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SUMMARY

The field of computer vision focuses on the goal of developing techniques to

exploit and extract information from underlying data that may represent images or

other multidimensional data. In particular, two well-studied problems in computer

vision are the fundamental tasks of 2D image segmentation and 3D pose estimation

from a 2D scene.

In this thesis, we first introduce two novel methodologies that attempt to inde-

pendently solve 2D image segmentation and 3D pose estimation separately. Then, by

leveraging the advantages of certain techniques from each problem, we couple both

tasks in a variational and non-rigid manner through a single energy functional. Thus,

the three theoretical components and contributions of this thesis are as follows:

• Firstly, a new distribution metric for 2D image segmentation is introduced. This

is employed within the geometric active contour (GAC) framework.

• Secondly, a novel particle filtering approach is proposed for the problem of

estimating the pose of two point sets that differ by a rigid body transformation.

• Thirdly, the two techniques of image segmentation and pose estimation are

coupled in a single energy functional for a class of 3D rigid objects.

After laying the groundwork and presenting these contributions, we then turn to

their applicability to real world problems such as visual tracking. In particular, we

present an example where we develop a novel tracking scheme for 3-D Laser RADAR

imagery. However, we should mention that the proposed contributions are solutions

for general imaging problems and therefore can be applied to medical imaging prob-

lems such as extracting the prostate from MRI imagery [33].

xvi



CHAPTER I

INTRODUCTION

The field of computer vision focuses on the goal of developing techniques to exploit

and extract information from underlying data that may represent images or other

multidimensional data. This low-level task is then used as a basis for high-level tasks

such as quality control, military surveillance, or medical image analysis. In particular,

two well-studied problems in computer vision are the fundamental tasks of 2D image

segmentation and 3D pose estimation from a 2D scene. It is interesting to note that

while 2D-3D pose estimation and 2D image segmentation are closely related, there

exist few methodologies that try to couple both tasks in a unified framework. Thus,

this thesis explores not only image segmentation and pose estimation in computer

vision, but takes a closer look at how one can effectively bridge both fields of interest.

1.1 Contributions and Organization of this Thesis

We begin by first introducing two novel methodologies that attempt to solve 2D image

segmentation and 3D pose estimation separately, and then develop a unified frame-

work that incorporates both tasks in a coupled manner. To further ensure the viability

of the proposed algorithms in the context of image processing, we demonstrate their

applicability to visual tracking.

Specifically, in Chapter 2 we present a new distribution metric for image segmen-

tation that arises as a result in prediction theory. Forming a natural geodesic, our

metric quantifies “distance” for two density functionals as the standard deviation of

the difference between logarithms of those distributions. Using level set methods, we

show the energy based on the metric can be incorporated into the geometric active

contour (GAC) framework.
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Then, in Chapter 3, we propose a particle filtering approach for the problem

of registering or estimating the pose of two point sets that differ by a rigid body

transformation. Due to the fact that registration algorithms usually compute the

transformation parameters by maximizing a metric given an estimate of the corre-

spondence between points across the two sets of interest, we approach the task as a

posterior estimation problem. From this, the corresponding distribution can naturally

be estimated using a particle filter.

Consequently, both Chapter 2 and 3 introduce the fundamentals for Chapter 4,

whereby leveraging the advantages of certain techniques from each problem, we cou-

ples both tasks in a variational and non-rigid manner through a single energy func-

tional. In general, most frameworks that couple both pose estimation and segmenta-

tion assume that one has the exact knowledge of the 3D object. In other words, this

assumption may be violated in non-ideal conditions if only a general class to which a

given shape belongs is given (e.g., cars, boats, or planes). The proposed methodology

also accomplishes the non-rigid task of pose estimation and segmentation without the

need for point correspondences or specific constraints on the type of 3D shape.

After laying the theoretical groundwork in Chapter 2, 3, and 4, we demonstrate the

applicability of the proposed algorithms in real-life applications in Chapter 5. That is,

we present visual tracking algorithms capable of providing aim-point maintenance for

3-D Laser RADAR (3DLADAR) imagery as well as for autonomous mortar tracking.

More importantly, given that the algorithms presented in this thesis are for general

image processing, we also mention several medical imaging problems (e.g., extracting

the prostate from magnetic resonance (MR) imagery) in which one has or can utilize

the proposed algorithms to accomplish the task at hand.

Thus, the contributions of this thesis will be organized as follows:

• Chapter 2: Presents a new distribution metric for image segmentation that
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arises as a result in prediction theory and incorporate this into the GAC frame-

work. Experimental segmentation examples are provided and results are given.

• Chapter 3: Presents a particle filtering approach for point set registration and

pose estimation in which we exploit the underlying dynamics or uncertainty as-

sociated in any registration problem. Experimental results are given to highlight

algorithm’s robustness to challenging registration problems.

• Chapter 4: Presents a unified and variational approach in which we couple

both 2D image segmentation and 3D pose estimation in a single energy func-

tional for a class of 3D rigid objects. Experimental results demonstrate the

effectiveness of the algorithm with regards to either 2D image segmentaion or

3D pose estimation.

• Chapter 5: Presents a real-world problem of tactical tracking using 3DLADAR

imagery for which the proposed algorithms provide a robust solution.

• Chapter 6: Offers a summary of the presented work, draws conclusions from

the thesis, and discuses possible directions for future work.

However, before we present the main contributions of this thesis, we must first revisit

some of the key results that have been made pertaining to the above fields of interest.

1.2 Literature Review for Image Segmentation

The general segmentation problem, which falls under the category of geometric source

separation, involves separating data into N distinct partitions via decision boundaries.

However, a piecewise assumption of two sets is generally made for the particular case

of images. Using this assumption, image segmentation can be defined as optimally

partitioning a scene into an “object” and a “background” [8]. In particular, we will

restrict our approach of segmentation to that of the geometric active contour frame-

work, whereby a curve is evolved continuously until it satisfies a stopping criterion
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Figure 1: Illustration of level set methods. On the left is the implicit curve rep-
resentation. On the right, the general scheme of how an active contour deforms to
segment an object over time.

that coincides with the object’s boundaries as shown in Figure 1 [51, 52, 13, 8, 104, 63].

In employing this methodology, a curve is represented as the zero level-set of a

higher dimensional surface [88, 64]. A common choice is the signed distance function.

Although this implicit representation of a curve is computationally more expensive

then parametric approaches, it allows for the contour to naturally undergo topological

changes. Specifically, certain variational approaches rely on characterizing the object

by local features such as edges to drive the curve evolution; see [13, 52] and the refer-

ences therein. However, these edge-based techniques were shown to be susceptible to

noise and missing information. Consequently, an alternative characterization, based

on so-called “region-based methods,” is to assume the “object” and “background”

possess differing image statistics (see [14, 66, 72]).

In this thesis, we will focus on region based approaches due to their high level

of robustness to noise and initialization when compared to models based on local

information. If we restrict our discussion to approaches that generalize the statistical

inference beyond first and second moments to entire probability density functions

(pdf), segmentation can be reinterpreted as measuring the “distance” between two

distributions via a similarity metric.

That is, by directly measuring the discrepancies of pixel intensities, Rousson and

Paragios proposed to maximize the L2-distance between the log-likelihood of two dis-

tributions defined by the interior and exterior regions of the segmenting curve [66].
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Although a Gaussian assumption is made in their work, an extension to entire prob-

ability distributions is straightforward. Interestingly, the metric proposed in Chapter

2, when mapped to a linear space, results in a similar energy [36]. Recently, Freedman

et. al introduce the Bhattacharrya distance and Kullback-Leibler divergence for seg-

mentation by maximizing the similarity between the density of a region enclosed by a

curve C and a known pdf that is learned a-priori [32]. By relaxing the assumption of

a-priori knowledge, Rathi et. al derived a flow that optimally separates distributions

via the Bhattacharrya measure [72]. Although these measures are based on varying

disciplines and are motivated by a specific problem, they can be extended to a gen-

eral class of densities. To this end, Chapter 2 introduces a new distribution metric

for image segmentation that first arose in prediction theory, but will be shown to be

equally effective in image segmentation.

Lastly, we should note that in formulating an image segmentation problem via

a region-based method, an assumption of separable statistics is made. That is, one

generally assumes the object exhibits a homogenous profile with regards to the back-

ground, and the object of interest can be indirectly identified with only image infor-

mation. However, this assumption may not hold due to clutter or occlusions. This

has resulted in the proposed use of a shape prior to restrict the evolution of the active

contour [55, 21, 15, 23, 94]. While not as relevant in Chapter 2, the notion of a shape

prior will be essential in formulating our unified framework as presented in Chapter

4. Also, an understanding of pose estimation will be essential. Necessary background

information regarding pose estimation is given next.

1.3 Literature Review for Point Set Registration and Pose
Estimation

Pose Estimation is concerned with relating the spatial coordinates of an object in the

3D world (with respect to a calibrated camera) to that of a 2D scene or another 3D

object. In this proposal, we have subdivided the problem into two areas: 3D (or 2D)
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(b)

(a) (c)

Figure 2: Common problems in point set registration. (a) Initial alignment that can
yield an incorrect registration to the “wrong” side of the truck, when using iterative
based techniques. (b) Dense point set. (c) Sparse point set.

point set registration and 2D-3D pose tracking. We begin with the classical problem

of registering or estimating the pose of two point sets.

By decoupling the problem of estimating correspondences between two point sets

and their transformation parameters, Besel and McKay [5] introduce the well-known

Iterative Closest Point (ICP) algorithm. Given an initial alignment, ICP assigns

a set of correspondences based on the L2 distance, computes the transformation

parameters, and then proceeds in an iterative manner with a newly updated set of

correspondences. However, the basic approach is widely known to be susceptible to

local minima. To address this issue, Fitzgibbon [31] introduces a robust variant by

optimizing the cost function with the Levenberg-Marquardt algorithm. Even though

this method and variants of ICP [17, 31] do improve the narrow band of convergence,

they are still heavily dependent on the initial alignment, and may fail due to the

existence of homologies (due to noise, clutter, outliers) within the correspondence

matrix. For instance, Figure 2 demonstrates a common problem in registration, in

which a poor initial alignment can yield an incorrect registration to the “wrong” side

of the truck.

To overcome the problem of sensitivity to initialization, a second class of point set

registration schemes, referred to as “shape descriptors,” has emerged in the graphics
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community [34, 49, 46]. Typically, these approaches introduce structural information

into the registration scheme. This allows them to perform well under poor initial-

izations as well as handle partial structures or missing information. Unfortunately,

these techniques are generally ill-suited for tasks such as tactical tracking, whereby

the point set density is unknown and can be adjusted during the acquisition phase.

Without special consideration, registration may fail if one tries to match a sparse

cloud to a dense cloud. See Figure 2 for an illustration of “sparsity.”

Another proposed methodology for solving the problem of dependency on initial

alignment (as seen standard in ICP and other iterative based methods) is the Robust

Point Matching (RPM) algorithm [19, 18]. This approach performs an exhaustive

search that is reduced over time with an appropriate annealing schedule. However,

the authors of [91] demonstrate the failure of RPM in the presence of clutter or when

certain structures are missing.

The use of robust statistics and measures form the next class of point set regis-

tration algorithms [47, 92]. Specifically, representing point sets as probability densi-

ties, Tsin and Kanade [95] propose a Kernel Correlation (KC) approach using kernel

density estimates. The method computes the optimal alignment by reducing the

“distance” between sets via a similarity metric. An extension is considered in [48]

through the use of a Gaussian mixture model. In particular, both of these approaches

propose a registration technique without explicitly establishing point correspondences

between data sets, and both methods can be considered as multiply-linked ICP reg-

istration schemes. While this allows for a wider basin of convergence than traditional

ICP-like algorithms, one can see that the approaches become computationally expen-

sive as one point set must interact with each point in the opposing set. Moreover and

more importantly, to overcome poor initializations or missing information, the KC

algorithm must use a kernel with a larger bandwidth. This effectively “smoothes”

the data sets, and results in an alignment of distributions spatially. Hence, there
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is a trade-off between the point-wise accuracy (increases with smaller bandwidth)

and its dependency on initial alignment or missing information (decreases with larger

bandwidth).

Consequently, a natural extension would be to employ a multi-scale approach as

proposed by Granger and Pennec [40]. Their algorithm begins by aligning the center

of mass of each point set, and then proceeds with the lowering of a “smoothing”

factor to ensure the point-wise accurate feature of ICP. We should note that the

framework presented in this Chapter 3 shares certain similarities with this method,

notably the general notion of having a global-to-local approach as well as invoking

a robust objective functional through the use of Gaussian mixture model. However,

while [95, 48] can be re-interpreted as a multiply linked ICP registration scheme, our

proposed algorithm can be considered as a switching stochastic ICP approach where

one point set interacts only with a handful of correspondences. Thus, we keep the

explicit establishment of point correspondences as in the iterative techniques, which

ensures, on the local level, an accurate ICP-like algorithm. Moreover, we do not

require an annealing schedule in our global-to-local approach such as that proposed

in [40], since this is naturally embedded in the diffusion process of the prediction

model. In Chapter 3, we compare the KC algorithm with the particle filtering

technique discussed in this present work.

Related results that follow the approach presented in Chapter 3 are based on

filtering methods [56, 62]. Ma and Ellis [56] pioneered the use of the Unscented

Particle Filter (UPF) for point set registration. Although the algorithm accurately

registers small data sets, it requires a large number of particles (5000) to perform

accurate registration. Because of the large computational costs involved using large

sample sizes, the method becomes impractical for large data sets. To address this

issue, the authors in [62] propose to use an Unscented Kalman Filter (UKF) approach.

However, their method suffers the limitation of assuming a unimodal probability
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distribution of the state vector, and thus, may fail for multimodal distributions.

In contrast to point set registration, 2D-3D pose tracking involves estimating

the 3D pose from a single or multiple 2D images [42, 57]. Although a complete

literature review is beyond the scope of this proposal, most methodologies can be

described as follows. First, one chooses a local geometric descriptor (e.g., points

[70], lines [28, 59], or curves [30, 78]) or image intensity [9] that can best quantify

features on the image to its corresponding 3D counterpart. Then, explicit point

correspondences are established in order to solve for the pose transformation. As

with most correspondence-based algorithms, which rely on local features, it can be

readily seen that these techniques may suffer from the existence of homologies like

that of point set registration.

Aside from the non-trivial task of establishing correspondences, many 2D-3D pose

estimation techniques make certain (sometimes rather restrictive) assumptions on

the class of shapes that they can handle. Recently, the authors in [78] propose to

relax such restrictions by focusing on free-form objects. However, even this type

of algebraic approach may become increasingly difficult to estimate the pose for an

arbitrary or complex shape. Moreover, and more importantly, the above methods

typically constrain their approaches to the knowledge of a pre-specified 3D model. To

overcome this constraint, non-rigid algorithms have appeared in the area of human

pose estimation [26, 77, 4]. While we should note that the focus of pose estimation

in this thesis is not specific to this area of computer vision, the framework developed

in Chapter 4 is closely related if one were to learn a large class of deformations as

opposed to rigid objects. However, in contrast to the methods such as [26, 77], the

algorithm discussed in Chapter 4 relies on the surface differential geometry of a 3D

model. This allows us to eliminate the need for point correspondences altogether while

still being able to deal with a complex shape. It is at this point that we mention that

one of the key goals of this thesis is to combine the strengths (and circumvent the
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weaknesses) of pose estimation and image segmentation for a wide class of 3D objects

with few restrictions as possible. Before doing so, we first review existing algorithms

that attempt to solve this important problem in a unified manner.

1.4 Literature Review Joint 2D-3D Pose Estimation and
2D Image Segmentation

It is interesting to note that while 2D-3D pose estimation and 2D image segmentation

are closely related, there exist few methodologies that try to couple both tasks in a

unified framework. An early attempt to solve the problem of viewpoint dependency

for differing aspects of a 3D object is given in [74]. In their work, the authors propose

a region-based active contour that employs a unique shape prior, which is represented

through a generalized cone based on single reference view of an object. Although the

method performs well under different changes in aspect, it is not able to cope with a

view of an object that is substantially different from the reference view.

In addition, even though we have restricted our discussion of this proposal to

the GAC framework, we note that recent work has been done in simultaneous pose

estimation and segmentation via dynamic graph cuts [11, 53]. In their approach, the

authors propose an articulated shape prior through a stick-man or skeleton model.

Then, in order to capture deformations occurring to the object, one must optimize

over a set of pre-defined parameters corresponding to specific motions in a model’s

movement. In relation to this work, our focus would be to accurately quantify the

deformation through a set of 3D models like that of [4] through statistical learning

techniques. More importantly, we proposed an algorithm that incorporates a general

class of shapes for which one may not be able to associate a skeleton model. This is

shown in Figure 3. Also, the above methodologies differ in the segmentation approach

used (i.e. graph cuts versus active contours), in which we note that each method has

its advantages and disadvantages.

While it is not the intended contribution of Chapter 4, one could also alternatively
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Figure 3: Chapter 4’s non-rigid approach to 2D image segmentation and 3D pose
estimation through the use of multiple 3D shapes.

view the proposed framework as 3D reconstruction from a single or multiple 2D

images. Although this area is abundant with methodologies, we refer the reader to

several works that propose to solve this difficult task [10, 90, 41, 79]. In particular

and like that of the algorithm presented in Chapter 4, [90] proposes to solve this

task by inducing a prior on the possible reconstructions. However, aside from using

several views, the prior does not incorporate information about a specific class of

objects, but rather is employed as a prior for smoothness. Recent work by [79] utilize

a probabilistic graph model to reconstruct an object of a certain class from a single

2D view. A key difference between the method in Chapter 4 and that of [79] is the

manner in which we approach the task itself. That is, although we use the image as

measure of fidelity, we do not incorporate a graphical model. Nevertheless, we do not

consider this to be a limitation, but rather a philosophical difference.

In relation to the proposed unified framework for pose estimation and segmenta-

tion, the authors in [76, 86] also propose a solution to solve the joint task of pose

estimation and segmentation for the case of rigid objects. In [76], the authors ac-

count for a variation in the projection of the 3D shape by evolving an active contour

in conjunction with the 3D pose parameters to minimize a joint energy functional.

While this is less restrictive, the algorithm optimizes over an infinite dimensional

active contour as well as the set of finite pose parameters. Moreover, in order for
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one to determine the shape prior and the corresponding 3D pose, costly back projec-

tions must be made through ICP-like correspondences. An extension is considered in

[86], whereby the authors successfully eliminate the need to evolve the active contour

by performing a minimization of 3D pose parameters instead. However, the costly

back-projections and correspondences remain.

In Chapter 4, we derive a variational framework to jointly segment a rigid object

in a 2D image and estimate the corresponding 3D pose through the use of a 3D shape

prior. We then show that the method can be readily extended to a 3D class of rigid

objects, in which the objects themselves are (non)linearly related. Specifically, our

algorithm uses a region-based segmentation method to continuously drive the pose

estimation process. Using region-based segmentation results in a global approach,

which avoids using local features or ICP-like correspondences by relying on surface

differential geometry to link geometric properties of the model surface and its cor-

responding projection in the 2D image domain. The methodology is motivated by

similar approaches that were originally constructed for stereo reconstruction from

multiple cameras [101, 102] and further extended for camera calibration [96].

1.5 Literature Research for Visual Tracking

As stated previously, while Chapter’s 2, 3, and 4 lay the theoretical groundwork for the

general proposed computer vision algorithms, Chapter 5 discusses the applicability

of those algorithms with respect to visual tracking. For the sake of the completeness,

we provide a survey of existing methods in addition to those already discussed that

focus on solving the visual tracking problem.

Visual tracking has been a significant topic of research in the field of computer

vision; see [8, 45, 89, 103] and references therein. The ultimate goal of visual tracking

is to continuously identify the 3D location of an object of interest from an image
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sequence. However, due to the difficulty of developing a tractable solution for esti-

mating the 3D position from a 2D scene, many researchers have tacitly restricted the

tracking problem to be concerned with only the relative 2D location of the object in

which segmentation is often employed in conjunction with Kalman or particle filters

[50, 84].

We consider those methods that employ various filtering schemes such as the

Kalman filter [93], unscented Kalman filter [50, 97], and particle filter [29, 84]. Specif-

ically, the authors in [69, 16] employ a finite dimensional parameterization of curves,

namely B-slines, in conjunction with the unscented Kalman filter for rigid object

tracking. Generalizing the Kalman filter approach, the work in [99] presents an ob-

ject tracking algorithm based on particle filtering with quasi-random sampling. Since

these approaches only track the finite dimensional group parameters, they cannot

handle local deformations of the object.

