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Playing with Toys: Towards Autonomous Robot Manipulation for
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Abstract— When young children play, they often manipulate
toys that have been specifically designed to accommodate
and stimulate their perceptual-motor skills. Robotic playmates
capable of physically manipulating toys have the potential to
engage children in therapeutic play and augment the beneficial
interactions provided by overtaxed care givers and costly
therapists. To date, assistive robots for children have almost
exclusively focused on social interactions and teleoperative
control. Within this paper we present progress towards the
creation of robots that can engage children in manipulative
play.

First, we present results from a survey of popular toys for
children under the age of 2 which indicates that these toys share
simplified appearance properties and are designed to support a
relatively small set of coarse manipulation behaviors. We then
present a robotic control system that autonomously manipulates
several toys by taking advantage of this consistent structure.
Finally, we show results from an integrated robotic system that
imitates visually observed toy playing activities and is suggestive
of opportunities for robots that play with toys.

[. INTRODUCTION

The role of play in the development of children has been
extensively studied, and a large body of work discusses the
importance and nature of play in children. Piaget’s book
”Play, dreams, and imitation in childhood” is one of the
earliest references to argue for the importance of play for
child development, and the notion that play helps with
children’s motor skills and spatial abilities [23]. Though
the exact nature of potential benefits of play are not fully
understood, many believe that it is important for healthy child
development [9]. Recent evidence based on studies of play
in rats has shown that, at least in rats, play does have an
effect on the development of the brain [21] [22] [11].

Controlled scientific studies have shown that early inter-
vention programs for very young children (infancy to 3 years
old) can significantly improve cognitive performance over
the long term [9] [24]. Due to this evidence, federal and
state programs such as IDEA and Babies Can’t Wait have
been created to identify children at risk of developmental
delays, and intervene with therapies designed to promote
cognitive development. A common form of intervention is
the distribution of toys with the goal of creating stimulating
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environments for mental development. Although the presence
of toys in a childs environment increases the chances of
therapeutic play, there is no guarantee that a child will
interact with the toys in a beneficial manner with the nec-
essary intensity and duration, especially since children with
developmental delays may lack typical interests or get easily
discouraged.

Robotic playmates capable of physically manipulating toys
have the potential to engage children in therapeutic play, and
encourage them to interact with toys in a beneficial manner
with sufficient intensity and duration. In this way, a robotic
playmate could augment the beneficial interactions provided
by overtaxed care givers and costly therapists. As a first step
to this type of therapeutic application, we present a robot
capable of autonomously manipulating several types of toys.
Such a robot could serve as a platform for new forms of

educational interaction.
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Fig. 1. The experimental platform, including Neuronics Katana 6M180
with an eye-in-hand camera. The other sensors shown are not used in this
research.

II. RELATED WORK

There has been significant related work on robots for use
in therapeutic play with children. Most of this work has been
focused on two areas: robots that are meant to be played with
as toys, or robots that assist physically disabled children with
play-related manipulation tasks. Some of the key work in this
area is summarized here.

A. Robots to Assist Children in Play

Several robots capable of assisting physically disabled
children with play-related manipulation tasks have been
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developed. In [14], a teleoperable robot called PlayROB
was developed to allow children with physical disabilities to
play with LEGO bricks. The robot’s workspace includes a
LEGO brick surface on which to build structures, with a brick
supply system at one edge of the play area. Children with
physical disabilities could control the robot using various
input methods in order to build structures composed of the
LEGO bricks.

Topping’s "Handy” robot [27], [26] wasn’t specifically
designed for play, but instead was designed to assist children
with cerebral palsy to perform a variety of tasks such as
eating and brushing teeth. However, the robot’s use in art
and drawing play in children was also examined, and is
summarized in [27]. The goal was to allow the children
to develop their spatial awareness skills through use of this
robot, and to evaluate whether the children were able to use
the system and enjoyed using the system. Cook et al. have
also studied the use of robot arms for play related tasks [3]
[2]. This robot was designed to perform play tasks using a
large tube of dried macaroni.

These robots are all designed to assist physically disabled
children with play related manipulation tasks. In contrast, we
are interested in robots capable of autonomously manipulat-
ing toys.

