uniform discrete 
dichotomy over e with constants M and o. < 1. Let {Pn(B)}, n E Z, () E e be the 
corresponding family of projections. Then we have: 

(a) IIPn(B)ll ~ M, n E z, () E e 
(b) IIGn,m(B)ll ~ Mo.ln-ml, n E Z, 8 E e. 
Lemma 3.3 Let i : E x Z ~ E be a discrete skew-product which has a pointwise discrete 
dichotomy over e. Consider 8 E e andy= {Yn} in loo(Z, X). Then {xn} E loo(Z,X) is 
solution of 

(3.8) 

if and only if 

00 

Xn = L Gn,k+1 ( B)Yk· (3.9) 
-oo 

Proof We have the following 

and using (3.5) we get 

r-1 
Xr = 4>n,r ( B)xn + L 4>r,k+1 ( B)yk, r > n. 

k=n 

Then 

r-1 
= 4>n,r( B)[ 4>r,n( B)xn + L 4>r,k+1 ( B)yk] -

k=n 
r-1 

4>n,r( B)Pr( 8)[4>r,n( B)xn + L 4>r,k+1 ( B)yk] 
k=n 
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From Remark 3.1 we get 

r-l 
<I>n,r(B)[I- Pr(B)]xr = Xn + L <I>n,k+t(B)yk- Pn(B)xn 

k=n 

r-l 
- L <I>n,k+l ( B)Pk+l ( B)Yk· 

k=n 

Hence 
r-l 

<I>n,r( B)[I- Pr( B)]xr = [I- Pn( B)]xn + L <I>n,k+l ( B)[I- Pk+t( B)]Yk· 
k=n 

Since 
II<I>n,r(B)[I- Pr(B)]xrll ~ Msa;-nllxrll 

and llxrll ~ C for all r > n, then 

and the series 
00 

L <I>n,k+l ( B)[I- Pk+l ( B)]Yk converges. 
k=n 

Therefore 

00 

[I- Pn(B))xn =- L <I>n,k+t(B)[I- Pk+t(B)]Yk· 
k=n 

For n > m we have the following: 

n-1 

Xn == <I>n,m( B)xm + L <I>n,k+l ( B)Yk· 
k=m 

Then 

n-1 

Pn(B)xn - F~(B)<I>n,m(B)xm + L Pn(B)<I>n,k+t(B)yk 
k=m 
n-1 

- <I>n,m(B)Pm(B)xm + L <I>n,k+t(B)Pk+t(B)Yk· 
k=m 

On the other hand, from defini r~ion 3.2 we have 

Since { xn} is bounded and as < 1, then 

15 

(3.10) 
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Therefore the series 
n-1 

I: <I>n,k+1 ( 8)Pk+1 ( 8)yk converges. 
-oo 

Hence 

n-1 

Pn( 8)xn = 2: <I>n,k+1 ( 8)Pk+t ( 8)y~~: (3.11) 
-oo 

From (3.10) and (3.11) we get: 

00 

Xn = Pn(8)xn + (J- Pn(8))xn =I: Gn,k+I(8)yk. 
-oo 

Now we shall prove that the sequence {xn} given by (3.9) belongs to loo(Z, X) and is a 
solution of (3.8). In fact, 

00 

Xn+I = I: Gn+l,k+l { 8)yk 
-oo 

n oo 

= 2: <I>n+t,k+t ( 8)Pk+l ( 8)y~~: - 2: <I>n+t,k+t ( 8)[1- Pk+I ( 8)]Yk· 
-oo n+l 

Then 

n-1 oo 

Xn+l I: <I>n+l,k+l { 8)Pk+I { 8)yk -I: <I>n+l,k+l ( 8)[/- Pk+l { 8)]Yk + Yn 
-oo n 

00 

-oo 

Hence 
Xn+l = <I>n( 8)xn + Yn· 

Now we see that {xn} is bounded respect 8 E e. In fact, 

0 

3.2 Necessary and Sufficient Conditions for Discrete Dichotomy 

We begin this subsection with a theorem which is an extension of Theorem 7.6.5 [11], to 
the case of discrete skew-product. 
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Theorem 3.1 Let -K : £ X z --+ £ be a discrete skew-product in £ = X X e. Then the 
following statements are equivalent: 

(A) -K has a pointwise discrete dichotomy over e. 
(B) for J = {/n} in loo(Z, X) and B E e, there exists a unique bounded solution x = 
x( B) = { Xn} of the equation 

(3.12) 

Proof If (A) holds, then by using Lemma 3.3 we get that (B) holds with 

00 

Xn = Xn( B) = L Gn,k+l ( B)yk 
-oo 

and 
1 +as llxnll ~ Ms
1 

_ a
8

llflloo, n E Z. 

Suppose (B) holds and put IB = loo( Z, X). Consider the linear operator Ss : IB --+ IB 
given by 

X = { Xn} E JB --+ { Xn+l - <Pn( B)xn}· 

Since II<Pn(B)II < p for all B E e and n E z, then Sex E IB for all X E JB. We shall 
prove the Theorem in several claims. 
Claim 1. Ss is a bounded linear isomorphism and 

IISsll ~ 1 + p, VB E e. 

It follows from (B) and Part (2) of the definition 3.1. 

Claim 2. Si 1 is a bounded linear operator with 

IISi'll ~ l:p. 
In fact. From the open mapping Theorem we get that Si 1 is a bounded linear operator. 
On the other hand, we have the following: 

Claim 3. Define Gs = Si 1
• Then Gs can be written as follows 

00 

(Gsf)n = L Gn,k+t(B)fk, n E Z 
-oo 

at least for sequence {/k} with fk = 0 for all large lkl. Where Gn,m( 8) E L(X) with 
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and 
(a) Gn+I,m(8)- <Pn(8)Gn,m(8) = 0, if n # m- 1 

(b) Gm,m(8)- <Pm-t(8)Gm-l,m(8) =I 

Proof of the claim 3. Consider the sequence f = { · · · 0, x, 0, · · ·} with x the ( m- 1 )th 
component of f. Define the following operator 

Gn,m(8)x = (Gef)n, where Gef = {(Gef)n: n E Z} 

Now consider f = {· · · 0, x1, x 2 , 0, ···}with x1 the (m- l)th component of f. Then 

where j 1 = { · · · 0, x1, 0 · · ·} and f2 = f - ft· 
In this ,nay for sequence f E IB such that fk = 0 for all large lkl we get that 

00 

(Gef)n = E Gn,k+I(8)fk, n E Z. 
-oo 

It is easy to see that: 

Gn,m(8) E L(X) and IIGn,m(8)11L(X) ~ IIGeiiL(.IB) 

Let x = { xn} and f = {fn} in IB such that Gef = x. 
Then we have 

In particular iff={·· ·O,x,O,···} with x the (m -l)th component off, then 

Therefore 

Now consider 

Claim 4. 

Gn+I,m(8)- <Pn(8)Gn,m(8) = 0 if n =/= m- 1 

Gm,m(8)- <Pm-t(8)Gm-t,m(8) = I. 

Pm(8) = Gm,m(8) = <Pm-tGm-t,m(8) +!.,i.e., 

J- Pm( 8) = -<Pm-1 Gm-l,m( 8). 

(c) Gn,m(8) = <Pn,m(8)Pm(8), if n ~ m 

(d) <Pm,n(8)Gn,m(8) = -(!- Pm(8)), if n < m 

(3.13) 

Proof of the claim 4. By induction and using parts (a) and (b) of claim 3. In fact. For 
n = m (c) is true. Suppose that (c) is true fork> m, i.e., Gk,m(8) = <Pk,m(8)Pm(8). 
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Since k > m, then k f. m - 1. Therefore 

So 

(d) if n = m - 1, then 
Gm,m( B) = tPm-1 ( B)Gm-1,m( B)+ I 

so 
tPm-1(B)Gm-1,m(B) =-(I- Pm(B)). 

Since tPm-1(B) = tPm,m-1(B), then we get 

tPm,m-1(B)Gm-1,m(B) =-(I- Pm(O)). 

Suppose the relation (d) is true for n = k < m: tPm,k( B)Gk,m( B) = -(I- Pm( B)). 
Since k - 1 f. m - 1, from Claim 3 we get 

tPm,k-1 ( B)Gk-1,m( B) = tPm,k( B)tJlk-1 ( B)Gk-1,m (B) 
= tPm,k(B)Gk,m(B) - -(I- Pm(B)). 

19 

Claim 5. If Xn+1 = tPn(B)xn, n ~ m defines a bounded sequence, then (I -Pm(B))xm = 0. 
Putting Xn = 0 for n < m we get the following 

Xn+l = tPn(B)xn, if n f. m- 1 and Xm- tPm-1(B)xm-1 = Xm. 

Therefore x = { Xn} is a bounded solution of the equation Xn+l = tPn( B)xn + fn where 
f = {- · ·, 0, Xm, 0, ···}with Xm the (m- 1)th componet of f. 
On the other hand we know that 

is also solution of Xn+1 = tPn( B)xn + fn· Hence , Xn = Gn,m( B)xm. 
In particular: 

and the claim 5 is proved. 
Claim 6. Pm(B) is a projection. 
In fact. Consider X E X and Xn = Gn,m( B)x. Then Xn+1 = tPn( B)xn if n ~ m and 
llxnll ~ IIGsllllxll· It follows from the foregoing Claim that: 

(I- Pm(B))Gm,m(B)x =(I- Pm(B))Pm(B)x = 0. So Pm(B)x = P;!(B)x, Vx EX 

Claim 7. If (I- Pm(B))x = 0, then tPm(B)Pm(B)x = Pm+l(B)tPm(B)x. 
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If (I- Pm(B))x = 0, then 

(I- Gm,m(B))x = 0 ¢=> X= Gm,m(B)x = Xm 

Consider Xn = Gn,m( B)x. Then 

Xn+1 == 4>( B)xn if n 2: m 

and { xn} is bounded. Therefore 

So 

0 =(I- Pm+1(8))xm+1 

=(I- Pm+t(8))4>m(B)x 
= 4>m(B)(I- Pm(B))x 

(I- Pm+1(8))4>m(B)xm 
= 4>m(B)(I- Pm(B))xm 

Pm+1(8)4>m(B)x = 4>m(B)Pm(B)x, 

and the claim 7 is established. 
Claim 8. 4>m(B): N(Pm(B))--... N(Pm+1(8)) is an isomorphism for allB E e. 
In fact. Assume { Xn : n :S m} is bounded and Xn+l = 4>n( B)xn, n < m. 
Then by putting Xn = 0 for n > m we get that { xn} is solution of 

Xn+1 = 4>n( B)xn + fn with f = { · · · 0, 0, -4>m( B)xm, 0, · · ·} 

where -4>m( B)xm is the m th component of f. Therefore 

In particular 

0 = Xm+1 = -Gm+1,m+1 (8)4>m(B)xm = -Pm+1(8)4>m(B)xm 

SO 4>m(B)xm E N(Pm+1(8)). 
Now suppose that x E N(Pm(B)) and let Yn = Gn,m(B)x. Then {yn} is bounded and 

{ 

Yn+1 == 4>n( B)yn if n i= m - 1 
Ym-1 = 4>m-2(8)Ym-2 
Ym = = 4>m-1 ( B)Ym-1 + X. 

Then the set {Yn : n :S m- 2} is bounded and Yn+1 = 4>n( B)xn, n < m- 2. 
Therefore, if we put Yn = 0 for n > m- 2 we get that {Yn} is solution of 

Yn+1 = 4>n( B)yn + fn with f = { · · · 0, 0, -4>m-2( B)Ym-2, 0, 0, · · ·} 

where -4>m-2(8)Ym-2 is the (m- 2)th component of f. 

20 

So in the same way as before we get that 0 = Ym-1 = -Gm-1,m-1(8)4>m-2(8)ym-2, which 
implies 
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- x =-(I- P"'(B))x = y"'- x = (G"'·"'(B)- I)x 

- 4>"'_1(B)G"'-1,"'(B)x = 4>"'-1Y"'-1 E 4>"'_1(B)N(P"'_1(B). 

Then 
X E 4>Tn-1(B)N(PTn-1(B), so N(P"'(B) ~ 4>Tn-1(B)N(PTn-1(B). (3.14) 

Now consider Yn = Yn = Gn,Tn( B)x, for n < m- 1 and 

Yn+1 = Yn = 4>n( B)yn, n + 1 2: m - 1 <==> n 2: m - 2. 

Then 

and 
y"' = 4>"'-1 ( B)YTn-1 = 4>"'-1 ( B)y"'-1 = -x. 

So we have that {Yn : n ~ m} is bounded and 

In the same way as before we get the following: 

then 
(3.15) 

If 4>m(B)x = 0, then Y"'+1 = 4>"'(B)y"' = -4>"'(B)x = 0. Therefore Yn = 0 for all n ~ m. 
Thus {Yn} is bounded for n 2: m and Yn+1 = 4>n( B)yn, n ~ m. 
So from Claim 5 we get the following 

(I- P"'(B))y"' =(I- P"'(B))( -x) = 0 => x- P"'(B)x = x = 0. (3.16) 

In conclusion we have proved the following: 
From (3.14) N(P"'+ 1(B)) ~ 4>"'(B)(N(P"'(B)) 

From (3.15) 4>"'(B)(N(P"'(B)) ~ N(P"'+1(8)) 
From (3.16) 4>"'(8) is one to one. Therefore 

is an isomorphism. 

Now we can write the Claim 4 in the following way 

if n 2: m 
if n < m. 
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Claim 9. If Prn(B)x = 0, then 

4>rn(B)Prn(B)x = Prn+t(B)4>rn(B)x. 

If X E N(Prn(B)) => 4>rn(B)Prn(B)x = 0 and 4>rn(B)x E N(Prn+t(B)), SO Prn+t(B)4>rn(B)x = 
0. Therefore 

Claim 10. 
4>rn(B)Prn(B)x = Prn+t(B)4>rn(B)x, BE 0, mE Z. 

It follows from Claims 7,9 and I= Prn(B) +(I- Prn(B)). 
Now we are ready to prove part (3) and (4) of Definition 3.2 of pointwise discrete di­
chotomy. 
Claim 11. For all B E 0 we have: 

ll4>n,rn(B)Prn(B)xll ~ IIGeJI2 (1 -IIGell-t)n-rn, n ~ m. (3.17) 

If 4>n,rn(B)Prn(B)x = 0 for some n ~ m, then <I>p,rn(B)Prn(B)x = 0, for p ~ n; it follows 
from: ~n+l,rn( B)x = 4>n( B)4>n,rn( B)x. 
Assume that 4>n,rn(B)Prn(B)x f:. 0. Then 

4>i: 1 (B) := ll4>k,rn(B)Prn(B)xll > 0, m ~ k ~ n. 

From Claim 4 we have: 

Then 
n n 

L Gn,k(B)Vk(B) - L 4>n,k(B)Pk(B)4>k,rn(B)Prn(B)x.<f>k(B) 
k=rn k=rn 

n 

- L <I>n,k( B)4>k,rn( B)Prn( B)Prn( B)x.<f>k( B) 
k=rn 

n 

- L <I>n,rn(B)Prn(B)x.<f>k(B) 
k=rn 

n 

- 4>n,rn( B)P rn( B)x. L <f>k( B). 
k=rn 

Let f = { · · · 0, Vrn( B),· · · , Vn( B), 0, · · ·} with Vrn the ( m- 1 )th component of f. Then 

IIIII = sup ll!kll = sup IIVk(B)II = 1 
kEZ rn~k~n 

and 
n n 

II L Gn,k(B)~(B)II = II L Gn,k(B)fkll 
k=rn k=rn 

= II(Gef)nll ~ IIGellllfll = IIGell· 
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Therefore 
n n 

~~ 1 (8). L ~k(tJ) = ll~n,m(B)Pm(B)x. L ~k(tJ)II ~ JIGell· 

Then we have: 
-1 

~;; 1 (B). Lk=m ~k(B) ~ -IIGell-
1
, and IIGell > 1. 

Define 'lin( B):= Ei:=m 4>k(B). Then we get the following 

n-1 n 
Wn-1(tJ) = L ~k(tJ) = L 4>k(tJ)- f/Jn(tJ) 

= Wn(O)(l- q,~t(O)~Wn(O)) :S: Wn(O)(l -IIGsll-1
). 

Then Wn(B)- Wn-1(8) ~ wn(B)I'IGell-1. So we get 

Thus 

Le., 

I.e., 

Hence 

</>n(B) ~ IIGell1

-

1(1 -IIGeii-1)-1Wn-1(B). 

ll~n,m(B)Pm(B)xll < IIGell(1 -IIGell-1)n-miiPm(B)xll 
- IIGell(1 -IIGell-1)n-miiGn,m(B)xll 
< IIGell 2(1 -IIGell-1)n-mllxll, n ~ m. 

23 

We have proved this by assuming that the left hand of (3.17) was not trivial, in other 
case it is evidently true. This completes the proof of Claim 11. 

Claim 12. For all tJ E 0 we have: 

In fact, it can be proved in the same way as (3.17). 

Finally if we define for all (J E 0 the following numbers: 

(3.19) 
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(3.20) 

Then (3.17) and (3.18) imply that i- : E X Z --+ E has pointwise discrete dichotomy 
over e with constants Me and a.e given by (3.19) and (3.20). 

0 

3.3 Equivalence Between Pointwise and Uniform Discrete Di­
chotomy. 

Now we want to know when pointwise discrete dichotomy and uniform discrete dichotomy 
are equivalent. The answer fo this question is given by the following lemmas. 

Lemma 3.4 Let i- : E x Z --+ E be a discrete skew-product and suppose there exists 
1 < 6 < 2 such that II<Pn(B)xll 2: Ellxll for all n E z, 8 E e, X E X. Then pointwise 
discrete dichotomy and uniform discrete dichotomy of -n- over e are equivalent. 

Proof Clearly uniform discrete dichotomy implies pointwise discrete dichotomy . 
Assume that i- has pointwise discrete dichotomy with constants Me, a.e < 1 for all 6 E e. 
Then from Theorem 3.1 we have that Me, a.e are given by the formulas (3.19) and (3.20) 
respectively. Our goal is to find constants M, a. < 1 indenpendent of 6 E e. 
Let x E 1B = loo(Z, X) and consider 

IISexlloo sup {llxn+l - <Pn(6)xnll} 
neZ 

> sup{II<Pn(B)xnll -llxn+tll} 
neZ 

> sup{EIIxnll-llxn+tll} 
neZ 

> (E- 1)llxlloo = T'llxlloo, ')' = 6- 1 < 1. 

Therefore, IISexlloo ~ T'llxll, x E JB. Then 

llxll = IISeSi 1xll 2: 1'11Si1 xll, x E JB. 

So IISi
1
xll ~ ~llxll =} IISi 1

11 ~ ~' f) E e. 
Hence the operator Ge = Si 1 given by Theorem 3.1 has the following property 

1 
1 < IIGell ~ -. 

')' 

Then, from (3.19) and (3.20) it is enough to take M and a. as follows: 

1>a. 
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M - sup(1 + IIGsll)2 < oo 
see 

IIGs ll 
a - sup IIG II < 1. see 1 + s 

25 

0 

Lemma 3.5 Let i : £ x Z --+ £ be a discrete skew-product and suppose there exist 
0 < 61 < 62 < 1 such that 

(3.21) 

Then pointwise discrete dichotomy and uniform discrete dichotomy of i over e are equiv­
alent. 

Proof Clearly uniform discrete dichotomy implies pointwise discrete dichotomy. 
Assume that i has pointwise discrete dichotomy with constants Ms, as < 1 for all 8 E e. 
Then from Theorem 3.1 we have that Ms, as are given by the formulas (3.19) and (3.20) 
respectively. Again, our goal is to find constants M, a < 1 indenpendent of 8 E e. In 
order to do that, we shall consider the following linear bounded operators: 

T(8): 18--+ 18, (T(8)x)n = ~n(B)xn, 8 E e. (3.22) 

L : lB --+ 18, ( Lx )n = Xn+ 1 , - the shift operator. 

Then the operator Ss : 18--+ 18 given by Theorem 3.1 can be written as follows 

Ss = L- 41(8) (3.23) 

It is easy to see that Lis an isomorphism with IILxll = llxll, x EX. So IlLII = II L-1 11 = 1. 
On the other hand, we have that: IIT(8)xl:loo = supneZ ll~n(B)xnll· Hence, from (3.21) 
we get 

61 ~ IIT(B)U ~ 62 < 1, 8 E e. 
Therefore IIL- 1T(8)11 < 1. It is well known that (/- L-1T(8)) is invertible and 

00 

(I- L-1T(8))- 1 = L<L-1T(8))k. 
k=O 

From (3.23) we have the following 

Si 1 = [L(J- L-1T(8))]-
1 
=(I- L-1T(8))- 1 L-1

. 

Hence 

00 

IISi1 ll < II(/- L-1T(8))- 1
ll ~ L IIT(8)1lk 

k=O 

1 1 1 
1 - liT( B) II ~ 1 - 61 = :Y' ' = 1 - 61, 8 E e. 

From here the proof follows as in Lemma 3.4. 0 
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Corolary 3.2 !fir:£ X z--+ £has pointwise discrete dichotomy over e, then the family 
of projections {Pn(8): 8 E e, n E Z} associated with the pointwise discrete dichotomy of 
" . . 

1r ts untque. 

Proof Assume that { Qn( 8)} is another family of projection associated with the pointwise 
discrete dichotomy of ir. Let x E X and consider the sequence f = {fn} such that 
f-m-1 = x, and In = 0 for n =I= m - 1. For 8 E e consider { Xn} the unique bounded 
solution of 

Then 
00 00 

Xn = L Gn,k+I(8)Jk = L Gn,k+I(8)JK 
-oo -oo 

then Gn,m(8)x = Gn,-m(8)x. Where 

Gn,m(O) == { 

So 

~n,-m(8)P-m(8), if n 2: m 
~n,-m( 8)[1- P-m( 8)], if n < m 

if n 2: m 
if n < m 

Gm,-m(8)x = Gm,m(8)x ¢=:> P-m(8)x = Q-m,-m(8)x 

Therefore P-m(8) = Qm(8), 8 E e, mE Z. 

Corolary 3.3 For "Y > 0 consider 

S.., = {x = {xn} E IB: sup"'fnllxnll < oo} 
neZ 

D 

where IB = loo(Z, X). Suppose that for each 8 E e we have 0 < a 8 < 1, a 8 :::; "Y :::; :
8 

and 
for each f E S.., there exists a unique solution of 

Then the skew-product sequence ir has pointwise discrete dichotomy over e. 
Moreover, if {Gn,m(8)} is the corresponding Green's family, then IIGn,m(8)ll :::; Ma~n-ml_ 
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3.4 Roughness for Discrete Dichotomy. 

In this section we shall prove that discrete dichotomy for discrete skew-product s is not 
destroyed by small perturbations. For the proof of the following Theorem we shall use a 
Lemma from Henry fll], which says 

Lemma 3.6 If a~ 0, b ~ 0, 0 < r < r 1 , r2 < 1, b < ;!~;; for j = 1, 2 and {gn} 

is a nonnegative sequence in IR with 9n = O(r;lnl) as lnl --+ oo, and 

00 

9n ~ arlnl + b L rln-l:-llgl:, n E Z 
-oo 

then 

arlnl 
9n ~ , n E Z. 

1 - b(l + rr1 ) 

r 1 - r 

Theorem 3.2 Assume the discrete skew-product 7r : E x Z --+ E has a pointwise discrete 
dichotomy over e with constants Me' ae < 1. If Me > Me and ae < O.e < 1, then there 
exists fe > 0, such that for any discrete skew-product 1r1 : Ex Z--+ E, 1r1 = ('ltn(·),cr) 
with 

sup ll4>n(8) - 'ltn(8)U < fe, 8 E e 
neZ 

has a pointwise discrete dichotomy over 8 E e. 

Proof From Lemma 3.6 the requirement on fe is 

and 

M- ( eeMe(l + aeas)) M e 1- - ~ e, 
asae 

8 E e. 

For each 8 E e and f E JB, Xn+l = 'lln(8)xn + fn has a unique solution X E lB if and 
only if 

00 

Xn = L Gn,l:+t(8)[(WA:(8)- 4>n(8))xk + fk] 
00 

is also solvable for each f E JB; and it is true provided that 

~ 1+~ 
sup L.J IIGn,K+I(8)(wk(8)- 4>n(8))11 ~ fsMe < 1. 

n 00 l-as 

In this case Theorem 3.1 shows that 7r1 has pointwise discrete dichotomy over e. 
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Let {Gn,171 (8)} be the corresponding discrete Green'sfunction. Then for all n, m we have: 

00 

Gn,Tn(8) = Gn,Tn(8) + L Gn,K+I(8)(\llk(8)- 4>n(8))Gn,Tn(8) 
00 

So 

00 

IIGn,Tn(8)11 ~ Msa1n-Tnl + EsMs L a1n-A:-liiiGn,Tn(8)11 
-oo 

and 11Gn,Tn(8)11 is bounded. 
From Lemma 3.6 above we get the following: If as < iis < 1 and 

as - as 1 - as 
esMs < 

1 
_ < < 1 

+ asas 1 +as 

then 
M -ln-Tnl 

IIGn,Tn(8)11 ~ sas ~ Msar-Tn1
, for small es. 