As a result, several tracking schemes have been developed to account for defor-

mation of the object via the level set technique. In relation to this thesis, some early

attempts for 2D visual tracking using level set methods can be found in [65, 100]. In

particular, authors in [100] propose a definition of motion for a deformable object.

This is done by decoupling an object’s motion into a finite group motion known as

“deformotion” with that of deformation, which is any departure from rigidity. Build-

ing on this, authors in [73] introduce a deformable tracking algorithm that utilizes

the particle filtering framework in conjunction with geometric active contours. Other

approaches closely related to these frameworks are given in [93, 67, 68]. Here the

authors use a Kalman filter for predicting possible movements of the object, while

the active contours are employed only for tracking deformations of the corresponding

object.

Overall Contribution: One of the key questions that is to be ultimately ad-

dressed in this thesis is how can one fully exploit the knowledge of a single 3D model
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or a general class of 3D shapes for the purpose of 2D image segmentation and/or 3D

pose estimation?

14



CHAPTER II

A NEW DISTRIBUTION METRIC FOR 2D IMAGE

SEGMENTATION

In this chapter, we present a new distribution metric for image segmentation that

arises as a result in prediction theory. This chapter is based on [83] and is organized

as follows: In the next section, we provide a brief overview of the metric proposed for

image segmentation. In Section 2.2, we describe how one can cast the metric in the

geometric active contour framework. Experimental results are given in Section 2.3.

Lastly, we conclude with Section 2.4.

2.1 Similarity Metric via Prediction Theory

Let us first sketch and review some brief concepts that are associated with metric for

image segmentation. We seek to maximize the distance of two distributions defined by

a certain photometric variable. In other words, in segmentation we look to “predict”

the distribution that best characterizes the object or foreground. Originally motivated

by measuring the similarity between spectral distributions, the metric proposed by

[36] is derived based on principals in prediction theory. That is, let f1(θ) and f2(θ)

denote the power spectral distribution defined on the interval θ ∈ [0, π]. These

distributions correspond to their respective zero-mean random stationary processes

ufik with i ∈ {1, 2} and k ∈ Z. Then the variance of the linear or one-step-ahead

prediction error for a given process of spectral distribution fi(θ) is

E{|ufi0 − û
fi
0|past|

2} = E{|ufi0 −
∑

αfik u
fi
−k|

2} (1)

with k > 0 and where αfik are the coefficients that minimize the linear prediction

error variance for the specific fi(θ). Now suppose that we are given a known power
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distribution f1(θ), and we would want to measure the “distance” or similarity with

another spectral density f2(θ). This can be achieved by first assuming the density

f2(θ) originates from the distribution f1(θ). From this, we use f2(θ) to design a

predictor and compare how well it performs against the optimal prediction that is

based on f1(θ). Hence, we arrive at the following measure denoted as the degradation

of predictive error variance

ρ(f1, f2) =
E{|uf10 −

∑k=∞
k=1 αf2k u

f1
−k|2}

E{|uf10 −
∑k=∞

k=1 αfik u
f1
−k|2}

. (2)

Equation (2) gives us a basis for measuring (dis)similarity and can be viewed as

analogous to “divergences” such as the Kullback-Leibler entropy seen in Information

Theory [20]. Considering infinitesimal perturbations between a spectral density f

and f + ∆ on finite set χ, we arrive at the following pseudo-metric defined on the

cone of power spectral density functions.

gf (∆) :=

∫
χ

(
∆(x)

f(x)

)2

dx−
(∫

χ

∆(x)

f(x)
dx

)2

. (3)

Given that gf is insensitive to scaling, we note that it is consider a psuedo-metric.

However, we will refer to it as a metric for the sake of clarity. Moreover, equation (9)

is the corresponding geodesic distance given in the level set framework. While the

derivation of the metric along with the computation of the minimal geodesic path is

beyond the scope of this thesis, we do refer the interested reader for an enlightened

discussion on its original development [35, 36]. Next, we review popular distribution

functionals and compare the Riemannian structure induced by both the Fisher metric

and the metric just proposed.

2.1.1 Fisher Metric, Hellinger Discrimination, Bhattacharrya Distance

Motivated by the prediction problem for spectral densities, the similarity metric pro-

posed in the previous section originated from the measure denoted as the degradation

of predictive error variance. In a similar fashion, the notion of degradation has been
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applied to coding efficiency [20]. In other words, let us first focus on the differential

geometry of the finite dimensional simplex P := p(k) where k ∈ {1, ...., n} such that

p(k) > 0 and
∑

x p(x) = 1. Figure 4b displays the simplex as a red triangular surface

for k = 3. From this, the optimal code length for a random source of independent

symbols generated according to p1 ∈ P is given by −
∑

x p1(x) log(p1(k)). However, if

the code is based on the wrong choice between two alternatives p1, p2 ∈ P , i.e., when

the code is designed based on p2 while the symbols are generated according to p1,

we arrive at the following measure denoted as the degradation of coding efficiency

K(p1, p2) :=
∑
k

p1(k) log(
p1

p2

). (4)

It is important to note here that this measure of degradation is analogous to equation

(2), and equation (4) is better known as the Kullback-Leibler (KL) divergence. Now if

we take infinitesimal perturbations as before, the KL divergence induces a Riemannian

structure known as the Fisher information metric

gfisher,p(∆) =
∑
χ

∆(k)2

p(k)
. (5)

Let us now consider the mapping p(k) 7→ u(x) := 2
√
p(x), which maps the probability

simplex onto the sphere
∑

χ u(x)2 = 4. Figure 4 demonstrates this mapping as the

simplex (red triangular surface) is mapped to the blue spherical surface. Interestingly,

this map turns out to correspond to distances measured by the Fisher metric as well

as Euclidean distances [3, 12]. That is, if the end points are chosen, the natural

geodesic distance is known to be the Hellinger discrimination [43]

H(p1, p2) =
∑
χ

(√
p1(k)−

√
p2(k)

)2
. (6)

Moreover, because geodesics are mapped to great circles, and the distances measured

by the Fisher metric on the probability simplex corresponds to the length of arcs on

the sphere, we can arrive at the famed Bhattacharrya coefficient [7]

B(p1, p2) =
∑
χ

√
p1(k)p2(k). (7)
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(a) (b)

Figure 4: (a) The map p 7→ √p for each point on the simplex (b) The simplex as a
triangular red surface taken onto the orthant of the blue spherical surface

This distance functional is the cosine of the geodesic arc between the two image

points under the mapping p 7→ √p. In addition, the above distances can be extended

to continuous functions, which results in a integration over the density rather than

a summation. In the next section we draw upon parallels and differences of both

metrics.

2.1.2 Parallels and Comparison to Information Geometry

Given that we seek to measure the distance between two density functionals, the

notion of degradation of performance is a powerful tool in forming a measure of sim-

ilarity. Moreover, both degradation measures induce a Riemannian metric from their

respective probability distributions. However, the manner in which the respective

metrics penalize perturbations and distances vastly differs as seen Table 1. Also, while

the p 7→ √p maps the probability simplex onto the sphere, the mapping f 7→ log f

takes the cone of spectral densities into a linear space. In other words, we are able

to map geodesics defined by our Riemannian metric into straight lines. In doing

so, one should realize the more popular energy functional proposed by Rousson and

Paragios [66] can be now reformulated and is similar to that of the mapped version

of our Riemannian metric (in the linear L2 sense). Table 1 below explains the several

differences between the Fisher metric and the metric proposed in this chapter. In

the next section, we cast the geodesic distance as the energy functional in the GAC

framework for image segmentation.
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Type of Comparison Information-Based Metric Prediction-Based Metric

metric
∫

∆2

p

∫
(∆
f

)2 − (
∫

∆
f

))2

mapping p 7→ √p f 7→ log f
geodesic distance great circles logarithmic families

Table 1: Theoretical Comparison between the Fisher Information Metric and our
proposed Metric

2.2 Proposed Framework

We consider the problem of segmenting an image I. That is, we first assume the image

is composed of two homogeneous regions referred to as “object” and “background”.

From this, the goal of segmentation is to capture these two regions. To do so, we

enclose a curve C, which is represented as the zero-level set of a signed distance

function φ : <2 → < such that φ < 0 represents the inside of C and φ > 0 represents

the outside of C. Our goal is to evolve the curve C, or equivalently φ, so that the

interior matches the object and the exterior matches the background. The curve

C would then match the boundary ∂Ω separating the object and background. The

general minimization is performed by evolving C according to the flow:

∂φ

∂t
= ∇φEimage + λ · δ(φ) · div

(
∇(φ)

‖∇(φ)‖

)
, (8)

where the second term is incorporated such that the curve remains “smooth.” We now

propose an energy functional based on the metric discussed previously [35] and derive

the corresponding partial differential equation (PDE) that describes its curve evolu-

tion in the level set framework. Moreover, because the metric measures similarity or

“distance” as the standard deviation between the log-likelihood of two distributions,

pin and pout, we seek to maximize the following energy functional

Eimage(z, φ) =

√∫
z

(
zlog

pin(z, φ)

pout(z, φ)

)2

dz −
(∫

z

zlog
pin(z, φ)

pout(z, φ)
dz

)2

(9)

where z ∈ Z is the photometric variable, and pin and pout are the pdf’s defined on

the random variable z. In the present work, we restrict the variable z to set of gray
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level values {1, 2, ..., 256}. Moreover, let I : <2 → Z be a mapping of the image

defined over the domain Ω to the photometric variable z, and let x ∈ <2 be the image

coordinates. Then the pdf inside and outside the curve C can be formulated as

pin(z, φ) =

∫
Ω

K(z − I(x))H(−φ)

H(−φ)
dx and pout(z, φ) =

∫
Ω

K(z − I(x))H(φ)

H(φ)
dx

where K(z − I(x)) is a specified kernel. For numerical experiments, we have used

K(z− I(x)) = δ(z− I(x)). Also Hε : R 7→ {0, 1} denotes the Heaviside step function

with the corresponding derivative δε. These are both given as follows

Hε(φ) =


1 φ < ε

0 φ > ε

1
2
(1+ φ

ε
+ 1
π

sin(πφ
ε

)) otherwise

δε(φ) =

 0 φ < ε, φ > ε

1
2ε

(1+cos(πφ
ε

)) otherwise

The gradient ∇φT can be computed using the calculus of variations. Taking the

first variation with respect to φ and noting the expected value of the variable z is

defined as E{f(z)} =
∫
z
z · f(z), we arrive at the following PDE

∇φEimage = −δε(φ)

T
· [E{B ·G} − E{B} · E{G}]. (10)

with B and G given as

B = log
pin(z, φ)

pobject(z, φ)
G =

[(
1

Ain
+

1

Aout

)
−K(z−I(x))

(
1

Ainpin(z, φ)
+

1

Aoutpout(z, φ)

)]
Also, if Ain is given by

∫
Ω
Hε(φ)dx, then equation (10) is a PDE that describes

the evolution of the curve C that optimally maximizes the “distance” between the

distribution exterior to the segmenting curve with that of the pdf inside the curve.

2.3 Experiments

In this section, we present experimental results obtained from evolving a curve C

according to Equation (8). Moreover, we provide a qualitative comparison between

our metric and that of the result obtained with the Bhattacharrya measure. The

20



Figure 5: Case one of the Kaposi Sarcoma. Top Row: shows the evolution of a curve
according to the Bhattacharrya distance resulting in an unsuccessful segmentation.
Bottom Row: Successful segmentation when using the proposed similarity metric

segmenting comparisons are done on images representing patients whose skin are in-

fected with Kaposi Sarcoma. We also demonstrate the proposed algorithm on several

other classical images including the Corpus Collusom.

2.3.1 Comparative Segmentation: Kaposi Sarcoma

Although various metrics and distributional functionals have been proposed for seg-

mentation in the GAC framework, a qualitative comparison to demonstrate the vary-

ing segmentation behavior has not been done (to the best of our knowledge) with

regards to similarity measures. The goal of this experiment is not to claim the ideal

energy model for distinguishing between two distributions, but to add our energy to

a general class of models discriminating on probability densities. Hence, we would

like show that with the same distribution, two different metrics can provide different

results. Note, no smoothing or regularization term is used in these comparisons, and

the results are obtained strictly on the energy describing the respective similarity

measure.

In Figure 5, we demonstrate a segmentation comparison between the flow derived

from the Bhattacharrya measure and the similarity metric proposed in this chapter.

21



Figure 6: Case two of the Kaposi Sarcoma. Top Row: shows the evolution of a curve
according to the Bhattacharrya distance resulting in an unsuccessful segmentation.
Bottom Row: Successful segmentation when using the proposed similarity metric

Figure 7: The Classic Zebra. Top Row: Several stages of the segmentation in which
we capture the bimodal object Bottom Row: Corresponding distribution plots of both
interior (red) and exterior (blue) regions if segmenting curve

Note, the same initialization is used. The segmentation result obtained by discrim-

inating distributions with the Bhattacharrya measure fails to capture the infected

portion of the skin. Moreover, it favors to segment an entirely different region. How-

ever, an acceptable segmentation result is obtained by evolving the curve according

to equation (10). Initial, intermediate, and final segmentation results are shown.

On a different case of the Kaposi Sarcoma, Figure 6 shows that the Bhattacharrya

distance is again unable to capture the infected portion of the skin while the proposed

energy results in a successful segmentation. From these experiments, we believe

(without proof) the ability to capture objects under low contrast is a major qualitative
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Figure 8: Corpus Callosum. Top Row: Successful Segmentation of a Corpus Callo-
sum, a generally challenging task without discriminating on the entire pdf . Bottom
Row: Successful segmentation of another case of the Corpus Callosum.

Figure 9: Successful segmentation of an MRI image of a heart using a different
initialization.

difference between the energy proposed and the Bhattacharrya measure. As present

in both of the Kaposi Sarcoma images, the infected portion’s gray-scale intensity is

not entirely different from the neighboring region. Several stages of the segmentation

are given.

2.3.2 Segmentation Results: Medical Structures, Classic Zebra

In this section, we test the our region based segmentation model on several images,

which further demonstrates the viability of using the proposed energy for image seg-

mentation. A common example, which is often tested with energy models that dis-

criminate on probability distributions, is the zebra image. The goal here is to capture

the entire zebra by separating the distributions such that we obtain a bimodal object
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with a unimodal background. We note that several segmentation methods have been

able to capture this image. However, for the sake of completeness, we show results in

Figure 7. Stages of the segmentation are shown along with the corresponding plots

of the probability distributions.

Moreover, segmenting biological structures from medical images is often a chal-

lenging task. This is due to the inherent inhomogeneous distribution of a photometric

variable as well as the low contrast and noise (as seen in the Kaposi Sarcoma). In

the remaining examples, we segment both the corpus callosum and an MRI image of

a heart. With different types of initialization, we are able to capture the finer details

as shown in Figure 8. It should be noted that without discriminating on the entire

probability distribution (e.g., making a Gaussian assumption), one would not be able

to segment the corpus callosum. Finally, in Figure 9, we demonstrate our algorithm

by segmenting an MRI image of a heart with a different type initialization compared

to other initializations seen in this chapter.

2.4 Chapter Conclusion

In this chapter, we introduced a new metric for image segmentation that quantifies

the “distance” between two distributions as the standard deviation of the difference

between logarithms of those densities. Although several metrics and measures have

been introduced for image segmentation, results may vary. The resulting behavior

can be attributed to the fact that the respective metrics penalize perturbations on a

manifold of probability densities in a different manner.

Moreover, although the results presented in this chapter yield acceptable segmen-

tation results, the proposed algorithm does have inherent drawbacks. As mentioned

in Chapter 1, if the basic assumption of separable statistics does not hold due to occlu-

sions or clutter surrounding the object, the active contour will over(under)-segment

the object of interest. This can be mainly attributed to the fact that one only evolves
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a curve according to image information alone. Thus, the incorporation of prior in-

formation in the form of a shape prior is usually used. However, before discussing

the possible solution to the drawback just presented, we must first look at 3D pose

estimation. This is discussed next.
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CHAPTER III

3D POSE ESTIMATION VIA STOCHASTIC DYNAMICS

AND PARTICLE FILTERING

In this chapter, we present a particle filtering approach for pose estimation of two

corresponding points sets. This chapter is based on [80, 81] and is organized as follows:

In the next section, we discuss the particle filter and derive a novel local optimizer.

In Section 3.2, we describe the registration algorithm along with the specifics of the

prediction step, measurement model, and the resampling scheme. Section 3.3 provides

numerical implementation details. Experimental results are given in Section 3.4.

Finally, we conclude the chapter in Section 3.5.

3.1 Preliminaries

In this section, we derive a local optimizer for point set registration as well review

some basic notions from the theory of particle filtering, which we will need in the

sequel.

3.1.1 The Objective Functional

We now formulate and derive a novel local optimizer that is based on the correlation

measure for point set registration. Specifically, we form an approximation for two sets

of data described by mixture of Gaussian, and then show that the resulting registra-

tion scheme is a robust variant of ICP. We should note that although similarities exist

with that of [95, 48], a key difference is that we keep explicit point correspondences.

That is, rather than smoothing point sets in a constant or multi-scale fashion, we

later employ this optimizer in the measurement functional as the “local” component

in an otherwise “global” scheme.
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3.1.1.1 An Approximation of the Correlation Measure for a Mixture of Gaussians

In what follows, we have assumed that we are given two mixtures of Gaussian dis-

tributions. We denote these distributions m(y) and d(y) as model and data, re-

spectively. Specifically, they have the form m(y) =
∑Nm

j=1 αjφmj(y|µmj ,Σmj) and

d(y) =
∑Nd

i=1 βiφdi(y|µdi ,Σdi) where µ and Σ are the mean vector and covariance

matrix of each mixture component, respectively.

Let us now assume that it is possible to obtain a closed-form expression for the

correlation measure between these two mixtures of distributions, and that the modes

of each of the neighboring mixtures are far apart. In other words, as in [37], one

needs consider only a component of a mixture in evaluating m(y) or d(y). We note

that although this assumption is generally valid for point sets, it may not be for other

applications. Nevertheless, it can be seen that one appropriate approximation of the

correlation measure is to match a single component of m(y) to each component of

d(y), that is,

B(m, d) =

Nd∑
i=1

∫
βiφdi(y|µdi ,Σdi) ·m(y)dy

≈
Nd∑
i=1

max
j

(∫
βiφdi(y|µdi ,Σdi) · αjφmj (y|µmj ,Σmj )dy

)

≈
Nd∑
i=1

max
j

(
B(αjφmj (y|µmj ,Σmj ), βiφdi(y|µdi ,Σdi))

)
.

Given the above assumptions, the term αjφmj(y|µmj ,Σmj), which is in the same

proximity of the component βi·φdi(y|µdi ,Σdi), dominates the integral
∫
βiφdi(y|µdi ,Σdi)·

m(y)dy. Now the term maxj(·) above is realizable by computing the following:

B(m, d) ≈
Nd∑
i=1

∫
α∗i βiφ

∗
mi(y|µ

∗
mi ,Σ

∗
mi)φdi(y|µdi ,Σdi), (11)

where α∗i and φ∗mi(y|µm∗i ,Σ
∗
mi

) correspond to the component that is the minimum

Euclidean distance for the ith component in the mixture modeled by d(y).

