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Abstract 
This paper presents a technique for learning to assess 
terrain traversability for outdoor mobile robot 
navigation using human-embedded logic and real-time 
perception of terrain features extracted from image 
data. The methodology utilizes a fuzzy logic 
framework and vision algorithms for analysis of the 
terrain. The terrain assessment and learning 
methodology is tested and validated with a set of real- 
world image data acquired by an onboard vision 
system. 

1. Introduction 
Autonomous exploration of remote planetary surfaces 
by outdoor mobile robots, or rovers, is an active 
pursuit by NASA and other national space agencies. 
Similar capabilities are pursued by defense agencies 
for unmanned autonomous vehicles. Rovers must have 
the ability to operate autonomously and intelligently on 
challenging terrain with minimal interaction with 
remote human operators. Rover navigation systems 
must provide a level of “onboard intelligence” 
sufficient for long-range traverses in rough, rocky, and 
poorly-modeled natural terrain, without exposing the 
rover to undue physical risk or situations that may lead 
to mission failure. 

To ensure mission success, onboard intelligence must 
be able to assess a rover’s ability to traverse terrain 
regions of varying difficulty en route to designated 
locations. To enable robots to make autonomous 
navigation decisions that guide them through the most 
traversable regions of the terrain, fuzzy logic 
techniques have been developed for classifying 
traversability using computer vision-based perception 
of attributes such as surface roughness, slope, and 
discontinuity [ 1. 21. This paper presents a fuzzy logic 
system designed to automatically infer terrain 
traversability from images captured by a robot’s 
onboard vision system. Based on the physical 
properties of the terrain extracted from the images (and 
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intrinsic knowledge of rover mechanical constraints), 
the suitability of the terrain for traversal is inferred 
using a fuzzy logic framework and vision-based 
algorithms. The fuzzy classification of traversability 
provides essential perceptual knowledge, which is 
utilized by a navigation system for robust mobility 
through rough natural terrain. This paper focuses, in 
particular, on the enhancement of this capability by 
applying a nonlinear optimization technique that aims 
to adjust fuzzy system parameters to achieve 
perceptual performance closely resembling that of a 
human expert [3]. In this way, the human expert acts as 
a supervisor to facilitate the process of teaching a 
nominal fuzzy terrain classifier to mimic human 
perception. Sections 2 and 3 describe the terrain 
assessment and fuzzy classification algorithm. Section 
4 describes the methodology for enhancing terrain 
classification and Section 5 presents the optimization 
results obtained by using real-world image data. 

2. Linguistic Representation of Terrain Features 
The first step in classifying the local terrain 
surrounding the robot involves extracting the terrain 
features directly accounting for navigation difficulty. 
To accomplish this task, we have developed a set of 
vision algorithms used to determine slope and 
roughness, two important attributes that characterize 
the difficulty of terrain for traversal by a mobile robot. 
In this section, we describe the vision algorithms and 
how the slope and roughness values produced by these 
algorithms are used to reason about terrain 
traversability. More detail on the vision algorithms 
can be found in [2]. 

2.1 Terrain Roughness Extraction 
Terrain roughness refers to the coarseness and surface 
irregularity of the ground to be traversed. Visual 
perception of rock distribution in a viewable scene is 
used to determine a measure of terrain surface 
roughness. First, an algorithm for determining the size 
and concentration of rocks in a viewable scene is 
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applied to a pair of stereo camera images taken from 
the robot's vantagc point. A horizon-line extraction 
program is run that identifies the peripheral boundary 
of the ground plane. This, in effect, perceives the line 
at which the ground and the landscaped backdrop 
intersect. The algorithm then identifies target objects 
located on the ground plane using a region-growing 
method [4], which consists of ground signature 
extraction, edge detection. and obstaclc idcntification 
(large rockdboulders and large groups of rocks). In 
effect. targets that differ from the ground surface are 
identified and counted as rocks for inclusion in the 
roughness assessment. The effect of this procedure is 
illustrated by the sequence of raw and processed 
images of natural terrain in Fig. 1. 
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w"ps HatAmcnswld(m fkklkda(t0n 