1 - esMs(l + asO:s) 

&.s -as 

Corolary 3.4 Assume the discrete skew-product * : £ x Z --+ £ has uniform discrete 
dichotomy over e with constants M, a < 1, then there exist e > 0, such that any discrete 
skew-product -n-1 : £ x Z--+ £ with 

sup ll4>n( 8) - \ll n( 8) II < f, 8 E e 
nEZ 

has uniform discrete dichotomy over e. 

Theorem 3.3 Assume that the discrete skew-product s -n-1 , .n-2 have pointwise discrete 
dichotomy with discrete Green'sfunction satisfying 

Then 

(a) if 114>~(8)- 4>!(8)11 ~ f for In- ml ~ N and 114>~(8)- 4>!(8)11 ~ B n E Z; then 

liP.!.( 6)- P,!(B)II :S 1
2!'_!!~ ( H Ba~N+l) 

(b) if b < a;2 and 114>~(8)- 4>!{8)11 ~ ebln-171 1, n E Z; then 

IIP,!.(O)- P,!(B)II :S a 8(1 +b) M~E 2 . 
1- as 
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Lemma 3. 7 Assume that i : £X z + --+ £ has a pointwise discrete dichotomy over e with 
constants MB, 0.9 < 1 and Gn,m(8), n, m ~ 0 the corresponding discrete Green'sfunction. 
Define the extension of i to £ X z as follows: For all 8 E e and n < 0 

Pn( 8) = Po( 8) and ~n( 8) := a.9( I- Po( 8)) + a.;1 Po( 8). 

Then 7r :£X z --+ £ has pointwise discrete dichotomy over e with constants M(J, O.(J < 1. 

Proof We shall check the conditions of Definition 3.2. In fact, 

(a) ~n( 8)Pn( 8) = Pn+t ( 8)~n( 8) n ~ 0, 8 E e. 
which is true by hypothesis. On the other hand for n < 0 we have: 

~n(8)Pn(8) = (as(/- Po( B))+ a.;1 Po(8)) Po(8) = 
Po( 8) ( a.B( I - Po( 8)) + a.;1 Po( 8)) = Pn+t ( 8)~n( 8). 

(b) ~n(8): N(Pn(8))--+ N(Pn+1 (8)) is an isomorphism for n ~ 0. 
If n < 0, then ~n( 8) : N( Pn( 8)) --+ N( Pn+l ( 8)) is also an isomorphism. In fact, if 
x E N(Pn(8)) = N(Po(8)), then 

~n(8)x = a.9(l- Po(8))x = a.9x 

which is an isomorphism. 

(c) ll~n,m(8)Pm(8)11 ::; Ma.~-mllxll, n ~ m ~ 0. 

If n ~ 0 > m, then 

~n,m(8) = ~n,o(8)~o,m(8) and Pm(8) = Po(8) 

~o,m(8)Pm(8) = ~-t(8)~-2(8) · · · ~m(8)Po(8) 

Then 

If 0 > n ~ m, then 

So 

- ~ -1 ( 8)~ -2( 8) · · · ~m+l ( 8)a.6 1 Po( 8) 
- a.;m Po( 8) 

ll~n,m( 8)Pm( 8)11 = ll~n,o( 8)a.;m Po( 8)xll 
< M(Ja.~-mllxll. 
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(d) If m > n ~ 0, then 
ll.Pn,m(B)Pm(B)xll ~ Msa8-nllxll. 

If m ~ 0 > n, then we have the following 

Therefore 

.Pn,m(B)(I- Pm(B))x - .Pn,o(B).Po,m(B)(I- Pm(B))x 
- .PO,~(fJ).Po,m(B)(I- Pm(B))x 

a;n.Po,m(B)(I- Pm(B))x. 

ll.Pn,m(B)(I- Pm(B))xll < a61 li.Po,m(B)(I- Pm(B))xll 
< Msa8-nllxll· 

If 0 > m > n, then 

So 

30 

D 

Theorem 3.4 Assume i : £ x Z + ---+ £ has pointwise discrete dichotomy with constants 
Ms, as < 1. If Ms > Ms and as < Ct.s < 1, then there exists Es > 0 such that for 
any discrete skew-product 7r : £ x Z + ---+ £ with 

sup II .Pn( 8) - .P~( B) II < Es, for (J E e 
n~O 

has pointwise discrete dichotomy over e, here 7r = (.Pn(·),a), it= (<P~(-),a). 

4 Roughness 

In this section we shall give a necessary and sufficient condition for skew-product semifiow 
to have an exponential dichotomy over e. · Also, we will prove that the exponential 
dichotomy is not destroyed by small perturbation. In order to do so we will use the 
concept of discrete dichotomy introduced in the foregoing section. 

We begin this section with a proposition on the relation between skew-product semifiow 
and skew-product sequence. 

Proposition 4.1 If 1r = (.P, a) is a skew-product semi-flow on £, then the mapping 
i : £ x Z ---+ £ given by 

i(x, 8, n) := (.Pn(B), (J • n) ( 4.1) 

where 
.Pn(B) = .P(fJ · n, 1) 

is a skew-product sequence. 
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Proof Follows directly from Definition 3.1 0 

Remark 4.1 Even though q,( B, t) is defined in principle only for t ~ 0, q,n( B) = 
q,( B · n, 1) is well defined for all n E Z since u( B, t) = B · t is defined for all t E JR. 
This could be one of the advantage of using discrete skew-product. 

Lemma 4.1 Let 1r = ( q,, u) be a skew-product semi-flow on £. Suppose that 1r has an 
exponential dichotomy over e (with exponent {3 and k ). Then the skew-product sequence 
i given by ( 4.1) has uniformdiscrete dichotomy over e, with constants M = K and 
a=e-13. 

Proof Let P be the projector associated to the exponential dichotomy of 1r over e. Define 
the family of projections {Pn(B)} as follows: 

Pn(B) := P(B · n), for all BE e and n E Z 

we shall prove the condition (a)- (d) of Definitions 3.2 and 3.3. 
In order to see (a),consider 

q,n(B)Pn(B) = q,(B · n, 1)P(B · n) = 

P(B · n.1)q,(B · n, 1) = P(B.(n + 1))q,n(B) 

= Pn+l(B)Pn(B), n E Z, BEe 

(b) q,n(B): N(Pn(B))--+ N(Pn+l(B)) is an isomorphism. 
In fact, from the Definition 2.5 we know that: 

q,(o · n, 1): N(P(B · n))--+ N(P(B.(n + 1)) 

is an isomorphism. 
Therefore 

q,n(B): N(Pn(B))--+ N(Pn+l(B)) 

is an isomorphism. 
(c) If we put q,n,m(B) := q,n-1(8) · · · q,m(B), n > m and q,m,m(B) :=I, BE 8 
Then 

llq,n,m(B)Pm(B)ll = II<P(B.(n -1), 1) · · · <P(B.m, 1).P(B.m)ll 

= ll<P(B.m,n- m)P(B.m)'ll ~ Me?<n-m) for all BEe and n ~ m. 

Hence 
llq,n,m(B)Pm(B)ll ~ Man-m, for all BEe and n ~ m. 

In the same way we can prove (d), this means 

llq,n,m(B)(J- Pm(B))II $ Mam-n, m > n and BEe 

This completes the proof of the Theorem. 0 

The following theorem give us a sufficient condition for the skew-product semifiow on 
£to have an exponential dichotomy over e. 
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Theorem 4.1 Assume that 1r = ( ~, u) is a skew-product semifiow on £ and M; a are 
positive constant such that a = exp( -{3) < 1. Consider 

L := sup{ll~(8, t)ll : 0 ~ t ~ 1, 8 E e} < 00 ( 4.2) 

If the skew-product sequence i given by ( 4.1) has uniform discrete dichotomy over e 
with constant M and a, then 1r = ( ~, u) has exponential dichotomy with exponent {3 and 
constantK M where 

K = sup{ll~(8, t)lle~t: 0 ~ t ~ 1, 8 E 8} (4.3) 

Proof Suppose that {Pn(8)} is the family of projections associated with the uniform 
discrete dichotomy of i = ( ~n( · ), u ). Define P : £ ~ £ as follows: 

P( x, 8) := ( P( 8)x, 8); P( 8) := Po( 8). 

Claim 1. Pk(8) = P(8 · k) = P0 (8 · k) for all 8 E Z and k E Z 
In fact. Consider the skew-product sequence ik: £ x Z ~£given by 

( 4.4) 

The i has uniform discrete dichotomy with family of projections { Pn( 8 · k)} and ~n( 8 · 
k) = ~n+k( 8). Therefore ik has uniform discrete dichotomy with family of projections 
{Pn+k(8)}. Then from the uniqueness we get that Pn+k(8) = Pn(8 · k). In particular 
Pk(8) = Pn(8.K) = P(8 · k) 

Claim 2. For all n ~ K and 8 E e we have the following: 

P(8 · n)~(8 · k, n- k) = ~(8 · k, n- k)P(8 · k) 

In fact. It follows from the relation. 

Claim 3. For any t ~ 0 and 8 E e we have 

In fact. Let n E Z+ be such that n ~ t S n + 1. Then 

11~(8, t)P(8)ll = 11~(8, t + n- n)P(8)Il 
= 11~(8 · n, t- n)~(8, n)P(8)ll S 11~(8 · n, t- n)IIM an 
= 11~(8 · n, t- n)IIM e-~n 
S II~(B·n,t-n)lle~<t-h)Me-~t S KMe-~t. 

Here we have used the fact that: 
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For x E N(P(B)), t ~ 0 and n E Z with n ~ t < n + 1. We shall define: 

<P(B, t)x := <P(B · n, t- n)<P(B, n)x (4.5) 

where 
<P(B, n) = <Pn,o(B) = [<Po,n(B)]-1 

and 
<Po,n(B): N(P(B))-. N(P(B · n)) 

is an isomorphism. 

Claim 4. Fort~ 0, <P(B, t): N(P(B))-. X defined by (4.5) satisfies the following: 

II<P(B,t)(I- P(B)xll ~ KMe13tllxll. 

In fact. 

II<P(B, t)[I- P(B)]xll < II<P(B · n, t- n)llli<P(B, n)[J- P(B)]xll 
< II<P(B · n, t- n)IIMa-"!lxll = II<P(B · n, t- n)IIM~"IIxll 
= II<P(B. n, t- n)jjel3n-13tMe13tllxll 

< II<P(B · n, t- n)jje13(t-n)MePtllxiiKMe13t 

Claim 5. For all B E e B+( B) = 'R( P( B)). 
In fact. From 2.3 we have that: 

B+(B) = {x EX: sup II<P(B, t)xll < oo} 
t~O 

If x E 'R(P(B)), then P(B)x = x. So from Claim 3 we get 

II<P(B, t)xll = II<P(B, t)P(B)xll ~ KMe-l3t 

Hence <P(B, ·)x is bounded fort 2:: 0. This means that 'R(P(B)) c B+(B), VB E e. 
Now we shall prove the following implication: 

If x E B+(B), then x E 'R(P(B)). 

In fact. If x ¢ 'R( P( B)), then 

<P(B, t)x = <P(B, t)P(B)x + <P(B, t)(I- P(B))x 

We already know that <P( 8, · )P( 8)x is bounded for t ~ 0. Hence, we only need to prove 
that <P(B, t)(I- P(B))x is unbounded for t ~ 0. In fact. We have the following: 

II<P(B · n, -n)(I- P(8 · n))vll ~ Me-13"11vll, n ~ 0 
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where: 
4>(8, n) = 4>n,o(8): N(P(8))--+ N(P(8 · n)) 

is an isomorphism with inverse: 

4>(8 · n, -n) := 4>o,n(8): N(P(8 · n)--+ N(P(8)) ( 4.6) 

Putting v = 4>( 8, n )(I- P( 8)x we get: 

then 

li(I- P(8))xll - 114>(8 · n, -n)(I- P(8 · n))4>(8,n)(I- P(8)xll 
< Me-f3nll4>(8,n)(I- P(8))xll 

ll4>(8,n)(I- P(8))xll ~ M-tef3nii(I- P(8))xll 

Since (I- P(8))x # 0, then 114>(8, n)(I- P(8))xll --+ oo as n--+ oo. So x cf_ B+(8). 

Claim 6. 
4>(8, t)n(P(8)) ~ n(P(8 · t)), t ~ 0 

I.e., 
4>(8, t)R(I- P(8)) ~ R(I- P(8 · t)) 

1.e., 
4>(8, t)N(P(8)) ~ N(P(8 · t). 

In fact. x E R(P(8)) ~ P(8)x = x. Then 4>(8, t)x is bounded fort~ 0 and 

4>(8, s )x = 4>(8 · t, s- t)4>(8, t)x, s ~ t ~ 0 

Putting r = s- t ~ and z = 4>(8, t)x. We get that 4>(8 · t, r)z is bounded for r ~ 0. 
Then from Claim 5 we get that 

4>(8, t)x = z E n(P(8 · t)). 

Claim 7. 
4>(8, t): N(P(8))--+ N(P)(8 · t)), t ~ 0 is one to one 

In fact. For the purpose of contradiction let us suppose that there is x # 0 such that 

x E N(P(8)) and 4>(8, t)x = 0 

Consider n ~ t and 4>(8, n)x = 4>(8 · t, n- t)4>(8, t)x = 0. Hence 

4>(8, n) = 4>n,o(8): N(P(8))--+ N(P(9 · n)) 

is not one to one; which is a contradiction with the uniform discrete dichotomy of 7r. 
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Claim 8. 

4>(8 · t, s- t): 4>(8, t)N(P(8))--. N(P(8 · s)) s ~ t ~ 0 is one to one 

In fact. Suppose thre is y E 4>(8, t)N(P(8)) such that y I= 0 and ~(8 · t, s- t)y = 0. 
Let n ~sand x E N(p(8)) such that 4>(8, t)x = y Then 

4>(8,n)x - 4>(8·s,n-s)4>(8,s)x 
4>(8 · s, n- s)4>(8 · t, s- t)4>(8, t)x 

= 4>( 8 · s, n- s )4>( 8 · t, s - t )y = 0 

35· 

Hence, 4>(8, n)x = 0 and x E N(P(8)) with xI= 0. Which is a contradiction with the fact 
that 4>(8, n) : N(P(8))--. N(P(8 · n)) is an isomorphism. 

Let x E X and t 1 < 0. If there exists a unique y E X such that 4>( 8 · t 1 , -t1 )y = x we 
shall define: q,(8, tt)x := y. In particular, if x E N(P(8)) and t ~ 0 we have the following 

4>(8, t)x := 4>(8 · n, t- n)4>(8, n)x = y 

where 0 ~ t- n < 1 and 4>(8, n) : N(P(8))--. N(P(8 · n)) is an isomorphims. Indeed 

4>(8 · t, -t)y 4>(8 · t, -t)4>(8 · n, t- n)4>(8, n)x 
- 4>(8 · n · (t- n), -t)4>(8 · n, t- n)4>(8, n)x 

4>(8 · n, t- n- t)4>(8, n)x 
- 4>(8 · n, -n)4>(8, n)x = x. 

Claim 9. N(P(8)) = 8~(8). 
In fact. From 2.3 we have that 

8~(8) = {x EX: 4>(8, t)x is well defined and bounded for t::; 0} 

If x E N(P(8)), then 

4>(8, t)x := q,(8 · n, t- n)q,(8, n)[I- P(8)]x 

and from Claim 4 we get that 

Which implies that 4>(8,t)x is bounded fort ~ 0. Suppose that x ¢ N(P(8)), then 
putting 

y = P(8)x and z =(I- P(8))x I= 0 

we have two cases: 
a) If 4>(8, t)x is not well defined, then x ¢ 8~(8). 
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b) If ~( 8, t )x is well defined for t ~ 0, then ~( 8, t )z and ~( 8, t )x are well defined 
by using ( 4.5). Hence ~(8, t)y is also well defined fort ~ 0. Therefore: 

~(8, t)x = ~(8, t)z + ~(8, t)y 

We shall prove that ~(8, t)y = ~(8, t)P(8)x is unbounded fort~ 0. In fact 

P(8)x = ~(8 · n, -n)~(8,n)P(8)x 
- ~(8 · n, -n)P(8 · n)~(8, n)P(8)x, n ~ 0 

From Claim 3 we get that: 

liP(8)xll ~ K Me.8nll~(8, n)P(8)xll· 

So 
11~(8, n)P(8)xll ~ (K M)-1 IIP(8)xlle-.8n ~ oo as n--+ -oo 

Since ~(8, t)(I- P(8))x is bounded, we get that ~(8, t)x is unbounded. 
Thus 

.Af(P(8)) = 8~(8), for all 8 E e 

Claim 10. 
~(8, t).Af(P(8)) c .Af(P(8 · t)), for t ~ 0 

In fact. x E .A!( P( 8)) ¢::::::} x E 8; ( 8) . Therefore, for all x E .A!( P( 8)) and s ~ t ~ 0 
we have 

~(8, s)x = ~(8 · t, s- t)~(8, t)x. 

So ~(8 · t, s- t)~(8, t)x is bounded for s ~ t. Then 

~(8, t)x E 8~(8 · t) = .Af(P(8 · t)). 

Claim 11. 
~(8, t): .Af(P(8)) ~ .Af(P(8 · t)), t ~ 0 

is an isomorphism. In fact, for all x E .Af(P(8)) we have 

~(8, t)x = ~(8 · n, t- n)~(8, n)x 

Where 0 ~ n ~ t < n + 1. Since ~(8,n).Af(P(8)) = .Af(P(8 · n)) and using Claim 6 we 
get 

~(8, t).Af(P(8) = ~(8 · n, t- n).Af(P(8 · n)) ~ .Af(P(8 · n · (t- n))) = .Af(P(8. t)). 

Now, if x E N(P(8 · t)) == 8;(8 · t), then 

~(8 · t,r + s)x = ~(8 · t · r,s)~(8 · t,r)x for all r,s E JR. 
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So 
q,((}, t)q,((} · t, -t)x = x. 

If y = <I>(B · t, -t)x =:} y E N(P(B)) and q,((}, t)y = x. 
Hence, from Claim 7 we get that 

q,((}, t): N(P(B))-+ N(P(B · t)) is an isomorphism. 

Claim 12. 
q,(B, t)P(B) = P(B · t)q,(B, t), (} E e, t ~ 0. 

In fact. Clearly that fort ~ 0 we get 

q,((}, t)P(B)x = P((} · t)q,((}, t)x, x E N(P(B) 

q, ( (}' t) (I - p ( (}) ) X = (I - p ( (} . t)) q, ( (}' t) X , X E 'R( p ( (})) 

1.e., 
q,((}, t)P(B)x = P(B · t)q,((}, t)x, x E 'R(P(B)). 

It follows that 

q,(B, t)P(B) = P(B · t)q,(B, t), for all (} E e andt ~ 0 

This completes the Proof of the Theorem 
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0 
The following Theorem also gives a sufficient condition for the existence of exponential 

dichotomy for skew-product semiflow. 

Theorem 4.2 Let 1r = (q,,u) be a skew-product semifiow on E. Assume there is an 
invariant projector P and for each (} E e there are constants ke ~ 1, f3e > 0 such that 

{1} q,((}, t): N(P(B))-+ N(P((} · t)), t ~ 0 is an isomorphism with inverse: 

q,((} · t, -t): N(P(B · t))-+ N(P(B)), t ~ 0 

(2} II~(B, t)P(B)II ~ kse-f3't, t ~ o 
( 9) II q, ( (}, t) (I - P ( (}) II ~ ks ef39t, t ~ 0. 

If one of the following conditions holds: 

( 4} there exists 1 < 8 < 2 such that 

llq,((}, l)xll ~ 8llxll, (} E 9, x EX. 

(5} there exist 0 < 81 < 82 < 1 such that 

then 7f has an exponential dichotomy over e. 
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Proof It follows from Lemmas 3.4 and 3.5. D 
The following Theorem says that the exponential dichotomy of the skew-product semi-

flow is not destroyed by small perturbation. 

Theorem 4.3 Suppose 1r = ( q,, u) is a skew-product semiflow on £ which has a exponen­
tial dichotomy (with exponent {3 and constant M ). If 

L = sup{llq,(O,t)ll: 0::; t::; 1, 0 E 9} 

and Me-13 < e-IJ1 , M1 > M, then there exists f = €({3,{31 ,M,M1 ,L) > 0 such that any 
skew-product semiflow 7r = ( \ll, u) on £ satisfying 

sup{llq,(O, t)- \li(O, t)ll: 0::; t::; 1, 0 E 9}::; f 

has exponential dichotomy with exponent {31 and constant M 1 . 

Proof Let i, 7r: £ x Z-+ £ be the skew-product sequences given by: 

i(x,O,n) := (q,n(O)x,O·n); ir(x,O,n) := ('lln(O)x,O·n) 

where 
q,n(O) := (q,(O · n, 1); 'lln(O) := \li(O · n, 1) 

Clearly i has uniform discrete dichotomy with constants M and a= e-IJ. Consider for 
t ~ 0 the following: 

llq,(O, t)- \li(O, t)ll - ll[q,(O · k, t- k)- \li(O · k, t- k)]\li(O, k) 

- q,(O · k, t- k)[\li(O, k)- \li(O, k)]ll 

for k ~ t ::; k + 1, k ~ 0. Since 0 ::; t- k ::; 1, we get: 

and 

Hence 

llq,(o . k,t- k)- w(o. k,t- k)ll ~ f, 

ll'li(O, k)ll - ll'li(O · (k- 1), 1)\l!(O · (k- 2), 1) · · · \l!(O, 1)11 

ll\l!A:-I(O)\l!A:-2(0) · · · 'llo(O)II::; (L + f)k. 

llq,(O,t)- \li(O,t)ll::; (L + €)k.€+ Lll'li(O,k)- q,(O,k)ll 

In the same way we get that 
llq,(o, k)- w(o, k)ll = 

ll[q,(O.(k- 1), 1)- \li(O.(k- 1), 1)]\l!(O, k- 1)- q,(O.(k- 1), 1)[\l!(O, k- 1)- q,(O, k- 1]11 
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~ (L + f)A:-lf + Lll\ll(8, k- 1)- cp(8, k- 1)11 

Therefore 

Then 
ll'l1(8, t)- \ll(8, t)ll ~ Cf, 0 ~ t ~ 1, 8 E 9 

Then 
lf4>(8 · n, 1)- \ll(8 · n, 1)11 < Cf, 8 E 9 

I.e., 

ll4>n(8)- Wn(8)11 < C€, 8 E 9 

Since M1 > M and 1 > a 1 = e-131 > ef3 = a, then for f small enough Corolary 3.6 
implies that 7r has uniform discrete dichotomy over 9. Hence, it follows from Theorem 
4.1 that i = (\II, u) has exponential dichotomy with constant K M1 and exponent /31 . 

0 

5 Applications 

In this section we shall consider a linear time dependent differential equation which gen­
erates a linear skew-product semifiow on the trivial Banach bundle£= X X 9, where X 
is a Banach space and 9 is a compact topological Hausdorff space. 

Consider the following-linear time dependent system 

x(t) = A(8 · t)x(t), t > 0 (5.1) 

where A( 8 · t) = A + B( 8 · t), A is the infinitesimal generator of the strongly continuous 
semigroup {T(t)h>o; u(8, t) = 8 · t is a flow on 9 and B(8) E L(X), t E JR. 

Lemma 5.1 If B(·): 9--+ L(X) is strongly continuous, then the set {IIB(8)11 : 8 E 9} 
is bounded. 

Proof Consider the following sets 

H = {IIB(8)11: 8 E 9}, H(x) = {riB(8)xll: 8 E 9} 

Since 8 ____. B(8)x is continuous and 9 is compact, then for each X E X we get that 
H( x) is bounded. Hence, by the Uniform Boundedness Theorem we obtain that H is 
bounded. 0 

Lemma 5.2 If B(·) : 9 ---. L(X) is strongly continuous and x(·) : 1R --+ X is a 
continuous function, then for each 8 E 9 the mapping t--+ B(8 · t)x(t) is continuous. 
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Proof Fix t E JR. Then 

]]B(8(t + h))x(t +h)- B(8 · t)x(t)JJ 

= IIB(8(t + h))[x(t +h)- x(t)]- [B(8 · (t +h))- B(8 · t)]x(t)ll 

~ LJ!x(t +h)- x(t)Jl + II[B(8 · (t +h))- B(8 · t)]x(t)IJ 

where L = sup{IIB(8)11: 8 E e} and 8. tEe fortE JR. 
Therefore 

]]B(8(t + h))x(t +h)- B(8 · t)x(t)JI --.. 0, as h--.. 0 

40 

D 

To be precise in which sense the equation (5.1) generates a linear skew-product semifiow, 
we shall consider the following family of integral differential equations: 

x(t) = T(t)x0 + fo' T(t- s )B(O · s )x(s) ds. t 2: 0 (} E e. (5.2) 

Definition 5.1 (Mild Solution). A solution x(t) = x(t, 8) of the equation (5.2) is 
called Mild Solution of (5.1 ). 

The proof of the following theorem can be found in Chow and Leiva [3]. 