27



3.1.1.2 Local Optimizer for Point Set Registration

Suppose now that we are given two point sets that lie in Rn. Previously denoted

as model and data, we can further describe each finite point sets by their respective

elements {m}Nmi=1 and {d}Ndi=1. That is, each point within their respective point clouds

forms a Gaussian distribution, whereby the mean vector is the location of a point

and the covariance is the identity matrix, i.e., µmi = mi, Σmi = I. Assuming a rigid

body transformation, T (~d, θ) : Rn 7→ Rn, for a set data points ~di and model points

~mj, we seek to find a rotational matrix R and a translation vector t that minimizes

the following energy functional:

E =

Nd∑
i=1

∫
βiα

∗
i · φdi(y|µdi ,Σdi)φ

∗
mi

(y|Rµ∗mi + t,RΣ∗miR
T ). (12)

Similarly to that of [48], we are now able to employ the following formula∫
φ1(y|µ1,Σ1)φ2(y|µ2,Σ2) = φ(0|µ1−µ2,Σ1+Σ2). (13)

Thus, we then have that

E =

Nd∑
i=1

∫
βiα

∗
i · φdi(y|µdi ,Σdi)φ

∗
mi

(y|Rµ∗mi + t,RΣ∗miR
T )

=

Nd∑
i=1

βiα
∗
i · φ(0|µdi −Rµ∗mi − t,Σdi + RΣ∗miR

T )

=λ

Nd∑
i=1

ωiexp

(
−1

2
(Rµ∗mi+t−µdi)T(Σdi+RΣ∗miR

T)−1(Rµ∗mi+t−µdi)
)

=λ

Nd∑
i=1

ωiexp

(
−1

4
(Rm∗i + t− di)T (Rm∗i + t− di)

)

=λ

Nd∑
i=1

ωiexp

(
−1

4
||di −Rm∗i − t)||2

)
, (14)

where ωi=βiα
∗
i and

λ=
1

(2π)N/2|Σdi + RΣ∗miR
T |1/2

=
1

(2π)N/22
√

2
.
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Moreover, if we can obtain the surface normals of the model set, we can then

further increase the robustness of the optimizer. This is done by dotting equation

(14) with the (outward) surface unit normal ~n of the corresponding model point. The

resulting expression that is to be optimized is now given as

E = λ

Nd∑
i=1

ωi exp

(
−1

4
||Rn∗i · [di −Rmi − t)]||2

)
(15)

where ~n∗i is the corresponding outward surface unit normal associated with model

point m∗i . Typically, a correspondence matrix C is used to relate the associated

model point mj to the data point di. After establishing these point correspondences,

the optimal transformation φ = {~t, R} can be computed with the minimization of

equation (15).

For the derivation of minimizing equation (15), the interested reader may refer to

Appendix A. It is important to note though that after the transformation parameters

are computed, a new “image” of the correspondence matrix is formed by applying

the transformation T (~d, φ). The algorithm proceeds in an iterative manner until

convergence or a stopping criterion is reached.

As compared to the methodology proposed in [48, 95], we have explicitly kept the

point-to-point correspondences. Moreover, by keeping this explicit representation, we

are then able to incorporate surface normals. The resulting optimizer can be seen

as a robust variant of ICP, whereby we penalize outliers through the exponential

term. Thus, we refer to this as a “local” optimizer in the sense of its narrow band of

convergence. However, when used in conjunction with a particle filter, the basin of

convergence is significantly widened. We also note that other optimizers [17, 31, 44]

may be considered instead of the proposed functional presented here.

3.1.2 Particle Filtering

We now briefly revisit the basic notions and the generic setup of particle filtering as

well as its motivation in point set registration.
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Figure 10: Illustration of several time steps of the proposed particle filtering ap-
proach. Sample pool of particles are shown for each step by a rescaled version of an
oriented blue ”S.” The ”Best Fit” Particle is shown as a green ”S.”

3.1.2.1 Background and Generic Scheme

Letting x ∈ Rn, Monte Carlo methods allow for the evaluation of a multidimensional

integral I =
∫
g(x)dx via a factorization of the form I =

∫
f(x)π(x)dx, whereby π(x)

can be interpreted as a probability distribution. Taking samples from such a distribu-

tion in the limit yields the estimate of I that would otherwise be difficult or impossible

to compute. However, generating samples from the posterior distribution is usually

not possible. Thus, if one can only generate samples from a similar density q(x), the

problem becomes one of “importance sampling.” That is, the Monte Carlo estimate

of I can be computed by generating N >> 1 independent samples {xi; i = 1, ..., N}

distributed according to q(x) by forming the weighted sum: IN = 1
N

∑N
i=1 f(xi)w(xi),

where w(xi) = π(xi)
q(xi)

, represents the normalized importance weight. Consequently, by

employing Monte Carlo methods in conjunction with Bayesian filtering, the authors

in [39] first introduced the particle filter (PF). We refer the reader to [75, 29] for an

in-depth discussion on Monte Carlo methods and particle filtering schemes.

Now considering xt ∈ Rn to be a state vector with zt ∈ Rn being its corresponding

measurement, particle filtering is a technique for implementing a recursive Bayesian

filter through Monte Carlo simulations. At each time t, a cloud of N particles is

produced {xit}Ni=1, whose empirical measure closely “follows” p(xt|z0:t) = πt(xt|z0:t),
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the posterior distribution of the state given the past observations z0:t.

The algorithm starts with sampling N times from the initial state distribution

π0(x0) in order to approximate it by πN0 (x0) = 1
N

∑N
i=1 δ(x0 − xi0), and then imple-

ments Bayesian recursion at each step. With the above formulation, the distribution

of the state at t − 1 is given by πt−1(xt−1|z0:t−1) ≈ 1
N

∑N
i=1 δ(xt−1 − xit−1). The

algorithm then proceeds with a prediction step that draws N particles from the

proposal density q(xt|z0:t−1). With appropriate importance weights assigned to each

particle, the prediction distribution can now be formed in a similar fashion as above,

i.e., π̂t(xt|z0:t−1) = 1
N

∑N
i=1 w

i
tδ(x̂t − x̂it). Then, in the update step, new informa-

tion arriving online at time t from the observation zt is incorporated through the

importance weights in the following manner:

wit ∝ wit−1

p(zt|xit)p(xit|xit−1)

q(xit|xit−1, zt)
. (16)

From the above weight update scheme, the filtering distribution is given by π̃t(xt|z0:t) =

1
N

∑N
i=1 w

i
tδ(xt−xit). Resampling N times with replacement from π̃t allows us to gen-

erate an empirical estimate of the posterior distribution πt. Even though π̃t and πt

both approximate the posterior, resampling helps increase the sampling efficiency as

particles with low weights are generally eliminated.

3.1.2.2 Registration as a Filtering Problem

Although much of the particle filtering work related to computer vision has involved

the area of target estimation such as visual tracking [8, 73], the general framework

is valid for any problem for which one desires the posterior distribution. We should

note that while in the context of registration there exists no physical time t for

which information is received online like that of tracking, most point set registration

methodologies involve the estimate of a transformation through the establishment of

correspondences that do change as a particular algorithm converges. To this end,

we can induce an artificial time t where “information” can be regarded as point
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correspondences for a given pose estimate. With this, we can then adopt the generic

scheme presented in Section 3.1.2.1 for the purpose of point set registration where one

would like to estimate the pose transformation in the posterior. Moreover, if we are

interested in estimating the transformation given the correspondences, we do not need

the complete paths of particles from time 0 to time t. Consequently, a translation

prior can be employed as our proposal density. This is given as

q(xt|xit−1, zk) = p(xt|xit−1). (17)

Equation (17) means that our proposal density is dependent on the past state estima-

tion. This very assumption is used in forming the prediction model of Section 3.2.2

from the “motion” alignment error. It is also a common choice for particle filtering

applications, such as target tracking. In addition to assuming a translational prior,

other design choices including the prediction model, the measurement functional, and

the resampling scheme impact the algorithm’s behavior. This will be the discussed

next.

3.2 Proposed Framework

In this section, we cast the problem of pose estimation for point sets within a particle

filtering framework. We will explicitly show that by modeling the uncertainty of the

transformation, the resulting approach is substantially less prone to the problem of

local minima, and the algorithm is robust to noise, clutter, and initialization. An

overview can be found in Figure 10.

3.2.1 State Space Model

Point set registration can be viewed as a posterior estimation problem. That is, if we

are given the correspondences at a specific time t, we then seek to predict the pose

parameters that optimally aligns two point clouds.

Throughout the rest of this chapter, we assume that the registration problem is
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restricted to 2D and 3D point sets. Specifically, we let xt ∈ R3 and xt ∈ R6 represent

the respective state space of a rigid body transformation, i.e.

x(t) =
( ~t

~θ

)
(t). (18)

For the 3D case, the translation and rotation vectors are ~t = [tx, ty, tz]
T and ~θ =

[Rx, Ry, Rz]
T , respectively. Similarly, for 2D point sets, the state space is x(t) =

{tx, ty, θ}T . As stated previously, we exploit the uncertainty of the registration in our

prediction step. This forms an estimate of the state x̂t from the stochastic diffusion

modeling of the distribution p(xt|xt−1, zt−1). A detailed discussion is provided in

Section 3.2.2, where it is also shown that the basis of this prediction model can be

viewed as approximation to the selection of the proposal density. After an estimate

is formed, we obtain an observation at time t, which is the “image” formed under the

intermediate update of the correspondence matrix, C(T (~d, φ)).

Thus, the observation space is given as follows:

z(t) =
( ~tm

θm

)
(t) (19)

where θm and ~tm are the measured transformation parameters. In other words, the

measured parameters are the optimal transformation estimate obtained from the local

refinement in the observational functional (see Section 3.2.3). We should note that

unlike the work of [56], our measurement functional is not just based on the explicit

point correspondences. Instead, because we treat these correspondences as “informa-

tion” that is received online as in the case of a video sequence in visual tracking [8],

we are focused on measuring the transformation estimate given the correspondences.

This key difference allows us to incorporate dynamics in the prediction model.
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(a) (b)

Figure 11: Simplistic case of the uncertainty in point set registration. (a) For
translation, parameter estimates are largest for tx. (b) For rotation, the estimates are
largest in Rx

3.2.2 Prediction Model

We seek a model for the prediction distribution, which can best describe uncertainty

of the transformation during the registration process.

3.2.2.1 “Motion” Alignment Error

Inspired by [91], let us define the “motion” error for each particle {xi; i = 1, ..., N}

that is learned online at time t as

e(xit−1, x̂
i
t−1) = xit−1 − x̂it−1, (20)

where x̂t−1 and xt−1 are the predicted and measured state at t−1, respectively. Then

the covariance of “motion” error is given as

Sit−1 = E[e(xit−1, x̂
i
t−1)e(xit−1, x̂

i
t−1)T ]. (21)

Assuming independence amongst the error parameters, St−1 basically describes

the variability or severity of motion in each of the principal axis for a rigid body

transformation. This is shown in Figure 11. Here, a displacement is made for the

pure translation and rotation case of a truck model. In these simplistic cases, the

transformation estimate will be predominantly in the x-direction for (a) or about the

rotational x-axis for (b).
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(a) (b) (c) (d)

Figure 12: Viewing the Posterior Distribution and Effects of Gradient Descent on
the Cumulative Distribution Function (CDF). (a) Typical Result of the Posterior Dis-
tribution in Point Set Registration (b) CDF exhibiting “Sample Degeneracy” (c) CDF
exhibiting “Sample Impoverishment” (d) CDF exhibiting when choosing Optimal L.

By computing these transformation estimates from local variations in the pose

parameters, we propose to explore the space described by their principal components

of motion in a non-deterministic fashion. It is important to note that we only seek

perturbations in the posterior using the objective functional. That is, we do not want

to fully employ the optimizer discussed in the previous section, nor do we want to

make empirical estimates from the correspondences alone obtained at time t. The

consequence and implications of properly invoking the objective functional will be

discussed in both the measurement functional as well as in our resampling scheme.

3.2.2.2 Proposal Density

Now if we assume a translational prior for the proposal density, we can then model

the multivariate distribution with the use of Parzen estimators. This yields

q(xt|xit−1, zk) = p(xt|xit−1)

=
1

N

N∑
i=1

K

(
xit − xit−1

hit−1

)
, (22)

where hit−1 is the bandwidth of the kernel. Specifically, we choose K(xit, x
i
t−1, h

i
t−1) to

be a Gaussian function, i.e.,

K(xit,x
i
t−1,h

i
t−1)=

exp
(
− 1

2
(xit−xit−1)T (hit−1)−1(xit−xit−1)

)
(2π)N/2|hit−1|1/2

.

Because the bandwidth hit−1 changes the dynamics in our framework, we denote it

as the “weighted diffusion” of particles with a dependence on the covariance of the
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alignment error Sit−1, diffusion weight γt−1, and process noise vt−1. That is,

hit−1 = γt−1S
i
t−1︸ ︷︷ ︸

online

+ vt−1︸︷︷︸
off-line

. (23)

In the general formulation above, we have incorporated information that is learned

on-line (alignment error) and a priori information (process noise) learned off-line.

However, in the experimental validation and unlike that of [56, 62], we have assumed

the process noise to be minimal. Moreover, it can be viewed as a non-deterministic

annealing schedule where the parameters are learned on-line. That is, as t→∞, the

uncertainty embedded in the diffusion process is naturally reduced (σ2
t−1 → 0) leading

to convergence. The resulting proposal density is given as

q(xt|xit−1, zk) =
1

N

N∑
i=1

K

(
xit − xit−1

γt−1 · Sit−1

)
. (24)

As mentioned in Section 3.1, the selection of the proposal density is a critical

issue in the design of any particle filter [75]. Equation (24) describes a prediction

that diffuses stochastically in the direction of motion (through the bandwidth term)

providing a temporally coherent solution in the context of point set registration.

A simplification of the weight update scheme can now be made by substituting

equation (24) into equation (16) yielding:

wit ∝ wit−1p(zt|x̂t). (25)

In the next section, we propose a measurement functional that allows us to com-

pute p(zt|x̂t), and the weight updating scheme in equation (25).

3.2.3 Measurement Model

The measurement function, zt = h
(
x̂t, C(t)

)
, where x̂t is a seed point (corresponding

to a transformed point set), and C(t) = C
(
T (~d, φ)

)
is the “image” that becomes

available at time t, can be described as follows:
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1. Run minimization of the functional (15) for L iterations for each of the x̂it: the

choice of L depends upon the local optimizer and the method of minimization

(e.g., gradient descent, Gauss-Newton). This results in a local exploration of

both the transformation and the degree of misalignment existing between point

sets. See Section 3.2.4 for details.

2. Compute an update of the importance weight by equation (25) by defining

p(zt|x̂t) , e
PNd
i=1 ‖ni·(mi−T (~d,φ))‖2 .

3. Construct a cumulative distribution function from these importance weights.

Using the generic method in [75], resample N times with replacement to gener-

ate N new samples.

4. Select the transformed point set with the minimum energy as the measure-

ment. Update the path of transformation for each particle, which is used by

equation (20) to describe the “motion” alignment error.

Note from our above considerations that the posterior distribution and trans-

formation parameters can vary drastically depending on the set of correspondences

obtained at each step. For example, Figure 12a shows the posterior distribution that

characterizes the energy for each particle obtained from step 2 above. Hence, we must

not model the distribution as unimodal. Thereby, this justifies the use of a mixture

distribution to capture the wide variety of particle motions. Next, we discuss the

resampling scheme, and the importance of doing gradient descent for L iterations.

3.2.4 Resampling Model

The resampling step is introduced into particle filtering schemes as a solution to “sam-

pling degeneracy,” which is unavoidable in sequential importance sampling. Indeed,

the authors in [29] show that the variance of importance weights will in general only

increase over time.
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Moreover, in the context of point set registration, particles may not tend toward

high likelihood regions of the posterior distribution if a general resampling scheme

such as that of [75] is adopted. This is generally due to the empirical estimates that

are formed after the prediction step. In this chapter, the motivation of doing gradient

descent of L iterations of a chosen local optimizer is to explore the uncertainty in the

correspondences and registration process. However, it can also be seen that a proper

choice of L not only exploits the uncertainty as needed in the “motion” alignment

error, but it also alleviates two extremes in the generic resampling scheme, “sample

degeneracy” and “sample impoverishment.” We discuss these two cases as well as

how to properly choose L.

3.2.4.1 Choosing L too small: Sample Impoverishment

Although resampling attempts to solve “sampling degeneracy,” it induces another

problem known as “sample impoverishment.” In other words, by not invoking the

local optimizer within the measurement functional or by choosing L to be too small,

particles will never tend toward the high likelihood region of the posterior. This

is shown in Figure 12c. Here, a cumulative distribution shows that these weights

are about equal, and the resampling step will not eliminate those particles that are

regarded as “bad.” This results in a poor approximation to the posterior distribution,

and the registration may fail.

3.2.4.2 Choosing L too large: Sample Degeneracy

On the other hand, choosing L too large would effectively allow the particles to

converge towards the local minima. This is not desirable since the state at t and t−1

would lose dependency. Indeed, this can be regarded as “sample degeneracy” as all

the particles will tend toward one region during the resampling process. This can be

seen in Figure 12b, where the cumulative distribution shows only few particles with

a high-likelihood, while the majority have negligible impact.
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3.2.4.3 Reasonable Choice of L

Thus, the choice of L should be chosen in a manner such that we avoid the two ex-

tremes mentioned above. In particular, the choice of L should produce the cumulative

distribution similar to that of Figure 12d. In the present work, we have chosen L so

that we are able to establish the notion of uncertainty as discussed in Section 3.2.2.1.

However, in general, this also results in a resampling scheme that mitigates both

“sample degeneracy” and “sample impoverishment.” It also important to note that

from a filtering perspective, the choice of L depends on how much one trusts the

system model versus the obtained measurement. That is, if we choose L to be large,

we completely depend on the measurement functional or local optimizer since this

is run to convergence. On the other hand, if we choose L to be negligible, then the

registration process is driven by process noise. Note, we have assumed the process

noise to be small, but this can be easily incorporated in the current framework with

minimal changes. In addition, it is also valuable to note the sensitivity of choosing

L with respect to the performance of our particular filtering approach. Although one

ideally would like to choose L so that the “uncertainty” to a particular problem is

exploited, this may not always be the case. For our experiments, we have found that

a choice L = 7 for gradient descent and L = 3 for Gauss-Newton’s method have

given robust results. However, values ranging from L ∈ [2, 4] and L ∈ [4, 12] for

Gauss-Newton and gradient descent, respectively, have been used without significant

performance loss. It should be noted that the choice of L also depends on the type

of local optimizer used.

3.2.4.4 Dimensionality of State Space vs Number of Particles

Although we are focusing on rigid transformations pertaining to 2D and 3D point sets,

it is noteworthy to mention the state parameter dimension in relation to the number of

particles required. From a theoretical perspective, it is well known that the number of
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particles grows exponentially with dimensionality of the state space [29, 75]. However,

in practice we have found that our particular setup does not require an exponential

growth in the particle size when increasing the state space dimension. This is due

to the fact of invoking a gradient descent algorithm in the measurement functional.

Moreover, this framework has a similar setup to [73], in which the authors proposed to

explore an infinite dimensional space of curves through a minimal amount of samples

(30 particles) as compared to the CONDENSATION filter (1200 particles) [8]. From

this, it can be expected (without proof) that if we extend the proposed approach

to non-rigid registration, the amount of samples should not drastically increase. Of

course this is also dependent on the choice of optimizer that is employed within the

measurement functional.

3.3 Implementation

Here, we provide implementation and numerical details of the algorithm described in

Section 3.2.

3.3.1 Numerical Details

Experiments performed on both 2D and 3D data sets are implemented by minimizing

the objective functional with the gradient descent approach. For a fast calculation

of the correspondence matrix, we use a “KD tree” for the model points. Nearest

neighbor searches are then easily performed for the varying data sets.

In addition, as with any particle filtering scheme, one needs to determine the

number of particles and the initial population. In the present algorithm, we employ

100 particles. However, if empirical estimates are made in the posterior as in [56],

the number of particles drastically increases. This is demonstrated in Section 3.4.3.1.

Hence, this is yet another motivation for proposing the measurement function in

Section 3.2.3. Assuming no prior knowledge of the specifics of the registration task,

we adopt the following scheme for determining the initial population. We generate n
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(a) (b) (c)

Figure 13: Illustrating the Domain of Convergence. a) Three 2D projected models
derived from the Stanford Bunny data set. b) Convergence Results for ICP. c) Con-
vergence Results for Proposed Optimizer. Note: Arrows are positioned at varying
20◦ increments and Red Arrows and Green Arrows denote “Failures” and “Success,”
respectively.

Gaussian distributed particles about the given initialization. Specifically, we apply a

rigid transformation for each particle with a translational variance of ~t = τ ∗ µdata,

where τ is chosen from [ 3
10

, 5
10

] and µdata is the computed range of the data point set.

Similarly, the variance for rotational vector is given by randomly selecting an axis of

rotation (i.e., Rx,Ry, or Rz) with an angle ϕ = [π
4
, π

2
].

Lastly, we allow the algorithm to run to convergence for each of experiments per-

formed in Section 3.4. As stated previously, our approach can be considered a global-

to-local technique in which we non-deterministically anneal the perturbation of states

at time t through dynamics. Consequently, the algorithm terminates once the mean

diffusion of particles crosses a certain threshold criterion (e.g.,
PN
i=1(xit−1−x̂it−1)

N
< ε,

where ε is a user specified value). In our experiments, ε is < 1◦ for rotational angle

and < .7 for the translation vector. More importantly, our final estimate is com-

piled from the optimal transformation estimate obtained through the measurement

functional. In other words, it is the “best fit” particle’s transformation that is chosen.