B. Robots as Toys

Robots have also been studied in play related tasks where
the robot itself is the toy. Some examples of this are Michaud
et al’s Roball [15] [16] [17], Tito [15], and the Robotoy
Contest [18] [19]. Interactions between children with devel-
opmental delays and these robotic toys were studied.

Scassellati et al. have studied interactions between robots
and autistic children with the Yale Child Study Center
[25]. This work demonstrates the potential of robotic toys
combined with passive sensing to help diagnose autism in
children. This is a strong motivator for using robotic toys
equipped with sensing capabilities.

Additional studies involving interactions between autistic
children and robotic toys are described by Dautenhahn et al.
[5] [4] [71[6] and Kozima et al. [12], [13].

Although many of these robots are autonomous, they do
not engage children in manipulation based play with non-
robotic toys.

III. A SURVEY OF CHILDREN’S TOYS

We are specifically interested in play that requires ma-
nipulation. In order to determine what capabilities a robot
would need to be able to interact with a diverse set of
manipulation-based toys, we performed a survey of currently
popular toys for children under the age of 2. Based on this
survey we have designed robotic behaviors to implement
some of the common play behaviors associated with these
toys. We selected this age range for two main reasons. First,
we are interested in robotic playmates that can promote child
development through early intervention, since young children
appear to be particularly vulnerable to the environment.
Second, we are interested in toys for which autonomous

robot manipulation may be feasible in the near term. Our
results suggest that this special subset of common everyday
manipulable objects may be much more tractable than the
objects typically manipulated by adults. As indicated by
popular guides to age appropriate toys [8], the suggested
age for toys tends to increase with the complexity of the
toy in both perceptual and physical terms. For example, toys
such as brightly colored blocks, rattles, and baby puzzles
are suggested for infants, while toys with complex patterns
that require pushing, pulling, rolling, and lifting are recom-
mended for children old enough to walk.

A. Study of Toys

For our survey of toys, we selected the 20 most purchased
toys from Amazon.com recommended for children under the
age of 2, and specifically designed for manual manipulation.
For this particular study, we chose to leave out toys such
as stuffed animals and dolls that appear to focus on social
interactions. After collecting images for these 20 toys we
developed a list of manipulation behaviors relevant to toys for
this age range. We then had three lab members individually
describe the perceptual characteristics of each toy and the
appropriate manipulation behaviors for the toy. If two or
more of the subjects agreed that a particular operation was
applicable to a toy, we recorded this toy as requiring the
selected operation. As depicted in table I, several common
manipulation behaviors were frequently reported as being
required.

1) Perceptual Requirements: Relative to many objects en-
countered in everyday human environments, toys for young
children tend to have qualities that can facilitate percep-
tion by robots. As other robotics researchers have noted, a
common feature among toys for children in the 0-2 year
old age range is the use of bright, saturated colors [1].
Morever, we found that many toys include bright, solid colors
for each distinct, manipulable part of the toy, such as a
different color for each block or each button. This was true of
90% of the toys in our study. Our approach to autonomous
toy manpulation takes advantage of this by using a color
segmentation approach that segments uniform bright solid
colors to find the the distinct manipulable parts of each toy.

2) Manipulation Requirements: Toys can support a wide
variety of manipulation behaviors, but we found that some
manipulation behaviors are much more common than others.
In our study we found that grasping, stacking, inserting,
button pushing, spinning and sliding were the most common
behaviors. We describe these operations in more detail here,
and give examples of toys that use these behaviors.

Many toys afford grasping of various objects or parts of the
toy. Grasping entails putting enough pressure on an object or
a part of an object to be able to move it around in the world.
This is required for several of the other operations discussed
here. 85% of the toys in our study afford grasping. Examples
of toys that afford grasping are blocks, cups, etc, such as the
blocks shown with the shape sorter toy in the upper left of
Fig. 2.
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Toys such as blocks, cups, and other objects are designed
to be stacked upon one another. Depending on the toy,
stacking may or may not require that the objects have a spe-
cific orientation relative to each other. For example, LEGO
blocks fit together only in certain orientations. However,
simple wooden blocks may not have specific orientation
requirements for stacking. Another example of a stacking
toy is shown in the upper right of Fig. 2. 35% of the toys in
our study can be stacked.

