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Existence and Roughness of the Exponential
Dichotomy for Skew-Product Semiflow in Banach
Spaces *
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Abstract

In this paper we introduce a concept of exponential dichotomy for skew-product
semiflow in infinite dimensional Banach spaces which is an extension of the clas-
sic concept for evolution operators. This concept is used to study the roughness
property of the skew-product semiflow. Also, we introduce the concept of discrete
skew-product and give a necessary and sufficient condition for this discrete skew-
product to have a Discrete Dichotomy. After that, we give necessary and sufficient
conditions for the existence of exponential dichotomy for skew-product semiflow.
Moreover we prove that the exponential dichotomy for skew-product semiflow is
not destroyed by small perturbation. Finally, we apply these results to parabolic
partial differential equations and functional differential equations.
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discrete dichotomy, roughness.
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1 Introduction

The concept of exponential dichotomy of linear differential equations was introduced by
Perron in 1930 [24], which is concerned with the problem of conditional stability of a
system

z = A(t)z (1.1)
and the conection with the existence of bounded solutions of the equation
z = A(t)z + f(z,t) (1.2)

where the state space is a Banch space X and t — A(t) : R — L(X) is bounded,
continuous in the strong operator topology. For related work, see Massera and Shaffer
[21], Hale [8], Levinson [15], Coppel [6], Sacker and Sell [28], [29], [30] and Palmer [22].
One of the important problems of exponential dichotomies of the equation (1.1) is
its roughness. That is, they are not destroyed by small pertubations of the bounded
operator A(t). This was first proved by Massera and Shaffer [21] under the assuption that
the original operator A(t) is a bounded matrix; for the case that A(t) is not a matrix the
results still true if A(t) € L(X) where X is and infinite dimensional Banach space and
can be found in Daleckii and Krein [7]. Also, Palmer [22] proved the following Lemma:

Lemma 1.1 Let A(t) and B(t) be n x n matriz functions, bounded and continuous on
[to, 00). Suppose the system (1.1) has an ezponential dichotomy on [to, 00) with projection
matriz function P(t) and B(t) — 0 ast — oo. Then the perturbed system

& = [A(t) + B(t)]z (1.3)
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also has an ezponential dichotomy on [to,00) and if Q(t) is a corresponding projection
matriz function

Q@) - P(t)| »0 as t—o0 (1.4)

The need for a new approach arose from the fact that for the linear differential equation
(1.1) with unbounded operator A(t), the solutions generally speaking, either can not be
extended in the direction of the negative times, or can be extended, but not uniquely.
For example, for parabolic partial differential equations many authors have studied these
problems, (see for example, Henry [11], Kolesov [12] and Xiao-Biao Lin [17]). In the case
of Henry, he studied the existence and roughness of the exponential dichotomy of the
following linear differential equation

& = (Ao + At))e (1.5)

where t — A(t) : R — L(X) is bounded, continuous in the strong operator topology and
Ao is the infinitesimal generator of an analitic semigroup of bounded linear operator in
the Banach space X. Henry’s results has been generalized by A. Carvalho [2], to the case
when Ag is the infinitesimal generator of a Cy semigroup instead of an analitic semigroup.
Both of them used the relation between discrete dichotomies and exponential dichotomies.

For the case of functional differential equations we can see the work done by Hale-
X.B.Lin [9], H.Rodrigues [27] and M.Lizana [18].

In the case of M.Lizana, he proved that, if the linear nonautonomous functional dif-
ferential equation

(t) = L(t)ze, t20 (1.6)

admits and exponential dichotomy on IR, where L(t) : C = C[[-r,0],[R"] —» R" is a
linear operator which is uniformly continuous and bounded with respect ¢t on IR, in the
operator norm of the space L(C, R"), then it is not destroyed by small perturbation.
Basically he proved the following:

Lemma 1.2 If (1.6) has an ezponential dichotomy on IR, and B(t) is a linear bounded
operator for t > 0 and continuous with respect to t in the operator norm of L(C, R"),
|B(t)|| < € for allt > 0, then

z(t) = (L(t) + B(t))=: (1.7)
has an ezponential dichotomy on IR, if € is sufficiently small.
The prove of the above Lemma is similar to that for ordinary differential equations

(see [8], Lemma 5.2, p.p 125-127).
Also, Lizana proved the following Theorem

Theorem 1.1 Suppose the above mentioned hypothesis on L are satisfied. If L(t) is
globally Lipschitz in t with a constant p > 0 sufficiently small and all the roots of the
characteristic equation detA(t,)) = 0, where

A(t,A) = M — L(t)(eM) (1.8)
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verify the condition

ReA(t)| > a>0, Vt>0 (1.9)

where a is independent of t, then =(t) = L(t)z;, t > 0 has an ezponential dichotomy
on IRY, with some projection operators P(c) and Q(c), the subspace Q(o)X 1is finite
dimensional and the dimension is independent of o on IR*.

All the problems above can be treated in the unifield setting of a linear skew-product
semiflow. In [31] Sacker-Sell use a concept of exponential dichotomy for skew-product
semiflow with the restriction that the unstable manifold has finite dimension and they
give a sufficient condition for the existence of exponential dichotomies for skew-product
semiflow, which is given by the following Theorem.

Theor=m 1.2 Let 7 = (®,0) be a weakly hyperbolic skew-product semiflow on & =
X x©. If codimS(0) =k, 0 €O (5(0) -stable manifold), then ® has an ezponential
dichotomy over O.

This concept is also used by Magalhaes in [19] and [20]. It is not hard to prove that the
concept of exponential dichotomy used by Sacker-Sell and Magalhaes is stronger than the
copcept we use here.

A different characterization of the exponential dichotomy for skew-product flow in
infinite Banach spaces appears in Rau [25] and [26]. He associates a strongly continuous
group to the skew-product flow = = (®,0) in the following way:

Given a skew-product flow 7 = (®,0) on £ = X x © we can associate a family {T'(t)},.p
of linear operators on the Banach space C(©, X) defined by

T(t)f(6) =2(6-(-1),1)f(6-(-1)), ViER - (1.10)
foralld € © and f € C(0O,X). '

Proposition 1.1 The operator family {T(t)}teR given by (1.10) is a strongly continuous
group on C(0, X).

Since * = (®, 0) is a flow (two side flow) the definition of exponential dichotomy is the
same as in the finite dimensional case; this allows Rau in [25] to give the following sufficient
and necessary condition for the existence of exponential dichotomy for skew-product flow

T =(9,0).
Theorem 1.3 (Theorema 12 in [25]) Let {T(t)},.jp be the strongly continuous group
given by (1.10). Then the following statements are equivalent:

(A) © = (®,0) has an ezponential dichotomy over O.
(B) o(T(t))NI'=0, Vt#0

where I' denotes the unit circle in C.
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A similar result as Rau’s can be found in Latushkin-Stepin [13], [14] and Antonevich [1].

In this paper, first of all, we introduce a concept of exponential dichotomy for skew-
product semiflow weaker than the concepts used by Sacker-Sell and Magalhdes. Here we
allow the unstable manifold to have infinite dimension. On the other hand, ours concept
is an extension of the classic concept of exponential dichotomy for evolution operators
used by Henry in [11].

Second, we introduce the concept of Skew-Product Sequence and give a necessary and
sufficient condition for this sequence to have discrete dichotomy.

Third, we apply the above results to prove roughness. We also give a necessary and
sufficient condition for a linear skew-product semiflow to has an exponential dichotomy.

Finally, we consider some examples as applications of these results.

2 Preliminaries

In this section we shall present some definitions, notations and results about Skew Product
Semiflow in infinite Banach spaces, as well as the definition of exponential dichotomy for
the skew-product semiflow which is one of the most important concept of this paper.

2.1 Linear Skew—Product Semiflow

We begin with the notion of skew-product semiflow on the trivial Banach bundle £ =
X x © where X is a fixed a Banach space (the state space) and © is a compact Hausdorff
space.

Definition 2.1 Suppose that o(6,t) = 6 -t is a flow on O, i.e., the mapping (6,t) — 6 -t
is continuous, § -0 =6 and §-(s+t)=(6-s)-t, for all s,t € R.

A linear skew-product semiflow 7 = (®,0) on £ = X x O is a mapping #(z,6,t) =
(®(8,t)z,6.t) for t > 0, with the following properties:

(1) (6,0) = I, the identity operator on X, for all § € ©

(2) im0+ ®(8,t)z = z, uniformly in . This means that for every z € X and every
€> 0 there is a § = §(z,€) > 0 such that ||®(0,t)z —z|| < e,foralld € ®©and 0 <t < 6.

(3) (6, ) is a bounded linear operator from X into X that satisfies the cocycle identity:
®(8,t+ s) = 9(6.t,5)®(4,t) 6 €0, 0<s,t. (2.1)
(4) for all t > 0 the mapping from £ into X given by
(z,0) — o(6,t)z
is continuous.

The properties (2) and (3) imply that for each (z,8) € £ the solution operator ¢t —
®(6,t)z is right continuous for t > 0. In fact :

12(6,% + )z — 9(6,t)z|| = |[2(6 - t, h) — 1]2(6, 1)z ||
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which goes to 0 as h goes to 07.

For any subset F C £ we define the fiber

Fb):={z€ X :(z,0) e F}, 6€0O. (2.2)
So £(0) =X x {6}, 6 € ©. IfU C O, then we define
FWU) = F(9).
oeU

Also we define
& ={(z,0) e £:z =0}
the zer» fiber.

Proposition 2.1 Let 7 = (®,0) be a linear skew-product semiflow on £. Then there
ezists constants M > 1, a > 0 such that

[|[®(6,t)| < Me* 6€0O, te R,.
Proof First we claim that there is § > 0 such that
M = sup{||®(6,t)||: 6€0O, 0<t<b}<o0

For the purpose of contradiction. Let us assume that there are sequences §,, € O, t, € R,
such that ¢, — 0% and ||[®(6n,t.)|| > n. The Banach-Steinhaus Theorem (Uniform
Boundedness Principle) implies that there is z € X such that

{lI®(bn,ta)z| : n € IN}
is unbounded . This contradicts the fact that

lim ®(6,t)z =z

t—0+t

uniformly in 8 € ©. Therefore M < oo.

On the other hand we have that ®(6,0) = I,so M > 1.

Now fix t € IR;. Let m be an integer satisfying m <t/6§ <m+1,i.e, ém <t < édm+6.
Then for any § € © we have

[2(6, )] = [|2(6,t —bm + ém)|
= [|®(6-6,(t — §m) + §(m — 1))3(6, 6)||

Now putting 6o =6, 6, =05-6, 0, =0,-6,---0n, = Opn_ - §; we get the following:

186, 1)ll [8(6m, t — 6m)®(6m_1,6) - - 2(61,6)% (o, 8)|

M™! = MM™ < M.M*'5.

IA
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If we put a = ;in(M), then

18(6, )] < Me*.
O

Remark 2.1 The theory we present here extends easily to Banach bundles which are
locally product spaces. A Banach bundle £ with fiber X over a base space © with
projection P is denoted by (€, X, 0, P), or £ for short, and is defined as follows:

(1) X is a fixed Banach space and O is a compact Hausdorff space.
(2) The mapping P : £ — O is continuous.
(8) For each 6 € ©, P~'(0) = £(0) is a Banach space, which is referred to as the fiber

over 6.

(4) For each § € O, there is an open neighborhood U of # in © and a homeomorphism
7 : P"}(U) - X x U such that, for each n € U, P~! is mapped onto X x {n} and
7: P} (n) —» X x {n} is a linear isomorphism.

(5) The norms || - || = || - ||l¢ on the fiber p~!(6) vary continuously in . One can use the
local coordinate notation (z,6) to denote a typical point in a Banach bundle £.

2.2 Projectors and Subbundles

A mapping P : £ — £ is said to be a projector if P is continuous and has the form
P(z,0) = (P(0)z,0), where P(f) is a bounded linear projection on the fiber £(8).

For any projector P we define the range and null space by

R =R(P) = {(z,0) € £: P(f)z = z}

N =N(P)={(z,0) € E: P(6)z =0}

The continuity of P implies that the fibers R(6) and V() vary continuously in 8. This
also means that P(6) is strongly continuous in 6. The following result can be found in
Sacker-Sell [31].

Lemma 2.1 Let P be a projector on £, then R and N are closed subsets in € and we
have

R(O) NN = {0}, R(8)+N(6)=E(6) 6¢O.

Definition 2.2 A subset V is said to be a subbundle of £, if there is a projector P on £
with the property that R(P) = V; in this case W = N(P) is a complementary subbundle.
ie, &=V + W as a Whitney sum of subbundles.

For the proof of the following lemma see [31].
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Lemma 2.2 Let V C £ with the properties:

(1) V is closed.

(2) V() is a linear subspace of £(8) for all 6 € O.
(8) codimV () is finite for all § € O.

(4) codvmV(6) is locally constant on O.

Then V is a subbundle of £.

2.3 The Stable, the Unstable and Initial Bounded Sets.

Definition 2.3 A point (z,6) € £ is said to have a negative continuation with respect to
 if there exists a continuous functions ¢ : (—o0,0] — £ satisfying the following properties:

(1) #(t) = (¢°(t),0 -t) where ¢*:(—o00,0] > X

(2) 4(0) = (=,6)
(3) ¢(s) € £(6 - s) foreach s<0

(4) 7(¢p(s),t) = @(s+1t) foreach s <0, and 0<t< —s

In this case the function ¢ is said to be a negative continuation of the point (z, §).
For any negative continuation ¢ and any 7 < 0, we define ¢,(t) = ¢(7 +t) for — oo <
t<—1.

Now we shall define the following sets:
M = {(z,0) € £ : (z,6) has a negative continuation ¢}

U = {(z,0) € M : there is a negative continuation ¢ of (z,6) satisfying |¢=(¢)|| —
0 as t— —oo}

B* = {(2,6) € £ : supyso [ #(6, )z < 0}
B; := {(z,6) € M :(z,0) has a unique bounded negative continuation ¢}

B~ := {(z,0) € M : there is a negative continuation ¢ of (z,6) satisfying sup,o [|¢*(t)|| <
oo}

S:={(z,0) € £:|®(6,t)z|| >0 as t — oo}
B:=B"NB"

The set U is called unstable set, S is the stable set and B is the initial bounded set.
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Remark 2.2 The theory described here does allow for the possibility that the linear
operator ®(6,t) need not be one-to-one for some ¢t <0, i.e., (f,t) may has a nontrivial
null space. Because of this, it maybe possible for a point (z,6) € £ to have more than
one negative continuation. It is easy to see that if ®(6,t) is one-to-one for all t > 0 ,then
every negative continuation is unique. Uniqueness of negative continuations is a common
feature in the study of partial differential equations, see for example, Temam [32] and
Hale [10].

For all (z,6) € B, we shall denote the unique bounded negative continuation, by
®(6,t)z, t < 0; this defines an extension of the mapping ®. It is clear that for each § € ©
the fiber B (0) is a linear subspaces of £(f) and ®(6,t)z is linear in z for each t > 0, i.e.,
®(6,1) is a linear mapping from B (8) to B; (6 -t) for t < 0.

Moreover, the cocycle identity

®(0,t+ s)z=2(6-t,5)®(0,t)z s,teR

is valid for all (z,6) € B.

2.4 Exponential Dichotomy for Linear Skew-Product Semiflow

Now we shall introduce a new concept of exponential dichotomy for skew-product semiflow
in infinite dimensional Banach spaces which is an extension of the concept given by Henry
in [11].

Definition 2.4 A projector P on £ is said to be invariant if it satisfies the following
property '

P(6-1)3(6,t) = $(6,t)P(6) t>0, 6€0O (2.3)

Definition 2.5 We shall said that a linear skew-product semiflow 7 on £ has an expo-
nential dichotomy over an invariant set O, where © C O, if there are constants
k> 1, B> 0 and invariant projector P such that for all § € © we have the following:

(1) ®(8,t) : N(P(6)) = N(P(6-t)), t>0isan isomorphism with inverse:

®(6-t,—t): N(P(6-t)) - N(P(8)), t>0

(2) 12(6,t)P(O)|| < ke, >0

(3) 12(6,t)(I — P(6)|| < ke®*, t<0

where ®(6,t)(I — P(0)) is well defined for ¢t < 0 since N (P(8)) = R(I — P(9)).
Proposition 2.2 If 7 = (®,0) is a linear skew-product semiflow on £ = X x © which
admits an ezponential dichotomy over ©, then one has that B = & and the corresponding

projector P is such that
R=8(0), N=U0O)
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and

E=R(P)+N(P)=S8(0)+U(O)
(the Whitney sum of two subbundles)
Proof Let P be the corresponding projector and consider (z,8) € B. Set y = P(6)z and
z = (I — P(6))z. Then each one of the trajectories ®(4,t)z, ®(6,t)y and &(6,t)z

has a negative contiuation ¢*, ¢¥ and ¢* respectively. In fact, if ¢* is the negative
continuation of ®(6,t), then:

(1) ¢*(0) ==
(2) ¢:(t + 3) = ‘I>(0 : s,t)qS’(s), 0<t< —s
(3) (0 -s,t)p*(s) = ®(0,t +s)z, 0 < —s<t.

From here it is easy to prove that

¢¥(s) = P(0-5)¢*(s) and ¢*(s) = (I — P(6-5))¢%(s)
for all s < 0. Therefore

¢*(s) = ¢¥(s) + ¢*(s), (—o0,0].
So
lyll < ke®||47||, Vt<o.

Since ¢*(t) is bounded and 8 > 0, then y = 0.
From the definition of exponential dichotomy we have that

@(6,t) : N(P(8)) = N(P(6-t)), >0

is an isomorphism with inverse:

®(6-t,—t): N(P(8-1)) > N(P(6)), t>0.
Since R(I — P()) = N(P(6)), then we get the following: z = (I — P(6))z € N(P(6))
and
2 = ®(8-t,—)8(8,)z
®(6-t,—t)®(0,t)(I — P())z
= ®(-t,—t)(I—P(6-1))®(6,t)z, t>0.

Hence

1= [18(6 - ¢, —t)(1 — P(6 - ))I[[|2(6, t)=]|

<
< ke PY|®(6,t)z|, t> 0.

Since ®(6,t)z is bounded for t > 0 and 8 > 0, then z = 0. Therefore z =y + 2. which
means that B = &. This implies that SNU = &,.
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Clearly we have that
R(P)CS, N(P)cU

and

=X x0=R(P)+N(P).
Then
R(P)=S8 and N(P)=U.
a

Corolary 2.1 The projector P associated with the ezponential dichotomy of 7 = (®,0)
is uniquely determined.

Proof Assume that we have another projector Q associated with the exponential di-
chotomy of # = (®,0). Then Q(z,6) = (Q(f)z,8) where Q(f) is a linear bounded
Projection on X.

From the previous lemma we get that

R(P(6)) = R(Q(6)), N(P(6)) =N(Q(6)), 6¢€6.

This implies that P(6) = Q(0), 6 € ©. Therefore P(z,6) = Q(z,0), (z,0) € £.
0

Lemma 2.3 Assume 7 = (®,0) has an ezponential dichotomy over © with constants
B, k and corresponding projector P. Then the following holds:

(1) IP@)l <k 6€©
(2) If we define

_ ®(6-s,t—s)P(8-s), if t>s
G(0,t,5) = { — ®(8-st—s)I—P@6-s), ift<s (2:4)
then
|G6,t,5)|| < ke Pl t,se R. _ (2.5)
Proof Follows from the definition of exponential dichotomy. 0

3 Discrete Skew-Product

Here we shall introduce the concept of discrete skew-product and present some results
relative to discrete dichotomy for such skew-product, so as existence and preserving of
the discrete dichotomy under small perturbation.
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3.1 Discrete Dichotomy

We begin this subsection with the concept of discrete skew-product which appears in
natural way when we discretize the skew-product semiflow on time.

Definition 3.1 Let 0(6,t) =6-t,t € IR be a flow on ©. A mapping 7 : E x Z — £ is
called discrete skew-product if it can be written as follows:

#(z,0,n) = (®.(0)z,0-n), (z,0)€&, neZ.
where ®,(0) € L(X ) and has the following properties
(1) thece exists p > 0 such that
|®n(8)|| < p, forall ne Z,0 € O.

(2) for each n € Z the mapping from £ to X given by (z,6) — ®,(0)z is continuous.

Remark 3.1 In principle a discrete skew-product 7 is not a semiflow since there is not
relation between ®,(8)’s. However, in section 4 we shall define a discrete skew-product
for which we do have relation between the ®,(6)’s. Also, we do not need to assume that
®,(0) is invertible in whole the space X.

Now we shall introduce two concepts of discrete dichotomy over O.

Definition 3.2 (pointwise discrete dichotomy) We shall say that a discrete skew-
product 7 has a pointwise discrete dichotomy over © if for each § € O, there exist
Mpy, ag < 1 and a family of projections P,(6) on X such that

(1) @a(8)Pa(8) = Pas1(6)2a(8), ne Z.
(2) ,.(0) : N(Pa(0)) > N(Poya1(6)), ne Z

is an isomorphism with inverse:
Ba(0)™ : N (Pass(8)) — N(Pa(8)).
(3) Define ®pm(8) := &n1(8)®n2(0)...8m(8), and & m(8) := I, n > m. Then
|@n,m(8) Pm(8)z]| < Mpog™|z]l, n<me€ Z.

(D @nm(6)(I — Pm(8))z|| < Moag ™ |zll, n<m; n,meZ
where @, m(0)(1 — Pm(0)) is well defined by (2) since R(I — Pn(6)) = N(Pn(6)).

In particular, if m = 0 we get
[ ®n,0(6)Po(6)z|| < Mpag|z||, n >0,

and

[[8n,0(6)(1 = Po(6))z|| < Mgeg™ |||, n < 0.
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Definition 3.3 (uniform discrete dichotomy) We shall say that a discrete skew-
product 7 has a uniform discrete dichotomy over O, if in definition 3.2 My and oy are
independent of § € O (My = M, ap = ).

Remark 3.2 It is easy to check the following properties:

D m(0)Pmi(8) = Bni(0); Pn(0)Pnm(0) = Prt1,m(6) (3.1)

forn>m > k.
P .m(0)Prm(6) = Pa(0)®nm(6) (3.2)
Ppn1(8) = Pn_1(0); Pn,(0)2,-1(0) = ®pnr-1(9). (3.3)

forallr <n,m,k€ Z and 6 € O.

Lemma 3.1 Let & : £ x Z — £ be a discrete skew-product . If for a sequence y =
{yn} in X and 6 € © we have

Tpt1 = Pn(0)zn+yn, nE€EZ. (3.4)
Then »
Ty = @"'m(ﬂ)zm + Z <I>"'k+1(0)yk, n>mc Z (35)
Proof

The case m = n — 1 is easy. In fact, from part (3) of definiton 3.2 we have that

n—1

Tn = Qn—-l(g)mﬂ—l + Yn-1 = Qn—l(a)mn—l + Z Qn,k+l(0)yk-

k=n—1

Assume that (3.5) is true for m = r < n. Then we shall prove it is true also for m = r —1.
In fact,

n—1
Tn = Q11,1-(0)3;1- + Z Qn,k+1 (g)yk

k=r

and z, = ®,_,z,_; + y,_1. Therefore, using Remark 3.1 we get the following

n-1
In = ¢’n,r(g)[‘pr—l(a)mr-—l + yr—l] + Z Qn,k-é-l(g)yk
k=r
n-1
= Qﬂ,r(o)ér—l(o)mr—l + Qn,r(e)yr—l + Z Qn,k-f-l(e)yk
k=r
n-1
= ®p,-1(0)zr-1 + Z D k+1(0)y

k=r—-1
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Lemma 3.2 Assume the discrete skew-product & : £ x Z — £ has a pointwise discrete di-

chotomy over © with the corresponding Mg, ay and projections Pn(0). Then the following
holds:

(a) [P(6)| < Mp, n€Z,0€0
(b) We define the discrete Green’s function as follows

&, m(0) P(8), 5 5
Grm(6) = { - <I>,,,,,.§0§(I E }J,,,(e)), n <m. (36)

Then
|Cam(8)| < Mea™, 6€©,n,meZ (3.7)
Proof It follows from the definition 3.2 of pointwise discrete dichotomy.
a

Corolary 3.1 Assume the discrete skew-product & : £ x Z — £ has a uniform discrete
dichotomy over © with constants M and o < 1. Let {P.(0)}, n € Z, 6 € O be the
corresponding family of projections. Then we have:

(a) |Pn(6)| <M, neZ, €6

(0) |Grnm(8)|| < MaI" ™ neZ, 6c0.

Lemma 3.3 Let 7 : £ x Z — £ be a discrete skew-product which has a pointwise discrete

dichotomy over ©. Consider § € © and y = {yn} in loo(Z,X). Then {z,.} € lo(Z,X) is

solution of

ZTpy1 = Pn(0)zn+yn, n€EZ (3.8)
if and only if
Tn =) Gns1(0)ys. (3.9)

Proof We have the following
Try1 = Qr(a)zr + yr
and using (3.5) we get

r—1

T, = Pnr(0)2n + ) Bras1(O)yr, ™ >n.

k=n

Then
®,..(0)I - P(0)z, = ®nr(0)z, — ®n,(0)P-(0)z,

= B (B)[Brn(8)2n + 3 Brrr(6)yi] -
k=n
B (0)Po(6)[rn(O)m + 3 B (O3]

k=n
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From Remark 3.1 we get

Bus (O = PuB)]e = 2a+ 3" Bt — Pu(0)n

- TZ_E @1 k+1(0) Pey1(6)yx-
Hence o
P r(8) — Pr(8)]z, = [I — Pa(8)]zn + kX_: ®nk+1(0)I — Piya(8)]ys-
Since

@ (6)[1 — Pr(6)]z,|| < Mpag™||z.||
and ||z.|| < C for all r > n, then

"‘I’,,,,(H)[I - Pr(g)]-'rr” — 0, as r — 400

and the series

> ®ni+1(0)[I — Piya1(8)]yx converges.

=n

Therefore

I = PuB)lzn = = 3 Snisa (O = Prsa ()l (3.10)

k=n

For n > m we have the following:

n—1

T, =2 @n'm(e)xm + Z Qn.’t‘--i-l(g)yk'

k=m

Then

n-—1

Pa(6)zn = FPa(6)®am(8)2m + Y Pa(6)@nkii(O)ue
k=m
n-1

= 3, m(0)Pr(8)Tm + 3 @nis1(8)Pesr(6)e.

k=m

On the other hand, from definition 3.2 we have
[8nm(0)Pm(0)ml|| < Moog™™ [|zmll, n2m.
Since {z,} is bounded and ay < 1, then

|®n,m(8)Pm(0)zm|| — 0, as m — —co.
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Therefore the series

n—1
ZCP,,,HI(G)P;CH(G)yk converges.

Hence

n-1

Pu(0)zn = Z P e+1(0)Pics1 (8)y (3.11)

From (3.10) and (3.11) we get:
Tn = Pa(0)zn + (I — Pa(0))zn = D, Gni+1(8)yk-

Now we shall prove that the sequence {z,} given by (3.9) belongs to l(Z,X) and is a
solution of (3.8). In fact,

Tpy1 = ZGn+l,k+1(0)yk

i ‘I’n+1.k+1(9)Pk+1(9)yk = f: ‘I’n+1,k+1(5)[1 - Pk+1(0)]yk~

sitd
Then
Tpyr = iz—:l Pri1,k+1(0) Pey1(0)yx — i Dr1k4+1(0) — Pes1(0))yx + yn
= &,(0) 112—21 P k+1(0) Pry1(0)yx — i:: Pk 41(0)I — Prrr(0)ly| + yn
= 8(6)3 Gotra (s + e
Hence

Tnt1 = Qn(a)zu + Yn-
Now we see that {z,} is bounded respect § € ©. In fact,

o=~ _|n—(k 1+ ag
lzall < Mo 3 o™ jjyall < Mollyll—_>-

O

3.2 Necessary and Sufficient Conditions for Discrete Dichotomy

We begin this subsection with a theorem which is an extension of Theorem 7.6.5 [11], to
the case of discrete skew-product.
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Theorem 3.1 Let 7 : £ x Z — £ be a discrete skew-product in £ = X x ©. Then the
following statements are equivalent:

(A) 7 has a pointwise discrete dichotomy over ©.