Theorem 5.1 Let A be the infinitesimal generator of an strongly continuous semigroup 
{T(t)}t~0 on X and B(·): 9--.. L(X) is also strongly continuous. Then for each 8 E e 
and x0 E X the problem 

x(t) = A(8. t)x =(A+ B(8. t))x(t); x(O) = Xo 

has a unique mild solution ~( 8, t )x0 given by 

q,((}, t)xo = T(t)x0 + fo' T(t- s)B(O · s)q,((}, s)x0ds. 

If 

then 

11~(8, t)ll ~ Me(W+LM)t, t ~ 0 

where 

L = sup{JIB(8)11: 8 E e} 

M oreover1 the mapping 1r : £ x JR+ --.. £ given by 

1r(x, 8, t) = (~(8, t)x, 8 · t) 

is a linear skew-product semiflow on £ = X X e. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 



DICHOTOMY SKEW PRODUCT SEMIFLOW 41: 

Theorem 5.2 Assume A 0 is the infinitesimal generator of a strongly continuous semi­
group {To(t)}t~o, the mapping()--+ A(8)- Ao: 8--+ L(X) is strongly continuous and the 
equation x( t) = A(() · t )x( t) has exponential dichotomy over 8 with exponent {3 > 0 
and constant M. If 0 < {31 < {3 and M1 > M, then there exist f > 0 such that for any 
mapping()--+ B(8) : e--+ L(X) strongly continuous and IIB(B)II < f, () E e the equation 

x(t) = (A(B · t) + B(8 · t)) x(t) 

has exponential dichotomy over e with exponent {31 and constant M1 . 

Proof From Theorem 5.1 we get that the equations 

x(t) = A(8 · t)x(t) = (Ao + (A(8 · t)- Ao)) x(t) 

and 
x(t) = (A(8 · t) + B(B · t)) x(t) = (Ao + (A(8 · t)- Ao + B(8 · t))) x(t) 

generate respectively the skew-product semifiows: 

given by: 

Then 

where 

1r = c q,, a), -n- = c w, a) : E x JR+ --+ E, E = x x e 

4>(6, t)x = T0(t)x + fo' T0(t- s )(A(6 · s)- A0 )4>(6, s )xds 

W(6, t)x = T0 (t)x + 1' T0(t- s )(A(6 · s )B(6 · s)- A0 )1l1(6, s )xds 

Jl4>(6, t)xJI :::; Mollxll + fo' M2114>(6, s )xJids, 0 :::; t :::; 1 

Mo = sup{IITo(t)ll : 0 ~ s ~ 1}, M2 = Mo sup{ II A( B)- Aoll : 8 E 8}. 

From Gronwall's Lemma we get 114>(8, t)ll ~ MoeM2 = L1, 0 ~ t ~ 1, (} E 8. 
In th~ same way we get that ll\11(8, t)ll ~ L2, 0 ~ t ~ 1, () E B. On the other hand, 
we have the followig 

114>(6, t)x- ll1(6, t)xJI < fo' M2JI4>(6, s )x- ll1(6, s )xi ids+ fo' MoL2IIB(6 · s)xllds 

< MoL2€IIxll + M2fo'ii4>(6,s)x- ll1(6,s)xJids, 0:::; t :S 1. 

Hence, from Gronwall's Lemma we get 

114>(8, t)- \11(8, t)ll ~ MoL2feM2
t ~ MoL2eM2 f, 0 ~ t ~ 1. 

From Theorem 4.1 we get that the equation x(t) =(A(()· t) + B(8 · t)) x(t) 
nential dichotomy over e with exponent {31 and constant M1 . 

has expo-

0 
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Theorem 5.3 Let -A be a sectorial operator with a sector 

S-a.r~> ={A E C: ¢ ~ larg(A + a)l ~ 1r, A f; -a} c p( -A) 

where p( -A) is the resolvent set of -A and a E JR, 0 < ¢ < 1r /2. Suppose that 
the spectrum u( A) does not intersect the strip region {A E C : {3 ~ ReA ~ a}, where 
{3 < A < a. If for all X E X the mapping () --+ B(8)x : e --+ L(X) is continuous and 
sup{IIB(8)11 : () E e} is small enough, then the equation 

x(t) =(A+ B(8 · t))x(t) (5.7) 

has an exponential dichotomy over() E e. 

Proof It follows from Theorem 2.3 in [33] and Theorem 1.5.2 in [11] that the equation 
x = Ax has an exponential dichotomy over e. Finally, we can apply Theorem 5.2 to 
the perturbed equation (5. 7). 0 

Now, consider the following family of functional differential equations which is more 
general than equation (1.6) studied in [18]. 

x(t) = L(8. t)xt, 8 E e (5.8) 

where () · t is a flow on the compact Hausdorff set e which depend continuously on () 
uniformly on compact interval of the timet; Xt denotes the functions --+ x(t + s ), -r ~ 
s ~ 0. We assume that L(8) : C = C [[-r, 0], .IR"]] --+ JRn is linear and bounded operator, 
and for all ¢ E C the mapping () --+ L( 8)¢ is continuous. 

Lemma 5.3 If the equation (5.8} has an exponential dichotomy one and ()--+ M(8) E 
L(C, IRn) is strongly continuous. If IIM(8)11 is small enough, then the equation 

x(t) = (L(8. t) + M(8. t)) xt, 8 E e, (5.9) 

has an exponential dichotomy over e. 

Proof Using the same idea of [18] we can write the equation (5.9) in the following abstract 
way 

z(t) = (A(8 · t) + B(8 · t)) z(t), () E e, z E Z, 

where Z = JRn x L~[-r, 0] is a Hilbert space with the inner product 

< ·,· >z=< ·,· >JRn + < ·,· >~. 

The operators A( 8) are defined on a commun domain D given by 

D = Dom(A(8)) = {(v,</>) E Z: ¢ E W1
•
2 [-r,O], </>(0) = v}, () E e, 

by 
A(8)(v, ¢) := (L(8)¢, ¢). 

(5.10) 
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and B( 8) is a linear bounded operator from Z to Z given by 

B(8)z = (M(8)t/>,O), z = (v, 4>) E Z. 

So, for all z E Z mapping 8 ---+ B( 8)z : e ---+ L( Z) is continuous and II B( 8) II is small 
enough. On the other hand, if we consider the operator 

Ao(v, 4>) = (0, ~), (v, 4>) E D. 

The operator Ao is the infinitesimal generator of a strongly continuous semigrou p { T0 ( t) h>o 
and the mapping 8 ---+ A( 8) - A0 : e ---+ L( Z) is strongly continuous. Now, we finish th~ 
proof by applying the Theorem 5.2 to the equation (5.10). o 
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Abstract. In an earlier paper [1] we characterized the dynamical spectrum for 

Linear Skew-Product Semiflow in infinite dimensional Banach spaces. It was 

proved the spectrum is always a closed set, but it could be empty. Also we 

investigate the relation between the dynamical spectrum and the Lyapunov ex-

ponents. In this paper we shall characterize the dynamical spectrum for Linear 

Skew-Product Flow 1r = (<P, a) in a Banach space X. The fact that 1r is a flow 

allows us to prove that the spectrum is a nonempty compact set and get more 

information about it, also we can tell more about the Lyapunov exponents. Fi-

nally ours results can be applied to hyperbolic partial differential equations and 

neutral functional differential equations. 
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1 Introduction 

In an earlier paper [1] we began an investigation of the dynamical spectrum for 

time dependent systems in infinite dimensional Banach spaces, using the con­

cept of skew-product semiflow. That is the case for parabolic partial differential 

equations and functional differential equations; for that reason in [1] we use the 

concept of negative continuation and exponential dichotomy used by Sacker-Sell 

in [18]. In this definition of exponential dichotomy we assume that the unsta­

ble mainfold has finite dimension and is contained in the set of points that have 

a unique negative continuation. We characterized the dynamical spectrum and 

proved that the spectrum is always a closed set, but it could be empty; also, 

we investigate the relation between the dynamical spectrum and the Lyapunow 

exponents. 

This paper is concerned with the dynamical spectrum for time dependent 

linear systems whose solutions are globally defined in JR. This is the case for 

hyperbolic partial differential equations, neutral functional differential equations 

and abstract ordinary differential equation x = A( t )x with bounded operator 

A(t). 

To study this problems we shall use the unified setting of a linear skew­

product flow ~(8, t): EX lR--+ E (see Definition 2.1), where E ==X X e, X is a 

Banach space, 0 is a compact topological Hausdorff space and 1r is given by 

1r(x, 8, t) = (~(8, t)x, 8.t), t E JR, x EX, 8 E 8 

Many people have worked with skew-product flow, and semiflows in infinite di­

mensional Banach spaces. For example Sacker-Sell in [18] studied the existence of 

exponential dichotomy for the skew-product semiflow '71" = (~,u) onE= X X e. 
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Also, Magalhaes in [ 11] give some characterization of the dynamical spectrum. 

A different characterization of the dynamical spectrum for skew-product flow in 

infinite Banach spaces appears in R. T. Rau [13]. He associates a strongly con­

tinuous group to the skew-product flow 1r =(<I>, a) in the following way: Given a 

skew-product flow 7r =(<I>, a) on£= X X ewe can associate a family {T(t)}te.lR 

of linear operators on the Banach space C(e, X) defined by 

T(t)f(B) = <1.>(8 · ( -t), t)f(B · ( -t)), \It E 1R 

for all8 E 0 and f E C(0,X). 

(1.1) 

It is shown that the operator family { T( t)} te.IR given by ( 1.1) is a strongly 

continuous group on C(0, X). 

Since 1r = (<I>, a) is a flow (two side flow) the definition of exponential di­

chotomy is the same as in the finite dimensional case; this allows Rau in [13] to 

give the following characterization of the dynamical spectrum 

Theorem 1.1 (Rau {19]} Let 7r =(<I>, a) be a skew-product flow on£= Jy X e 

and denote G the infinitesimal generator of the evolution group {T(t)}te.IR given 

by {1.1}. Then 

E(0) = lnla(T(l)) \ {O}I 2 G 

A similar result as Rau's can be found in Latushki-Stepin [9] 

In this paper we shall give a different characterization of the dynamical spec­

trum. Our characterization is an extension of the Sacker and Sell Theorem given 

in [18]. Here we proved that the spectrum can be written as a countable union 

of nonempty close disjoints intervals. we show the relation between the spectrum 

and the spectral subbundles associated with the corresponding spectral interval. 
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Also, this spectral decomposition can be used to study invariant manifold around 

an invariant set. 

In this paper we follow closely the work done by Sacker and Sell in [18] for 

the finite dimensional case and the notation used for them in [19]. 

Since 1r is a flow (two side flow) the definitions of exponential dichotomy is 

very :~imple and we don't have to worry about negative continuation, like in [19], 

(1] and -(11]. This allows us to prove that the spectrum is a nonempty compact 

set and we can give a simple characterization of the Lyapunov exponents in terms 

of the dynamical spectrum. 

Finally we present some examples of Skew-Product Flow arising from hyper­

bolic partial differential equations and neutral functional differential equations. 
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2 Preliminaries 

2.1 Linear Skew-Product Flow 

In this section we shall present some definitions, notations, and results about 

Skew Product flows on Banach Bundles that we will use in the next sections. 

Definition 2.1 Let£= X X e be given where X is a fixed Banach space (state 

space) and e is a compact Hausdorff Space. Assume that u(8, t) = 8.t is a 

flow on e, i.e., the mapping (8, t) ~ 8. t is continuous, 8.0 = 8, and we have 

8.(s + t) = (8 · s) · t for all s,t E JR. Then we shall call a Linear Skew-Product 

Flow 1r = ( ci>, u) on £ as a mapping 

1r(x, 8, t) = (ci>(8, t)x, 8 · t), Vt E JR. 

with the following properties: 

(1) ci>(8, 0) =I, the identity operator, for all 8 E 8. 

(2) liiilt-ocl>(8,t)x = x, and this limit is uniform in 8. This mean that for every 

x EX and every f > 0 there is a 6 = 6(x, f)> 0 such that llci>(8, t)x- xll ~ f, for 

all 8 E 9 whenever 0 ~ t ~ 6. 

(3) ci>(8, t) is a bounded linear mapping from X into X that satisfies the cocycle 

identity: 

ci>(8,s+t)=ci>(8·t,s)ci>(8,t) 8E9; s,tEIR (2.1) 

( 4) For each t E 1R the mapping of £ into X given by ( x, 8) ~ ci>( 8, t )x is 

continuous. 
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Properties (2) and (3) imply that for each (x, 8) E £ the solution operator t --+ 

4>( 8, t )x is continuous for t E JR. Indeed one has 

114>(8, t + h)x- 4>(8, t)xll = 11(4>(8 · t, h)- 1]4>(8, t)xll 

which goes to zero ash--+ 0. The cocycle identity {2.1) implies that 4>(8, t) is an 

isomorphism with inverse 

q,-1 (8, t) = 4>(8 · t, -t) Vt E JR 

Proposition 2.1 Let 7f = (4>, a) be a linear skew-product flow on£. Then there 

exist constants M ~ 1, a > 0 such that 

ll4>(8,t)ll ~ Mealtl, 8 E 8, t E JR. (2.2) 

Proof First we claim that there is a 6 > 0 such that 

M = sup{ll4>(8,t)11: 8 E 8, -6 ~ t ~ 6} < oo 

For the purpose of contradiction. Let us assume that there are sequences 8n E 

8, tn E JR such that tn--+ 0 and ll4>(8n, tn)ll > n. 

The Banach-Steinhaus Theorem (Uniform Boundedness Principle) implies 

that there is x E X such that 

is unbounded. This contradicts the fact that 

lim 4>( 8, t)x = x 
t-o 

unifomly for 8 E 9. Therefore M < oo. On the other hand we have that 4>( 8, 0) = 

I, so M ~ 1. 
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Now fix t E JR. Assume that t ~ 0 (a similar argument will take care of the case 

t ~ 0). Let m be an integer satisfying m ~ tfS ~ m + 1 {=:;> Sm ~ t ~ mS + S. 

Then for any 8 E e one has 

II<I>(8, t)ll = II<I>(8, t- Sm + Sm)ll = II<I>(8.S, (t- Sm) + S(m- 1))<1>(8, S)ll 

Now putting: 

we get the following: 

ll<I>(8, t)ll = II<I>(8m, t- Sm)<I>(8m-t, S) ... <I>(8o, S)ll 

If we put 

a= 1/Sln(M) 

then 

II<I>(8,t)ll ~Meat 

0 

2.2 Projectors and Subbundles 

A Banach bundle£ with fiber X over a base space e with projection P is denoted 

by {£,X, e, P), or£ for short, and is defined as follows: 

{1) X is a fixed Banach space and 8 is a compact Hausdorff space. 

{2) The mapping P: £-+ e is a continuous mapping. 

(3) For each 8 E e, p-1
{ 8) = £( 8) is a Banach space, which is referred to as the 

fiber over 8. 
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( 4) For each 8 E 6, there is an open neighborhood U of 0 in 6 and a homeomor­

phism 

r : p-1(U) -+ X x U such that for each N E U, p-1(N) is a mapped onto 

X x {N} and r : p-1(N) -+ X x {N} is a linear isomorphism. 

(5) The norms 11·11 = ll·lls on the fiber p-1(8) vary continuously in 8. 

0 ·;1e can use the local coordinate notation ( x, 8) to denote a typical point in 

a Banach bundle£. By this we mean that (x, 0) E £. This is a shortened way to 

refer to property ( 4) above. 

For any subset :F C £ we define the fiber: 

:F(8) := {x EX : (x, 8) E :F} 

£(8) :==X X {8} 

If u c e, then we shall define the following set 

£o = {(x, 0) E £: x = 0} 

Eo is called the zero fiber. 

A mapping P : £ -+ £ is said to be a projection if P is continuous and has 

the form P(x, 8) = (P(O), 8) where P(8) is a bounded linear projection on the 

fiber £( 0). For any projector P we define the range and the null space by 

R = R( P) = { ( x, 8) E £ : P( 8)x = x} 

and 

N = N(P) = {(x, 8) E £: P(8)x = 0}. 
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Since P is continuous, this means that the fibers R( 8) and N( 8) vary continuously 

in 8. This also means that P( 8) varies continuous in the operator norm. The 

following result can be found in Sacker- Sell [18]. 

Lemma 2.1 Let P be a projector on£. Then Rand N are closed in£, and one 

has 

R(8) n N(8) == {0}, R(8) + N(8) == £ 

for all 8 E e. 

Definition 2.2 A subset v is said to be a subbundle of£ if there is a projector 

P on £ with the property that R(P) = V 

In this case W = N(P) is a Complementary subbundle, i.e., £ == V + W as 

a Whitney Sum. 

Lemma 2.2 Let V C £ with the properties: 

(A) V is closed. 

(B) V(8) is a linear subspace of £(8) for all 8 E e. 

(C) codim V ( 8) is finite for all 8 E 0. 

(D) codim V(8) is locally constamt on e. 

Then V is a sub bundle of E. 

Proof See [18]. D 



10 S.N CHOW AND H. LEIVA 

2.3 Stable, Unstable and the Initial Bounded Sets 

Let 7r = ( q,, a) be a given linear skew-product flow defined on E = X X e. For 

). E .Hl we define the shifted flow as follows: 

S>. = {(x,B) E E: lle->.tq,(B,t)xll-+ 0, t-+ +oo} 

U>. = {(x,B) E E: lle->.tq,(B,t)xll-+ 0, t-+ -oo} 

The set U>. is the unstable set, S>. is the stable set, and B>. is the initial 

bounded set corresponding to 7r>.. If ). = 0 we shall denote B = 8 0 , U = 

Uo and S == So. 

We are interested in knowing when S>. and U>. are complementary invariant 

subbundles of E. The answer of this quation can be formulated in terms of 

dichotomies. 

Definition 2.3 A project P on £ is said to be invariant if we have 

P(B.t)q,(B, t) == q,(B, t)P(B), t E JR., (} E (:) (2.3) 

which is equivalent to: 

P(B.t) = ~(B,t)P(B)q,- 1 (8,t), t E JR, 8 E (:) (2.4) 
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Definition 2.4 We shall say that a linear skew-product flow ?r = ( 4>, a) on £ has 

an exponential dichotomy (ED) over an invariant set e, were e c e, if there is 

an invariant Projector P on E and constants k ~ 1, {3 > 0 such that 

(2.5) 

(2.6) 

for all 6 E 8 

Remark 2.1 

(1) If e = { 6}, then E.D corresponds to the usual concept of dichotomy 

(2) If e = e, then E.D over e is equivalent to the splitting of£. 

(3) P( 6) varies continuously over e. 

( 4) k, {3 depend of e. 

Proposition 2.2 If ?r is a linear skew-product flow on E = X X e admits an 

exponential dichotony over e, then one has that the initial bounded set B = £o 

and the correspondent Projector P is such that: 

'R(P) = S(e), .N(P) = U(e) 

E = 'R(P) ffi .N(P) = S(e) ffi U(S) 

(The whitney sum of two bundles} 

Proof Let P be the correspondent Projector. Consider ( x, 6) E B and set 

y = P(8)x, z =(I- P(8))x 
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Then we get the following: 

llq>(B,t)ll < N, Vt E JR, 

and 

Therefore, from (2.5) we get: 

IIYII ~ ke13
t N, t < 0 =* IIYII = 0. 

so 

liz II ~ ke-f3t N, t E lR =* liz II = 0 

Hence 

x = P(8)x +[I- P(8)]x = y + z = 0 

It is easy to prove that : 

R(P) c S .. V(P) c U 

Now, since £ = R(P) + N(P), then S = R(P), U = N(P). 

0 

3 The Dynamical Spectrum 

Let e be an invariant subset of e under the flow a. Then the resolvent p(S) 

of e under 7r is defined as follows: 

p(S) :={A E lR: '1r.\ admits and exponential dichotomy over e}. 
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The spectrum E( S) of S under 1r is defined as follows 

Our main results are the following Theorems: 

Theorem 3.1 Let 7f = ( tP' (J) be a skew-product flow on E = X X e and e a 

compact connected invariant subset of 8. Then the following statements are valid: 

(A) There is a > 0 such that 

llt1>(8,t)ll ~ Mealtl, \/8 E 8 and t E JR., 

and E(S) # 0, E(S) C [-a, a] 

(B) For each set {Ao < A1 < · · · < Am} C p(S) with Ao < -a and a< Am such 

that E( S) n ( Aiu Ai) # t/1 we get that 

are invariant sub bundles of£( 0 ). 

(C) Let 7fi be the restriction of 1r to Vi and Ei(S) the spectrum of (Vi, 1ri) over 

S. Then one has that 

Ei(S) = E(S) n (Ai-l, Ai), i = 1, 2, · · ·, m. 

(D) Ei(S) = E(G) n (Ai-b Ai), i == 1, 2, · · ·, m 

(E) E(S) = l£:1 Ei(S) 

(F) Vi( e) n V;(e) = Ea(S), i # j 
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In order to get more information about the spectrum we shall put some restriction 

on the unstable manifold u~ for some ~ E p(e). Also we will need the following 

notation: 

For ~ E p( e) we shall define: 

E~(e) := E(e) n ( -oo, ~) (3.1) 

Theoretn 3.2 Assume that dim£(8) = oo, ~ E p(S), a> 0 is as in part {A) 

of Theorem 3.1. Then the following statements are valid : 

{A) If dimU.x = n(~) < oo, then A~ -a 

{B) If dimS~ = m(A) < oo, then A ~ a 

(C) If ~~-a and u~ # £o(S), then A~ a 

{D) If A~ a and dimS~# £o(S), then A~ -a 

(E) If dimU.x ~ n( -a)< oo, as ~~-a+ 

then 

-a E E(S) and dimU.x = n(A) < 00 v~ E [-a+ oo) n p(S) 

{F) If dimS~~ m(a) < oo, as A~ a+ 

then 

a E E(S) and dimS~= m(A) VA E ( -oo, a] n p(e) 

{G) If 1 ~ dimU~0 = n(Ao) < oo, then Ao E [-a, a] and 

m 

E(S) = E~0 (S) u Cn[a.:, b.:]) (3.2) 
i=l 
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m ~ dimU.\0 = n(.Xo) 

Moreover: 

(H) ~.\o(e) = [a, .Xo) n ~(e) 

{I) If ~(e) C [.Xo, a]=> ~(e) = l£:1 [ai, bi]· 

(J) £(e)= s.\o(e) + Vt(e) + ... + Vm(e), 

where 

and 

with 

3.1 Lemmas 

15 

Here we shall derive a number of properties of the spectrum and the resolvent set 

which will be used in the proof of the main theorems. 

Lemma 3.1 Let e be a compact invariant set in e and .X E JR. Then the fol-

lowing statements are valid: 

{A} If II<P.\(B, t)ll ~ 0 as t ~ +oo for each B E e, then .X E p(e), E(El) ~ 

( -oo, .X), and S~'(S) =£(e) for all p. ~ .X. 

(B) If II<P.\(B, t)ll ~ 0 as t ~ -oo for each B E e, then .X E p(e), ~(e) ~ 

(.X,+oo), 

and U~'(S) =£(e) for all p. ~A. 
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Proof We shall prove (A). The proof of (B) is similar. For each 0 E 0, the is 

T(O) > 0 such that ll4>~(0,t)ll < ~, t ~ T(O). 

Consider x E X fixed with llxll = 1. By the continuity of q,~(O,t)x with 

respect to 0 there exist a neighborhood N:z:(O) of 0 such that 114>~(0, T(O))xll < ~, 

for all B E N:r( 0). Then by the compactness of B we have the following: 

We shall put T; = T(O;), J = 1, 2, · · · m. 

We claim the following: 

k = sup{ll4>~(0, t)ll : 0 E 0, 0 ~ t ~ Tm} < 00. 

In fact. Assume that K = oo. Then there are sequences {On} C 0, {tn} C 

(0, T m] such that 

114>~( On), tnll > n, n = 1, 2, 3 .... 

Since 0 and (0, T m] are compact sets we can assume that {On} converges to 00 E 0 

and {tn} converge to t• E [0, Tm]· Then by Banach-Steinhaus Theorem there must 

be an element x 0 E X so that the set: 

is unbounded. On the other hand the definition of skew-product flow implies that 

Which is a contradiction. 

Now fix t ~ 0 and let 0 E e. Then 0 E N:z:(O;J for some J 1 and llq,~(O, T;Jxll < 

(i)2
• In the same way 6 · t;1 E N:r(Oil) for some J2 and 
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Now continue this process until one has 

Since IT1 :S T :S t and 0 :S t - T :S T m, we get the following 

where a= -£.
1 
ln(~) > 0. 

Therefore we have gotten the following 

114>.\(8, t)xll :S ke-o:t, 8 E S, t ~ 0. 

Since k and a do not depends of x we get that 

.~ ll4>.\(8,t)ll :S ke-o:t, 8 E S, t ~ 0. 

