Performance-Based Navigation: Area Navigation (RNAV) and Required Navigation Performance (RNP) Program

Presentation to: EWG Ops SC

Name:

Jim Arrighi, RNAV/RNP Group

Date:

July 28, 2009



Federal Aviation Administration

### **Overview**

- What is Performance-Based Navigation (PBN)?
- History of PBN
- Stakeholders
- 18 Step Process
- RNAV/RNP Implementation Sites
- RNAV/RNP Benefits
- RNAV/RNP Implementation Projects
- Moving Forward Integrated Procedures Concept
- RNAV Equipage
- Aircraft and Operator Approvals
- Challenges to RNAV/RNP
- International Harmonization





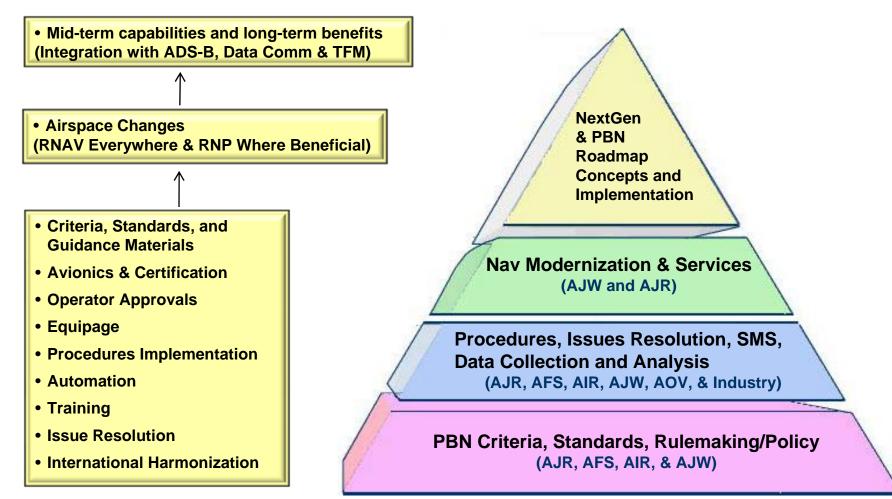
### **Performance Based Navigation (PBN)**

- Performance-Based Navigation (PBN) Instrument Flight Procedures (IFPs) include:
  - RNAV Standard Instrument Departure (SID)
  - RNAV Standard Terminal Arrival Route (STAR)
  - RNAV Q & T Routes
  - RNAV (RNP) Approach (RNP SAAAR)

#### • Over 18,000 Instrument Flight Procedures in the NAS

- Nearly half (48 percent) are now PBN Procedures
- 45 Major Airports (346 Runway Ends)
  - By the end of FY09 97% will be served with PBN Procedures




### **History of PBN**



- Industry requests the establishment of an RNAV/RNP Program at FAA-RTCA Spring Forum 2002
- FAA Administrator issued a policy statement committing FAA to aggressively pursue the implementation of RNAV and RNP in the National Airspace System- July 22, 2002
- Roadmap for Performance-Based Navigation published with industry coordination - July 2003, August 2006 (v2)
- Roadmap initiatives incorporated into NextGen Implementation Plan and FAA Enterprise Architecture- 2008/2009



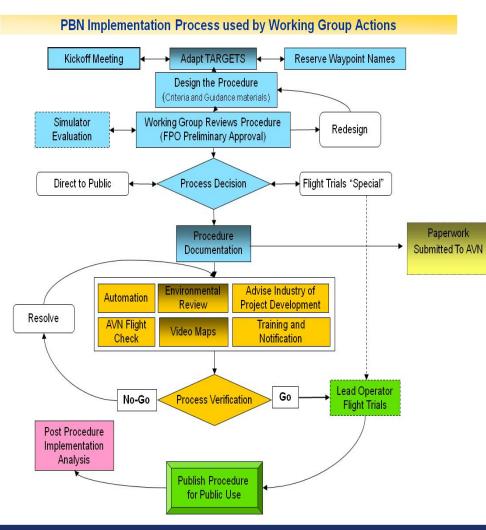
### Summary of FAA & Industry Interactions to Achieve PBN Evolution



**EWG Ops SC** 

July 28, 2009




### Stakeholders in PBN Procedure Development Process

- RNAV/RNP Group
- Aviation System Standards
- Flight Standards
- Aircraft Certification
- Lead Operator
- ATC Facilities
- Service Center
  - Ops Support
  - Environmental Office
  - Safety Management Office
- Airport Authority





### **18-Step RNAV Implementation Process**



- Developed through FAA, Industry, and MITRE collaboration
- 18 systematic manageable steps
- Provides RNAV Working Groups with standardized process for the development and implementation of Terminal RNAV procedures (STARs and SIDs)
  - Defines the specific roles and responsibilities of the collaborative Working Group members
- Supports a collaborative effort
- We are now expanding the process for RNP applications