(B) for f = {fn} in lu(Z,X) and 6 € O, there ezists a unique bounded solution T =
z(8) = {zn} of the equation

ZTps1 = Pn(0)zn + fn (3.12)

Proof If (A) holds, then by using Lemma 3.3 we get that (B) holds with
Tn = 12,.(0) = Z Gn,k+l (e)yk

and
1+ ag

1-— Qg
Suppose (B) holds and put B = l,(Z,X). Consider the linear operator Sg : B — B
given by

2]l < Me Iflles mne€EZ.

z = {zn} € B > {Znt1 — Pn(f)zn}.
Since ||®n(0)|| < pfor all § € © and n € Z, then Sez € B for all & € IB. We shall

prove the Theorem in several claims.
Claim 1. S; is a bounded linear isomorphism and

ISsll <1+ p, VocO.

It follows from (B) and Part (2) of the definition 3.1.

Claim 2. S;! is a bounded linear operator with

1
St > —.
15712 15

In fact. From the open mapping Theorem we get that S, is a bounded linear operator.
On the other hand, we have the following:

1S5 I Sell > 115" Sell = 11l =1 = (1 + p)[IS5 1|l > 1.
Claim 3. Define Gy = S;!. Then Gy can be written as follows
(Gof)n = Z Gni+1(0)fx, n€e Z

at least for sequence {fi} with fi = 0 for all large |k|. Where G, ,(0) € L(X) with

Grm (O)llzcxy < [|Goll By
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and

(a) Gri1m(8) — 8n(8)Gnm(8) =0, ifn#m—1
(b) Gmm(8) = @m-1(6)Gm-1,m(0) = 1

Proof of the claim 3. Consider the sequence f = {---0,z,0,---} with z the (m — 1)th
component of f. Define the following operator

Gnm(8)z = (Gof)n, where Gof = {(Gof)n:n € Z}
Now consider f = {---0,z,,2,,0,---} with z; the (m — 1)th component of f. Then
(Gof)n = (Gofi)n + (Gof2)n = Gnm(8)z1 + Gnmi1(0)z2
where f; = {---0,2,,0---} and f, = f — fi.
In this way for sequence f € IB such that fi = 0 for all large |k| we get that

(Gﬂf)n = i Gn,k+1(0)fk, n€Z.

It is easy to see that:

Gnm(0) € L(X) and [|Gnm(0)lle(x) < Gell By

Let £ = {z,} and f = {fn} in B such that Gg¢f = z.
Then we have

Tns1 = Bn(0)Zn + fa <= (Gof)nir = Pu(0)(GCof)n + fa-
In particular if f = {---0,z,0,---} with z the (m — 1)th component of f, then
Grirm(0)z = 82(0)Grm(8)z + fn
Therefore

Criim(8) = ®a(0)Gnm(8) = 0 if n#m—1
G (8) = Brm-1(8)Grmrm(8) = 1.

Now consider

P.(8) = Gum(l) = Ppu-iGm-1m{8) + 1., 3.¢., ©(3.13)
I— Pr(0) = —®m-1Gm_1m(9).
Claim 4.
(c) Gam(0) = @m(0)Pn(6), if n2>m
(d) Pmn(0)Grm(0) = —(I — Pm(8)), if n<m

Proof of the claim 4. By induction and using parts (a) and (b) of claim 3. In fact. For
n = m (c) is true. Suppose that (c) is true for k > m, i.e., Gkm(0) = ®xm(0)Pn(8).
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Since k > m, then k # m — 1. Therefore
Git1,m(0) = ®4(0)Gi,m(0) = ®1(0)Pk,m(0) P (6)
So

Grsim(0) = Birm(6)Po(8).

(d) if n =m — 1, then
Gm,m(e) = ¢m—1(0)Gm—l,m(0) +1

SO

Brn1(8)Gm-1,m(6) = —(I — P(8)).
Since ®,,-1(0) = Pmm-1(8), then we get
Pmm-1(0)Gm-1,m(8) = —(I — Pm(0)).

Suppose the relation (d) is true for n = k < m: ®,, x(0)Gi.m(0) = —(I — Pm(6)).
Since k — 1 # m — 1, from Claim 3 we get

P k-1(0)Gr-1,m(0) = Pmi(0)Pr-1(0)Gi-1,m(6)
= 3 i(0)Ckm(6) = —(I - Pu(6)).

Claim 5. If z,4; = $,(0)z,, n > m defines a bounded sequence, then (I—Pn(6))zm = 0.
Putting z, = 0 for n < m we get the following

Tpt1 = Pn(0)zn, f n#Fm—1 and z, — Pm_1(0)Zm_1 = Tm.

Therefore £ = {z,} is a bounded solution of the equation z.4+1 = ®,(0)z, + f. where
f=4{-,0,2m,0,---} with z,, the (m — 1)th componet of {.
On the other hand we know that

Yn = (Gof)n = Gam(6)Zm

is also solution of zp41 = ®,(0)z, + fa. Hence , z, = G m(8)zm.
In particular:

Tm = Gmm(0)zm = Pn(0)zm = (I — Pn(8))zm = 0,

and the claim 5 1s proved.

Claim 6. P,(0) is a projection.

In fact. Consider z € X and z, = Gnm(0)z. Then z,41 = ®,.(0)z, if n > m and
llznll < [|Gsll|z||- It follows from the foregoing Claim that:

(I = Pn(8))Grmm(8)z = (I = Pr(8))Prm(8)z = 0. So Pm(8)z = P2(6)z, Vz € X

Claim 7. If (] — Pa(0))z =0, then &,(0)Pn(f)z = Pnt1(0)®m(8)z.
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If (I — Pu(8))z = 0, then
(I = Crum(8))z =0 <= 7 = Crmm(0) = Tm
Consider z, = Gnm(f)z. Then
Tnir = B(0)z, if n>m
and {z,} is bounded. Therefore
0= (I~ Pnt1(8)zm+1 = (I — Pmy1(8))2m(8)zm

= (I — Pn41(0))®2m(0)z = @m(0)(I — Pu(0))zm
= 8, (8)(1 — Pu(8))z

So
Pais(6)8(0)2 = B.(6)Pa(6)z,

and the claim 7 is established.

Claim 8. ,,(0) : N(Pn(8)) = N(Pm+1(6)) is an isomorphism for all 8 € ©.
In fact. Assume {z,:n < m} is bounded and z,41 = ®,(0)z,, n <m.
Then by putting z,, = 0 for n > m we get that {z,} is solution of

Tot1 = Pa(0)zn + fu with f={--0,0,—9,.(6)z,0,--}
where —®,,(0)z,, is the mth component of f. Therefore
2 = Crms1 (—m(0)Tm) = —Crmss (8)Bm(6)Tm.
In particular
0=2mt1 = —Cmi1,m+1(0)2m(0)zm = —Prs1(0)2m(8)zm

Now suppose that z € N(Pn(6)) and let y, = G, m(68)z. Then {y,} is bounded and

Ynt1 = Pnu(0)yn if n#£m -1
Ym-1 = ¢m—2(6)ym—2
Ym = = q’m—l(e)ym—l + .

Then the set {y, : n < m — 2} is bounded and yn41 = Pn(0)z,, n<m —2.
Therefore, if we put y, = 0 for n > m — 2 we get that {y,} is solution of

Yn+1 = Q"(G)yﬂ F f" with f = { o 07 0) —‘I’m_z(e)ym_z,0,0, o }

where —®,,_3(8)ym-2 is the (m — 2)th component of f.
So in the same way as before we get that 0 = Yy = —Grno1,m-1(0)Pm-2(8)ym-2, which
implies

Pm—l(e)ém—Z(g)ym—2 =0 < Ym-1 = q’m—2(0)ym-2 & N(Pﬂl—l(a))
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Since z € N(Pn(0)), then we get: ym = Grm(0)z = Pn(f)z =0 and

— z2=—I = Pn(0))z =ym — == (Gmm(0) — I)z
= ‘I>,,,_1(0)G _1,,"(9)27 = Qm—lym-l € ¢I>,,._1(0)N(Pm_1(0)

Then

T € S 1(O)N(Prm-1(6), so N(Pn(8) C ®m-1(6)N(Pm-1(8).

Now consider §p = Yyn = Gnm(f)z, for n < m — 1 and
Int1 = Yn = Pn(0)fn, n+12>2m—-1 &< n>m-2.

Then
Im-1= Pm—2(0)¥m-2 = ®m-2(0)Ym-2 = Ym-1
and
Ym = Qm—l(o)gm—l = Qm—-l(o)ym—l = —I.
So we have that {g, : n < m} is bounded and
37n+1 = Qn(g)gn’ n < m.
In the same way as before we get the following:

0=- m+1(8)¢'11(0):‘7m = _’Pm+l(9)<pr'I(6)(-m)

then
®,.(0)x € N(Pmi1(6)).

AL

(3.14)

(3.15)

If .(8) =0, then Yms1 = Pm(0)fm = —Pm(0)z = 0. Therefore g, = 0 for all n < m.

Thus {§n} is bounded for n > m and Fny1 = Pn(0)fn, n < m.
So from Claim 5 we get the following

(I — Pu(0))im = (I — Pm(0))(—z) =0= 2z — Pu(f)z. =2z =0.

In conclusion we have proved the following:

From (3.14) N/(Pm+1(6)) S @m(6)(N(Pm(8))
From (3.15) m(8)(N(Pm(8)) € N (Pmss(6))
From (3.16) ®,.(0) is one to one. Therefore
®m(8) : N(Pm(8)) — N(Pms1(6))

1s an 1somorphism.

Now we can write the Claim 4 in the following way

{ (€) Gam(8) =  ®nm(6)Pa(8), if n>m
(d) Gam() =— @um(0)(I— Pn()), if n<m.

(3.16)
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Claim 9. If P,(6)z =0, then
®,.(0)Pm(6)z = Pry1(0)Pm(6)z.

If 2€ N(Pn(0)) = ®m(0)Pm(8)z =0 and ®,,(0)z € N(Pm+1(0)), 50 Pmy1(0)®m(0)z =
0. Therefore
®n(8) P (6)z = Prmt1(0)®m(0)z.
Claim 10.
®,.(0)Pm(0)r = Ppri1(0)®m(0)z, 6 €O, me Z.

It follows from Claims 7,9 and I = P,(6) + (I — Px(6)).

Now we are ready to prove part (3) and (4) of Definition 3.2 of pointwise discrete di-
chotomy.

Claim 11. For all § € © we have:

1@nm(6) Prm(8)z]| < [IG6l*(1 = [|Gell-1)""™, n2m. (3.17)

If ®,,m(0)Pm(6)z = 0 for some n > m, then @, ,(0)Pn(f)z =0, for p > n; it follows
from: @ﬂ+l,m(0)m = @n(e)én,m(a)x
Assume that @, ,m(0)Pm(6)z # 0. Then

2(0) := [ 2km(0) Pm(f)z]| >0, m<k<n.
From Claim 4 we have:
Gni(0) = Pnk(0)Pc(8) and Vi(8) := Pkm(6)Pm(0)z.¢(8), m < k < n.
Then

3 Car(OVA(0) = 3" Buk(6)Pe(6)Bim(6) Pr(0)z.$5(6)

k=m k=m

_ Xn:q,n'k(o)tbk'm(e)Pm(O)Pm(0)$-¢k(9)

k=m

= Y @um(6)Pu(0)s.44(6)

k=m
= ®um(0)Pm(0)z. > #x(6).
k=m
Let f={--0,V.(0),---,Va(6),0,---} with V,, the (m — 1)th component of f. Then
£l = sup [Ifell = sup [[Vi(6)] =1
ke m<k<n

and

132 Car(OVAO) = 1| 3. Cuk(8)fil

k=m =m

= [(GefInll < IGallllF1l = IGeall-
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Then we have:
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271(6). 3 B4(6) = [ Bnm(8)Pu(6)z- 3 24(6)] < |Gl

=m k=m

-1

-1
&-1(6). 0, & @ = —||Gel|™*, and [|Ge|l > 1.

Define ¥,,(6) := 3 r_,. x(0). Then we get the following

Then ¥,(6) —

Thus

ie.,

l.e.

Hence

[[n,m(6) Pr(6)<||

Vo-1(8) = Z:*I’k(f’) ):¢k(0)—¢,.(0)

k=m
1

B OR ROl

Ua(0)(1 — lIGall ™).

U,._1(0) > 9,.(0)||Gs]| . So we get

¢n(6) 2 [1Goll ™" (1 = [IGol| ™) ¥n-s (6).

$a(8) 2 [IGsll 7' (1 — [|Gal| ")) "™ ¥ (6)
$n(8) 2 [IGslI 7} (1 = [|Gel| ™) 1)~ "™ 8,n(6)
8.7(8) < 1Gell ™ (1 = [IGall ™) ™)™ 8. (6)

< IGell(1 = 11Gell =) ™| Pm(8)z]
= NIGell(1 = IG6lI™" )" "™ (|G (6)=|
<

[Gell*(1 = IGell =)™ lz]l, n = m.

23

We have proved this by assuming that the left hand of (3.17) was not trivial, in other
case it is evidently true. This completes the proof of Claim 11.

Claim 12.

[@nm(6)(I = Pu(8))zll < (1 + 1Gall) (-7~

For all 0 € © we have:

|G|
1 + (|G|

In fact, it can be proved in the same way as (3.17).

Finally if we define for all 8 € © the following numbers:

M := (1 + ||Gsl|)? > ||Go||?

™ llzll, if n<m.

(3.18)

(3.19)
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|Gol| .
=———_>1—-|IG . 3.20
0 = TGl > G|l (3.20)

Then (3.17) and (3.18) imply that @ : £ x Z — £ has pointwise discrete dichotomy
over O with constants My and oy given by (3.19) and (3.20).

0

3.3 Equivalence Between Pointwise and Uniform Discrete Di-
chotomy.

Now we want to know when pointwise discrete dichotomy and uniform discrete dichotomy
are equivalent. The answer fo this question is given by the following lemmas.

Lemma 3.4 Let 7 : £ x Z — & be a discrete skew-product and suppose there ezists
1 < 6 < 2 such that ||®.(0)z| > é||z|| foralln € Z, 6§ € O, z € X. Then pointwise
discrete dichotomy and uniform discrete dichotomy of © over © are equivalent.

Proof Clearly uniform discrete dichotomy implies pointwise discrete dichotomy .
Assume that 7 has pointwise discrete dichotomy with constants Mg, ag < 1 for all 8 € O.
Then from Theorem 3.1 we have that Mp, oy are given by the formulas (3.19) and (3.20)
respectively. Our goal is to find constants M, a < 1 indenpendent of § € O.

Let z € B = l(Z,X) and consider

|| Sez|

sup {[|Zn+1 — @n(6)znll}

Il

* nEZ
> sup {[|®a(8)za| — |lznsll}
ne
> sup{6||zall = [lznsall}
ne
2 (6 =12l =llz]leo; ¥=6-1<1.

Therefore, ||Sez||e > v||Z||, & € IB. Then
121 = 11SeS5 ™ 2ll > 71|72, € B.

So IS5l < Jlzll = ISt <3, f€o.
Hence the operator Gy = S; ! given by Theorem 3.1 has the following property

1
1 <[|Gell <~
~
Then, from (3.19) and (3.20) it is enough to take M and « as follows:
1
M = (1+ ;)2 > (14 [1Gall)* = 1Gell?
1
7 [Goll 1
L3> - > >1-||G
@ =TT 2T, 2 Gl
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or

M = sup(l+||Gsl|)* < oo
6€0

|Gl
a = sup——— < 1.
sc6 1+ (|Gl

a

Lemma 3.5 Let # : £€ x Z — & be a discrete skew-product and suppose there ezist
0 < 6, < b3 <1 such that

billz]l < [|a(0)z]l < ballz]|, n€ Z, 6€0, z€X. (3.21)

Then pointwise discrete dichotomy and uniform discrete dichotomy of © over © are equiv-
alent.

Proof Clearly uniform discrete dichotomy implies pointwise discrete dichotomy .
Assume that 7 has pointwise discrete dichotomy with constants My, ay < 1 for all 8 € O.
Then from Theorem 3.1 we have that My, ay are given by the formulas (3.19) and (3.20)
respectively. Again, our goal is to find constants M, a@ < 1 indenpendent of § € ©. In
order to do that, we shall consider the following linear bounded operators:

T(0): B— B, (T(0)z)s = ®a(0)z., 0 €O. (3.22)
L:B — B, (L), = Zn4+1, - the shift operator.
Then the operator Sy : IB — IB given by Theorem 3.1 can be written as follows
Se =L — ®(0) (3.23)

It is easy to see that L is an isomorphism with || LZ|| = ||Z||, £ € X. So ||L|| = ||[L7!|| = 1.
On the other hand, we have that: ||T'(6)Z|/cc = sup,. 7 [|®n(f)zal. Hence, from (3.21)

we get

6 <ITO) <b<1, OO
Therefore | L7'T(6)|| < 1. It is well known that (I — L~'T'(6)) is invertible and

(I = L'T(8))™ = g(L“T(G))".
From (3..23) we have the following
Sit = [LI - L'T(8)| T = (1 - LT(8)) L.

Hence

17 < II(I—L“T(G))“IIsgIIT(G)II"
1 1

< =
1- [T —1-6 v

From here the proof follows as in Lemma 3.4. 0

’ ’1=1—51, 96@
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Corolary 3.2 If7: £x Z — &£ has pointwise discrete dichotomy over O, then the family
of projections {P,(0) : § € O, n € Z} associated with the pointwise discrete dichotomy of
T 1S unique.

Proof Assume that {Q,(6)} is another family of projection associated with the pointwise
discrete dichotomy of #. Let z € X and consider the sequence f = {f.} such that
fm-1 =z, and f, = 0forn # m — 1. For § € O consider {z,} the unique bounded
solution of

Tny1 = Q7:.(0):131; o fn-
Then - -
Tn = Z Gn,k+l(0)fk — Zén,k+l (o)fK

then Gpm(0)z = Gnm(8)z. Where

B ®..m(0)Pm(0), if n2>m
Gnm(0) = { — B m(0)[I _( })JM(G)], if n<m

A _ ®,m(0)Qm(6), if n>m
G = { — B0 —Qm(6)], if n<m

So
Gmm(0)z = Grm(8)z <= Pn(6)z = Qum(8)z

Therefore Pn(6) = Qm(0), 6 € ©, me€ Z.

Corolary 3.3 For v > 0 consider

Sy = {2 ={zn} € B : sup v*||zn|| < oo}
ne

where B = l,o(Z, X ). Suppose that for each 6 € © we have 0 < g < 1, ag <4 < aL, and
for each f € S, there exists a unique solution of

Zp1 = Pn(f)zn + fu in S,.

Then the skew-product sequence ® has pointwise discrete dichotomy over ©.
Moreover, if {Gnm(0)} is the corresponding Green’s family, then ||Gpm(6)| < MaL"_'"'.



DICHOTOMY SKEW PRODUCT SEMIFLOW 27

3.4 Roughness for Discrete Dichotomy.

In this section we shall prove that discrete dichotomy for discrete skew-product s is not
destroyed by small perturbations. For the proof of the following Theorem we shall use a
Lemma from Henry [11], which says

Lemma 3.6 Ifa>0, b>0, 0<r<r, rn<l, b<fi:7'; for 7 =1,2 and {gn}

is a nonnegative sequence in IR with g, = O(r;I"I) as |n| — oo, and
oo
gn < a,rll"I + bZr'"'k'llgh neZ
—o0

then

ary
n< 3
=T b1t

™ —T

€Z.

Theorem 3.2 Assume the discrete skew-product & : £ x Z — £ has a pointwise discrete
dichotomy over © with constants My, ap < 1. If My > My and ag < &g < 1, then there
ezists g > 0, such that for any discrete skew-product 71, : E X Z — £, 71 = (Va(-),0)
with

sup || ®n(f) — ¥a(0)|| <€, 0€0O

ne

has a pointwise discrete dichotomy over 6 € ©.

Proof From Lemma 3.6 the requirement on ¢y is

Qg — ag
My < ——
1 4+ agag

and

M, (1 B 69M9(~1 + cpdrg)
Qglg :

Foreach § € © and f € B, zn41 = Yn(0)zn + fn has a unique solution Z € BB if an
only if :

20 =Y Crirr (O)(Tx(8) — Ba(8))ax + fil

)ZMa, fco.

is also solvable for each f € IB; and it is true provided that

1+ g
(o)

1.
11— <

5up 3~ [Grters (O)(T(8) — 2o(0))] < eoMs

In this case Theorem 3.1 shows that 7; has pointwise discrete dichotomy over ©.
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Let {Gnm(6)} be the corresponding discrete Green’sfunction. Then for all n, m we have:
G (6) = Grin(6) + 3 Grss (O)(a(6) = #(6)) G (9
So
[Gam(®)l < Moaf' ™™ + eg M, Za'“‘* |G (8)]]

and ||Gpm(8)| is bounded.
From Lemma 3.6 above we get the following: If ap < &p < 1 and

&o—ag ].—ag
My < 1
co %6 1+ao&9<1+ag<
then l |
A Mean—m ~ m|
Gam(0)| < < Mya , for small eg.
Cnm(@ € T oy € ;
ag—ag

Corolary 3.4 Assume the discrete skew-product «# : £ x Z — £ has uniform discrete
dichotomy over © with constants M, o < 1, then there ezxist € > 0, such that any discrete
skew-product 7y : £€ X Z — £ with

sup |[®n(0) — ¥n(0)[| <€, 6 €O
ne

has uniform discrete dichotomy over ©.

Theorem 3.3 Assume that the discrete skew-product s 7y, T, have pointwise discrete
dichotomy with discrete Green’sfunction satisfying

IGE (O] < Moo ™!, i=1,2. ag<1.
Then
(a) if || 27(0) — @%(0)| < € for |n—m| < N and [|2(6) — @3(6)| < B n € Z; then
MO

0

(b) if b < az? and ||®L(6) — ®2(8)|| < ebl" ™!, n € Z; then

1P (8) = Pm(O)Il < 1

(6 + BagN“)

Mie

IPA(0) ~ PA(O)I < el + 6)7 Z5es
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Lemma 3.7 Assume that# : EXZ, — £ has a pointwise discrete dichotomy over © with
constants My, ag < 1 and G, m(0), n,m > 0 the corresponding discrete Green’sfunction.
Define the extension of @ to £ X Z as follows: For all0 € © andn <0

P.(6) = Py(6) and ®,(0) := a(I — Po(6)) + a5 Po(6).
Then 7 : £ x Z — £ has pointwise discrete dichotomy over © with constants My, ag < 1.

Proof We shall check the conditions of Definition 3.2. In fact,

() B (6)Pa(6) = Pasa(6)8(6) n 20, Oc .

which is true by hypothesis. On the other hand for n < 0 we have:
B(6)Pa(8) = (co(I — Po(8)) + a3 Po(8)) Po(6) =
Po(8) (ca(I — Po(8)) + 5" Po(8)) = Pay1(8)@n(6).

(b) ®,.(8) : N(P.(6)) = N(Pny1(0)) is an isomorphism for n > 0.

If n < 0, then ®,(0) : N(Pa(0)) = N(Pat1(0)) is also an isomorphism. In fact, if
z € N(Pa(0)) = N(Po(6)), then

®,.(0)z = ag(I — Po(6))z = apz

which is an isomorphism.
(€) [|2nm(0)Pm(8)l < Mog™||z||, n>m >0.
I[fn >0 >m,then

Bpm(0) = Bno(0)Pom(f) and Pn(8) = Po(6)

Pom(0)Pm(0) = 2_1(6)2-2(0)- - 2m(6)Po(6)
= ®_1(0)2-2(6) - Pm+1(6)cg’ Po(6)
= ag"Po(f)

Then

[[@nm (6) P (6)] [ 8n,0(6)rg™ Po(6)=|l

Moag™||z]|-

IA 1l

If0 > n > m, then
®pm(0)Pm(0)x = ag™ Po(0)z.

So
|8 (8) Prn(8)z| < ™™ | z]].
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(d) If m > n >0, then
[[@n,m(8) P (6)2]| < Moag'™"||z]|-

If m > 0 > n, then we have the following

B m(B)I — Pn(8))z = ®,.0(68)B0m(8)(I — Pm(8))x
= P5n(0)20m(0)( — Pm(8))z
= a;"®om(8)(I — Pu(6))z.

Therefore

|8nm(0)(I — Pu(8))z] < o5 ||Pom(8)(I — Pu(8))z||
< Meag ™| z]|.

If0 >m > n, then
@, m(0)(I — Pn(8))z = ag (I — Po(6))z
So
|@n,m(8)(I — Pm(8))z|| < Moag ™|z

0

Theorem 3.4 Assume 7 : € X Z, — £ has pointwise discrete dichotomy with constants
Mg, ag<l. If Mg > My and ay < ag <1, then there ezists & > 0 such that for
any discrete skew-product w:E X Z, — & with

sup ||®.(0) — ®1(8)|| < &, for 6 €O
n>0

has pointwise discrete dichotomy over ©, here 7 = (®n(-),0), 71 =(®L()),0).

4 Roughness

In this section we shall give a necessary and sufficient condition for skew-product semiflow
to have an exponential dichotomy over ©.  Also, we will prove that the exponential
dichotomy is not destroyed by small perturbation. In order to do so we will use the
concept of discrete dichotomy introduced in the foregoing section.

We begin this section with a proposition on the relation between skew-product semiflow
and skew-product sequence.

Proposition 4.1 If 7 = (®,0) is a skew-product semi-flow on £, then the mapping
7:E X Z — E given by
7(z,8,n) := (Pn(),6 - n) (4.1)
where
®,.(0)=2(6-n,1)

is a skew-product sequence.
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Proof Follows directly from Definition 3.1 0

Remark 4.1 Even though &(6,t) is defined in principle only for ¢t > 0, &,(6) =
®(0-n,1) is well defined for all n € Z since o(6,t) =0 -t is defined for all t € R.
This could be one of the advantage of using discrete skew-product.

Lemma 4.1 Let 7 = (®,0) be a skew-product semi-flow on £. Suppose that = has an

ezponential dichotomy over © (with ezponent 8 and k ). Then the skew-product sequence

# given by (4.1) has uniformdiscrete dichotomy over ©, with constants M = K and
— e B

a=-¢e".

Proof Let P be the projector associated to the exponential dichotomy of 7 over ©. Define
the family of projections {P.(8)} as follows:

P.(0):=P(6-n), forall €O and ne Z

we shall prove the condition (a) - (d) of Definitions 3.2 and 3.3.
In order to see (2),consider

®,.(0)P.(0) =®(0-n,1)P(0-n) =
P(6-n.1)®(6-n,1) = P(6.(n+1))®.(8)

= n+1(9)Pn(6), n e Z, fe0O
(b) ®,(8) : N(Pa(8)) — N(Pnt1(8)) is an isomorphism.
In fact, from the Definition 2.5 we know that:
®(0-n,1): N(P(8-n)) = N(P(8.(n+1))

is an isomorphism.
Therefore
@n(6) : N(Pn(6)) — N(Pnta(6))
1s an isomorphism.
(c) If we put @, m(8) := ®n1(8)---Pm(8), n>m and Pnm(d):=1, 6€0O
Then
[ 8nm(6)Prm(O)]| = [ 8(8.(n —1),1)--- B(8.m, 1).P(8.m))]|
= ||®(8.m,n — m)P(8.m)|| < M#™"™ forall §€© and n >m.