3.4 Experimental Results

We provide both quantitative and qualitative experimental results for both 2D and

3D point sets that undergo a rigid body transformation. Because particle filtering

can be regarded as a stochastic optimization process belonging to a class of random
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sampling methods, quantitative experiments shown were tested over repeated trials.

Consequently, we report both the gaussian average and standard deviation of these

results so as to provide the reader with some notion of “success.”1

We compare the proposed framework with a generic particle filtering algorithm

similar to [56] as well the Kernel Correlation registration scheme of [95]. These specific

tests demonstrate the robustness (and limitations) of the algorithm to initialization,

partial structures (or clutter), partial overlapping point sets, and noise. More-

over, we provide experimental justification for employing stochastic dynamics in

a filtering framework as opposed to purely using deterministic annealing to drive the

registration process or performing a multiple hypothesis test. Lastly, a performance

analysis (with respect to the number of particles used) along with the execution time

and iteration count for each of the experiments is given in Section 3.4.4. However,

before doing so, we must first validate the local optimizer proposed in Section 3.1.1.2

since it plays a crucial role the measurement functional of our filtering algorithm.

3.4.1 Domain of Convergence for Proposed Optimizer

In the first set of experiments, we validate the proposed local optimizer with our own

implementation of ICP. Specifically, we use the bun045*, a projection of bun045 from

the Stanford Bunny Set [1]. This can be seen in Figure 13a, and is discussed in more

detail in Section 3.4.2.3. In a similar validation manner to that of [91], the projected

point set was initialized at positions sampled on a circle whose radius is half the fixed

shape width. Initial rotations of ±40◦ in 20◦ increments were tested. ICP results

are shown in Figure 13b while our proposed optimizer convergence results are shown

in Figure 13c. Through user visualization, each arrow marked red was considered a

“failure” while green represented a “successful” registration. The proposed optimizer

registered a total of 62 scans while ICP registered 49. We note that as an optimizer

1Unless explicitly stated, we consider an alignment successful, if the registration offset is < 2◦

and the norm of translation offset is < 2.
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used in a stand-alone fashion, other methods such as [95, 19] may result in better

transformation estimates.

3.4.2 Comparative 2D Rigid Registration

In the second set of experiments, we compare the Kernel Correlation (KC) approach

[95] with our algorithm here. The MATLAB code of the KC algorithm is made

available on the authors’ website (http://www.cs.cmu.edu/ ytsin/KCReg/). In this

algorithm, a global cost function is defined such that the method can be interpreted as

a multiply-linked ICP approach. Rather than define a single pair of correspondences,

one point set must interact with each point in the opposing set, thereby eliminating

point correspondences altogether. Our algorithm can also be re-interpreted as a

switching stochastic ICP approach where one point set interacts with only a handful

of correspondences. It should be noted that we do not claim the KC methodology

is inferior to the proposed approach. The experiments are performed to aid and

highlight the significance of keeping explicit point correspondences while trying to

widen the band of convergence.

3.4.2.1 Qualitative Comparison: Partial Structures (Letter Search)

In this example, we create the words “POINT SET,” and off-set the letter S with

a rather large pose transformation as seen in Figure 14(a). Running the KC algo-

rithm and the proposed approach, we attempt to recover this transformation. The

task of finding a letter within a set of words is a typical partial matching problem.

We performed the KC method for several varying kernel bandwidths, and found that

σKC = 2.5 provided the most successful result. This is shown in Figure 14(c). In

particular, as one increases the bandwidth σKC , the algorithm tends to align distribu-

tions spatially, which makes it particularly ill-suited for partial matching. The result

of the particle filtering approach (number of particles is 100 with L = 7) described in

this chapter is shown in Figure 14(e). The transformation is recovered.
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(a) (c) (e)

(b) (d) (f)

Figure 14: Examples of estimating the pose with points sets having clutter or
sparseness. (a) Initial letter off-set. (b) Initial cube off-set. (c) KC word search
result. (d) KC cube result. (e) Particle filtering word search result. (f) Particle
filtering cube result.

3.4.2.2 Qualitative Comparison: Geometric Assumptions (Cube)

The next experiment deals with the case of differing densities across the two point

sets. We should note that many point set registration algorithms make some tacit

assumptions on the point set density. In another words, they assume point sets

that have a similar density or geometry around a local neighborhood for each point

within their respective sets. We refer the reader again to Figure 2(b) and (c) for

an illustration of differing densities. In particular, the KC algorithm uses kernel

density estimates to describe the (dis)similarity between points across the two sets.

To overcome poor initialization, noise, or clutter, the kernel bandwidth must be

increased. However, in doing so, the kernel smoothes the point sets, which makes

it increasingly difficult to discriminate among individual points when working with

sparse and dense sets. To demonstrate this, we generate 50 points from the model

cube, which is itself composed of 400 points. A transformation T (~d, φ) is then applied

to the extracted data set. Similar to the preceding section, we tested several kernel

bandwidths, and found σKC = 3 to be the optimal choice. The result is shown in
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Figure 15: Different views of the 3D point sets used in this chapter.

Figure 14(d), where a suboptimal registration is obtained. A successful alignment is

recovered using the proposed method (number of particles = 100, L = 7) as seen in

Figure 14(f).

3.4.2.3 Quantitative Comparison: Initialization and Noise (2D Projections of
Stanford Bunny)

In this experiment, we quantitatively compare the KC algorithm to our proposed

particle filtering approach under noise and initialization. Because the 3D KC algo-

rithm was not available online, and real life 2D point sets were not readily available,

we opted to form 2D projections from three scaled models of the standard Stanford

Bunny data set [1]. This is shown in Figure 13a. We note that while depth infor-

mation is removed from the original model, the projection itself still represents the

differing sampling and overlapping regions of each 3D Bunny model, making it suit-

able for a quantitative comparison. To further ensure validity of these projected scans,

we performed supervised registration and found that a “success” or global minima is

achieved if ‖~t‖ < 2.5 with a rotational offset ~θ < 7◦ for each scan pair.

Taking bun045*, bun090*, and bun090*, we formed a 100 possible combination

pairs. We then applied a rigid transformation for each pair. In particular, we generate

translations ~t = [tx, ty]
T from a normal distribution with each component having a

standard deviation of 3, i.e. N (0, 3). A rotational offset was chosen from a uniform

distribution U(0, π
2
). After a transformation is applied, the data set is sampled with

replacement with Gaussian zero mean noise. The applied noise is N (0, 15). In this
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(a) (b) (c) (d)

Figure 16: The importance of stochastic motion. (a) Initialization. (c) Result with
deterministic annealing model. (c) Result with no dynamical model. (d) Result with
stochastic motion model.

experiment, we generated noise levels of 0, 5, 10, and 25 percent substitution, and

then we performed tests at each of the several varying noise levels. Further, the

number of particles used is 100 with L = 7.

Table 2 shows the number of successful alignments for the KC algorithm compared

under three different choices of a smoothing kernel with that of proposed approach.

Specifically, we found that the kernel choice of σKC=3 to be optimal. Moreover, we

repeated each trial 100 times to ensure the repeatability success of our algorithm

(given that it is a random sampling technique). Interestingly, the proposed approach

outperformed the KC algorithm for noise levels of 0, 5, 10 percent. However, the

results were similar for 25 percent, and at times KC outperformed the proposed

approach for certain kernel sizes. This can explained by the KC algorithm’s ability

to align centers of mass including the noise. Although this can be a limitation of

using explicit point correspondences, aligning centers of mass may not be desirable if

partial structures exist as shown in Section 3.4.3.1.

3.4.3 Rigid Registration of 3D Point Sets

Our experiments with 3D rigid registration of point sets use several 3D models as

seen in Figure 15. Specifically, the Stanford Bunny, the Buddha, and the Dragon, are

models obtained from the Stanford 3D Repository [1]. In addition to these models,

several scans of a room, which first appear in [58], have also been used. While some of

the partial scans do not contain the surface normals, we use the methodology proposed

46



Noise K.C. Alg. K.C. Alg. K.C. Alg. P.F.
(σKC= 1) (σKC= 3) (σKC= 5) (100 Trials)

0 %. 20 26 16

µ = 50.10
σ = 3.53
max = 59
min = 41

5 % 15 16 13

µ = 31.94
σ = 3.75
max = 41
min = 22

10 % 17 17 12

µ = 27.41
σ = 3.59
max = 35
min = 16

25 % 16 18 20

µ = 18.45
σ = 3.34
max = 27
min = 10

Table 2: 2D Comparative Analysis with Kernel Correlation Under Varying Levels
of Noise and Initialization. Number of “Successful” Alignments are shown, where
“Success” is denoted if ‖~t‖ < 2.5 with a rotational offset ~θ < 7◦ is found for each scan
pair.

by [27]. The main focus here is the importance of stochastic motion dynamics and the

algorithm’s inherent robustness to noise and initialization as well as being to handle

partial overlapping scans.

3.4.3.1 Quantitative Comparison: Motion Dynamics (Truck)

In this experiment, we demonstrate the importance of stochastic motion with our own

implementation of a filtering scheme similar to that of [56] Specifically, we employ

deterministic annealing for our process and measurement noise. Moreover, we replace

the ICP functional with our optimizer so as to mitigate any problems caused from

the objective functional as well as to highlight the differences between each filtering

setup. Lastly, we also compare the above algorithms to a multiple hypothesis based

testing technique (i.e., no dynamics in the current framework). One of the underlying
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(a) bun000 to
bun315

(b) bun045 to
bun315

(c) drag72 to
drag120

(d) drag0 to
drag96

Figure 17: Partial Scans of an Apartment Room. Note the severe initial alignments.
Top Row: Initializations. Middle Row: Intermediate Result of Proposed Approach
Bottom Row: Final Result with Proposed Algorithm.

contributions in this chapter is to demonstrate that dynamics have a significant impact

on the registration results. For example, in the case of 3D LADAR imagery [2], pose

tracking algorithms involve segmentation of an object from a scene, which is then

followed by point set registration. However, at a given instance of time, the object

maybe only partially seen and segmented. This results in the task of partial matching

in the context of registration. More importantly, when facing occlusions or erratic

behavior, the extracted point set can be inaccurately initialized.

To demonstrate this, we first extract a cloud of points from the front side of the

truck as seen in Figure 16(a), and center it with respect to the model. We then create

50 transformations. First, translations ~t = [tx, ty, tz] are generated from a normal

distribution with each component having a standard deviation of half the range of

the model. The rotation angle θ is then chosen randomly along the z rotation axis, but
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(a) apt10 to apt3 (b) apt10 to apt4 (c) apt10 to apt9 (d) apt10 to apt7

Figure 18: Partial Scans of an Apartment Room. Note the severe initial alignments.
Top Row: Initializations. Middle Row: Intermediate Result of Proposed Approach
Bottom Row: Final Result with Proposed Algorithm.

from a uniform distribution U(0, π
3
). In our comparison, we initialized the process and

measurement noise as .7∗[max(model)−min(model)] and .3∗[max(data)−min(data)],

respectively. The annealing rates were chosen to be .85 for the process noise and .7

for the measurement noise. Initial distributions were the same for each filtering setup.

For the case of a multiple hypothesis testing, the algorithm was able to register 13

scans. We ran our own implementation similar to that of [56] multiple times (trials

= 50) for the 50 transformations. Using 1000 particles for the filter driven by process

and measurement noise, we report a mean success rate of 25 and a standard deviation

of 3.41 (over 10 trials). For the filtering method proposed in this chapter, which used

only 100 particles, we report a mean success rate of 40.96 and a standard deviation

of 1.91. The reasoning for such an improvement between the two particle filters can

be explained by the fact that even with 1000 particles, at times “good” particles were
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Noise Optimizer P.F. (50 Trials). Optimizer P.F. (50 Trials)
(θ< 60◦) (θ< 60◦) (θ< 120◦) (θ< 120◦)

5 %. 83

µ = 91.17
σ = 1.62
max = 94
min = 88

57

µ = 75.59
σ = 2.81
max = 83
min = 72

10 %. 86

µ = 92.89
σ = 1.74
max = 97
min = 90

55

µ = 74.23
σ = 3.40
max = 80
min = 66

25 %. 79

µ = 85.20
σ = 1.96
max = 88
min = 81

49

µ = 69.44
σ = 2.80
max = 73
min = 63

35 %. 74

µ = 82.86
σ = 2.35
max = 86
min = 78

44

µ = 66.44
σ = 2.16
max = 71
min = 60

Table 3: 3D Performance Gain of Employing Proposed Particle Filtering Method
in Conjunction with Proposed Local Optimizer Under Varying Levels of Noise and
Initialization. Number of “Successful” Alignments are shown, where “Success” is
denoted if ‖~t‖ < 2 with a rotational offset ~θ < 2◦ is found for each scan pair.

driven away from the global minima by the high noise. In the same respect, the

deterministic noise also allowed for “bad” particles to diffuse to the correct global

minima. Figure 16 shows an example of when the proposed approach outperforms

deterministic annealing and a multiple hypothesis testing.

3.4.3.2 Qualitative Results: Partial Non-Overlapping Data Sets (Bunny, Room)

An important task for many point set registration algorithms is the ability to properly

register scans that exhibit only a partial overlap of the surface. In addition, depending

on the acquisition of the point sets, the sampling of points may create inconsistences

in the correspondences across two sets of interest. In what follows, we use L = 7 with

100 particles.
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We begin with the famed 3D models from Stanford Repository, which are com-

posed of models whose scans are taken in succession. We have limited our registration

experiment to those scans that exhibit a poor initialization or poor overlaps. In par-

ticular, Figure 17 shows the successful registration of bun000 to bun045, bun000 to

bun315, bud0 to bud336, and drag0 to drag96.

While Figure 17 demonstrates the notion of a non-overlapping surface, the scans

are generally tested with “local” optimizers. Thus, we extend this experiment to

scans of a room taken by a DeltaSphereTM-3000 laser scanner. In particular, the large

rotational offset along with sampling density and partial structures creates difficult

problems for point set registration In Figure 18, we show the successful registration

of four scans of a room.

3.4.3.3 Quantitative Results: Performance Gain of Employing P.F. Algorithm
(Horse)

In this example, we extensively test the algorithm’s performance in the case of large

misalignment and large levels of noise. Moreover, we demonstrate the performance

gain of employing our proposed particle filtering algorithm. First, we generate two

series of 100 random transformations and apply them to a data set that is uniformly

sampled from the model. The first series of transformations focuses on the case for

which iterative techniques are commonly tested. In particular, we generate transla-

tions ~t = [tx, ty, tz] from a normal distribution with each component having a standard

deviation of 30, i.e. N (0, 30). This value is chosen according to the range of model

points, ([−36, 33], [−67, 74], [−75, 82]). The rotation angle θ is then chosen randomly

along the z rotation axis, but from a uniform distribution U(0, π
3
). The second series

of transformations is similar to the first set, except now the rotation angle is chosen

from a uniform distribution U(π
3
, 2π

3
).

After a transformation is applied, the data set is sampled with replacement with

Gaussian zero mean noise. The applied noise is N (0, 45), which is again chosen with
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Figure 19: Plot of the energy convergence of the proposed approach with respect to
the iteration count for three different sample sizes.

respect to the dimensions of the horse. In this experiment, we generated noise levels

of 5, 10, 25, and 35 percent substitution, and then we performed tests at each of the

several varying noise levels. Further, the number of particles used is 100 with L = 7,

and the initial distribution has the same spread for each random transformation.

Table 3 above presents the number of successful alignments of running just the op-

timizer presented in Section 3.1.1.2 as well as the particle filtering algorithm proposed

in this chapter. Because of the random nature of particle filtering, the experiment

was repeated over 50 trials with the same initializations. We report both the mean

success rate, standard deviation, as well as the minimum and maximum successful

alignments for each case. Interestingly enough, the particle filtering approach out-

performs the iterative-based technique even in the case where the rotational angle is

not extreme. One can then see the significant improvement in widening the narrow

band of convergence for the particular case of large off-sets and noise.

3.4.4 Performance Analysis

The final experiment examines the time-performance analysis of our particle filtering

approach. Specifically, we focus on the breakdown limit of the number of particles

needed for accurate registration in the case of the experiment performed in Sec-

tion 3.4.3.1. We ran this experiment with the same transformations, but with the
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additional particle sizes of 50 and 500. To ensure a notion of repeatability of success

the number of trials was chosen to be 50. For the case of 500 particles, we report a

mean success rate of 48, with a standard deviation of 1.15. Compared to 100 particles

as previously tried, which we reported to have a mean success rate of 40.96 and stan-

dard deviation of 1.91, adding more particles increases the rate of success. In contrast,

the “breakdown” limit was seen to be roughly 50 particles in which the algorithm’s

efficiency decreases to a mean success rate of 30.16 with a standard deviation of 2.24.

This can be seen for a challenging initialization in Figure 19. In particular, a higher

level of particles also enables the algorithm to converge at a slightly quicker rate.

Lastly, we report the execution time, iteration count and other relevant informa-

tion for each of the experiments performed in this chapter in Table 4. It should be

noted that our implementation of both the “local” optimizer and particle filtering

algorithm were done in MATLAB v7.1 on a Intel Dual Core 2.66GHz with 4 GB

memory. Also, in relative terms, our implementation of the filtering algorithm using

deterministic annealing averaged 1228 sec over 50 iterations. This reduction in com-

putational speed is due to nearest neighbor searches and unoptimized code. One final

key note about the performance of our algorithm is its ability in reducing the sample

size of particles. From this, both ICP and particle filtering can be currently paral-

lelized onboard a tracking system in a much more efficient manner, where limitations

occur in the need for resampling component of the particle filter.
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3.5 Chapter Conclusion

In this chapter, we cast the problem of pose estimation for point sets within a particle

filtering framework that exploits the underlying variability in the registration process.

This is done by estimating “motion” or uncertainty as local variations in pose pa-

rameters in the posterior. From this, a novel local optimizer based on the correlation

measure is proposed and derived. Unlike [56, 62], the method does not require an

annealing schedule and drives the registration with information that is learned online

through a stochastic diffusion model. As compared to the KC algorithm [95], our

approach only considers a set of correspondences in a switching like fashion. This en-

ables the algorithm to correctly align point sets when dealing with partial structures

or with the matching of dense and sparse sets.

Although we have presented a novel pose estimation scheme with the point regis-

tration algorithm, we note that there still exists major drawbacks that are inherent in

formulating the solution. In particular, the proposed registration algorithm requires

not only a costly stochastic optimization method like that of particle filtering, it also

depends on point correspondences. Of course, having correspondences within the

context of point set registration can be seen as a trade-off, we note that additional

difficulties arise when these correspondences are generated from a 2D image so that

they correspond to features on a 3D object. In a similar manner and as previously

mentioned, segmentation also may not yield the desirable result due to the assump-

tion of separable statistics. Thus, ideally we would like to combine the strengths

of each algorithm with the intent of circumventing typical and sometimes inherent

weakness of the respective algorithms. This unification of methodologies is presented

next.
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CHAPTER IV

UNIFYING 2D IMAGE SEGMENTATION AND 3D POSE

ESTIMATION FOR A CLASS OF 3D OBJECTS

In this chapter, we present a non-rigid approach to jointly solve the tasks of 2D-

3D pose estimation and 2D image segmentation. This chapter is based on [85, 82]

and is organized as follows. In the next section, we begin with a generalization of

the gradient flow of [24] for an arbitrary set of finite parameters. We then provide

details for evolving both the shape parameters, which are obtained from performing

Kernel Principle Component Analysis (KPCA) on a collection of 3D shapes1, and the

corresponding pose of an object. In Section 4.4, we present experimental results that

highlight the robustness of the technique to noise, clutter, and occlusions as well as

the ability to segment a novel shape that is not apart of the specified training set.

4.1 Kernel Principal Component Analysis (KPCA) Review

In this section, we review the fundamental concepts associated with kernel PCA as

well as the pre-image approximation used, which we will need in the sequel.

4.1.1 KPCA Formulation

Let us begin with a set of data points, {X1, X2, ..., XN} that are members of the

input space M ∈ Rn. This set can be mapped to a possibly higher dimensional

feature space, denoted by H, via the nonlinear map ϕ : Rn 7→ H. Moreover, this map

does not need to be explicitly known. Indeed, one can introduce a Mercer kernel,

1We assume as with many machine learning techniques that we have a catalog of 3D shapes
describing a particular object. Specifically, one can use stereo reconstruction methods [101] or range
scanners to obtain accurate models as shown in Figure 20. From this, we derive a variational
approach to perform the task of non-rigid 3D pose estimation and 2D image segmentation.
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Figure 20: Three 3D Training Sets used in this work. Top Row: Different 3D
models of commonly used tea cups (6 of the 12 models used for the training are
shown). Middle Row: Different 3D models of the number 4 (6 of the 16 models used
for the training are shown). Bottom Row: Different 3D models of commonly seen
helicopters (6 of the 12 models used for the training are shown)

which is defined to be a function k(Xa, Xb) such that for all data points Xi, the

kernel matrix

K=



k(X1, X1) k(X1, X2) . . . k(X1, XN)

k(X2, X1)
. . .