### **RNAV** Arrival and Departure Procedure Sites

#### 2005 – July 2009 [Cities in bold have OEP airports]

- Alaska (Adak, Akhiok, Anaktuvuk Pass, Anchorage, Arctic Village, Atka, Golovin, Juneau, Kaltag, Ketchikan, King Cove, Nondalton, Palmer, Perryville, Petersburg, Ruby, Sitka, Willow)
- Arizona (Glendale, Goodyear, Phoenix, San Carlos, Sedona, Tucson) .
- California (Alturas, Borrego Valley, California City, Long Beach, Los Angeles, Mojave, Oakland, San Diego, San Francisco, Santa Monica) ٠

-----

- Colorado (Aspen, Holyoke, Lake County, Nucla, Rifle, Walden) ٠
- Florida (Boca Raton, Ft. Lauderdale, Ft. Myers, Miami, Naples, Orlando, Tampa, West Palm Beach) .
- Georgia (Atlanta-Hartsfield, Augusta-Regional, Augusta-Daniel) .
- Hawaii (Hana) .
- Idaho (Arco, Driggs, Grangeville, Hailey) .
- Illinois (Chicago-O'Hare, Chicago-Midway)
- Kentucky (Covington, Louisville)
- Maryland (Baltimore) .
- Massachusetts (Boston, Nantucket)
- Minnesota (Minneapolis-St. Paul)
- Montana (Colstrip) .
- Nevada (Carson City, Las Vegas, Reno)
- New Hampshire (Manchester) .
- . New Jersey (Newark, Teterboro)
- New York (New York-Kennedy)
- North Carolina (Charlotte)
- Ohio (Cleveland)
- Oregon (Portland)
- Pennsylvania (Philadelphia)
- Puerto Rico (Isla de Vieques, San Juan)
- Rhode Island (Providence)
- Tennessee (Memphis)
- Texas (Dallas-Ft. Worth, Houston-Bush Intercontinental)
- Utah (Heber City, Richfield, Salt Lake City)
- Virginia (Washington-National, Washington-Dulles, Virginia Tech)
- Washington (Seattle-Tacoma)
- Wyoming (Afton, Kemmerer, Ten Sleep)



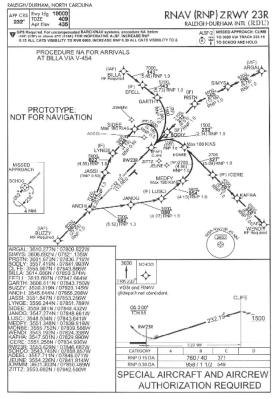


on behalf of the U.S. Go

that Clause is an

USA

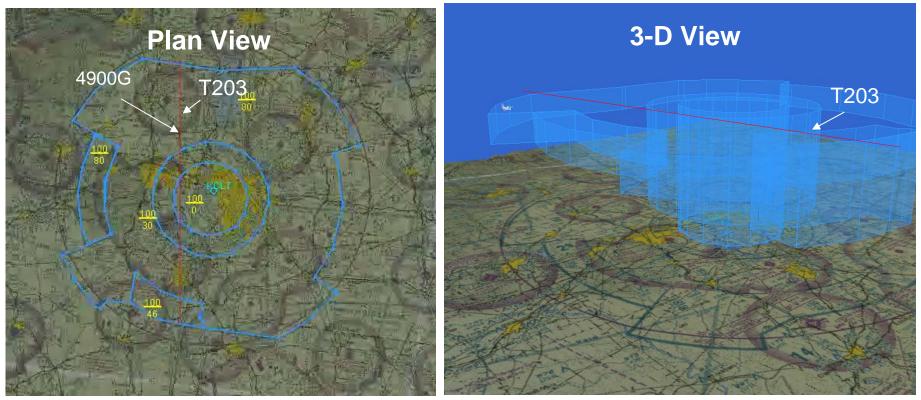
Phone: 703-883-6443


Fax: 763-883-1911

E-Mail: targets@r

#### **RNP SAAAR Approach Procedure Sites**

#### 2005 – July 2009 [Cities in bold have OEP airports]


- Arizona (Phoenix, Prescott, Scottsdale, Tucson)
- California (Bishop, Burbank, Long Beach, Los Angeles, Monterey, Ontario, Palm Springs, San Francisco, San Jose)
- Colorado (Hayden, Rifle)
- Ecuador (Quito)
- Florida (Ft. Lauderdale, Miami, Tampa)
- Georgia (Atlanta-Hartsfield, Atlanta-Fulton, Atlanta-Dekalb)
- Guam (Agana)
- Hawaii (Honolulu, Lihue)
- Idaho (Hailey)
- Illinois (Chicago-Midway)
- Indiana (Gary, Indianapolis)
- Kentucky (Covington, Louisville)
- Maryland (Baltimore)
- Minnesota (Minneapolis-St. Paul)
- Missouri (Kansas City)
- Montana (Helena, Kalispell)
- Nevada (Reno)
- New Hampshire (Manchester)
- New Jersey (Newark)
- New York (New York-Kennedy, New York-Laguardia)
- Oklahoma (Oklahoma City)
- Oregon (Portland)
- Pennsylvania (Pittsburgh)
- Tennessee (Memphis)
- Texas (Dallas-Ft. Worth, Houston-Bush Intercontinental)
- Virginia (Washington-National, Washington-Dulles)
- Washington (Seattle-Boeing Field)
- Wyoming (Jackson)