Figure 1. Terrain roughness determination 
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To determine the number of small- and large-sized 
rocks contained within the image, the number of pixels 
that comprise a target object are first counted. Those 
targets with a pixel count less than a user-defined 
threshold are labeled as belonging to the class of small 
rocks and those with a count above the threshold are 
classified as large rocks. All such labeled target 
objects are then grouped according to their sizes in 
order to determine the small and large rock 
concentration parameters. Next, the average 
separation distance between rocks in the image is 
calculated. This calculation provides information 
about the relative amount of free space available for 
traversal between rocks. The parameters for small and 
large rock concentration and average separation 
distance are respectively characterized by fuzzy sets 
with linguistic labels {FEW, MANY} and [CLOSE, 
FAR} (see 121 for details). The terrain roughness 
(normalized) is then represented by three fuzzy sets 
with linguistic labels {SMOOTH, ROUGH, ROCKY }, 
defined by membership functions shown in Fig. 2. 
Thus, roughness is derived from the rock 
sizelconcentration and separation parameters of the 
associated image using the fuzzy logic rules 
summarized in Table 1 (empty cells 3 no effect on the 
rule). 

FEW I FEW I - I SMOOTH 
MANY I FEW 1 - 1 ROUGH 
- I MANY I FAR I ROUGH 
- I MANY I CLOSE I ROCKY 

Table I. Rule-base for determining roughness 

2.2 Terrain Slope Extraction 
Terrain slope refers to the average incline/decline of 
the ground surface to be traversed. To obtain the 
terrain slope from a pair of stereo camera images, we 
must first calculate the real-world Cartesian (x,y,z) 
components of the ground plane boundary, or horizon- 
line. To determine the (x,y,zz) components of the 
horizon-line, Tsai's camera calibration mode1 [5] is 
used to derive the relationship between the camera 
image and the real-world object position for a single 
camera. The images from both cameras are then 
matched in order to retrieve 3D information. 

Determining the position of the largest rocks located 
along the horizon-line and centered within both images 
allows the identification and extraction of correlated 
image points that lie along the horizon-line. These 
imge points are used as input for extraction of the 
( x , y j )  real-world Cartesian components. Depending 
on the viewable scene in the pair of stereo images, 
there may be multiple pairs of such correlated image 
points. Once all Cartesian points are calculated. they 
are used to compute the average terrain slope. The 
terrain slope (normalized) is represented by three fuzzy 
sets with linguistic labels {KAT, SLOPED, STEEP}, 
defined by membership functions shown in Fig. 3. 
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Figure 3. Membership functions for terrain slope 
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3. Fuzzy Classification of Terrain Traversability 
As a rover traverses natural terrain, images are 
periodically acquired for traversability assessment. In 
each period, terrain in the viewable scene must be 
classified once the relevant features are extracted. To 
this end, we have developed a set of fuzzy logic rules 
that classify the traversability of the terrain based on 
the roughness and slope measures extracted from the 
given image data set. 

The process of embedding human expert knowledge of 
terrain traversability in a fuzzy logic system begins 
when the knowledge base (rule base and membership 
functions) is developed. The fuzzy sets defined above 
for roughness and slope allow these terrain 
characteristics to be represented based on grades of 
membership, as opposed to a 0 or 1 value. These 
linguistic variables are used as inputs to a set of fuzzy 
rules used to classify the terrain. The output from the 
rule base is a traversability index, which represents the 
relative terrain quality as it relates to the rover’s ability 
to safely traverse terrain in the viewable area. Given 
imagery of the terrain in the vicinity of the rover, a 
traversability index z is defined as a function of the 
terrain slope and the terrain roughness determined as 
described above [l]. It is represented by three fuzzy 
sets with linguistic labels {LOW, MEDIUM, HIGH} 
defined by the membership functions shown in Fig. 4. 
Thus, a region of low traversability is unsafe or very 
difficult for the rover to traverse, while a highly 
traversable region is safe and relatively easy to 
traverse. The nominal set of fuzzy logic rules used to 
infer terrain traversability based on roughness and 
slope is summarized in Table 2. If the local terrain 
surrounding the rover is partitioned into adjacent 
sectors (e.g., front, left and right) the traversability of 
each sector can be determined using the corresponding 
imagery. 

