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ABSTRACT. We study the saddle-node bifurcation of a partially hyperbolic
fixed point in a Lipschitz family of C* diffeomorphisms on a Banach manifold
(possibly infinite dimensional) in the case that the fixed point is a saddle along
hyperbolic directions and has multiple curves of homoclinic orbits. We show
that this bifurcation results in an invariant set which consists of a countable
collection of closed invariant curves and an uncountable collection of nonclosed
invariant curves which are the topological limits of the closed curves. In addi-
tiom, it is shown that these curves are C*-smooth and that this invariant set
is uniformly partially hyperbolic.

1. INTRODUCTION

We study the bifurcation of a partially hyperbolic fixed point in a Lipschitz family
of C*-diffeomorphisms of an infinite dimensional manifold with a finite set {I‘f)}?zl
of one-dimensional invariant curves of noncritical homoclinic orbits. Specifically, we
will study the case where the fixed point has one simple eigenvalue equal to 1 and
is a saddle along hyperbolic directions. We show that the bifurcation results in the
birth of countably many closed invariant curves winding around the original curves,
as well as an uncountable collection of smooth nonclosed curves. It is also shown
that these curves are of class C* and that their union forms a uniformly partially
hyperbolic set (UPH-set). A bifurcation of this type was first investigated for
flows in the thesis of Afraimovich [Af74]. A similar result to the present one was
mentioned without proof in [AS82] in the finite dimensional case for flows.

This bifurcation can occur in the Poincaré map of a limit cycle with charac-
teristic multiplier 1, such as in the coalesence of two limit cycles of saddle type
[NPT] [AAIS]. Another possible application is to periodically or quasi-periodically
perturbed differential equations. Recently, saddle-node bifurcations have attracted
attention in applications because of thier role in intermittancy (See [Ta89]). For
bifurcations values close to a sadle-node orbits stay close to the fixed point (or
periodic trajectories) for relatively long periods of time and make an unexpected
excursion away from the fixed point. Such phenomena perhaps plays a role in the
onset of chaos or turbulence [PM].

In the case that the fixed point is a stable node along hyperbolic directions,
there can be no more than 1 invariant curve of homoclinic orbits, because the
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unstable set of the fixed point is 1 dimensional. For this case, Afraimovich and
Shil’nikov [AS74] proved that if the diffeomorphism is sufficiently smooth, there
exists a unique, Lipschitz (in fact C') invariant curve homeomorphic to a circle
after the fixed point disappears. Young [Yo] proved C*-smoothness of the invariant
curve for a general C* diffeomorphism of an infinite dimensional manifold, also for
a semi-stable fixed point.

The case of one critical homoclinic curve was investigated in [Af74], [NPT], and
[AAIS]. By critical we mean that the curve has tangencies to the stable foliation of
the stable set. It was shown in the stable case that the resulting attractor contains
dynamics conjugate to a topological Markov chain or subshift of finite type..

The result that the invariant set is a U P H-set is important from the stand-
point of ergodic theory. It implies the existence of invariant Gibb’s s-measures and
u-measures on the set [PS], [BP]. It seems that this is the first nontrivial exam-
ple of a one-dimensional U P H-set which arises from a Morse-Smale system via a
codimension one bifurcation.

For this bifurcation the case & = 2 (or £k = 1 with bounded variation of the
derivative) is of special importance due to the Denjoy Theory [De, Ni] for diffeo-
morphisms of the circle, S'. If it is known that a resulting invariant closed curve is
C?-smooth, then the restriction of the map to the curve is a C? map as well. This
would imply that either trajectories on the invariant curve are everywhere dense
or a ‘resonance picture’ occurs and there exist stable and unstable periodic points
on this curve. This behavior is completely determined by the so called ‘rotation
number’ of the map. In the case that the map is merely C! the picture can be
much more complicated.

We note that in any case this bifurcation is “inaccessible”. For values of the
bifurcation parameter greater than the bifurcation value, the bifurcation surface
cannot be approached along a path of structurally stable systems. This is because
the rotation numbers of the invariant circles must approach zero, passing through
infinitely many rational and irrational numbers as the parameter approaches the
bifurcation value.

The main idea of the proof will be to subdivide the phase space into parts; one in
a neighborhood of the disappearing fixed point and others in neighborhoods of the
homoclinic curves [Sh]. The contraction mapping theorem is then applied to ap-
propriate function spaces on certain ‘fundamental regions’ within the neighborhood
of the fixed point. Previous applications of this method, which was developed by
Afraimovich and Shil’nikov [AS74], depend heavily on the existence of an invariant
foliation transversal to the center subspace of the fixed point to construct the fun-
damental regions. In the hyperbolic case such a foliation does not exist and we are
forced to take advantage of the foliations on the center-stable and center-unstable
manifolds. In addition, the problem is further complicated by the presence of multi-
ple curves of homoclinic orbits and this has to be taken care of by multiple changes
of variables. For the proof of uniform partial hyperbolicity we show that each curve
is k-normally hyperbolic with uniform constants [HPS]. The invariant subbundles
required for this property are constructed using the method of fundamental regions
with spaces of 1-jets of curves. Asin Chow and Lu [CL], we will employ two simple
but powerful lemmas to construct the invariant curves and to show smoothness.
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2. RESULTs
Consider the following hypotheses.

Hyp. 1. T, is a one-parameter family of C*_diffeomorphisms of a manifold M,
modeled on a Banach space X, which is Lipschitz continuous in pu in the C* topol-
09y, b € [—to, po]- If dim(M) = n is finite, then we require n > 3.

Hyp. 2. For u =0, T, has a nonhyperbolic fized point0 which is a uniform saddle
along hyperbolic directions, that is, DTo(0) has spectrum with modulus uniformly
bounded away from one, with the exception of one simple eigenvalue equal to one.

With assumptions Hyp.1,2, on some neighborhood U of0 and for u sufficiently
small, there are C*-smooth coordinates (z,y, z), z € X; y € X2, and z € R, where
X = X, © X3 © R, for which T, has the local form &, given by:

z = A:L‘.—Ff(l‘.,y,Z,M) = Am—l—f(m,y,z,u)m
(1) 4 = By+g(z,y,2,u) = By+g(z,y,zup)y
Z = z+R(z,p)+h(z,y,2,4) = 2+ R(z,u)+h(z,y,2,p)

where the spectrum of A and B~ satisfy

lo(4) < g0
lo(B~Y)] < g0,

for some gg < 1. Without loss of generality, we will assume hereout that

Al < @
|B_1| < q1,

for g1 < 1. The functions f, g and h are C*-smooth in (z,y, z), and are Lipschitz
continuous in p. The functions f, g, b and their derivatives vanish for (z,y, z, ) =
(0,0,0,0) and the functions f, § and vanish for (0,0,0,0), and A(0,0,z,u) = 0.
Further, all the partial derivatives of f with respect to y and z up to order k vanish
identically for £ = 0 and so for j < k — 1

(2) D, f(2,y,2,u) = D, , f(2,y,2 1)z,
and
(3) zl:i_I)‘I})DECy,Z)f(LE,y,Z“U.) =0.