RAIFIGH/DURHAM, NORTH CAROLINA Orig RALEIGH-DURHAM INTL (RDU) 35°53'N-78°47'W RNAV (RNP) Z RWY 23R



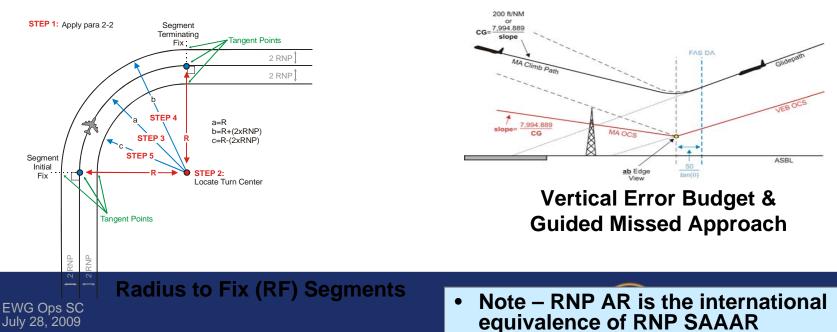

### **En Route Example – RNAV Routes** Increased Capacity and Access



- T-routes requested by Aircraft Owner's Pilot's Association (AOPA)
- Better access to Class "B" and Class "C" airspace
- Reduced mileage and increased en route capacity due to lower Minimum En Route Altitudes (MEA) based on GPS

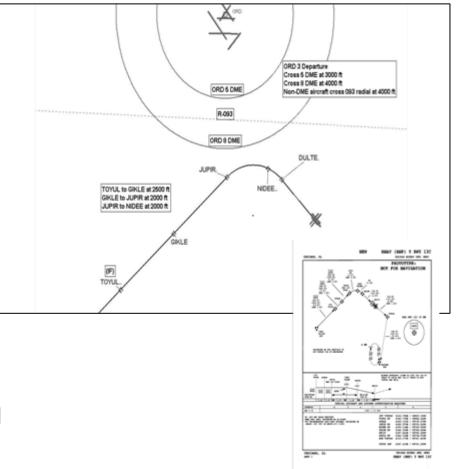


### **RNP** Approach with Authorization Required **Enabling Features (RNP SAAAR)**



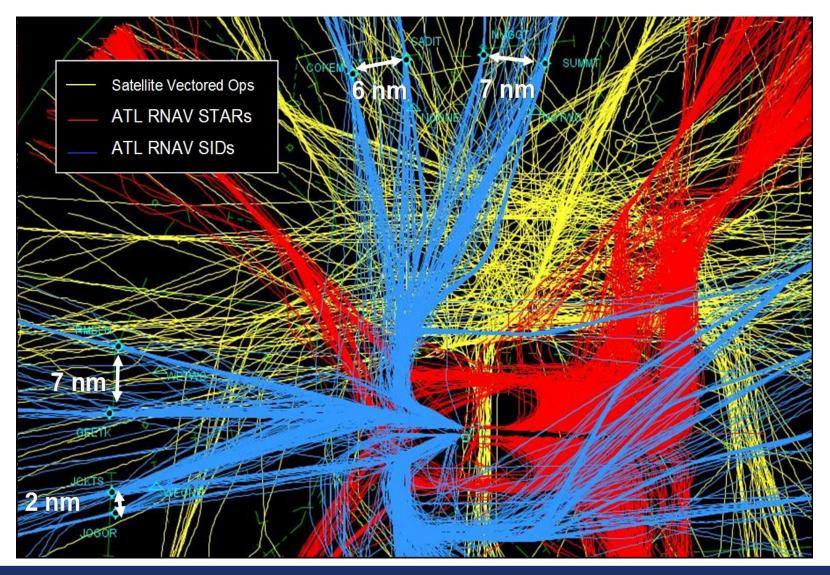

Segment

Initial


Fix

- Narrow lateral linear segments
- Curved segments anywhere along the approach
- Guided, narrower turns on missed approaches
- Performance-based Vertical Buffers