Hence
|®nm(8)Pm(8)|| < Ma™™, forall § €O and n >m.

In the same way we can prove (d), this means
|®nm(8)(I — Pn(8))|| < Ma™™, m>n and § €O

This completes the proof of the Theorem. 0
The following theorem give us a sufficient condition for the skew-product semiflow on
£ to have an exponential dichotomy over ©.
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Theorem 4.1 Assume that 71 = (®,0) is a skew-product semiflow on £ and M;a are
positive constant such that a = ezp(—fB) < 1. Consider

L :=sup{||®(6,t)]| :0<t<1, €0} <o (4.2)

If the skew-product sequence % given by (4.1) has uniform discrete dichotomy over ©
with constant M and «, then © = (®,0) has ezponential dichotomy with ezponent § and
constantK M where

K = sup{||®(6,t)|e”: 0<t<1, 6¢€0O} (4.3)

Proof Suppose that {P,(6)} is the family of projections associated with the uniform
discrete dichotomy of # = (®,(:), o). Define P : £ — £ as follows:

P(z,0) := (P(0)z,0); P(8):= Py(9).
Claim 1. P(0) = P(0-k) = Py(6-k) foralld € Z and k€ Z
In fact. Consider the skew-product sequence 7 : £ x Z — £ given by
wx(z,0,n) := (Pn(f- k),0 - n) (4.4)

The # has uniform discrete dichotomy with family of projections {P,(6 - k)} and ®,(6 -
k) = ®n+k(0). Therefore #; has uniform discrete dichotomy with family of projections
{Pn+x(6)}. Then from the uniqueness we get that P,4x(f) = P.(6 - k). In particular
Py(0) = P,(6.K) = P(8 - k)

Claim 2. For all n > K and 6 € © we have the following:
P(6-n)®(0 -k,n—k)=%(0 -k,n—k)P(0-k)
In fact. It follows from the relation.

P,(0)%,.(0) = ®x(0)Pi(6).

Claim 3. For any t > 0 and § € © we have
|®(6,t)P()|| < KMe™P*
In fact. Let n € Z be such that n <t <n + 1. Then

12(6,¢)P(6)]| = || (6, +n —n)P(6)]|

= ||®(8 - n,t —n)®(8,n)P(O)|| < [|2(6 - n,t —n)||Ma™
— |8(8 -yt — )| Me-n

< ||1®(6 - n,t —n)|| PP MePt < K Me#t.

Here we have used the fact that:

&(6,n) = B o(8) = Bn_1(8) - - Bo(6)
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For z € N(P(6)), t<0and n € Z with n <t <n+ 1. We shall define:
®(0,t)z := ®(0 - n,t —n)®(0,n)z (4.5)
where
&(6,7) = Pno(6) = [Bon(6)]™
and
Bo.n(6) : N(P(6)) — N(P(6 -n))
is an isomorphism.

Claim 4. Fort <0, ®(6,t): N(P(6)) — X defined by (4.5) satisfies the following: |
126, )(I ~ P(6)z|| < KMe™|z].

In fact.

[1(6, )11 — P(6)]=|| 18(8 - n, ¢ —n)||[|2(6,n)[I — P(6))|
12(8 - n,t — n)[Ma™"|lz|| = ||8(6 - n,t — n)|| Me™||z]|
19(8 - n,t — n)]|e® 2 M|z

18(0 - n,t — n)||fE " MeP ||z || K MeP

IAN 1IN A

Claim 5. For all 6 € © B*(8) = R(P(6)).
In fact. From 2.3 we have that:

B*(8) = {z € X : sup||®(0,t)z|| < oo}
£>0

If £ € R(P(8)), then P(8)z = z. So from Claim 3 we get
126, t)zll = [|2(6,£)P(0)z]| < K Me™™

Hence ®(6,-)z is bounded for ¢ > 0. This means that R(P(6)) C B*(6), V€ O.

Now we shall prove the following implication:
If z€B*(), then z € R(P(H)).
In fact. If z ¢ R(P(6)), then
8(6,t)z = 8(6,t)P(8)z + 8(6,t)(I — P(6))z

We already know that ®(4,-)P(8)z is bounded for ¢t > 0. Hence, we only need to prove
that ®(64,t)(I — P(6))x is unbounded for ¢ > 0. In fact. We have the following:

12(6 -, —n)(I — P(8- )]l < Me™®[v]|, n>0
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where:

8(6,1) = Bno(0) : N(P(8)) » N(P(6 - n))
is an isomorphism with inverse:
®(0-n,—n):= Po.(0) : N(P(8-n) - N(P(6)) (4.6)

Putting v = ®(0,n)(I — P(f)z we get:

I(Z = P(6))=|l 18(6 - m, —n)(I — P(6 - n))®(6,n)(I — P(6)z|

< Me|8(6,n)(I — P(8))z]

then
18(6,n)(I — P(8))z|| > M~*e”||(1 — P(6))z|

Since (I — P(6))z # 0, then ||®(8,n)(I — P(0))z|| — o0 as n — 0. So z & B*(8).

Claim 6.
3(8, t)R(P(6)) C R(P(6-1)), >0

le.,

8(6,t)R(I — P(8)) C R(I — P(6-1))

le.,

®(6,t)N(P(6)) C N(P(6 - 1).
In fact. ¢ € R(P(f)) <= P(0)z = z. Then ®(6,t)z is bounded for ¢t > 0 and

®(6,s)z =®(0-t,s —t)®(0,t)z, s>t>0

Puttingr =s—t > and z = ®(6,t)z. We get that &(0-¢,7)z is bounded for r > 0.
Then from Claim 5 we get that

®(0,t)z =z € R(P(6 - t)).

Claim 7.
®(6,t) : N(P(8)) = N(P)(#-t)), t>0 isone toone

In fact. For the purpose of contradiction let us suppose that there is £ # 0 such that
z € N(P(6)) and ¥(6,t)z =0
Considern >t and &(0,n)z = ®(0-t,n—t)®(d,t)z = 0. Hence
®(6,n) = no(6) : N(P(6)) —» N(P(6 - n))

1s not one to one; which is a contradiction with the uniform discrete dichotomy of .



DICHOTOMY SKEW PRODUCT SEMIFLOW 35

Claim 8.
®(0-t,s —t): ¥(6,t)N(P(6)) > N(P(6-s)) s>t>0 isonetoone

In fact. Suppose thre is y € ®(6,t)N(P()) such that y # 0 and ®(6-t,s —t)y = 0.
Let n > s and z € N(p(8)) such that ®(8,t)z = y Then

®(0,n)z = ®(6-s,n—35)P(0,s)z
= ®(f-s,n—35)®(0-t,s —t)®(0,t)z
= ®6-s,n—35)P(0-t,s—t)y=0
Hence, ®(8,n)z = 0 and z € N(P(6)) with z # 0. Which is a contradiction with the fact
that ®(6,n) : N(P(6)) — N(P(6 - n)) is an isomorphism.
Let z € X and t; < 0. If there exists a unique y € X such that ®(6 - t,, —t;)y = z we
shall define: ®(6,t,)z := y. In particular, if £ € N(P(8)) and ¢t < 0 we have the following

®(6,t)z :=®(0-n,t —n)®(f,n)z =1y
where 0<t—-n<1 and ®(4,n): N(P(6)) - N(P(6 -n)) is an isomorphims. Indeed

®(6-t,~t)y = ¥(0-t,—-t)®(0-n,t —n)®(f,n)z

(@ -n-(t—n),-t)®(0 n,t —n)®(0,n)z
®(6-n,t—n—1t)®(0,n)z

= ®(0-n,—n)®(f,n)z = z.

Claim 9. N(P(8)) = BZ(6).
In fact. From 2.3 we have that

B;(6) = {z € X : ®(6,t)z is well defined and bounded for t < 0}
If z € N(P(6)), then
®(0,t)z := $(0-n,t —n)®(6,n)[I — P(0)|z
an'd from Claim 4 we get that
18(6,t)z]| < KMe|z||, t<0

Which implies that ®(6,t)z is bounded for t < 0. Suppose that z & N(P(6)), then
putting
y=P(f)z and z=(I—P(6))z #0

we have two cases:

a)If &(6,t)z is not well defined, then =z ¢ BZ(6).
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b) If ®(6,t)z is well defined for ¢t <0, then &(6,t)z and ®(f,t)z are well defined
by using (4.5). Hence ®(6,t)y is also well defined for ¢t < 0. Therefore:

d(6,t)z = ®(6,t)z + ®(6,t)y
We shall prove that ®(6,t)y = ®(6,t)P(6)z is unbounded for ¢ < 0. In fact
Pz = &0 -n,—n)®(8,n)P(6)z
= &(8-n,—n)P(6-n)®(6,n)P(f)z, n<0
From Claim 3 we get that:
IP(6)z]| < K MeP™||@(6,n)P(6)z]|.

So
18(6,n)P(6)z|| > (KM)7'||P(8)z|e™™ — o0 as n— —oo

Since ®(6,t)(I — P(6))z is bounded, we get that ®(6,t)z is unbounded.
Thus
N(P(6)) =B_(8), forall €6

Claim 10.
®(0,t)N(P(6)) C N(P(8-1t)), for t<0
In fact. z € N(P(0)) <= =z € B;(6). Therefore, for all z € N(P(f)) and s<t<0

we have

®(6,s)z =9(0-t,s —t)®(0,1)z.
So ®(6-t,s —t)®(6,t)z is bounded for s <t. Then

®(0,t)z € B (0-t) = N(P(6-1)).

Claim 11. ‘
(6,t) : N(P(8)) - N(P(6-t)), t>0

is an isomorphism. In fact, for all z € N'(P(6)) we have

®(0,t)z = ®(0-n,t —n)®(6,n)z

Where 0<n<t<n+1. Since ¢(6,n)N(P(6)) = N(P(8-n)) and using Claim 6 we
get

®(6,t)N(P(6) = ®(6 -n,t —n)N(P(6-n)) CN(P(B-n-(t—n)))=N(P@-1)).
Now, if z € N(P(6-t))=B;(6-t), then

@6 -t,r+s)z=®(0-t-r,s)®(0-t,r)z forall r,s€ R.
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So
8(6,1)8(0 - t, 1)z = =.

fy=®(0-t,—t)z=>y € N(P(f)) and &(0,t)y =z.
Hence, from Claim 7 we get that
®(68,t) : N(P(6)) = N(P(6-1t)) is an isomorphism.
Claim 12.
®(6,t)P(0) = P(6-t)2(6,t), 6€0O, t>0.
In fact. Clearly that for t > 0 we get

8(8,t)P(8)z = P(0 - t)8(8,t)z, z € N(P(8)

8(8,t)(I — P(8))z = (I — P(8-1))8(6,t)z, z € R(P(6))

le.,

®(0,t)P(6)x = P(6-1)®(0,t)z, = € R(P(6)).
It follows that
®(6,t)P(6) = P(6-t)®(6,t), forall 6 € © andt >0

This completes the Proof of the Theorem

a
The following Theorem also gives a sufficient condition for the existence of exponential

dichotomy for skew-product semiflow.

Theorem 4.2 Let 1 = (®,0) be a skew-product semiflow on £. Assume there is an
invariant projector P and for each 6 € O there are constants kg > 1, B¢ > 0 such that

(1) ®(6,t) : N(P(0)) = N(P(6-t)), t>0 is an isomorphism with inverse:
®(0-t,—t): N(P(0-t)) - N(P(6), t>0

(2) 12(6,t)P(6)]| < kee™®*, t2>0

(3) 18(6,8)(1 - P(O)]| < koe®, ¢ <0.

If one of the following conditions holds:

(4) there ezists 1< 8§ <2 such that

12(8,1)z|| 2 é|jz|, 6€O,z€X.
(5) there ezist 0 < 8, < 6, <1 such that

billzll < [|2(6,1)z]| < &|lz]l, 6€0O, z€ X,

then ™ has an exponential dichotomy over ©.
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Proof It follows from Lemmas 3.4 and 3.5. 0
The following Theorem says that the exponential dichotomy of the skew-product semi-
flow 1s not destroyed by small perturbation.

Theorem 4.3 Suppose * = (®,0) is a skew-product semiflow on £ which has a ezponen-
tial dichotomy (with ezponent B and constant M). If

L = sup{||®(6,t)|: 0<t<1, 6€6}

and Me™® < eP | M; > M, then there exists €= ¢(83, 51, M, My, L) > 0 such that any
skew-product semiflow # = (¥, 0) on & satisfying

sup{||®(0,t) — ¥(4,t)]|: 0<t<1l, 6€0O}<e
has ezponential dichotomy with ezponent 81 and constant M,.
Proof Let #,7%:& x Z — £ be the skew-product sequences given by:
#(z,0,n) := (®n(0)z,0 - n); 7(z,0,n):=(¥a(b)z,0 n)

where

8,(0) := (8(6-n,1); Un(6) :=¥(6-n,1)

Clearly 7 has uniform discrete dichotomy with constants M and a = e™?. Consider for
t > 0 the following:

12(6,8) = ¥(O,0)| = N[B(8- kyt— k) — W(8- k,t— K)U(6, )
— ®(0-k,t—k)[¥(0,k)—¥(6,k)

for k<t<k+1, £>0.Since 0<t—k<1, weget:
12(8 - k,t — k) — ¥(8- k,t — B)]| < e,

and

126, B)l = [1W(6-(k—1),1)¥(0-(k—2),1)---¥(6,1)]
= [ Wi-1(0)¥r-2(6) -~ Lo(O)]| < (L + €)*.

Hence

12(8,2) — (6, 1)]| < (L + €)".e+ L] ¥(6, k) — 2(8, k)|

In the same way we get that

[18(8, k) — (8, k)Il =

[@(6.(k - 1),1) — W(6.(k — 1), 1)]¥(8, k — 1) — ®(8.(k — 1), 1)[¥(6, k — 1) — &(6, k — 1]
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<(L+e€)f e+ L||¥(0,k—1)— &8,k —1)|

Therefore
18(6,t) — ©(6,t)|| < (L +€)* + L(L+€&)¥ '+ + L¥]e
Then
1®(8,t)— ¥(6,t)]| < Ce, 0<t<1, €O
Then
|®(6-n,1)—¥(0-n,1)]|<Ce €O
1e.,

[ 8a(6) — Ta(B)]| < Ce, €O

Since My > M and 1> a; = e > ef = q, then for € small enough Corolary 3.6
implies that # has uniform discrete dichotomy over ©. Hence, it follows from Theorem
4.1 that @ = (¥, o) has exponential dichotomy with constant KM; and exponent f;.

O

5 Applications

In this section we shall consider a linear time dependent differential equation which gen-
erates a linear skew-product semiflow on the trivial Banach bundle £ = X x ©, where X
is a Banach space and © is a compact topological Hausdorft space.

Consider the following linear time dependent system

#(t) = A6 - t)z(t), t>0 (5.1)

where A(-t) = A+ B(6-t), A is the infinitesimal generator of the strongly continuous
semigroup {T(t)}:>0; o(0,t)=0-t isaflowon O and B(f)€ L(X), t€ R.

Lemma 5.1 If B(:) : © — L(X) is strongly continuous, then the set {|B(6)| : 6 € O}
1s bounded.

Proof Consider the following sets
H={||B(6)||:6 €0}, H(z)=/{||B(8)=|:6¢€ 0}

Since § — B(0)z is continuous and © is compact, then for each z € X we get that
H(z) is bounded. Hence, by the Uniform Boundedness Theorem we obtain that H is
bounded. O

Lemma 5.2 If B(-) : © — L(X) 1s strongly continuous and z(-) : R - X is a
continuous function, then for each § € © the mappingt — B(0 - t)z(t) is continuous.
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Proof Fix t € IR. Then

1B(8(t + h))z(t + h) — B(6 - t)z(t)|
= || B(6(t + h))[=(t + k) — =(2)] — [B(6- ( + h)) — B(8 - t)]=(2)]|
< Lijz(t + k) — 2(t)]| + [[B(8 - (t + k) — B(6 - 1)]=(2)]|
where L = sup{||B(f)||: 0 € ©} and 6-t€ O fortec R.
Therefore
|B(6(t + h))z(t + h) — B(8 - t)z(t)|| = 0, as h—0
0

To be precise in which sense the equation (5.1) generates a linear skew-product semiflow,
we shall consider the following family of integral differential equations:

a(t) = T(t)zo + [ “T(t—s)B(6-s)z(s)ds. t>0 6 €. (5.2)

Definition 5.1 (Mild Solution). A solution z(t) = z(t,8) of the equation (5.2) is
called Mild Solution of (5.1).

The proof of the following theorem can be found in Chow and Leiva [3].

Theorem 5.1 Let A be the infinitestmal generator of an strongly continuous semigroup

{T(t)}t>0 on X and B(-):© — L(X) is also strongly continvous. Then for each § € ©
and zo € X the problem

z(t) = A(6-t)r = (A+ B(6-1))z(t); z(0)=zo (5.3)
has a unique mild solution ®(6,t)zo given by
t
®(0,t)zo = T(t)zo + / T(t —s)B(0-s)®(6, s)zods. (5.4)
0
If
IT(t)I < Me™, t >0,
then
19(6,2)]| < MelWHEMX ¢ > 0 (5.5)
where

L = sup{|[BO)]|: 6 € O}
Moreover, the mapping 7 : £ x Ry — £ given by

(z,6,t) = (3(6,t)z,8 - t) (5.6)

s a linear skew-product semiflow on £ = X x O.
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Theorem 5.2 Assume Ag is the infinitesimal generator of a strongly continuous semi-

group {To(t)}e>0, the mapping § — A(f) — Ao : © — L(X) is strongly continuous and the

equation z(t) = A(0-t)z(t) has ezponential dichotomy over © with ezponent B > 0

and constant M. If0 < B; < B and M; > M, then there ezist € > 0 such that for any

mapping § — B(0) : © — L(X) strongly continuous and ||B(8)|| <€, 6 € O the equation
z(t) = (A(6 - t) + B(6-1)) z(¢)

has ezponential dichotomy over © with ezponent 5, and constant M.
Proof From Theorem 5.1 we get that the equations
5(2) = A6 - )a(t) = (o + (A0 - 1) - Ad))a(2)

and
z(t) = (A(6-t)+ B(0-t))z(t) = (Ao + (A(6 - t) — Ao + B(8-t))) z(t)

generate respectively the skew-product semiflows:

= (®,0),7F=(¥,0):EXRy - E, E=Xx0O

given by:
2(0,t)z = To(t)e + [ To(t = s)(A(@ - 3) — Ao)B(6, s)ads
¥(0, 1)z = To(t)a + [ “To(t — s)(A(8 - 3)B(8 - s) — Ao)¥(6, s)zds
Then ,
18(6, t)z|| < Mol|z|| +/0 M;||®(6, s)z||ds, 0<t<1
where

M, = sup{||To(t)||: 0<s<1}, M, = Mysup{||A(f) — Ao||: 6 € O}.

From Gronwall’s Lemma we get || ®(6,t)|| < MoeM* =L,, 0<t<1, 6€0O.
In the same way we get that ||¥(6,t)|| < L,, 0<t <1, € O. On the other hand,
we have the followig

|®(6,t)z — ¥(,t)z| < ‘/ot M,||®(6,s)z — ¥(6, s)z||ds + ‘/: MoL,||B(6 - s)z||ds
< MoLae||z|| + M, /0' 18(6, s)z — ¥ (6, 5)z|lds, 0<t<1.
Hence, from Gronwall’s Lemma we get
[12(6,t) — ¥(8,t)|| < MoLaee™®* < MoLye™?e, 0<t<1.

From Theorem 4.1 we get that the equation z(t) = (A(6-t)+ B(6-t))z(t) has expo-
nential dichotomy over © with exponent $; and constant M;. 0
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Theorem 5.3 Let —A be a sectorial operator with a sector
Sap={re€C:¢<|arg(A+a)|<m, A# —a}Cp(—A)

where p(—A) is the resolvent set of —A and a € IR, 0 < ¢ < w/2. Suppose that
the spectrum o(A) does not intersect the strip region {A € C : B < Rel < a}, where
B <A< a. If for all z € X the mapping § — B(f)z : © — L(X) is continuous and
sup{||B(0)|| : 6 € O} is small enough, then the equation

i(t) = (A + B(6- t))z(2) (5.7)

has an ezponential dichotomy over 6 € ©.

Proof It follows from Theorem 2.3 in [33] and Theorem 1.5.2 in [11] that the equation
z = Az has an exponential dichotomy over ©. Finally, we can apply Theorem 5.2 to
the perturbed equation (5.7). 0

Now, consider the following family of functional differential equations which is more
general than equation (1.6) studied in [18].

#(t)=L(6-t)z,, 0€O (5.8)

where 6 - t is a flow on the compact Hausdorff set © which depend continuously on 8
uniformly on compact interval of the time ¢; z; denotes the function s — z(t +s), —r <
s < 0. We assume that L(f) : C = C[[-r,0],R"]] = IR™ is linear and bounded operator,
and for all ¢ € C the mapping § — L(f)¢ is continuous.

Lemma 5.3 If the equation (5.8) has an ezponential dichotomy on © and 6 — M(6) €
L(C, R") is strongly continuous. If | M(0)|| is small enough, then the equation

z(t) = (L(0-t)+ M(0-t)z,, 6€O, (5.9)
has an ezponential dichotomy over O.

Proof Using the same idea of [18] we can write the equation (5.9) in the following abstract
way

2(t)=(A(6-t)+B(0-t))z2(t), 6€0, z€ Z, (5.10)
where Z = IR" x L3[—r,0] is a Hilbert space with the inner product

<4 >z=< >R + <DL,
The operators A(6) are defined on a commun domain D given by
D = Dom (A(6)) = {(v,¢) € Z: ¢ € W"*[-1,0], ¢(0)=v}, 6 €8,

by ]
A(8)(v,¢) = (L(6)$, 9) -
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and B(#) is a linear bounded operator from Z to Z given by
B(8)z = (M(6)¢,0), z=(v,¢)€ Z.

So, for all z € Z mapping § — B(6)z : © — L(Z) is continuous and ||B(6)| is small
enough. On the other hand, if we consider the operator

Ao(v,4) = (0,¢), (v,4)€ D.

The operator Ay is the infinitesimal generator of a strongly continuous semigroup {To(t)}>0
and the mapping § — A(8) — Ao : © — L(Z) is strongly continuous. Now, we finish the
proof by applying the Theorem 5.2 to the equation (5.10). 0
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Abstract. In an earlier paper [1] we characterized the dynamical spectrum for
Linear Skew-Product Semiflow in infinite dimensional Banach spaces. It was
proved the spectrum is always a closed set, but it could be empty. Also we
investigate the relation between the dynamical spectrum and the Lyapunov ex-
ponents. In this paper we shall characterize the dynamical spectrum for Linear
Skew-Product Flow 7 = (®,0) in a Banach space X. The fact that = is a flow
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1 Introduction

In an earlier paper [1] we began an investigation of the dynamical spectrum for
time dependent systems in infinite dimensional Banach spaces, using the con-
cept of skew-product semiflow. That is the case for parabolic partial differential
equations and functional differential equations; for that reason in [1] we use the
concept of negative continuation and exponential dichotomy used by Sacker-Sell
in [18]. In this definition of exponential dichotomy we assume that the unsta-
ble mainfold has finite dimension and is contained in the set of points that have
a unique negative continuation. We characterized the dynamical spectrum and
proved that the spectrum is always a closed set, but it could be empty; also,
we investigate the relation between the dynamical spectrum and the Lyapunow
exponents.

This paper is concerned with the dynamical spectrum for time dependent
linear systems whose solutions are globally defined in JR. This is the case for
hyperbolic partial differential equations, neutral functional differential equations
and abstract ordinary differential equation ¢ = A(t)z with bounded operator
A(t).

To study this problems we shall use the unified setting of a linear skew-
product flow (6,¢) : £ x R — £ (see Definition 2.1), where £ = X x 0, X is a

Banach space, O is a compact topological Hausdorft space and = is given by
m(z,0,t) = (®(6,t)z,0.t), teR, =z€X, 6€6

Many people have worked with skew-product flow, and semiflows in infinite di-
mensional Banach spaces. For example Sacker-Sell in [18] studied the existence of

exponential dichotomy for the skew-product semiflow 7 = (®,0) on £ = X x ©.
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Also, Magalhaes in [11] give some characterization of the dynamical spectrum.
A different characterization of the dynamical spectrum for skew-product flow in
infinite Banach spaces appears in R. T. Rau [13]. He associates a strongly con-
tinuous group to the skew-product flow = = (®, o) in the following way: Given a
skew-product flow 7 = (®,0) on £ = X x © we can associate a family {T'()},. g

of linear operators on the Banach space C(©, X) defined by

T(t)f(68) = ®(6-(—1),t)f(0-(-t)), Vte R (1.1)
forall € © and f € C(0O,X).
It is shown that the operator family {T'(¢)}, g given by (1.1) is a strongly
continuous group on C(©, X).
Since 7 = (®,0) is a flow (two side flow) the definition of exponential di-
chotomy is the same as in the finite dimensional case; this allows Rau in [13] to

give the following characterization of the dynamical spectrum

Theorem 1.1 (Rau [18]) Let # = (®,0) be a skew-product flow on € = X x O
and denote G the infinitesimal generator of the evolution group {T(t)}te R given

by (1.1). Then
Z(0) = lnlo(T(1))\{0}| 2 G

A similar result as Rau’s can be found in Latushki-Stepin [9]

In this paper we shall give a different characterization of the dynamical spec-
trum. Our characterization is an extension of the Sacker and Sell Theorem given
in [18]. Here we proved that the spectrum can be written as a countable union
of nonempty close disjoints intervals. we show the relation between the spectrum

and the spectral subbundles associated with the corresponding spectral interval.
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Also, this spectral decomposition can be used to study invariant manifold around
an invariant set.

In this paper we follow closely the work done by Sacker and Sell in [18] for
the finite dimensional case and the notation used for them in [19].

Since 7 is a flow (two side flow) the definitions of exponential dichotomy is
very simple and we don’t have to worry about negative continuation, like in [19],
[1] and .[11]. This allows us to prove that the spectrum is a nonempty compact
set and we can give a simple characterization of the Lyapunov exponents in terms
of the dynamical spectrum.

Finally we present some examples of Skew-Product Flow arising from hyper-

bolic partial differential equations and neutral functional differential equations.
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2 Preliminaries

2.1 Linear Skew-Product Flow

In this section we shall present some definitions, notations, and results about

Skew Product flows on Banach Bundles that we will use in the next sections.

Definition 2.1 Let £ = X x O be given where X is a fixed Banach space (state
space) and © is a compact Hausdorff Space. Assume that o(6,t) = 6.t is a
flow on O, i.e., the mapping (6,t) — 6 -t is continuous, .0 = 6, and we have
6.(s+t) =(6-s)-tfor all s,t € IR. Then we shall call a Linear Skew-Product

Flow r = (®,0) on & as a mapping
n(z,0,t) = (®(0,t)z,0 - t), Vte R.
with the following properties:

(1) (6,0) = I, the identity operator, for all 6 € 6.

(2) limy—o ®(0,t)z = z, and this limit is uniform in 6. This mean that for every
z € X and every € > 0 thereis a § = §(z,€) > 0 such that ||®(6,t)z — z|| <, for

all § € © whenever 0 <t < 6.