... k(Xi, Xj)

k(XN , X1) k(XN , XN)


is symmetric positive [61, 87]. According to Mercer’s Theorem [60], computing

k(Xa, Xb) as a function of M×M, amounts to computing the inner scalar prod-

uct in H: k(Xa, Xb) = 〈ϕ(Xa), ϕ(Xb)〉, with (Xa, Xb) ∈M×M. This scalar product

in H defines a distance dH. For example, the L2 distance is d2
H(ϕ(Xa), ϕ(Xb)) =

‖ϕ(Xa)− ϕ(Xb)‖2 = k(Xa, Xa)− 2k(Xa, Xb) + k(Xb, Xb).

If we now consider the input to be a collection of shapes, one can then perform

the KPCA method as presented in [61]. Let T = {X1, X2, ..., XN} be a set of training
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data. The centered kernel matrix K̃ corresponding to T , is defined as

K̃(i, j) = 〈(ϕ(Xi)− ϕ̄), (ϕ(Xj)− ϕ̄)〉

= 〈ϕ̃(Xi), ϕ̃(Xj)〉 = k̃(Xi, Xj), for(i, j) ∈ [|1, N |] (26)

with

ϕ̄ =
1

N

N∑
i=1

ϕ(Xi)

where

ϕ̃(Xi) = ϕ(Xi)− ϕ̄.

In addition, since K̃ is symmetric, it can be decomposed as

K̃ = USUT , (27)

where S = diag(λ1, λ2, ..., λN) is a diagonal matrix containing the eigenvalues of K̃. U

= [u1, u2, ..., uN ] is an orthonormal matrix, where the columns ui = [ui1, ui2, ..., uiN ]T

are the eigenvectors corresponding to the eigenvalues λi’s. Furthermore, it can be

shown that

K̃ = HKH (28)

where H = I − 1
N

llT , l = [1, 1, ...., 1]T is a N × 1 vector, and I is a N × N identity

matrix.

Let C denote the covariance matrix of the elements of the training set mapped

by ϕ̃. Then the nth (orthonormal) eigenvector of C in the feature space is given as

follows

Vn =
N∑
i=1

uni√
λn

ϕ̃(Xi) =
1√
λn
φ̃un, (29)

where φ̃ = [ϕ̃(X1), ϕ̃(X2), ..., ϕ̃(XN)]. That is, φ̃ ∈ RnXN The subspace of the feature

space H will be referred to as the kernel PCA space.

Now let X be any element of the input space M. The projection of X on the

kernel PCA space, spanned by the first l eigenvectors of C, is then given by

P lϕ(X) =
l∑

n=1

ωnVn + ϕ̄ (30)
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with ω = [ω1, ω2, ..., ωl] being the KPCA shape weights or coefficients.

We note that while the above formulation allows us to construct the projection

from a linear combination involving the shape coefficients, it is only valid in the

feature space. That is, given a test point x ∈ M, we would ideally like to compute

its projection in the image space x̂ = ϕ−1(P lϕ(x)). Unfortunately, because the map

ϕ : Rn 7→ H is unknown, one can not directly obtain this projection. This is referred

to in the literature as the pre-image problem [54]. In this chapter, we use the non-

iterative pre-image result of [22] to directly evolve the KPCA coefficients. However,

before doing so, we first present a few popular kernels and their corresponding pre-

image result used in literature for shape-based learning.

4.1.2 KPCA Kernels

We now present several kernels that allows one to perform learning of shapes using

linear and nonlinear PCA.

4.1.2.1 Linear PCA

In [55, 94], a method is presented to learn shape variations by employing PCA on

a training set of shapes (closed curves) represented as the zero level sets of signed

distance functions (SDF). In order to perform PCA, let us begin with with the poly-

nomial kernel. This is given by

kϕP (ψi, ψj) = (c+ 〈ψi, ψj〉)d (31)

where c is any constant, d is the degree (odd) of the polynomial, and ψi is the SDF

associated with a shape in one’s training set. Then by choosing c = 0 and d = 1, we

arrive at the following kernel used to perform classical PCA on SDFs:

kid(ψi, ψj)=〈ψi, ψj〉=
∫ ∫ ∫

ψi(u, v, k)ψj(u, v, k)dudvdk (32)

for the SDF’s ψi and ψj: R3 7→ R. The subscript id stands for the identity function:

when performing linear PCA, the kernel used is the inner scalar product in the input
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space. Hence, the corresponding mapping function ϕ = id. One should note that this

latter integral is infinite if there is no bound. However, since this is being used in a

shape learning context (PCA), there is an assumption on the size of the shapes within

the given training set that gives the necessary boundedness and finiteness result. This

certainly affects the distance, and makes it non-intrinsic.

4.1.2.2 NonLinear PCA

Choosing various types of nonlinear kernel functions k(Xa, Xb) is the basis of nonlinear

PCA. The exponential kernel has been a popular choice in the machine learning

community and has proven to nicely extract nonlinear structures from data sets; see

e.g. [61]. Using SDFs for representing shapes, this kernel is given by

kϕσ(ψi, ψj) = e
−‖ψi−ψj‖

2

2σ2 (33)

where σ2 is a variance parameter estimated a priori and ‖ψi − ψj‖2 is the squared

L2-distance between two SDF ψi and ψj. The subscript ϕσ stands for the nonlinear

mapping corresponding to the exponential kernel. This mapping also depends on the

choice of σ.

4.1.3 Pre-Image Approximation

In this section, we revisit the closed-form pre-image approximation proposed by [22,

71]. It can be seen that although the ϕ map is not necessarily known, we ideally

would like to reconstruct the pre-image x̂ of a corresponding test point x ∈ M such

that the distance between the feature point ϕ(x̂) and the projection in the PCA space

P lϕ(x) is minimized, i.e.,

x̂ = arg min
x∈M
‖ϕ(x̂)− P lϕ(x)‖2.
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In terms of level-sets, this can be achieved by minimizing the following error

ρ(ψ̂) = ‖ϕ(ψ̂)− P lϕ(ψ)‖2

= k(ψ̂, ψ̂)− 2〈ϕ(ψ̂), P lϕ(ψ)〉+ ‖P lϕ(ψ)‖2 (34)

where P lϕ(ψ) is the projection of any SDF in kernel PCA space. Using the kernel

notation, we can rewrite the middle term.

〈ϕ(ψ̂), P lϕ(ψ)〉 = ϕ(ψ̂)T
[ l∑
n=1

ωnVn + ϕ̄

]

= ϕ(ψ̂)T
[ l∑
n=1

ωn

[( N∑
i=1

uni√
λn

ϕ(ψi)

)

− ϕ̄
( N∑

i=1

uni√
λn

)]
+ ϕ̄

]

=
N∑
i=1

γ̃ik(ψ̂, ψi) (35)

where

γi =
l∑

n=1

ωnuni√
λn

and γ̃i = γi +
1

N

(
1−

N∑
j=1

γj

)
.

Plugging the result of (35) into (34), the extremum can be obtained by setting ∇ψ̂ρ =

0. Also, we prefer that the pre-image have a closed-form solution so that it can be

used as basis for our energy functional in which we would like to evolve the KPCA

shape weights directly in the input space.

4.1.3.1 Pre-Image for Linear PCA

We begin with a pre-image approximation for the polynomial kernel presented in Sec-

tion 4.1.2.2. From this, we can then simplify the resulting pre-image approximation

to that of linear PCA. By setting ∇ψ̂ρ = 0, the following pre-image of the projection
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in the KPCA space is

ψ̂ =
N∑
i=1

γ̃i

(
k(ψ̂, ψi)

k(ψ̂, ψ̂)

)
·
(
k(ψ̂, ψi)

k(ψ̂, ψ̂)

)− 1
d

ψi

=
N∑
i=1

γ̃i

(
k(ψ̂, ψi)

k(ψ̂, ψ̂)

) d−1
d

ψi

=
N∑
i=1

γ̃i

(
c+ 〈ψ̂, ψi〉
c+ 〈ψ̂, ψ〉

)d−1

ψi. (36)

However, if we use the approximation ϕ(ψ̂) ≈ P lϕ(ψ), which amounts to assuming

that d2
H(P lϕ(ψ), ϕ(ψi)) ∝ d2

H(ϕ(ψ̂), ϕ(ψi)), one has

k(ψ̂, ψi) =
1

2

(
‖P lϕ(ψ)‖2 + k(ψi, ψi)− d2

H(P lϕ(ψ), ϕ(ψi))
)

Then, the following expression to reconstruct the pre-image is obtained:

ψ̂=
N∑
i=1

γ̃i

(
‖P lϕ(ψ)‖2+k(ψi, ψi)−d2

H(P lϕ(ψ), ϕ(ψi))

2‖P lϕ(ψ)‖2

)d−1
d

ψi.

Interestingly, if we now take d = 1 in Equation (36), one gets the expression for

performing linear PCA, i.e.,

ψ̂ =
N∑
i=1

γ̃iψi. (37)

More importantly, we can now see that the pre-image approximation ψ̂ presented in

Equation (37) depends on the shape weight ωi. In a similar manner, we can arrive at

an energy formulation for nonlinear PCA. This is discussed next.

4.1.3.2 Pre-Image for NonLinear PCA

For the exponential kernel in Equation (33), which involves the implicit representation

of SDFs, setting ∇ψ̂ρ = 0 yields

ψ̂ =

∑N
i=1 γ̃ik(ψ̂, ψi)ψi∑N
i=1 γ̃ik(ψ̂, ψi)

=

∑N
i=1 γ̃i exp

(
− ‖ψ̂ − ψi‖2/(2σ2)

)
ψi∑N

i=1 γ̃i exp
(
− ‖ψ̂ − ψi‖2/(2σ2)

) (38)
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While this expression has been used to estimate the pre-image via an iterative-based

approach [54], we use the close-form approximation proposed by [71]. In their work,

the authors assume that ϕ(ψ̂) ≈ P lϕ(ψ). Moreover, they also assume that the Mer-

cer kernel which is chosen can be inverted. Thus, for an exponential kernel of Equa-

tion (33), one has

d2
M(ψ̂, ψi) = −2σ2 log{1

2
(2− d2

H(ϕ(ψ̂), ϕ(ψi)))}.

Plugging this result into Equation (38) with the above approximation yields the

following

ψ̂ =

∑N
i=1 γ̃i exp

(
− d2

M(ψ̂, ψi)/(2σ
2)
)
ψi∑N

i=1 γ̃i exp
(
− d2

M(ψ̂, ψi)/(2σ2)
)

≈

∑N
i=1 γ̃i

(
1− 1

2
d2
H(P lϕ(ψ), ϕ(ψi))

)
ψi∑N

i=1 γ̃i

(
1− 1

2
d2
H(P lϕ(ψ), ϕ(ψi))

) . (39)

Of course, the above approximations were made so that one can use kernel PCA to

form a 3D shape embedded in a feature spaceH via the finite shape weights associated

with the input space M. However, before deriving the evolution scheme, let us first

discuss the proposed pose estimation and segmentation framework.

4.2 Proposed Framework

We assume as with many machine learning techniques that we have a catalog of 3D

shapes describing a particular object. Specifically, one can use stereo reconstruction

methods [101] or range scanners to obtain accurate models as shown in Figure 20.

From this, we derive a variational approach to perform the task of non-rigid 3D pose

estimation and 2D image segmentation.

4.2.1 Some Notation and Terminology

Let S be the smooth surface in R3 defining the shape of the object of interest. With

a slight abuse of notation, we denote by X = [X, Y, Z]T , the spatial coordinates that

63



are measured with respect to the referential of the imaging camera. The (outward)

unit normal to S at each point X ∈ S will then be denoted as N = [N1, N2, N3]T .

Moreover, we assume a pinhole camera realization π : R3 7→ Ω; X 7→ x, where

x = [x, y]T = [X/Z, Y/Z]T , and Ω ∈ R2 denotes the domain of the image I with the

corresponding area element dΩ. From this, we define R = π(S) to be the region on

which the surface S is projected. Similarly, we can form the complementary region

and boundary or “silhouette” curve as Rc = Ω \R and ĉ = ∂R, respectively. In other

words, if we define the “occluding” curve C to be the intersection of the visible and

non-visible region of S, then the image curve is ĉ = π(C).

Now let X0 ∈ R3 and S0 be the coordinates and surface that correspond to the

3D world, respectively. For example, if we choose the exponential kernel, S0 is given

as the zero-level surface of the following functional:

ψ̂(X0, w)=

∑N
i=1 γ̃i

(
1− 1

2
d2
H(P lϕ(ψ), ϕ(ψi))

)
ψi(X0)

∑N
i=1 γ̃i

(
1− 1

2
d2
H(P lϕ(ψ), ϕ(ψi))

) . (40)

That is, S0 = {X0 ∈ R3 : ψ̂(X0, w) = 0}. Note, we have also kept the explicit

dependency on w for ease of reading (e.g., when we compute the variation of this

shape w.r.t. w in Section 4.2.3). Then one can locate the S in the camera referential

via the transformation g ∈ SE(3), such that S = g(S0). Writing this point-wise

yields X = g(X0) = RX0 + T, where R ∈ SO(3) and T ∈ R3.

4.2.2 Gradient Flow

Let us begin with the assumption that if the correct 3D pose and shape were given,

then the projection of the “occluding curve,” i.e. ĉ = π(C), would delineate the

boundary that optimally separates or segments a 2D object from its background.

Further assuming that the image statistics between the 2D object and its background
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are distinct, we define an energy functional of the following form:

E =

∫
R

ro(I(x), ĉ)dΩ +

∫
Rc
rb(I(x), ĉ)dΩ, (41)

where ro : χ, Ω 7→ R and rb : χ, Ω 7→ R are functionals measuring the similarity

of the image pixels with a statistical model over the regions R and Rc, respectively.

Also, χ corresponds to the photometric variable of interest. In the present work, ro

and rb are chosen to be region based functionals of [14, 66].

Now we want to optimize Equation (41) with respect to a finite parameter set

denoted as ξ = {ξ1, ξ2, ..., ξm}. This is given as follows:

∂E

∂ξi
=

∫
ĉ

(
ro(I(x))− rb(I(x))

)〈
∂ĉ

∂ξi
, n̂

〉
dŝ

+

∫
R

〈
∂ro
∂ĉ

,
∂ĉ

∂ξi

〉
dΩ +

∫
Rc

〈
∂rb
∂ĉ

,
∂ĉ

∂ξi

〉
dΩ (42)

where the “silhouette” curve is parameterized by the arc length ŝ with the corre-

sponding outward normal n̂. Note, because we are only restricting ro and rb to be

[14, 66], the last two terms can be shown to be zero. However, this is a special case,

and one must take careful consideration when choosing the proper energy functional

as these terms may tend not to be zero. We consider these energies for their simplic-

ity, and more importantly, not to detract from the main contribution of the proposed

method. In doing so, the result is as follows:

∂E

∂ξi
=

∫
ĉ

(
ro(I(x))− rb(I(x))

)〈
∂ĉ

∂ξi
, n̂

〉
dŝ, (43)

If we further assume that the parameter ξi acts on the 3D coordinates, the above line

integral will be difficult to compute since ĉ and n̂ are defined in the 2D image plane.

Thus, it would be much more convenient if we can express the above line integral

around the “occluding curve” C that lives in the 3D space and is parameterized by

s. We briefly describe this lifting procedure, and refer the reader to [24] for all the

details. The image plane and surface are then related by〈
∂ĉ

∂ξi
, n̂

〉
dŝ =

〈
∂π(C)

∂ξi
, J
∂π(C)

∂s

〉
ds (44)

65



where J =

 0 1

−1 0

, which yields the following expression

〈
∂ĉ

∂ξi
, n̂

〉
dŝ =

1

Z3

〈
∂X

∂ξi
,


0 Z −Y

−Z 0 X

Y −X 0

 ∂X

∂s

〉
ds

=
1

Z3

〈
∂X

∂ξi
,
∂X

∂s
×X

〉
ds

=
‖X‖
Z3

√
κXκt
K

〈
∂X

∂ξi
,N

〉
ds. (45)

Here K denotes the Gaussian curvature, and κX and κt denote the normal curvatures

in the directions X and t, respectively, where t is the vector tangent to the curve C

at the point X, i.e. t = ∂X
∂s

.

If we now plug the result of Equation (45) into Equation (43), we arrive at the

following flow

∂E

∂ξi
=

∫
C

(
ro
(
I(π(X))

)
− rb

(
I(π(X))

))
·

‖X‖
Z3

√
κXκt
K

〈
∂X

∂ξi
,N

〉
ds. (46)

Note, that in the above derivation we made no assumptions about the finite set. That

is, we show that the overall framework is essentially “blind” to whether we optimize

over the shape weights or pose parameters. What is important is how the functional

in Equation 43 is lifted from the “silhouette” curve to the “occluding curve” so that

the gradient can be readily computed. In particular, the term

〈
∂X
∂ξi
,N

〉
is what we

will focus on in Sections 4.2.3 and 4.2.4.

4.2.3 Evolving the Shape Parameters

In this section, we compute the term

〈
∂X
∂ξi
,N

〉
, when the ξi corresponds to the shape

weight obtained from performing KPCA on a collection of 3D models. Let ξ = ω =
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{ω1, ω2, ..., ωl} with l being the number of principal modes used. In addition, the 3D

coordinates X0, which is derived from the surface S0, are related by the constraint

ψ̂(X0, w) =

PN
i=1 γ̃i

(
1− 1

2
d2H(P lϕ(ψ),ϕ(ψi))

)
ψi(X0)

PN
i=1 γ̃i

(
1− 1

2
d2H(P lϕ(ψ),ϕ(ψi))

)

s.t. ψ̂(X0(w), w) = 0.

(47)

The term

〈
∂X
∂ωn

,N

〉
can then be computed as follows:

〈
∂X

∂ωn
,N

〉
=

〈
∂RX0 + T

∂ωn
,N

〉
=

〈
R
∂X0

∂ωn
,N

〉
=

〈
∂X0

∂ωn
,RTN

〉
=

〈
∂X0

∂ωn
,RTRN0

〉
=

〈
∂X0

∂ωn
,N0

〉
. (48)

Using the constraint on the zero-level surface and noting that
∇X0

ψ̂

‖∇X0
ψ̂‖ = N0, we then

have that

0 =
∂

∂ωn
ψ̂(X0(w), w)

=

〈
∇X0ψ̂,

∂X0

∂ωn

〉
+

∂ψ̂

∂ωn

=

〈
‖∇X0ψ̂‖N0,

∂X0

∂ωn

〉
+

∂ψ̂

∂ωn
,

which yields the following compact expression〈
∂X0

∂ωn
,N0

〉
= − 1

‖∇X0ψ̂‖
· ∂ψ̂
∂ωn

. (49)

The general result presented in Equation (49) provides the variation of the energy

with respect to the shape parameters, and is one of the major contributions of this

work. It was previously shown that if one uses the linear PCA kernel, then ∂ψ̂
∂ωn

=

Vn(X0). However, to exploit nonlinearities in the catalog of shapes, the exponential
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kernel is employed. The variation of the pre-image for this kernel with respect to the

shape weights is given as

∂ψ̂

∂ωi
=

∑N
i ηi · ψi∑N
i Ji

−
(∑N

i ηi
)(∑N

i Ji · ψi
)

(
∑N

i Ji)2
, (50)

where

Ji = γ̃i
(
1− 1

2
d2
H(P lϕ(ψ), ϕ(ψi))

)

ηi =
uni√
λn
− 1

N

N∑
j

unj√
λn
·
(
1− 1

2
d2
H(P lϕ(ψ), ϕ(ψi))

)
+ ...

γ̃i√
λn

( 1

N2
(lTKl)l− 1

N
Kl + kϕi

− 1

N
llTkϕi

)T
un − ωn.

and where kϕi
= [kϕσ(ψi, ψ1), . . . , kϕσ(ψi, ψN)]T .

For the complete derivation, we refer the reader to Appendix B. It is important

to note though, that due to the closed form approximation of the pre-image, we are

able to use various kernels (e.g., linear and nonlinear PCA) with minimal changes to

overall scheme. Next, we discuss how one can evolve the pose parameters.