i 
i 

I STEEP I LOW I LOW I LOW I 
Table 2. Terrain Traversability Rule-base 

Initially, the fuzzy membership functions and rules 
used to determine terrain traversability are defined 
according to an expert’s subjective perception and 
intuition. Using this subjective representation of the 
expert’s knowledge encoded in the knowledge base, the 
resulting fuzzy system achieves a terrain assessment 
behavior that roughly approximates that of the human 
expert. In order to achieve a better approximation of 
the expert’s behavior, and thereby more closely mimic 
human expert reasoning, the fuzzy system must be 
fine-tuned by either modifying the membership 
functions, the rule-base, or both. In the next section 
we focus our attention on the input membership 
functions, for terrain roughness and slope, nominally 
defined as shown in Figs. 2 and 3. 

4. Mimicking Human Classification of Terrain 
The ultimate goal for a fuzzy classification system 
used in practice is to closely mimic the human expert’s 
judgement of the terrain traversability. In this way, 
mission operators can be reasonably confident that 
decisions made by a navigation system, that 
autonomously guides a rover at a remote location, are 
sound enough to preserve rover safety and ensure 
mission completion. To achieve such confidence, the 
system is trained using the expert as a supervisor. 

In this work, the objective is to improve the nominal 
fuzzy system by optimal tuning with respect to a 
human expert’s perceptual classification of terrain, 
based on images captured by a robot vision system. 
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There are several parameter search and optimization 
techniques that are suitable for this problem, including 
genetic algorithms, artificial neural networks and more 
conventional optimization algorithms [6].  We employ 
a conventional optimization algorithm, called the 
simplex method, to improve the fuzzy system's ability 
to mimic human expert reasoning by optimizing 
selected membership function parameters that define 
terrain roughness and slope. In particular, we apply 
the Design Optimization Procedure (DOP), which was 
introduced in [3] and later applied in [7] to design and 
optimize fuzzy logic controllers. The DOP is based on 
quantitative performance comparisons between a 
human expert and a fuzzy system addressing a 
common problem. It employs simplex optimization to 
achieve iterative improvement of the fuzzy system 
toward human performance. The application of the 
DOP to the traversability assessment problem requires 
determination of a terrain classification strategy and 
formulation of a suitable performance index (PI) that 
indicates the error between the fuzzy system 
classification and the human expert classification. A 
suitable terrain classification strategy was presented in 
section 3; we will now describe the optimization 
procedure for improving the nominal system and the 
formulation of a PI to drive that procedure. 

Feature 
Extraction 

4.1 Optimization Procedure 
The fuzzy system classification is determined using the 
nominal (pre-optimized) set of membership functions 
and fuzzy rules defined above, while the human 
classification is provided by an expert. Performance 
improvements in the fuzzy system are obtained in a 
two-phase process described below. Views of the 
terrain from the rover's vantage point are presented to 
the expert, first in the form of raw black-and-white 
camera images and later as processed camera images 
(see left and right images of Fig. 1). The fuzzy system 
always classifies traversability based on quantitative 
values of roughness and slope that are extracted from 
each processed camera image (i.e. a reduced data set). 
Variations between these distinct classifications are 
minimized by the optimization technique. 