Toys such as shape sorters afford objects to be inserted into
other objects. Shape sorter toys include blocks of various
shapes (often differing in color as well), as well as a part
with correspondingly shaped holes or slots. An example of
such a toy is shown in the upper left of Fig. 2. 60% of the
toys in our study afford insertion.

Many toys include buttons that can be pressed to perform
various functions. This is especially common in toy musical
instruments such as the toy piano shown in the lower left of
Fig. 2. Many electronic toys include buttons to trigger light
and sound responses or motorized movements. 70% of the
toys in our study afford button pressing.

Toys such as the trolley shown in Fig. 2 afford sliding
motions. The toy shown has brightly colored shapes that
are free to move along wires, constraining them to a set
trajectory. The shapes are free to rotate about the wires as
well. Both of these motions, as applied to toys, generally
require grasping some portion of an object and moving
it along a constrained trajectory. In the case of spinning,
this generally means grasping part of an object in order
to rotate it. One example of this is rotating a toy steering
wheel. Sliding can involve translation alone or translation
and rotation. Many toys also include doors or compartments
that can be opened and closed by moving along a constrained
trajectory as well. 35% of toys in our study afford sliding,
while 25% afford spinning.

TABLE I
TOY MANIPULATION AND PERCEPTION REQUIREMENTS

[ Toy Property [ Percentage of Toys |

Bright, Solid Colors 90%
Affords Grasping 85%
Affords Stacking 35%
Affords Inserting 60%

Affords Button Pressing 70%
Affords Sliding 35%
Affords Spinning 25%

IV. AUTONOMOUS ROBOTIC MANIPULATION OF TOYS

Based on the results of our survey, we have developed
a robotic perception system and a set of manipulation
behaviors specialized for the autonomous manipulation of
children’s toys. We have validated this system with a real
robot using several unmodified toys.

A. The Robot

The robot consists of a Neuronics Katana 6M180 ma-
nipulator equipped with an eye-in-hand camera. The arm

Fig. 2. Examples of toys that require grasping, insertion, button pressing,
and sliding.

is attached to a mobile robot equipped with several other
sensors and actuators, but for this research the arm was kept
stationary, and no sensors other than the eye-in-hand camera
were used. This is a 5 degree of freedom arm with a 1 degree
of freedom two fingered gripper. The platform is shown in
Fig. 1.

B. Color Segmentation

All vision is performed using the eye-in-hand camera
attached to the robot’s manipulator. An example image is
shown in Fig. 5(a). The vision system is based on color
segmentation in order to take advantage of the tendency for
toys to have manipulable parts with distinct, solid, high-
saturation colors. Furthermore, many toys appear to share
similar, commonly occurring colors, so we trained the color
segmentation system to classify pixels into these commonly
occuring color classes using Hue-Saturation color histogram
models. After classification, connected components and mor-
phological operators (erosion and dilation) are used to seg-
ment the classified colors into significant regions of colors.
This relatively simple, well understood vision system is well
suited to the domain of children’s toys.

In more detail, each image is taken with the eye-in-hand
camera and converted into the Hue, Saturation, Value (HSV)
color space. Hue and saturation describe the color, while the
value describes the brightness. In order to reduce the effect of
lighting conditions on the color segmentation, only the hue
and saturation are used to segment the colors in the image. A
two dimensional histogram (H by S) is built for each color
class. These histograms are constructed as follows. A set
of seven desired color classes are selected: red, green, blue,
orange, yellow, purple, and black. For convenience, a name
and representative color (R,G,B) is selected for each color
class, such as “red” or “ blue”. A set of images of colored
objects are taken. Corresponding labelled images are created
by labeling each pixel of each camera image with the color
of its desired color class. Examples of camera images are
shown in Fig. 3, and the corresponding labeled images are
shown in Fig. 4.