Similar equalities hold for g(z,y,z,u). This form is obtained by first changing
variables to rectify the local center stable manifold and then rectifying the center
unstable manifold.

We note that a stronger form may be obtained in the finite case, with the restric-
tion of C*°-smoothness of the diffeomorphism and certain nonresonance conditions
[Ta71].

We will use repeatedly the fact that for maps of the form (1), the planes z =0
and y = 0 contain invariant foliations given by

z = 2+ ¢(E, 20)1":
(4) z Z0 + ¢(y: ZO)y:

respectively. Here ¢-z and -y are both C* functions [Af90] [Yo].
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Hyp. 3. For p >0, T, has no fized point in a neighborhood of 0.

From hyp. 3 we can assume without loss of generality that R in (1) has the
following form

(5) R(z, p) = o) +y(w)2* + o(2%),
with «(0) =0, &’(0) > 0, y(0) > 0, and a(r) > 0 for p > 0.

Hyp. 4. The unstable set 55 of 0 for u = 0 intersects the stable set S5 transversally

in a finite set of 1-dimensional manifolds {I‘{) 7=1 of orbits which approach0 along
the nonhyperbolic direction in forward and backward time.

By the stable set S% we mean the set of all points whose forward orbits limit to
0. The unstable set S'g is the set of all points whose backward orbits limit to 0. It

is known that these sets are in fact C*-manifolds with boundary [NPT].
It is clear from (1) that for z < 0 each invariant curve I‘f) must be contained in

the local stable set S5 = {(z,y,2) : y = 0} and for z > 0 it must be contained in
the local unstable set S§ = {(z,y,2) : ¢ = 0}, which are foliated by (4).

Hyp. 5. The curves I‘é are nowhere tangent to any leaf of the invariant foliations
of the local stable or unstable sets.

With these assumptions we can state the first result. Let Q be the set of all
bi-infinite sequences on n elements.

Theorem 1. Under hypotheses Hyp. 1-5 there exists ug > 0 such that for positive
w less than po and for each @ € Q there exists a C*-smooth invariant curve I‘ﬁ in

a neighborhood of Ao = u;zlrg which winds around the curves {I‘{)} in the order of
@. Moreover, if @ is periodic, then I’ﬁ is closed.

We will make the term ‘winds around’ precise in the proof, but the meaning is
the obvious one.

In addition to the existence and smoothness of I'® we will also show that A, =
Uu—,enl’ﬁ it is unique in some sense and we shall also describe its structure in terms
of the ‘suspension’ of Q.

Definition 1. (See for ezample [Bo].) Let Q be the set of all bi-infinite sequences
on n elements. The ‘suspension’ of Q over I = [0,1], denoted by Q, is the quotient
space QL x I/ ~, where ~ is the equivalence relation (¥1,1) ~ (@2,0) if o(@1) = @3
where o is the left shift map. We give Q the topology induced by the metric on Qx I
given by

_ _ jwi — wj]
d((@1,a), (@2,b)) = > o tla—bl.
i€Z
Definition 2. Given an open set U and diffeomorphism T, the ‘“invariant set’ of

U is the set of all points p such that T%(p) € U for all integers i € Z.

Theorem 2. Given any neighborhood U of UT_ T'% there ezists ug > 0 and e neigh-
borhood V of Ao = U]_1Ty, V C U such that for all uo > p > 0 the invarient set
of VisA, = UQGQI“;’:. Moreover, A, is homeomorphic to 2.
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Finally we will show that A, is a uniformly partially hyperbolic set. The follow-
ing definition is the usual one for finite dimensional manfolds.

Definition 3. An invariant set S of a diffeomorphism f is said to be a uniform
partially hyperbolic set in the narrow sense if for each trajectory {f™(s)} in S the
tangent bundle Tyn(s)M has an invariant splitting

Tin(s)M = E*(f(s)) ® E°(f"(s)) & E*(f"(s))
and constants C, A > 1 and v < 1 such that for all integersn > 1

|Df*v| < Cv™|v|, v € E°(f"(s))
|Df"v| > C’_l)\”|v|, v € B¥(f"(s))
C’_lun|v| < |Df"*v| € Cv™|v|, v E Eo(f”(s))

’}’(fn (s)) > constant,
where y(f™(s)) is the sum of the angles between the subspaces.

The condition on the angles is satisfied trivially if M is compact. We will drop
this condition from the above defintion and use the defintion for diffeomorphisms on
any infinite-dimensional manifold with a Finsler structure on the tangent bundle.
This is justified since we are only interested in a neighborhood of a compact set
and any comparable condition is trivially satisfied.

Since we know that A, is the union of smooth manifolds, partial hyperbolicity
on A, is is implied by normal hyperbolicity on each I';, with constants which are
uniform in @. We will use here the notion of eventual, absolute, normal hyperbol-
icity.

Definition 4. A diffeomorphism f is called eventually, absolutely k-normally hy-
perbolic at V if f € C* and Ty M, the tangent bundle of M over V, has an invariant
splitting

TyM =N“@TV®N*®

and a Finsler structure on TM such that for allpe V,0< 1<k

(6) infpey m(Df*|ny) > % suppey [Df" |z, v
sup,ey |Df"|n;| < Cv™infpev m(Df"|r,v)!

for some constants 0 < v <1< A < oo.

Here the minimum norm m(A4) for a linear transformation A is defined to be
m(A) = inf{|Az| : |z| = 1}.

It can be shown that this definition is equivalent to other definitions of absolute
normal hyperbolicity [HPS], and so we omit the adjective ‘eventual’. Again, since
we will work in a neighborhood of a compact set, we may take the Finsler structure
to be the one inherited from the local coordinates.

Theorem 3. For u sufficiently small each I‘fj is absolutely k-normally hyperbolic,
with constants which do not depend on @. In particular, A, is ¢ uniformly partially
hyperbolic set.
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3. FUNDAMENTAL REGIONS

We begin by noting that I% \ {0} is the transversal intersection of S and S,
which are known to be C*. Therefore I} \ {0} is C*. Let (& (2), pj(2)) be the local
C* coordinates of I’{). Note from (1) that £;(z) = 0 for z > 0 and p;(z) = 0 for
z < 0. We can use the methods in [Yo] to show that

lim £)(z) = 0

2—0

. i
lim o{(2) = 0,

for all 0 < I < k. This implies that & and p; are C* at 0 [Ru, p.115]. In fact, the
graph of (&(z, ), pj(z, 1)) is also C*-smooth. This graph is I'y for z < 0 and I‘%
for z > 0. Thus it is a C*-smooth local center manifold, which we will denote by
T'J. Note also that the planes z = 0 and y = 0 are invariant under (1).

The parameterized map ® of &, is the map from X x [—puo, po] into itself given
by @ : (m, u) — (®,(m), u), where m € X. Consider the following proposition.