(3) (6,t) is a bounded linear mapping from X into X that satisfies the cocycle

identity:

B(8,s+1)=8(0-1,5)8(6,t) 6€0O; s,teR (2.1)

(4) For each t € IR the mapping of £ into X given by (z,0) — ®(6,t)z is

continuous.
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Properties (2) and (3) imply that for each (z,6) € £ the solution operator t —

®(6,t)z is continuous for ¢t € IR. Indeed one has
[18(8,t + h)z — &(6,2)z|| = ||[8(8 - ¢, k) — 1]2(6, t)z||

which goes to zero as h — 0. The cocycle identity (2.1) implies that ®(6,t) is an

isomorphism with inverse
®'(0,t) =d(0-t,—t) Vte R

Proposition 2.1 Let 7 = (®,0) be a linear skew-product flow on €. Then there

ezist constants M > 1, a > 0 such that
18(6,1)]| < Me*¥l, 6@, teR. (2.2)
Proof First we claim that there is a § > 0 such that
M = sup{[|®(6,t)|| : 6 € ©, —6<t<é} <00

For the purpose of contradiction. Let us assume that there are sequences 6,, €

O,t, € IR such that t, — 0 and ||®(6,,t,)|| > n.

The Banach-Steinhaus Theorem (Uniform Boundedness Principle) implies

that there is € X such that
{12(6a, tn)al] : n € IV}
is unbounded. This contradicts the fact that
%1_{% ®(6,t)z ==z

unifomly for 8 € ©. Therefore M < co. On the other hand we have that ¢(6,0) =
I,so M > 1.
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Now fix t € IR. Assume that ¢t > 0 (a similar argument will take care of the case
t <0). Let m be an integer satisfying m <t/6§ <m+1 <= 6, <t <mb+ 6.

Then for any 6 € © one has
188, 2)Il = [[8(8,¢ — 6m + 6m)|| = [|8(8.6,( — ém) + §(m — 1))&(6, )|
Now putting:
o=06, 6,=65-6, 6,=6,-6,---,0pn =60p_1-6
we get the following:
|12(6,t)]| = ||2(6m,t — §m)®(Om-1,0)...2(60,6)||

< M™H = M.M™ < M.MY°.
If we put
a=1/61n(M)
then

186, 2)]] < Me**

2.2 Projectors and Subbundles

A Banach bundle £ with fiber X over a base space © with projection P is denoted
by (£,X,0,P),or £ for short, and is defined as follows:

(1) X is a fixed Banach space and 6 is a compact Hausdorff space.
(2) The mapping P : £ — O is a continuous mapping.

(3) For each § € ©,P~*(6) = £(f) is a Banach space, which is referred to as the

fiber over 6.
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(4) For each 6 € O, there is an open neighborhood U of § in © and a homeomor-

phism

7 : P Y(U) - X x U such that for each N € U, P"}(N) is a mapped onto
X x{N} and 7: PY(N) — X x {N} is a linear isomorphism.

(5) The norms || - || = || - ||¢ on the fiber P~*(6) vary continuously in 6.

Oae can use the local coordinate notation (z,6) to denote a typical point in
a Banach bundle £. By this we mean that (z,0) € £. This is a shortened way to
refer to property (4) above.

For any subset F C £ we define the fiber:
F(6) := {z € X : (z,0) € F}
£(6) := X x {6}
If U C O, then we shall define the following set

F(U) := Usev F(0)

& ={(z,0) e £:z2 =0}
& 1s called the zero fiber.
A mapping P : £ — £ is said to be a projection if P is continuous and has

the form P(z,0) = (P(6),6) where P(6) is a bounded linear projection on the

fiber £(0). For any projector P we define the range and the null space by
R =R(P)={(z,0) € £: P(§)z = z}

and

N = N(P) = {(z,0) € £: P(6)z = 0}.
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Since P is continuous, this means that the fibers R(8) and N (6) vary continuously
in §. This also means that P() varies continuous in the operator norm. The

following result can be found in Sacker- Sell [18].

Lemma 2.1 Let P be a projector on £. Then R and N are closed in £, and one

has
R()NN(6) = {0}, R(O)+N(6)=¢E
for all 6§ € ©.
Definition 2.2 A subset v is said to be a subbundle of £ if there is a projector
P on £ with the property that R(P) =V
In this case W = N(P) is a Complementary subbundle, i.e., £ =V + W as

a Whitney Sum .

Lemma 2.2 Let V C £ with the properties:

(A)V is closed.

(B) V(8) is a linear subspace of £() for all § € O.
(C) codim V() is finite for all § € O.

(D) codim V(8) is locally constamt on O.

Then V is a subbundle of £.

Proof See [18].
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2.3 Stable, Unstable and the Initial Bounded Sets

Let # = (®,0) be a given linear skew-product flow defined on £ = X x ©. For
A € R we define the shifted flow as follows:

s = (®x,0), ®r(6,t) = €eMP(4,t) for te R, 6 € O.

By, ={(z,0)€ E: .suptemue"“@(ﬁ,t)xn < oo}
Sy ={(z,8) € € : ||e™®(6,t)z| = 0, t — +oo}

Uy ={(=z,0) € € “e_'\‘q)(o,t)x" —0, t— —oo}

The set U, is the unstable set, S, is the stable set, and B, is the initial

bounded set corresponding to my. If A = 0 we shall denote B = By, U =
Uy and S = S,.

We are interested in knowing when Sy and U, are complementary invariant

subbundles of £. The answer of this quation can be formulated in terms of

dichotomies.

Definition 2.3 A project P on £ is said to be invariant if we have

P(6.t)®(6,t) = (6,t)P(F), te R, €O (2.3)

which is equivalent to:

P(6.t) = ®(8,t)P(6)®1(8,t), te R, 6 €O (2.4)
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Definition 2.4 We shall say that a linear skew-product flow 7 = (®,0) on £ has
an exponential dichotomy (ED) over an invariant set O, were @ C O, if there is

an invariant Projector P on £ and constants £ > 1, [ > 0 such that

|2(6,t)P(6)(8,s)|| < ke Pt=2),  s<t (2.5)

18(6,¢)[I — P(8)]®72(6,s)|| < kePt=), s>t (2.6)
for all § € ©

Remark 2.1

(1) If © = {6}, then E.D corresponds to the usual concept of dichotomy
(2) If © = O, then E.D over O is equivalent to the splitting of £.
(3) P(8) varies continuously over 6.

(4) k,B depend of 0.

Proposition 2.2 If 7 is a linear skew-product flow on £ = X x © admits an
ezponential dichotony over O, then one has that the initial bounded set B = &

and the correspondent Projector P is such that:
R(P) = S(8), N(P)=U(®)

£=R(P)BN(P) =S5(6)pU(®)

(The whitney sum of two bundles)

Proof Let P be the correspondent Projector. Consider (z,6) € B and set

y=P()z, z=(I-P(f))z
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Then we get the following;:

|®(6,t)]| < N, Vie R,

and
y = P(8)®1(8,t)®(0,t)z = @(G,O)P(G)q)_l (6,t)z

Therefore, from (2.5) we get:
lyll < ke® N, t<0= |y| =0.

z=9(6,0)[I — P(G)]@’l(ﬁ,t)q)(ﬂ,t)z
so
]| £ ke“B'N, te R=|z|=0
Hence

z=P@)z+[I-PO)z=y+2=0

It is easy to prove that :

R(P)C S N(P)CU

Now, since &£ = R(P)+ N(P), then S =R(P), U=N(P).

3 The Dynamical Spectrum

Let © be an invariant subset of © under the flow o. Then the resolvent p(O)

of © under 7 is defined as follows:

p(8) := {) € R : 7 admits and exponential dichotomy over 0}.
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The spectrum £(0) of © under 7 is defined as follows
£(0) = R\ p(0)
Our main results are the following Theorems:

Theorem 3.1 Let # = (®,0) be a skew-product flow on £ = X x © and O a

compact connected invariant subset of ©. Then the following statements are valid:

(A) There is a > 0 such that
18(6,t)|| < Me*!, Voc O and te R,

and Z£(0)#0, Z(0)C [-a,aq|

(B) For each set {do < Ay < -++ < A} C p(0©) with Ao < —a and a < A\, such
that £(0) N (M, Ai) # ¢ we get that

Vi:=Vi(0)=5,(0), i=1,2,---,m

are invariant subbundles of £(0).

(C) Let 7 be the restriction of m to V; and Z.'((:)) the spectrum of (V;, ') over
O. Then one has that

E.-((:)) = 2((:)) N(Xi-1y Xi), 1=1,2,---
(D) £(0) =T(O)N(Xi-, X)), 1=1,2,---,m
(E) £(0) = UZ, £:(O)
(F) Vi(©)NV;(0) = &(0), i#]j

(G) £(0) = V1(0) + Va(©) + -+ + Vi(©) (Whitney sum)
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In order to get more information about the spectrum we shall put some restriction

on the unstable manifold Uy for some A € p(0). Also we will need the following

notation:

For A € p(©) we shall define:
22(0) := £(0)N (-0, ) (3.1)

Theorem 3.2 Assume that dim£(Q) = o0, X € p(@), a > 0 is as in part (A)

of Theorem 3.1. Then the following statements are valid :

(A) If dimUs =n()) < oo, then A> —a

(B) If dimSy =m(}\) < oo, then A<a

(C)If A>—a and Uy # &(O), then A <a

(D) If A<a and d.imSA £ £(0), then A> —a

(E) If dimUy — n(—a) < oo, as X — —at
then

—a € %(0) and dimUy =n(A) <oo VA€ [—a+ o0)Np(B)

(F) If dimSy — m(a) < o0, as A —a?
then

a€ £(0) and dimS, =m()) VA€ (—o0,a] N p(O)

(G) If 1< dimUy, =n(Ao) < 00, then Ao € [—a,a] and

£(6) = T2y(8) U ((los, b]) (3.2)

=1
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m < dimiy, = n(Ao)
Moreover:

(H) £3,(0) = [a,20) N £(6)

(1) If £(6) C [Ao,a] = Z(0) = U, [as, bi)-

(7) E(6) = 53, (0) + Vi(O) + ... + Vm(0),

where
ViO)=Up,_1 NSy, 1=1,2,...,m;
and
Qo <A <...<Am} Cp(©)
with

a<Am, (M1, X)) NI(O) # ¢.
3.1 Lemmas

Here we shall derive a number of properties of the spectrum and the resolvent set

which will be used in the proof of the main theorems.

Lemma 3.1 Let © be a compact invariant set in © and A € IR. Then the fol-

lowing statements are valid:

(A) If || @x(6,t)|| — O ast — +oco for each 6 € O, then X € p(©), T(O) C
(—o0,1), and 5,.(0) = £(O) for all p > .

(B) If ||®x(6,t)|| — 0 as t — —oo for each 6 € O, then X € p(0), E((:)) C
(A, +o0),

and U,(0) = £(B) for all p < A.
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Proof We shall prove (A). The proof of (B) is similar. For each § € O, the is
T(6) > 0 such that ||®.(6,t)]| < &, t > T(6).

29
Consider z € X fixed with ||z|| = 1. By the continuity of ®,(6,t)z with
respect to § there exist a neighborhood N,(6) of 8 such that ||®5(8, T(8))z|| < %

for all § € N.(6). Then by the compactness of § we have the following:
© CUZN:(6), T(61) <T(6;)< - <T(6m)

We shall put T; = T(6;), J=1,2,---m.

We claim the following:
k = sup{||®x(6,1)]|: 6 € O, 0<t<Tn} < co.

In fact. Assume that K = co. Then there are sequences {6,} C O, {t.} C
[0, T\n] such that

|22(6n),tal| >n, n=1,2,3....

Since O and [0, T,,] are compact sets we can assume that {6,} converges to 6, € ©

and {t,} converge to t* € [0, T;,). Then by Banach-Steinhaus Theorem there must

be an element zo € X so that the set:
{122(6n, tn)zo)l| : 2 = 1,2,3,...}
is unbounded. On the other hand the definition of skew-product flow implies that
Lim {[@(6n, tn)zol| = [[8(bo, " )zol|

Which is a contradiction.

Now fixt > 0 and let § € ©. Then 8 € N,(6;,) for some J; and ||®,(0, Tj, )z|| <

(3)*. In the same way 6 - t; € N.(6;,) for some J, and
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1
122(6, T + T )|l = 1186 - £, T5) (8, T )zl < (5)*
Now continue this process until one has

1
T=T;+ - +T; <t<7+ Ti(1+1) and ||®a(6,t)x| < (5)1
Since IT3 <7<t and 0<t—7 < T, we get the following
' 1 o
|22(6, t)z|| = ||®a(8.7,t — 7)®2(8, T)z|| < k(i)l < lc(i)‘/T1 = ke™™

where & = —7-In(3) > 0.

Therefore we have gotten the following

|82(6,t)z|| < ke™®t, 6 €6, t>0.
Since k and a do not depends of z we get that

182(8,2)|| < ke™t, €6, t>0.

From here we get that the skew-product flow s = (®,0) has ED over O, with

projections P(8) = I, ei., A € p(@) On the other hand, if x4 > ), then
18,6, )| = €O X|@3(6, )] < ke, 6€ 6, t20.
Therefore,
4 € p(0) and Sx(8) = 5.(6) = £(O)

0

Lemma 3.2 Let © be a compact invariant set in ©. Then the resolvent p((:)) is

open. Moreover
if A€ p(©), then Sy=S8, and Uy =U,

for all p in a neighborhood of ).
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Proof Fix A € p(@) Then by definition 7, admits an exponential dichotomy

over O.

Hence there exists an invariant Projector P : £ — £ and positive constants

k and 3 such that
|@2(6,)P(8)®51(8, s)|| < ke™Pt-9) s <1,

19x(8,8)[ — P(8)1837(8,5)|| < ke®t=?), s > .
Claim. If [|A — p|| < a where & = 3/2, then
(a) [12u(8,t)P(6)27(6,5)I| < ke (=2), t>s
(b) 12u(8,t)[I — P(6)]2;(8,s) < ke, s > 1.
In fact:
,(8,t)P(0)®51(6,s) = €X1N=)5,(4, 1) P(6)@5(6, s)

Therefore

18,.(8,t)P(8)8,1 (8, s)|| < kelr=r)t=2) Blt=2) = 5 < 4
From the fact that —3/2 < A — g < /2 we get
12.(6,t)P(0)71(6,s)]| < ke™*=), s >¢.
In the same way, we get that
12u(6, )1 — P(6)]27'(6,5)| < ke, s > .

Since the exponential dichotomies of m), =, involve the same projector P we

have that

S5x(0) and Ux(O) =U,(O) for ||A—pl < o
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Lemma 3.3 Let © be a compact invariant set in ©. Then the spectrum (0)
is compact. More specifically, there ezists an a > 0 such that, if A > a, then

A€ p(©), and Sy = £ and if X < —a then X € p(O) and Uy = £.

Proof Because of Lemma 3.2 we need only to prove that $(0) is bounded.

Thanks to the Proposition 2.1 we get £ > 1 and a > 0 such that
@6, 1) < et 66, te R
Then if A > a we get
@2(6,1)]| < kel>™* 50, as t— 40
For all 6 € ©. Therefore, by Lemma 3.1 one has that
(a,00) C p(©) & £(8) C (—o0,a]

Similarly, if A < —a one has ||®x(6,t)]| — 0 as t —» —oo for all § € O. Conse-

quently
(—o0,—a) C p(©) & T(O) C [—a, o)

Hence %(0) C [~a,ad].

Lemma 3.4 Let O be a nonempty set in © and assume that dim€ > 1. Then

the spectrum () is nonempty.
Proof Pick 0, € © and set My = H(6,) where

H(6o) = cl{fo.t : t € R}
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Then M is a compact invariant set and clearly £(M,) C )3(@) It will be sufficient
to show that ¥(My) is noempty. From Proposition 2.1, we have k > 1 and a > 0
such that

18(6,2)]| < ke, 6 € My, te€ R.
By Lemma 3.1 we get the following :
(2) If X > a, then X € p(My), Sx(Mo) = E(My) and Ur(Mo) = Eo( Mo).
(b) If A < —a, then A € p(Mo), Ur(Mo) = E(Mo) and Sx(Mo) = Eo( Mo).
Therefore £(My) C [—a,a].
Next define
Ao =inf{A € p(Mp) : Sx(Mo) = E(Mo)}
Then —a < A < a.
For the purpose of contradiction, let us assume that Ag € p(My). Then there
are two cases to consider:
(1) Sa(Mo) = £(Mo)
(i1) 8x(Mo) # £(Mo).

For the case (i) the Lemma 3.2 implies that Sy(Mo) = E(Mp) for A in a neigh-

borhood of Ag, which contradicts the definition of A,.

For the case (ii) one must have Uy, (M) # E(Mp). From Proposition 2.2 we
get that

g(@) = LI,\O(G) + S,\O(H), Vo € M,.
Then by using Lemma 3.2 one again, we have Ux(Mo) # &(M,) in a neigh-

borhood of Ao. This contradicts the fact that Ux(Mo) = E(Mp) for A > Ag close
enough to Ag. Therefore A\g € L(Mp).
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0

Lemma 3.5 Let O be a compact invariant set in ©. Consider Ay, A, € p(0) with
A1 < A,
If  8,(0) =58),(0) and Uy (0)=U(0)
then
[A1,22] € (@) and Sx(0) = 851, (0), U(O) =Uy,(O)

for all X € A, A2).

Proof In the same way as the proof of Lemma 8 in [17].

The following Propositions are easy to prove.
Proposition 3.1 Let A,B and C be subspaces of X. If C C A then
AN(B+C)=(ANnB)+(ANC)
Proposition 3.2 If \;,); € p(0©) and ), < Ay, then
E(0) = Uy, (0) N 51, (0) + Un, (0) + 51, (6) (3.3)

Proof By simplicity we shall use the following notation: Sy := S,\(é) and Y :=

a

U(O).
It is easy to prove the following property:
I M <A=8, CSy, and U, CTU,, (3.4)
From Proposition 2.2 we already know that

g(é) = uk.' + SA,-, = 1,2
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Therefore, from Proposition 3.1 we get

U,\l = L{AL n (U,\2 + SA,) = UA, +UA1 n 'Sh

and
SA, = SA, N (S,\1 +UA1) = SA; -}-u,\1 nS,\z.

Then by using (3.2) we get that

E(O) =Un, + S, = U, + S, +Ur, NSy,

a

Lemma 3.6 Let © be a compact invariant set in © and M\, ), € p(©) with
AL < Aa.

Then the following statements are equivalent:
(A) There is a p € (M, A2) N Z(O)
(B) Ur,(0) N S5, (0) # &(O).
Moreover, F = Uy, (©) N Uy, () is an invariant subbundle of £
Proof (A) = (B)
From Proposition 3.2 we have the following
E(©) = Us,(0) N 8x,(0) + Un, (0) + 5x,(6).
If Uy, NSy, =&, then we get
£ =Upy(0) + 85,(0) = Un,(0) + 55,(0) = Uy, (O) + 5,0)

Since Uy,(0©) CUy,(0) and S5,,(0) C 51,(6)
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then
53, (0) = 5,,(0) and Uy (0) = Uy, (0)
Now we can apply Lemma 3.5, it means that
Un,(©) =Un() and 5),(0) = 5x(6)
for X € [A, A2) C p(®). Therefore (Ay, A2) N £(O) = @ which contradicts (A)
(B) = (A). Define
| p:=inf{) € p(0) : calS»(0) = 5»,(9)}.
Then M, < g < A, and p € £(O).
In fact. Lemma 3.2 implies that u < ;.

For the purpose of contradiction, let us assume that p € p(0). Then there
exists a neighborhood of p such that for all A in that neighborhood SA(0) =
S,.(0). Hence, p € ©(0).

Assume that g < ;. Then we get
Uu(©) C 53, (©) C 8x,(6).

Then applying Lemma 3.2 and the definition of u we get that Sy, (0) = S»,(0).
From (B) we have that Sx,(0) NUx,(0) # &(O). So Uy, (0) N Sy, (O) # £(O).
Which is a contradiction with the fact that A, € p((:)) Thus g € (A1, A2)

Finally, since both Uy, (@) and S,(®) are invariant subbundles of £(), it
follows that

F =Uy(0)N 5, (6)

is also invariant subbundle.
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Lemma 3.7 Let O be a compact invariant set in © and let A\, A, be chosen so

(A1, 22) US(O) # . Let

F :=Uy(0) N 5, (0)

and 7 the restriction of = to F. Let $(0) := £(F) denote the spectrum of (F,#)
over ©. Then

3(0) = Z(0) N (A, A2).-

Proof We shall give the proof in three steps.

Step 1. Consider ) € p(®) and define
F.(A):=FNSr\(0) and F,()) := FNULNO).
Then F,(A) and Fy()) are invariant subbundles and
F = F,(A) + Fu(A)
In fact, suppose that A < A,. Then
5x(0) € 53,(0) and Uy, () C Ux(O)

From now on we shall omit the argument O if it is neccesary, in order to simplify

the computation. So
f,()) =FNS, :L(,\1 ﬂS,\, NSy = goﬂS,\, = Fo

and

.7-}(A)=.7~'ﬂu,\=u,\, ﬂS,\,ﬂu,\ = U, ﬂS,\.‘. = F

Hence F = F,(A) + Fu(A).
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Similarly, if A > A,, then
Fo(AND)=F and F.,A)=5F

For all A € [A;, A2] we shall use Proposition 3.2 and the fact that £ = Uy, + Sy, =

Uy, + S»,. So we have:

u)u = u'\l n (ukz o SA:) = u)‘l +F
Uy, = UNU+S) = U+ F.(N)
Uy, = u,\ﬂ(U)\2 +S,\,) = UA: +'7:u(A)

Therefore
Uy, =Un, + F =Un, + Fu(X) + Fu(A)

Since Fu(A)+ Fo(A) C F, then F=F,(A)+ F())

Step 2. p(©) C 4(0) = R\ £(0). In fact, if A € p(O), then there is a projector
P : £(®) — £(®) and positive constants k and 4 such that

R(P)=5)(0), N(P)=Ux(0O)

and

12(68,t)P(6)25(6, s)z|| < klizlle™®*~), t25, 6€6
122(6,t)(1 — P(6))25(6,5)z|| < kllz[|’“), t<s, 6€0©

If P is the restiction of P to F, then
R(P)=F,(2), N(P)=Fu)), F=RP)+N(P)
Therefore, by restricting the above inequalities to all (z,8) € F we obtain
1©2(6,8)P(8)@5(6,5)zl < kllz[le™®=*),  t>s

12(6,8)(1 — P(6))25(8, )zl < Ell=[| ), t<s
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Thus #, admits an exponential dichotomy over ©, i.e., A € 5(©). So p(0) C p(0)

and therefore 3(©) C £(0). This completes the step 1.

Since F C S3,(0©), then
||<i>,\,(9,t):c]| —0 a t—oo0

for all (z,0) € F uniformly in z. Hence, applying Lemma 3.1 we obtain that
3(0) C (—00,);) and F,(A) = F, X > A,. In the same way we obtain F C
Uy, (©). This implies that

185,(0,8)] =0, as t - —oco

Using Lemma 3.1 again, we get that
$(0) C (A, ) and F, = F. Then

£(0) C (M, %) N E(6)

In order to prove the opposite inclusion, it is sufficient to show that: if X €

A(©)N (M1, 22), then X € p(). In fact, suppose that
p(©) N (A1, 22) C p(©)
which is equivalent to :
p(0) C (h(0))° U (=00, M1] U [A;,00) & 5(O) C £(O) U (—00, 1] U Az, 0).
On the other hand, we already know that $(0) C (A, A;). Therefore,
2(0)N (A, A2) C B(6).

Step 3. 5(0)N (A1, A2) C p(©). In fact, if A € 3(©) N (A, A2), then there is a

projector Q : ¥ — F and positive contants k and  such that
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12(6,)Q(8)85(6, 5)z|| < kllzl|le™=7,  t>s (3.5)

182(6,8)(T — Q(6))®3"(8, s)z|| < kjz|[e”?, t<s (3.6)
and forall§ € ©

Consider the projectors :
P,,P:£(0) — £(©) suchthat R(P,) =S8, N(P))=U,
and
R(P)=F =Uy, NSy, N(P)=U, +Sy,.
From the Proposition 3.2 we have
E =U, + Sy +Ur, NSy, = R(P) + N(P)
P, = P, + QP is a projector on £ such that
R(PA) =8y +8x, NPi)=Ur+Uy,
where S, =R(Q) and U, =N(Q).

Using (3.5) and (3.6) and the fact that A € (A1, A2), A1, A2 € p(©) one can show

that there are positive constants [ and & such that
122(8,8)Pr(6)@5(6,5)|| < le™t), t>s, 6€6

122(6,£)(1 — PA(8))232(8, )| < 1e==9, <5, 06

noindent which implies that A € p(©).
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3.2 Proof of Main Theorems

Proof of Theorem 3.1

The statement (A), (B) and (C) follow from Lemma 3.3, 3.4 and 3.6 respectively.

The statement (D) follows from Lemma 3.7.

(E) From Lemma 3.3 we have that
£(0) C [~a,a]

Therefore

2(0) =2(O)n (G(,\.-_,,,\.-)) = [_] 2(0) N (Aio1, i) = L_J %:(0).

1=1

(F) Consider : + 1 < j
Vi = uA.'—l n Sz\( = vi g SA.'J

by the monotocity of Uy we get that V; C Uy,. On the other hand we know that
UA‘- N S,\'- = 80-

(G) From Lemma 3.3 we have that:
if A>a=Aep(©), Sx(0)=EO) and Ur(O) = £E(O).
if A< —a=Xe€pO), Ur(O) = £(O) and SA\(0) = &(6).
Also we know that
£(0) = 5x,(0) + U (0)

Therefore

E(@) = U, =Ur, N (S, +U,)
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= u)o N SA1 + qu
= Vl +L(h = Vl +u,\l n (S,\2 +U,\,)
= Vl + UA,. ﬂ S,\z + uAg

= Vi+ Vo4 Uy, N (Sy, +Un,)

= Vi+Vo+Va+...4 Vn+Us,

= Vi+Vat...4Vm. (U, = E&(0))

Proof of Theorem 3.2

(A) - (F) follow easily from Lemmas 3.2 and 3.3. Proof of (G), from Lemma 3.3

we have the following:

If Xo < —a, then Uy, =€ and dimlU), = ©

If X >a, then Uy, =& and dimlUy, =0
Therefore Ao € [—a,a].

Now consider the set

{Po<A <X <...<An}Cp(6)

such that

-

a<dm, (M, A)NZ(O) # ¢

From Proposition 2.2. we get that: £(0) = 8x,(0) + Us,(©). Then let us denote

by m° the restriction of II to Uy, and £* (@) the spectrum of (Uy,, ) over ©.
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So by using Lemma 3.7 we obtain that
T2*(0) = (Ao, +00) N T(O) = (Ao,a] NE(O).

Therefore dim V; > 1, which implies that m < dim#U,,. Now we shall show that
the resolvent p(©) of (Us,, ™) consist of (k + 1) intervals where k < n(X). If
P2 (©) consists of (n(Xo) + 2) intervals :

H(Xo)-}—z

p,\o(é) = L_J (C,',d.')

So we get that
Exo(é) N (e, M) # ¢
Then
Vi=U, NSy # E(O), in (U, ™)
Therefore
dimlUy, >2ny+ny+...+ Npyy 2n+1

Which is a contradiction. Hence py,(©) consists of k + 1 intervals whith k < n.

So £,(©) is the union of k compact intervals. The remainder of the proof is

easy . O
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4 Lyapunov Exponents

In this section we shall investigate the relation between the Dynamic Spectrum

and the Lyapunov characteristic exponents.

For this purpose we shall assume that there exists Ao € p(©) such that 1<

dimu,\o < 00.

Consider {Xo < ... < Am} C p(©), such that 0 < A\, and £(0) N (Ni-1, X)) # 6.