After the set of raw and labelled images have been
generated, the histograms are built. Although any size of
histogram is supported, the work described here uses 32x32
histograms. These histograms are used to determine which
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color class each pixel of a new image belongs to. For each
pixel of a camera image, the value of the corresponding
bin in each color histogram’s color class is selected. The
pixel is assigned the color class of the maximum likelihood
histogram. An image after assigning colors to each pixel is
shown in Fig. 5(b).

After classifying the pixels into the color classes, we find
connected components using four connectivity. The resulting
color regions are then cleaned up using erosion and dilation
(morphological operators) to reduce the effect of noise or
small color blobs that are not part of objects. An example
of an image processed in this way is shown in Fig. 5(c).

Camera images used in generating color histograms

Fig. 3.
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Fig. 4. Labeled images used in generating color histograms

(a) Camera images used in generat- (b) Labeled images used in generat-
ing color histograms ing color histograms

(c) Example image of some blocks
as seen from the eye-in-hand camera

Fig. 5. Color Segmentation

C. Grasping Controller

All of the manipulation behaviors make use of a grasp
controller that performs overhead grasps. The grasp con-
troller initially takes an (x,y) position and an orientation
0 as input, which causes the gripper to be placed over the
position (x,y) on the plane in front of the robot, and rotates
the gripper by 6 around an axis of rotation that is parallel to

gravity and orthogonal to the plane. The grasp controller can
then be commanded to descend and grasp an object below it
using tactile sensing performed by IR range sensors and force
sensitive resistors (FSRs) in the fingers. This tactile sensing is
used to determine when to stop descending and start closing
the gripper, and how much to close the gripper. One of the
advantages of this grasp controller is that it positions the
eye-in hand camera such that its optical axis is normal to the
surface the robot is manipulating on. This allows us to form
an image where the extent of the objects, excluding height,
can be seen from above. This also positions the Infrared
distance sensors in the hand over the plane so that the height
of an object under the hand can be estimated.

D. Toy Manipulation Operations

We have implemented several of the common behaviors
identified through the survey of children’s toys. Each of these
behaviors makes use of the color-based perception system
and the overhead grasp controller, using the robotic platform
described above. Because a color segmentation approach is
used, only toys where each part is a solid color distinct
from its surroundings are suitable. Also, the arm used for
this research has 5 degrees of freedom, which constrains
its ability to reach arbitrary locations with arbitrary orien-
tations. The grasping controller described above allows for
interactions with toys that can be manipulated using overhead
manipulation strategies, which rules out toys that require
manipulations on the side of the toy.

1) Grasping: The grasping controller for the arm as
described above is suitable for grasping some toys where
an overhead grasp is suitable, such as many blocks. For this
work, we assume that we can segment objects from their
environment and from other objects based on their color. This
works well for objects such as colored blocks. A grasping
controller using this type of perception was developed, and
is described here. This controller will locate a block of a
particular specified color and grasp it using the manipulator.
In the case of multiple regions of the specified color appear,
the largest region takes precedence.

First, the robot scans its environment by moving its
arm (with eye-in-hand camera) above several points in its
workspace, allowing it to see the entire workspace. An
image is taken at each location, and color segmented using
the technique described above. Once a color region of the
specified color that is an appropriate size has been identified,
the gripper is positioned above the centroid of this color
region. The arm then moves down towards the plane until the
Infrared distance sensor in the palm reports that the nearest
object is closer than a specified threshold. The gripper then
closes on the object until the pressure sensors in the hand
report that the pressure being applied is above a specified
threshold. The arm then lifts the object up by moving away
from the plane. The grasping behavior is shown in Fig. 6(a).

2) Stacking: A stacking controller was also implemented,
which allows an object to be stacked on top of another object.
In contrast to grasping, stacking requires interaction with
two different objects. Here the color of both objects must be
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specified: for example, specifying *blue’ and ’green’ would
attempt to stack the blue block on top of the green block.
Because the view of the eye-in hand camera is partially
occluded when an object is being held by the manipulator,
both objects involved in the stacking operation are perceived
prior to grasping. This is done similarly to the grasping
controller by moving above the two regions in order to
determine their positions, followed by grasping the object
that is meant to be placed on top of the other object. After the
grasp is complete, the arm positions itself above the bottom
object using the position saved prior to grasping. Finally, the
arm lowers itself to a specified height, and releases the top
object, creating a stack. The stacking behavior is shown in
Fig. 6(b).