Proposition 1. Suppose that ®,, —puo < p < po, s a Lipschitz family of C*
diffeomorphisms defined locally on ¢ Banach space by (1). Then the parameterized
map & given by ® : (m,pu) — (®,(m),n) has a C*-smooth local center unstable
manifold W, which contains the half plane {(0,y,2,1) : 2 > 0,4 = 0} as well as
YN X~, where X~ is the half space with z < 0. Similarly, there is a local center
stable manifold W° which contains I‘é NX* and {(z,0,2,0): z < 0}.

Outline of the proof: The proof is in two steps. First for y = 0, and for fixed
J, we show that there exists a local center unstable manifold W§* which contains
{(0,y,2) : 2 > 0} as well as YN X ~. This is accomplished by using a cutoff function
outside of a neighborhood of 0 and repeating the steps of the proof of the center
unstable manifold theorem, but including the invariant sets as boundary conditions
in the function spaces. The functional map induced by the diffeomorphism preserves
these boundary conditions and the resulting fixed point must contain the invariant
sets as a subset.

The second step is to show that there is a local center unstable manifold W of
the parameterized system which extends Wg*. This follows by considering the pa-
rameterized system with the same cutoff function as above. The uniqueness implies
that the resulting center unstable manifold must contain W as a submanifold.

These two steps may then be repeated for @;1 to construct We*. O
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Figure 1. A partially hyperbolic fixed point after variable changes (6) and (7),
showing the stable and unstable sets with their foliations, and three homoclinic
curves. We have brought I'* N X~ and IV N Xt to the z-axis. The stable and
unstable sets are ‘flat’ in this coordinate system, but the foliations are not.

For each pair (¢,7), 1 < 4,5 < n, let W be the center stable manifold from

Prop. 1 which contains I’é N X*. Let Y;;(z, 2z, u) be the local coordinates of WS
and consider the change of variables

(7) yl :y—Yi]-(:l:,z,;,l,).

This transformation leaves the form of the local diffeomorphism (1) unchanged. Let
W be a center unstable manifold of the resulting system which contains I', N X,
with local coordinates X;;(y, z, u). Then the transformation

(8) ' =z — Xij(y,z, 1)

puts I‘éj along the z-axis, but does not alter the form of the local diffeomorphism (1).
We will denote by ®% the local diffeomorphism in the transformed cooordinates.
Figure 1 illustrates the fixed point in the local coordinate system.

Choose u; > 0, z; > 0, y1 > 0, and zg > 0 such that for all 4 < ui, all pairs
(3,7) and for all (z,y,2) € Up = {(z,y, 2) : |2| < z1, |y| < y1, |2| < 20} we have

A+ f(z,y,2,8)] < gq

(9) |A+fm( Z,Y,z .u')| < q
I(B+§(z,y, 2,1 ))‘ll < gq

I(B+gs(z,y,2,4))7 Y < g,

for some ¢q; < ¢ < 1.
Note that none of the variable changes thus far have changed z or R(z, u). Choose
ao so that —zg < a@g < 0. From (5) we may then choose uy such that

ao + sup R(U'O:p’) < 0:
u< iz
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and choose z; and z3 so that

—29 < 21 < @g < ag + sup R(ag, ) < z2 < 0.
u< iz

Next, choose uz > 0, z3 > 0 and 24 > 0 such that

23 + sup R(zs,p)+ sup R(R(z3,p), p)+ sup R(R(R(zs, ), p), 1) < 24 < 2o.
u<ps u<ps u< i3

Denote by po the minimum of w1, ua, and p3. Now define a sequence {a;}, beginning
with ag, given by

(10) ai+1 = a; + R(ai, p),

and let

(11) n, = min{i : a; > z3 + sup R(z3, u)}.
w<p!

It is clear from (5) that n, — oo as u — 0. We also observe that n, is independent
of the variable changes.

Proposition 2. There ezist z5 and y2 and a collection of invariant surfaces {Ei}?:g-l,

transversal to the z-azis given by functions {x:(z,y, u)} such that

(12) 2 < Xo(-’ﬂ,y; y’) < Xl(z’:y: p’) < 2z,

(13) Xﬂu—?:(z':y: /1') <z3 < Xn, (m;y; }1,) < xnu+1(m,y, llr) < 24,
forall1 <i,7<n, |z|< z2 and |y| < ya.

Proof. Let

xo(z,y, b) = ao + (y, a0, w)y + ¥(z, a0, p)z
with ¢ and ¢ as in (4). Denote by 3¢ the codimension 1 surface which is the graph
of z = xo(z,y, ). Define surfaces {X;} as the iterates of o under the local map
®,. Note that each X; intersects the z-axis at the points a; given by (10) and the
planes z = 0 and y = 0 along the foliations

z = a;i+¢(y ai)y
(14) z = a;+yY(z,a)z.

the surface ¥; may be written as the graph

Assume that locally near (z,y) = (0, 0)
Z,9,Z) on ;41 must satisfy
z’ y’

of a function x;. The coordinates

—_~

z = Am"i'f(z:y:Xi( N),N’)
g By + g(z,y, xi(2, y, 1), 1)
z = Xi(m;y; ,Ll:) +R(X1’($,y, ,U:),H:)—i— h’(m:y: Xi(m;y; p’):p’)

We may apply the Implicit Function Theorem to the first two equations in a neigh-
borhood of (z,y) = (0,0) to show that for (z,y) small, z and y may be expressed
as functions of Z and 7, and consequently, ¥;,; must be the graph of a C* function
Z = xi+1(&, 7). By Taylor’s theorem

xi(z,y, ) = zi + Dx;(0,0)(z,y) + o(|(z, y)|)-
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Since we have (14), we know that the Gateaux derivatives of x; along the z and y
directions are dgx; = (0, a;, p) and dyx; = #(0, a;, u). Thus the Frechet derivative
is given by
DX’i(O: 0: ,Ll,) - (¢(0: a;, ,U,), ¢(0: a;, ,Ll:))
The functions ¥ and ¢ along with their derivatives vanish identically for (z, y, z, ) =
(0,0,0,0) so for z and y small, |x; — 2;| is arbitrarily small. Thus we may choose
2 and y, such that (12) and (13) hold. O
Let zo = min{z1, 22}, yo = min{y;, y2} and
U= {(m,y,z) s z| < zo, |yl < yo, |2| < 2o}
For each set of local coordinates indexed by (%, 7), let Déj be the closed region
bounded by the surfaces |z| = zo, |y| = ¢~ ™*yo, Eéj, and Zilj, and let D,iju be the
region bounded by |z| = ¢™*zo, |y| = yo, Ei{; and ZZM+1. Suppress the index (¢, 7)
and define a sequence of regions {Di}?:o_l by Dit1 = ®,(D;)NU. Since &, isa
diffeomorphism, the boundary of each D; is C*-peicewise smooth and consists of
two disjoint simply connected components which are subsets of ¢; and o541, along
with an annular type region which is the image of the boundaries |z| = zo and
ly] = ¢ ™*yo of Dy. Since we have uniform contraction in the z direction and
expansion in the y direction the collection {D;} resembles a ‘staircase’. Note that
the component of the boundary of D; which is a subset of o; is a subset of the
boundary of D;_;. Also note from (9) that ®,(D,,_1) intersects D,, away from
|z| = g™+ zo.
We can define sets E';f and E'; in X; x X3 X R by