4.2.4 Evolving the Pose Parameters

In this section, we discuss the evolution of the pose parameters. Specifically, with a

slight abuse of notation, we let ξ = λ = {λ1, λ2, λ3, λ4, λ5, λ6}T . Then we are able to

compute the term
〈
∂X
∂λi
,N
〉

where λi is a translation or rotation parameter:

• For i = 1, 2, 3 (i.e., λi is a translation parameter), and T =


tx

ty

tz

 =


λ1

λ2

λ3

,

one has
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〈
∂X

∂λi
,N

〉
=

〈
∂RX0 + T

∂λi
,N

〉
=

〈
∂T

∂λi
,N

〉

=

〈
∂λ1

∂λi

∂λ2

∂λi

∂λ3

∂λi

 ,N
〉

=

〈
δ1,i

δ2,i

δ3,i

 ,N
〉

= Ni,

(51)

where the Kronecker symbol δi,j was used (δi,j = 1 if i = j and 0 otherwise).

• For i = 4, 5, 6 (i.e., λi is a rotation parameter), and using the expression of the

rotation matrix written in exponential coordinates, R = exp




0 −λ6 λ5

λ6 0 −λ4

−λ5 λ4 0


,

one has 〈
∂X

∂λi
,N

〉
=

〈
∂RX0

∂λi
,N

〉

=

〈
R


0 −δ3,i δ2,j

δ3,i 0 −δ1,i

−δ2,i δ1,i 0

X0,N

〉
.

(52)

We note that one can also expand the rigid body transformation to a more gen-

eral affine transformation, and hence provide increased flexibility in the proposed

approach.

4.2.5 Alternative View of Gradient Flow

We briefly revisit the gradient flow of Section 4.2.2, and present an alternative view-

point in relationship to the area of shape derivatives [15, 25].

In particular, revisiting equation (46), one can see that the gradient is the integral

taken over the image curve. Alternatively, these points can be considered “voting”

terms that bias the mean or direction of the particular finite parameter estimated.
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Thus, one advantage as well as a limitation is the dependency on how well the sta-

tistical mean is for a given data set. Although it is shown in Section 4.4 that the

proposed methodology exhibits an inherent robustness to occlusions in a tracking

setting, if the occlusion obfuscates an object for extended period of time or possess a

strong statistical difference from that of the intended object, then one might choose

a different statistical measure. For example, naively choosing the median (during

implementation) may allow for the algorithm to overcome certain occlusions during

tracking. More importantly, one can also develop ad-hoc schemes or employ particle

filtering techniques [85] to bias the original flow such that “outliers” on the image

curve do not heavily affect the result. Unfortunately, given the scope of this work,

experimental results presented in Section 4.4 are based upon the flow of Equation

(46) and we leave the details of employing robust statistics as a subject of future

work.

However, we note, that in certain scenarios in which there may be strong statistical

difference between an occlusion and the object of interest for a extended period of

time, some “occluded” points may drive the segmentation toward an unreliable result.

Note, points that are only considered are those that lie on the image curve, and hence

self-occluding points are taken care of during the computation of the occluding curve

(see Section 4.3).

Moreover, the gradient in (43) involves the computation of the shape derivative,

which describes the directions of deformation of the 2D curve (under projection) with

respect to the 3D pose parameters and shape coefficients. The gradient is then the

dot product of a typical 2D region-based gradient (i.e., (ro−rb).n̂ ; see e.g., Chan and

Vese model [14]) with the shape derivative. We note that for each point on the 2D

curve, the deformation direction is compared to the normal,

〈
∂ĉ
∂ξi
, n̂

〉
, and weights

the statistical comparison term, ro − rb. Then the average over each point of the

curve determines the optimal direction of variation of the finite parameter ξi (i.e., the
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(a) (b) (c)

Figure 21: Domain of Convergence. a) Sample visual results (top row) with con-
vergence results (bottom row) when rotation is applied to x-axis. b) Sample visual
results (top row) with convergence results (bottom row) when rotation is applied to y-
axis. c) Sample visual results (top row) with convergence results (bottom row) when
rotation is applied to z-axis. Note: Arrows are positioned at varying 30◦ increments
and Red Arrows and Green Arrows denote “Failures” and “Success,” respectively.

sign of the derivative ∂E
∂ξi

). Altogether, the link to shape optimization is presented

here such that one can view the proposed methodology in the more broader text of

shape based segmentation and pose estimation. Next, we discuss the numerical and

implementations details associated with the algorithm.

4.3 Numerical Details

In Equation (46), the computation of the gradients involve the explicit determination

of the occluding curve C. As previously mentioned, one can compute

C = {X ∈ S : 〈X,N〉 = 0 and π(X) ∈ ĉ}. (53)

However, in practice, this condition is rarely exactly met due to the sampling of a

3D surface. Moreover, if the shape is non-convex, as is with most objects seen in

this chapter, the condition of equation (53) will yield points that are self-occluded

and hence truly not apart of the 3D occluding curve. Thus, an approximation of ε1
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is first made in order to compute an estimate of the visible and non visible regions,

V+
ε1

= {X ∈ S : 〈X,N〉 ≥ −ε1} and V−ε1 = {X ∈ S : 〈X,N〉 ≤ ε1}, respectively.

Relating the visible and non-visible regions to the occluding curve for both convex

and non-convex shapes, we have C+ = {X ∈ V+
ε1

: ∃ Y ∈ V−ε1 , ‖X − Y‖ ≤ ε2}

and C− = {X ∈ V−ε1 : ∃ Y ∈ V+
ε1
, ‖X − Y‖ ≤ ε2} where ε2 is a chosen (small)

parameter. The occluding curve can then be redefined as the union of these two sets

or C = {X ∈ C+ ∪ C−}. We have seen that this procedure mitigates self-occluded

points if the proper choice of ε1 and ε2 are chosen with regards to the sampling of the

3D surface and camera calibration parameters.. In addition, ĉ can be obtained by

using morphological operations on R, i.e., ĉ = R− E(R), with E denoting the erosion

operation for a chosen kernel [38].

Secondly, to save computational time, we approximated the term
√

κXκt
K
' 1 in

Equation (46). We note that the approximation was done in order to save computa-

tional time and indeed can be a poor approximation if the viewing direction X and

the tangent to the occluding curve are identical. However, we observed that for the

sequences and images presented in this chapter, the energy decreased and convergence

was met.

Lastly, in performing KPCA, and as with any other statistical learning technique,

one must choose the number of modes of variation. In this chapter, depending on the

data set, the number of modes was chosen to be l = 4, 5 or 6. Moreover, when working

with the exponential kernel, the choice of σ is important. Hence, we found that if

we choose σ2 = 1
N

∑
i minj,i6=j(‖ψi − ψj‖2), the algorithm would, for our particular

experiments, converge to the desired shape of interest. If one would like to “mix”

the shapes in a more linear fashion, σ should be chosen to be a higher value and vice

versa.
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Figure 22: Linear PCA Segmentation with Occlusion and Clutter. Top Row: Ini-
tialization Middle Row: Unsatisfactory results obtained from using an active contour.
Bottom Row: Results obtained from proposed approach

4.4 Experiments

We provide segmentation and tracking results to demonstrate the algorithm’s do-

main of convergence and its ability to handle noise, deformation, occlusions or

clutter. Moreover, results are given to illustrate the method’s effectiveness in shape

recovery, which may include nonlinearities in one’s training set. Specifically, we

generate three 3D training sets corresponding to the number “4” as well as com-

monly seen tea cups and helicopters 2 . This is shown in Figure 20. Lastly, because

code was not readily available, it should be noted that we do not claim the proposed

method is superior (practically) to existing techniques. Thus, the experiments were

performed to highlight the (dis)advantages of a proposed alternative approach for

non-rigid segmentation and pose estimation.
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 23: Linear PCA Segmentation for Shape Recovery: Segmentation of different
views and shapes of the number “4,” which are not present in the training set. Top
Row : Initialization. Bottom Row : Final Results obtained for running proposed.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 24: Linear PCA Segmentation for Shape Recovery: Segmentation of different
views and shapes of a beige teacup, which is not present in the training set Top Row :
Initialization. Bottom Row : Final Results obtained for running proposed.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 25: Linear PCA Segmentation for Shape Recovery: Segmentation of different
views and shapes of a black teacup, which is not present in the training set Top Row :
Initialization. Bottom Row : Final Results obtained for running proposed.
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 26: Nonlinear PCA Segmentation for Shape Recovery: Segmentation of
different views and shapes of simulated helicopters which are not present in the train-
ing set. Top Row : Initialization. Bottom Row : Final Results obtained for running
proposed.

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 27: Nonlinear PCA Segmentation for Shape Recovery: Segmentation of
different views and shapes of real helicopters which are not present in the training
set. Top Row : Initialization. Bottom Row : Final Results obtained for running
proposed.

4.4.1 Domain of Convergence

In the first set of experiments, we illustrate the proposed method’s domain of conver-

gence. Although the algorithm is designed for a variational setting such as tracking

in which movements between frames are assumed to be small, it is still interesting to

note the domain of convergence.

Specifically, we generated 18 random pairs of the synthetic number 4. This was

2After the models were generated, the shapes were registered with the methodology proposed in
[85] so that any variation in shape was not due to pose alignment error
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done by first setting the number of modes l = 4, and randomly drawing the set of

nonlinear PCA weights from a uniform distribution U(2σdeg
i , 2σdeg

i ) where σdeg
i is ith

primary mode of variance. Figure 21 shows several sample shapes that were generated

as well their initializations and final result shown in green and yellow, respectively.

In particular, using the validation manner to that of [80, 91], one pair was fixed at

the center of the image while the other shape of a specific pair was initialized at

positions sampled on a circle whose radius is approximately half of the fixed shape

width. Note, the depth was kept constant when initializing the “moving” shape.

Then initial rotations of ±60◦ in 30◦ increments were tested about each rotational

axis while keeping the other two remaining axis fixed. The bottom row of Figure 21

shows the sampled circle for each of the rotations and through user visualization, each

arrow was marked red for which we considered a “failure” while green represented a

”successful” segmentation.

Interestingly, we see that for rotations about the x and y axis, the algorithm

exhibits a larger convergence region then for the z axis. That is, of the 90 possible

initializations, we successfully segmented 76 when rotation was applied to the x axis,

and successfully segmented 66 when rotation was applied to the y axis. On the other

hand, only 48 successful segmentations were observed when rotating about the z axis.

The resulting behavior can be mostly attributed to the initial overlap the “moving”

shape was given. That is, for specific rotations, a change in perspective is seen in the

2D image domain. Combining this with large translations and deviations from the

shape result in initializations seen in Figure 21, whereby the algorithm is driven to

an undesirable result. However, we should note that this a drawback associated with

gradient descent as opposed to another optimization method. Although it is beyond

the scope of this work, one could strap a particle filter in order to further widen

the domain of convergence at the cost of computational complexity. Nevertheless,

the domain of convergence shown here is ideal for segmentation in which one knows
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the approximate location of the object or tracking scenarios in which deviations in

location are generally not seen between consecutive frames. Lastly, we also make note

that we performed this test with the linear PCA kernel described earlier and similar

results were obtained.

4.4.2 Segmentation Experiments

In this section, we focus on segmenting a 2D image using a 3D catalog of shapes that

may or may not correspond to the object of interest.

4.4.2.1 Linear PCA Segmentation with Occlusions and Clutter

For the second set of experiments, we provide experimental validation that compares

our segmentation method, which is an optimization over a finite set of parameters,

with that of the infinite dimensional geometric active contour (GAC) technique. The

reasoning for such a comparison is as follows: In either methodology, we seek to

minimize a cost functional of the general form E(t) =
∫
γ

Ψ(x, t)dx over a family of

curves. For the GAC framework, this family of curves lives only in the image plane

when performing 2D image segmentation. Similarly, in the current framework, we are

optimizing over a family of 3D “occluding” curves that correspond to 2D “silhouette”

curves. That is, we cast the typical infinite dimensional problem of segmentation as

a finite dimensional optimization problem.

Thus, we benefit from incorporating shape information which results in being able

to deal with not only occlusion, but also in cluttered environments where the original

assumption of separable statistics does not hold. This is shown on four different

examples as seen in Figure 22. The top row illustrates the initialization, while the

middle row shows the unsatisfactory result of using an active contour. The final

row highlights results given by the proposed approach with l = 6 using the energy

proposed in [14]. Although it is not readily apparent, one can alternatively view the

examples in Figure 22 as 3D reconstruction from a single 2D image view exhibiting
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partial information, which is a fundamental task in computer vision. Details on

the level of accuracy of average reconstruction can be found in Section 4.4.2.4 and

Section 4.4.3.1. Also, we note that these experiments can be found in [85]

4.4.2.2 Linear PCA Segmentation for Shape Recovery

In this section, we shift the focus of our experiments to segmenting shapes that are

not in the original training sets using the linear KPCA kernel as done in [85]. We want

to specifically highlight an important advantage of learning 3D shapes as opposed to

a large catalog of 2D shapes to perform the task of 2D segmentation. This is done by

segmenting different shapes arising from different 3D models as well as from altering

the pose of a 3D object.

In Figure 23, we show the segmentation of different views and shapes that are

obtained from a person coloring in the number “4” on a white-board. The top row

highlights the initialization while the bottom rows shows the final result. The same

experiment is performed for the differing views of two tea cups that were not in the

original training set (see Figure 24 and Figure 25). While one may argue that the

results are similar to the 2D shape learning approaches, we should note some of the

key differences. First, we not only segment the 2D image, but are able to return the

estimated 3D shape and pose from which the 2D object was derived. Moreover, to

account for segmentation of objects presented in Figure 23, Figure 24, and Figure 25

with a 2D shape prior, one would have to learn every possible projection of the 3D

object onto to the 2D image plane (if no prior knowledge is given about the aspect

of the projection). Note, we set l = 6 and used the energy proposed in [66]

4.4.2.3 Nonlinear PCA Segmentation for Shape Recovery

Although it was shown in the previous section that one can segment an object from

various views with linear PCA, we now shift our focus on utilizing the nonlinear PCA
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Figure 28: Nonlinear vs Linear PCA Segmentation: Image segmentation results
when two different class of shapes (teacups and helicopters) are “mixed” to generate
a new training set. Top Row: Initialization. Middle Row: Unsatisfactory results
obtained using proposed algorithm with PCA. Bottom Row: Satisfactory results
obtained using proposed algorithm with KPCA.

kernel for a more complex training set such as a rigid class of helicopters. In partic-

ular, we found several images and differing viewpoints of helicopters available online

(http://www.youtube.com). Thus, the objects again were not within the training set.

In particular, Figure 26 focuses on segmenting a Sikorsky S76 as well as a Bell 212

simulated helicopter from two different views. We should note that while these ob-

jects are simulated, the scene is also cluttered with simulated real-life clutter. Despite

relatively difficult initializations, we were able to successfully segment two distinct he-

licopter used. On the other hand, Figure 27 shows successful segmentations of the

same type of helicopters, but in a real-time environment. Note, we set l = 5 and used

the energy proposed by [66] for these set of experiments

4.4.2.4 Nonlinear vs Linear PCA Segmentation

The next set of experiments demonstrate the robustness of utilizing a nonlinear ker-

nel as opposed to linear PCA in the context of the proposed algorithm. A major
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Figure 29: Nonlinear vs Linear PCA Segmentation: 3D shape reconstruction results
when two different class of shapes (teacups and helicopters) are “mixed” to generate
a new training set. Top Row: Initialization. Middle Row: Unsatisfactory results
obtained using proposed algorithm with PCA. Bottom Row: Satisfactory results
obtained using proposed algorithm with KPCA.

drawback in using linear PCA is that one assumes the training set can be linearly

related and decomposed to form a novel learnt shape. This assumption is many times

invalid. For example, when dealing with a more general catalog of shapes, in which

two sets of objects from different classes are mixed, linear PCA will likely yield an

unsatisfactory result. Thus, in order to deal with this problem, one may employ

(again) a nonlinear statistical learning technique such as nonlinear PCA. We note

that this problem is widely known in literature and has been solved for various 2D

shape based schemes [61, 21]. However, for the sake of completeness, we demonstrate

the increased performance of using nonlinear PCA as compared to linear PCA in the

present framework.

We begin by mixing two of the 3D training sets together. In particular, we “cor-

rupt” the helicopter training set, which consists of 12 models, by adding 8 of the

commonly used teacups. This “new” set of training models is used to perform 2D

segmentation of a toy helicopter, which is not in our training set, for several different
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viewing angles as seen in Figure 28. The first row highlights the initialization while

the second and third row yield the results of the proposed algorithm when employing

linear PCA and nonlinear PCA, respectively. Moreover, because our algorithm can be

alternatively viewed as a reconstruction methodology from a single 2D image [79], we

also present the corresponding initialization and results for 3D shapes in Figure 29.

Interestingly, while it may be apparent that nonlinear PCA outperforms linear

PCA from the perspective of shape learning, we also found, on average, a faster

convergence rate for nonlinear PCA from both a 2D segmentation point of view

as well as for shape reconstruction. This “distance” is computed via ICP measure

between two sampled set of points that lie on the surface of each respective 3D shape

[5]. This is shown in Figure 30 for two of the four viewing angles of our toy helicopter.

Specifically, the top row shows the normalized 2D image segmentation energy of [14],

while the bottom row shows the normalized L2 distance between the known 3D shape

with that of its reconstructed 3D shape. One can see from the above plots that

although the 2D image energy is always being minimized until it reaches steady-

state, the shape error may gradually increase before it decreases. This is because we

are optimizing with the image segmentation energy, and not with the L2 distance

associated with the shape reconstruction error. Nevertheless, nonlinear PCA exhibits

a faster convergence rate for both shape reconstruction and image segmentation.

Note, we set l = 5 for both linear and nonlinear PCA kernels.

4.4.3 Tracking Experiments

In this section, we focus on tracking an object in a 2D scene using a 3D catalog

of shapes. In particular, our initialization for each frame in the video sequence is

the pose and shape result from the previous frame. That is, it can be viewed as an

extension of the segmentation algorithm discussed previously.
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(a) (b) (c) (d)

Figure 30: Nonlinear vs Linear PCA Segmentation: PCA and KPCA comparison
convergence plots of image and shape energy. (a)-(b) Segmentation energy conver-
gence plot of two different examples of segmenting a toy helicopter. (c)-(d) Corre-
sponding shape energy convergence plots. Note: Black color denotes KPCA result
while red color denotes PCA result.

4.4.3.1 Linear PCA Tracking of Synthetic Deformations, Occlusions, and Noise
using the Number 4

In the first set of tracking experiments, we demonstrate the algorithm’s robustness

to noise in the presence of continuous deformation and occlusion.3 First, a tracking

sequence was generated consisting of 200 frames that were obtained from projecting

the number “4” onto the 2D image plane using a simulated camera. Specifically, the

variation in the rotation angle was a complete 360◦ cycle, and the model was varied

linearly along its z-axis from 170 to 670 spatial units resulting in a scale in the viewing

aspect of the image projection. Also, we translated the model in its x-y axis with

a step of 0.5 spatial units for each frame. More importantly, we vary the first three

principal modes so that a deformation can be seen. From this basic sequence, three

cases of additive Gaussian noise with a standard deviation of σn = 25%, σn = 75%,

and σn = 100% are formed. We also generated an artificial occlusion resembling the

intensity of the background with noise σn = 25%. 4

Figure 31 show four frames which exhibit typical tracking results from the σn =

75% noise case described as well as the generated occlusion sequence. Here, we

3We note that a similar, but not exact, experiment can be found in [85]. Also, performing this
experiment with nonlinear PCA would yield similar results due to the nature of the given data set.

4Note: we define σn to be a percentage of noise generated from a gaussian distribution to be
applied to its corresponding binary image. For example, given the number 4 and the case of σn =
25%, the image value ofN (1, .25) andN (0, .25) is chosen for the object and background, respectively.
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Frame ]32 Frame ]46 Frame ]127 Frame ]198

Frame ]69 Frame ]106 Frame ]140 Frame ]182

Figure 31: Linear PCA Tracking of Synthetic Deformations, Occlusions, and Noise
using the Number 4. Visual tracking results for the sequence involving the number
4. Top Row: Tracked sequence with Gaussian noise of standard deviation σ = 75%.
Bottom Row: Tracked sequence for σ = 25% with severe occlusion.

have used the region-based energy of [14], and obtain tracking results by varying

the first 6 principal modes, i.e. l = 6. Because several 2D-3D pose estimate tech-

niques [70, 28, 59] rely on a correspondence based scheme to estimate the pose, their

methodologies may be sensitive to noise and outliers as presented in Figure 31. Be-

cause of the robustness of region-based active contours (as compared to local geomet-

ric descriptors), the proposed approach yields satisfying visual results such as those

of [24]. However, here we have not constrained ourselves to know the actual shape of

a pre-specified number “4”. It is straightforward to see (without comparison), that if

we were to assume the knowledge of a model, then it would not be possible for us to

handle the wide range of deformations seen.