From here we get that the skew-product flow 7r_\ = ( 4>.\, u) has ED over e, with 

projections P( 8) = I, e.i., .X E p( e). On the other hand, if p. ~ .X, then 

Therefore, 

0 

Lemma 3.2 Let e be a compact invariant set in e. Then the resolvent p(S) is 

open. Moreover 

for all p. in a neighborhood of A. 
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Proof Fix .,\ E p(e). Then by definition 7ra admits an exponential dichotomy 

over e. 
Hence there exists an invariant Projector P : £ --+ £ and positive constants 

k and {3 such that 

II<P.\(8,t)P(8)<Pi 1(8,s)ll ~ ke-IJ(t-•), s ~ t, 

II<P.\(B,t)(J- P(8)]<Pi1(8,s)ll ~ ke{j(t-•), s ~ t. 

Claim. If II .A - JLII < a where a = {3 /2, then 

(a) 114> ~ ( 8, t) P ( 8) 4> -l ( 8, s) II ~ ke -a( t- •), t ~ s 

(b) II<P~(8,t)[I- P(8)]<P;1(8,s) ~ kea(t-•), s ~ t. 

In fact: 

Therefore 

From the fact that -{3 /2 < .,\- JL < {3 /2 we get 

In the same way, we get that 

Since the exponential dichotomies of 'lr.\, 1r ~ involve the same projector P we 

have that 

0 
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Lemma 3.3 Let 8 be a compact invariant set in e. Then the spectrum E(e) 

is compact. More specifically, there exists an a > 0 such that, if A > a, then 

A E p(e), and S>. = £ and if A < -a then A E p(e) and U>. = £. 

Proof Because of Lemma 3.2 we need only to prove that E( e) is bounded. 

Thanks to the Proposition 2.1 we get k ~ 1 and a > 0 such that 

II~(B,t)ll ~ ealtl, 8 E e, t E JR. 

Then if A > a we get 

11~>.(8,t)ll ~ ke(a->.)t --t 0, as t --t +oo 

For all 8 E e. Therefore, by Lemma 3.1 one has that 

(a, 00) c p(e) <=> E(e) c ( -oo, a] 

Similarly, if A < -a one has 11~>.(8, t)ll --. 0 as t --. -oo for all 8 E e. Conse­

quently 

Hence 

(-oo,-a) C p(e) <=> E(e) C (-a,oo) 

E(e) C [-a,a]. 

0 

Lemma 3.4 Let e be a non empty set in e and assume that dim£ ~ 1. Then 

the spectrum E(E>) is nonempty. 

Proof Pick 80 E e and set M0 = H(80 ) where 

H(8o) = cl{Bo.t: t E .JR} 
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Then M 0 is a compact invariant set and clearly E(Mo) ~ E(S). It will be sufficient 

to show that E(Mo) is noempty. From Proposition 2.1, we have k ~ 1 and a> 0 

such that 

II-P(8,t)ll::::; kealtl, 8 E Mo, t E JR. 

By Lemma 3.1 we get the following : 

(a) If.\ > a, then A E p(Mo), S>.(Mo) = £(Mo) and U>.(Mo) = Eo(Mo). 

(b) If A < -a, then A E p(M0 ), U>.(Mo) == £(Mo) and S>.(Mo) == £0 (Mo). 

Therefore E(Mo) C [-a,a]. 

Next define 

Ao = inf{A E p(Mo) : S>.(Mo) = £(Mo)} 

Then -a ~ A ~ a. 

For the purpose of contradiction, let us assume that Ao E p(M0 ). Then there 

are two cases to consider: 

(i) S>.0 (Mo) == £(Mo) 

(ii) S>.0 (Mo) f; £(Mo). 

For the case (i) the Lemma 3.2 implies that S>.(Mo) == £(M0 ) for A in a neigh­

borhood of A0 , which contradicts the definition of A0 . 

For the case (ii) one must have U>.0 (M0 ) f; £o(M0 ). From Proposition 2.2 we 

get that 

£( 0) = U>.0 ( 8) + S >.0 ( 8), V 8 E Mo. 

Then by using Lemma 3.2 one again, we have U>.(Mo) f; Eo(Mo) in a neigh­

borhood of A0 • This contradicts the fact that U>.(Mo) == £0(M0 ) for A > Ao close 

enough to Ao. Therefore Ao E E(Mo). 
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0 

Lemma 3.5 Let 8 be a compact invariant set in e. Consider A11 A2 E p(8) with 

At < A2. 

then 

[At,..\2] c p(8) and S.\(8) = S.\1 (8), U.\(8) =U.\1 (8) 

for all A E {A 11 A2]. 

Proof In the same way as the proof of Lemma 8 in [17]. 

The following Propositions are easy to prove. 

Proposition 3.1 Let A, B and C be subspaces of X. If C ~ A then 

An (B +C)= (An B)+ (An C) 

0 

(3.3) 

Proof By simplicity we shall use the following notation: S.\ := S.\(8) and U := 

u.\(8). 

It is easy to prove the following property: 

(3.4) 

From Proposition 2.2 we already know that 
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Therefore, from Proposition 3.1 we get 

and 

S>.2 == S>., n ( S>.1 + U>. 1 ) = 5>.1 + U>.1 n S>.,. 

Then by using (3.2) we get that 

0 

Lemma 3.6 Let e be a compact invariant set in 0 and .At, .A2 E p(e) with 

.At < .A2. 

Then the following statements are equivalent: 

{A) There is a J.L E (.At, .A2) n I;( e) 

{B) U>.1 (e) n S>.2 (e) #Eo( e). 

Moreover, F == U>.1 (e) n U>.,(E>) is an invariant subbundle of£ 

Proof (A)=> (B) 

From Proposition 3.2 we have the following 

£ == U>.,(e) + S>.l(e) == U>.l(e) + S>.l(e) == U>.2(S) + S>.,e) 

Since U>.2(S) ~ U>.1 (e) and 5>.1 (e) ~ S>.,(e) 
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then 

Now we can apply Lemma 3.5, it means that 

for .X E [.X 11 .X2] C p(e). Therefore (.Xt, .X2) n E(S) = 0 which contradicts (A) 

(B)=> (A). Define 

JL := inf{.X E p(e): calS>.(e) = 8>.2 (0)}. 

In fact. Lemma 3.2 implies that JL < .X2. 

For the purpose of contradiction, let us assume that JL E p( e). Then there 

exists a neighborhood of JL such that for all .X in that neighborhood S>.(e) = 

S~-'(e). Hence, JL E E(e). 

Assume that JL < At. Then we get 

Then applying Lemma 3.2 and the definition of JL we get that S>.1 (0) = 8>.2 (0). 

From (B) we have that S>.2 (0) n U>.1 (El) # &o(e). So U>.1 (El) n S>.1 (e) # &o(f>). 

Which is a contradiction with the fact that At E p(El). Thus JL E (.>t 11 .X2 ) 

Finally, since both U>.1 (e) and S >.2 (e) are invariant sub bundles of £(e), it 

follows that 

is also invariant subbundle. 

0 
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Lemma 3. 7 Let 8 be a compact invariant set in 8 and let At, .X2 be chosen so 

(.Xt, .X2) u ~(e) =1 </>. Let 

and -fr the restriction of 1r to :F. Let t (e) : = E( :F) denote the spectrum of ( :F, -fr) 

over e. Then 

Proof We shall give the proof in three steps. 

Step 1. Consider .X E p(e) and define 

Then :F.(.X) and :Fu(.X) are invariant subbundles and 

In fact, suppose that .X < At. Then 

From now on we shall omit the argument 8 if it is neccesary, in order to simplify 

the computation. So 

and 

Hence :F =:F.( .X)+ :Fu(.X). 
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Similarly, if .X > .X 2 , then 

F.(.X) = F and Fu(.X) = Fo 

For all A E [.XIJ .X 2 ] we shall use Proposition 3.2 and the fact that E = U>..2 + S>.., = 

Therefore 

U>.. 1 - U>.. 1 n (U>.., + S >..,) = U>..2 + F 
U>..1 = U>..1 n (U>.. + S>..) = U>.. +F.( .X) 

U>.. = U>..n(U>..2 +S>..2 ) = U>..2 +Fu(.X) 

Since Fu(.X) +F.( .X)~ F, then F = Fu(.X) +F.( .X) 

Step 2. p(S) ~ p(S) = 1R \ t(e). In fact, if .X E p(S), then there is a projector 

P : E( e) --+ E( e) and positive constants k and {3 such that 

and 

11<1>>..(0, t)P(O)<I>~ 1 (0,s)xll ~ kllxlle-f3(t- 6
), t ~ s, 0 E e 

li<I>>..(O,t)(J- P(O))<I>~ 1 (0,s)xll ~ kllxll~(t- 6>, t ~ s, 0 E e 
If P is the restiction of P to F, then 

R(P) = F.(.X), N(P) = Fu(.X), F = R(P) + N(P). 

Therefore, by restricting the above inequalities to all ( x, B) E F we obtain 
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Thus off). admits an exponential dichotomy over e, i.e., A E p(S). So p(S) c p(S) 

and therefore E( e) c E( e). This completes the step 1. 

Since F ~ S.x2 (B), then 

for all ( x, 8) E F uniformly in x. Hence, applying Lemma 3.1 we obtain that 

E(S) ~ ( -oo, ..\ 2 ) and F_,(,.\) = F, ,.\ ~ ,.\2 . In the same way we obtain F ~ 

U>. 1 (B). This implies that 

Using Lemma 3.1 again, we get that 

E(S) ~ (..\1, oo) and Fu =F. Then 

In order to prove the opposite inclusion, it is sufficient to show that: if ,.\ E 

p(S) n (Al, A2), then ,.\ E p(S). In fact, suppose that 

which is equivalent to : 

On the other hand, we already know that E(B) C (,.\I, ,.\2). Therefore, 

Step 3. p(S) n (,.\1, ,.\2) c p(G). In fact, if,.\ E p(B) n (,.\I, ,.\2), then there is a 

projector Q : F -+ F and positive contants k and {3 such that 
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114>.x(9, t)(I- Q(9))4>~ 1 (9, s)xll::; kllxlle~(t-•), t::; s (3.6) 

and for all 9 E S 

Consider the projectors : 

and 

From the Proposition 3.2 we have 

E = U.x2 + S.x 1 + U.x 1 n S.x2 = 'R(P) + N(P) 

P.x = P 1 + QP is a projector on E such that 

R(P.x) = S.xl + S.x, N(P.x) = U.x + U.x2 

where S.x = R(Q) and U>. = N(Q). 

Using (3.5) and (3.6) and the fact that A E (A1 , A2 ), AlJ A2 E p(S) one can show 

that there are positive constants l and a such that 

noindent which implies that A E p(S). 

0 



28 S.N CHOW AND H. LEIVA 

3.2 Proof of Main Theorems 

Proof of Theorem 3.1 

The statement (A), (B) and (C) follow from Lemma 3.3, 3.4 and 3.6 respectively. 

The statement (D) follows from Lemma 3.7. 

(E) From Lemma 3.3 we have that 

E(e) C [-a, a] 

Therefore 

m m 

E(e) = E(e) n (U(.Xi-1, .Xi))= u E(e) n (.X.:-1, A.:)= u E.:(e). 
i=l i=l i=l 

(F) Consider i + 1 ~ j 

by the monotocity of U>. we get that V; C U>.,· On the other hand we know that 

(G) From Lemma 3.3 we have that: 

if .X >a=} .X E p(e), S>.(e) =£(e) and U>.(e) = Eo(e). 

if .X< -a=} .X E p(S), U>.(e) =£(e) and S>.(S) = £o(S). 

Also we know that 

Therefore 
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= V1 + u).1 == V1 + U>.1 n (5>.2 + u>-2 ) 

== V1 + U>.1 n 5 >.2 + U>.2 

- V1 + V2 + u>-2 n (5>.3 + u>-3) 

= .............. . 

= .............. . 

= Vt + V2 + V3 + ... + Vm + U>.m. 

V1 + V2 + ... + Vm. (U>."' = £o(El)) 

Proof of Theorem 3.2 

29 

0 

(A)- (F) follow easily from Lemmas 3.2 and 3.3. Proof of (G), from Lemma 3.3 

we have the following: 

If Ao < -a, then U>.0 = £ and dimU>.0 = oo 

If .\0 > a, then U>.0 = £o and dim U>.0 == 0 

Therefore .\0 E (-a, a]. 

Now consider the set 

such that 

From Proposition 2.2. we get that: £(e)== 5>.0 (El) + U>.0 (El). Then let us denote 

by 1r>.o the restriction of II to U>.o and E>.o(e) the spectrum of (U>.
0

, 1r>.o) over e. 
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So by using Lemma 3.7 we obtain that 

Therefore dim Vi 2:: 1, which implies that m ~ dimU>.o· Now we shall show that 

the resolvent p( e) of (U>.o, 1r>.o) consist of ( k + 1) intervals where k ~ n( .\0 ). If 

P>.o(e) consists of (n(.\0 ) + 2) intervals: 

n(>.o)+2 
P>.o(e) = U ( Ci, di) 

i=l 

So we get that 

Then 

Therefore 

Which is a contradiction. Hence P>.o(e) consists of k + 1 intervals whith k ~ n. 

So ~>.0 (S) is the union of k compact intervals. The remainder of the proof is 

easy. 0 
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4 Lyapunov Exponents 

In this section we shall investigate the relation between the Dynamic Spectrum 

and the Lyapunov characteristic exponents. 

For this purpose we shall assume that there exists .X0 E p( S) such that 1 ~ 

dimU~0 < oo. 

Consider {.X0 < ... < .Xm} C p(S), such that 0 <Am and ~(S) n (Ai-l, .Xi) :f:. ¢. 

Then from Theorem 3.2 we get: 

~~o(e) == (.Xo, a] n ~(e) ( 4.1) 

( 4.2) 

m ~ dimU~0 , Ao E [-a, a] (4.3) 

£(e)== s~o(e) + vl(e) + ... + vm(e) ( 4.4) 

(4.5) 

(4.6) 

The spectral intervals [ai, bi] have been ordered so that bi < ai+t, t = 

1, 2, ... , m- 1. 

Let Pi : E(S) ~ E(S) denote a projector corresponding with the descom­

position ( 4.4) such that Range (Pi) == 'R(Pi) = Vi and the null space being the 

sum of the remain V; and S ~o for j =f:. i 
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Then if P .\o : £(e) -+ £(e) is the projector on E such that 

Hence 

I= P.\0 (8) + Pt(8) + ... + P"'(8), V8 E S. 

Given a point (x, 8) E £, x '# 0, we shall define the four Lyapunov exponents 

of (x,8) as follows: 

1 
>.:(x,8) = lim -lnJJci>(8,t)xll 

t-++oo t (4.7) 

1 
>.t(x, 8) = lim -ln llci>(8, t)xll 

t-++oo t 
(4.8) 

1 
>.;(x,8) = lim -lnllci>(8,t)xll 

t-+-00 t ( 4.9) 

1 
>.;(x, 8) = lim -ln llci>(8, t)xll 

t-+-00 t 
(4.10) 

Theorem 4.1 {A) If (x,8) E Vi where Vi, is the spectral subbundle associated 

with Ao and [ai, bi], and x '# 0, then the four Lyapunov exponents agree and the 

limits 

lim ~ ln llci>(8, t)xll = lim ~ ln llci>(8, t)xll 
t-++oo t t-+-oo t 

exist and are equal to ai. 

{B) If (x, 8) E s.\o, X -=I 0 then the two Lyapunov exponents (4. 7) - (4.8} agree 

and the limits 

lim ~ ln llci>(8, t)xll = lim ~ ln llci>(8, t)xll = .Ao. 
t-++CX) t t-++CX) t 
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Proof The proof of (A) is similar to the prove of Theorem 3 in [ ] . In order to 

prove (B) let us consider (x, 8) E s~ with X =1- 0. Then 

Therefore, there is a constant M > 0 such that 

Then 

So 

0 

Definition 4.1 For all 8 E ewe define the upper Lyapunov exponent .X~(8) and 

the lower Lyapunov exponent .At( 8) as follows: 

.X~(8) := inf{.Xt(x,8): x EX, x =/:- 0} 

Theorem 4.2 The upper Lyapunov exponent .X~( 8) and the lower Lyapunov ex­

ponent .At ( 8) associated to 8 E e are given by : 

(4.11) 

-1 
.At( 8) = - lim -ln IJ~( 8.( -t ), t )111 

t-oot ( 4.12) 
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Proof We shall denote by 'Y(B) the right side of (4.11). We have the following 

1 1 1 
t ln II <I> ( B , t) x II ::; t ln II <I> ( B, t) II + t ln II x II 

which implies that 

-1 -1 
lim -ln II<I>(B, t)xll ::; lim -ln II<I>(O, t)ll 
t-+oo t t-+oo t 

Hence A~(x, B)::; 1'(0), for all x EX, x f. 0; therefore .X~(B) ::; 'Y(B). 

In order to prove the opposite inequality we shall use the following fact: For each 

€ > 0 and x E X there is N~.z > 0 such that 

The above inequality can be writing as follows 

Then the operators family 

is bounded for each x E X. It follows from Uniform Boundness Theorem that 

there exists N~ > 0 such that 

Hence 

Therefore 

1 1 t ln II<I>(B, t)xll < t ln(N~) + (At(B) +e) 
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So 
-1 
lim -ln II<I>(O, t)xll ::; ..\~(0) + f t-oot 

Hence 

--y(6) ~ ..\~(0). 

The proof of ( 4.12) is not hard to do. 

0 



36 S.N CHOW AND H. LEIVA 

5 Examples 

In this section we shall present some examples in which we are able to locate the 

Dynamical Spectrum. 

The following example is sufficiently general to be considered here. 

Exantple 5.1 In this example we shall consider a linear time dependent differ­

ential equation that generates a linear skew-product flow on the trivial Banach 

bundle £ = X X e where X is a Banach space and e is a compact topological 

Hausdorff space. 

More precisely, we shall study the following linear time dependent system 

x(t) = A(8 · t)x(t), t E IR (5.1) 

where A( 8 · t) = A + B( 8 · t ), A is the infinitesimal generator of the strongly 

continuous group {T(t)}tEIR; 

L(X), t E JR. 

a(8, t) = 8 · t is a flow on 9 and B(B) E 

Lemma 5.1 If B(·): e-+ L(X) is strongly continuous, then the set {IIB(B)II : 

8 E 8} is bounded. 

Proof Consider the following sets 

H = {IIB(8)1l: 8 E e}, H(x) = {IIB(8)xll : 8 E 9} 

Since 8-+ B(B)x is continuous and e is compact, then for each X EX we 

get that H(x) is bounded. Hence, by the Uniform Boundedness Theorem we 

obtain that H is bounded. D 
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Lemma 5.2 If B(·) : 9 ~ L(X) is strongly continuous and x(·) : 1R --+ X 

is a continuous function, then for each (} E 0 the mapping t ~ B(8 · t)x(t) is 

continuous. 

Proof Fix t E JR. Then 

IIB(8(t + h))x(t +h)- B(8 · t)x(t)ll 

== IIB(8(t + h))[x(t +h)- x(t)]- [B(8.(t +h))- B(8 · t)]x(t)ll 

~ Lllx(t +h)- x(t)ll + II[B(8.(t +h))- B(8 · t)]x(t)ll 

where L = sup{IIB(8)1l: (} E 0} and 8.t E e fortE JR. 

Therefore 

IIB(8(t + h))x(t +h)- B(8 · t)x(t)ll ~ 0, as h--+ 0 

0 

To be precise in which sense the equation (5.1) generates a linear skew-product 

flow, we shall consider the following family of integral differential equations: 

x(t) = T(t)xo + l T(t- s )B(B · s )x(s) ds. t E IR 6 E 0. (5.2) 

Definition 5.1 A solution x( t) = x( t, 8) of the equation ( 5.2) is called a 

Mild Solution of (5.1). 

Theorem 5.1 Let A be the infinitesimal generator of an strongly continuous 

group {T(t)}teJR on X and B(·) : e -+ L(X) is also strongly continuous. 

Then for each (} E e and Xo E X the problem 
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x(t) = A(O. t)x =(A+ B(O. t))x(t); x(O) = Xo (5.3) 

has a unique mild solution 4?(0, t)x0 given by 

of>( 8, t)x0 = T( t)xo + 1' T( t - s )B( 8 · s )of>( 8, s )xods. (5.4) 

If 

IIT(t)ll ~ MeWitl, t E JR, 

then 

ll4?(0,t)11 ~ Me(W+LM)Itl, t E 1R (5.5) 

where 

L = sup{jjB(O)II : 0 E 8} 

Moreover, the mapping 7r : E x 1R ---+ E given by 

1r(x, 0, t) = (4?(0, t)x, 0 · t) (5.6) 

is a linear skew-product flow on£= X X e , maybe without the condition (4) of 

- --~ Definition 2.1. . · 

The following Proposition corresponds to the part ( 4) of Definition 2.1 

Proposition 5.1 If the flow a(O, t) = 8-t depends continuously on 8 in compacts 

intervals, then for all fixed t E IR, the mapping from £ to X given by ( x, 0) ---+ 

4?( 8, t )x is continuous. 
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Proposition 5.2 Let1r = (4>,a) be the linear skew-product flow defined by {5.6}. 

Then 

E(e) c [-(W + LM), W + LM] 

where 

L = sup{IIB(B)II: 8 E 8}, IIT(t)ll ~ MeWitl, t E JR. 

Example 5.2 (The perturbed wave equation). The simplest one dimensional 

hyperbolic equation with a time dependent perturbation of the form 

Utt = U:r:r + b(t)u:r, t E JR, -oo < x < oo (5.7) 

u(O,x) - u1(x) 

Ut(O,x) u2(x) 

where b( ·) : 1R ~ 1R is uniformly continuous and bounded function. 

Let u 1 , u2 E L2(IR). Define: 

z1(t,x) = ut(t,x) and z2(t,x) = u:r(t,x). 

Then the equation can be rewritten as follow 

azl(t,x) 
at 

az2(t,x) 
at 

az2( t, x) b( ) ( ) 
ax + t Z2 t, X 

azi(t,x) 
ax 

(5.8) 

(5.9) 

Hence, letting z( t, x) denote the column vector with components z1 ( t, x ), z2( t, x) 

, we can write the equations (5.8) and (5.9) as follow 

az(t x) a; =Az(t,x)+B(t)z(t,x) (5.10) 
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where 

B ( t) = ( 0 b( t) ) 

Therefore the operator A is now defined on the class of functions col[z1 , z2] in the 

product Hilbert spaces Z = L2 ( JR) x L 2 ( IR) such that their derivatives are also 

in Z and t ~ B(t) E L(Z) is a uniformly continuous and bounded function. 

It is well known that A generates a strongly continuous contraction semigroup 

{T(t)}t~ C L(Z). Actually for z E D(A) 

d 
dt [T(t)z, T(t)z] = 0. 

Since the domain of A is dense this means that IIT(t)zll = llzll for every z E Z or 

T(t) is an "isometry". We have actually a group; T(t) has bounded inverse for 

every t. Either by working with Fourier transforms (or formally taking eAt ) it 

can be verified that 

[ 

zdx+t)+.z:1(:r-t) + z2(:r+t)-z2(x-t) ] 

T( t )z( X) = z2 (x+t)~z2(x-t) + zl(x+t);zl(x-t) 

The function B( ·) belong to the space W of the function C : 1R ~ JR2 which 

are continuous and bounded, endow with the topology of the uniform convergence 

on com pact sets of JR. For each C E W and T E 1R we define the T- translation 

of C as the function C.,. E W given by C.,.(t) = C(T + t). Then we consider the 

Hull of B( ·) as the following set 

e = Hull(B) = cl{B.,.: T E JR} 

where cl denotes the closure in the topology of W. The set 9 is compact in W 

due to Proposition 1.1 in [1]. 
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We define on 8 the flow cr(C, t) = Ct = B · t, B = C. Then 8 is invariant 

under a. 

Instead of concentrating on the single aquation (5.10) we consider the family 

of equations 

d 
-z(t) = Az(t) + B(B · t)z(t), () E 8 
dt 

Here we have abused notation and written B(B · t) := a(B · t). 

(5.11) 

Then using Theorema 5.1 we get that the mapping 7r: z X e X 1R--+ eX z 
given by 

1r(x,B,t) = (~(B,t)x,B.t) 

where ~(B, t) is given by 

~(0, t)Zo = T(t)Zo + 1' T(t- s)B(O · s )~(0, s )zods 

is an skew-product flow on Z X 8. 

Moreover, if L = sup{IIB(t)ll : t E JR}, then we get that 

E(E)) c [-L, L] 

since IIT(t)ll = 1. 

Example 5.3 Using the same idea as in [2) we can consider the equation (5.9) 

with more general perturbation function b( t, x) which is only bounded and mea­

surable depending on t, x in. In fact. Consider the equation 

U.tt - u.:u + b( t, x )u.:.:, t E JR, -oo < x < oo (5.12) 
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u(O,x) Ut(x) 

Ut(O, X) - u2(x) 

In the same way as equation (5.9) we can write equation (5.12) as follow 

az1(t, x) 
at 

az2(t, X) 
at 

az2(t,x) 
ax +b(t,x)z2(t,x) 

azt(t,x) 
ax 

(5.13) 

(5.14) 

Hence, letting z( t, x) denote the column vector with components z1 ( t, x ), z2( t, x) 

, we can write the equations (5.13) and (5.14) as follow 

az(t,x) 
at =Az(t,x)+B(t)z(t,x) (5.15) 

where 

A=[l ~~] B(t)z(x) = ( 0 b(t,x)z2(x)] 

Therefore the operator A is now defined on the class of functions col [ z1 , z2 ] in the 

product Hilbert spaces Z = L2 (1R) x L2 (1R) such that their derivatives are also 

in Z and the function B( t, x) = [ 0 b( t, x) J = b( t, x) belong to the space 

Loo = l00 (JR2
) = {b: JR2 

-+ JR2 
: b( ·, ·) is measurable and bounded almost everywhere} 

with the essential supremum norm, i.e., 

llblloo = ess.sup{jlb(t, x)ll: t, x E JR}. 