3) Insertion: An insertion controller was also developed,
allowing objects to be inserted into holes in other objects.
Similar to the stacking controller, the arm first moves over
the object to be inserted and remembers this location. The
arm then locates color regions corresponding to the hole that
the object is to be inserted into. Once the correct location
has been identified, the object to be inserted is grasped,
positioned above the hole for insertion, lowered to a specified
height, and released.

4) Button Pressing: The button pressing behavior is simi-
lar to the grasping behavior in that it involves positioning the
gripper above a color region. However, instead of descending
until the distance sensor in the palm is triggered, a height to
press down to is specified to the controller. Making contact
with a button is not sufficient to actually press it; to achieve
its function it must generally be pressed down some distance.
Because this distance varies, the button pressing controller
that has been implemented currently requires the desired
height to be specified. A force controlled arm would be better
suited to this type of operation, but the arm used supports
only position control. The controller will position the arm
above the color region of the desired color, and then move
down to the specified height with the gripper closed (with
the fingers touching, instead of spread apart). The footprint
of the closed finger is fairly large, so buttons cannot always
be pressed accurately. The button pressing behavior is shown
in Fig. 6(d).

V. IMITATION OF HUMAN PLAY

An effective robotic playmate should interact with the
child as well as the toy. As a first step for interactivity
we have developed an integrated system that imitates human
play, shown in Fig. 8. In this scenario, the human has a toy
that is identical to the robot’s toy, so that the human and the
robot can play side by side. This integrated system combines
the previously described autonomous robot manipulation
system with an additional perceptual system that interprets
human play in terms of high-level behaviors that match
the autonomous systems behaviors. This perceptual system
operates independently from the robot. It consists of a fixed
camera that observes the workspace of the human and a
client that communicates with the robotic system’s server via
sockets using high-level commands. This perceptual system

(b) Stacking

(c) Insertion (d) Button Press-

ing

Fig. 6. Toy Manipulation Behaviors

Fig. 7. 'The toys that the system has successfully played with in informal
testing.

makes use of the same common appearance characteristics
of toys in order to interpret human play. Play interactions
with a human are demonstrated, but interactive play between
children and the robot is future work.

A key aspect to the success of this integration is the use of
high-level manipulation behaviors for communication. This
enables the integrated system to avoid issues with transform-
ing the two system’s distinct perspectives. For example, the
human is observed from a fixed camera with a side view,
while the manipulation system observes the toys with a
moving, eye-in-hand camera with an overhead view. Due to
the use of high-level operations this discrepancy does not
cause any difficulties.

(Target,
Object,
ikl Operation) ™

Behavior Recognition Behavior Creation

e (Done) —

Calor . Colar
Segmentation Tracking Segmentation

Grasping

Play Behavior Recognition System Toy Manipulation System

Fig. 8. Block diagram of the system interaction. The systems are highly
similar in their structure.
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A. Play Behavior Recognition System

In order to recognize play behaviors, this additional per-
ceptual system identifies and labels the sequence of motions
associated with a play behavior. Instead of monitoring the
movements of the person’s body, this perceptual system
monitors the movements of the toy. A toy of interest is first
identified and then tracked over subsequent motion frames.
A set of individual motions is then recognized and used to
identify the corresponding play behavior. Previous work with
this system was presented in [10]. Activity recognition with
respect to play behaviors has also been addressed by other
related work, such as [20].

1) Object Detection: In a similar manner to the eye-in-
hand perception system, detecting toy objects in the scene
consists of three primary steps - RGB to HSV color con-
version, histogram back-projection, and segmentation. Since
most childrens toys use saturated colors to keep visual
attention, we use color as the key feature for detecting an
object. During a human playing action, a color input image
is captured at 30 frames per second and converted into a
one channel Hue image. This image is then back-projected
with a pre-defined histogram to segment color. Each seg-
mented group is then re-examined to eliminate outliers and
unsymmetrical contours. Through this process, individual toy
objects resident within the image are identified. An example
of this process is shown in Fig. 9.