E: ={(z,9,2) : |[2| < zo, |y| < ¢ ™*yo,21 < z < 23]}

E; = {(a:,y, Z) se| < g™ xo, |y| < yo,23 < 2 < 24}
Here, Déj C ET and Df{u C E~. See figure 2. Also denote

RY ={(y,2): |yl < ¢ ™yo,21 < z < 2|}

R™ ={(y,2) : ly| < yo,23 <z < z4}.
Let (o € C’k(RF‘f, X1) be the function whose graph is §§ N E*. Now define function
spaces
HY = {¢eC* MR}, X1):]I¢~Colli-11 <6,

the graph of ( is invariant in EI under <I>L]}

Ji = {neC* YR, X)) nllk-ni < 6

the graph of n is invariant in E, under @LJ}

Here C™! is the space of r-th continuously differentiable functions with Lipschitz
r-th derivative. The norms || - ||,1 will be the usual norms on those spaces. It
can be easily shown that ng and J¥ are closed subsets of C’k_l’l(RI,Xl) and
C*-L1(R~, X;), respectively. And so, from Lemma 1 they are closed, bounded
subsets of C’O(R:, X;) and C°(R~, X;) under the usual uniform topology.
Because we made the change of variables (8) last, we observe the following
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Proposition 3. There exists po > 0 such that for each pu < o and for each pair
(3,7) 11 £ j there ezists a map FY : J — J3? induced by the change of variables

(8)-

N
O ri
4 7N
Zo Z3 Zn, Tn

Figure 2. Fundamental regions Et and E~.The region in EI bounded by the sur-
faces %o and %, is Dy and D;] ,,, which is the image under ;" of Dy intersected
with B/, is contained in the region betwee.n' Yn, an(.:l' ¥n, - In previous applications
of the method of fundamental regions Dy and D;J,L+1 would be rectified (made

rectangular) in a smooth way and used as the fundamental regions. When the
fixed point is not semi-stable (or semi-unstable) this is not possible.

4. GLOBAL Map

Fix I‘é and make the changes of variables (7), (8) with i = j. Fix 5 € J¥J.
Provided that u and € are sufficiently small, there is a surface ¢ in E:' which is
the image under a finite number of iterations of the graph of . We use here the
assumption that T}, is a diffeomorphism and the assumption that S§ is transversal
to S5. So, for each (7,2z) € R* there exists a minimal integer m{L and (y,z) € R~
such that

T™ (1(y, 2), v, 2) = (2, 7, 2)-

Since T, is a diffeomorphism and has no fixed points other than 0 in a neighborhood

of T'g, m), is bounded above. Let ¢ be the function {(7, Z) = Z and define { = TZZ(U).

Given 6 > 0, since T}, is Lipschitz with respect to u in the C* topology, there is
an € > 0 such that

I¢ — Colle—1,1 < 6
provided that [|7]|x—1,1 < €.

Further, { satisfies the other conditions of ng by the construction.
Thus we have the following result
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Proposition 4. Given § > 0, there ezist o > 0 and pg > 0 such that Fy : JI¥ —
Hfs] forall1 < j<m, u<po ande<eo.

Since the map is a diffeomorphism the image ¢ of the function n under f;l is
given locally by

((9,2) = Fi(n(y,2),9,2 n)
G’ (n(y, 2),y, 2, u)

Hi(n(y, 2),y, z, u).

(15)

e
|

5. LocaL Map

We will show here only the cases £ > 3. It is possible to show that the cases
k = 1,2 are similar. Fix (%, j) and make the changes (7), and (8). Fix ( € Hy and
let 5o = <|p23(DDn{g,,.aphC}), where P,3 is the projection onto Xy @& R. We have that

[Imolle—1,1 < |[Col|k—1,1 + 6.

Consider the surface ¢;, which is the image under &, of the graph ¢y of 7. From
(1) the coordinates (Z, 7, Z) of <1 satisfy

z AT]O(y;z) —I—f(no(y,z),y,z,u)
g = By+g(no(y, 2),y, 2 u)
z Z+R(Z;M)+h(770(y;z);y;z;ﬂ)-

We may apply the Implicit Function Theorem in a neighborhood of a point on ¢;
to invert the last two equations and obtain locally a function Z = 1:(7, 2)
Differentiating with respect to (y, z) we obtain

Dn(g,2)-D(§,2) = (A + f=(n0(y, 2), 9, 2, 18)) Dno(y, 2) + fz(n0(y, 2), ¥, 2, 1)

where

_ . 9(3,2)
D = .
(y,Z) a(y,z) (Uo(y;z);’y;z;ﬂ)
Now from (1)
(16)
ag/ay = B—|—gm(no(y,z),y,z,u)Dyno(y,z) +gy(770(y: Z):y:z:p’)
ag/az = gm('rIO(y: z),y,z,p)Dzno(y, Z) + gz(”O(y:z):y:z:p')
az_/ay = hm(”O(y:z):y:Z:p’)DyUO(y: Z) + hy(ﬂo(y;z);y;z;ﬂ)

85/(92 — 1+Rz(z,p,)+hm(no(y,z),y,z,u)Dzno(y,z)—i—hz(no(y,z),y,z,u).

Since Dryq is bounded and Dg and Dh are small for p small, D(g, Z) is invertible,
with
N B! 0
D(g,2)" ' = ( 0 ) ) + O(|p| + (2, ¥, 2)|).

Therefore, for u small enough
| Dma| < q|Dnol + | fel|mo| < K < oo.

This implies that ¢; is the graph of a function 71(g, Z) over an appropriate domain

in P23D1.
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Assuming @ priori that |Dn;| remains bounded, by induction we can define a
sequence of functions:
{770: N1sM2y -+« yMn,—1, 7771.“}
with domains in Py3D; whose graphs are iterates under &, of the surface ¢5. By
(1) these functions must satisfy

Ui+1(ﬂ,5) = ATh(y: ) (z(y: ) Y, ,,U,)
(17) ¥ = By+g(m(y,2),y
Z = z+R(z,p)+ h(m(y, 2), Y, 2, ).