For R > 0 we consider 

BR = {b(·, ·) E Loo: llblloo ~ R} 
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So, BR denote the close ball in L 00 of radiu R. It is basic fact that the set BR 

endowed with the weak* topology of L 00 is a compact metrizable topological space 

(Interesting, the whole space L 00 with the weak* topology is not metrizable ). 

Since Li = L00 , then a sequence {/n} converges to f E Loo if and only if, for 

every g E L1 one has: 

< fn,J >--+< J,g > ¢=:::::> J fn.gdp,--+ J f.gdp,, as n--+ 00 

where < ·, · > is the duality between L 00 and L 1 . 

Moreover, the translation mapping a(·, ·) : RR x lR --+ B R given by 

a(b, t) = bt = b(t + ·, ·), 

is continuous in this topoly and the mapping a is a flow on BR. Then we shall 

consider the Hull of bas the following set: 

8 = Hull(b) = cl{bt : t E JR} ~ BR 

where cl denotes the closure in the topology of BR. Clearly the set e is compact 

We define on e the flow a( b, t) = bt = 8 · t, 8 = b. Then e is invariant under a. 

Instead of concentrating on the single aquation (5.15) we consider the family of 

equations 

d 
dtz(t) = Az(t) + B(8 · t)z(t), 8 E e (5.16) 

Here we have abused notation and written B(8 · t) := a(8 · t). 

Then using Theorema 5.1 we get that the mapping 7r : z X e X lR --+ e X z 
given by 

1r(x, 8, t) = ( <P(8, t)x, 8.t) 
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where <P(B, t) is given by 

~(6, t)zo = T(t)z0 + l' T(t- s)B(O · s)~(O,s)zods 

is an skew-product flow on Z X 8. 

Moreover, if L = llb(t, x)lloo, then we get that 

~(S) c [-L,L] 

since IIT(t)ll = 1. 

Example 5.4 Linear skew-product flow defined by a Linear Neutral Functional 

Differential Equation. 

For a fixed r > 0, the space of continuous functions g : [ -r, 0] --+ IR with the 

usual uniform norm is denoted by C = C([-r, 0], Dl). 

Then we shall consider the folling Linear Neutral Functional differential Equa-

tion (LNFDE) 

d 
dt [x(t)- cx(t- r)] = bx(t- r) + a(t)x(t) (5.17) 

where c, b E Dl and a : Dl --+ JR. is a uniformly continuous and bounded function. 

The equation ( 5.17) can be written as follow 

d 
dt [Dx(t)] = Lxt + J(t, Xt) (5.18) 

where Xt(B) = x(t + B), for - r ~ (} ~ 0, D¢ = ¢(0) - c¢( -r), L¢ = 
b¢( -r) and f(t, Xt) = a(t)x(t). 

From Theorem 7.2 in [3] we have that for each 4> E C there is a unique solution 

x(t, ¢,a) of (5.18) defined on Dl which satisfies the initial condition x0 = ¢. 
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Moreover, if we consider the equation 

d 
dt[Dx(t)] = Lxt (a= 0) (5.19) 

and the corresponding solution map 

T(t): C ~ C, T(t)¢ = Xt(·, ¢), t E JR, 

then from Theorem 7.4 of [3] we get that the solutions of (5.18) are given by the 

following variational constant formula 

x( t, 4>, a) = T( t)l/>(0) + 1' X( t - s )a( s )x( s, 1/>, a )ds, (5.20) 

where X(t) is the solution of the equation 

X(t)- cX(t- r) = bX(t- r) 

with the initial condition X(t) = 0, t < 0, X(O) = 1. From Theroem 7.6 and 

corollary 7.2 in [3] we get the following: If a 0 = sup{Re.X : .X(1- ce-.Xr) = be-.Xr}, 

then for any a > a 0 there is k = k( a) such that 

IIT(t)ll ~ kealtlll¢11 and IX(t)l ~ kealtl, Vt E 1R (5.21) 

where 11¢11 = sup_r~·~ol¢(s)l. 

The function a(·) belong to the space W of the functions g : 1R ~ 1R which 

are continuous and bounded, endow with the topology of the uniform convergence 

on compact sets of JR. For each g E Wand T E 1R we define the r- translation 

of g as the function g.,. E W given by g.,.( t) = g( r + t ). Then we consider the Hull 

of a(·) as the following set 
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e = Hull(a) = cl{aT': T E JR} 

where cl denotes the closure in the topology of W. The set e is compact in W 

and invariant under the flow a(g, t) = 9t = (} · t, (} = g, due to Proposition 1.1 

in [1]. 

Instead of concentrating on the single aquation (5.18) we consider the family 

of equations 

d 
dt [Dx(t)] = Lxt + a(B · t)x(t), (} E 8; (5.22) 

here we have abused notation and written a(B · t) := a(B · t). 

Then we get that the mapping 7r: c X eX lR ~ c X e given by 

7r( </>, (}' t) = (<I>((}' t )</>, (} . t) 

where ip((J, t)</> is given by 

is an skew-product flow on C X 8. 

Moreover, if L = sup{lla(t)ll: t E JR}, then from (5.21) we get that 

ll<I>(B, t)ll ~ ke(a+kL)Itl, Vt E lR and I;( e) C [-(o: + kL), o: + kL]. 
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V.S. Afraimovicli and S-N. Chow, Synchronizations in lattices of nonlinear Duffing's 

oscillators 

Abstract: In this work we prove the possibility of stochastic synchronization in two­

dimensional lattice of coupled Duffing's oscillators with external periodic forces. The 

synchronization occurs provided coupling is dissipative and the coefficients of coupling 

is greater than some critical values. These values depend on parameters of individual 

subsystems and on the size of the lattice. 

J .IC Hale and \V. Huang, Periodic solutions of singularly perturbed delay equations 

Abstract: Vve consider the singularly perturbed delay differential system 

Ex(t) = J>..(x(t),y(t)) 

y(t) = 9>-.(x(t), y(t), x(t- 1), y(t- 1)), 
(1.1) 

where E > 0, A are small real parameters, x E IRm, y E IRn are vectors and the functions 

J>..(x, y) = f(x, y, A) and g>..(x, y, z, w) = g(x, y, z, w, A) are smooth vector valued functions 

which vanish for all variables equal to zero. 

In many situations, for fixed A > 0, there is an E(A) > 0 such that (1.1) undergoes a 

generic Hopfbifurcation at (A,E,x,y) = (A,E(A),O,O) to aperiodic solution (x;>..,Y;>..)· Let 

us assume that there is a sectorial regionS in a neighborhood U of (A, E) = (0, 0) such that 

(x;>.., y;>..) exists for all (A, E > 0) inS. Our objective is to understand the behavior of the 

profile of (x;>.., g;>..) as E ~ 0. We are not able ~o do this in the general context described, 

but we can say something if we impose more conditions on the functions />.., 9>..· 
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It is to be expected that the limiting profile is in some way related to the equation 

obtained by putting E = 0 in (1.1). ForE= 0, we suppose that the resulting equation (1.1) 

defines a map on 1R m x 1R n: 

(1.2) 

for which the origin is stable for ,\ < 0 and unstable for ,\ > 0. Let us also suppose 

that T>..(x,y) undergoes a generic period doubling bifurcation at (x,y,.\) = (0,0,0) with 

the period two points being dj>.. E IRm x IRn, j = 1, 2. If the bifurcation is supercritical, 

the period two orbit is stable and, if the bifurcation is subcritical, the period two orbit is 

unstable. In the supercritical case, there is a natural stable periodic function of period two 

given by the square wave (x~(t),y1(t)) which alternately takes the values d1>.. and d2>.. on 

intervals of length one. In the subcritical case, the period two points are unstable and the 

natural periodic function of period two is a pulse wave (x~(t), y~(t)) which is zero except 

on the integers and it alternately takes the values d1>.. and d2 >.. on the integers. 

Under some conditions on the functions />.., g>.., the generic period doubling bifurca­

tion of T>..(x,y) leads to a generic Hopf bifurcation in (1.1) which is supercritical (resp. 

subcritical) if the period doubling bifurcation is supercritical (resp. subcritical). A natural 

question is the following: Is it possible that the lin1iting profile of the periodic solution 

(:r;>.., iJ;>..) obtained through the Hopf bifurcation is either the square wave or pulse wave? 

Vle present situations in which this is true. 
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Periodic solutions of singularly perturbed delay equations 

by 

Jack K. Hale* and Wenzhang Huang 

1. Introduction. In this paper, we consider the singularly perturbed delay differential 
system 

c±(t) = J;..(x(t), y(t)) 

y(t) = g;..(x(t), y(t), x(t- 1), y(t- 1)), 
(1.1) 

where E > 0, A are small real parameters, x E IRm, y E IRn are vectors and the functions 
J;..(x, y) = f(x, y, A) and g;..(x, y, z, w) = g(x, y, z, w, A) are smooth vector valued functions 
which vanish for all variables equal to zero. 

In many situations, for fixed A > 0, there is an c(A) > 0 such that (1.1) undergoes a 
generic Hopf bifurcation at (A, E, x, y) =(A, c(A), 0, 0) to a periodic solution (x;;.., iJ;;..)· Let 
us assume that there is a sectorial regionS in a neighborhood U of (A, c)= (0, 0) such that 
( x;;..' iJ;;..) exists for all (A, E > 0) in S. Our objective is to understand the behavior of the 
profile of (x;;..,iJ;;..) as € ~ 0. We are not able to do this in the general context described, 
but we can say something if we impose more conditions on the functions J;.., g;... 

It is to be expected that the limiting profile is in some way related to the equation 
obtained by putting € = 0 in (1.1). ForE= 0, we suppose that the resulting equation (1.1) 
defines a map on IR m X IR n: 

(1.2) 

for which the origin is stable for A < 0 and unstable for A > 0. Let us also suppose 
that T;..(x,y) undergoes a generic period doubling bifurcation at (x,y,A) = (0,0,0) with 
the period two points being dj;.. E IRm x IRn, j = 1, 2. If the bifurcation is supercritical, 
the period two orbit is stable and, if the bifurcation is subcritical, the period two orbit is 
unstable. In the supercritical case, there is a natural stable periodic function of period two 
given by the square wave (xl(t), yl(t)) which alternately takes the values d1;.. and d2;.. on 
intervals of length one. In the subcritical case, the period two points are unstable and the 
natural periodic function of period two is a pulse wave (x~(t),y~(t)) which is zero except 
on the integers and it alternately takes the values d1;.. and d2 ;.. on the integers. 

Under some conditions on the functions J;.., g;.., the generic period doubling bifurca­
tion of T;..(x,y) leads to a generic Hopf bifurcation in (1.1) which is supercritical (resp. 
subcritical) if the period doubling bifurcation is supercritical (resp. subcritical). A natural 
question is the following: Is it possible that the limiting profile of the periodic solution 
(x;;..,iJ;;..) obtained through the Hopfbifurcation is either the square wave or pulse wave? 
We will give son1e situations in which this is true. 

Let us mention that equations of the form (1.1) occur frequently in the applications. 
The delay differential equation 

(1.3) cx(t) = -x(t) + J;..(x(t- 1)). 

* Partially supported by NSF and DARPA 
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has often served as a model for physiological control systems [6], [14], [20] and for the 
transmission of light through a ring cavity [1 ], [5], [12], [13]. This can be considered 
as a special case of (1.1) by letting y(t) = x(t- 1). Under the conditions that the map 
x 1----t J>..(x) undergoes a generic supercritical periodic doubling bifurcation at (x, A)= (0, 0), 
it was shown in [2] that there is a periodic solution of (1.3) which approaches the square 
wave mentioned above. If the bifurcation is subcritical, it was shown in [7] that there is a 
periodic solution of (1.3) which approaches a pulse wave but the pulses are larger that the 
values d1>.., d2 >.. mentioned above. The explanation for this will be given later. The limiting 
behavior of large a1nplitude periodic solutions of (1.3) also has been investigated in [15], 
[16] when the limiting profile is a square wave. 

The more general equation 

(1.4) 
d d 

(em dt + 1) · · · (c1 dt + 1)y(t) = h>..(y(t- 1)), 

where each c j > 0 is a small parameter, also has been proposed as a model for transmission 
of light through a ring cavity (see [18], [19]). Equation (1.4) is equivalent to the system 

(1.5) 
tm-lXm-l(t) + Xm-l(t) = Xm(t) 

EmXm(t) + Xm(t) = h>..(xl (t- 1)). 

If we scale the Ej as Ej = caj 1
, j = 1, 2, ... , m, then we obtain an equivalent matrix 

equation 

(1.6) cx(t) + Ax(t) = Af>..(x(t- 1)), 

where A and f are given by 

al -a: I 
0 0:2 

A= 

0 0 
0 0 

0 
-a2 

0 
0 

0 
0 

0 
0 

This also is a special case of (1.1) with y(t) = x 1(t- 1). 

f>..(X) = 

Under the assun1ption that the map x 1----t h>..(x) undergoes a generic period doubling, 
it was shown in [8] that there are periodic solutions of (1.5) resembling either a square wave 
or a pulse wave depending upon whether the bifurcation was supercritical or subcritical. 
For the general matrix equation (1.6) without assuming that it arises from (1.5) and under 
generic conditions on the function f >.. in (1.6), similar results were given in [8]. 

The proofs of the above results exploited the properties of flows on center manifolds 
for some scaled equations which will be mentioned below. 
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The equation 

(1. 7) 
cx(t) + Ax(t) = Af;..(y(t)) 

y(t) = g;..(x(t- 1), y(t- 1)), 

where x E IR m, y E R n are vectors, the m x m matrix A has an inverse and the functions 
J;..(y) and g;..(x, y) are smooth vector valued functions, has been used in [12], [13] as a model 
of a ring cavity containing a nonlinear dielectric medium for which part of the transmitted 
light is fed back into the medium. ForE= 0, the map T;..(x,y) = (f;..(y),g;..(J;..(y),y). 
Under the assumption that there is a supercritical period doubling bifurcation of the map 
y--+ g;..(J;..(y), y) at (y, .A)= (0, 0) and some other generic conditions, it was shown in [3] 
that there is a periodic solution of (1. 7) which is similar to the square wave for E small. The 
proof of this result used functional analytic methods based on exponential dichotomies. 

Our objective in this paper is to show that center manifold techniques can be applied 
to discuss (1.7) when the period doubling bifurcation is either supercritical or subcritical. 
The limiting profile of the corresponding periodic solutions is either a square wave or a 
pulse wave. The precise statements of the results on convergence to square waves or pulse 
waves for the case ( 1. 7) are given in Section 2. Sections 3 and 4 are devoted to the proof. 
The hypotheses imposed imply the existence of periodic solutions which are related to the 
period two points of the map. However, that analysis does not address the important 
question of the relataionship between the existence of generic period doubling of the map 
and the existence and stability of a generic Hopf bifurcation. These problems are addressed 
in Sections 5 and 6. 

We remark that the equation (1.1) arises also in the theory of transmission lines. If the 
lines are lossless and described by the telegraph equations with the boundary conditions 
reflecting Kirchoff's laws, it has been known for a long time that the flow can be described 
by an equivalent set of neutral delay differential equations (see, for example, [11] for a 
discussion and references). Many of these same problems also can be written in the form 
(1.1). For example, in [17], the equations for a transmission line with a tunnel diode and 
a lumped parallel capacitance can be written as 

(1.8) 
cx(t) = y(t)- g(x(t)) 

y(t) =a+ I<y(t- 1)- x(t)- Lx(t- 1), 

where (x(t), y(t)) represent the voltage and current at one end of the line, all constants are 
positive and represent physical parameters. Under reasonable assumptions in the model, 
the parameter E can be considered to be very small. In [17], several wave forms were 
observed numerically which compared reasonably well with experimental results. Some of 
these wave forms were very similar to square waves. 

It is natural to enquire if it is theoretically possible to prove that, for some values of 
the parameters, there are periodic solutions of (1.8) which are similar to a square wave 
for E > 0 small. If we try to follow the same procedure as before, we first investigate the 
possibility of a supercritical period doubling bifurcation of some map. ForE= 0, we must 
have y(t) == g(x(t)) and thus 

(1.9) x(t) + g(x(t)) =a+ J{g(x(t- 1))- Lx(t- 1). 
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For a given function 9 sitnilar to the cubic polynomial, it is possible to show that there are 
values of the parameters in the equation and a constant xo such that (1.9) defines a map 
which undergoes a supercritical period doubling bifurcation near x 0 • With the methods 
that we develop below, it should be possible to prove that there is a solution of (1.8) which 
approaches as E ----+ 0 either a square wave or a pulse wave. However, we do not discuss 
this problem here. 

2. A ring cavity 1nodel. In this section, we consider the ring cavity model (1.7). 
We will impose some generic conditions on the functions /, 9 which will ensure that the 
associated map for E = 0 undergoes a generic period doubling at (y, A) = (0, 0). We 
search for periodic solutions of (1.7) of period approximately 2 and impose additional 
generic conditions on J, 9 which will permit the reduction of the problem to a discussion of 
certain periodic solutions of a two-dimensional vector field on a center manifold of specific 
scaled equations. We discuss also how the conditions on /, 9 are related to the generic 
Hop£ bifurcation of periodic solutions of ( 1. 7) for fixed E > 0 and A being the bifurcation 
parameter. Since this section is devoted entirely to ( 1. 7), we repeat some of the previous 
formulas and hypotheses since some are stated in other terms. 

We consider the equation 

(2.1) 
Ex(t) + Ax(t) = Af>.(y(t)) 

y(t) = 9>-(x(t -1), y(t- 1)), 

where E > 0, A are small parameters, x E IR m, y E IR n are vectors, A is an m x m 

constant matrix and the functions f>-(Y) and 9>-(x, y) are smooth vector valued functions. 
We suppose that 

(HI) A -I exists />.(0) = 0, 9>.(0, 0) = 0. 

For E = 0, there is the map 

(2.2) 

We first want to impose some conditions on the functions/>., 9>. to ensure that F>. undergoes 
a generic period doubling at (y, A) = (0, 0) and that the period two point is either stable 
or of index 1; that is, has an unstable manifold of dimension 1. For notation, we let 

(2.3) 
A2(A)- Dy/>.(0), Bt(A) = Dx9>.(0,0); B2(A) = Dy9>.(0,0) 

C(A) = B1(A)A2(A) + B2(A) = DyF>.(O). 

We also let a( C) denote the spectrum of a square matrix C and let Bp = {z E C: lzl:::; p}. 
We assume that 

(H2) 
-(1 +A) E a(C(A)) is a simple eigenvalue, 

a(C(A)) \ { -(1 +A)} C Bp with p < 1. 
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We remark that the theory below could be developed for the case in which a( C( .A)\ { -( 1 + 
A)} has no eigenvalues of modulus 1, but in this case, if there is an eigenvalue with modulus 
> 1, then the period two bifurcation always will be unstable, a situation that is not the 
desirable one from the point of view of applications. 

If (H2) is satisfied, then we can introduce a change of variables in y to obtain 

(2.4) C(.A)- [ -(1 +.A) O ] o-(Ho(.A) c Bp, p < 1. 
- 0 Ho(.A) ' 

If we let y == col (YI, Y2) E IR1 
X IRn-l, F>.. == col (FI>.., F2>..) E IR1 

X IRn-I, then we 
can use (2.4) to write 

FI>..(Y) = -(1 + .A)yl + ki(.A)y; + Ylk2(.A)y2 + k3(.A)y~ + O(IIY211 2 + Y;IIY211 + Yt) 

(
2

.S) F2>..(Y) == Ho(.A)y2 + y;HI(.A) + Y1H2(.A) + Y20(IIY2II 2 + Y;IIY2II + IIYII 3
) 

as ( y, .A) -t ( 0, 0). 
We assume that 

(H3) 

where, for any integer k, Ik denotes the identity matrix in IRk. In the following, we often 
omit this index if there is no reason for confusion. 

Le1nrna 2.1. If (Hl)-(H3) are satisfied, then there is a generic period two doubling 
bifurcation ofF>.. at (y, .A) = (0, 0). More precisely, if R1.A > 0, then there are period two 
points d1>..,d2>.. ofF>.. such that F>..(d1>..) == d2>..,F>..(d2>..) = d1>.., which is stable for R1 > 0 
(supercritical bifurcation) and unstable for R 1 < 0 (subcritical bifurcation). 

The proof is a standard application of the method of Lyapunov-Schmidt and is omit­
ted. 

To relate the period doubling of the map F to (2.1 ), we seek periodic solutons of 
(2.1) with a period 2 + 2(r0 + h)c., where r0 is a fixed parameter (to be determined later) 
which depends only upon the n1atrices A, A2 (0), B 1 (0), B 2 (0) and h will be determined as 
a function of E. If (x(t), y(t)) is such a solution of (2.1), we introduce the transformation 
(originally used in [4] for a scalar equation) 

(2.6) 
u1(t) = x( -c.(ro + h)t), 

v1(t) == y( -c.(ro + h)t), 

u2(t) == x( -c.(ro + h)t + 1 + c.(ro +h)) 

v2(t) = y( -c.(ro + h)t + 1 + c.(ro +h)) 

Since x(t) and y(t) have period 2 + 2(r0 + h)c., we see that 

(2.7) 
u2 ( t - 1) == x(- c.( ro + h )t - 1) 

v2(t- 1) == y( -c.(r0 + h)t- 1). 
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If we use (2.6) and (2.7) in (2.1), we deduce that 

(2.8) 

ui(t) = (ro + h)Aui(t)- (ro + h)AJ;x(vi(t)) 

u2(t) = (ro + h)Au2(t)- (ro + h)AJ;x(v2(t)) 

V 1 ( t) = g).. ( U 2 ( t - 1), V2 ( t - 1)) 

V2 ( t) = g).. ( U I ( t - 1), VI ( t - 1)) . 

This equation is now independent oft and we can consider h, A as the bifurcation param­
eters, assuming, of course, that we know r0 • 

It is convenient to write these equations in a more compact form by letting u = col 
(u1,u2), v =col (vi,v2), 

(2.9) 

(2.10) 

Fh>.( u, v) = _ [ ( ro + h )f>.( vi)- roDyf>.(O)vi - hAu1 ] 

(ro + h)f>.(v2)- roDyf>.(O)v2- hAu2 

G ( ) _ [g>.(u2,v2)- Dxg>.(O,O)u2- Dyg>.(O,O)v2] 
h>. u, v - g>.( ui, vi)- Dxg>-.(0, O)ui - Dyg>-.(0, O)vi · 

If we use (2.9) and (2.10), then (2.8) can be written as 

(2.11). 
u(t) = roAu(t)- roAA2v(t) + Fh>.(u(t), v(t)) 

v(t) = iJI u(t- 1) + B2v(t- 1) + Gh>.(u(t- 1), v(t- 1)). 

The linear variational equation of(2.11) for (h,-\) = (0,0) is given by 

(2.12). 
u(t) = roAu(t)- roAA2v(t) 

v(t) = BI u(t- 1) + B2v(t- 1). 

The eigenvalues of (2.12) are the solutions of the characteristic equation 

(2.13) 

Because of (2.3), (2.4) and the symmetry in (2.12), zero always is an eigenvalue. We impose 
conditions on the coefficients to ensure that, for a suitable choice of r 0 , 0 is an eigenvalue 
of multiplicity two and there are no other eigenvalues on the imaginary axis. To do this, 
we need some additional notation. Let 
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where Sij, Wij are matrices with S 11 and Wu scalars and the other matrices of obvious 
dimension. We suppose that 

(H4) 

and that 

(H5) SuAA2 ] \{} 
I B

A -iw # 0 for w E IR 0 . 
2n- 2e 

We make the final hypothesis that 

(H6) 

Lemma 2.2. If (H4)-(H6) are satisfied and r 0 = S11 , then p = 0 is an eigenvalue of 
(2.12) of multiplicity two and there is a 8 > 0 such that the remaining eigenvalues satisfy 
!Rep I ~ 8 > 0 and there are only a finite number of eigenvalues with positive real parts. 

Theorem 2.3. Suppose that F.\(x) satisfies (2.5) and (Hl)-(H6). Then there are a 
neighborhood V of zero in 1Rm xlRn and a neighborhood U of(O, 0) in the (A, c) plane and 
a sectorial region S in U such that, if (A, E) E U, then there is a periodic solution of (2.1) in 
V given by a periodic function ( x.\, {' Y.\, {) with period 2r(A, c) = 2+2Su c+O(Ici(IAI +lei)) 
as (A, c) -t (0, 0) if and only if (A, c) E S. Furthermore, this solution is unique. 