## **De-confliction of Chicago O'Hare/Midway Using RNP SAAAR**

- Effort allows procedural separation for aircraft departing Runway 22L at Chicago O'Hare Airport (ORD) from RNP aircraft landing Runway 13C at Midway Airport (MDW)
- RNP instrument approach procedure allows greater use of Runway 13C during certain configurations

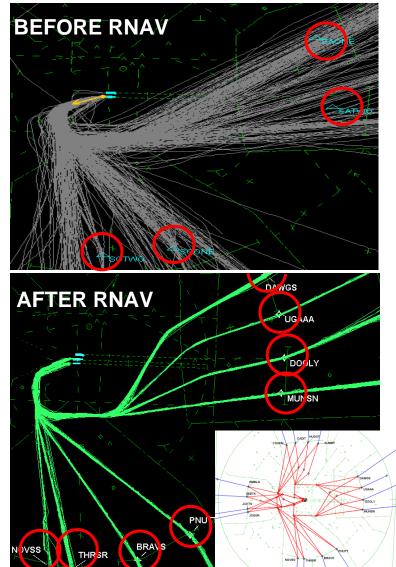




#### **PBN Addresses Complexities in the Terminal Domain**



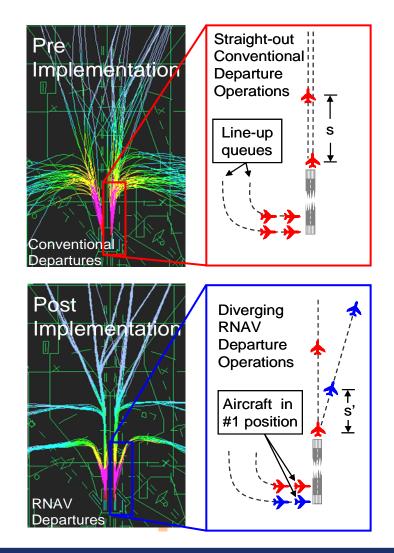



# Atlanta (ATL) Departure Procedures Before and After BEFORE RN

- Approximately 94% of daily departures are RNAV-capable
- More departure lanes and exit points to the en route airspace
  - Capacity gain of 9-12 departures per hour
- Repeatable and predictable paths
- Benefits

EWG Ops SC

July 28, 2009


- Increased throughput
- Reduced departure delays
- \$30M annual benefit (at 2007 demand levels)
- Cumulative savings through 2008 is \$105M

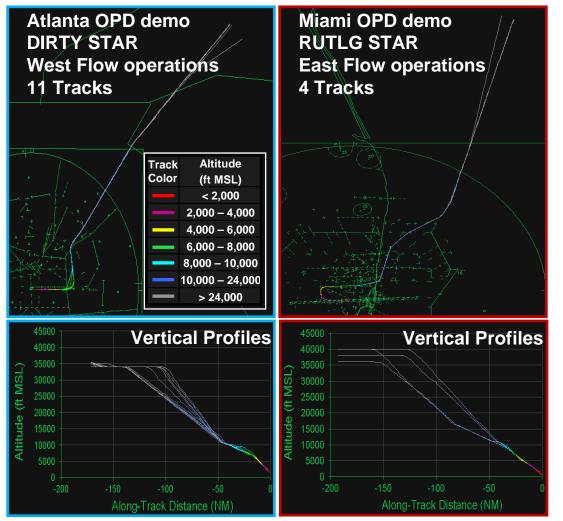




# Dallas Fort Worth International (DFW)

- RNAV enabled diverging departures at DFW
- Diverging departures allow for the application of same runway separation standards, reducing interdeparture times
- Reduction of inter-departure times yields an increase in departure capacity
  - 11 to 20 additional operations per hour
- Increased departure capacity results in approximately between \$8.5M and \$12.9M in delay savings per year
  - At 2005 demand levels
- Cumulative savings through 2008 is \$30M






### **RNAV Arrivals** Optimized Profile Descent (OPD) Arrivals

1

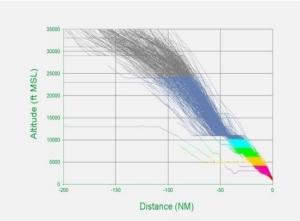
EWG Ops SC

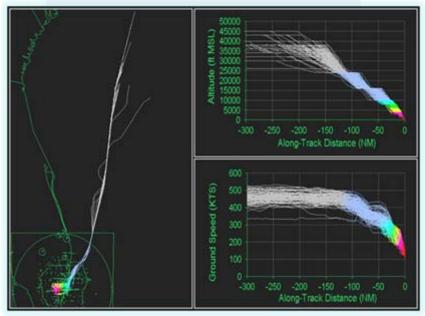
July 28, 2009



- OPDs provide large benefits for fuel, emissions, and flight time
- May 2008 Demos
  - DIRTY STAR at Atlanta (ATL)
    - 38 gallons of fuel savings and 360kg reduction in CO<sub>2</sub> emissions per flight
  - RUTLG STAR at Miami (MIA)
    - 48-52 gallons of fuel savings and 460-500kg reduction in CO<sub>2</sub> emissions per flight
- 600 OPD nighttime demos at ATL from August -November 2008
  - VIKNN and NOTRE STARs
  - 40-60 gallons of fuel savings and 380kg reduction in CO<sub>2</sub> emissions per flight