'lope Fw 'Fc Optimkation --c 
'menabiri - AlgoMhm 

Classifier 

In the first phase, the expert classifies the terrain 
traversability by viewing raw pre-processed images 
and assessing the ability of the robot to traverse the 
terrain in each image. A quantitative classification 
scale from zero (low traversability) to ten (high 
traversability) is used for the terrain traversability 
index. A value in this range is furnished by the expert, 
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and also inferred by the fuzzy system, for each image 
in a training set containing images of varied terrain. 
Traversability indices provided by the expert are 
stored in a database. The absolute error between the 
fuzzy system's classification (FC) and the human 
classification (HC) of each image is used to compute 
the PI as an integral squared error. In the second phase 
of the process, an attempt is made to further improve 
the performance of the fuzzy system by allowing the 
expert to classify traversability using processed terrain 
images (such as the right-most image of Fig. l), which 
represent a reduced data set similar to that actually 
processed by the fuzzy system. The optimization 
procedure is applied again for this case to yield a new 
level of classification performance quantified by the 
same PI. The basic flow of information is illustrated in 
the block diagram of Fig. 5. 

image9  5- 
I I 

Figure 5.  Procedural data flow for optimization. 

In either phase, when the fuzzy system's classification 
is close to the human classification the PI approaches 
zero; when the error is large, the PI is high. The PI is 
an important metric in the design approach since it 
drives the optimization of membership functions such 
that the inferences made by a fuzzy system closely 
match inferences made by the human expert. Thus, the 
problem is similar in structure to a supervised learning 
problem wherein the optimization technique is used to 
adjust numerical parameters that define the 
membership functions for roughness and slope, such 
that the fuzzy system is encouraged to mimic the 
expert's classification. Four fuzzy set parameters per 
input membership function are considered in the 
optimization. For a trapezoidal fuzzy set, these include 
the values in the universe of discourse that bound its 
support and cordnucleus [ 81. The parameters continue 
to be adjusted (thus refining the meaning of the input 
linguistic variables) until the PI is minimized or 
reaches a steady and non-decreasing value. This 
signifies convergence to a tuned set of membership 
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functions that result in a classification behavior that 
more closely mimics that of the human expert. Mter 
the system is trained. it is used for real-time terrain 
classification in outdoor rnver navigation. 

The classification done by the expert in the second 
phase is later comparcd with the phase one 
classification and the classification performed by thc 
fuzzy system. The comparisons between these 
classifications are valuable in determining if the fuzzy 
logic system has a c c m  to the information required for 
a correct classification (i.e. an “observability” issue) 
and if the correct logic has been used. In general, if an 
expert cannot provide a correct assessment with only 
the information being presented to the fuzzy logic 
system, then it becomes very difficult to train the 
system. Under these circumstances, the information 
being presented to the fuzzy logic system is not 
adequate to make a good decision. Additional 
information from the original image is required. If the 
expert can determine what information hdshe is using 
to make a correct assessment, then this information 
must also be processed and presented to the fuzzy 
logic system. Also, if the expert uses any additional 
logic with this information, then that logic must also be 
included in the fuzzy logic system. 

5. Results 
In this section, we present results of applying the DOP 
to the nominal fuzzy terrain classifier presented in 
section 3. The test vehicle is a commercially available 
mobile robot called the Pioneer-AT (All Terrain). It is 
outfitted with a custom onboard vision system 
comprised of three stereo pairs of commercially 
available CCD cameras. Cameras are mounted on a 
raised platform (Fig. 6), and oriented for a combined 
field of view of 180” in front of the rover. A set of 17 
images of natural terrain scenes was used as a training 
set. Two representative images and their processed 
versions are shown in Fig. 7 - traversability is 
classified by the expert as HIGH for the top image and 
LOW for the bottom image. 

Optimized membership functions for roughness and 
slope for the first phase (based on classification of raw 
images presented to the expert) are shown in Fig. 8. 
The associated history of the PI during the 
optimizatiodlearning process is shown in Fig. 9. 
Results for the second DOP phase (based on 
classification of processed images by the expert) are 
shown in the Figs. 10 and 11. 