Therefore, from (9)

Imis1] < [A+ Flimil
< q|ml
so that
(18) lImillo < g*[|mollo-

Differentiating we find

(19) D11 D(3,2) = (A + fo(ni(y, 2), Y, 2, 1)) Dni(y, 2) + f2(ni(y, 2), Y, 2, 14)-

Here
D(g: Z) = ggz: z; (Ui(y; Z): Y, 2, :u’)‘

Provided that {Dm;} remains bounded, D(7, Z) is invertible for x small, and there
exists ¢ such that

|A+ f:1|D(5,2) Y < g < 1,
and from (2) there exists a constant @; so that
|fz(77i(y: Z), Y, z, .U')HD(:U: z)_1| S qQ1|77i|-
Therefore we obtain
|IDniv1|l < q|Dms| + qQ1|mi
< q|Dm|+ ¢t Q1mol,

and, after induction, employing (18)

(20) | Dmil| < ¢*[| Dmollo + ig* Qulmollo-
For 2 < j < k — 1, differentiating j times we find
(21)
Dni1(9,2)(D(9,2)) = (A4 fo) D' iy, 2) — Dnia(9, )D] (7, 2)

+D§,zf(ni(y:z):y: :M)'*’E Pl(y; )D m(y,z)

where P, is a polynomial with constant coefficients on the variables D(g, z), Dﬂf
and D'n; with 1 <a<j-L1<8<j—1l+1and 0<y <I—1. For u small
enough

|4+ f=|ID(g:2)') < g <1,
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and from (2) we obtain
1D}, £11D(8,2)7'F < @Qjlml.
Further, from (16)

=y gz G B +g, gz
D(y,Z)—(hm)Dm(y,Z)Jr( h, 1+Rz+h1),
so that
D'(5,2) = ( o )Djm(y,Z) + R(y, 2),
where R(y, z) is a polynomial in lower order derivatives of n;. Therefore, using (20)

|Dip1| < gD mi| + qQj||millj—1,

where Q; is independent of 7. After induction, employing (18)
1D ]| < ¢l D mol| + p5(2)g’ @slImoll;-1,

where p;(?) is a j-th degree polynomial in 4. In particular,
(22) [[7lle-1 < Pr-1(5)a" [l7m0] |11

To show that D*¥~1n;,; is a Lipschitz function, assume that D*~1%; is Lipschitz
and consider

|Dk_17h’+1(y: Z) — D’“_1m+1(§, z)|
< |AlID* " 'ni(y, 2)(D(3, 2)(y, 2)1)* — D*~'mi(9, 2)(D(, 2)(8, 2) )|
+ [ f2(m:(¥, 2), 9, 2, 1) D* " 'mi(y, 2)(D(, 2)(y, 2) 1)
— fo(mi(9, 2), 9, 2, w) D*~*ns(§, 2)(D(5, 2)(§, 2)*)*|
k-2

+ Z |Pl(y: Z)Dlni(y: Z) - Pl(g: E)Dznz(g: 2)|
=0

+|D§,zf(77i(y: Z), Y, 2, ,u')(D(g: Z)(:U: z)_l)k
~Dy . f(m:(9,2),9, % u)(D(5, 2)(3, 2) )" |-
Noting that P;D'n; is Lipschitz for I < k — 2, with Lipschitz constant proportional
to ||mi]|i+1, we obtain
|D*"*n;41(9,2) — D* 0y 44(3, 2)|
< (1A + f=1)(D(9,2)"Y)* Lip(D*~ 1))

+ Lip((A + fo(mi(y: 2), ¥, 2, ) (D(F, 2)(y, 2) " )*) || D* i |

+) Qillmillea 1D(7, 2) 7

=0
+|Dy . f(ni (9, 2), 9, 2, )| D(5, 2) " F1I(y, 2) — (3, 2)]
(qLip(Dk_lni) + Qk”ni”k—l + |Dk,zf(77i(y: Z), Y, 2, ,U:)HD(?, Z)_1|k)

IA
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Again, for p small
|A+ fz1|D(5,2)(y,2) H[F <g < 1.
Thus, since D*~ 17, is Lipschitz, Dk_lni_l_l is Lipschitz, with constant
Lip(D*~*n; 1) < qLip(D* ') + qQullmille-1 + || D5 . F(mi) [l D(7, 2) 7 [1*-
After induction it can be shown that

(23) Lip(D*~'n;) < ¢'Lip(D* o) + ¢*pe (1) Qr ol -1
+ 30 ¢ IIDE L Fmn)|ll| D7, 2) 1 |*.

Using (18) and (3) choose g so that

1Dy, £ (mio) Il D(5, 2)7H|* <

€

(1-9).

N

Then

Zq1|D§,zf(ni—l(y: Z): Y,z IU’)HD(:U: 2)(y: Z)_1|k

=0
< ZqIIDk, Fa—)ll1D(g, 2)~|*
+ Z q'|D} , f(mi—)ll| D(g,2)7Y||*
I=i—ip+1
i—1g €
< 21—
< Y d5(i-9)
=0
{ k — \—1| 1k
+ > 4 amax Dy fmllID@,2)7|
I=i—ip+1
€ P
< & (i 1)gi-tott k 1k
< 5+ lo—1g ™ max (Db, (m)lll D)7 ",

so that the last term of (23) may be made arbitrarily small. Let 7 be the extension
of 1, onto the domain R~ through iteration of ®, and <I>;1 and define 77 () = n.
Now (13), (18), (22) and (23) imply that if p is sufficiently small, then ||7||z=1,1 < €,
since n, — 2 is large.

Finally, n satisfies the invariance condition for H¥ by composition. Thus n € J&
and we have proved the following

Proposition 5. Given e > 0 and § > 0, there ezists uo > 0 such that f?gc : ng —
JY, foralll <i,7<nand 0 < p < uo.
6. EXISTENCE OF INVARIANT CURVES

To show the existence and C*~1l.smoothness of the curve I’fj we will use the
following [CL].

Lemma 1. Let X and Y be Banach spaces and U an open subset of X. Then a
closed bounded ball in C*Y(U,Y), (k = 1,2,3,...), is a closed bounded subset in
co(U,Y).
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Let u be sufficiently small that the map F% : J& — JiJ given by

Fi = Fi ol o Fa,
is well-defined for all € sufficiently small and for all 1 < 7,7 < n. Now given
@=(...,w_1,wo,wi,...), consider the infinite sequence of maps
(24) e R St LU

This is equivalent to a map F : J — J, where
_ Wi_1Wi_1 Wiy Wit1Wig1
J_...XJE XJE XJE+ +X"',

supplied with the sup norm ||n||; = sup;cz ||m:||o- By propositions 3, 4 and 5, for p
sufficiently small

| Fesest () — Fes ()| < elff —l,
where ¢ < 1 independent of w;. Thus F is a contraction on the complete metric
space J and has a unique fixed point 7, = (..., nt~1,7¢,7t+1,...). In other words,

q FYi-1%i p FUiYitl g4

r—>17fk — o, T e
Let _ _
m:] m:J +n,
we, = AU T U U @i no,
j€z =0 i=m%3 41

where S7 is the preimage in the original coordinate system of the graph of 171. The
expansion in the y-direction insures that W3, is negatively invariant. Similarly, we
construct a manifold W7, which is positively invariant by constructing an invariant
sequence of functions v, = (... ,v; Y00, v}, .. .) with v, € C*~L1(I,, x [23, 24], X2),
where I;, = {z € X : |z| < 20}

Now fix the change of variables by (wo,w1) and let I,, = {y € X3 : |y| < yo} and
let

G: I, x I, x (23,24) x (0, o) — Iy x Iy,
be the function defined by

G(z,y, z, 1) = (09 (y, 2, 1), v2(2, 2, ).