Then from Theorem 3.2 we get:

T3 (0) = (Xo,a] N Z(6) (4.1)

£(0) = £5,(0) U (UL, [as, b) (4.2)

m < dimlUy,, Ao € [—a,d] (4.3)

E(0) =853 (0) + Vi(0) + ... 4+ Vn(6) (4.4)
Vi=8NUp, i=1,2,...,m (4.5)
If £(0)C [h,a] = X(0) = U™, [a;, bi] (4.6)

The spectral intervals [a;, b;] have been ordered so that b; < a4y, 1t =

125000501,

Let P;:£(©) — £(O) denote a projector corresponding with the descom-
position (4.4) such that Range (P;) = R(P;) = Vi and the null space being the

sum of the remain V; and S, for 7 # 1
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Then if Py : £(6) — £(O) is the projector on £ such that

R(Pxry) =8x and N(Py))=Vi+ Va4 ...+ Vn
Hence
I =P (0)+ Pi(6) + ...+ Pn(8), V€ O.

Given a point (z,6) € £, z # 0, we shall define the four Lyapunov exponents
of (z,8) as follows:

M (z,6) = Jim %m 18(6, )| (4.7)
N (2,6) = lim 71n]8(6,0)2] (4.8)
3 (2,0) = Bm %m 18(8, )z (4.9)
X (2,6) = lim %m 15(6, )z (4.10)

Theorem 4.1 (A) If (z,0) € V; where V;, is the spectral subbundle associated
with Ao and [a;, b, and = # 0, then the four Lyapunov ezponents agree and the
limits

li 1l ®(6,t)z|| = 1i 11 ®(6,t

Jim S1n[[@(6,1)e] = lim < In[[(6, el

ezist and are equal to a;.

(B) If (z,0) € Sx,, = # 0 then the two Lyapunov ezponents (4.7) - (4.8) agree

and the limits

— 1 : 1
lim —In|[®(6,t)z|| = lim —In||®(6,t)z| = Ao.
t—+oo ¢ t—+oo
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Proof The proof of (A) is similar to the prove of Theorem 3 in [ ]. In order to

prove (B) let us consider (z,6) € S), with z # 0. Then
lim [18,(6, )ol| = lim_[le=*3(9, )o]| = 0
Therefore, there is a constant M > 0 such that
In|le *t®(6,t)z|| < M, t>0

Then

1
0= lim%—ln o428, t)al] = Jim[~do+ 5 In | 2(6, tal]]

So

lim %m 18(8, )z = Ao

Definition 4.1 For all § € © we define the upper Lyapunov exponent A7 (6) and

the lower Lyapunov exponent A} (6) as follows:
AH0) := sup{Af(z,0): z€ X, z#0}
MH(0) :=inf{A(z,0): z€X, z+#0}

Theorem 4.2 The upper Lyapunov ezponent A} (0) and the lower Lyapunov ez-

ponent A\f(6) associated to § € © are given by :

— 1
XH0) = m 5 1n18(6, )] (4.11)

AH(6) = — Jim + In [2(6.(~1), 1) (4.12)
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Proof We shall denote by «(6) the right side of (4.11). We have the following
1 1 1
S in2(8, )2l < T 1n |@(6,1)] +  In o]
which implies that
— 1 =—1
lim ;ln |26, t)z|| < Jim Iln | ®(86, )|l

Hence A} (z,8) < «(8), for all z € X, z # 0; therefore A} (8) < ~(6).
In order to prove the opposite inequality we shall use the following fact: For each

€ >0 and z € X there is N, > 0 such that
126, t)z]| < Neoe®¥ @t >0
The above inequality can be writing as follows
||q,(g’t)u—(k.+(9)+c)t” < N..
Then the operators family
{ &6, t)e¥i@ar. >0}

is bounded for each z € X. It follows from Uniform Boundness Theorem that

there exists N, > 0 such that
18(8,8)e X @M < N, £>0

Hence

12(6,)|| < NePi@+a >

Therefore

%1,1 |86, t)z|| < %ln(Nc) +(A7(8) + ¢)
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So
T <1 |80, )z] < XF(0) + ¢

Hence
Y(6) < A} (6).

The proof of (4.12) is not hard to do.

35
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5 Examples

In this section we shall present some examples in which we are able to locate the

Dynamiical Spectrum.

The following example is sufficiently general to be considered here.

Example 5.1 In this example we shall consider a linear time dependent differ-
ential equation that generates a linear skew-product flow on the trivial Banach
bundle £ = X x © where X is a Banach space and O is a compact topological

Hausdorff space.

More precisely, we shall study the following linear time dependent system

#(t) = A(6-t)z(t), t€ R (5.1)

where A(f-t) = A+ B(6-t), A is the infinitesimal generator of the strongly
continuous group {T(t)},.k; o(6,t) = 6-t isaflowon © and B(f) €
L(X), te R.

Lemma 5.1 If B(:) : © — L(X) is strongly continuous, then the set {||B(0)| :
6 € ©} is bounded.

Proof Consider the following sets
H={||B(6)|[:6 €0}, H(z)={|B(0)=|:6¢c 06}

Since § — B(0)z is continuous and © is compact, then for each z € X we
get that H(z) is bounded. Hence, by the Uniform Boundedness Theorem we

obtain that H is bounded. o
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Lemma 5.2 If B(-) : © — L(X) is strongly continuous and z(-) : R — X
is a continuous function, then for each § € © the mapping t — B(0 - t)z(t) is

continuous.

Proof Fix t € IR. Then

|B(6(t + h))x(t + k) — B(6 - t)z(t)||
= [|B(6(t + h))[=(t + h) — z(t)] — [B(6.(¢ + h)) — B(6 - 1)]=(t)l|
< Lljz(t + k) — z(t)]| + [I[B(6.(t + h)) — B(8 - t)]=(t)ll

where L = sup{||B(0)|| : 6 € ©} and 6.t€Oforte R.
Therefore

1B(6(t + h))z(t + h) — B(8 - t)z(t)]| — 0, as h— 0

O

To be precise in which sense the equation (5.1) generates a linear skew-product

flow, we shall consider the following family of integral differential equations:

a(t) = T(t)s0 + | ‘Tt —s)B(6-s)a(s)ds. te R 6€0O.  (52)

Definition 5.1 A solution z(t) = z(t,0) of the equation (5.2) is called a
Mild Solution of (5.1).

Theorem 5.1 Let A be the infinitesimal generator of an strongly continuous

group {T(t)},eg on X and B(:) : © — L(X) is also strongly continuous.
Then for each 8§ € © and zo € X the problem
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z(t) = A(6-t)z = (A + B(6-t))z(t); =(0) = =zo

has a unique mild solution ®(0,t)zo given by

®(0,t)zo = T(t)zo + _/: T(t —s)B(8-s)®(0, s)zods.

If
IT)| < Me™™, te R,
then
12(8,8)|| < MMM ¢ € R
where

L = sup{||B(9)| : 6 € 6}

Moreover, the mapping 7 : £ x IR — £ given by

n(z,0,t) = (®(6,t)z,0-t)

(5.3)

(5.4)

(5.5)

(5.6)

s a linear skew-product flow on € = X x © , maybe without the condition (4) of

Definition 2.1. ~*%

The following Proposition corresponds to the part (4) of Definition 2.1

Proposition 5.1 If the flow 0(6,t) = 6-t depends continuously on 6 in compacts

intervals, then for all fized t € IR, the mapping from £ to X given by (z,0) —

®(6,t)z is continuous.
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Proposition 5.2 Let 7w = (®,0) be the linear skew-product flow defined by (5.6).
Then

(0) C [-(W + LM),W + LM]
where

L =sup{||B(8)||: 0 € ®}, [Tt <M, teR.

Example 5.2 (The perturbed wave equation). The simplest one dimensional

hyperbolic equation with a time dependent perturbation of the form

U = Ugr+0()uz;,, tER, —c0<z< 00 (5.7)
u(0,z) = w(z)

u(0,z) = us(x)

where b(-) : IR — IR is uniformly continuous and bounded function.

Let uy,u; € Ly(IR). Define:

21(t,z) = w(t,z) and 2z,(t,z) = u(t, ).

Then the equation can be rewritten as follow

0z (t,z) 02,(t,z) N

('(3t | = ; a(:c | b(t)zy(t, z) (5.8)
0z(t,z)  0Oz(t,z
ot B Oz (59)

Hence, letting 2(t, z) denote the column vector with components z,(t, z), z5(t, z)

, we can write the equations (5.8) and (5.9) as follow

0z(t,z)
—g— = Az(t,z) + B(t)z(t, ) (5.10)
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where

0o <
- oz =
A_{% ; } B(t)=[0 b¢) |
Therefore the operator A is now defined on the class of functions col|z;, z7] in the
product Hilbert spaces Z = L,(IR) x Ly(IR) such that their derivatives are also

in Z and t — B(t) € L(Z) is a uniformly continuous and bounded function.

It is well known that A generates a strongly continuous contraction semigroup

{T(t)}e> C L(Z). Actually for z € D(A)
d
E[T(t)z,T(t)z] = (.

Since the domain of A is dense this means that ||T(¢)z|| = ||z|| for every z € Z or
T(t) is an "isometry”. We have actually a group; T'(t) has bounded inverse for

every t. Either by working with Fourier transforms (or formally taking e4t ) it

can be verified that

a(zt)tn(z—t) | nlett)-sn(z=t)
T(t)z(z) = (z+)} z2(z 1) (z+8)2 21 (z=1)
z2(xz+t)+2zo(x—t + zy(z+t)—zy(z—t

2 2

The function B(-) belong to the space W of the function C : R — IR* which
are continuous and bounded, endow with the topology of the uniform convergence
on compact sets of IR. For each C € W and 7 € IR we define the 7— translation

of C as the function C, € W given by C,(t) = C(7 + t). Then we consider the
Hull of B(-) as the following set

© = Hull(B) = cl{B, : 7 € R}

where ¢l denotes the closure in the topology of W. The set © is compact in W

due to Proposition 1.1 in [1].
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We define on © the flow o(C,t) = C; = 6-t, 6 = C. Then O is invariant

under o.

Instead of concentrating on the single aquation (5.10) we consider the family

of equations

%z(t) = Az(t)+ B(8-t)z(t), 0 €O (5.11)

Here we have abused notation and written B(8-t) := o(6 - t).

Then using Theorema 5.1 we get that the mapping7: Zx O xR - 0O x Z

given by
n(z,0,t) = (®(6,t)z,0.t)
where ®(0,t) is given by

8(0,t)20 = T(t)2o + [ “T(t— $)B(8- 5)8(8, ) z0ds

is an skew-product flow on Z x ©.

Moreover, if L = sup{||B(t)|| : t € IR}, then we get that
(0) c [-L, L]
since | T(t)|| = 1.

Example 5.3 Using the same idea as in [2] we can consider the equation (5.9)
with more general perturbation function (¢, z) which is only bounded and mea-

surable depending on ¢,z in. In fact. Consider the equation

Ug = Uz + b(t,z)u,, tER, —00<z <00 (5.12)
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u(0,z) = wu(z)

u(0,z) = wuy(z)

In the same way as equation (5.9) we can write equation (5.12) as follow

0z (t,z) 0Ozt ,z)

5 = 5g Tutz)n(t ) (5.13)
alz(t,x) _ azl(t,:z:)
ot - oz (5.14)

Hence, letting 2(t, z) denote the column vector with components 2,(t, z), z5(t, =)

, we can write the equations (5.13) and (5.14) as follow

0z(t,z)
ot

= Az(t,z) + B(t)z(t,z) (5.15)

where

8z

0 &
A= [ s ] B(t)z(z) = [ 0 b(t,z)z(z) |
Therefore the operator A is now defined on the class of functions col[z;, 2;] in the

product Hilbert spaces Z = Ly(IR) x L,(IR) such that their derivatives are also

in Z and the function B(¢,z) = [ 0 b(t,z) ] = b(t,z) belong to the space
L =1=(R*) = {b: R* - IR* : b(-,-) is measurable and bounded almost everywhere}
with the essential supremum norm, i.e.,
llbllo = ess.sup{||5(¢, )|l : ¢, = € IR}
For R > 0 we consider

Bp = {b(,") € L : |[jbllo < R}
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So, Br denote the close ball in L™ of radiu R. It is basic fact that the set Bp
endowed with the weak* topology of L™ is a compact metrizable topological space
(Interesting, the whole space L* with the weak* topology is not metrizable).

Since L} = Lo, then a sequence {f,} converges to f € Lo if and only if, for

every g € L, one has:

< furf >o< f,9> < [ fugdu— [ fodu, as n— oo

where < -,- > 1s the duality between L., and L;.

Moreover, the translation mapping o(-,-) : Rg X IR — Bg given by
U(b,t) = bg = b(t + °y ‘),

is continuous in this topoly and the mapping o is a flow on Br. Then we shall

consider the Hull of b as the following set:

© = Hull(d) = cl{b,: t€ R} C Bg
where cl denotes the closure in the topology of Bg. Clearly the set © is compact
in Bpg.
We define on © the flow o(b,t) =b, =6-t, 6 =b. Then O is invariant under o.

Instead of concentrating on the single aquation (5.15) we consider the family of

equations

St)=Az(t) + BO-0)=(), 6O (5.16)
Here we have abused notation and written B(6-t) := o(6 - t).
Then using Theorema 5.1 we get that the mappingn: ZxO xR —> 0O x 2
given by

n(z,0,t) = (®(6,t)z,6.t)
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where ®(6,1) is given by
t .
8(8,1)z0 = T(t)zo + / T(t — s)B(6 - 5)8(6, s)z0ds
0

is an skew-product flow on Z x O.

Moreover, if L = ||b(t, z)||c0, then we get that

(©) C [-L, L]

since || T'(¢)|| = 1.

Example 5.4 Linear skew-product flow defined by a Linear Neutral Functional
Differential Equation.

For a fixed » > 0, the space of continuous functions g : [-r,0] — IR with the
usual uniform norm is denoted by C = C([-r, 0], R).

Then we shall consider the folling Linear Neutral Functional differential Equa-

tion (LNFDE)

d

E[z(t) —cz(t —r)] = bz(t — r) + a(t)z(t) (5.17)

where ¢,b € R and a: IR — IR is a uniformly continuous and bounded function.

The equation (5.17) can be written as follow

d
E[Dm(t)] = Lz, + f(t,x¢) (5.18)
where z,(0) = z(t +6), for —r < 6 >0, D¢ = ¢0) — cp(-7r), L¢ =
bp(—r) and f(t,2.) = a(t)z(t).
From Theorem 7.2 in [3] we have that for each ¢ € C there is a unique solution

z(t, ¢,a) of (5.18) defined on IR which satisfies the initial condition zo = ¢.
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Moreover, if we consider the equation

d
= [Da(t)] = Lz, (a=0) (5.19)

and the corresponding solution map

T(t):C—C, T(t)p==z(,¢), t€ R,

then from Theorem 7.4 of [3] we get that the solutions of (5.18) are given by the

following variational constant formula
2(t, 4,0) = T()4(0) + [ " X(t — s)a(s)z(s, ¢, a)ds, (5.20)
where X(t) is the solution of the equation
X(t)—cX(t—r)=bX(t—71)

with the initial condition X(¢) =0, t <0, X(0) = 1. From Theroem 7.6 and
corollary 7.2 in [3] we get the following: If ap = sup{Re) : A(1 —ce™") = be "},

then for any o > o there is k = k(a) such that
IT@)| < ke*"||g]| and |X(2)| < ke*", Vte R (5.21)

where ||¢|| = sup_r<.<o|d(s)|-

The function a(-) belong to the space W of the functions g : R — IR which
are continuous and bounded, endow with the topology of the uniform convergence
on compact sets of IR. For each ¢ € W and 7 € IR we define the 7— translation

of g as the function g, € W given by g,(t) = g(7 +t). Then we consider the Hull

of a(-) as the following set
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© = Hull(a) = cl{a, : 7 € R}

where cl denotes the closure in the topology of W. The set © is compact in W
and invariant under the flow o(g,t) = g. = 6 -t, 6 = g, due to Proposition 1.1
in [1].

Instead of concentrating on the single aquation (5.18) we consider the family

of equations

2 [D2(t)] = Lac +a(0 - )a(t), 6 € O (5-22)

here we have abused notation and written a(6 - t) := o(6 - t).

Then we get that the mapping 7 : C x © x R — C x O given by

7(4,6,t) = (8(6,1)4,6 - 1)

where ®(6,t)¢ is given by
8(6,1)¢ = T(t)¢ + /0 " X sa(s)(6, 5)dds

is an skew-product flow on C x ©.

Moreover, if L = sup{||a(t)|| : t € IR}, then from (5.21) we get that

18(8,2)|| < kelet* M vt ¢ R and £(O) C [~(a + kL), o + kL]
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V.S. Afraimovich and S-N. Chow, Synchronizations in lattices of nonlinear Duffing’s

oscillators

Abstract: In this work we prove the possibility of stochastic synchronization in two-
dimensional lattice of coupled Duffing’s oscillators with external periodic forces. The
synchronization occurs provided coupling is dissipative and the coeflicients of coupling
is greater than some critical values. These values depend on parameters of individual

subsystems and on the size of the lattice.

J.K. Hale and W. Huang, Periodic solutions of singularly perturbed delay equations

Abstract: We consider the singularly perturbed delay differential system

ex(t) = fa(z(t),y(t))

(1.1)
y(t) = ga(z(t),y(t),z(t = 1),y(t - 1)),

where € > 0, A are small real parameters, z € R™, y € IR" are vectors and the functions
iz, y) = f(z,y,A) and gr(z,y,2z,w) = ¢g(z,y, 2z, w, A) are smooth vector valued functions
which vanish for all variables equal to zero.

In many situations, for fixed A > 0, there is an ¢(A) > 0 such that (1.1) undergoes a
generic Hopf bifurcation at (A, €, z,y) = (A, €(A),0,0) to a periodic solution (Z},,97,). Let
us assume that there is a sectorial region S in a neighborhood U of (), €) = (0,0) such that
(22,97, exists for all (A,e > 0) in S. Our objective is to understand the behavior of the
profile of (Z},,9!,) as € = 0. We are not able to do this in the general context described,

but we can say something if we impose more conditions on the functions fx, gx.
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It is to be expected that the limiting profile is in some way related to the equation
obtained by putting e = 0 in (1.1). For € = 0, we suppose that the resulting equation (1.1)
defines a map on R™ x R™:

(1.2) (z,y) e R™ x R" — T(z,y) e R™ x R"

for which the origin is stable for A < 0 and unstable for A > 0. Let us also suppose
that Ty(z,y) undergoes a generic period doubling bifurcation at (z,y,A) = (0,0,0) with
the period two points being djx € R™ x R", j = 1,2. If the bifurcation is supercritical,
the period two orbit is stable and, if the bifurcation is subcritical, the period two orbit is
unstable. In the supercritical case, there is a natural stable periodic function of period two
given by the square wave (23(t),y3(t)) which alternately takes the values d;x and da) on
intervals of length one. In the subcritical case, the period two points are unstable and the
natural periodic function of period two is a pulse wave (zf(¢),y%(¢)) which is zero except
on the integers and it alternately takes the values d; 5 and dsy on the integers.

Under some conditions on the functions fy, g, the generic period doubling bifurca-
tion of Ty\(z,y) leads to a generic Hopf bifurcation in (1.1) which is supercritical (resp.
subcritical) if the period doubling bifurcation is supercritical (resp. subcritical). A natural
question is the following: Is it possible that the limiting profile of the periodic solution
(2%, 7%,) obtained through the Hopf bifurcation is either the square wave or pulse wave?

We present situations in which this is true.
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Periodic solutions of singularly perturbed delay equations
by
Jack K. Hale * and Wenzhang Huang

1. Introduction. In this paper, we consider the singularly perturbed delay differential
system
ex(t) = fa(z(t), y(t))

y(t) = gl\(.’L‘(t), y(t)a :Zt(t - 1)a y(t - 1)) ’
where € > 0, A are small real parameters, z € R™, y € IR" are vectors and the functions
fa(z,y) = f(z,y,A) and ga(z,y,2,w) = ¢g(z,y, z,w, A) are smooth vector valued functions
which vanish for all variables equal to zero.

In many situations, for fixed A > 0, there is an €(\) > 0 such that (1.1) undergoes a
generic Hopf bifurcation at (A, €,z,y) = (A, €(A),0,0) to a periodic solution (Z%,,47,). Let
us assume that there is a sectorial region S in a neighborhood U of (A, €) = (0, 0) such that
(2%, 7r,) exists for all (A,e > 0) in S. Our objective is to understand the behavior of the
profile of (Z%,,77,) as € — 0. We are not able to do this in the general context described,
but we can say something if we impose more conditions on the functions fx, gx.

It i1s to be expected that the limiting profile is in some way related to the equation
obtained by putting € = 0 in (1.1). For € = 0, we suppose that the resulting equation (1.1)
defines a map on R™ x R™:

(1.1)

(1.2) (z,y) e R™ x R" — T)\(z,y) e R™ x R"

for which the origin is stable for A < 0 and unstable for A > 0. Let us also suppose
that Th\(z,y) undergoes a generic period doubling bifurcation at (z,y,A) = (0,0,0) with
the period two points being d;x € R™ x R", j = 1,2. If the bifurcation is supercritical,
the period two orbit is stable and, if the bifurcation is subcritical, the period two orbit is
unstable. In the supercritical case, there is a natural stable periodic function of period two
given by the square wave (z3(t),y3(t)) which alternately takes the values dyx and da) on
intervals of length one. In the subcritical case, the period two points are unstable and the
natural periodic function of period two is a pulse wave (zX(t), y5(t)) which is zero except
on the integers and it alternately takes the values d;) and ds) on the integers.

Under some conditions on the functions fy,gx, the generic period doubling bifurca-
tion of T)\(z,y) leads to a generic Hopf bifurcation in (1.1) which is supercritical (resp.
subcritical) if the period doubling bifurcation is supercritical (resp. subcritical). A natural
question is the following: Is it possible that the limiting profile of the periodic solution
(£%,,7r,) obtained through the Hopf bifurcation is either the square wave or pulse wave?
We will give some situations in which this is true.

Let us mention that equations of the form (1.1) occur frequently in the applications.
The delay differential equation

(1.3) ex(t) = —z(t) + f,\(:v(t -1)).
* Partially supported by NSF and DARPA
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has often served as a model for physiological control systems [6], [14], [20] and for the
transmission of light through a ring cavity [1], [5], [12], [13]. This can be considered
as a special case of (1.1) by letting y(¢) = «(¢ — 1). Under the conditions that the map
z — fx(z) undergoes a generic supercritical periodic doubling bifurcation at (z, A) = (0, 0),
it was shown in [2] that there is a periodic solution of (1.3) which approaches the square
wave mentioned above. If the bifurcation is subcritical, it was shown in [7] that there is a
periodic solution of (1.3) which approaches a pulse wave but the pulses are larger that the
values d; 5, d2, mentioned above. The explanation for this will be given later. The limiting
behavior of large amplitude periodic solutions of (1.3) also has been investigated in [15],
[16] when the limiting profile is a square wave.
The more general equation

(1.4) (emdit'Fl)"'(eldit + Dy(t) = ha(y(t — 1)),

where each €¢; > 0 is a small parameter, also has been proposed as a model for transmission
of light through a ring cavity (see [18], [19]). Equation (1.4) is equivalent to the system

e121(t) + z1(t) = z2(t)
€m—1Zm—1() + Zm—1(t) =2n(t)
€mTm(t) + 2m(t) = ha(z1(t — 1)).

(1.5)

If we scale the ¢; as €; = eaj"l, 7=1,2,..., m, then we obtain an equivalent matrix
equation
(1.6) ex(t) + Az(t) = Afa(z(t - 1)),

where A and f are given by

[y —ag 0 0 0 7 (h/\(il?l)'
0 [e )] —Q2 0 0 h/\(xl)
A = fa(z) =
0 0 0 Um—-1 —Um-1 h/\(xl)
Lo 0 o0 0 S L ha(z1)

This also is a special case of (1.1) with y(t) = z;(¢t — 1).

Under the assumption that the map z — hy(z) undergoes a generic period doubling,
it was shown in [8] that there are periodic solutions of (1.5) resembling either a square wave
or a pulse wave depending upon whether the bifurcation was supercritical or subcritical.
For the general matrix equation (1.6) without assuming that it arises from (1.5) and under
generic conditions on the function fy in (1.6), similar results were given in [8].

The proofs of the above results exploited the properties of flows on center manifolds
for some scaled equations which will be mentioned below.
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The equation

ex(t) + Az(t) = Afa(y(t))
y(t) = galz(t — 1), y(t — 1)),

where z € R™, y € IR" are vectors, the m x m matrix A has an inverse and the functions
fa(y) and ga(z, y) are smooth vector valued functions, has been used in [12], [13] as a model
of a ring cavity containing a nonlinear dielectric medium for which part of the transmitted
light is fed back into the medium. For ¢ = 0, the map Tx(z,v) = (fa(y),9x(fr(y),y).
Under the assumption that there is a supercritical period doubling bifurcation of the map
y — gx(fa(y),y) at (y,A) = (0,0) and some other generic conditions, it was shown in [3]
that there is a periodic solution of (1.7) which is similar to the square wave for € small. The
proof of this result used functional analytic methods based on exponential dichotomies.

Our objective in this paper is to show that center manifold techniques can be applied
to discuss (1.7) when the period doubling bifurcation is either supercritical or subcritical.
The limiting profile of the corresponding periodic solutions is either a square wave or a
pulse wave. The precise statements of the results on convergence to square waves or pulse
waves for the case (1.7) are given in Section 2. Sections 3 and 4 are devoted to the proof.
The hypotheses imposed imply the existence of periodic solutions which are related to the
period two points of the map. However, that analysis does not address the important
question of the relataionship between the existence of generic period doubling of the map
and the existence and stability of a generic Hopf bifurcation. These problems are addressed
in Sections 5 and 6.

We remark that the equation (1.1) arises also in the theory of transmission lines. If the
lines are lossless and described by the telegraph equations with the boundary conditions
reflecting Kirchoft’s laws, it has been known for a long time that the flow can be described
by an equivalent set of neutral delay differential equations (see, for example, [11] for a
discussion and references). Many of these same problems also can be written in the form
(1.1). For example, in [17], the equations for a transmission line with a tunnel diode and
a lumped parallel capacitance can be written as

ez(t) = y(t) — 9(z(¢))
y(t) =a+ Ky(t —1) —z(t) — Lz(t — 1),

(1.7)

(1.8)

where (z(t),y(t)) represent the voltage and current at one end of the line, all constants are
positive and represent physical parameters. Under reasonable assumptions in the model,
the parameter ¢ can be considered to be very small. In [17], several wave forms were
observed numerically which compared reasonably well with experimental results. Some of
these wave forms were very similar to square waves.

It is natural to enquire if it is theoretically possible to prove that, for some values of
the parameters, there are periodic solutions of (1.8) which are similar to a square wave
for € > 0 small. If we try to follow the same procedure as before, we first investigate the
possibility of a supercritical period doubling bifurcation of some map. For e = 0, we must
have y(t) = g(z(t)) and thus

(1.9) z(t) + g(z(t)) = a + Kg(z(t — 1)) — Lz(t — 1).
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For a given function ¢ similar to the cubic polynomial, it is possible to show that there are
values of the parameters in the equation and a constant zg such that (1.9) defines a map
which undergoes a supercritical period doubling bifurcation near zo. With the methods
that we develop below, it should be possible to prove that there is a solution of (1.8) which
approaches as € — 0 either a square wave or a pulse wave. However, we do not discuss
this problem here.