### **RNAV Example OPD Site Selection Process**


- Conducted a NAS-wide high-level analysis for prioritization of OPD implementation sites (Feb 09)
- Analyzed 4,000 flows at 1,800 airports and ranked by complexity of implementation, relative benefit, and resource readiness
  - Complexity ranks sites by challenges to OPD implementation
  - Site impact ranks sites on greatest impact
  - Resource readiness identifies sites that are currently planned for RNAV
- Next steps

EWG Ops SC

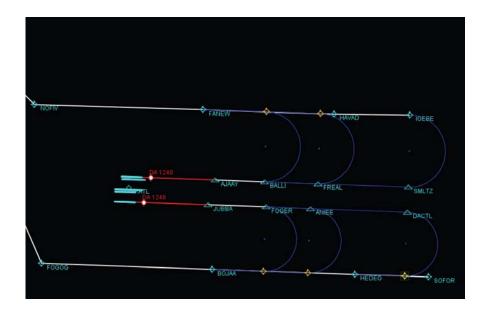
July 28, 2009

- Compare various weighted rankings
- Develop a composite site list for detailed site evaluation
- Continue targeted site development and implementation








### Industry Collaboration Example-Delta Air Lines

- Currently, we are refining a technical proposal for a multi-year project in the Atlanta (ATL) terminal area to utilize radius-to-fix (RF) legs on RNP procedures to improve the efficiency of simultaneous independent parallel approach operations
- The concept of operations is based on PARC's 2008 report, "Applications and Benefits of RNP for Large Airports with Surrounding Satellite Operations" and is strongly supported by Delta Air Lines
- Potential benefits include multi-million dollar annual fuel cost savings for RNP procedure users based on proposed reductions in downwind leg distance flown prior to joining straight-in final approach course

EWG Ops SC

July 28, 2009

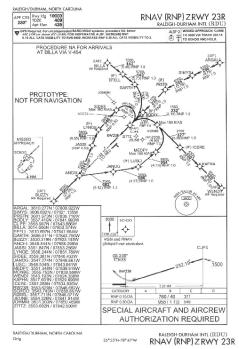
#### **Proposed Design Concept**



📥 DELTA 🖗



### Industry Collaboration Example-Southwest Airlines


- RNPs scheduled for publication on August 27, 2009
  - Raleigh Durham, NC (Curved Path)
    - RNAV (RNP) Z Rwy 5R
    - RNAV (RNP) Rwy 23L
    - RNAV (RNP Rwy 23R
    - RNAV (RNP) Z Rwy 5L
  - Boise, ID (Curved Path)