It is easy to show that G is a uniform contraction with respect to (z, 1) and so for
each (z, u) it has glldea fixed point A, (z, u), which depends C*~1:l.-smoothly on z
and Lipschitz continuously on u. Let ’ny be the graph of A,. Now by the invariance
properties of W2, and W7, the images of ’yf; are the unique invariant intersection
of these two manifolds and since T, is a C* diffeomorphism this intersection is
Ck—l,l‘

Now suppose that @ is periodic, with minimal period N. Let (w1,ws,...,wnN)
be the smallest periodic part of @ and consider the map

(25) FUNC1 o FUN-1UN o FUN-IUN-1 o ... o FUIW o FUIV2  JUIWL _, Juiwi

Because of periodicity of the map (24) and the uniqueness of the fixed point 7.,
the first component, 7} of 7, is the unique fixed point of the map (25). A similar
result holds for v,, and so the intersection is periodic.



16 TODD YOUNG

The proof of Theorem 1 will be complete after we show in the next section that
the curves are C*-smooth.

7. C*F-sMOOTHNESS OF THE INVARIANT CURVES
We will use the following lemma to prove the final degree of differentiability of
re
E
Lemma 2. (D. Henry) Let X andY be Banach spaces and U be an open subset of

X. Assume that h : U — Y 1s locally Lipschitz continuous. Then h is continuously
differentiable if and only if for every zo € U,

l[h(z + A) — h(z) — h(zo + A) + h(zo)|| = o([|A]])
as (z,A) — (zo,0).
For a proof of this result see Chow and Lu [CL].
Fix @. Here again we show only the cases k > 3. The cases k = 1,2 are similar.
Let { = f;’lj(ni). From (15) for k& > 3
D*"Y(5,2) = [(Fo—D((3,2)(Ge, Ho)')D* 'l (y, 2) + Ra(2)]
-(D(Q,Z)(y, z)—l)k—l,
where R is a function of D*F, Dfn} and D(g,z2)withl<a<k-1,1<f<k-2
and 1 <« < k—2. Thus R is continuously differentiable as a function of z, and so,
using Lemma 2 we have
D*"Y(y+E,z+ A) - D*1((5,2) — D*"{(yo + &, 20 + A) + D*~'((5o, Z0)
— [Fm _DC(g:z)(Gz:Hm)t]
[D*'ni(y + B, 2+ A) - D* " 'ni(y,z) — D*'nl(yo + E, 20 + A)
+D* 0] (3o, 20)]-(D(¥, 2)(y0, 20)~1)* ™" + o(|A])
as (y, 2,2, A) — (¥o, 20, 0,0). Define

(26) (C, d) = (yO + E: Z0 + A) - (yO; ZO)-
From (15)
c = GMi(yo+E,20+A),y0+E, 20+ A, u) — G (o, 20), Yo, 20, 1)
= D(7)(%0,20)(E,A) +o(|(E, A)]),

so that
1D(5,2) " [|(c; d)| = (B, A)| + o(|(E, A)]).

Also, since G is continuously differentiable
Y+E—-(F+c) = GM(y+E 2+ A),y+E,z2+ A, u)— Gni(y,2),v,2 1)
—G(Ui(yo + E: 20 + A): Yo + E: 20+ A: ,Ll:)
+G (1. (Yo, 20), Yo, 20, 1)
= o(|(E, A)]),
as (y, 2,2, A) — (yo, 20, 0,0). Thus
YFE—(7+¢) = oll(c. ),

[1]
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as (¢, Z,¢,d) — (Yo, Z0,0,0). A similar result holds for z + A — (Z + d). Define

(27) A(h,zo) = limsup [h(z +4) — h(z) — h(zo + 4) + h(zo)|'
(2,A)—(z0,0) |A

(see Lemma 2) Then

1
|(c, )]

|D*=¢(§ + ¢,z +d) — D*7¢(3,2) — D*"((go + ¢, Zo + d) + D*¢(%o, Z0)|

=, A . - ~1pi
. ||((c d))||max|Fm—DC(Gm,Hm)iHD(y,Z)(yJ) HEA(DH 1, yo, 20) + of 1),

and so there is a constant L such that
(28) A(D*7¢, 5o, Z0) < LA(D*~'n}, yo, 20).
Since there are only a finite number of curves I’é we may choose L independent of
@ and j.

Next let g = ¢ and let {n;} be the sequence of functions determined by (17).
From (21), noting that the last two terms are continuously differentiable,

D* 'niti(y+ 5,2+ A) — D* " 'nig1 (5, 2) — D* Mmiga(y + B, 20 + A) + D* i 1(do, Zo)
= Ci(yozo)
[D*'mi(y+ B, 2+ A) — D 'mi(y, 2) — D miyo + B, 20 + A) + DF iy, 2))]
(D(5,2)(3:2) (30, 20))* " + o(|(E, A))),

as (y, 2,2, A) — (yo, 20,0, 0), where
ei(z) =4 + fm(ni(y:z):yazap’) - Dni(gaz)(gm:hm)t-
Define

(S,t) = (yO + E: 20 + A) - (yO: ZO)-
From (17)

s = g(yo+E,20+ A, ) — 9(yo, 20, 1)
= D(7)(y0,20)(Z, A) + o(|(E, A)|).

A similar result holds for ¢t. Thus
(29) (s, 8)] > |(E, A)|(1+ o(1)).
Also

= g(y+
= of|(E,4)])

as (y, 2,2, A) — (yo, 20,0, 0). This implies with (29) that

— (7 —5) = o(|(s,1)])

[11

(30) y+
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as (v, 2, s,t) — (Yo, 20,0, 0), and similarly for z+ A — (2 + ¢t). Now using (29) and
(30) in definition (27) and noting that the functions {e;} are uniformly bounded
we have

I(E, A)] _ 1k _
S el 2)(0 ) DA o, )

< g MD* ni, 9o, 20)

where g < 1 for p sufficiently small. Employing (13),

INA

/\(Dk_lm+1,?o,2o)

(31) A(D*~ '+, 4o, Zo) < g™ 2 A(D* ¢, yo, 20).
Now if we apply (28) and (31) to (25) we find
AD* 't g0, 20) < ¢+ 2LA(D* 0], 0, 20)
< eA(D* ', 9o, 20)

where ¢ < 1 for u sufficiently small, independent of j. Thus, using the fact
[[7%|k=1,1 < €, for all j, we have

sup A(Dk_lni:gO:ZO) S c” sup A(Dk_lni_n:yoazo) < 26:
(Fo0,Z0)ER™ (y0,2z0)ER™
which implies
A(D*"'nl,y0,20) = 0
for all (yo,20) € R™. Therefore by Lemma 2 we have that 173; € C* and so I“;’: is
C*-smooth for all p sufficiently small. O

8. TOPOLOGICAL STRUCTURE OF THE INVARIANT SET

Choose ¢g sufficiently small for Prop. 1-5 to hold. Fix j and change variables by
(7). Define regions

E_':Z = {(m:yaz) : |§E - Xij(yazap'” S €0, |y| S Yo, 23 S z S 24}:

where X% is as in (8). The set E:j is a ‘slab’ of positive thickness in the z-direction.
Since X% (y,2,0) = 0 for z > 0 the intersection

n
. .y
B, =)

=1

must also be a slab of positive thickness, for all 4 small enough. Repeat this process
for each 1 < 7 < n and consider the sets Ei which are the set E’i in the original
cooordinate system. We may require the collection {E’{L} to be pair-wise disjoint
by taking eg and yo sufficiently small.