2. A ring cavity model. In this section, we consider the ring cavity model (1.7).
We will impose some generic conditions on the functions f,g which will ensure that the
associated map for ¢ = 0 undergoes a generic period doubling at (y,A) = (0,0). We
search for periodic solutions of (1.7) of period approximately 2 and impose additional
generic conditions on f, g which will permit the reduction of the problem to a discussion of
certain periodic solutions of a two-dimensional vector field on a center manifold of specific
scaled equations. We discuss also how the conditions on f,g are related to the generic
Hopf bifurcation of periodic solutions of (1.7) for fixed € > 0 and A being the bifurcation
parameter. Since this section is devoted entirely to (1.7), we repeat some of the previous
formulas and hypotheses since some are stated in other terms.
We consider the equation

ei(t) + Az(t) = Afa(y(t))

(2.1) y(t) = gala(t — 1), y(t — 1)),

where € > 0, A are small parameters, z € R™, y € IR" are vectors, A is an m X m
constant matrix and the functions fi(y) and ga(z, y) are smooth vector valued functions.
We suppose that

(H1) A7 exists  fa(0) =0, ¢a(0,0)=0.
For € = 0, there 1s the map

(2.2) y € R" = Fa(y) = 9a(fa(v),y) € R™

We first want to impose some conditions on the functions fy, g) to ensure that Fy undergoes
a generic period doubling at (y,A\) = (0,0) and that the period two point is either stable
or of index 1; that is, has an unstable manifold of dimension 1. For notation, we let

Ax(A) = Dyf)\(()), Bl(’\) = Drg)\(0,0), B2(’\) = Dyg)\(0,0)

&3) C(N) = By (M) As(A) + By(A) = D, F(0).

We also let o(C') denote the spectrum of a square matrix C and let B, = {z € C: |z| < p}.
We assume that

—(14 X) € 6(C(A)) is a simple eigenvalue,

(H2) o(CON\ {=(1+X)} C B, with p< 1.
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We remark that the theory below could be developed for the case in which o(C(A)\ {—(1+
A)} has no eigenvalues of modulus 1, but in this case, if there is an eigenvalue with modulus
> 1, then the period two bifurcation always will be unstable, a situation that is not the
desirable one from the point of view of applications.

If (H2) is satisfied, then we can introduce a change of variables in y to obtain

—(14+XA) 0

(2.4) C(A) = 0 HO(/\) )

o(Ho(\) C By, p < 1.

If we let y = col (y1,72) € R' x R*™!, Fy = col (Fix,Far) € R' x R*™!, then we

can use (2.4) to write

Fiay) = —(1+ Ny1 + kr(N)ys + yika(Ny2 + ks(M)d + O(llv2]l® + v2 [lyzll + 1)

(25) 2 2 2 3
Far(y) = Ho(N)ya + y3 Hi(A) + y1 Hao(A) + v20(|lv2l” + villv2 |l + llvlI°)

as (y,\) — (0,0).
We assume that

(H3) Ry = ko(0)[In—1 — Ho(0)]7* H1(0) + k3(0) + k3(0) # 0,

where, for any integer k, I} denotes the identity matrix in RF. In the following, we often
omit this index if there is no reason for confusion.

Lemma 2.1. If (H1)-(H3) are satisfied, then there is a generic period two doubling
bifurcation of Fy at (y,A) = (0,0). More precisely, if RiA > 0, then there are period two
points dyx,d2x of Fx such that Fa(dix) = dax, Fa(dan) = dia, which is stable for Ry > 0
(supercritical bifurcation) and unstable for Ry < 0 (subcritical bifurcation).

The proof is a standard application of the method of Lyapunov-Schmidt and is omit-
ted.

To relate the period doubling of the map F to (2.1), we seek periodic solutons of
(2.1) with a period 2 + 2(r¢ + h)e, where ¢ is a fixed parameter (to be determined later)
which depends only upon the matrices A, A5(0), B1(0), B2(0) and h will be determined as
a function of e. If (z(t),y(t)) is such a solution of (2.1), we introduce the transformation
(originally used in [4] for a scalar equation)

(2.6) u1(t) = z(—e(ro + h)t), wua(t) = z(—€(ro + h)t+ 14 €(ro + h))
' v1(t) = y(—€(ro + h)t), wa(t) = y(—€(ro + h)t + 1+ €(ro + h))
Since z(t) and y(t) have period 2 + 2(r¢ + h)e, we see that

ug(t — 1) = z(—e(rg + h)t — 1)

(2.7) vy(t —1) = y(—e(ro + h)t — 1).

)



If we use (2.6) and (2.7) in (2.1), we deduce that

i1(t) = (ro + h)Aui(t) — (ro + h) A fa(vi(t))
(2 8) ﬁg(t) = (T() + h)Auz(t) — (To + h)Af,\(’Ug(t))
| vi(t) = gaus(t — 1), va(t - 1))
)

v2(t) = ga(us(t —1),v1(t — 1)).

This equation is now independent of € and we can consider h, A as the bifurcation param-
eters, assuming, of course, that we know rg.

It is convenient to write these equations in a more compact form by letting u = col
(u1,uz), v = col (v1,v2),

(2.9) g 4 0 Ay(0)
| 5. | 0 Bi0)
7 [31(0) 0 ]’]—1’2
_[(ro+ h)fr(v1) = roDy fA(0)v1 — kA,
- Fpa(u,v) = — [(ro o+ h)f::(v2) — roDyf:\\(o)v2 - hAu2]

_ | 9a(u2,v2) — Dzga(0,0)uz — Dyga(0,0)vs
Gh/\(u’v) - |:g,\(u1,’01) — ngA(O,O)ul - Dyg)‘(0,0)’Ul .

If we use (2.9) and (2.10), then (2.8) can be written as

u(t) = roAu(t) — ro AAgu(t) + Faa(u(t), v(t))

(2.11). h .
v(t) = Biu(t — 1) + Bav(t — 1) + Gra(u(t — 1),v(t — 1)).

The linear variational equation of (2.11) for (h,A) = (0,0) is given by

u(t) == Tofi'u,(t) = rojlfigv(t)

(2.12). . .
v(t) = Biu(t — 1) + Byo(t — 1).

The eigenvalues of (2.12) are the solutions of the characteristic equation

_ _ | #T 7“01:1 To{ix‘iz
(2.13) det A(u,ro) =0, Ap,ro) = [—Ble_“ I—Bze'”} .

Because of (2.3), (2.4) and the symmetry in (2.12), zero always is an eigenvalue. We impose
conditions on the coefficients to ensure that, for a suitable choice of rq, 0 is an eigenvalue
of multiplicity two and there are no other eigenvalues on the imaginary axis. To do this,
we need some additional notation. Let

Su1 Siz

(2.14) —B1(0)A™ A5(0) = S = [521 S22

} , —Bi(0)AT2A,(0) =W = [Wn Wm] |

Wy Wa,
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where S;j, W;; are matrices with S1; and Wi, scalars and the other matrices of obvious
dimension. We suppose that

(H4) Ro = —S2, + 2[Wy1 + S12(I + Ho(0)) ' S21] #0, S11 #0,
and that

iwIQn} o 5111& S]]éx‘ig

(H5) aet —Ble_i“’ Inn, — Bge_iw

#0 for we R\ {0}.

We make the final hypothesis that
(H6) o0(B2(0)) C B,, p<1.

Lemma 2.2. If (H4)-(H6) are satisfied and r9 = Sy, then p = 0 is an eigenvalue of
(2.12) of multiplicity two and there is a § > 0 such that the remaining eigenvalues satisfy
|Rep| > 6 > 0 and there are only a finite number of eigenvalues with positive real parts.

Theorem 2.3. Suppose that Fy(z) satisfies (2.5) and (H1)-(H6). Then there are a
neighborhood V' of zero in R™ xIR™ and a neighborhood U of (0, 0) in the (), €) plane and
a sectorial region S in U such that, if (A, €) € U, then there is a periodic solution of (2.1) in
V given by a periodic function (Zx, ¢, Ux, ) with period 27( X, €) = 2+2511e+O([e|(|A|+]e]))
as (A, €) — (0, 0) if and only if (A, €) € S. Furthermore, this solution is unique.

Of course, the sector S must belong to the set € > 0 in the (X, €) plane. We actually
will show that, if R; > 0 (the supercritical case of period doubling of the map) and
Ry > 0, then the sector S C {(A, €): € >0,A >0} and, for A = Ay > 0, fixed, the set
{e: (e, Ao) € S} is an interval Ag x (0, €9(Ag)), where

27 )\0

7 )z + O(Xo)

€o(Ao) = %(

as A\g — 0. For any e € (0,€9(\g)), the periodic solution (Zy,,(t),¥x,, ) approaches a
square wave as € — 0; that is, the periodic solution (Z, (%), ¥x,,¢) has the property that
(Zxg,e(t);Ung,e) — dix (respectively, dax) as € — 0 uniformly on compact sets of (0, 1)
(respectively, (1, 2)).

If Ry < 0 (the subcritical case of period doubling of the map) and Ry > 0, the sector
S contains points (€, A) with A both negative and positive and the periodic orbits have a
different structure as € — 0. More precisely, for A = Ao > 0, fixed, the set {€: (¢, A\g) € S}
is an interval Ag X (€9(Ag), Bo(Xo)). For A = Ay < 0, fixed, the set {e : (¢, A\g) € S}
is an interval A x (0, ag(Ag)). For any € € (0,a0(Xo)), the unique periodic solution
(Zx0,e(t),Uno, ) becomes pulse like as € — 0 in the following sense: the periodic solution
(Zx0,¢(t), Uno, e) has the property that (Zx,,e(t),¥n,,¢) — 0 as € — 0 uniformly on compact
sets of (0, 1) U (1, 2). In the pulse like solution, the pulses in the solution occur near
the integers and are opposite in direction. However, the magnitude of the pulse near the
integers exceeds the magnitude of the corresponding period two point of the map.

7



The part of the boundary of the sector S described by the curve I' = {(A,e(\)}
corresponds to a Hopf bifurcation curve. In the supercritical case, the Hopf bifurcation at
(Mo, €(Ao)) is in the direction of € < €(\o) and the periodic orbit has a unique continuation
to the interval {(Ag,€) : 0 < € < €()\g). In the subcritical case, the Hopf bifurcation is in
the direction of € > €(\¢) and the periodic orbit has a unique continuation in all of S (see
Figure 2.1).

E(A) EA)

b — - —
>

G~

D>

Ry > 0, R, >0 Ry >0, R; <0

Figure 2.1. Bifurcation Diagram in the (A, €)-plane

Lemma 2.2 will be proved in Section 3 and Theorem 2.3 in Section 4. As remarked
earlier, Sections 5 and 6 will be devoted to relating the hypotheses in Theorem 2.3 to those
that are required to obtain a generic Hopf bifurcation on the curve I'.

3. Proof of Lemma 2.2. For any integer N, Let Cny = C([-1,0]; RM). Let Qo =
{(p1,92) € Cam X Cop = 2(0) = Bio1(—1) + Bypa(—1)}. Equation (2.12) generates a
C9-semigroup S(t) on €. If A is the infinitesimal generator of S(t), then

D(A) = {(¢1,92) € Qo : (¢1,$2) € Qo,$1(0) = S114p1(0) — S11AA09(0)}
A1, 02) = (¢1,92)-

In this section, we are going to prove a stronger statement than Lemma 2.2.

Lemma 3.1. If r.(o(S5(t))) is the radius of the essential spectrum of $(t), then there is
an a > 0 such that re(a(S’Qt))) < e for all t > 0. Also, if e** is an eigenvalue of 5(t),
then u is an eigenvalue of A. Furthermore, there is a § > 0 such that 0 is an eigenvalue of
A of multiplicity two and no elements of o(A)\ {0} belongs to the set |Re u| > 6.

Proof. It is known (see [11]) that 7,(c(5(t))) < e~°!, where « is such that the eigenvalues
of By(0) have modulus < e7*. From (H6), we obtain the first statement of the theorem.
It also is known that the eigenvalues of S(t) are given by e#!, where y is an eigenvalue of
A which coincide with the solutions of (2.13). The multiplicity of an eigenvalue of Ais the
same as the multiplicity of the eigenvalues of (2.13) (see [11]). Thus, there is a § > 0 such
that, if g is an eigenvalue of A with Rey € (—$6,6), then y is purely imaginary and there
are only a finite number of eigenvalues with Rey > §. From (HS5), the only possible purely
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imaginary eigenvalue is u = 0. Therefore, we need only show that x4 = 0 is an eigenvalue
of multiplicity two. )
Using (2.3), (H2), and (2.4), it is easy to verify that a basis for N (A) is given by

1
. 0

(31) (Pl = [j;] ’ dy = l:_ee] ) dy = Aqxdy = [_Ajjejl L € R"
0

Also, a basis of N(A?) is given by ¢!, ©2, where ©? is defined by the following relations:
gl PP g

0
2, | 0d1 + d} « 1 | (I+Hy(0) 'Sn T, ok
(3.2) *(6) = [9d2 +di | dz = 5 0 , dy = Asd; + Sndl.

—(I+ Ho(0))7' Sz
We now prove that AV(A%) C ./\/'(Az).A If (¢1,02) € N(A?), then A(py,p2) € N(A?)

and there exist constants a, 8 such that A(¢1,¢2) = (¢1,¢92) = ap! + Be?. Using (3.1),
(3.2) and integrating, we deduce that there are vectors h; € R®*™, h, € R®*" such that

1 _ ., )
(,9,'(0) =h; + 9(01(1,’ + ,Bd:) + 5[39'61,‘, 1 =1, 2

Since (1, p2) € D(A), we must have

(3.3) ad; + Bd} = $1(0) = S11Alp1(0) — Azp2(0)] = S11Alhy — Azha),

= 2~ 2 A * 1
(3.4) ho = (,92(0) = Bip1(—1) + Byps(—1) = E:___IB,'[hi — pd; + (iﬂ = a)d;].
From (3.3), we have

2 1 -
(35) hl = A2h2 + S—A_l(adl + ﬂd;)

11
If we observe that dy = $2_, Bd;, d = 2, Bi(d} — d;), and substitute (3.5) into (3.4),

we have

5 % = 1 = = 1
(3.6) hy = (B1As + B2)he + S B A7 (ad, + Bd}) — Bdy — (§ﬂ + a)d,.
11

If we let hy = col (hay, hgy) € R™ x R™, use (3.6) and the definitions of d;,df, 4;, B;,7 =
1,2, we deduce that hyy; = —hge and

1 0 o
ho1 = h —_—
21 [0 —HO(O)] 21 + 51156

g 0 B 184+ a
" S—fls [(I+ Ho(O))—1521] + S—%lWe B [3,%([ +2H0(0))“1,S'21 )
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or

[ 0 } " (5%21[512(14- Ho(0))™'So1 + W] — 3)8
I+ Ho(0)| ™ adu 4 75%\522(1 + Hy(0))" 1S5 + —S%T/Vm — (I + Ho(0))™1 80 |

From (H4), this implies that 8 = 0 and, thus, fl(cpl,gﬂ) :Aagol. Since ¢! is a constant
function, this implies that A%(¢!,»?%) = 0 and (¢!, ¢?) € N(A?). This completes the proof
of Lemma 3.1.

¢

4. Proof of Theorem 2.3. Since 0 is an eigenvalue of (2.12) of multiplicity two and
the spectrum of the corresponding semigroup g(t) for ¢ > 0 intersects the unit circle
only at the point 1, there should be a center manifold of dimension two of (2.11) which
contains all of the periodic orbits. We show that such a manifold exists and we compute
explicitly the vector field on this manifold up through terms of order 3. The method of
computation is through the variation of constants formula which was developed in [9]. We
first outline the ideas behind the variation of constants formula and then give the results
of the computations without supplying the details which are rather long.

The idea is simple and consists in embedding the equation (2.8) into a neutral func-
tional differential equation for which a variation of constants formula is well known. From
the corresponding linear equation, we can determine a special decomposition of the space
Cam X Cy, which yields the variation of constants for the flow defined by (2.8). We consider
the linear equation

d

(41) aD(ut,’Ut) = L(Ut,'vt),
where
_ ©1(0) _ [ S11(Ag1(0) — AA22(0))
D(991a992) = 02(0) — E’f):lBiQQi(_l) , Llpr,02) = 0 .

Equation (4.1) defines a C°-semigroup S(t) on Com X Cap, whose infinitesimal generator
Ags is given by

D(As) = {(¢1,92) € Com X Cop : (&1,92) € Com X Cony D(¢1,92) = L(p1,92)}
AS(991’992) = ((1511(152)'

We know that z = 0 is an eigenvalue of Ag of multiplicity 2 + 2n. If ¢!, ©? are defined in
(3.1), (3.2), then we can obtain a basis of N(A%?") given by

T &)11 é12:|
|20 3
[@21 ®ag |’

where, for 6 € [—1,0],

@11(9) = [dl 9d1 + d; ], ‘ilz(e) :[SLU‘A_ld; + HdI + %idl AQQ]

(4.2) s * ~ 2
$51(0) =[dy 6dy+d3], $22(0)=[6d5+%dy Q],
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and @ is the 2n x (2n — 1) matrix given by

(4.3)
0
£ = (I 4 Ho(0))~'(I — Ho(0))™!
0

0 0

0 (I+ Ho(0))™" Ho(0)(I — Ho(0))™*
1 0

0 (I+Ho(0))™(I— Ho(0))™

(I + Ho(0))~'Ho(0)(I — Ho(0))™*

Furthermore, a basis for N([A%]*12") is given by

- [Yn U
=%,
where, for s € [0, 1],
= . C1 =~ . SCo
(4:4) U1i(s) = [cf + scl] > Tafs) = [—sc}‘ + f’;cz} ’
and
T T L~ ey
Coy = [6 —€ ], C] = CgBlA
S11
1
(45) C; = —S— [0 512(I+ Ho(O))_l 0 —512(I+ Ho(O))_l ],
11
* 1 I\ A—1 €2 A ;-2
] = —(ca—c3)BiA™ — ——B;A™".
Sn 11

If we define the bilinear form (-,-) for the neutral equation (4.1) 12 as

(1, ) =11(0)p1(0) + 2(0)[02(0) — £2_, Bippi(—1)]

0
-/ bo(€ +1)22_, Bipi(€)dE,

where ¥ = (¥1,%2) € C§,, X C3py @ = (p1,92) € Cam X Can, Cf = C([0,1]; R**), then,

with a few computations, we deduce that

= =~ | Py Pro
(46) (\Il':@) - [ 0 P22:| b]
where
) 0 &
4.7 Py = e ;
11 _éjﬁ cid} +c3dy — 2




pui 57 Su(I+H(0)™N 0 —g=Sio(I+ H(0)™!
(4.8) Py = " . R n _ ’
P21 Ry 355 ~ R
Ro
_25121 0 ]_ 0
P oy I,_1 O 0
(4.9) Py=| g ,
& 0 1 0
Rt 0 0 I,
and
1 1 1 a2
P11 = S—HCIA 1A‘2d2 + S_lzlclA 2A2d2 == §1—16231A ldl + g,
1 1
pon = o (AN + BT 4 3 + ),
(4.10) ) “
Ry = 57 [S11512 — (S12(1 + H(0)) ™' S22 + War)J(I + H(0))™!
11
1 .
Ry = 57 [(I+ H(0))™'Sa1 — Way — Saa(I + H(0)) ™" Sa1].
11

Since Ry # 0, the matrices Py, P»» are nonsingular. As a consequence, (\il,&’) is

nonsingular. If we change the bases by the transformation

— P1_11 —P1_11P12P2_21 I — Pl—i]\illl P1;]®12 - P1_11P12P’2_21
(4.11) U= [ 5 L =" L)
= 0 @14 ‘I’12P~
4.12 =9 22
( ) [ 0 P‘72 ] |:<I>21 ©22P22 ]
then
(413) (\I/, @) = I2+2n-

The explicit expressions for Pl—l1 and P2—21 are given by

* 52 4
P—l = p2 _721—01' p* Sll( *d*
11 :&L 0 ’ R‘Z
Ro

_Sh Sh
Ro Ry
. SRt I S, R}
P22 = }io n lRo
3 0 2
_shR 0 82, A
Ro Ro

e 2
c2d2 - '3_)’



A few elementary calculations also yield
(4.14) As® = & B,

where

B = [Bll BIQ:I’

0 0
(4.15) 0 1 0, 0 Q O
ERUEIEEE N
0 0

We now decompose the solution space (o of (2.12) using the above bases ¥ and &.
Let Q% denote the union of the generalized eigenspaces of the eigenvalues of A with real
parts > 0, let Q1* denote the union of the generalized eigenspaces of the eigenvalues of
A* with real parts > 0 and define

Q— = {99 = (991,592) = C‘Zm X C?,n : (\Ils(p) = O’ (d),(p) = 0 for all ¢ € Q+*}'

It is shown in [9] that

where [-] denotes span and
(4.16) d, = [‘?“]

and ®,,,®,; are defined in (4.2). Relations (4.14), (4.15) imply that
(4.17) ®,(0) = ®,(0)eP1?, o € R.

We introduce the notation

0
Fra(¢1(0),92(0))

0

Fh,\(SO) = ’ GM(Q) - [Gh,\(%(—l)a%(_l)) ’

Xo(0) =0 for 6 € [-1,0), Xo(0) = I 42, and

(4.18) O(p) = ¢ + XoGra(v),
where ¢ = col(¢y1,92) € Cam X Cap,. Using the variation of constants formula in [9] and

the standard methods in the theory of center manifolds, it is possible to show that a center
manifold of (2.1) in a neighborhood of 0 and h, A sufficiently small, has the form

0 =0U+ Wi(U)+ XoGrA(21U), Win(U) € Q=Q~ ®Q™*, U € R?.
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Furthermore, if we make the transformation of variables

[ut] =, U(t) + War(U(t)) + XoGra(2:1U (1))

Uy
in (2.11), then the flow on the center manifold is given by

(4.19) dz—it) =B11U(t))¥11(0)Frr(©(2:1U () + Wia(U(2))))

+ [B11%12(0) + B12]Gra(@1U(t) + War(U ().

Furthermore, the function Wy (U) satisfies the integral equation

Wia(U(t)) = — /_t dy5(t — 0)XE Gua(®1U(0) + Wiar(U(0)))

1 /t S(t—0)X$ Fin(0(21U(0) + Wia(U(0))))do
(4.20) N

/ dy5(t — 0)X&" Car(31U(0) + Win(U(0)))
- / (t - U)X(? Fix(21U(0) + Wia(U(0))))do.

We now want to obtain an approximation of the vector field on the center manifold.
It turns out that the only terms in W), 5(U) that are important are the cubic terms in U of
the Taylor series of the function Wyo(U). The necessary terms in h, A are obtained directly
from the vector field in (2.1).

It i1s clear that

Wia(U) = O((|hl + [ADIUT + [U[?)
as (|h|,|A],|U]) — (0,0,0). By using the same argument as in [], we deduce that

Wao(0) == [ du§(-0)X§" (3 D2Gun(0)(@:(0)0)

—_—o0

+ [ S(-a)XE (5DE R 0)(81(0)U))do

—0

4.2 ® e + =

(4.21) +/0 daS(—o)X(? [%DiGOO(O)(@l(U)U)zl
- /ooo 5(—0)X<?+[%Dipoo(o)(q)l(a)(j )’ldo
+O(|[U?)

as [U| — 0.
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IR2n+2m

As in [7], we can show that, for any ¢ € and any integer k£ > 0,

[e’s) 0
/ S(o)o* X8 Cda-—/ S(a)akX(?+(da
0 —oo

= kI(—1)*1 (Ag]Q) DX (.

(4.22)

If dy,d, are defined as in (3.2) and we let

& = col(dy,d2), U = col(Uy,Us),
use (4.16), apply (4.22) for k = 0, and perform several computations, we conclude that
(4.23) Woo(U) = col(W(U), W3 (U)) + O(|Ua||U| + [U?)

as |U| — 0, where

A27+b s —Xoa-f-‘)/
(4.24) a = D, y90(0)(Aze,€), b= D2 fo(0)(e,e),
1 0
_— s 2
v = M[a + Byb], ]\/f—[o (I+H0(O))_1:|'

With the above estimate on Wy(U), we can estimate the vector field in (4.19) for
(h,A) = (0,0). Using the definitions of ®; in (4.16) and O in (4.18), we can verify that

U11(0)Eo(O(2,U + Wyo(U)))
(4.25) _ [952 O(|UP) ]
GireTBilf*(e, §7) + 3 D5 fo(0)(e)*1UF
(B11%12(0) + B12)Goo( 10U + Woo(U))
(4.26) _ [ o O(|UP) ]
“ritel[g*((Aze,e), 3(A2y + b,7)) + 51 D¢, y90(0)(Aze, €)*]UF |

where the second component in each of the formulas (4.25), (4.26) are O(|U,||U |2 + |U[*)
as |U| — 0, and where f*,¢* are the quadratic forms defined by

f*(v.9) = y" D% fo(0)y

4.27 v
20 RCHNCE) R E v ) HE

For (h,A) = (0,0), equations (4.25)-(4.27) give us the relevant terms in the Taylor
series expansion of the vector field in (4.19). In the next result, we show that the coefficient
of U} is related to the hypothesis (H3) imposed for the generic period doubling of the map
associated with the system (2.1). In fact, except for a nonzero constant factor, the sum of
the terms in U} in (4.25), (4.26) is equal to the constant R; in (H3).

15



Lemma 4.1. If Ry is defined as in (H3), then

Ry =eTBilf"(e, 57) + 5 D3 fo(0)(e)’]
(4.28) . '

. 1 1
+e'lg"((Aze,€), 5(A27 + b,7)) + 57Dz, 90(0)(Azes )]

%

Proof. From the definition of Fy(y) in (2.2), we deduce that

(4.29)
1 1
Fo(y) = (B1Az + Ba)y + 581D fo(0)()* + 5D(z,4)90(0)(A2y,9)*

+4((A23,9), (GD2fo(0)(w)%, 0)) + 5B DS fo(0)(u)° + 5D 1 g0(0)(Azy,v)°.

From (4.29), we deduce that

£4(0) =7 {g"((Ase,€), (5 D3 ol0)(e)?,0))

(4.30) 1 ) ,,
+ 515’1D{ij(O)(C’)3 + ﬁDz(sz,y)go(O)(A267 e)’},
(4.31) k2(0) = T [B1f*(e, L) + " ((Aze, €), (A L, L)),

where I, is the m x (m — 1) matrix col (0, I, —1),

(4.32) k1(0) = %6T[B1f*(ea e) + 9" ((Aze, e), (Aze,€))],

(4.33) HL(0) = 3171By f*(e,) 4 97 (s, €), (Age, )]

From the definition of M and 7 in (4.24), we see that

1
v=5e’(a+ Bib)e + L(I — Ho(0)) I (a + B1b)

<

— £y (0)e + 20.(T — Ho(0))~"H:(0),
which together with (4.32) llows us te conclude that
T * 1 1 3 3
e Bi[f*(e, 57) + gDny(O)(e) ]
(4.34) :%kl(O)eTBl (e, ) + T By f*(e, L)I — H(0))™* Hy(0)
- %eTBlDz fo(0)(e)®.
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In a similar way, we verify that
e"lg"((Aze,e), (A27+ b,7))) + D(I 1 90(0)(Aze, e)’]

(4.35) :%kl(o)e g*((Aze, €), (Aze,e))

4 2eTg" (Age, ), (oL, LY)(I — Ho(0))™ Hy(0)

L 1 1
+ €' 9" (((Aze, €), (505 fo(0)(e)*,0)) + 37 Dz, 1) 90(0)(Aze, ).
If we now use (4.30)-(4.35), we obtain the relation (4.28) and the lemma is proved.