Of course, the sectorS must belong to the set E > 0 in the (A, c) plane. We actually 
will show that, if R 1 > 0 (the supercritical case of period doubling of the map) and 
Ro > 0, then the sector S C {(A, c) : E > 0, A > 0} and, for A = Ao > 0, fixed, the set 
{ E: (c, Ao) E S} is an interval Ao x (0, Eo(Ao)), where 

1 21r Ao 1 
Eo(Ao) = -(-) 2 + O(Ao) 

7r Ro 

as Ao -t 0. For any E E (O,Eo(Ao)), the periodic solution (x.\0 ,{(t),y.\0 ,{) approaches a 
square wave as E -t 0; that is, the periodic solution (x.\o,E(t),i/.\o,t) has the property that 
(x.\0 ,{(t), Y.\o, {) -t d1 .\ (respectively, d2 .\) as E -t 0 uniformly on compact sets of (0, 1) 
(respectively, (1, 2)). 

If R 1 < 0 (the subcritica.l case of period doubling of the map) and Ro > 0, the sector 
S contains points ( E, A) with A both negative and positive and the periodic orbits have a 
different structure as E -t 0. More precisely, for A = Ao > 0, fixed, the set { E : ( E, Ao) E S} 
is an interval Ao x (co(Ao), ,80 (Ao)). For A = Ao < 0, fixed, the set { E : (c, Ao) E S} 
is an interval Ao x (0, cr0 (Ao)). For any E E (O,cr0 (Ao)), the unique periodic solution 
(x.\0 ,{(t), Y.\o, {) becomes pulse like as E -t 0 in the following sense: the periodic solution 
(x.\0 ,{(t),Y.\o,t) has the property that (x.\0 ,{(t),Y.\o,t) -t 0 as E -t 0 uniformly on compact 
sets of (0, 1) U (1, 2). In the pulse like solution, the pulses in the solution occur near 
the integers and are opposite in direction. However, the magnitude of the pulse near the 
integers exceeds the magnitude of the corresponding period two point of the map. 
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The part of the boundary of the sector s described by the curve r = {(.A, E(.A)} 
corresponds to a Hopf bifurcation curve. In the supercritical case, the Hopf bifurcation at 
( Ao, c( Ao)) is in the direction of£ < c( _\ 0 ) and the periodic orbit has a unique continuation 
to the interval {(_\0 , c): 0 < c < E(A 0 ). In the subcritical case, the Hopf bifurcation is in 
the direction of E > E( _\ 0 ) and the periodic orbit has a unique continuation in all of S (see 
Figure 2.1 ). 

R.Q > 0, R 1 > 0 Ro > 0, R1 < 0 

Figure 2.1. Bifurcation Diagram in the (.A, E)-plane 

Lemma 2.2 will be proved in Section 3 and Theorem 2.3 in Section 4. As remarked 
earlier, Sections 5 and 6 will be devoted to relating the hypotheses in Theorem 2.3 to those 
that are required to obtain a generic Hopf bifurcation on the curve r. 

N ~ 

3. Proof of Len1n1a 2.2. For any integer N, Let CN = C([-1, 0]; lR ). Let D0 

{(<p1,<p2) E C2rp X C2n~: <p2(0) = B1cp1(-l) + B2<p2(-l)}. Eq':ation (2.12) generates a 
C 0 -semigroup S(t) on D0 . If A is the infinitesimal generator of S(t), then 

D(A) = {(<p1,<p2) E Do: (<,b1,<P2) E Do,<,b1(0) = SuAcp1(0)- SuAA2cp2(0)} 

A(cp1,<p2) = (<P1,<P2). 

In this section, we are going to prove a stronger statement than Lemma 2.2. 

Len11na 3.1. Ifre(a(S(t))) is the ra.dius of the essential spectrum of S(t), then there is 
an a > 0 such that re(a(S(t))) <e-at for a.ll t 2: 0. Also, if eJ.Lt is an eigenvalue of S(t), 
then 11 is an eigenvalue of A. Furthermore, there is a 8 > 0 such that 0 is an eigenvalue of 
A of multiplicity two and no elements of a( A)\ {0} belongs to the set IRe J.LI 2: 8. 

Proof. It is known (see [11]) that re(a(S(t))) ~e-at, where a is such that the eigenvalues 
of B2 (0) have modulus ~ e-a. From (H6), we obtain the first statement of the theorem. 
It also is known that the eigenvalues of S(t) are given by eJ.Lt, where Jl is an eigenvalue of 
A, which coincide with the solutions of (2.13). The multiplicity of an eigenvalue of A is the 
same as the multiplicity of the eigenvalues of (2.13) (see [11]). Thus, there is a 8 > 0 such 
that, if p is an eigenvalue of A with ReJ.L E ( --:_8, 8), then p is purely imaginary and there 
are only a finite number of eigenvalues with Rep 2 8. From (H5), the only possible purely 
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imaginary eigenvalue is J-l = 0. Therefore, we need only show that J-l = 0 is an eigenvalue 
of multiplicity two. 

Using (2.3), (H2), and (2.4), it is easy to verify that a basis for N(A) is given by 

Also, a basis of N(A2
) is given by cp1, cp2, where cp2 is defined by the following relations: 

(3.2) 2(B) = [ Bd1 + di] d* = _1 [ (I+ Ho?o))-
1

521 ] d* A d* 1 d 
'P Bd2 + d; ' 2 Su 0 ' 1 = A2 2 + Su I· 

-(I+ Ho(0))- 1 
S21 

We now prove that N(A3
) C N(A2). If ('?b'P2) E N(A3

), then A(cp1,<p2) E N(A2
) 

and there exist constants o:,/3 such that A(I.Pb'P2) = (cp1,cp2) = o:cp1 + f3cp 2
• Using (3.1), 

(3.2) and integrating, we deduce that there are vectors h 1 E IR2
m, h2 E IR2

n such that 

cp;(B) = h; + 8( ad;+ f3di) + ~f382 d;, i = 1, 2. 

Since ('PI, '?2) E V( A), we must have 

(3.3) 

(3.4) 

From (3.3), we have 

(3.5) 

If we observe that d2 = ~;=l Bidi, d2 = ~;=I Bi( di - di ), and substitute (3.5) into (3.4 ), 
we have 

(3.6) 

If we let h2 = col(h21,h22) E IRn x IRn, use (3.6) and the definitions of di,di,Ai,Bi,i = 
1, 2, we deduce that h21 = -h22 and 

h21 = [ ~ -H~(O)] h21 + s:
1 

Se 

+ ~~ S [(I+ Ho~))-1 S2J + ~1 We- [ -k(I }~~~)-1SJ' 
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or 

[ 
0 l [ ( s1

2 [S12(J + Ho(0))-1 
S21 + Wu] - ~ )(3 ] 

I+ Ho(O) hz, = ".i,~' + -_t,s22(j-' + Ho(0))-1 Sz, + -_t Wz, - -kU + Ho(o))-1 Sn · 

From (H4), this implies that f3 = 0 and, thus, A( <p1, <p2) = a<p1. Since <p1 is a constant 
function, this implies that A2 

( <p1, <p2) = 0 and ( <p1, <p2) E N( A2 
). This completes the proof 

of Lemma 3.1. 

4. Proof of Theoren1 2.3. Since 0 is an eigenvalue of (2.12) of multiplicity two and 
the spectrum of the corresponding semigroup S(t) for t > 0 intersects the unit circle 
only at the point 1, there should be a center manifold of dimension two of (2.11) which 
contains all of the periodic orbits. vVe show that such a manifold exists and we compute 
explicitly the vector field on this manifold up through terms of order 3. The method of 
computation is through the variation of constants formula which was developed in [9]. We 
first outline the ideas behind the variation of constants fonnula and then give the results 
of the computations without supplying the details which are rather long. 

The idea is simple and consists in embedding the equation (2.8) into a neutral func­
tional differential equation for which a variation of constants formula is well known. From 
the corresponding linear equation, we can determine a special decomposition of the space 
C2m x C2 n which yields the variation of constants for the flow defined by (2.8). We consider 
the linear equation 

( 4.1) 

where 

Equation (4.1) defines a C0-semigroup S(t) on C2m X C2n, whose infinitesimal generator 
As is given by 

V(As) = {(<p1,<p2) E C2m X C2n: (cp1,tP2) E C2m X C2n,D(cpl,cp2) = L(<p1,<p2)} 

As( <p1, <p2) = ( tP1, <P2). 

We know that J.1 = 0 is an eigenvalue of As of multiplicity 2 + 2n. If <p 1, <p2 are defined in 
(3.1), (3.2), then we can obtain a basis of JV(A1+ 2n) given by 

~12] 
<I>22 ' 

where, for () E ( -1, OJ, 

~u(B) = [ d1 Bd1 + di], ~12(B) =. [ s~ 1 A-1di + Bdi + 62
2 
d1 A2Q] 

~21(B) = [ d2 Bd2 + d;], ~22(B) = [ Bd; + 62
2 
d2 Q], 

(4.2) 
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and Q is the 2n x (2n - 1) matrix given by 

( 4.3) 

[ 

0 
(I+ Ho(0))-1(I- Ho(0))- 1 

Q = (I+ Ho(0))-1 H0~0)(I- H0 (0))-1 

0 0 l 0 (I+ Ho(0))-1 Ho(O)(I- Ho(0))-1 

1 0 . 

0 (I+ H0 (0))-1(I- H0 (0))- 1 

Furthermore, a basis for N([A5]2+2 n) is given by 

~- [ ~11 ~12] 
- 0 I2n ' 

where, for s E [0, 1], 

( 4.4) 

and 

( 4.5) 

If we define the bilinear form ( ·, ·) for the neutral equation ( 4.1) 12 as 

(1/J,~) =1/J1(0)<p1(0) +1/J2(0)(<p2(0)- ~;= 1 Bi<pi(-1)] 

- jo ~2(~ + 1)~~= 1 Bi<pi(~)d~, 
-1 

where 1/J = (1/J1,1/J2) E c;m X c;n, cp = (<pi,<p2) E C2m X C2n, cz = C([0,1];1Rk*), then, 
with a. few co1nputations, we deduce that 

( 4.6) 

where 

(4.7) 
Ro ] .. sr; 

c* d* + c* d* - ~ ' 1 1 2 2 3 
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(4.8) p12 = 
[
Pu 
P21 

(4.9) 

and 

( 4.10) 

- 1 S (I+ H(0))- 1 
511 12 

Ro 

[ 

Ro 
-25?1 

R* 
P22 = R~ 

25?1 

-Ri 

0 

In-1 

0 

0 

- 5~ 1 S12(I ~ H(0))- 1
] 

-Ro ' 

Since Ro =/::. 0, the matrices P11 , P22 are nonsingular. As a consequence, ( ~, ~) is 
nonsingular. If we change the bases by the transformation 

( 4.11) P1~ 1 ~12- P1~ 1 
P12P22

1
] 

I2n ' 

( 4.12) 

then 

( 4.13) 

The explicit expressions for P1~ 1 and P 2-/ are given by 

[ . ~ s;l] 
* st 1 ( * d* * d* 2 ) -1 p Ro pll = 52 ' P = R2 ci 1 + c2 2 - 3 ' 

11 0 ~ 
0 

52 
0 

52 
0 _:J1_ :J1. 

Ro Ro 
sf~Ri In 

5 2 R• 
0 p-I - .:::u...::l.. 

Ro Ro 22 - 1 0 1 0 2 2 
- s;1 Ri 0 sftRi In Ro Ro 
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A few ele1nentary calculations also yield 

( 4.14) As<P = <PB, 

where 

B = [ B~l Bl2] 
0 ' 

( 4.15) 

[~ ~]' [_k 0 sq ~]. Bu = B12 = 
0 .:::u. 

Ro Ro 

We now decompose the solution space Do of (2.12) using the above bases W and ~­
Let Q+ denote the union of the generalized eigenspaces of the eigenvalues of A with real 
parts > 0, let Q+* denote the union of the generalized eigenspaces of the eigenvalues of 
A* with real paTts > 0 and define 

It is shown in [9] that 
~ - + Do = Q EB [<I> 1] EB Q , 

where [·] denotes span and 

( 4.16) 

and ci> 11 , <!>21 are defined in (4.2). Relations (4.14), (4.15) imply that 

( 4.17) 

We introduce the notation 

Ph>.('P) = [F ( (o
0
) (O))]' ch>.('P) = [ch'( 1i''l(-

0
1), 1('2(-1))]' h,\ 'Pl ''P2 A I I 

Xo(B) = 0 forB E [-1, 0), Xo(O) = I2m+2n and 

( 4.18) 

where <.p == col ('PI, <.p2) E C2m X C2n· Using the variation of constants formula in [9) and 
the standard methods in the theory of center manifolds, it is possible to show that a center 
manifold of ( 2.1) in a neighborhood of 0 and h, >.. sufficiently small, has the form 
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Furthermore, if we make the transformation of variables 

in (2.11 ), then the flow on the center manifold is given by 

(4.19) 

dU(t) -
~ =B11 U(t))\llu (O)Fh-\(0( q>t U(t) + T¥h-\(U(t)))) 

+ [Bn \l!12(0) + Bt2]Gh-\(q>tU(t) + Wh-\(U(t)). 

Furthermore, the function VVh-\( U) satisfies the integral equation 

( 4.20) 

Wh.x(U(t)) = -l= d,Ji(t- a)xgr Gh.x(1>1 U(a) + Wh.x(U(a))) 

+ l= S(t- a)xgr .h.x(G(<I>tU(a) + Wh.x(U(a))))da 

+ 1= dufi(t- a)X~+ Gh.x(<I>tU(a) + Wh.x(U(a))) 

-1= S(t- a)X~+ Fh.x(<I>tU(a) + Wh.x(U(a))))da. 

We now want to obtain an approximation of the vector field on the center manifold. 
It turns out that the only terms in T¥h.x.(U) that are i1nportant are the cubic terms in U of 
the Taylor series of the function Wo 0 (U). The necessary terms in h, A are obtained directly 
from the vector field in ( 2.1). 

It is clear that 

as (I hi, I .AI, lUI) ~ (0, 0, 0). By using the same argument as in [], we deduce that 

H'oo(U) =- jo daS(-a)){~-[~D~Goo(O)(q>t(a)U)2 ] 
-oo 2 

+ jo S( -a)_>:~- [~D~Foo(O)(q>t(a)U?]da 
-oo 2 

( 4.21) 100 A Q+ 1 ? - 2 + daS( -a)_X0 [-D~Goo(O)(q>t(a)U) ] 
0 2 

100 A Q+ 1 2 - 2 
- S(-a)X0 [-DcpFoo(O)(q>t(a)U) ]da 

0 2 

+ O(IUI 3
) 

as lUI~ 0. 
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As in [7], we can show that, for any ( E IR2n+2
m and any integer k 2 0, 

( 4.22) 
roo S((J)(Jkx~- (d(J -1° S((J)(Jk X~+ (d(J 

Jo -oo 

= k!( -1)k+1(AsiQ)-(k+l) X~(. 

If d1 , d2 are defined as in (3.2) and we let 

use ( 4.16), apply ( 4.22) for k = 0, and perform several computations, we conclude that 

( 4.23) 

as lUI-+ 0, where 

111o(U) = ~u2 [ A21 + b] H'o(U) = ~u2 [ -Xoa + 1] 
1 2 1 A21 + b ' 2 2 1 -Xoa + 1 ' 

( 4.24) a= D(x,y)9o(O)(A2e,e), b = D~fo(O)(e,e), 

'Y = M[a + Btb], M = [ ~ (I+ H~(0))_ 1 l· 
With the above estimate on T¥00 (U), we can estimate the vector field in ( 4.19) for 

(h,>..) = (0,0). Using the definitions of <I> 1 in (4.16) and 0 in (4.18), we can verify that 

Wn(O)Foo(0(<I>1U + VVoo(U))) 

[ 
O(IUI

3
) l 

= 
2~~~ eTBI[J*(e, !1) + ~D~fo(O)(e) 3 ]U{ ' 

(4.25) 

(Bu W12(0) + B12)Goo(<I>1oU + VVoo(U)) 

[ 
O(IUI

3
) ] 

= 
2~~ 1 eT[g*((A2e, e), !(A21 + b,1)) + ~D(x,y)9o(O)(A2e, e) 3 ]U{ ' 

( 4.26) 

where the second con1ponent in each of the fonnulas (4.25), (4.26) are O(IU2IIUI2 + IUI4
) 

as lUI -+ 0, and \vhere f*, g* are the quadratic forms defined by 

( 4.27) 

f*(y, y) = YT D~fo(O)y 

g*((x,y),(i,fj)) = [xT yTJD{x,y)9o(O) [~]· 

For ( h, >..) = ( 0, 0), equations ( 4.25 )-( 4.27) give us the relevant terms in the Taylor 
series expansion of the vector field in ( 4.19). In the next result, we show that the coefficient 
of U{ is related to the hypothesis (H3) imposed for the generic period doubling of the map 
associated with the system (2.1). In fact, except for a nonzero constant factor, the sum of 
the terms in U{ in ( 4.25), ( 4.26) is equal to the constant R 1 in (H3). 
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Le1nn1a 4.1. If R 1 is defined as in (H3), then 

( 4.28) 

Proof. From the definition of F>..(Y) in (2.2), we deduce that 

From ( 4.29), we deduce that 

( 4.30) 
k3(0) =eT {g*( ( A2 e, e), ( ~ D;Jo(O)( e )2

, 0)) 

1 3 3 13 / 3 
+ 

3
!B1Dyfo(O)(e) + 

3
!D(x,y)9o(O)(A2e,e) }, 

( 4.31) 

where I* is them x (m -1) matrix col(O,Im_I), 

( 4.32) 

( 4.33) 

From the definition of M and 1 in ( 4.24), we see that 

1 
1 = 2er(a + B 1 b)e + I*(I- H0 (0))- 1 {[(a+ B 1 b) 

= k1(0)e + 2I*(I- H0 (0))- 1 H 1 (0), 

which togethe,r \Vith ( 4.32) allows us to conclude that 

( 4.34) 

T (* 1 13 3 e B1 f (e, 21) + 
3
!Dyfo(O)(e)] 

1 
=2k1 (O)eT B1f*( e, e)+ eT B1f*( e, I*)(I- H(0))-1 H1 (0) 

1 T 3 3 + fe BIDyfo(O)(e) . 
3. 
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In a similar way, we verify that 

T * 1 1 3 3] e [g ((A.2e,e), 2(A.21 + b,1))) + 
31

D(x,y)go(O)(A.2e,e) 

= ~k1 (O)eT g*((A2e, e), (A2e, e)) 

+ ~eT g*((A2e, e), (A2I., I.))(I- Ho(0))-1 H1 (0) 
( 4.35) 

T* 1? ? 13 3 
+e g (((A.2e,e),(2D;fo(O)(e)-,O))+ 

3
!D(x,y)go(O)(A.2e,e). 

If we now use ( 4.30)-( 4.35 ), we obtain the relation ( 4.28) and the lemma is proved. 

As remarked above, the relevant terms in h, A in the Taylor series of the vector field 
in ( 4.16) are easier to obtain since they will not depend upon any specific knowledge of 
the function T¥h.\(U). After several rather straightforward but lengthy computations, we 
deduce that 

~u(O)[Fh.\(0(<I>tU + T¥h.\(U)))- Foo(0(<I>tU + }Voo(U))) 

(4.36) +[Bu ~12(0) + Bt2[Gh,\(<I>tU + T¥h.\(U))- Goo(<I>tU + Woo(U)) 

= A.h,\u + O((IAI + lhi)IUI2 + (IAI + lhi?IUI) 

as (h, A, U)---+ (0, 0, 0), ·where 

( 4.37) 

and a, f3t, (32, R* are constants. 
From Lemma 4.1, formulas ( 4.25)-( 4.27) and ( 4.36), ( 4.37), we conclude that the 

vector field in ( 4.19) is given by 

U1 = aAUt + (1 + f3tA + fJ2h)U2 + O((IAI + lhi)IUI 2 + (IAI + lhi)2IUI + IUI3
) 

( 4.38) U2 =-
2!:1 >..u1 + ( 2~1 

h + e· >..)U2 + 25~0R1 ut + e~u;u2 + e~u1 uJ + e;ut 

+ O((IA1 + lhi)IUI2 + (IAI + lhi)2 IUI + IUI4
), 

where f*' er' f2' e; are constants. 
To analyze the periodic solutons of ( 4.38), it is convenient to write them in a different 

form. Since R0 -/= 0, S11 -/= 0, we can 1nake a linear change of variables of the form U ~-t 

Z =(I+ P(h, A))U and change the ti1ne scale t ~-t (1 + 8(h, A))t, where P(O) = 0, 8(0) = 0 
such that the new equation for Z is given by 

Z1 = z2 + O((IAI + lhi)IZI2 +(I AI+ lhi)2IZI + IZI 3
) 

(4.39) Z2 =-
2!:1 >..Z1 + ( 2~1 

h + i'* A)Z2 + 
2S~R1 Zf + f~ Zi Z2 + e;z1Zi + e;z~ 

+ O((IAI + lhi)IZI2 + (I.AI + lhi)2 IZI + IZI4
). 
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This equation now has the same forn1 as the one considered in [9]. The discussion 
there for the existence of periodic solutions corresponding to periodic solutons of (2.1) can 
be repeated verbatum to complete the proof of Theorem 2.3. 

5. Hopf bifurcation curve. For the periodic orbit whose existence is given by Theorem 
2.3, we want to impose additional conditions on the vector field in (2.1) which will ensure 
that this orbit occured through a Hop£ bifurcation and that supercritical ( subcritical) 
period doubling of the map corresponds to stability (instability) of the periodic orbit of 
(2.1 ). In this section, we specify conditions which will imply the existence of such a Hop£ 
bifurcation curve and, in the next section, we consider the stability properties. 

We consider the linear system 

(5.1) 
tx(t) + Ax(t) = AA2(A)y(t) 

y(t) = B1 (A)x(t- 1) + B2(A)y(t- 1), 

for which the characteristic matrix is 

(5.2) 

It is convenient to introduce the following definition. We say that a curve r in the 
(A, t )-plane, t > 0, is a H opf Bifurcation Curve of ( 5.1) if there is an <:* > 0 and a 
continuous function A = A( E), 0 < E ~ t*' A( E) ---t 0 as E ---t 0 such that, if r E* = { (A, E) : 
A= A(t),t E (O,t*]}, then, for any (Ao,to) ErE., there are two purely imaginary solutions 
±i/30 of the characteristic equation det 6.( Ao, to, J.L) = 0 and the remaining solutions J.L 
satisfy Re J.L f:- 0. We say that a Hop£ Bifurcation Curve is a Generic H opf Bifurcation 
Curve with respect tot if, for fixed Ao, the two eigenvalues J.L(Ao, t), Jl(Ao, t), J.L(Ao, to)= i/30 , 

satisfy RedJ.L( Ao, to)/ dt < 0. This type of transversal crossing of the imaginary axis of the 
eigenvalue J.L(A 0 , t) implies that there will be a Hop£ bifurcation with respect to t at t 0 • 

We say that a Hop£ Bifurcation Curve is the First H opf Bifurcation Curve if, for each fixed 
toE (O,t*], all eigenvalues J.L of (5.1) with A= A(to) and t >to have ReJ.L < 0. The 
Generic First Hop£ Bifurcation Curve is the 1nost interesting because there is a transfer 
of stability of the origin at t = to; that is, the origin is stable for t > to and unstable for 
t < to. From the physical origins of the problem, this is natural because we expect that 
the origin is stable for large t (by a change of time scale, this is small delay) and eventually 
becomes unstable for small t (large delay). The First Hop£ Bifurcation Curve represents 
the first change in the stability properties of the origin. 

We want to determine the First Hop£ Bifurcation Curve for (5.1) which is generic with 
respect to c. 

We retain the condition (H2) which corresponds to A= 0 being a period doubling for 
the map. To have aU of the relevant hypotheses close at hand, we repeat this hypothesis. 
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\iVith the notation, 

(5.3) -B1 (O)A -l A2(0) =: S = 

we also retain the hypothesis 

Of course, we must keep the hypothesis 

(H6) 

The additional hypotheses that \Ve need are 

(H7) 

(H8) 

(H9) 

[ 
iBim +A 

Det -Bl (O)e-iv 

min{Re z : z E a( A)} > 0, 

The main result of this section is 

Theore1n 5.1. Under the assumptions (H2), (H4), (H6) and (H7), the hypotheses (HB) 
and (H9) are necessary and sufficient for the existence of the First Hop[ Bifurcation Curve 
·which is generic with respect to t. 

The proof will be given in tenns of several lemmas which bring out the role of each 
hypothesis. 

Le1nn1a 5.2. Under the hypotheses (H2), (H4), (H6) and (H7), there is an t* > 0 
and a C 2 -curve r{. = {((.\(t),t),t E (O,t*} such that (i).\(t) ~ 0 as t ~ 0, (ii) for any 
(.\o,to) Eft., there is a unique pair of purely imaginary eigenvalues ±iv(.\0 ,t0 ) with 
v E (0,21r). Furthermore, rt. is the unique curve satisfying (i) and (ii). 