Let Vs be a 6§ neighborhood of Ag with § small enough that Vs contains no fixed
points of T}, for 4 > 0 and so that V; intersects each 8E’fL only at the front and back
sides s3 and s4, where s; = {(z,y,2) : 2 = z;}. Since V; contains no fixed points,
if p € Inv(V;) then the orbit {T7(p) F°  must intersect the sets {E}} infinitely

many times. Let @'(p) be the bi-infinite sequence defined by

wi(p) :{ j if T,(p) € B},

0 otherwise.
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Then let @(p) be the sequence obtained from &' (p) by first deleting repeated symbols
and then deleting all zeros.

We will now prove that p is on the curve I“;,,_'(p). By Propositions 3, 4, and 5,
each slab E}, is mapped by 7, into each slab EJ, as the preimage of a region with
piecewise smooth boundary. Since the map is a diffeomorphism, the images in EY,
of the collection {E:,_ i, must be pairwise disjoint. By the same reasoning, T’L_1
maps each slab E}, into a slab EY, as the preimage of a piecewise smooth region.
Let 7" be the set function induced by 7"/ which takes regions in Ej, to regions in

Ef/. Define
Beon = Fomien(g0) () B (((F40)~ (B),
and inductively, for each subsequence wy of length 2N + 1, centered at index 0,
E“Y = E“v- ﬂ]-_""—l“"’ o F¥-2¥Tlo o FYU-NU-Ni1(FU-N)
((Feo“r)" o, . o (Fen-ren)=L(En),

where @y _1 is the sequence of length 2N — 1 obtained from wy by deleting the
initial and final elements. By Propositions 3, 4, and 5, E?~ is bounded by the
graphs of functions =, nt, v, and v, which are the graphs are the images and
preimages of the boundaries of the sets {E{L} Finally let

E° = ﬂE“—’N.
N

The orbit of p must be contained in E®~ for any subsequence @y and so it must
be contained in the intersection. For each z the cross section of E?~ is bounded by
the graphs of 5=, nt, v, and v*. By Prop. 5 the diameter of these cross sections
is decreasing to zero as N — oo, thus E¥ consists of a single curve in E}°, which
must be the intersection of n; and v!. Therefore, the invariant set A, = Ugeals-

% from 7;° Ns3 to 7};* N s3 corresponding
to the union of the first n, + m{° images of v;;° under T,. Let p“_’_: [0,0¢] — Ve
be a parameterization of this segment by arc length. Since each 4 is smooth we
may define this parameterization in a uniform way. Next define %% : [0,1] — o

by ¥ (s) = p(s-1%). We then have a map ¥ : Q@ — A, defined by
Y(@,s) = ¢“(s).

The function ¥(@, s) is well-defined, since for each @, I‘ﬁ is unique and the param-
eterization by arc length is well-defined.

To show that ¥(@, s) is one to one, suppose (@1,s1) # (@2,82). If @1 # @y,
consider the possibility that ¥(@;,s1) = ¥(@3,s2). That is T4 and I'}> share
a common point. This is not possible however since that point would need to
have two distinct iteneraries. If however @w; = wg, while s; # s; and since the
parameterization is one to one, ¥(@1, s1) # ¥(@3, s2).

Since Ay, = UgaT', given p € T we can shift @ to @’ so that

Now consider the section of the curve I’

+m
peEUL T Th(y*e).
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Then let s = (arc length from %0 N s3 to p)/l“—”. This shows that the function
¥(w, s) is onto.

To show continuity of ¥ and ¥~!, consider that points p1,p2 € A, are close if
and only if their orbits are close for a finite number of iterations. This is the case
if and only if the two orbits pass through the same slabs E7 for a finite number of
iterations in forward and backward time. This is the case if and only if either @(p;)
and @(pz) agree in those places or @(p1) and o(@(p2)) agree in those places. This
in turn is equivalent to either @(p1) and @(pz) or @(p1) and o(@w(pz)) being close
in the topology on Q. In the former situation I‘ﬁl and I‘ﬁE must be close for finite
iterations of 7;* and 72, which implies I“* is approximately [“? and p; is close
to pp if and only if s; is close to s3. If the case that @(p;) and o(@(p2)) agree in
several places then @(7T,(p1)) must agree with @(T,(p2)). We can then repeat the
preceeding, for T,(p1) and T,(p2), and so, continuity of T, proves that p; is close
to py if and only if (@1, 1) is close to (@2, s2). O

9. UNIFORM PARTIAL HYPERBOLICITY

Since we know that ', is the union of smooth manifolds, uniform partial hyper-
bolicity on I', is implied by normal hyperbolicity on each I‘ﬁ, with constants which
are uniform in @. In order to show that f satisfies the hypotheses of Definition 4
on I‘ﬁ we will use the method of fundamental regions on spaces of 1-jets on F;‘IZ'

Fix @ and a sufficiently small neighborhood U of the origin. For y small enough
I'2 NU consists of a countable (finite in the case @ periodic) collection {’yi}f;_oo
of curve segments, ordered in the natural way. Each of these segments is the inter-
section of sections C* and D* of the manifolds Wg, and WS, as in section 6. These
sections are given locally as the graphs of functions 7(y, z, u) and v(z, 2, u). Note
from section 6 that n* and v* are uniformly bounded in the C* norm independent
of @ and i. For each % consider the change of variables

(32) (E’: m—ﬂi(y;z;ﬂ);
followed by
yl =Yy- Vll(zlizuu’);

where v is the coordinate function for D' after (32). These changes shift the
sections C* and D* to the hyperplanes z = 0 and y = 0 and thus +* is given in the
new coordinates by (z,y) = (0, 0).

Now consider the map restricted to the negatively invariant manifold Wg,. For
each ¢ the local diffeomorphism on C’f,. in the transformed coordinates is

By + §(y,z, 1)y
z+ R(z, p) + h(y, 2, p)-

w2

]

It has been shown that this local diffeomorphism may be transformed by a C*-
smooth change of variables to the form

By +§(y, z, n)y

(33) z + R(z, 1)

W
|

[A£90][Yo].
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Let (0,0,20) denote points on 7¢. For each zo consider Cl-smooth surfaces on
C"* with coordinates (y, z) given by

z =2+ ¢(y: ZO::“’):

with ¢(0, zo, ) = 0. We assume that ¢ is Lipschitz continuous in (2o, ). From
(33) it can be shown using the Implicit Function Theorem that a surface given by
¢ is transformed by the local diffeomorphism to a surface given by a function ¢
which must satisfy the equations

(¥, 20,n) = (14 R(y, 20, 1))9(y, 20, 1)
(] = By+ g(y, 20 + ¢(y 20, 1), 1)
Zo = 2o + R(zo, )
where
R(y, 20, 1)$(y, 20, ) = R(20 + $(y, 20, ), ) — R(20, 1)
Furthermore,