I I | I“ R
() (b) (©
u - I _|
(d) (© ®
Fig. 9. (a) Original Toy Scene Image (b) Back-projected Hue Histogram

(c) Histogram Back-projected Image (d) Smoothed Image with Gaussian
Filter (e) Binary Thresholded Image (f) Final Toy Objects Detected

2) Object Tracking: Among the multiple toys detected,
the first one to take an action is considered as the play object.
The other toys are then marked as targets, and the motion
of the reference toy is described relative to them. Object
tracking involves the repeated process of object detection,
in which the back-projection histogram only references the
color of the play object. (Fig. 10)

3) Play Behavior Recognition: Using the motion behavior
analysis process, individual behaviors are identified and
sequenced based on movement of the play object. The final
resting destination of the play object is then used to identify
the final play behavior. For testing results, we select two
behaviors- 1) Insert: after a downward motion towards the
target, the play object disappears, and 2) Stack: after a

®

Fig. 10. (a) Toys Detected in Scene (b) Back-projected Hue Histogram (c)
Resulting Color Space (d) Play Object Detected in Scene (e) Back-projected
Play Object Hue Histogram (f) Resulting Play Object Color Space

downward motion towards the target, the play object is
placed on top of the target.

VI. EVALUATION OF THE INTEGRATED SYSTEM

We performed a test of the integrated system’s ability to
perform turn based imitation. The play behavior recognition
system was used to track a human manipulating some toys.
After a toy manipulation operation was performed by the
human, a message was sent to the robotic toy manipulation
system, which would perform the same task, and notify the
human when it had completed the task.

In order to perform these experiments, the play behavior
recognition system and the toy-manipulation system used
different computers that communicated using a simple mes-
sage protocol over the campus network. Upon recognizing a
manipulation operation, the play behavior recognition system
would send a message to the robot using the following
format: { TargetColor ObjectColor Operation}. The robot
would then carry out the same task on the toys in its
workspace. Upon completion of the task, the robotic system
would send a simple reply of { Done } to notify the other
system that it was ready to perform another manipulation
task.

Two types of manipulation operations were tested: stack-
ing, and insertion. The button pressing operation was not
tested in this experiment, as it was implemented only on the
robot, not in the play behavior recognition system. The same
set of toys was placed in the field of view of both systems for
each task. The toys were each brightly colored and solid, and
each toy in the field of view at a given time had a unique
color. The toys used were green, blue, and purple blocks,
orange and red cups, and a large red bin.

Two human subjects participated in the experiment, and
each completed eight manipulation tasks using these toys.
We show the results in Table II. The two failures that
occured involved the purple cross-shaped block, which had
a tendency to slip out of the robot’s simple 2-finger gripper.

VII. CONCLUSION

Toys for young children represent an exciting realm for
autonomous robot manipulation, where there is the opportu-
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TABLE I
RESULTS FROM THE TOY MANIPULATION EXPERIMENT

[ Operation | Subject T | Subject 2 |
Insert Green block into Red bin Success Success
Insert Blue block into Red bin Success Success

Insert Purple block into Orange cup Success Failure
Insert Blue block into Orange cup Success Success
Stack Green block on Orange cup Success Success

Stack Green block on Red cup Success Success

Stack Purple block on Orange cup Failure Success

Stack Blue block on Red cup Success Success
Total 7/8 7/8

(a) Play Behavior Recognition Sys-
tem

(b) Robot Manipulation System

Fig. 11. Experimental Setups

nity to both develop systems that manipulate unaltered, yet
relatively simple, human objects and create robotic systems
capable of enriching the lives of children. This simplified
world of manipulation could serve as a valuable stepping
stone to systems capable of manipulating everyday objects
beyond toys.

Within this paper, we have demonstrated a system capable
of participating in manipulation based play with a human that
takes advantage of the structure of children’s toys. The sys-
tem can perceive brightly colored toys, and perform several
common manipulation behaviors on multiple, unaltered toys.
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