EWG Ops SC

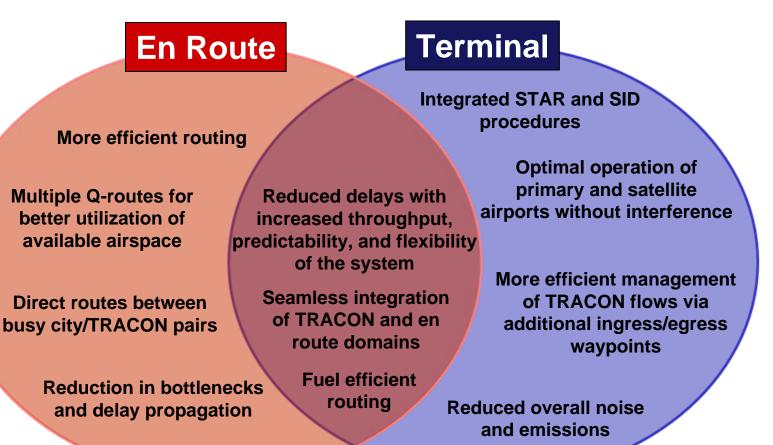
July 28, 2009

- RNAV (RNP) Z Rwy 10R
- RNAV (RNP) Rwy 10L
- RNAV (RNP) Rwy 28R
- RNAV (RNP) Z Rwy 28L





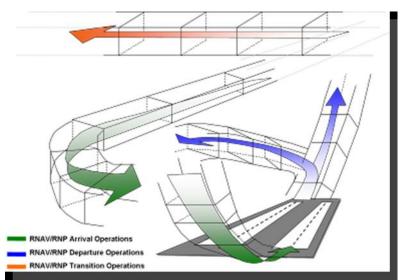


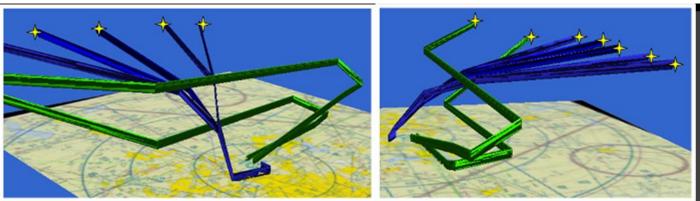

### Begin Integrated Procedures Concept: Benefit Focused

- An integrated procedures concept will provide a framework for integration of PBN initiatives from departure to approach
- Integration of Procedures includes:
  - Utilization of additional TRACON ingress/egress points that are not tied to ground-based NAVAIDS
  - Concurrent development and implementation of SIDs and STARs (including OPDs) to ensure integration
  - Decoupling of operations between primary and satellite airports in complex TRACON airspace
  - Development of direct city/TRACON pair procedures through congested airspace





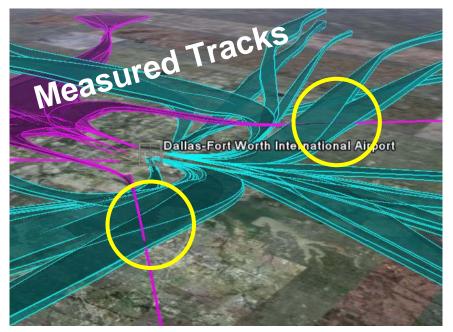

### Integrated Procedure Development Benefits

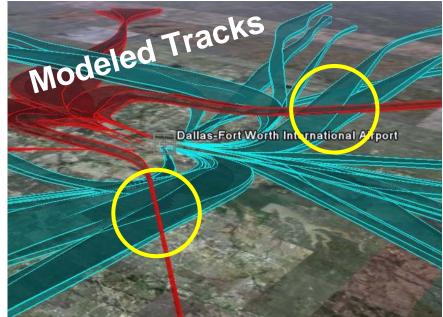





#### **Integration of Procedures Example** Applications for De-confliction, Optimization, and Benefits

- Segregate traffic flows
  - Between arrival/departure and transitions operations
  - Between primary and satellite airport operations
  - Between city pairs



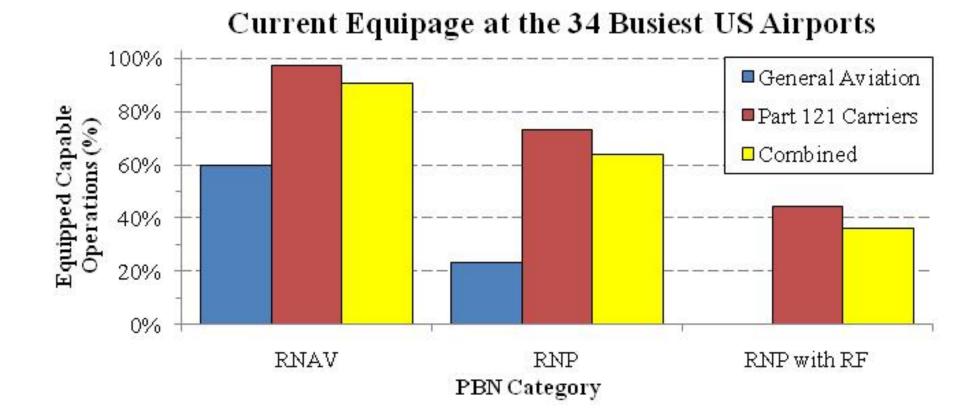





### Integration of Procedures Example Integrated Development of RNAV SIDs and STARs

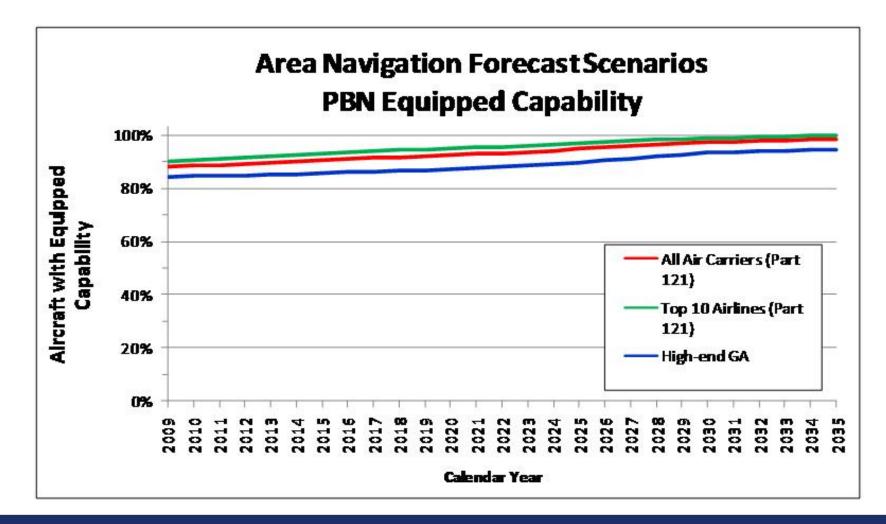





- Current STARs at Dallas-Fort Worth (DFW) are conflicting with departure flows
- The aircraft would cross vertically within 1,000 feet if the procedures were used at the same time
- Controllers are unable to use the two July 26, 200 procedures simultaneously