As remarked above, the relevant terms in h, A in the Taylor series of the vector field
in (4.16) are easier to obtain since they will not depend upon any specific knowledge of
the function W), Az(U). After several rather straightforward but lengthy computations, we
deduce that

U11(0)[Faa(0(21U + Wia(U))) = Foo(O(21U + Woo(U)))
(4.36) +[B11%12(0) + B12[Gra(®1U + Wia(U)) — Goo(®1U + Woo(U))
= AnU + O((IAL + [RDIU I + (|1 + [RD*|U1)
as (h,\,U) — (0,0,0), where

A Pr1A + B2k

4.37 Ay = :
(4.37) AT =20 2Bup e

and «, f1, f2,£" are constants.

From Lemma 4.1, formulas (4.25)-(4.27) and (4.36), (4.37), we conclude that the
vector field in (4.19) is given by

Uy = aAUy + (L+ Bu) + B2h)Uz + O((IA + [RDIUI? + (IA] + [RD?|U] + [UP)

: 252 25 254, R
4.38 = 22U L e
(4.38) U, Ro AUL + ( R R

+O((A+ BDIU + (1A + [RD* U] + [U[Y),

b+ MU + UR + G URU, + GUUZ + £3U3

where £*, 07,05, €3 are constants.

To analyze the periodic solutons of (4. 38) it is convenient to write them in a different
form. Since Ry # 0, S11 # 0, we can make a linear change of variables of the form U +—
Z = (I 4+ P(h,\))U and change the time scale t — (14 8(h,A))t, where P(0) =0,6(0) =0

such that the new equation for Z is given by
Zy = Za + O((I\ + [RDIZ* + (1AL + [])*| 2] + |21)

, 257 28 254, R,
4.39) Z,= A7 11 1L 0*\\Z i
( ) 2 R 1+ ( Ry + )2 + R,

+O((IA + [RDIZ* + (IA] + [8])%|Z] + |2[*)-

Z3 403222, + 052,72 + 03 Z3
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This equation now has the same form as the one considered in [9]. The discussion
there for the existence of periodic solutions corresponding to periodic solutons of (2.1) can
be repeated verbatum to complete the proof of Theorem 2.3.

5. Hopf bifurcation curve. For the periodic orbit whose existence is given by Theorem
2.3, we want to impose additional conditions on the vector field in (2.1) which will ensure
that this orbit occured through a Hopf bifurcation and that supercritical (subcritical)
period doubling of the map corresponds to stability (instability) of the periodic orbit of
(2.1). In this section, we specify conditions which will imply the existence of such a Hopf
bifurcation curve and, in the next section, we consider the stability properties.

We consider the linear system

ex(t) + Az(t) = AA2(N)y(¢)

(5.1) y(t) = By(N)z(t — 1) + Bo(A)y(t — 1),

for which the characteristic matrix is

eul, + A —AAy(N)
(5:2) AAGR) = | Bi(Ae# I, - By(\e

It is convenient to introduce the following definition. We say that a curve I' in the
(A, €)-plane, € > 0, is a Hopf Bifurcation Curve of (5.1) if there is an €* > 0 and a
continuous function A = A(€),0 < € < €*, A(€) — 0 as € — 0 such that, if e = {(A,€) :
A = A(€), € € (0,€*]}, then, for any (Ao, €) € I'e~, there are two purely imaginary solutions
+:f, of the characteristic equation det A(Ag,é€,1) = 0 and the remaining solutions p
satisfy Repu # 0. We say that a Hopf Bifurcation Curve is a Generic Hopf Bifurcation
Curve with respect to e if, for fixed Ag, the two eigenvalues u(Ao, €), i( Ao, €), #( Ao, €0) = 5o,
satisfy Redpu(Ao, €0)/de < 0. This type of transversal crossing of the imaginary axis of the
eigenvalue u(Ag, €) implies that there will be a Hopf bifurcation with respect to € at €.
We say that a Hopf Bifurcation Curve is the First Hopf Bifurcation Curve if, for each fixed
€0 € (0,€*], all eigenvalues p of (5.1) with A = A(eg) and € > € have Reu < 0. The
Generic First Hopf Bifurcation Curve is the most interesting because there is a transfer
of stability of the origin at € = ¢; that is, the origin is stable for € > ¢; and unstable for
€ < €. From the physical origins of the problem, this is natural because we expect that
the origin is stable for large € (by a change of time scale, this is small delay) and eventually
becomes unstable for small € (large delay). The First Hopf Bifurcation Curve represents
the first change in the stability properties of the origin.

We want to determine the First Hopf Bifurcation Curve for (5.1) which is generic with
respect to e.

We retain the condition (H2) which corresponds to A = 0 being a period doubling for
the map. To have all of the relevant hypotheses close at hand, we repeat this hypothesis.

_[-a+x o

(H2) Bi(A)A2(A) + B2(A) =C(A) 0 Ho(V) |

o(Ho(0) C {z:]2] < 1}.
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With the notation,

511 SI‘Z

(53) —Bl (O)A—lAz(O) =5 = [521 522

} , —B1(0)AT?4,(0) =W = [W“ Wl2] ,

Wa  Waa
we also retain the hypothesis

(H4) Ry = =52, +2[Wy; + S12(I + Ho(0))71S21] #0, Si1 #0.

Of course, we must keep the hypothesis

(H6) o(By(0)) C B,, p<1l.

The additional hypotheses that we need are

(H7) min{Rez: z € 6(4)} > 0,
(H8) Det [_zg’go;ﬁv ; :‘;fgo(?g_w £0, for 8> 0,0 < v < 2, (8,v) # (0, ),

(H9) #0, for all p € C, Rep > 0.

plm + A —A45(0) |
Det [ ~By(0) I — By(0)]

The main result of this section is

Theorem 5.1. Under the assumptions (H2), (H4), (H6) and (H7), the hypotheses (H8)
and (H9) are necessary and sufficient for the existence of the First Hopf Bifurcation Curve
which is generic with respect to e.

The proof will be given in terms of several lemmas which bring out the role of each
hypothesis.

Lemma 5.2. Under the hypotheses (H2), (H4), (H6) and (H7), there is an €* > 0
and a C*-curve De» = {((M(e),€),¢ € (0,€*} such that (i)A\(e) — 0 as € — 0, (ii) for any
(Ao,€0) € D¢, there is a unique pair of purely imaginary eigenvalues *iv(Ag,€,) with
v € (0,27). Furthermore, I« is the unique curve satisfying (i) and (ii).

Proof. If
G(a,\) = Bi(M)(al, + A)71A45(N),

then, under assumption (H7), we can verify that det A(A,¢,7v) = 0 if and only if det
[, — C(X) + ievG(iev, A)] = 0; that is, if and only if there is a nonzero vector h € C*
such that

(5.4) [e" I, — C()\) + ievG(iev, A)]h = 0.
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If we set A = € = 0, then (5.4) implies that [e**I,, — C(0)]h = 0, which, from (H2), implies
that v = 7 and h = y col [1, 0], where 7 is a constant. For A, e small, it follows that the first
component of h in (5.4) is not zero and we can take h = col[1,£]. With this observation,
we can determine the solutions of (5.4) near (A, €, k) = (0,0,col[1,0]) by determining the
zeros of the function

F:IxIxCT o

%) .
(55) F(v,\6,&) =[e"I, — C(A) + ievG(tev, A)] [é] ’

where I C IR is a neighborhood of = and I C IR is a neighborhood of 0.
We have F(7,0,0,0) = 0. If we define

OF (v, A, €,&)

T
(v, A, )

|(,0,0,0) : R x R x [ Dt i B

then
T(v, A, £) = 1w + ]
o0 0= [ (o
Since I + Hy(0) is invertible, the map T is invertible. Therefore, the Implicit Function
Theorem implies that there are C2-functions v(e), A(€), £(€) defined for € € (—€*, €*), €* > 0,
such that v(0) = =, A(0) = 0 £(0) = 0, and

(5.6) F(v(e), A(€),6,€(€)) =0, €€ (—€,€%).

Differentiating (5.6) with respect to e; we obtain

v[ie’ I, + 1eG(iev, \) — € vag—G(zev A [;} + A[=C(X )+zev—G(zev A)] [ J
(5.7)
+ [, — C(A) + ievG(iev, \)] [2

If we set € = 0 and use the fact that —G(0,0) = S, we obtain

&52?0;@0)] —w(0)6(0,0) [5(10)} =in [gﬂ |

} + [ivGiev, \) — ev aﬂa(zev )] [ 5] 0.

Hence,
(5.8) 9(0) = —7Sy;, M0) =0, £(0)=—in(I+ Ho(0))™ Sa1.

Differentiating (5.7) with respect to e, setting e = 0 and using (5.8), we deduce that

[(52(0) = i5(0)) I, + 269(0)G(0,0) — A(0)C(0) — 2v2(0)%G(0, 0)] [ H
— 2[i6(0) I — iv(0)G(0,0)] [g] + [Ln + C(0)] [2] .
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From this relation and the fact that 2=G(0,0) = W, we have
52(0) + A(0) — 202(0) Wy, = 2i[5(0) — v(0)S12£(0)].
From this relation and (5.8), we have
X0) = 202 Wyy — 7282 + 20281,(I + Hy(0)) 718y = 72 Ry # 0.

As a consequence, for small €, we have the Hopf bifurcation curve I'e« = {(A(€),€),€ €

(0,€*)]}, where

(5.9) Ale) = %ﬂ'zRoez + o(€?)

as € — 0. This completes the proof of the lemma.
Remark 5.1. The expression (5.9) shows that the graph of the curve I'.« is over the
positive (resp. negative) A-axis if Ry > 0 (resp. Ry < 0).

Lemma 5.3. Suppose that the hypotheses (H2), (H4), (H6), (H7) and (H8) are satisfied
and let '« = {(A(€),€),€ € (0,€*]} be given by Lemma 5.2. Then there is an €, > 0 such
that ", is a Generic Hopf Bifurcation Curve.

Proof. We first show that there is an €. > 0 such that, for each ¢ € (0, €], we have
(5.10) det A(A(€o),€,18) # 0, for € > €y, 2> 0.

If this is not the case, then we can find sequences {€,}, {€n}, {Bn} in (0,00) such that
€n < €pn, €, — 0 as n — oo, and

_ PO _ Zé‘11/31'7,-[m I A —AAQ()‘(Gn))
(511) 0= det()\(en),en,zﬂn) = —Bl(A(Gn_))C-iﬁ" In _ BQ(A(Gn))e_iﬂ" .

From (5.11), it follows that €,3,, n > 1, is bounded. Since A(e,) — 0 as n — oo and we
are assuming (H8), we must have é,3, — 0, e7##» — —1 as n — oo. If we let k, > 0 be

an integer and v, € (0,2x] be such that 8, = 2k, + v,, then we have v, — 7 as n — oo.
Also, if €, = €,0n/vn, then

(5.12) lim e, =0, €, >é,> e,
and
(5.13) det A(A(€n), €, 105) = det A(M(€n), €n,26,) = 0.

From (5.13) and Lemma 5.2, it follows that A(e,) = A(el,) for sufficiently large n. From
(5.9), the function A(e) is monotone for € near 0 and, thus, we must have €, = €, which
contradicts (5.12). This completes the proof of relation (5.10).
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We next show that, if 4 = iv(e) is a zero of A(A(ep), €0, 1), then it is a simple zero.
For fixed € € (0,¢€.], let Ao = A(€o), o = tv(eg) and € = €(eo), where A(e),v(e),€(¢€) are
defined in (5.6). We define the function

K:CxOC"!'xR->C

5.14
o Ko, €) = [ = Ch) + enGles )l | |

We have K(0,&0,€0) = 0. Using (5.8) and (5.9), we deduce that

OK (o, €0,60) _ [—1 0

mm) L0 ~(I+Ho(0))]+o(6°)

as ¢g¢ — 0. Thus, if €, is sufficiently small, this matrix has nonzero determinant and the
Implicit Function Theorem implies that there are C?-functions pu(€),n(¢€) defined for € in a
neighborhood U of 0 such that p(e) = iv(eo), n(e0) = €o, and

(5.15) K(u(e),n(e)) =0, eecU.

In particular, g = 1vg is a simple zero of det A(\o, €9, i£)-
We next determine how pu(e) depends upon e. Differentiating (5.15) with respect to e,
we obtain

(5.16)
f1(€0)[e"° I, + €0G(i€gvo, Ao )] [610] + [€7° I — C(Xo) + i€ovo G (ieguo, Ao )] [,-7(20)]
= ——[i’l}oG(iGoUo, /\0) = 601)858(;67‘(7:60'00,/\0)] I:go] + 0(63)

If we use (5.8), the relations G(0,0) = —S, 8G(0,0)/0a = W, (5.16) and Talyor’s theorem

around €y, we conclude that

/'1(60)[—(1 + 60511) + i607r511] :2‘607('5127‘7(60) + 'l:’/'TS]l —I— 2"/1'51250 + 2607T2W11
(5.17) + O(e5)
—[I + Ho(0)]n(eo) =imSa1 + O(eo).

The second relation of (5.17) implies that
ii(e0) = —im[I + Ho(0)] 7" S21 + O(eo).

If we substitute this expression and & = —in(1 + Ho(0))"1S21 +O0(eo) into (5.17), we
conclude that

f1(€0)[—(1 + €0S11) +7€omS11]
= i’lTS]l + 2607('2[‘4/11 + S]g([ + H()(O))—1521] + O(Gg)
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Using this relation and the definition of Ry in (H4), we have
(5.18) Reji(€0) = —€gR,m? + O(€l)

as ¢g — 0. For e, sufficiently small, this shows that the Hopf Bifurcation Curve is Generic
and the lemma is proved.

We now complete the proof of sufficiency in Theorem 5.1 using these two lemmas and
hypothesis (H9). We only need to prove that, for each ¢ € (0, €], and all € > €, there is
no zero p(e) of the characteristic matrix in (5.2) with Re p(e) > 0. If det A(A(ep), €, 1) =0
has a solution u(€) with Re p(€) > 0 for some € > ¢, then we can extend this function to a
continuous function u(e) for € € (&, 00) and have det A(A(ep), €, u(€)) = 0 for € € (€, 00).
From Lemma 5.3 and, in particular, the implication (5.10), we must have Re pu(e) > 0 for
all € € (€9,00). If we let z(€) = eu(e), then

z(e)m + A —AA2(Meo))

(5:19) d‘“[—Bl(A(eo)w—ﬁfl I - By(Aep))e™ 5

] = det A(A(€o), €, u(€)) = 0.

Since Re 22 > 0, relation (5.19) implies that z(e€) is bounded in (€, 00). Hence there is

€
a subsequence €; — oo as j — oo such that z(e;) — 2*. It is clear that Rez* > 0. By

letting 7 — oo in (5.19), we deduce that

et [ I+ A —AA(Me)) } o

—Bi(Me)) In — Ba(Meo))

This contradicts (H9) if €, is small enough. This completes the proof of the existence of
the First Hopf Bifurcation Curve under the hypotheses of the theorem.

The proof of the necessity can be supplied by carefully considering the arguments that
were used in the proof of sufficiency. We do not give the details.

Let us now consider some special cases. The equation (1.3) can be written as a system

ex(t) + z(t) = fa(y(t))

(5.20)
y(t) = z(t —1).

The hypotheses (H1)-(H3) for generic period doubling of the map z + f(z) are equivalent

to saying that the function fi(z) can be written as

(5.21) fa(z) = —(1 4 Nz + az? + B3,

where a? + f # 0. The linear variational equation about = = 0 for (5.21) is a special case
of (5.1) with A =1, A2()\) = —(1 + A), Bi(A\) = 1, B2(A) = 0. It is now obvious that
the hypotheses (H2), (H4), (H6), (H7) are satisfied. A simple computation shows that
hypotheses (H8) is equivalent to 2(§ —sin v)+1+cosv # 0for § >0,0 <v < 2w, v # 7.
This is clearly satisfied. Also, (H9) is equivalent to p + 2 # 0 for Re g > 0, which is true.
Therefore, there is a Generic First Bifurcation Curve with respect to e.
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Let us next discuss equation (1.4) with ¢; = eaj,7 = 1,2,...,m, and the function
fa(z) satisfying (5.21). It is possible to write this equation in a matrix form (5.1) and
verify directly the hypotheses for the existence of a Generic Hopf Bifurcation Curve are
satisfied. Rather than do this, we will show this curve exists by analyzing the characteristic
equation. The proof is not difficult and also is a simple illustration of the ideas used in
the proof of Theorem 2.3. The characteristic equation for the linearization of (1.4) about
z = 0 is given by

(5.22) E(e, A\, ) = (€amp+ 1)+ (earp+ 1)+ (1 + A)e ™ = 0.

In this particular situation, the determinant in (H8) is given by

9 i .
E1(0,v) = E(=,0,iv) = [[(i0a; + 1) + ™™,
v

=1

If § > 0,0 <v < 2w, are such that E;(0,v) = 0, then we have |H;n=1(i9aj + 1)| = 1; that
is, H;-nzl(Gza? + 1) = 1. Since «; > 0, we must have § = 0 and hence 1 + e~*¥ = 0; that
is, v = w. Therefore, the condition (H8) is satisfied.

Next, the function in (H9) has the form

Ca(p) = H(/wfj +1)+ 1.

J=1

If there is a g = u + tw,u > 0, such that Cy(u + tv) = 0, then it follows that 1 =
H;-nzl((ua]- + 1)% 4+ v?). Therefore, we must have u = v = 0, which leads to the assertion
that 0 = C2(0) = 1 + 1, which is a contradiction. As a consequence, C2(p) # 0 for all
u € €Cwith Rep > 0; that is, (H9) is satisfied.

We can now show that, for fixed ¢y > 0, there is a unique A*(€) > 0 such that (5.22)
has exactly two purely imaginary roots and the remaining ones have negative real parts for
(A, €) = (A(€0), €). For € > €, the origin is asymptotically stable and, for 0 < € < ¢g, the
origin is unstable. In this way, we obtain the existence of a Generic First Hopf Bifurcation
Curve.

In the general matrix case, the problem becomes more complicated. More specifically,
we can have the map associated with the differential equation undergo generic period
doubling and have the linearization about the origin in the differential equation not possess
a Generic First Hopf Bifurcation Curve. For example, let us consider the system

(5.23) ezq1(t) + azy1(t) = afa(z,(t — 1))
6(1.32(1{') + B:Eg(t) = BZ/IQ(t — 1)),

where fy is the same function as before, z2 € R, B,v are constants, B < 0, |v| < 1.

The map obtained for € = 0 is given by (z1,z2) — (fa(z1),vz2) and it undergoes a

generic period doubling at (z;,z2,\) = (0,0,0). The hypotheses (H2), (H4) and (H6)

are satisfied, but we have not satisfied hypothesis (HT).
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If we want to relate the period doubling bifurcation to a Generic First Hopf Bifurcation
Curve, then we must have the solutions of the linear variational equation for A\ = 0 approach
zero as t — oo; that is, the eigenvalues must have negative real parts. This is equivalent
to having the solutions of the equation

(5.24) Alp)=p+B(1l—-ve #)=0

having negative real parts. Since A(0) = B(1 — ) < 0 and A(u) — oo as u — oo, there
is a positive zero for A(p).

6. The Hopf bifurcation. Let us suppose that the hypotheses of Theorem 2.3 and
Theorem 5.1 are satisfied. Then, as shown in Section 5, there is a first Hopf Bifurcation
Curve I'ee = {((A(€),€),€ € (0,€*}. Furthermore, if Ry > 0, then, for each fixed ), the zero
solution is stable if € < €* and unstable if € > €*. At € = €*, the linearization of (2.4) at
the origin has a pair of purely imaginary simple eigenvalues. As a consequence, we expect
that there is a generic Hopf bifurcation arising at e. This is true and, in fact, we have

Theorem 6.1. Suppose that the hypotheses of Theorem 2.3 and Theorem 5.1 are satisfied.
If, in addition, Ry > 0, then there exists an €* > 0 such that, for each fixed (Ao, €p) € Tes,
Ao = A(€), where I« is the First Hopf Bifurcation Curve, system (2.1) has a generic Hopf
bifurcation at (A, e,z,y) = (Ao, €0,0,0) which is supercritical (resp. subcritical) if Ry > 0
(resp. Ry < 0).

We remark that this result implies that the generic period doubling point A = 0 for the
mapping Fy is supercritical (resp. subcritical) if and only if the generic Hopf bifurcation
at (Ao, €0) is supercritical (resp. subcritical).

To prove Theorem 6.1, we are going to use some results from [10] for more general
hybrid systems in which they gave a specific formula for a constant a* depending upon
the second and third derivatives of the nonlinearities in (2.1) evaluated at zero which
determines the direction of the Hopf bifurcation. More specifically, the bifurcation is
supercritical (resp. subcritical) if a* > 0 (resp. a® < 0). We now describe this constant,
attempting to motivate each step and refer the reader to [10] for details.

Let

Fu,N) = f(y. A) — ANy,

The linearized system of (2.1) is

(6.1) etx(t) = —Ax(t) + A42(N)y(t)
| y(t) = Bu(\)a(t — 1) + By(\y(t — 1)

From our hypotheses on f and g, there is an €* > 0 such that, for each 0 < ¢ < €*,
there is a unique A, > 0 such that the linear system (6.1) for € = ¢y, A = A, has an
imaginary eigenvalue pg = ivg = 1w + O(€) and it is simple. For fixed A.,, the eigenvalue
po(e) of (6.1) with uo(eo) = po satisfies the inequality fo(eo) < O.

€0
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Along with (6.1), we consider the linear neutral equation
i(t) = —Ax(t) + Ada(Ny()

(6.2) d
d—t[y(t) — B;(M)z(t — 1) — By(MNy(t —1)] = 0.

This equation plays an important role in the variation of constants formula for a pertur-
bation of (6.1) and, thus, an important role in the explicit computation of approximation
of periodic orbits. The nonzero eigenvalues of (6.1) and (6.2) as well as their multiplicies
coincide.

The characteristic matrix for (6.2) is

pl+ L4 ~ 14400,

M) = g e "By |

It is not difficult to show that there is a vector 7, which satisfies A(eg, f£0)7¢, = 0 and has
the form

Neo = collng,, e )y M = A2(Aep)er + O(eo),  nZ, =e1 +O(eo), €1 = col(1,0) € R™.

As a consequence,

0(8) = [ne,e*°?, sl e #| E

is a basis for the eigenfunction space for p¢ and fiy considered as an eigenvalue of either
(6.1) or (6.2). If ®1:¢0 is the first column of ®¢°, we have

. C [@9B)] 1 e —ines [ A2(0)e
1,¢€ _ _ (78 w6 2 1
(6-8) D o 00) = bm, [@2%60(9)] =gl Fe) [ e |

Now, if [b},b3] € €™™" is such that [b}, b2]A(eq, o) = 0, then we have

by = €oproby B1(Ap)e 0 (poco + A) 7,
b3[Bye " (poeo + A) "1 AAs(Ae,) — (I — Ba(Aep)e )] = 0.

So we can choose b} such that
b2 =el +O(en), ef=][1,0] € R*".
If we let

b
bipl b2n2?
07760 +lu‘0 07760

1 2 ) s
Yeo = [7501750]a 7:0 = 1=1,2

3

then one is able to verify that

— oS
veo(s) = B [”Me ° ]

»76‘)6#08
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is a basis for the eigenfunction space corresponding to po and fig for the formal adjoint
operator of (6.2) (not (6.1)). Moreover, we have

A . .
lim W'heo(s)— = —(e'™ + e7™)e; B1(0)
(6.4) €0—0 €0 _ _
hrn (5‘1’12 60( ) - _(em's + 6_”‘-8)6;,

60——*

where ¥l€o = [Pllco Fl12:¢0] apnd Tl is the first row lof Teo.

To obtain the direction of bifurcation, it is first necessary to determine the influence
of the second order terms in (2.1) on the periodic orbit. These second order terms give
rise to corrections in the solution of the form &(eg)e?¥0! +&(eg)e 20! 4 £4(€p). It is shown
in [10] that the quantity ¢ is given by

fe)=2| 2ot5 — Al ]A[ADQWA@”WQZ
V7B L-BiM«))e ™ I-Ba(Meo))e ] | D2a(0,M(e0))(me)?

where D, = D(, ,). By using (6.4) and letting £(eo) = col [€'(€p), £*(€p)], we have

1111’1 6 (60) = ﬁga

(6.6) =0
6101—1;1'1 6 (60) = £03
where

%4wmmDymnxﬁ>+D@m0xr%gkﬂy]

(I — Ho(0))™' E5[B1(0)D} £(0,0){e1)? + DZg(0,0){ [Az(O)el ] )

€1

and E; is the (n — 1) X n matrix:

- O O OO oo

OO O oo+
OO O o+ O

L
OO O o oo

Similary, the constant £o(e€g) satisfies

(6.7) lim €o(eo) = lim VO(G")] [50].

€o—0 €0—0 60(60)
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From [10], the number a*(€g) for system (2.1) at (A(eo), €0) is given by

a*(e0) = — /OW \Illl’éo(s)eész(Ov A(€0)) (@210 (), E(e0 )0 + E(€0)e 2% + €o(€o))ds
-5 |7 PR D0 Meo))(E (0)

N /uo \illz,eo(s)ng(()’,\(eo))X
0
(@10 (s — 1), £(e0)e? 0™ 4 £(eg)e 20071 1 £ (ep))ds
1 2x

v/ " §12.00(5)D3g(0, A(eo))(@ 40 (s — 1))ds.

By applying (4.4)-(4.7), we obtain
lim,, ~oa™(€)
2
:6;/ (ezvrs + e—nrs)2(2 + e’ans + e—’zzws)sz(o’O)( 61,50)
0

1
:
b [ b e D00 e
v /z(e"”+e-"“)2(2+e2f”+e*2"“)D (0,03 [0, [ &])as
/ (€' + =) D2 £(0, 0){ %[ }
zlzerw'—;f(o,o)ﬁel,co)+ng(o oz | (0) ][ 449% )

+ 37 D3f(0 0)( )+ o

:6Rla

D0 | 420 |y

€1

3!

where the last equality follows from relation (2.5) and (H3).
The last equality shows that, for ¢y small, the quantity a*(eg) has the same sign as

R;. Therefore, from Lemma 2.1 and the above mentioned result from [10], we see that the
Hopf bifurcation is supercritical if R; > 0 and subcritical if R; < 0. This completes the

proof of Theorem 6.1.
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Synchronizations in Lattices of Nonlinear Duffing’s Oscillators

V. S. Afraimovich! and S.-N. Chow?

Abstract

In this work we prove the possibility of stochastic synchronization in two dimensional
lattice of coupled Duffing’s oscillators with external periodic forces. The synchronization
occurs provided coupling is dissipative and the coefficients of coupling is greater than some
critical values. These values depend on parameters of individual subsystems and on the

size of lattice.

1. Introduction

The phenomenon of stochastic synchronization was first observed in [1] for identical
coupled subsystems and in [2] for different systems. In [2] a rigorous definition of syn-
chronization was introduced and a theory of synchronization of parametrically excited,
diffusively coupled nonlinear oscillators was suggested. Later, this phenomenon was ob-
served in different fields - electrical engineering, biology, lasers systems, etc. (see, for
example, [3-11]). Roughly speaking, synchronization occurs when two or more different
systems exhibit similar behavior provided some dissipative coupling exists between them
and a coefficient of this coupling is greater than some critical value.