Nevertheless, to further ensure the robustness of the algorithm, we provide quanti-

tative tracking results as seen in Table 5. For each image, percent absolute errors with

respect to the ground-truth were computed for both the translation and rotation as:

Error = ‖vmeasured−vtruth‖
‖vtruth‖

, with v a translation or quaternion vector. In dealing with the

appropriate shape error, we opted to compute the error as: Error = ‖Xmeasured−Xtruth‖
maxj,i 6=j(‖Xi−Xj‖) .

Note, X represents the 3D shape of interest, and overload of notation is employed

only for this section. Also i and j are simply indices belonging to a training set.
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Noise mean error. std. dev. error max error
Level (in %) (in %) (in %)

25%
T: 1.39
R: 1.08
ω : 3.46

T: .44
R: 0.36
ω : 0.84

T: 2.63
R: 2.15
ω : 5.87

75%
T: 1.67
R: 1.46
ω : 4.20

T: .61
R: 0.48
ω : 0.88

T: 3.41
R: 2.95
ω : 6.65

100%
T: 1.85
R: 1.41
ω : 4.24

T: 0.69
R: 0.39
ω : 0.97

T: 3.62
R: 2.14
ω : 7.02

25%
(Occ.)

T: 2.51
R: 2.75
ω : 5.27

T: 0.85
R: 1.38
ω : 0.91

T: 4.94
R: 6.93
ω : 7.89

Table 5: Quantitative tracking results demonstrating robustness to deformation
(and noise). Mean, Standard Deviation, and Max Errors with respect to translation,
rotation, and shape recovery are reported for several levels of noise.

At any rate, this error allows for us to see how accurate our shape reconstruction is

with regards to the maximal error seen in one’s training set. From Table 5, we see

that the errors for rotation and translation are small even in the presence of noise

or severe occlusion. On the other hand, we do see a slight increase in shape error

with respect to rotation and translation. This can be mainly attributed to the fact

that pose changes may account for varying shapes as well as the fact that we are only

dealing with a single 2D image. However, it still remains small and visually correct.

Moreover, if it is desirable to track a rigid object that is representative of a certain

class (e.g., cars, boats, or planes), then one can learn the different 3D models of a

class, and thereby relax the constraint of the prior knowledge needed. This will be

demonstrated next.
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4.4.3.2 Nonlinear PCA Tracking Occlusion and Clutter of a Toy Helicopter

In many rigid tracking scenarios, only the general class of the object of interest may be

known and given. In this experiment, we track a sequence involving a toy helicopter

that is not in our 3D helicopter training set. In particular, the sequence presents not

only aspect and view changes, but also occlusions from the helicopter rotor blades

and a human hand guiding the object. These occlusions are particularly difficult from

a statistical viewpoint. That is, the rotor blades are visually black as opposed to a

mostly white helicopter, which may cause many segmentation algorithms to exclude

this portion of the object. In contrast, the light appearance of the hand relative to

most of the background may result in leaks or capture the hand entirely along with

the helicopter. Moreover, the clutter in the scene may cause additional problems as

previously discussed in Section 4.4.2.1.

Using the region-based energy of [14], we are able to obtain tracking results by

varying the first 5 principal modes, i.e. l = 5. Figure 32 show several frames of

the video sequence. In particular, the sequence begins with the helicopter on the

ground with its rotor blades moving. This inherent movement of the object causes

self-occlusions. As the blades begin to slow, the helicopter is moved and placed on

top of book. We see occlusions from not only the blade, but also the human hand.

Nevertheless, the algorithm successfully maintains track. However, we do note that

improved tracking performance could be gained by taking into account the temporal

coherency of the sequence and using filtering principles such as those proposed in

[8, 73].

4.4.3.3 Nonlinear PCA Tracking of a Sikorsky S-76 and Bell 212 Helicopter in
Real Scenarios

Extending the previous section, we now track two helicopters from videos that were

obtained via online (http://www.youtube.com). In particular, using the region-based

energy of [66], we were able to obtain tracking results by varying the first 5 principal
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modes, i.e, l = 5 for both the Sikorsky S76 and Bell 212 sequence as seen in Figure

33 and Figure 34, respectively.

In the sequence shown in Figure 33, the Sikorsky S76 sequence exhibits a large

change in the rotation caused by both the helicopter as well the camera itself. This

resulted in several aspect changes like that of Section 4.4.3.2. However, the scene

in which the helicopter flies in, while simulated, is realistic given the amount of

clutter and buildings surrounding the helicopter. Nevertheless, tracking is maintained

throughout the sequence. In Figure 34, we track a Bell 212 helicopter in a real life

sequence. We should note here that although track is effectively maintained, it can

be seen the segmentation is not as successful as that of Figure 33. That is, one can

see that the contour does not properly segment the tail end of the helicopter. This

phenomenon can be attributed to the density of the training set. Although we have

mentioned that we are able to reduce the computational complexity with regards to

2D shape based learning, the algorithm can suffer the classic drawbacks when specific

details of an object are left out (e.g., a specialized rotor). At any rate, track is still

maintained despite these difficulties associated with shape based learning techniques.

4.4.4 Performance Analysis

In this section, we report the execution time, iteration count, and other relevant

information for several of the experiments performed in this chapter in Table 6. It

should be noted that our implementation of the proposed algorithm was done in

both MATLAB v7.1 as well as C/C++ on a Intel Dual Core 2.66GHz with 4 GB

memory. The two pieces of code were integrated via MEX. Also, in relative terms,

our implementation of running just the pose portion of the algorithm averaged nearly

100 iterations per second. When including and optimizing over the shape weights, the

main reduction in speed was the volume size of the 3D shape as well as the number of

models used in the given training set. The 2D image size also impacts computational
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Frame ]18 Frame ]141 Frame ]348 Frame ]424

Frame ]525 Frame ]685 Frame ]1059 Frame ]1300

Figure 32: Tracking with Occlusion and Clutter (Toy Helicopter). Several tracking
frames are shown.

speed, but is not significant. Moreover, the algorithm can be seen as “unoptimized”

code since several steps can be done to effectively increase computing in a sparse

manner (e.g., keeping a list of occluding curve points). However, this is beyond the

scope of this thesis, and future work is planned to address this issue in detail.

4.5 Chapter Conclusion

In this chapter, we derive a geometric and variational approach to perform the task

of 2D-3D non-rigid pose estimation and 2D image segmentation. This can be seen

as a extension of the framework presented in [24, 85], where we assume that we have

only a single 3D shape prior. Instead, in the present work, we infer a 3D shape prior

from a catalog of 3D rigid shapes, which may represent a general class of an object or

possibly a set of deformations that may occur to the model. In addition, to account

for nonlinearities in the given training set, we showed that other statistical learning

techniques can be employed with minimal changes to the overall framework. As a

result, we fully exploit the task of pose estimation and segmentation in a unified

framework.

Moreover, because we have shown the above framework is ideal for tracking rigid

objects of a certain class, a direction for future work would be to employ filtering

principles such as particle filtering [73, 80]. This is of particular importance since

88



Frame ]1 Frame ]102 Frame ]204 Frame ]306

Frame ]408 Frame ]510 Frame ]714 Frame ]816

Figure 33: Tracking a Sikorsky S-76 through a Simulated Environment. Several
tracking frames are shown.

Frame ]1 Frame ]32 Frame ]64 Frame ]96

Frame ]128 Frame ]192 Frame ]224 Frame ]254

Figure 34: Tracking a Bell 212 through a Real Environment. Several tracking frames
are shown.

it has been shown that if one exploits the inherent temporal component in video

sequences, even more robust tracking results can be obtained. We believe that this

should improve the algorithm’s ability to deal with even more challenging occlusions

and environments.
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CHAPTER V

APPLICATIONS: TACTICAL TRACKING WITH

3DLADAR IMAGERY

A well studied problem in controlled active vision is the fundamental task of tracking

moving and deformable objects [8, 93]. In this chapter, we present a novel tracking

scheme using imagery taken with the 3-D Laser Radar (3DLADAR) system devel-

oped at MIT-Lincoln Labs [2]. Specifically, the system employs the Active Contour

Framework [13, 52, 14], the algorithm proposed in Chapter 3 as well as a detection al-

gorithm based on appearance models to efficiently track a “target” under challenging

scenarios. As opposed to typical 2D systems [98, 6], in which tracking is limited by

a lack of contrast, 3DLADAR provides the capability to improve aim point tracking

by encoding range and angle-angle information as seen in Figure 35. We can tackle

the problem with the following two pronged appraoch:

• First, use image segmentation in a coarse manner to capture ‘target” features.

• Second, use a point set registration scheme to align features to template model.

It is here that we should note one can and perhaps should employ the algorithm

developed in Chapter 4 to solve this tracking problem. However, due to the fact that

we are dealing with range imagery, the equivalent problem is to capture “enough”

target features so that those features can be aligned to a template model and the 3D

pose is retrieved. That is, we are not concerned with segmenting the entire target as

in Chapter 4, but rather employ segmentation in a coarse manner in which we favor

under segmented results (i.e., we want to have complete faith that the result should

not contain background information). This is turn will limit the number of “outliers”
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(a) Air-Ground (b) Horizontal (c) Ground-Air

Figure 35: Several Environments for which 3DLADAR is employed.

in point set registration. Nevertheless, if range imagery is not provided, we advocate

the use of the method in Chapter 4.

5.1 Preliminaries

In this section, we introduce two new concepts for this thesis: Segmentation with

Thresholding Active Contours (TAC) and Appearance Models. These concepts along

with the method presented in Chapter 3 will be essential for the proposed tracking

algorithm.

5.1.1 Thresholding Active Contours (TAC)

To define the TAC, consider an image I over the domain Ω ∈ R2 that is partitioned

into regions by an evolving contour C, where C is embedded as the zero level set of a

signed distance function φ : Rn → R such that C = {x|φ(x) = 0} [88, 64]. The shape

of the evolving contour is described by the Heaviside function, Hφ, which is 1 when

φ < −ε, 0 when φ > ε, and has a smooth transition in the interval [−ε, ε]. Similarly,

the interface at the zero level set can be denoted by δφ, the derivative of Hφ, which

is 1 when φ = 0 and 0 at distance ε from the interface.

To incorporate statistical information into the segmentation, let us denote the

probability of a point being located inside or outside of the curve as Gin or Gout

respectively. Furthermore, we assume that these probabilities are Gaussian: Gin =

N (µin,Σin) and Gout = N (µout,Σout), where N denotes the normal distribution. In

the case of 3DLADAR, reflectance and range data represent two linearly independent
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Figure 36: Flow chart describing overall operation of the tracker.

measures. Thus, µin, µout, Σin, and Σout are each vector valued. Consequently, Gin

and Gout each map R2 → R. Unlike most segmentation techniques, this statistical

information is not used directly, but rather is used indirectly to create a shape model

S(x) = Hε2

[
log
(
Gin(I(x))

)
− log

(
Gout(I(x))

)]
, (54)

which serves as a labeling function with ε2 being the threshold for our “estimated”

shape. The image shape model S is the most likely shape of the object given current

statistical estimates. Note that to mitigate the addition of another parameter, ε2 is

simply a scalar multiple of ε. From this, the segmenting curve is driven towards this

shape by minimizing the following energy

Eimage(φ) = ‖Hφ− S‖2 =
1

2

∫
Ω

(Hφ(x)− S(x))2dx. (55)

Specifically, this energy is the L2 distance between the shape of the current segmenta-

tion and the current estimate of the “correct” shape. Using the calculus of variations,
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we are then able to compute the gradient ∇φEimage as follows:

∇φEimage = δφ.(Hφ(x)− S(x)) + βout
µ .∇φµout + βout

Σ .∇φΣout

− βin
µ .∇φµin − βin

Σ .∇φΣin (56)

where the expressions of the coefficients βin
µ and βin

Σ are given by

βin
µ =

∫
Ω

γ(u)Σ−1
in (I(u)− µin)du

βin
Σ =

1

2

∫
Ω

γ(u).(Σ1
in(I(u)− µin)(I(u)− µin)TΣ−1

in − Σ−1
in )du (57)

with γ(x) = (Hφ(x) − S(x)).δε2
(

log( Gin(I(x))
Gout(I(x))

)
. In particular, because we deal with

3D range data as well as 2D reflectance data, βin
µ ∈ R2 and βin

µ ∈ R4. Likewise,

both βout
µ and βout

Σ can be computed by replacing µin with µout and Σin with Σout in

Equation (57). The expression of the gradients for each of the statistical moments

are

∇φµin = δφ.

(
I − µin

Ain

)
, ∇φµout = δφ.

(
I − µout

Aout

)
∇φΣin = δφ.

(
(I − µin)(I − µin)T − Σin

Ain

)
∇φΣout = δφ.

(
(I − µout)(I − µout)

T − Σout

Aout

)
With the above results, we can now place the image fidelity term in the overall GAC

scheme. That is, to minimize this energy via gradient descent, φ is updated at each

iteration according to

dφ

dt
= −∇φEimage + λδφ · div

(
∇φ
|∇φ|

)
(58)

where the second term in the right-hand-side acts as a regularizing term that penal-

izes high curvatures. We note that while other active contour energy and segmen-

tation methodologies can be employed, the above scheme leverages the image shape

model created from statistical information. This allows for more robust segmenta-

tions for 3DLADAR imagery, where under-segmentation is preferred as opposed to
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Figure 37: Flow chart describing the process for re-acquiring objects that have
temporarily moved out of view.

over-segmentation. This preference is driven by the fact that each pixel identified

as “on-target” in the final segmentation corresponds to a 3D point on the real tar-

get. Hence, an under-segmentation ensures that all “on-target” points can be used

to understand the shape and pose of the target in world coordinates without being

distracted by “off-target” background points.

5.1.2 Appearance Models

In a video sequence, we make the assumption of temporal coherency and assume

that characteristics of the object will vary slowly over time. With this assumption,

we employ appearance models to aid in pre-processing the data, detecting tracking

failures, and re-acquiring lost objects.

Three primary aspects of the appearance models exist: Gaussian statistical mod-

els, probability density functions (PDFs), and shape information. Gaussian statistical

models Gin and Gout, as described in Section 5.1.1, are stored at each iteration to aid

in re-acquisition of the object when it is temporarily occluded. In addition, full in-

tensity histograms of the reflectance data present in the object and background are

scaled to produce PDFs Pin and Pout that are stored at each iteration. This allows

the tracker to compare the PDFs of new segmentations with recent segmentations

to detect tracking failures and subsequently re-acquire the object. PDFs are always
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Figure 38: Flow chart describing the process for re-acquiring objects that have been
temporarily occluded.

compared using the Bhattacharyya measure,

B
(
P1(x), P2(x)

)
=

k∑
x=0

√
P1(x) · P2(x)dx, (59)

where P1 and P2 are any two PDFs [7]. The Bhattacharyya measure is a useful tool

because it provides a scalar value in the range [0, 1] corresponding to the similarity of

the two PDFs. Finally, shape information such as the area (in pixels) of the object

in recent frames are stored to help detect when the object is occluded or moving out

of view.

5.2 Tracking Algorithm

In this section, we discuss the procedure that the tracker follows to continually esti-

mate the 3D location of the object in the 3DLADAR sequence. As will be discussed,

the tracker combines segmentation and heuristic detection in a robust tracking frame-

work. In short, the 3DLADAR data is pre-processed and a joint 2D/3D segmentation

is performed at each iteration to find all 3D data points on the target. If necessary,

steps are taken to re-acquire lost objects.

5.2.1 Main Tracking Loop

This section introduces the various steps at a high level, and refers to the appropri-

ate sections below where additional detail can be found. Figure 36 summarizes the

algorithm, and provides a visual representation of the main tracking loop.
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The first step is to load and pre-process the 3D range data as described in Section

5.2.2 and the 2D reflectance data as discussed in Section 5.2.3. These data make up

the 3DLADAR imagery available at each frame, and both are required to robustly

track the target. Pre-processing of the data prepares it for segmentation.

Next, a decision is made. If the tracker was successful in the previous frame, the

tracker proceeds with segmentation as normal. If not, special measures are taken to

re-acquire the target. Depending on the last known position of the object, one of two

re-acquisition procedures are run.

If the object was last seen near the edge of the image, it is assumed that the

object was lost because it moved out of the field of view (FOV). In that case, the

procedure described in Section 5.2.4 is used to re-acquire the object based solely on

reflectance data. Reflectance data is used alone in this case because the object’s

3D range may change dramatically while missing from the FOV, but it’s reflectance

properties should remain constant.

If the object was last seen toward the center of the image, then the loss of track

is attributed to occlusion by other objects in the scene. In this case a different

procedure, described in Section 5.2.5, is used to reacquired the object based on both

reflectance and range data.

In normal operation, when the previous frame was successfully tracked, the object

is most likely still visible. In this case, a segmentation is performed to find the object’s

boundaries and the object’s appearance model is updated. First, the segmentation

algorithm described in Section 5.1.1 is initialized using the tracking result from the

previous frame and allowed to run for several iterations. The segmentation process

captures the shape of the object in the current frame and indicates which 3DLADAR

data points fall within the object. Next, the object’s appearance model is updated

as described in Section 5.2.6. Finally, the procedure repeats with the loading of

3DLADAR data at time t+ 1.
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Figure 39: Simulated Environment for Producing 3DLADAR Imagery with Atmo-
spheric Turbulence.

5.2.2 Pre-processing 3D Range Data

As mentioned in the introduction of this chapter, 3DLADAR offers the capability to

resolve all spatial dimensions given the angle-angle and range information. However,

unlike typical 2D systems, the notion of an “image” is not immediately available

and an image must be formed based on specific assumptions about the acquisition

of 3DLADAR data. Moreover, because the 3DLADAR imaging system is not fully

developed, we demonstrate results on a simulated 3DLADAR environment, which is

pictorially seen in Figure 39.

That is, the 3DLADAR platform delivers several short-pulsed lasers at specific

instance of time in hopes of actively illuminating the target. For convenience, we

label these series of pulses as a “frame.” For each “frame,” the corresponding photon

arrival time is recorded by the focal plane of an avalanche photo-diode (APD) array.
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In some cases, arrival times may never be recorded. For instance, if the laser pulse

misses the target in clear sky and is never reflected back to the imaging platform.

In any event, much of scene will not be recorded for a single frame due to poorly

reflected photons. Luckily, the laser pulses are delivered at a pre-specified frequency

that is generally much higher than real-time imaging systems.

From this, we are now able to define an “image” as a combination of frames that

have been taken over a certain period. Each pixel value of the resulting image is

formed by choosing the statistical mode of the values received throughout a series

of frames at each pixel location. Additionally, because of the temporal coherency

inherent to time-varying imagery, median filtering is performed temporally from image

to image to mitigate artifacts caused from the imaging system.

5.2.3 Pre-processing 2D Reflectance Data

Processing of the 2D data is also important. Because the object and background may

be multi-modal in the reflectance data, pre-processing ensures that the object is dis-

tinguishable from the background so that segmentation may proceed with ease. First,

the PDF of the object (Pin) and background (Pout) are estimated using the reflectance

data and the segmentation result from the previous frame. Next, a foreground his-

togram, PFG is formed by removing intensity components of the background from

intensity components of the foreground,

PFG =

 Pin − Pout (Pin − Pout) > 0

0 otherwise.
(60)

and re-normalizing so that ‖PFG‖ = 1. Finally, a new image is created corresponding

to the likelihood that each pixel is a member of the foreground. Hence, the final result

of 2D reflectance pre-processing is

Ĩref(x) = PFG(Iref(x)). (61)

98



5.2.4 Re-acquisition (Out-of-View)

If the 3DLADAR device can not accurately follow the movement of the object based

on estimates from the tracker, the object may appear to move out of the image

domain, and therefore out of the field of view. If this occurs, the procedure shown in

Figure 37 is used to detect the object and re-acquire the track once it returns to the

FOV.

When searching for the object after it has left view, only the reflectance data is

utilized. This is because the object may change its 3D position dramatically during

the time it is out of view. Conversely, the reflectance properties of the object should

remain constant. Additionally, we assume that the object will reappear near the

position (in image coordinates) that it was last seen. With these assumptions in

mind, the procedure is as follows.