- Integrating the development of the SIDs and STARs allows for simultaneous use of the airspace without conflict
- Enables the development of OPDs while reducing the impact to departures

Administration


 Enables utilization of airspace by neighboring airports representation

### **Current RNAV Equipage – Top 34 Airports**





### **RNAV Equipage Capability**





### **Aircraft Approval**

- RNAV and RNP are *Performance-Based* initiatives in that the required performance is specified for the operation, rather than a required system or sensor
  - This allows technology evolution, without recurring procedure development or operational training
- The performance requirements were developed to capture capabilities that had already been deployed by individual manufacturers
  - Allowed thousands of aircraft to immediately qualify, without further investment
  - Requires criteria to accommodate aircraft differences
  - Performance requirements depend on the operation
  - RNP SAAAR approaches are the most demanding
     Note
     RNP AR is the interactional equivalent of RNP
    - Note RNP AR is the international equivalent of RNP SAAAR



### **Aircraft Approval**

• Current (estimated) aircraft capability:

| Type of<br>Operator                                                        | RNAV-<br>Capable | RNP AR Approach -<br>Capable | Total U.S.<br>Fleet (Active) |
|----------------------------------------------------------------------------|------------------|------------------------------|------------------------------|
| Air Carrier <sup>[1]</sup>                                                 | 6285             | 2631                         | 7250                         |
| General Aviation <sup>[2]</sup><br>(including<br>business and<br>personal) | 80000            | 100                          | 131700                       |

<sup>111</sup> Air carrier estimates are for US 14 CFR Part 121 fleet, estimated by Mitre.

<sup>[2]</sup> Fleet size from CY2007 GA and Air Taxi Survey, for active fixed wing aircraft and on-demand rotorcraft operators. GPS equipage estimated from CY2005 survey (latest year for which detailed avionics information is available).



### **Operational Approval**

- Air Commerce: Operators must obtain approval prior to conducting PBN operations
  - Provides FAA with ability to ensure highest level of safety is met
- General Aviation
  - RNP SAAAR Approaches: Operators must obtain approval prior to conducting Operations – due to complexity of operation
  - All other PBN: Operational approval is not required
- Flexible approval process FAA provides several methods to obtain approval
  - Coordinated with aircraft approval



### **RNP SAAAR/RNP AR Aircraft Approvals**

#### • Aircraft approved

- Boeing: 737
- Airbus: 318/319/320/321
- Gulfstream: 450/550

#### • Future Aircraft approvals

- Boeing: B-777, -767, -757
  - Application by Boeing for fleet-wide documentation and qualification is pending
- Embraer: E-170, -190
- Cessna: TBD
- Bombardier: TBD
- Dassault: TBD





### **Future Manufacturer RNP AR Fleet Approvals**

- Boeing\*: B-777, -767, -757
- Embraer: E-170, -190
- Cessna: Citation
- Bombardier: TBD
- Dassault: TBD



\* A number of airlines are approved to use these aircraft models for RNP AR operations. Application by Boeing for fleet-wide documentation and qualification is pending.



### **RNP SAAAR/RNP AR Operator Approvals**

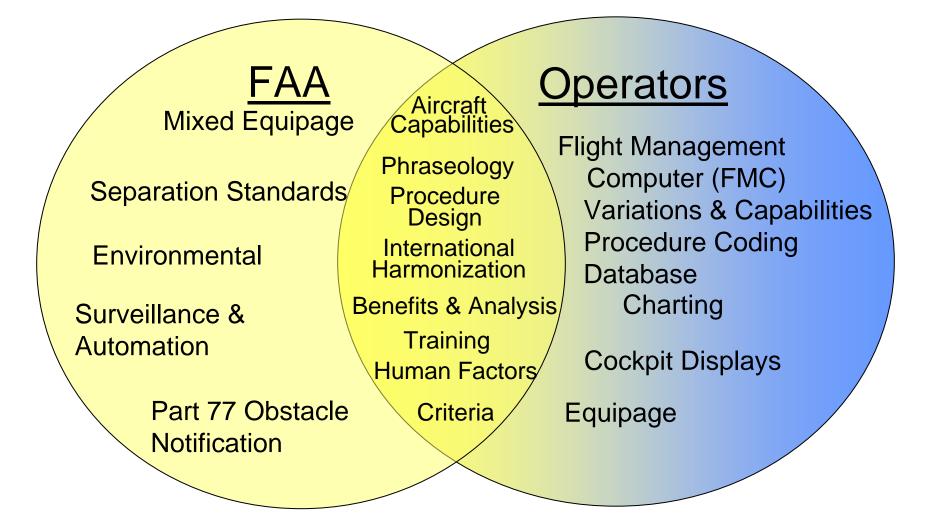
- Alaska Airlines: B-737
- American Airlines: B-737/757/767/777
- Boeing Flight Test: B-737
- Continental: B-737/757/767/777
- Delta Air Lines: B-737/757/767/777
- JetBlue: A-320
- Johnson and Johnson: G-450/550
- Honeywell flight department: G-450/550
- Verizon: G-450
- Netjets International: G-450/550