Proof. If 

then, under assumption (H7), we can verify that det ~( ..\, t, iv) = 0 if and only if det 
[eiv In-C(..\)+ itvG(itv, ..\)] = 0; that is, if and only if there is a nonzero vector hE en 
such that 

(5.4) ( e i vI n - C ( ..\) + i tv G ( i tv, ..\)] h = 0. 
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If we set A = c = 0, then (5.4) implies that [eiv In- C(O)]h = 0, which, from (H2), implies 
that v = 1r and h = 1 col [1, 0], where 1 is a constant. For A, c small, it follows that the first 
component of h in ( 5.4) is not zero and we can take h = col [1, ~]. With this observation, 
we can determine the solutions of (5.4) near (A, c, h)= (0, 0, col [1, 0]) by determining the 
zeros of the function 

F : j X I X cn-1 ~ en 
(5.5) 

F( v, .A, c, 0 = [eiv In - C(.A) + iwG(iw, .A)] [ ~] , 

where i C IR is a neighborhood of 1r and I C IR is a neighborhood of 0. 
We have F( 1r, 0, 0, 0) = 0. If we define 

8F( v, A, c, ~) I IR .rm-1 Jf"(1ll 
T = 8( v, A,~) (7r,O,O,O) : X JR X \lJ ~ \lJ ' 

then 

[ 
-iv +A l T(v,A,~)= -(I+Ho(O))~ . 

Since I+ H0 (0) is invertible, the map T is invertible. Therefore, the Implicit Function 
Theorem implies that there are C 2-functions v( c), A( c),~( c) defined for c E ( -c*, c*), c* > 0, 
such that v(O) = 1r, A(O) = 0 ~(0) = 0, and 

(5.6) F(v(c),A(c),c,~(c)) = 0, c E (-c*,c*). 

Differentiating (5.6) with respect to c, we obtain 

(5.7) 
V[ieiv In + icG( iw, .A) - c2v! G( iw, .A)] [ ~ l + .\[-6(.A) + iw :.x G( iw, .A)] m 

+ [e;" In- C(.A) + iwG( iw, .A)] [ ~] + [ivG( iw, .A) - w
2! G( iw, .A)] [ ~] = 0. 

If we set c = 0 and use the fact that -G(O, 0) = S, we obtain 

[ 
-iv(O)+~(O) l . ( [ 1 l . [Su] 

-(I+ Ho(O))~(O) = -zv(O)G o, O) ~(0) = Z7r s21 . 

Hence, 

(5.8) v(O) = -1rS11, ~(0) = 0, ~(0) = -i1r(I + H0 (0))_1S21· 

Differentiating (5. 7) with respect to c, setting c = 0 and using (5.8), we deduce that 

[( i>2 (0) - iV(O))In + 2iV(O)G(O, 0)- .\(0)6(0)- 2v2 (0) :a G(O, 0)] [ ~ l 
= 2[iV(O)In - iv(O)G(O, 0)] [ ~] + [In+ C(O)] [ { l· 
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From this relation and the fact that 8
8
a G(O, 0) = W, we have 

From this relation and (5.8), we have 

.. 2 2 2 2 -1 2 .X(O) = 27r Wu - 7r sll + 27r SI2(I + Ho(O)) s21 = 7r Ro -1- 0. 

As a consequence, for small E, we have the Hopf bifurcation curve rt:. = {(A(E), E), E E 
(0, E*)]}, where 

(5.9) 

as E ---t 0. This completes the proof of the le1nma. 

Re1nark 5.1. The expression (5.9) sho\vs that the graph of the curve rt:. is over the 
positive ( resp. negative) .A-axis if Ro > 0 ( resp. Ro < 0). 

Le1nn1a 5.3. Suppose that the hypotheses (H2 ), (H4), (H6 ), (H7) and (HB) are satisfied 
and let rf. = {(.X(E),E),E E (O,E*]} be given by Lemma 5.2. Then there is an E* > 0 such 
that r €. is a Generic Hop£ Bifurcation Curve. 

Proof. Vle first show that there is an E* > 0 such that, for each Eo E (0, E*], we have 

(5.10) det 6.( .X( Eo), E, i,B) =J 0, for E > Eo, ,8 ~ 0. 

If this is not the case, then we can find sequences {En}, {in}, {,Bn} in (O,oo) such that 
En < En, En ---t 0 as n ---t oo, and 

(5.11) 

From ( 5.11 ), it follows that En,Bn, n ~ 1, is bounded. Since .X( En) ---t 0 as n ---t oo and we 
are assuming (H8), we n1ust have En,Bn ---t 0, e-i/3n ---t -1 as n ---too. If we let kn ~ 0 be 
an integer and Vn E (0, 21r] be such that ,871 = 2kn 1r + Vn, then we have Vn ---t 1r as n ---t oo. 
Also, if E~ = En,Bn/Vn, then 

(5.12) 

and 

(5.13) 

From (5.13) and Lemma 5.2, it follows that A(En) = .X(E~) for sufficiently large n. From 
(5.9), the function .X( E) is monotone for E near 0 and, thus, we must have En = E~, which 
contradicts (5.12). This completes the proof of relation (5.10). 
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We next show that 1 if 11 = iv(Eo) is a zero of 6.(.A(Eo),Eo,Jl), then it is a simple zero. 
For fixed Eo E (0 1 E*], let .Ao = .A(Eo),J-lo = iv(Eo) and ~o =~(Eo), where .A(E),v(E),~(E) are 
defined in (5.6). We define the function 

K : c x cn-l x IR----+ en 
(5.14) 

K(p, 1], E) = [e~' In - C(Ao) + EpG( EJl., Ao )] [ ~] . 

We have K(J1o 1 ( 01 Eo)= 0. Using (5.8) and (5.9), we deduce that 

8K(J1o,~o,Eo) = [-1 0 ] +O(Eo) 
8(11, 1]) 0 -(I+ Ho(O)) 

as Eo ----+ 0. Thus, if E* is sufficiently small, this matrix has nonzero determinant and the 
Implicit Function Theoren1 implies that there are C2-functions Jl( E), 1]( E) defined forE in a 
neighborhood U of 0 such that J-l(Eo) = iv(Eo), 'I]( Eo)= ~o, and 

(5.15) JC ( J1 (E) 1 1] ( E) ) = 0' E E U. 

In particular1 fl =iva is a simple zero of det 6.(.Ao, Eo, Jl). 
We next detennine how J-l(E) depends upon E. Differentiating (5.15) with respect toE, 

we obtain 

(5.16) 

jl( Eo)[ e'"• In + EoG( iEovo, Ao )] [ ;
0

] + [e'"• In - C( Ao) + iEoVo G( iEoVo, Ao )] [ lj(~o)] 

= -[ivoG(iEoVo, Ao)- Eov~! G(iEovo, Ao)] [ ;
0

] + O(E~). 

If we use (5.8), the relations G(O, 0) = -5, 8G(O, 0)/8a = W, (5.16) and Talyor's theorem 
around Eo, we conclude that 

(5.17) 

jL(Eo)[-(1 + Eo5n) + iEo?T5n] =iEo?T5121J(Eo) + i?T5u + i1r512~o + 2Eo?T2 Wu 

+ 0( E~) 
-[I+ Ho(O)]~(Eo) =i?T521 + O(Eo). 

The second relation of (5.17) implies that 

If we substitute this expression and ~o = -i1r(1 + Ho(0))- 1 521 +0(Eo) into (5.17), we 
conclude that 

jL(Eo)[-(1 + Eo5u) + iEo?T5u] 

= i?T5u + 2Eo?T2[l¥11 + S 12(I + Ho(0))- 1S2I] + O(E~). 
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Using this relation and the definition of Ro in (H4), we have 

(5.18) 

as Eo --+ 0. For E* sufficiently small, this shows that the Hopf Bifurcation Curve is Generic 
and the lemma is proved. 

We now complete the proof of sufficiency in Theorem 5.1 using these two lemmas and 
hypothesis (H9). We only need to prove that, for each Eo E (0, E*], and all E > Eo, there is 
no zero f.l( E) of the characteristic matrix in ( 5.2) with Re f.l( E) > 0. If det ~(.\(Eo), €, Jl) = 0 
has a solution f.l( €) with Re f.l( €) > 0 for some t > Eo, then we can extend this function to a 
continuous function Jl( E) for E E (Eo, oo) and have det ~(.\(Eo), E, f.l( E)) = 0 for E E (Eo, oo ). 
From Lemma 5.3 and, in particular, the implication (5.10), we must have Re f.l( E) > 0 for 
all E E (Eo,oo). If we let z(E) = Ef.l(E), then 

(5.19) 

SinceRe z~~) > 0, relation (5.19) in1plies that z(E) is bounded in (E0,oo). Hence there is 
a subsequence Ej --+ oo as j --+ oo such that z( Ej) --+ z*. It is clear that Re z* 2: 0. By 
letting j--+ oo in (5.19), we deduce that 

det [ z* Im +A 
-B1 (.\(Eo)) 

This contradicts (H9) if E* is small enough. This completes the proof of the existence of 
the First Hopf Bifurcation Curve under the hypotheses of the theorem. 

The proof of the necessity can be supplied by carefully considering the arguments that 
were used in the proof of sufficiency. \Ve do not give the details. 

Let us now consider some special cases. The equation (1.3) can be written as a system 

(5.20) 
Ex(t) + x(t) = f>.(y(t)) 

y(t) = x(t- 1). 

The hypotheses (Hl )-(H3) for generic period doubling of the map x ~ f >.( x) are equivalent 
to saying that the function J>.(x) can be written as 

( 5.21) 

where a 2 + f3 =I 0. The linear variational equation about x = 0 for (5.21) is a special case 
of (5.1) with A = 1, A2(.\) = -(1 + .\), B1 (.\) = 1, B2(.\) = 0. It is now obvious that 
the hypotheses (H2), (H4), (H6), (H7) are satisfied. A simple computation shows that 
hypotheses (H8) is equivalent to i(B- sin v) + 1 +cos v =I 0 forB> 0, 0:::; v:::; 21r, v #1r. 
This is clearly satisfied. Also, (H9) is equivalent to Jl + 2 =I 0 for Re Jl ~ 0, which is true. 
Therefore, there is a Generic First Bifurcation Curve with respect to E. 
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Let us next discuss equation (1.4) with Ej = EO:j,j = 1, 2, ... , m, and the function 
f).(x) satisfying (5.21). It is possible to write this equation in a matrix form (5.1) and 
verify directly the hypotheses for the existence of a Generic Hopf Bifurcation Curve are 
satisfied. Rather than do this, we will show this curve exists by analyzing the characteristic 
equation. The proof is not difficult and also is a simple illustration of the ideas used in 
the proof of Theorem 2.3. The characteristic equation for the linearization of (1.4) about 
x = 0 is given by 

(5.22) 

In this particular situation, the determinant in (H8) is given by 

If e ~ 0,0::; v < 27f, are such that El(B,v) = 0, then we have I rr;:l(iBo:j + 1)1 = 1; that 

is, f1;: 1 ( 8
2 o:] + 1) = 1. Since o: j > 0, we must have e = 0 and hence 1 + e-iv = 0; that 

is, v = 1r. Therefore, the condition (H8) is satisfied. 
Next, the function in ( H9) has the form 

m . 

C2(f.1) = IT (f.10:j + 1) + 1. 
j=l 

If there is a f-1 = u + iv, u ~ 0, such that C2 ( u + iv) = 0, then it follows that 1 = 
f1j= 1 ( ( uo: j + 1 )2 + v 2 

). Therefore, we Inust have u = v = 0, which leads to the assertion 
that 0 = C2(0) = 1 + 1, which is a contradiction. As a consequence, C2(11) =/= 0 for all 
1-l E C with Re J-l ~ 0; that is, (H9) is satisfied. 

We can now show that, for fixed Eo > 0, there is a unique .A*( Eo) > 0 such that (5.22) 
has exactly two purely imaginary roots and the remaining ones have negative real parts for 
(.A, c)= (.A( co), Eo). ForE> Eo, the origin is asymptotically stable and, for 0 < E <Eo, the 
origin is unstable. In this way, we obtain the existence of a Generic First Hopf Bifurcation 
Curve. 

In the general n1atrix case, the problem becomes more complicated. More specifically, 
we can have the map associated with the differential equation undergo generic period 
doubling and have the linearization about the origin in the differential equation not possess 
a Generic First Hopf Bifurcation Curve. For example, let us consider the system 

(5.23) 
Ex 1 ( t) + ax 1 ( t) = a f). ( x 1 ( t - 1)) 

cx 2 (t) + Bx2 (t) = Bvx2 (t- 1)), 

where f). is the same function as before, x2 E lR, B, v are constants, B < 0, lvl < 1. 
The map obtained forE= 0 is given by (x 1 ,x2 ) ~---+ (f).(x 1 ),vx2 ) and it undergoes a 
generic period doubling at (x 1 , x 2 , .A) = (0, 0, 0). The hypotheses (H2), (H4) and (H6) 
are satisfied, but we have not satisfied hypothesis (H7). 
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If we want to relate the period doubling bifurcation to a Generic First Hopf Bifurcation 
Curve, then we 1nust have the solutions of the linear variational equation for,\ = 0 approach 
zero as t ----+ CXJ; that is, the eigenvalues must have negative real parts. This is equivalent 
to having the solutions of the equation 

(5.24) 

having negative real parts. Since .6.(0) = B(l- J-t) < 0 and .6.(J.-t)----+ CXJ as f-t----+ CXJ, there 
is a positive zero for .6.(J.-t). 

6. The Hopf bifurcation. Let us suppose that the hypotheses of Theorem 2.3 and 
Theorem 5.1 are satisfied. Then, as shovvn in Section 5, there is a first Hopf Bifurcation 
Curve r~. ={((.\(c), c), E E (0, c*}. Furthermore, if Ro > 0, then, for each fixed>., the zero 
solution is stable if E < E* and unstable if E > E*. At E = E*, the linearization of (2.4) at 
the origin has a pair of purely i1naginary simple eigenvalues. As a consequence, we expect 
that there is a generic Hopf bifurcation arising at E. This is true and, in fact, we have 

Theoren1 6.1. Suppose that the hypotheses of Theorem 2.3 and Theorem 5.1 are satisfied. 
If, in addition, Ro > 0, then there exists a.n E* > 0 such that, for each fixed (>.o, Eo) E rf.' 
.\0 =.\(co), where re, is the First Hop£ Bifurcation Curve, system (2.1) has a generic Hop£ 
bifurcation at (>., E, x, y) = (-\0 , Eo, 0, 0) which is supercritical (resp. subcritical) if R 1 > 0 
(resp. R1 < 0). 

Vve remark that this result in1plies that the generic period doubling point,\ = 0 for the 
mapping F>.. is supercritical (resp. subcritical) if and only if the generic Hopf bifurcation 
at (>.o, to) is supercritical (resp. subcritical). 

To prove Theore1n 6.1, we are going to use son1e results from [10] for more general 
hybrid systems in \vhich they gave a specific formula for a constant a* depending upon 
the second and third derivatives of the nonlinearities in (2.1) evaluated at zero which 
determines the direction of the Hopf bifurcation. :Niore specifically, the bifurcation is 
supercritical (resp. subcritical) if a* > 0 (resp. a* < 0). \Ve now describe this constant, 
attempting to motivate each step and refer the reader to [10] for details. 

Let 
](y, >.) = J(y, >.)- A2(.\)y, 

g(x, y, >.) = g(x, y, >.)- B1(.\)x- B2(.\)y. 

The linearized syste1n of (2.1) is 

(6.1) 
cx(t) = -Ax(t) + AA2 (.\)y(t) 

y(t) = B 1(.\)x(t- 1) + B 2 (.\)y(t -1) 

From our hypotheses on f and g, there is an t* > 0 such that, for each 0 < to < t*, 
there is a unique A£ 0 > 0 such that the linear system ( 6.1) for t = to, A = A£ 0 has an 
imaginary eigenvalue f-lo= iv0 = i1r + O(to) and it is simple. For fixed At: 0 , the eigenvalue 
J-to(t) of (6.1) with J.-to(co) =f-lo satisfies the inequality Jio(to) < 0. 
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Along with (6.1), we consider the linear neutral equation 

(6.2) 
Ex(t) = -Ax(t) + AA2 (A)y(t) 

d 
dt [y(t)- B1(A)x(t- 1)- B 2 (A)y(t- 1)] = 0. 

This equation plays an important role in the variation of constants formula for a pertur­
bation of (6.1) and, thus, an important role in the explicit computation of approximation 
of periodic orbits. The nonzero eigenvalues of (6.1) and (6.2) as well as their multiplicies 
coincide. 

The characteristic matrix for (6.2) is 

It is not difficult to show that there is a vector rJt: 0 which satisfies 6.( Eo, J.lo )1Jfo = 0 and has 
the form 

As a consequence, 
<P f 0 (e) = [ 1]€ 0 e JL 0 e ' 1] f 0 e- JL 0 e] E 

is a basis for the eigenfunction space for po and jjo considered as an eigenvalue of either 
(6.1) or (6 .2). If q.I,fo is the first colun1n of q.fo, we have 

(6.3) 

Now, if [b6,b6J E cm+n* is such that [b6,b6].6.(Eo,J.1o) = 0, then we have 

b6 = Eof.1ob6BI(Af 0 )e-JLo(J.1oEo + A)- 1
, 

b~[B6e-IL0 (J.1oEo + A)- 1 AA2(Afo)- (I- B2(Af 0 )e-JLo)] = 0. 

So we can choose b6 such that 

b~ = e; + O(co), e~ = [1,0] E IRn*. 

If we let 

i = 1,2, 

then one is able to verify that 
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is a basis for the eigenfunction space corresponding to J.lo and flo for the formal adjoint 
operator of (6.2) (not (6.1)). Moreover, we have 

(6.4) 

A . . 
lim ~ll,<=o(s)- = -(enrs + e-l1rs)e~BI(O) 

<=o --+0 Eo 
lim 8~12,<=o(s) = -(ei7rs + e-i1rs)e~, 

<=o--+0 

where ~l,<=o = [~ll,<=o, ~ 12 •<= 0 ] and ~l,<=o is the first row lof ~eo. 

To obtain the direction of bifurcation, it is first necessary to determine the influence 
of the second order terms in (2.1) on the periodic orbit. These second order terms give 
rise to corrections in the solution of the form ~(c0 )e2 ivot +((c0 )e-2 ivot +~o(c0 ). It is shown 
in [10] that the quantity ~ is given by 

where Dz = D(x,y)· By using (6.4) and letting ~(co)= col [~ 1 (c 0 ), ~2 (c0 )], we have 

(6.6) 
li Ill ~ 2 (Eo ) = ~ 5 , 

<=o --+0 

lim ~ 1 (Eo) = ~6, 
<=o--+0 

where 

and E 2 is the ( n - 1) x n matrix: 

0 1 0 0 
0 0 1 0 

E2 = 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 1 

Simi1ary, the constant ~0 ( Eo) satisfies 

(6.7) 1. ( ) 1. [ ~J (Eo)] [ ~J ] 1m ~o Eo = 1m ~2 ( ) = 2 ~2 . 
<=o---+0 <=o---+0 1:.0 Eo 1:.0 
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From [10], the nun1ber a*( Eo) for syste1n (2.1) at (A(Eo), Eo) is given by 

a*( Eo) = - r ;.~ \[1 11 ,<o ( s) A n;J( 0, A( Eo)) ( <J> 21 ,<o ( s ), ((Eo )e2"'. + ((Eo )e - 21'o• + (o( Eo) )ds Jo Eo 

- 31' [!~ \[lll·''(s)A D~f(O,A(eo))(<I>2'·''(s))3ds 
· Jo Eo 

2 ... 

+ 1"' ,j1' 2 •''(s)D~g(O,A(Eo))x 
(<I>l,€o(s- 1), ~(Eo)e2Jio(s-l) + {(Eo)e-2po(s-l) + ~o(Eo))ds 

2 ... 

+ ;! 1 .-r; ,jJ 12 ''0 
( s )D~g(O, A( Eo))( <l">

1 '' 0 
( s - 1 )) 3 ds. 

By applying ( 4.4)-( 4.7), we obtain 

lim€ 0 ____..o a* (Eo) 

=e~ {
2 
( eirrs + e -irrs )2(2 + e2irrs + e -2irrs JD;J(O, 0) ( ~e,, (~)ds 

Jo ~ 
* 12 1 + ~ (eirrs + e-irrs)4 D3 f(O 0)(-e )3ds 

31 Y· ' ·) 1 . 0 ~ 

+ e~ [ ( e'~' + e-i~'?(2 + e2 i~s + e-2 '"')D~g(O, 0)( ~ [ A2~~)e,] , [ ~i] )ds 

+ ~f [ ( eirrs + e -i~s )4 D~f(O, O) ( ~ [ A2 ~~)e, ] ) 3 ds 

=12 *[D2f(O O)(~ ~2) +D2 (O O)(~ [A.2(0)e1] [A2(0)~6]) 
el Y ' 2 el '~o,o z9 ' 2 el ' ~6 

+ ~D3 f(O O)(~e )3 + ~D3g(O O)(~ [ A2(0)e1] )3] 
3! Y • ' 2 1 3! z ' 2 e1 

=6R1, 

where the last equality follows fro1n relation (2.5) and (H3). 
The last equality shows that, for Eo small, the quantity a*( Eo) has the same sign as 

R 1 . Therefore, fro1n Le1nma 2.1 and the above mentioned result from [10], we see that the 
Hopf bifurcation is supercritical if R1 > 0 and subcritical if R1 < 0. This completes the 
proof of Theorem 6.1. 
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Synchronizations in Lattices of Nonlinear Duffing's Oscillators 

V. S. Afraimovich1 and S.-N. Chow2 

Abstract 

In this work we prove the possibility of stochastic synchronization in two dimensional 

lattice of coupled Duffing's oscillators with external periodic forces. The synchronization 

occurs provided coupling is dissipative and the coefficients of coupling is greater than some 

critical values. These values depend on parameters of individual subsystems and on the 

size of lattice. 

1. Introduction 

The phenomenon of stochastic synchronization was first observed in [1] for identical 

coupled subsystems and in [2) for different systems. In [2) a rigorous definition of syn­

chronization was introduced and a theory of synchronization of parametrically excited, 

diffusively coupled nonlinear oscillators was suggested. Later, this phenomenon was ob­

served in different fields - electrical engineering, biology, lasers systems, etc. (see, for 

example, [3-11] ). Roughly speaking~. synchronization occurs when two or more different 

systems exhibit similar behavior provided some dissipative coupling exists between them 

and a coefficient of this coupling is greater than some critical value. 

A mathematical foundation of synchronization of two slightly different subsystems was 

first introduced in [9]. It seems that there are no rigorous mathematical results related to 

this except for [1, 2, 9, 10], even though this phenomenon is important in applications and 

a n1athematically interesting topic. 

Our work deals with synchronization in large lattices. For this case, some features of 

continuous nonequilibrium media become evident: for example, boundary conditions play 

an essential role. Of course, it is not surprising that a large lattice of coupled oscillators is a 

model of nonequilibrium media and must reflect its features. But mathematical difficulties 

increase in comparison to two coupled subsystems. Therefore, we restrict ourself in this 

1 Partially supported by ARO Grant DAAH0493G0199 and NSF Grarit DMS9404199. 
2 Partially supported by ARO, NSF and NIST. 
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paper to the case of specific subsyst.e1ns - Duffing's oscillator with periodic forces. It is 

well-known that each of then1n1ay 1na.nifest chaotic behavior for a wide range of parameters. 

2. Formulation of the Problent 

Let us consider the follo,ving systen1 

(1) 

where i is a p-dimensional integer vector, i.e., i E 7lf, ki > 0, ai > 0, f3i > 0, ai, bi, c1 > 0 

and c2 > 0 are constants. In this paper, for the sake of definiteness and in order to avoid 

cumbersome calculations and formulas, we consider only the case p = 2. But our technique 

works and all results hold for an arbitrary value of p 2:: 2. The symbol~ denotes a discrete 

version of the Laplace operator: 

Our assumptions are: 

(i) Let N > 0 be a fixed and large integer. \Ne consider anN x N-lattice, 1 :s; i 1 :s; N, 

1 :s; i2 :s; N, with the Dirichlet boundary conditions: Xi _ 0, Yi = 0 if i = ( i 1, i2) 

satisfies at leas(one of the follov.ring inequalities: 

ZJ :s; 0, i2 :s; 0, il 2:: ]\T + 1, i2 2:: N + 1. 

(ii) The subsystems are almost identical, i.e., 

lb·-b·l<c l ) -

where 1 :s; z1 :::; N, 1 :s; i 2 ~ N; the parameter E characterizes scattering of the 

oscillators and is small; the parameters c1 -~nd c2 are responsible for the magnitude of 

the coupling and play crucial roles in our study. 
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It is possible to show (see Section 5) that system ( 1) is dissipative in the following 

sense. Let D > 0 be sufficiently large and 0 < w < ki. Let 

2 2 {3 4 

U( ) """"( Yi <XiXi iXi ) x,y = L ----+--+wxiYi. 
. 2 2 y 
t 

Define 

S = {(x, y) I U(x, y) = D}. 

Then 

~~Is= (grad U, z)j
5 

< 0 

where Z is the vector field defined by the right hand side of (1). Thus, there exists a 

global at tractor of ( 1) which belongs to a bounded region independent of c1 and c2 . We 

note that there are many results related to existence of global attractors for infinite or 

finite dimensional dissipative systen1s (see, for example, [20], [21]). In our case, the proof 

of dissipativeness is nontrivial. 