First, a probability map, P(x) = PFG(Iref(x)) is created based on the foreground

PDF from the last successfully tracked frame. This probability map will have a

high value at pixels that have reflectance consistent with the object, but not the

background. This probability map is then thresholded to produce a binary mask,

which selects regions with an appearance similar to the object. Next, a distance

penalty is employed to remove any candidate regions that are too far from the last

known location of the object. If the resulting region has an appropriate size then it

is accepted as the detection result and tracking will continue normally at the next

iteration. Otherwise, this detection procedure is repeated at the next frame.

5.2.5 Re-acquisition (Occlusion)

Another failure mode of the tracker occurs when another object in the scene occludes

the object of interest, blocking it from view. The procedure shown in Figure 38 is

used to re-acquire after the occlusion.

Occlusions of this type are typically shorter and often portions of the object remain
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Frame 6 Frame 118 Frame 195 Frame 210

Frame 380 Frame 421 Frame 448 Frame 492

Figure 40: Visual tracking results of a truck passing through a noisy environment
with several varying tree occlusions.

visible during most of the occlusion. Hence, we assume that the object will remain at

a similar 3D depth and retain its 2D reflectance characteristics. For this case, both

types of 3DLADAR data are used. Again, we assume that the object will reappear

near the position (in image coordinates) that is was last seen.

To re-acquire the object, the shape model S described in Section 5.1.1 is con-

structed using the statistical models Gin and Gout from the last successful frame.

This shape model is then thresholded to create a binary mask selecting candidate

regions that may represent the object. Again, candidate regions that are far from the

last known location of the object are excluded and the remaining region is assumed

to be the object’s current location. If the detected object has a size similar to the ob-

ject when it was lost, a successful detection has occurred, and tracking will continue

normally at the next iteration. Otherwise, this detection procedure will be repeated

until the object is successfully re-acquired.

5.2.6 Target Appearance Model Update

After segmentation or re-acquisition has occurred successfully, the object’s appearance

model is updated. This process consists of adding current information such as Pin, size

of the object (in pixels) and the (x, y) location in image coordinates of the object’s
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Frame 12 Frame 113 Frame 204 Frame 223

Frame 245 Frame 268 Frame 450 Frame 491

Figure 41: Visual tracking results of a car passing through a clutter environment
that includes complete occlusions as well as non-cooperative targets.

centroid to a history of recent values. These values are used to determine appropriate

values and thresholds during pre-processing and detection for subsequent frames.

5.2.7 Registration and Pose Estimation

Now that segmentation has been performed, a point cloud estimate can be extracted

using the specifications of the imaging 3DLADAR system (e.g., slant path, viewing

angle). From this, the problem then becomes one of pose estimation or point set

registration. In particular, we have experimented with both the ICP methodology as

well a variant of ICP using particle filtering proposed in Chapter 3. Although the

corresponding pose results were obtained at MIT-Lincoln Labs and are not present

in this chapter, we should note the pose of the target remained sufficiently accurate

throughout all tracking scenarios.

5.3 Experiments

In this section, we demonstrate the algorithm’s robustness to turbulence, occlusions,

clutter, and erratic behavior on several challenging video sequences. We also mo-

tivate the need to fuse both 2D reflectance and 3D range data. In particular, the

sequences (both 2D and 3D) were simulated by MIT-Lincoln Labs for several degrees
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Frame 700 Frame 783 Frame 808 Frame 822

Figure 42: Visual tracking results of a target car near a similar car. Top Row:
Using only 2D reflectance data, the segmentation fails and leaks onto the nearby car.
Bottom Row: Using combined reflectance and range data, the target car is tracked
successfully.

Frame 113 Frame 156 Frame 209 Frame 342

Figure 43: Visual tracking results of a target car as it moves out of the field of view
and re-enters. Top Row: Using only 3D range data, the detection fails and the system
begins to track the background. Bottom Row: Using combined reflectance and range
data, the target car is tracked successfully.

of turbulence and image sizes. However, in this chapter, we only present results for

two levels of turbulence and image size of 64X64 pixels. We note that MIT-Lincoln

Labs currently has an active 32X32 APD array in the field, but are able to simulate

32X32, 64X64, and 128X128 image sizes.

5.3.1 Robustness to Varying Views, Occlusions, and Turbulence

Let us begin with the first sequence of a truck that moves in open terrain. This is

shown in Figure 40, where one can see that target occupies much of the field of view
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(FOV). Additionally, significant turbulence and several occlusions by trees obfuscate

the object’s visibility with respect to the imaging camera. Nevertheless, the algorithm

successfully tracks the truck throughout the entire sequence.

The next sequence of which several frames are shown in Figure 41, demonstrates

the algorithm’s robustness to complete occlusions as well as a clutter environment that

arises from non-cooperative objects moving around within the scene. In particular,

another car that is identical in appearance (but not in depth), passes close to the

target of interest. However, the algorithm successfully tracks the car throughout the

sequence using the proposed tracking technique.

5.3.2 Benefits of Coupling 2D and 3D Information

In Figure 42 and Figure 43, we demonstrate inherent problems that might occur when

tracking with purely 2D reflectance imagery or 3D range imagery on a challenging

scenario. While similar to the sequence presented in Figure 41, here the imaging

camera in this sequence loses track of the vehicle as it begins linger near the edge of the

image before visibility is completely lost. These experiments show that tracking and

detection can be performed by leveraging both 2D and 3D information (as opposed

to tracking with reflectance or depth alone).

For example, if non-cooperative targets such as two cars are present in a particular

scene, it becomes increasingly difficult to distinguish the target of interest from a

statistical point of view when using purely 2D reflectance. In the top row of Figure

42, we see that the active contour leaks onto the second car when the two approach

each other. However, when we include 3D depth information, the target can be

successfully distinguished. This is shown on the bottom row of the same figure.

Moreover, Figure 43 presents the major drawback associated with using range

information alone. In the case of erratic behavior, whereby the object leaves the

image view, detection becomes unreliable. That is, when the truck leaves the FOV,
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(a1) Frame 10 (b1) Frame 210 (c1) Frame 360 (d1) Frame 500

(a2) A.C. Mask (b2) A.C. Mask (c2) A.C. Mask (d2) A.C. Mask

(a3) 3DLADAR
Mask

(b3) 3DLADAR
Mask

(c3) 3DLADAR
Mask

(d4) 3DLADAR
Mask

Figure 44: Tracking Sequence of a Moving Target with Corresponding Binary Masks
Provided by Active Contour and 3DLADAR Masks. Top Row: Tracked 3DLADAR
Images. Middle Row: Binary Masks Associated with Active Contour (A.C.). Bottom
Row: 3DLADAR Filtered Mask for Points Only Registered By System

it will have a specific depth value, but when it re-enters its depth value may be

completely different. Unfortunately, in such a case, the model for reacquisition is no

longer valid and detection will fail. By leveraging on 2D information, we are able to

detect and re-acquire in a more reliable fashion.

5.3.3 Quantifying Tracking Results with Ground Truth

Until now, we have provided qualitative tracking results for several difficult sequences,

but have yet compared this to ground truth available by the simulator. In this section,

we revisit the important notion of being able to under-segment the “target” such

that pixels captured by the active contour contain relatively few or no background
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(a1) False Positive: 32X32
No Turbulence

(b1) False Positive: 64X64
No Turbulence

(c1)False Positive: 128X128
No Turbulence

(a2) False Positive: 32X32
High Turbulence

(b2) False Positive: 64X64
High Turbulence

(c2)False Positive: 128X128
High Turbulence

Figure 45: Quantifying Segmentation Results with Ground Truth via False Posi-
tives. Top Row: False Positives for Image Sizes of 32X32, 64X64 and 128X128 with
No Turbulence. Bottom Row: False Positives for Image Sizes of 32X32, 64X64 and
128X128 with High Turbulence. Note: Scales are different for each image so
that one can see small deviations in tracking.

features at the cost of fewer target pixels. Thus, we consider the ability to capture

background pixels as a “False Positive” while missing target pixels will be denoted as

“False Negatives.”

Several images of the sequence in which we quantify our tracking algorithm is

shown in Figure 44. In particular, we would like to point out that in order for one to

compare the ground truth with the tracked result as well as being able to properly

register the extracted 3D point set, one must first only examine those points registered

by the 3DLADAR imaging system. That is, during the pre-processing step one must

artificially fill in certain regions of the image where the avalanche photo-diode array

did not receive a photon count or image value. This again could be due to perhaps

imaging the sky where the arrival time is infinite (not reflected). In turn, the visual
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(a1) False Negative: 32X32
No Turbulence

(b1) False Negative: 64X64
No Turbulence

(c1)False Negative:
128X128 No Turbulence

(a2) False Negative: 32X32
High Turbulence

(b2) False Negative: 64X64
High Turbulence

(c2)False Negative:
128X128 High Turbulence

Figure 46: Quantifying Segmentation Results with Ground Truth via False Nega-
tives. Top Row: False Negatives for Image Sizes of 32X32, 64X64 and 128X128 with
No Turbulence. Bottom Row: False Negatives for Image Sizes of 32X32, 64X64 and
128X128 with High Turbulence. Note: Scales are different for each image so
that one can see small deviations in tracking.

images seen in this chapter have been pre-processed so that they are “smooth” and

continuous throughout each location in the x-y image plane. Thus, when extracting

“target” features, we only extract those points that were initially registered by the

imaging system. These filtered masks and points are shown in the bottom row of

Figure 44.

Consequently, we are now able to compare the filtered binary masks with that

of the ground truth. Interestingly, we see in Figure 45 that our False Positives are

very low (below 1%) for each frame in each sequence of differing image sizes and

turbulence. Again, this should be particularly important since we will be returning

only “target” pixels and should then ease the applicability of a point set registration

algorithm to estimate the target’s pose.
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In regards to the False Negative’s, we tend to have a higher percent error when

facing occlusion as shown in Figure 46. That is, we are not able to capture as much

of the target as we would like to. However, we still maintain track throughout the

sequence and do indeed recover from the tree occlusion as seen in Figure 44. More

importantly, the target pixels that we do retain, when facing occlusions, are important

features for the ICP-like algorithms. Unfortunately, this detail is not visible in the

results shown. Ideally, point set registration can be performed if one is given (few)

quality features of the target.

5.4 Chapter Conclusion

In this chapter, we have described a robust tracking algorithm capable of continuously

tracking a target in 3DLADAR imagery despite the presence of noise, turbulence,

occlusions, and temporary motion of the target out of the field of view. This is ac-

complished by combining geometric active contours and reasonable heuristics, which

are used to re-acquire the target if tracking is disrupted. We also presented exper-

iments to demonstrate the algorithm’s robustness to turbulence, occlusions, clutter,

and erratic behavior on several challenging video sequences.
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CHAPTER VI

CONCLUDING REMARKS AND FUTURE RESEARCH

In this thesis, we proposed an algorithm that jointly performs 2D image segmentation

and 3D pose estimation for a general class of 3D rigid objects. This was done by

first introducing a novel distribution metric for image segmentation along with a

point set registration that employs a particle filter to do pose estimation. Lastly,

to demonstrate the viability of the algorithms developed in this thesis, we presented

their application to the real world setting in the form of visual tracking of 3DLADAR

imagery.

Specifically, in Chapter 2, we revisited a distribution metric that arises as a result

from prediction theory where one can quantify the “distance” between two probability

distributions as the standard deviation of the difference between logarithms of those

distributions. From this, we then proposed an energy of similar form using level sets

to perform image segmentation. That is, by making the assumption that the object

of interest is statistically different from the background, we opted to maximize the

distance, defined by the distribution metric, between their corresponding distribu-

tions. Experimental results were demonstrated on several types of challenging low

contrast images.

Shifting our attention to an opposite, but related field of pose estimation, Chapter

3 developed a particle filtering point set registration algorithm. In particular, we

provided a solution to the problem of registering two point sets that differ by a

rigid body transformation. Treating the pose parameters as hidden Markov random

variables, we naturally incorporated a particle filter whereby the correspondences

established at an artificial time t was viewed as “information” received online. More
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importantly, this allowed us to characterize the variability in the overall registration

process, which in turn was exploited within the algorithm.

After laying the fundamentals of both image segmentation and pose estimation,

Chapter 4 attempted to bridge the gap between these two areas for the specific, but

general class of 3D rigid objects. This was done by relying on surface differential

geometry and projective geometry to link certain intrinsic details of both the 2D

and 3D world. As a result, we proposed a unique energy functional that accomplishes

both tasks of segmentation and pose estimation without the need for point correspon-

dences or specific constraints on the type of 3D shape. More importantly, we utilized

nonlinear manifold learning techniques for a general class of objects or deformations

for which one was not able to associate a skeleton model.

Lastly, in Chapter 5 we demonstrated the importance of the proposed algorithms

by presenting their applicability in the context of tactical tracking for 3DLADAR

imagery. Using a two pronged approach of employing both segmentation and pose

estimation, the resulting tracking framework was able to handle challenging situations

where the “target” was obscured from view due to erratic motion, occlusions, and

turbulence.

We should note that while strides have been made in both image segmentation

and pose estimation, the direction of future research is numerous. In particular, the

algorithm developed in Chapter 3 only attempts to solve pose estimation for a rigid

body transformation. However, the relationship or transformation between two ob-

jects is usually more complex. For example, the neural fiber bundles or tracts that

can be found in diffusion weighted magnetic resonance imagery (DW-MRI) can not

be explained by simply a rigid or affine transformation. Thus, one future direction for

research is to explore a poly-affine transformation in which the overall transformation

can be seen as multiple affine transformations operating simultaneously in conjunc-

tion. Another avenue for a future research direction would be to extend the algorithm
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in Chapter 4 so that it accounts for dynamics that are found in video sequences. That

is, one could employ a particle filter like of that Chapter 3 or a Kalman-based fil-

ter to jointly perform 2D image segmentation and 3D pose estimation. Finally, we

should note that the tracking framework presented in Chapter 5 is for the most part

considered to be “open-loop.” In order to achieve a more robust tracking framework,

one should try to “close the loop.”
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APPENDIX A

MINIMIZATION OF THE PROPOSED “LOCAL”

OPTIMIZER FOR REGISTRATION

We first linearize both translation and rotation:

t = c1tx + c2ty + c3tz

R ≈ I + c1Rx + c2Ry + c3Rz where

Rx =

[
0 0 0
0 0 1
0 −1 0

]
Ry =

[
0 0 −1
−1 0 0
0 0 0

]

Rz =

[
0 1 0
−1 0 0
0 0 0

]

Then reorganizing terms gives us:

nTi [di −Rmi − t]

≈nTi
(
di−mi−c1Rxmi−c2Rymi−c3Rzmi−c4tx−c5tx−c6tx

)
≈∆i−m̃T

i C

where

∆i = nTi (di −mi)

m̃i =
[
nTi Rxmi n

T
i Rymi n

T
i Rzmi n

T
i tx nTi ty nTi tz

]T
C =

[
c1 c2 c3 c4 c5 c6

]
Now we can re-write the above energy functional as
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E = λ

Nd∑
i=1

ωi · exp

(
− 1

4
(∆i − m̃T

i C)T (∆i − m̃T
i C)

)

= λ

Nd∑
i=1

ωi · exp

(
− 1

4
(∆T

i ∆i − CT m̃i∆i − ...

∆T
i m̃

T
i C + CT m̃im̃

T
i C)

)
Taking the variation w.r.t. to C yields

∂E

∂C
= λ

Nd∑
i=1

ωi ·
(
− 1

4
(−2m̃i∆i + 2m̃im̃

T
i C)

)
· ...

exp

(
− 1

4
(∆i − m̃T

i C)T (∆i − m̃T
i C)

)

∂E

∂C
=

Nd∑
i=1

ωi︸︷︷︸
weight

·
ICP︷ ︸︸ ︷

(m̃i∆i − m̃im̃
T
i C) ·...

exp

(
− 1

4
(∆i − m̃T

i C)T (∆i − m̃T
i C)

)
︸ ︷︷ ︸

Penalizes Outliers
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APPENDIX B

GRADIENT DERIVATION OF EXPONENTIAL KERNEL

PRE-IMAGE

If we let

Ji = γ̃i
(
1− 1

2
d2
H(P lϕ(ψ), ϕ(ψi))

)
and ηi =

∂Ji
∂ωn

then the general gradient form is

∂ψ̂

∂ωn
=

∑N
i ηi · ψi∑N
i Ji

−
(∑N

i ηi
)(∑N

i Ji · ψi
)

(
∑N

i Ji)2

Thus, taking the derivative of Ji w.r.t to ωi yields

ηi = ∇ωn γ̃i︸ ︷︷ ︸
(a)

·
(
1− 1

2
d2
H(P lϕ(ψ), ϕ(ψi))

)
−

1

2
γ̃i · ∇ωnd

2
H(P lϕ(ψ), ϕ(ψi))︸ ︷︷ ︸

(b)

Now taking the derivative of (a) above by using Equation (36), we get

γ̃i =
l∑
n

ωnuni√
λn

+
1

N

(
1−

N∑
j

l∑
n

ωnunj√
λn

)

∇ωn γ̃i =
uni√
λn
− 1

N

N∑
j

unj√
λn

Next, we compute the gradient of part (b). Recall that

d2
H(P lϕ(ψ), ϕ(ψi)) =‖P lϕ(ψ)‖2 + ‖ϕ(ψi)‖2

− 2〈P lϕ(ψ), ϕ(ψi)〉
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From this, we can begin to express each term’s dependency on the shape weight ωn.

The first term can be expressed as

‖P lϕ(ψ)‖2 =
( l∑

n

ωnVn + ϕ̄
)T ( l∑

n

ωnVn + ϕ̄
)

=
( l∑

n

l∑
n

ωnV
T
n Vnωn

)
+ ϕ̄T ϕ̄+

(
2ϕ̄T

l∑
n

ωnVn
)

=
( l∑

n

ω2
n

)
+ ϕ̄T ϕ̄+

(
2ϕ̄T

l∑
n

ωnVn
)

=
( l∑

n

ω2
n + 2

ωn√
λn
ϕ̄T φ̃un

)
+ ϕ̄T ϕ̄

Similarly, the third term can be expressed as

〈P lϕ(ψ), ϕ(ψi)〉 =

( l∑
n

ωnVn + ϕ̄

)T
ϕ(ψi)

=

( l∑
n

(
ωnVn

)T
ϕ(ψi)

)
+ ϕ̄Tϕ(ψi)

=

( l∑
n

ωn(
1√
λn
φ̃un)Tϕ(ψi)

)
+ ϕ̄Tϕ(ψi)

=

( l∑
n

ωn√
λn

(uTn φ̃
Tϕ(ψi)

))
+ ϕ̄Tϕ(ψi)

Combining these terms then gives us

d2
H =

( l∑
n

ω2
n + 2

ωn√
λn

(φ̃T ϕ̄)Tun − 2
ωn√
λn

(φ̃Tϕ(ψi))
Tun

)
−2ϕ̄Tϕ(ψi) + ϕ̄T ϕ̄+ ‖ϕ(ψi)‖2

Now, taking the derivative w.r.t ωn, we arrive at the following:

d(d2
H)

dωn
= 2

(
ωn +

1√
λn
·
(
φ̃T ϕ̄− φ̃Tϕ(ψi)

)T
un

)
= 2

(
ωn +

1√
λn
·
(
(φ− φ̄)T ϕ̄− (φ− φ̄)Tϕ(ψi)

)T
un

)
= 2

(
ωn +

1√
λn
·
(
φT ϕ̄− φ̄T ϕ̄− φTϕ(ψi) + φ̄Tϕ(ψi)

)T
un

)
= 2

(
1√
λn

( 1

N
Kl− 1

N2
(lTKl)l− kϕi

+
1

N
llTkϕi

)T
un + ωn

)
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where

kϕi
= [kϕσ(ψi, ψ1), . . . , kϕσ(ψi, ψN)]T

φ = [ϕ(ψ1), ϕ(ψ2), ..., ϕ(ψN)] and φ̄ = φ− φ̃.

Putting all of this together, we arrive at the desired gradient.

ηi =
uni√
λn
− 1

N

N∑
j

unj√
λn
·
(
1− 1

2
d2
H(P lϕ(ψ), ϕ(ψi))

)
+ ...

γ̃i√
λn

( 1

N2
(lTKl)l− 1

N
Kl + kϕi

− 1

N
llTkϕi

)T
un − ωn.

We now have all of the components necessary to compute the overall shape gradient

used in Chapter 4.
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