### **Future Operator RNP AR Fleet Approvals**

- Qualcomm: G-450
- Coca-Cola: G-550
- Southwest Airlines: B-737
- US Airways- Airbus: E-190
- JetBlue: E-190
- Motorola: G-450
- Zenith: G-450

EWG Ops SC


July 28, 2009

- Connoco Phillips: B-737
- Wayfarer Aviation: G-450
- Reyes Holdings: G-450











### **Environmental Challenges**

- All new procedures are reviewed to assure compliance with environmental laws and regulations
- The review will determine the level of environmental study appropriate for the proposed procedure
  - Categorical Exclusion (CATEX)
  - Environmental Assessment (EA)- costs run approximately \$500K to \$1M
    - Focused EA- Time and cost can be reduced substantially if there is no potential for significant impacts
  - Environmental Impact Study- costs vary widely, can be anywhere from \$1M to millions
  - Schedule is also impacted by the various types of environmental actions
    - Environmental Assessment- a year to 18 months
    - Environmental Impact Study- 24+ months





### Safety Risk Management Efforts

- The RNAV/RNP Group is actively working on a number of Safety Risk Management Documents (SRMD) and Decision Memorandums (SRMDM) in conjunction with System Operations Safety Management Office (SOSM)
  - SRMDs currently under development
    - Guidelines for the Development and Implementation of RNAV STARs (18 Step Process)
    - Houston/George Bush Intercontinental Airport (KIAH) Parallel Dependent and Simultaneous Independent ILS/RNAV Approaches, Resume Normal/Published/Terminate Speed (final draft submitted to the AJR SOSM Office for review and approval)
    - Climb Via
  - Coordination/approval status of SRMDM currently under development
    - Deconfliction of MDW RNAV (RNP) Y RWY 13C arrivals from ORD RWY 22L departures
    - RNAV Visual Flight Procedures
    - ATL/DFW RNAV "Off the Ground" Phraseology implemented June 1, 2009
    - Revised ATC Surveillance Requirements GNSS Aircraft Operating on RNAV ATS/Random (Impromptu) Routes



# **International Harmonization**

- International Civil Aviation Organization (ICAO) PBN Study Group
  - Developed ICAO PBN Manual (Apr 04-Mar 07)
  - Working advanced concepts for RNP
- ICAO-IATA Global PBN Task Force (new initiative)
  - Coordinate/leverage government-industry resources to accelerate PBN implementation worldwide
  - Ops approval guidance/training
  - EUROCONTROL-FAA PBN Airspace Planning seminars
- ICAO-FAA-EUROCONTROL PBN seminars
  - 10 worldwide seminars
- Regional Task Force Participation
- Bilateral Agreements
  - China
  - Australia
- CANSO Operational Standing Committee







### **Questions?**



### **B/U Slides**



### **PBN Studies on Separation**

#### **Completed Since June 2008**

- "Analysis of Area Navigation (RNAV/RNP-1) En Route Separation Along Adjacent Straight Segments With Radar Surveillance Including Impromptu Routes (Phase III)," DOT-FAA-AFS-450-50, March 2009
- "Analysis of Area Navigation (RNAV/RNP-1 and RNP-2) En Route Separation Along Adjacent Straight Segments Without Radar Surveillance Including Impromptu Routes (Phase IV)," DOT-FAA-AFS-450-51, March 2009
- "Analysis of Area Navigation (RNAV RNP-1 and RNP-2) En Route Separation Along Adjacent Segments With and Without Radar Surveillance and With Turns (Phase V)," DOT-FAA-AFS-450-52, March 2009
- "Analysis of Area Navigation (RNAV-2) En Route Separation With Conventional Routes Without Radar Surveillance Including Impromptu Routes, DOT-FAA-AFS-450-54," April 2009



### Examples of Analysis: Upcoming PBN Studies and Support

- Decision altitude in a turn
- Analysis of navigation system capability
- Flight Standards Aviation Inspector workshops
- Update Flight Standards Aviation Inspector handbook guidance
- Predictive Receiver Autonomous Integrity Monitoring (RAIM) services