For any solution Xi = Xi(t), Yi = Yi(t) belonging to the global attractor the following 

inequalities hold 

IYi(t)l::; M (2) 

·where 1\1 is a constant independent of c1 , c2 . Fix an arbitrary solution {x = Xi(t), y = Yi(t)} 

belonging to the global attractor. Set 

The n1ain result of our paper is the following. 

Theorem. Let k = mini ki . There exist constants ci > 0, c; > 0 and 0 < q < 1 such that 

if 

c1 > c~ 

then 

3 



where f{ is some constant independent of E7 c1 a.nd c2 . 

It follows from the Theorem that the projections of solutions on the coordinate sub­

spaces are close to each other for an infinite interval of time. That is, the synchronization 

occurs. 

3. Proof of Theoren1 

Introduce the mean values of the parameters: 

1 
k= -""k­N2 ~ z, 

l 

1 
a= -;r Loi, 

1\? 
- i 

and rewrite the system (1) in the following form 

where 

Taking (2) into account, we have l8il·::; J\1 · E, for so1ne constant J{l > 0. 

The system for 'll:ij(t), Vij(t) takes the following form: 

where 

Note that 

1 
b =- ""b· N2 ~ t 

l 

(3) 

(4) 



Denoting { Uij} by u, { Vij} by v, { '"'(ij} by 1, { Eij} by~' we can write 

{

u=v 

v = -kv +au - f3r * u + c1£v + cz£u + f 
(5) 

where (I* u)ij =Iii· Uij· 

\i\Te consider the system (5) for the values of (i,j) belonging to the index set J = 

U J k1 X J k2 such that the set J ko: 1 o: = 1, 2 is a discrete interval. J k
0 

= { ( ia, j a) I 
Jk1J~N,jk2J~N 

Ja = ia + ka where -k0 . :::; i 0 . :::; N if ka ~ 0 and 0 :::; ia :::; J\T- ka if ka :::; 0}. It is simple 

to see that 

d2 d_:_f card ( U Jk()() = (N + 1) + 2[(N + 2) + (2N + 1)]· ~ = (N + 1)(3N + 1). 
lkoJ~N 

Therefore, { Uij} and { Vij} belong to lRd
2 

x lR.d
2

, and Uij = 0, Vij - 0 if ( i, j) rf. J. Let us 

ren1ark that Eij _ 0 if (i,j) rf_ .J. 

\Ve prove below that Uij is small for any (i,j) E J. In particular, it will be so for i 

and j belong-ing to the original N x J\T lattice. \Ve will essentially use below the following 

result. 

d2 d2 d2 d2 
Main Lemn1a. (i) The operator£ : lR x lR ---7 lR x lR is self-adjoint. (ii) Let a(£) 

be the spectrum of£ and 
. ? 7f 

Ao = -8 s1n- ----
2(2/\T + 2) 

If As E a(£), then As :::; Ao. 

The main Lemma will be proved in Section 4. The main Theorem will be proved by 

using several changes of variables. The first change of variables is linear. 

Proposition 1. We assume that 

. 2 7f 

a - 8cz s1n 2(2N + 2) < 0. (6) 

There exists a nonsingular self-adjoint linear map A: 1Rd
2 

x 1Rd
2 

---7 1Rd
2 

x 1Rd
2 

such that 

the following change of variables 

v- w+ Au (7) 
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applied to the system (5) gives the following 

{ 

1£1 = - k w - A..w + ,B! * 1£ + c 1 £ w + f 

lt, = w +All 

Furthermore, for any Ps E a(A) there exists As E a(.C) such that 

(8) 

(9) 

Proof. Differentiating (7), we obtain v = 1v +Au, and it follows from (5) and (7) that 

Claim that 

(10) 

If (10) is satisfied, then (8) will also be satisfied. V.le will show that there is an operator A 

satisfying (10). Let hs be an eigenvector corresponding to the eigenvalue As of the operator 

{ } 
d2 d2 

.C. Hence, .Chs = Ashs, and the set hs forn1s a system of coordinates in IR x IR . Each 

element u can be represented as 1l =. Ls us hs. Define A as follows 

where Ps is as in (9). Then 

A 2 ~ 2hs 
U = 0 llsPs ' 

s 

C2Lll = L c2AsUshs' 
s 

s 

s 

c2LAll = L clAsPsll~fis' 
s 

CYll = L CYllshs, 
s 

(11) 

(12) 

Note that p; = -kps +a+ c2As + c1 AsPs· Substituting (12) into (10) we obtain the desired 

result. It is simple to check that A is self-adjoint. 0 

Now, we work with the system (8). 

The second change of variables. Note that 11£11 < 1{2 · E where J{2 > 0 is a constant. 

If we show that 

limsup llw(t)Jf = O(E), 
t-oo · 
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then it will imply the desired result. V.Je are looking for a change of variables in the form 

Wij = 1]ij + 9ij( t) . Uij (13) 

where 1J = {1Jij} are new variables and g(t) = {9ij(t)} is some function to be determined. 

Differentiating ( 13 ), 

Substituting (8) and (13) into the above expression, we obtain 

iJij + 9ij'Uij + 9ij ( 1Jij + 9ij'llij) + 9ij( Au )ij 

= -k1]ij - kgijUij - fJ"/ijUij + c1 L1Jij + ciL9ijUij + Eij 

If 9ij ( t) satisfies the equation 

then the equation ( 14) becomes 

and 

(14) 

(15) 

(16) 

(17) 

Solution of the ,t;quation (15). Rewrite the equation (15) in an operator form. For 

this, take into account that an arbitrary element p = {Pij} corresponds to the operator 

( diag p) which acts on the space { u} as follovls: ( ( diag p )( u) )ij = PijUij. So, the equation 

(15) can be written in the forn1 

(diag g)(u) + (diag g2 )(u) 
(18) 

= -k(dia.g g)(_u)- (J(diag l)(u)- (diag g)(Au) + c1 £(diag g)(u) 

For the sake of convenience set.!= (diag •) ( • will beg,], g, or g 2
), then (18) becomes 

The equation (19) will be satisfied if the operator Riccati equation 

9_ + ~2 = -k~- f3I- ~A+ CIL~ 
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is satisfied. Rewrite it as follo,vs 

(20) 

where R is a linear operator: 

(21) 

Proposition 2. We have that R is self-adjoint and the spectrum a(R) = {rs}, where 

Proof. By definition, the operator R acts on the space 1Rd
2 

x 1Rd
2

• We will show that 

the eigenvectors {h 5
} of L are also the eigenvectors of R. By Proposition 1 and (21), we 

have 

Rhs = -khs- hs Ps + C}Ashs = ( -k- Ps + clA.s)hs 

= ( -k +erAs-~ ( -k +erAs+ J( -k + erAs)2 + 4(a + e2As)) hs = rshs. 

Corollary. (i) 

1 ( ? 7r ) r = max rs :S -- k + 8c1 sin- ( ) < 0 
, s 2 2 2N + 2 

(ii) If S ( t) is the fund amen tal matrix of the system ~ = Re then 

II s C t - to ) II :::; e q r( t- to) (22) 

'Hlhere 0 < q < 1 is some constant independent of c1, c2. 

We will look for a solution of (20) which is a solution of the following integral equation 

!]_(t) =- [ S(t- r)(!J..'(r) + f3I.(r))dr (23) 

Evidently, any continuous solution of (23), t E JR+, satisfies the equation (20). We will 

solve the equation (23) using the contraction mapping principle. For any T > 0 and m > 0, 

consider a metric space 1tr,m. of continuous vector functions 



satisfying 

Hr,m = {h:_(-) lll(O) = 0, I Ill( t) II ~ 1n, 0 ~ t ~ T} 

The space 1-lr,m is endowed with the C 0-metrics: 

dist(b_'(t),h_"(t)) = sup llh'(t)- h"(t)ll· 
o 5:t-5:T 

Denote by r the maximal norn1: r = supt 111'(t)JI. By the uniform boundedness of the 

global attractor, r is independent of cl' c2. 

Proposition 3. Suppose 

and 

Let Q be an operator defined by: 

Then the following statements hold 

(i) QHr,m 0 C Hr,m 0 ; 

(ii) Q is a contraction. 

Proof. (i) It follows fron1 the definition (26) that 

By the definition of the norm IJ · II, llh.2 (T )II ~ Jill( T )11 2
. Thus, 

\\Qfl( t)l! :':: l eqr(t-r) · ( m~ + (3r)dr 

1 = - (1- eqrt) · (m~ + ,Br) 
qr 

· ,n~ + ,Br < ----'---
qjrj 

m 2 +,8r . 
If (24) and (25) are satisfied, then ~lrl = mo and JIQh_(t)JI :=; mo for any t E [0, T]. 
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d2 d2 
(ii) Let h_1(t),h_2 (t) E 1-lr,mo be arbitrary. By using the scalar product in lR x lR 

and the Cauchy-Schwarz inequality, we have 

Since 

we have 

IIQh_l (t)- Qh2(t)ll :'0 l eqr(t-r) · llh~( r)- h~( r)lldr 

:'0 l eqr(t-r) · llh.1 ( T)- ~( T )II · 2modr 

:'0 q~rl (1 - eqrt) · 2mo · dist(h_1 ( t), 1!_2 ( t)) 

2mo . 
< q!rl · d1st(h_1 ( t), h_2 (t )I. 

2rno _ qJr!- J q2 r 2 
- 4,Br 

-,-, = P = I I < 1' qr qr 

then statement (ii) is proved. 0 

The unique fixed point of Q, say flr(t)~ is the desired solution. Evidently, if Qh_y
1 
(t) = 

llr
1 

( t ), Qh_y
2 

( t) = h.r
2 

( t) and T2 > T1, then h.r
1 

( t) = h.r
2 
(t) for all 0 :S: t ::;; T1 . Denote this 

fixed point by [!_(t) = {gij(t)}. It satisfies the equation (15). Therefore the original system 

is represented in the _form- (16), (17). It follo,vs fron1 Proposition 3 that 

Moreover, since gij( t) satisfies the equation 

(27) 

and R is self-adjoint, we have that 0 :S; -gij(t) :S; mo. 

Solution of equations (16), (17). Denote by TI6(to,t) the fundamental matrix of the 

linear system 

It follows from (27) then 

10 
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where a is some constant. Therefore, if 

. ? 7r 2(3f 
k + ci8s1n~ > rno = ---:--:-----;:::::::===== 

2(2AT + 2) q]r] + J q2r2 - 4(3f 
(28) 

then the solution of (16) satisfies the inequality 

Jlry(t)]l ~ llry(O)II· e(-k+mo+ctAo)t + b . El 

1- k +ciAo+ mol 
(29) 

where E1 = sup ]]f( t) II and b is some constant. 

Denote by T1 7 ( t0 , t) the fundan1ental matrix of the linear system 

By Proposition 1 and (27), we have 

(30) 

where 

and ai is some constant. Therefore, we obtain from (17) and (29) the following estimate 

]]u(t)]] ~epot]]u(O)II 

+ ]]77(0)]1 . al]e(-k+mo+ct.\o)t- eqpotl· 1 
( -qpo + k- cAo - m 0 ) (31) 

a1b + . t}. 
qlpo]l- k +ciAo+ mol 

Since c1 ~ const · E, (29) and (31) imply the validity of Theorem. The constant c; can be 

found from ( 6): 

* a c ------
2 - 8 sin2 2(2~+2) 

and the constant ci can be found from (24), {28): 

* 
. 2/IJf-k c < VfJJ, 

1-g·2 1r 

Slll 2(2N+2) 
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4. Spectra of Some Operators and Proof of Main Len1n1a 

Since the operator £ is detern1ined by the discrete Laplace operator 6., we consider, 

first, the spectrum of~ denoted by a(6.). 

(i) For the case p = 1; under Dirichlet boundary conditions the operator 6. can be 

represented by the following lvf x Jvf matrix 

-2 1 0 
1 -2 1 0 

0 1 -2 1 
0 0 1 -2 

where l\1 is the number of points in the one-dimensional lattice. It is well-known (see, for 

example, (19]) that 

a 

Thus, 
. ? 7r 

n1ax As = -4 s1n- ( ) . 
s 21\1+1 

(34) 

Furthermor"e, this operator is self-adjoint and its eigenvectors are mutually orthogonal in 

the corresponding Euclidean space. 

(ii) For the case p = 2, we will find the eigenvectors and eigenvalues of 6. by using 

separation of variables. This 1nethod 'vas used in (12] for the case of periodic boundary 

conditions. 

Let M1 , M2 > 1 be fixed integers. \"Te consider 6. acting on the M1 X M2 lattice. Let 

Setting Yi 1 i 2 = }i 1 • li2 , we have 

where 6.1 is the one-dimensional Laplace operator. If .6.1 Yi 1 = J.ll Yi 1 and .6.1 Yi 2 = J.l2 Yi 2 , 

then A = J.ls + J.lt, where 

1fS 
H 1 = -2- 2cos ---
r M1 + 1' 

1ft 
J.l2 = -2 - 2 cos . 

· M2+1 
(35) 
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Let 

( 

7r.S Jrt ) 
As t = -4 - 2 cos ;J + cos Aif , 

' ]\ 1+l ;,2+1 
s=1, ... ,M1 , t=1, ... ,M2. 

It is clear that ~ is self-adjoint ford= 2, as well. If follows from (35) that 

. ? 7r 
max As t < -8 Sin- ( ) 

s,t ' - 2M+ 1 
(36) 

where M = max{M1,M2}. Let f.lsy(s) = .6qy(s), s = 1, ... ,M1, P.ty(t) = ~1y(t), 

t = 1, ... , M 2 , and the eigenvectors {Y(s)}, ( {Y·(t)}) form an orthonormal basis in lRl\11 

(lRM2) L t zs,t - ys ,_rt zs,t - {Ys,t} . - 1 M . - 1 M 1XT d · e i 1i 2 - i 1 · li2, - i 1i 2 , Z1- , ... , 1, Z2- , ... , 2· vve prove 

that ~2 zs,t = As,tzs,t_ It remains to show that M 1 · M 2 vectors zs,t form a basis in 

lR M 1 X JRl\12 . It is sin1ple to check that zs,t =I= 0. Let us check that they are linearly 

independent. It will be so if they are orthogonal. Show it. Fix two pairs ( s, t) and ( s 0 , t0 ). 

Then 
M1 1\'!2 1'11 1\12 

""' ""' z~·~ . z~o_,to = ""' y·_s . Jr_so ""' y_t . y_to = 1 
~ ~ 11t2 1112 ~ t1 1-1 ~ Z2 12 

. il=l i2=1 il=1 i2=1 

if s = s 0 , t = t0 and 0 otherwise. Thus, zs,t form an orthonormal basis in the Euclidean 

space lRM1 x lRM2. 

(iii) Let us now l_ook at the operator £: 

ik = 1, ... ,JV, k = 1,2,3,4, 

with the boundary conditions described above: Vij = 0 if ( i, j) (j_ J. The sin1ple obs-ervation 

shows that for ( i 1, j 1) E .] k1, ( i2, j2) E J k2, -AT ::::; k1 ,2 ::::; N,- 'if we introduce the notations 

where 

(i) 0 < i1 ::::; N - kl if - ]\T ::::; kl ::::; 0, 

(ii) -k1 ::::; i 1 :::; N if 0:::; k1 :::; N, 

(iii) 0:::; i2 :::; N- k2 if -J\T:::; k2 ::::; 0, 
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Therefore, the eigenvalues of £ are: 

-4- 2 (cos s: . +cos trr . ) , s = 1, ... , N- k1 + 1, 
N - 1 + 2 N - k2 + 2 

t = 1, ... , N- k2 + 1, in the case (i), (iii); 

-4- 2 (cos SIT +cos tiT ) s = 1, ... , N- k1 + 1, 
N - k1 + 2 1V + k2 + 2 ' 

t = 1, ... , N + k2 + 1, in the case (i), (iv); 

-4- 2 (cos s~t +cos br ) , s = 1, ... , N + k1 + 1, 
N + kl + 2 J\T - 1.:2 + 2 

t = 1, ... , N- k2 + 1, in the case (ii), (iii); 

-4- 2 cos +cos , s = 1, ... , N + k1 + 1, 
( 

S7r ilf ) 

.N + k1 + 2 J\T + k2 + 2 

t = 1, ... ,N + k2 + 1, in the case (ii), (iv). 

In the '\vorsej' case ( k1 ,2 = ± JV) 

. ( (1 +N)1r) ? ~t 
max{.Aj.AEa(£)}=-4 l+cos l\ =-8sin- ( N ) 

2T+2 22 +2 
(37) 

The support of the eigenvector, ~or exa1nple, corresponding to the eigenvalue 

. -4 - 2 cos + cos -----( 
s11 br ) 

JV - k1 + 2 N - k2 + 2 

is a piece of the two di1nensional discrete plane: 

-:-:·.- ... -
in the four-dimensional discrete set J. On this piece the operator £ coincides with the 

Laplacian 6. with the Dirichlet boundary conditions. Thus, all eigenvectors with the 

support on this piece are mutually orthogonal. Two-dimensional planes corresponding to 

different pairs ( k1 , k2 ) do not intersect. So, the eigenvectors corresponding to different 

pairs ( k1 , k2) are mutually orthogonal. Therefore, all eigenvectors are mutually orthogonal 

and form a basis in 1Rd
2 

x 1Rd
2

• It follows from this that £ is self-adjoint. (Though, it 

is possible to prove directly from the definition of £.) This proves the Main Lemma. We 

denoted the spectrum a(£) by {As} and the corresponding eigenvectors by { h s}. 
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5. Dissipativeness of the Systen1 

Denote by { ~s} the eigenvectors of the discrete Laplace operator ..6. for d = 2, and by 

{As} the corresponding eigenvalues, see (35). It was shown in Section 4 that -~ 51 l_ ~ 52 . 

{ } 
. N2 N2 

We assume that ~s are chosen so that they form an orthonormal basis in 1R x 1R : 

~i~I 1 ~: 2 = 88182 • Let x = {xi}, y = {yi} be elements of 1RN
2 

x 1RN
2 

and llxll be 

the Euclidean norm, and the scalar product ( x, y) = ~i XiYi· Consider the following 

representation of x, y: 

Xi= L-Xs~f, 
s s 

Then, the following formulas hold: 

(38) 
s s s 

L xi..6.xi = L AsX; (39) 
s s 

(40) 
s s 

Moreover, we have 

~XiYi = ~ (Lxst~: 1 ) (LY~2~:2) = L Lxs117s2~f 1 ~? 
I _, I St S2 St,S2 i 

~yi..6.Yi = L (LYs1(f 1
) L:Vs 2 As 2 ~: 2 

= ~-.As 2 LYs1 ~f 1 Ys 2 ~? 
t l St S2 St,S2 

Assume that the conditions of the Theorem are satisfied, i.e., 

Thus, 

( 41) 
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for son1e positive w such that 

( 42) 

Consider now the function 

2 2 (3 4 

U( . L Yi O'iXi iXi 
X,1t) = ---- + -- +wXiYi· 

~ . 2 2 4 
2 

\Ve \vill show that ~~ < 0 on the surface U ( x, y) = D if D is large enough. A direct 

calculation shows that 

It follo·ws from ( 39) and ( 40) that 

s 

By (41), the right hand part of (44) can be \vritten as 

Therefore, it follows from ( 43) that 

du Lc ) ? ? 4 - < w ---· k· y":' + wa·x-:- w(J·x. - wk ·x ·y · + (y · + wx ·)(a· + b· coswt) dt - . 2 2 2' t l t l 2 t t t t t 

t 

S - L(ki- _w )YT + w(JiXf- waix~ + wkiXiYi- (jail+ lbd)(JYil + wlxil) 
1 

= V(x,y), say. 

We need to show that V(x, y) < 0 provided U(x, y) = D, D ~ 1. Set 11 

1Ji = YiD- 112
, ~i = XiD- 114

. Then the equality U(x,y) = D can be rewritten as 

(43) 

n-1/4 
' 

(45) 

Proposition 4. There exist 11o > 0 and C > 0 such that for any 0 < 11 :::; 11o and ·any 

solution ( C 17) of ( 45 ), we have 

11~11 S C, 117711 S C. 
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Proof. Suppose not. Then there exist sequences {J.Ln}, {e(n)}, {17(n)} such that fln ~ 0 

and 11e(n)ll + 1117(n)ll ~ oo as n ~ oo and (((n), 17(n)) is a solution of (45) for J.L = J.Ln· 

One of the following holds: 

(i) 1117( n) II :s; constant def C for all n; 

(ii) 1117(n)ll ~ oo as n ~ oo. 

Suppose (i) is true. Thenl 11e(n)ll ~ oo as n ~ oo. Let p(n) =maxi lein)l, [!_ = miniJJi, 

a = maxi ai. Thus, p( n) ~ oo as n ~ oo. Represent ( 45) as 

L ~ "_c(n)4 + L ~ (n)2 _ 1 + L ~ 2 -e<n)2 + L e<n) (n) 
1 <.., · 1]- - 11 a 1 · flnW · 17· 4 -1 2 t 2 rn 1 z z 

i i i i 
(46) 

It follows from ( 46) that 

Dividing (47) by p4 (n) and taking into account the inequality lle(n)ll :s; ]\T
2p(n), we obtain 

1 1 (n) 2 1 ]\T4 2- J.Ln]\T2 

4- JJ + 2 4( ) 1117 II < ~( ) + 2 2( ) J.Lna + ~( ) · C - pn pn pn pn 
(48) 

The inequality ( 48) for sufficiently large n contradicts (i). 

Consider no\v the case (ii). Dividing (46) by 117J(n)IJ 2 and using notations above, we 

have 

If p( n) is a. bounded sequence, then ( 49) cannot be s~t-~~fied for n large enough, and 

we have a contradiction. Assun1e no-vv that p(n) ~ oo as n ~ oo. Then denoting by (n 

the ratio ~~~~~? 11 , we obtain from ( 49) 

(50) 

If n is large, then the discriminant of the q ua.dra.tic polynomial (with respect to ( n) on 

the left hand side of (50) is negative and the leading coefficients are positive. Thus, (50) 

cannot be satisfied. 0 
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Corollary. There exists p 1 ~ 0 < Ill ~ flo and a constant co > 0 such that for any 

0 < 11. ~ p 1 and any solution (~,17) of the equation (45) the following inequality holds 

00 

"" ? 4 L TJi + ~i >co (51) 
i=l 

Proof. Let ~ = min { ~, n1ini ~ {Ji}. Then it follows from ( 45) and Proposition 4 that for 

J1 < flo 

""? 4 1 2 L TJi + ~i ~ ~ (1- JlWC ). 
i {J 

Setting fll ~ 1/2wC2 \ve obtain the desired result with c0 ~ 1/2~. D 

It remains to show that l'(x, y) < 0. \file have, 

V(x, y) :::; - [(k- w) LY; + w/}__~ xi- wallxll 2 

z z 

+w ~ k;x;y; -!a;l-lbd(!Yd +w!x;!)J 

;= -D [(.!;_ ~ w)ll'7112 + w~~ ~t + pF(C 1J, J.t)] 

where F is a bounded function (as f-L ~ 0). Therefore 

V(x, y) :::; -D (min{(!£- w ),w~}co + 11F(~, TJ, J.L)] < 0. 

So, \Ve prove the dissipativeness of the system and the inequality (2). 

6. Concluding Retnarks 

1. Our method works for any nonlinearity /( x) satisfying the following condition 

where g(x1,x2) > 0 for x1 =I= x2. 

2. In the work of T. L. Carrol and L. M. P~cora (see {3, 4, 11] and bibliography in 

[11]), one approach for stochastic synchronization was suggested. It is based on the 
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following two points: (i) in the sin1plest case, all subsyste1ns are identical and coupling 

admits the existence of spatially hon1ogeneous solutions; (ii) stability of solutions is 

based on the "tra.nsversar1 Lya.punov exponent technique (see also [16, .17]). We 

note that for (i), the synchronization phenomenon becomes the stability property 

of spatially-homogeneous solutions. For non-identical subsystems, synchronization 

means stability of some invariant subma.nifolds. In case (ii), one can give only "local" 

synchronization. In general, synchronization means that we have the realization of a 

synchronous regime for a. wide region of initial conditions. It seems that the approach 

of these authors is probably only an interstitial step in the study of synchronization 

phenomena.. 

3. As a criterion of synchronization, it is suggested in [11] to find negative transversal 

Lyapunov exponents. But it is kno\vn fron1 the theory of stability in ordinary dif­

ferential equations (see~ for example, [22]) that an invariant set n1a.y be destroyed 

under small perturbations if negative Lyapunov exponents in transversal directions 

are larger than negative Lyapunov exponents in the tangent directions of the invari­

ant set. This indicates that "structurally stable" synchronization comes when the 

transversal Lyapunov exponents. turn out to be smaller than the tangent ones. 

4. It is shown in (13-18] and other works that chains (or lattices) of coupled oscillators 

n1ay exhibit a complex spatio-ten1pora.l behavior. In particular, they may have at­

tractors of different din1ensions. It seen1s to us, the dimension of attractors depends 

directly on the number of excited modes. Vve hope to study this elsewhere. 
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