Figure 6. Outdoor mobile robot with vision system 

Figure 7. Raw and processed terrain images 

Zigure 8. Optimized membership functions: phase 1 
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Figure 9. Optimization performance history: phase 1 
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Figure 10. Optimized membership functions: phase 2 
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Figure 11. Optimization performance history: phase 2 

These results reveal that the terrain assessment rules 
are most sensitive to roughness. This is apparent after 
observing that the optimized membership functions for 
slope (Figs. 8 and 10) are nearly identical to the 
nominal set in Fig. 3. Optimized roughness 
membership functions have been tuned significantly 
relative to the nominal set in Fig. 2, yielding relative 
performance improvements of 15% and 16% in phases 
1 and 2, respectively. Consideration of a nearly 
common set of input information in phase 2 by the 
expert and fuzzy system yielded the better performance 
enhancement as expected. As can be seen in Figs. 9 
and 11, phase 2 begins with a better PI (i.e., closer 
agreement between expert and fuzzy system) and 
converges in lesser iterations than phase 1. The richer 
the set of input data, the more apparent the disparity is 
between human and robot perception. To overcome 
the disparity and enhance robot perception through 
supervised learning it may be necessary to reduce the 
observability of the human supervisor. 

6. Conclusions 
This paper describes a methodology for enhancing a 
fuzzy system’s capacity for mimicking human 
perception. Results of its application to the terrain 

classification problem for computer vision-based robot 
navigation are presented. The paper presents the 
context in which fuzzy logic techniques are applied by 
explaining the approach to extracting terrain attributes 
from camera images, using these attributes as fuzzy 
inputs to infer a traversability index, and acting on this 
perceptual knowledge to facilitate intelligent 
autonomous navigation. Results revealing the extent 
of the classification performance improvements 
achieved using the approach are discussed. The 
underlying optimization approach can be generally 
applied to fuzzy systems of both the Mamdani and 
Takagi-Sugeno-Kang type [ 81. The general description 
of the methodology and its practical application 
permits one to assess its utility for enhancing fuzzy 
system performance in other domains of interest. 

7. Acknowledgment 
The research described in this paper was performed at 
the Jet Propulsion Laboratory, California Institute of 
Technology, under contract with the National 
Aeronautics and Space Administration. 

8. References 
[l] H. Seraji, “Fuzzy Traversability Index: A new 

concept for terrain-based navigation,” Journal of 
Robotic Syst., Vol. 17, No. 2,2000, pp. 75-91. 

[2] A. Howard, H. Seraji and E. Tunstel, “An 
Enhanced Traversability Index for Mobile Robot 
Navigation,“ IEEE Intl. Con$ on Robotics and 
Automation, Seoul, Korea, May, 2001. 

[3] A. Athalye, D. Edwards, V.S. Manoranjan and A. 
de Sam Lazaro, “On Designing a Fuzzy Control 
System Using an Optimization Algorithm,” Fuzzy 
Sets & Syst., Vol. 56, 1993, pp. 281-290. 

[4] B. Horn, Robot Vision, MIT Press, MA, 1986. 
[5] R.Y. Tsai, “A Versatile Camera Calibration 

technique for high-accuracy 3D machine vision 
Metrology using Off-the-shelf TV Cameras and 
Lenses”, IEEE Journal of Robotics and 
Automation, Vol. 3, No. 4, 1987. pp. 323-344. 

161 Z. Michalewicz and D.B. Fogel, How to Solve It: 
Modem Heuristics, Springer, New York, 1999. 

[7] J.R. Canning and D.B. Edwards, “A Method for 
Embedding Human Expert Knowledge into a 
Fuzzy Logic Controller,” ASME 15th Intl. 
Computers in Engineering Conj;, Boston, MA, 
USA, September 1995, pp. 1019-1023. 

[SI D. Driankov, H. Hellendoom and M. Reinfrank, 
An Introduction to Fuzzy Control, Springer- 
Verlag, Berlin, 1993. 

Page: 12 