A mathematical foundation of synchronization of two slightly different subsystems was
first introduced in [9]. It seems that there are no rigorous mathematical results related to
this except for [1, 2, 9, 10], even though this phenomenon is important in applications and
a mathematically interesting topic. -

Our work deals with synchronization in large lattices. For this case, some features of
continuous nonequilibrium media become evident: for example, boundary conditions play
an essential role. Of course, it is not surprising that a large lattice of coupled oscillators is a
model of nonequilibrium media and must reflect its features. But mathematical difficulties

increase in comparison to two coupled subsystems. Therefore, we restrict ourself in this

1 Partially supported by ARO Grant DAAH0493G0199 and NSF Grant DMS9404199.
2 Partially supported by ARO, NSF and NIST.
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paper to the case of specific subsystems — Duffing’s oscillator with periodic forces. It is

well-known that each of them may manifest chaotic behavior for a wide range of parameters.

2. Formulation of the Problem
Let us consider the following system
i =Y
| 3 @)
Yi = —kiyi + aiz; — fiz] + a; + b; coswt + 1 Ay; + c2Az;

where 7 is a p-dimensional integer vector, i.e., 1 € Z”, k; >0, a; > 0, B; >0, a;, b;, ¢c; >0
and ¢y > 0 are constants. In this paper, for the sake of definiteness and in order to avoid
cumbersome calculations and formulas, we consider only the case p = 2. But our technique
works and all results hold for an arbitrary value of p > 2. The symbol A denotes a discrete

version of the Laplace operator:

A& = irr1,iy + Ciyint1 + &in—1,i0 T i ia—1 — igyipy 0= (115 22)

Our assumptions are:
(i) Let N > 0 be a fixed and large integer. We consider an N x N-lattice, 1 <i7; < N,
1 <29 < N, with the Dirichlet boundary conditions: z; = 0, y; = 0 if 1 = (21,12)

satisfies at least one of the following inequalities:
11 <0, 22<0, 5 2N+1, 1u2>2N+1.
(ii) The subsystems are almost identical, i.e.,
ki —kjl <€ lai—ajl <€, |fi—Bj|<e

lai —aj] <€ [bi—bj|<e

where 1 < 33 < N, 1 < 13 < N; the parameter e characterizes scattering of the
oscillators and is small; the parameters ¢; and ¢y are responsible for the magnitude of

the coupling and play crucial roles in our study.
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It is possible to show (see Section 5) that system (1) is dissipative in the following
sense. Let D > 0 be sufficiently large and 0 < w < k;. Let

2 @;z? Bt
Ule,y) = D% = 5+ S bz

Define

S ={(z,9)|U(z,y) = D}.
Then

dz[t]— S:(gradU,Z) s<0

where Z is the vector field defined by the right hand side of (1). Thus, there exists a
global attractor of (1) which belongs to a bounded region independent of ¢; and c,. We
note that there are many results related to existence of global attractors for infinite or
finite dimensional dissipative systems (see, for example, [20], [21]). In our case, the proof
of dissipativeness is nontrivial.

For any solution z; = z(t), y; = y:(t) belonging to the global attractor the following

inequalities hold

lzo(O)l <M, |yit)| <M (2)

where M is a constant independent of ¢y, ¢;. Fix an arbitrary solution {z = z;(t),y = vi(¢)}

belonging to the global attractor. Set

wi(t) = @it) = 2(1), 0i(t) = i(t) —y;(8).
The main result of our paper is the following.

Theorem. Let k = min; k; . There exist constants ¢} > 0, ¢; > 0 and 0 < ¢ < 1 such that
if

C2
C2>C;, C1 >CI c1 > —
qk

then

lim |u;j(t)] < Ke, lim |v;;(t)| < Ke
t—oo t—o0
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where K is some constant independent of €, ¢; and c,.

It follows from the Theorem that the projections of solutions on the coordinate sub-
spaces are close to each other for an infinite interval of time. That is, the synchibnization

occurs.

3. Proof of Theorem
Introduce the mean values of the parameters:

1 1 L = -
k:ﬁzkiv C":EZG“ ’B:J\rzzﬁ“ “T N LM bzmzbi

T z

and rewrite the system (1) in the following form

Ti = Y;
3 3)
Ui = —ky; + az; — fz; + a+ becoswt + c1Ay; + c2Az; + 6,

where
bi = —(ki — k)ya(t) + (ai — a)zi(t) = (B — B)z}(t) + (a; — a) + (b — b) coswt.

Taking (2) into account, we have |§;]'< I} - ¢, for some constant K; > 0.

The system for u;;(t),v;;(t) takes the following form:
{ Uy = v @
0ij = —kvij + au;j — Bvij(Duij + c1Loij + c2Lug; + €5(t)
where
1ii(t) = 2 (t) —ziwj +25(8),  e(t) = 6(t) — §5(1),
Lvi; = Ay; — Ayy, Lui; = Az; — Az;.
Note that
Lu;; = Az; — Azx;
= (Ta+1,i, = Tit1,n) + (Ta—1, — Tii—1,5) + (Tiniot1 — Tji o)
+ (Tiria—1 = Ty jo-1) = HBirsia — Tjy o)
= Uiy 41,i0,514+1,52 T Yir—1,i5,51—1,52 + Yir,ia41,51,5241 T iy io—1,51,52—1 — Uiy iz, 51,52
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Denoting {uij} by u, {vij} by v, {7ij} by v, {€ij} by €, we can write

=%
_ » ()
v=—kvtou—pFy*xut+ciLlo+colu+e

where (’y * u)ij = Yij " Uiy-
We consider the system (5) for the values of (z,7) belonging to the index set J =

U Jk, X Ji, such that the set Ji_, a = 1,2 is a discrete interval. Jx, = {(ta,Ja) |
[k <N, |ka|[<N
Ja =ta + ko where —ko <1 < Nifky >0and 0 <1, < N —k, if ko < 0}. It is simple

to see that

2 card| |J Je | =V 1)+ 2N +2)+ (2N +1)]-

[ka| <N

N
5 = (N +1)(3N +1).
Therefore, {u;;} and {v;;} belong to R x IR.d2, and u;; =0, v;; =0if (z,7) € J. Let us
remark that €;; =01if (1,5) ¢ J.

We prove below that u;; is small for any (z,7) € J. In particular, it will be so for 1
and j belonging to the original N x N lattice. We will essentially use below the following

result.

Main Lemma. (i) The operator L : RY xRY —» R xR is self-adjoint. (i) Let (L)
be the spectrum of L and

™

)\0 = —8sin” m .

If Ay € o(L), then A, < Ao.

The main Lemma will be proved in Section 4. The main Theorem will be proved by

using several changes of variables. The first change of variables is linear.

Proposition 1. We assume that

™

—8¢cosin? —8 —
o Co SIN 2(2N+2) <

0. (6)

There exists a nonsingular self-adjoint linear map A : RY x RY — RY x R? such that
the following change of variables B
v=w+ Au (7
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applied to the system (5) gives the following

w=—kw—Aw+Oy*xut+c;Lw+e
| ®)
w = 1w+ Au

Furthermore, for any ps € o(A) there exists Ay € o(L) such that

Poi= (—k+c1/\s + V(—k + c1he)? +4(a+02/\s)) <0. (9)

N

Proof. Differentiating (7), we obtain v = w + Au, and it follows from (5) and (7) that
W+ Aw + A%u = —kw—kAu+ou— By u+ 1 Lw+c; LAu 4+ o Lu+ €

Claim that

A%y = —kAu + au + c; LAY + o Lu (10)

If (10) is satisfied, then (8) will also be satisfied. We will show that there is an operator A
satisfying (10). Let h® be an eigenvector corresponding to the eigenvalue A of the operator
L. Hence, Lh® = A h®, and the set {A®} forms a system of coordinates in R x RY. Each

element u can be represented as u =), u*h®. Define A as follows

Au = Zuspshs (11)

where p; is as in (9). Then

A’y = Z usp2h®, —kAu = Z —kpsush®, ou = Zaushs,
s s o S (12)
coLu = Z Codsugh®, o LAU = ch)\spsushs

Note that p2 = —kps+ a+cods+ci1Asps. Substituting (12) into (10) we obtain the desired
result. It is simple to check that A is self-adjoint. O
Now, we work with the system (8).
The second change of variables. Note that |l¢|]| < K3 - € where K3 > 0 is a constant.
If we show that

lim sup lw(®)ll = O(e),

6
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then it will imply the desired result. We are looking for a change of variables in the form
wij = 145 + 9i;(¢) - wij - (13)

where n = {n;;} are new variables and ¢(¢) = {g;j(¢)} is some function to be determined.
Differentiating (13),

| Wij = 1ij + Gijtij + gij - Uij-
Substituting (8) and (13) into the above expression, we obtain

Nij + gijwij + 9ii (i + gizuis) + gij(Au)ij

(14)
= —knij — kgijui; — Brijuij + e1Lnij + e1Lygijuij + €
If g;(t) satisfies the equation
Gijuij + giuij = —kgijuij — Brijuij — gij(Au)ij + c1Lgijuij (15)
then the equation (14) becomes
i = —knij — ¢ij(1)nij + c1Lnij + €5 (16)
and .
ij = i + 9ij(H)uij + (Au)ij (17)

Solution of the equation (15). Rewrite the equation (15) in an operator form. For
this, take into account that an arbitrary element p = {p;;} corresponds to the operator
(diag p) which acts on the space {u} as follows: ((diag p)(u)):j = pijuij. So, the equation

(15) can be written in the form
(diag §)(u) + (diag ¢°)(u) s
= —k(diag g)(u) — f(diag v)(u) — (diag g)(Au) + c1 L(diag g)(u)
For the sake of convenience set e = (diag e) (e will be g, 7, g, or g?), then (18) becomes
gu+ ¢*u = —kgu — fyu — gAu + c1 Lgu (19)
The equation (19) will be satisfied if the operator Riccati equation
g+g' =—kg—Br—gA+aly

7



is satisfied. Rewrite it as follows
§=-¢ —Pr+Ryg (20)
where R 1s a linear operator:
Rg=—kg—gA+ely (21)

Proposition 2. We have that R is self-adjoint and the spectrum o(R) = {r;}, where

(—k +eids — V(—k + eihs)® + 4(a + cz)\s)) X € (L)

N | =

rg =

Proof. By definition, the operator R acts on the space RY x RY. We will show that
the eigenvectors {h°} of L are also the eigenvectors of R. By Proposition 1 and (21), we
have

Rh® = —kh® — h®ps + c1Ash® = (—k — ps + €12, )R°

1
= (=k+ecids — 3 (—k 619 b /(= +crhe)® + Ao+ cz,\s)) h® = roh®.

Corollary. (i)

r=maxr; < ——
s 2

oL

1 s
k+8csin? ——— ) <0
( 1561 510 2(2N+2)> <

(ii) If S(t) is the fundamental matrix of the system £ = R¢ then
1S(t —to)] < ert¢7%) (22)

where 0 < ¢ < 1 is some constant independent of ¢y, cs.

We will look for a solution of (20) which is a solution of the following integral equation

g(t) = — / S(t — 7)(g*(r) + Bry(r))dr (23)

Evidently, any continuous solution of (23), ¢t € R, satisfies the equation (20). We will
solve the equation (23) using the contraction mapping principle. For any 7' > 0 and m > 0,

consider a metric space Hr,n, of continuous vector functions
2 2
R:[0,T] - RY x R?

8



satisfying

Hrm = {h(-) [ 2(0) = 0, | 2(t)]| < m,0 <t < T}

The space Hrm 1s endowed with the C%-metrics:

dist(K (1),4"(8)) = sup_[IW'(6) = K"(0)]|

Denote by I' the maximal norm: I'" = sup, ||7(¢)||. By the uniform boundedness of the

global attractor, I' is independent of ¢, ¢s.

Proposition 3. Suppose
¢*r* > 44T

and

I =

m=mgy =

N

(glrl = VVg?r = 4T .

§

Let QQ be an operator defined by:

Qh(t) = — / S(t — 1)(B2(r) + By(r))dr

Then the fbl]owing statements hold
(1) QHT,mo C HT,mo;

(ii) Q is a contraction.

Proof. (i) It follows from the definition (26) that

lQh()| < / 8= (|IB2(r)|| + BT)dr

»By the definition of the norm || - ||, |E*(7)|| < ||(7)||*>. Thus,

Q)] < / =) (m2 4 pT)dr
= (L= e™)- (m] + A1)
'mg + pT
qlr|

If (24) and (25) are satisfied, then ﬁgtTﬂF = mg and ||QA(¢)|| < mg for any ¢ € [0, T).

q|

9

(24)

(25)
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(i1) Let hy(t), hy(t) € Hrm, be arbitrary. By using the scalar product in RY x RY

and the Cauchy-Schwarz inequality, we have
-t
QA (2) — Qha(1)] < /0 "7 - |IRY(r) — h3(7)lldr

t
= / ermt=m |2y (7) = By (7)]| - 2modT
0

1
= ﬂ (1 — ") - 2myq - dist(hy (), hy(2))
qir
2my .
< W - dist(hy (1), hy(2)]-
Since
2myg _qlrl — V¢?r* —4pT g
—V; =D= )
qlr| qlr|
we have
Qist(@hy (1), Qly(8)) < p dist(hy (£), ha(1)
then statement (ii) is proved. ' O

The unique fixed point of @, say h(t), is the desired solution. Evidently, if Qhr, (t) =
hr (1), Qhp,(t) = by, (t) and T > T, then iy, () = hq,(t) for all 0 < ¢ < Ty. Denote this
fixed point by g(t) = {g:j(t)}. It satisfies the equation (15). Therefore the original system

is represented in the form-(16), (17). It follows from Proposition 3 that

llg_(t)ll <mg = — 0 asc; — oo.

26T
qlr| + V/¢?r* — 4BT
Moreover, since g;;(t) satisfies the equation
t
0s(t) = = [ (5(t = 1)) + By Yisdr (27)
Jo

and R is self-adjoint, we have that 0 < —gi;(t) < mg.
Solution of equations (16), (17). Denote by Ti¢(to,t) the fundamental matrix of the

linear system
Nij = —knes — gi3(t)s; + erLni;-
It follows from (27) then

| T16(t0, )| < a- okt mo—c18sin® srfy)(t—to)

10



where a is some constant. Therefore, 1f

k4 e8sin? ——0—— > 2y (28)
c18sin” ————— > mgy =
1 2(2N +2) qlr| + /¢?*r? — 4T
then the solution of (16) satisfies the inequality
[ < (0} - e~H¥metetor y : -q (29)
- | — &+ c1Ao + mo|
where €; = sup ||¢(t)|] and b is some constant.
Denote by T17(t,t) the fundamental matrix of the linear system
uij = gij(Huij + (Au)ij.
By Proposition 1 and (27), we have
I Ty7(2,t0)|| < agetPoli=to) (30)

where

1
0 > pp = maxp, = 5 (—k-+ c1Ao + \/(—k + c1X0)? + 4(a + c2/\0)>

Z

and a; is some constant. Therefore, we obtain from (17) and (29) the following estimate

lu(t)]] <er*!||u(0)]
1
(—gpo + k — chg — my) (31)

+ ||7(0)]| - ag [e{TFFmoFerRo)t _ papot|.

n alb
- €y,
qlpol| = k 4 c1Ao + myo| !

Since €; < const - ¢, (29) and (31) imply the validity of Theorem. The constant ¢} can be
found from (6):

. a
g —pt (32
8 sin 5(ENTI)
and the constant ¢] can be found from (24), (28):
2PT — k
HE o= (33)
8sin TENTI)

11



4. Spectra of Some Operators and Proof of Main Lemma

Since the operator £ is determined by the discrete Laplace operator A, we consider,
first, the spectrum of A denoted by o(A).
(1) For the case p = 1, under Dirichlet boundary conditions the operator A can be

represented by the following M x M matrix

—
|
(S]
—
o

0 1 -2 1
0 0 1 -2

where M is the number of points in the one-dimensional lattice. It is well-known (see, for

example, [19]) that

o {/\s:—‘Z—'Zco{z%?%lszl,...,M}.

Thus,

s
2(M+1)

Furthermore, this operator is self-adjoint and its eigenvectors are mutually orthogonal in

- 2
max Ay = —4sin”
S

(34)

the corresponding Euclidean space. -

(i1) For the case p = 2, we will find the eigenvectors and eigenvalues of A by using
separation of variables. This method was used in [12] for the case of periodic boundary
conditions.

Let My, My > 1 be fixed integers. We consider A acting on the M; x M, lattice. Let

Ayil,ig == /\yi‘i,_,, where 1 < il < Ml, 1 < iz < Mg .

b

Setting Yiyi, = Yi, * Yi,, we have

Yi,ArY;, + Y, ArY, =AY, Y

2
where A; is the one-dimensional Laplace operator. If A,Y;, = 11Y;, and A,Y;, = p2Ys,,
then A = ps + py, where

TS 7t

M +1° My, +1°

p1 = —2—2cos

(35)
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Let

TS it
)\s,t:—4—2(cole+1+cos]\/12+1>, s=1,...,M, tzl,...th.

It is clear that A is self-adjoint for d = 2, as well. If follows from (35) that

T

- < =2  °
rr;az}u\s,t_ 8sin 2 + 1)

(36)

where M = max{M;, M>}. Let pY ) = A\Y) s = 1, My, p YO = A YO
t =1,...,M,, and the eigenvectors {Y (9}, ({Y(9}) form an orthonormal basis in R
(RM?). Let Z2%, = Y2 - Y, Zot = {YL}, i = 1,...,My, i = 1,..., My. We proved
that A2 Z%! = As(Z*%'. It remains to show that M; - M, vectors Z**! form a basis in
RM: x RM2. It is simple to check that Z*!' # 0. Let us check that they are linearly

independent. It will be so if they are orthogonal. Show it. Fix two pairs (s,t) and (s, to).

Then

M1 A’-_g 1\41 l\/[2
st S0t __ VAR Vah) t yilo _
2 : § :Zixiz Ziliz - § :)il )il Yiz I/iz =1
'1.1':1 i2:1 i1:1 i2=1

if s = sg, t =t and 0 otherwise. Thus, Z** form an orthonormal basis in the Euclidean
space RM: x RM:.

(111) Let us now look at the operator L:
LViyizjijs = Vii—lizji—1j T Viztlisji+1,5> T Viria—1j1jo-1
T Vii 15+ — Wik, =1, N, B =1,2,3,4,
with the boundary conditions described above: v;; = 01if (z,7) € J. The simple observation

shows that for (i1,71) € Ji,, (#2,72) € Jk,, —N < ky» < N, if we introduce the notations

Wiyigk ks = Viyizjyj, then

LV;1355,5, = DoWiiigk ke = Wiy —ligk ks + Wiy 41isks ks + Wiy iot 1k ky + Wiy is—1ky ky — 4Wi, isk, ky

where

(1) 0<43 <N -k if —-N<k <0,
(i) k1 <331 < Nif0<k <N,
(1)) 0< i3 < N —ky if =N < ky <0,

13



(iv) —ky <io < NifO<hy <N

Therefore, the eigenvalues of L are:

ST tmw

it} — D
4 _‘<COSN—]C1+2+COSN—I\,? 5

, s=1,...,N —ky +1,
t=1,...,N —ky + 1, in the case (i), (iil);
—4 -2 cos + cos , s=1,...,N—ky +1,

t=1,...,N + ko + 1, in the case (i), (iv);

7
__4~7< — + cos T .)7 s=1,...,N +ky +1,

t=1,...,N — kg + 1, in the case (i1), (ii);

CcOS + cos

N+kl+7 N+ky+2 s=1,...,N+k +1,

t=1,...,N + ke + 1, in the case (i), (iv).

In the “worse” case (k; o = £N)

, 1+ N
max{\ |\ € o(L)} = —4 (1 + cos %H) = B e (37)

The support of the eigenvector, for example, corresponding to the eigenvalue

ST tmw
—4 — 2
. —4 d<cosN_k1+ +COSN—k2+2)

is a piece of the two dimensional discrete plane:
{@1,02,51,02) |71 — 410 = ki, g2 — 42 = ka}

in the four-dimensional discrete set J. On this piece the fé};erator L coincides with the
Laplacian A with the Dirichlet boundary conditions. Thus, all eigenvectors with the
support on this piece are mutually orthogonal. Two-dimensional planes corresponding to
different pairs (kj, k2) do not intersect. So, the eigenvectors corresponding to different
pairs (kj, k2) are mutually orthogonal. Therefore, all eigenvectors are mutually orthogonal
and form a basis in R x R®. It follows from this that £ is self-adjoint. (Though, it
is possible to prove directly from the definition of L.) This proves the Main Lemma. We
denoted the spectrum o(L) by {A;} and the corresponding eigenvectors by {h°}.

14



5. Dissipativeness of the System

Denote by {£€°} the eigenvectors of the discrete Laplace operator A for d = 2, and by
{As} the corresponding eigenvalues, see (35). It was shown in Section 4 that €% 1 ¢°52.
We assume that {£°} are chosen so that they form an orthonormal basis in RV x RN":
D ENET? = bs,8,- Let = {2}, y = {yi} be elements of RY" x RY" and |z|| be
the Euclidean norm, and the scalar product (z,y) = >, z;y;. Consider the following

representation of z,y:

Br=y Xuff, =) Y

S

Then, the following formulas hold:

Soxz=lel’, ) wiwi=) XY, > Y=y’ (38)

?

Z yiAy; = Z AsY2, Z Tl = Z As X2 | (39)
Z xiAyi = Z /\S‘Xsyrsa Z yiA:Ei - Z /\sXsYs (40)
1 s z s

Moreover, we have

Zx,yz = Z (Z Xﬁ&S‘) (Z Yﬁéfz> SEPD I N A
$2 S$1,52 1
Z Ko Yorboie = 3  Hp¥in

1,52

Z yiAyi == Z <Z Yslf;?l) Z};Sz/\szgis'z = Z /\52 Z Y91631YS2€S‘)
Z T A A ZA Y7

51,82

Assume that the conditions of the Theorem are satisfied, i.e.,

Ca

gk’

Thus, '
co —weyp =0 (41)
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for some positive w such that

0 <w< gk < k. (42)

Consider now the function
yz al ﬂl ;
7, 1 E — + wr;Y; .
/ 4 1Yi

We will show that id% < 0 on the surface U(x,y) = D if D is large enough. A direct

calculation shows that

= Z(w — k)l Hwaia? —whiat — whiziys + (yi + wz;)(a; + b; coswt) (43)
i 43

+ (yi +wzi)(1 Ayi + c2Azi)

It follows from (39) and (40) that

Z(yi + wz;)(c1 Ay; + eaAz;) = Z Ae(e1Y2 +wes X2 + (co + cjw)X,Y3) (44)

1

By (41), the right hand part of (44) can be written as

> Aser (Y; + C;“—Cll“’— Xs>2 =3 Asar(Ye +wX,)? <0
Therefore, it follows from (43) that
dt < Z(w y? +waia? —whiaf — wkiziy + (yi +wzi)(a; + b; coswt)
— Z(ki —w)yi +wpiz; —wair] +wkiziy; — (lai + 16:])(ly:| + wlz:)

=V(z,y), say.

We need to show that V(z,y) < 0 provided U(z,y) = D, D > 1. Set u = D7/4,
ni = y; D72, & = 2;D7/*. Then the equality U(z,y) = D can be rewritten as

1 1 1
D5t g BiEl = 5 ekl + puotins = 1 (45)

Proposition 4. There exist pg > 0 and C > 0 such that for any 0 < p < po and any
solution (€,7n) of (45), we have

lEl<C, il <C.
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Proof. Suppose not. Then there exist sequences {un}, {€(™}, {#n(™} such that p, — 0
and ||EM|| + |7 — oo as n — oo and (6™, 7(™) is a solution of (45) for p = pun,.
One of the following holds:
() ||[7{™]| € constant 1 ¢ for all n;
i) ™) = 00 a5 1 — o0,
Suppose (i) is true. Then, [[6(™]| — oo as n — co. Let p(n) = max; |§§n)|, B = min; f;,

& = max; a;. Thus, p(n) — co as n — oo. Represent (45) as
L g g(ma (n)2 (n)2 () ()
ZZM‘ +Z 7 *1+Z paib; +Zunw5 (46)
It follows from (46) that

1 n 1 2 n n n
Bt (n) + 5 [InI° < 1+ 5 n@ll€™P + pawll€™]] - In™) (47)

>

Dividing (47) by p*(n) and taking into account the inequa.lity 1€t < N?p(n), we obtain

1
2B+

N4 ltan
4(n) o (n) )

||77(”)|| -C (48)

2P4(ﬂ)

The inequality (48) for sufficiently large n contradicts (i).
Consider now the case (ii). Dividing (46) by |[#(™]|? and using notations above, we

have
1 1 p'(n) 1 1 ,_
i o < == -
P MOT MO R

Np(n) Np(n)
e i (49)
TRlE ]

If p(n) is a bounded sequence, then (49) cannot be satisfied for n large enough, and

we have a contradiction. Assume now that p(n) — oo as n — oo. Then denoting by (,

the ratio ”’:)E,'f))“ , we obtain from (49)

1 1 1 1,
2 ™R pnwN?Cp + (Z Bp*(n) — 5#201\’4> (2 <0 (50)

If n is large, then the discriminant of the quadratic polynomial (with respect to (,) on
the left hand side of (50) is negative and the leading coeflicients are positive. Thus, (50)

cannot be satisfied. O



Corollary. There exists puy. 0 < p1 < po and a constant ¢ > 0 such that for any

0 < p < py and any solution (€,7) of the equation (45) the following inequality holds

oo -
Yo nite > (51)
=1

Proof. Let ,E = miin {% , in; %ﬁ,} Then 1t follows from (45) and Proposition 4 that for

© < Ho
1
Zn?wzg(l—uw?»

Setting u; < 1/2wC? we obtain the desired result with co > 1/25. O

It remains to show that VV(z,y) < 0. We have,

V(,L)y) S -

(k —w) Zy? +wB) 2t —wallz|?
+w Z kiziyi — lai| — |bi](|yi] +w]$i|)}

=-D

(k=w)nll* +wB > &t + uF(&,m, /1-)}
where F' is a bounded function (as g\, 0). Therefore

V(z,y) < =D [min{(k — w),wf}co + pF(€,7,1)] < O0.
So, we prove the dissipativeness of the system and the inequality (2).

6. Concluding Remarks

1. Our method works for any nonlinearity f(z) satisfying the following condition

f(@1) = f(z2) = (21 — 22)9(z1, 72)

where g(z1,z2) > 0 for @1 # z.
2. In the work of T. L. Carrol and L. M. Pecora (see [3, 4, 11] and bibliography in

[11]), one approach for stochastic synchronization was suggested. It is based on the
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following two points: (i) in the simplest case, all subsystems are identical and coupling
admits the existence of spatially homogeneous solutions; (i1) stability of solutions is
based on the “transversal” Lyapunov exponent technique (see also [16, 17]). We
note that for (i), the synchronization phenomenon becomes the stability property
of spatially-homogeneous solutions. For non-identical subsystems, synchronization
means stability of some invariant submanifolds. In case (ii), one can give only “local”
synchronization. In general, synchronization means that we have the realization of a
synchronous regime for a wide region of initial conditions. It seems that the approach
of these authors is probably only an interstitial step in the study of synchronization
phenomena. »

3. As a criterion of synchronization, it is suggested in [11] to find negative transversal
Lyapunov exponents. But it is known from the theory of stability in ordinary dif-
ferential equations (see, for example, [22]) that an invariant set may be destroyed
under small perturbations if negative Lyapunov exponents in transversal directions
are larger than negative Lyapunov exponents in the tangent directions of the invari-
ant set. This indicates that “structurally stable” synchronization comes when the
transversal Lyapunov exponents. turn out to be smaller than the tangent ones.

4. Tt is shown in [13-18] and other works that chains (or lattices) of coupled oscillators
may exhibit a cémplex spatio-temporal behavior. In particular, they may have at-
tractors of different dimensions. It seems to us, the dimension of attractors depends

directly on the number of excited modes. We hope to study this elsewhere.
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