T s a9y . _
Dy¢(y: 20, ,u') : @ = (1 + R(y: 20, “)Dy¢(y: 20, ,Ll:) + Ry(y: 20, p’)¢(y: 20, ,Ll:),

where 5
7
3y B+ gy(y, 20 + &, 1) + 92 (y, 2 + ¢, 1) Dy $(y, 20, ).
For u and |y| small, g—g is invertible and so
S - - o7, _
Dy ¢(7, zo, ) = [(1 + R(y, 20, 1)) Dy ¢(y, 20, ) + Ry (y, 20, ) $(y, 2o, u)](@) L

In particular, we are interested in y = 0, for which

(34)  Dy¢(0,%0, 1) = (1 + R(0, 20, 1)) Dy $(0, 20, 1) (B + gy (0, 20, 1)) ~*

Now for each (zq, 1) let

Jé(qs) = {¢1 : D¢1(0: 20, ,Ll:) = D¢(0: 20, ,U:), ¢1(0: 20, p’) = 0}

This equivalence class is called the 1-jet of ¢ at y = 0 with target 0 [HPS]. Let J*!

denote the space of all such entities. It is clear that the local diffeomorphism maps

1-jets at (zo, 4) into 1-jets at (2o, u). Note in particular that 33(0) at zo is mapped

into 73(0) at Z. In other words, because of the choice of local coordinates, the class

of surfaces which are flat at y = 0 is invariant under the local diffeomorphism.
Next choose ag < 0 and o < 0 and let

ai+1 = @i+ R(as;, 1)
6 = a+R(omw,
and as before let
n, = min{n: a, > a}.
Set It = [ao,a1] and I, = [, ] and let

¢h € Lip(I~ x (0, po), C*(Xa, R))

be the function which is identically 0 in the local coordinates indexed by 7. If we
follow the image of the surfaces defined by ¢% under the diffeomorphism T,, because
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of the invariance of I“;:’, we obtain a family of surfaces transversal to 'yf[H. Denote
by 1o the function restricted to It whose graph is the image of these surfaces in
the 7 + 1 local coordinates. Next for each y define function spaces

Ky {5(¢) € Lip(I*, J*) : [Dy¢ — Dygol| < 6,

Dy ¢(0,a1) = (1 + R(ao))Dy (0, a0)(B + g,(0,a0))"*}
K {55(8) € Lip(I~,J*) : [ Dyg| <,

Dy¢(0,8) = (1 + R()) Dy (0, @)(B + gy(0,2)) "'}

With these definitions the following propositions are almost immediate.

Proposition 6. For each € and p and for each i, T, induces a function EZZ K7 —
K? which represents. a map from the 1-jets of surfaces through 'ny at I~ to 1-jets
of surfaces through 'y:[H at I,

Proof. By the invariance of I’ﬁ and the definitions of It and I, for each point
p € ¥t NIT x X1 x X; there exists a unique point p* € ¥4, NI~ x X; x X; such that
p is the image of p* under a minimal power m/ of the diffeomorphism. Suppose p
and p* have z coordinates 2o and zj respectively. Because T, is a diffeomorphism,
if 23(¢*)(y, 20, ) € K7, then a surface at z given by ¢* is mapped by T, to a
surface at zp on 'yf[H. Now by our assumptions on K, and K? these surfaces are
Lipschitz with respect to zo. Further, since T}, is a diffeomorphism, if € is small the
surfaces must be close to ¢ in the C! sense. Thus they are the graph of a function
#(y, 20, ). Define 33(¢) = g;[(_]é((ﬁ*)). It is clear that 33(¢) € K;' and that S;l is
well defined. O

Proposition 7. Given € and § there exists pg such that for all i, T, induces a
function &, : K5+ — K_ which represenis a map of 1-jets of cuves through v, at

It to 1-jets of cuves through *yi at I~.

Proof. We can construct £ as we constructed previous functional maps. Define
{3(#:)}:#, to be the sequence of 1-jets of surfaces through 7,, induced by (34). From
(34) for p small enough

|Dy¢i+1| < ‘I|Dy¢i|
where 0 < ¢ < 1. If we define n, to be the number of iterations of transition from
It to I~ we have that n, — oo as u — 0 and the result of the proposition is clear.
d
Using Propositions 6 and 7, let ¢ and € be sufficiently small that for each local
coordinate system indexed by j(i,%) the map £¢ : K7 — K given by
'(30(#)) = Elac © Eloe(30(#))
is well-defined. Let E : K — K be the function
E=---x&1'x&x& x...
where
K=---xK_ xK_ xK_ ...

is the complete metric space with the uniform norm

175(¢)Il = sup || Dy ¢*[y=oll-
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Proposition 8. For u small enough, E is a conitraction on K.

Proof. From (34)

|Dy$1(0, 20) — Dy $2(0, 20)| |1+ R||(B+gy) |- |Dy$1(0,20) — Dy 2(0, 20)|

<
< q|Dy¢'1(0,ZO) - Dy¢2(0:z0)|:

where g < 1 for p sufficiently small. This inequality along with the boundedness
&g and the fact that n, — oo as u — 0 imply the proposition. O

Now Proposition 8 implies that the map E has a unique fixed point. Let 3}(¢*)
be the zero component of this fixed point and define N* to be the graphs of all
the images and preimages of D¢* under the tangent map. This is an invariant
subbundle of TI“;’: which is tangent at I‘ﬁ to Wg,. Similarly, we may construct an
invariant subbundle N*® which is tangent to W ,.

Since the functions 7} and D¢}, may be made arbitraily small by taking x4 small,
we have for a neighborhood U of 0

SUPpcr |DT|N;
infpeU m(DT|N;)
suppcy | DT|1,rs|

infpey m(DT|z,r2)

|A+ fol +a(n)
m(B + gy) — b(k)
1+ R, +h2|+c(ﬂ')
1- |Rz + hz| - C(,u,),

IV IA IV IA

where a(u), b(p), and ¢(p) all limit to 0 as 4 — 0. For any n,
n=mno+mo+n,+my, +ny,+m,+...+n,+m;

where, ng < ny, mg < max(m;) and [ is the number of excursions away from
U. Using this decomposition of n, if p is small enough it can be shown that the
inequalities (6) are satisfied for

0 = e { B 2) )y | DT DT[™ |

m(DT)™ (A + fz) + a(p))™m(DT)*™

s _ D) (B + )~ )

kT _Fnu
|DT|"e¥=(1 + |R; + hy| + c(u)) ™+
DT (1A + £l + () # =

kT kn

m(DT) %% (1~ |R, + ha| — e(u) ™=

where 0 = max {m, } and m = min {m;}. Now for x small, the number n, is large
whereas m®“7 is fixed. Thus for u sufficiently small A <1 and v > 1.

Now since the integers {m;} are fixed, the changes of coordinates are uniformly
bounded in the C* sense, and n, is independent of the changes, we may make the
preceeding estimates uniformly with respect to @. This proves absolute k-normal
hyperbolicity of each I‘ﬁ with uniform constants. Thus A, is a UPH-set. In fact,
for uniform partial hyperbolicity the constants may be relaxed by setting &k = 1. O
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