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SUMMARY 

 

 

 

 Electrosorption involves application of an electrical potential between porous 

carbon electrodes submerged in saline water, which results in the formation of an 

electrical double layer at the interface. The electrosorption phenomenon has applications 

in several environmental processes such as removal of heavy metals from aqueous 

solutions, sorption in groundwater remediation, and water desalination by capacitive 

deionization (CDI). Electrosorption also has applications in energy storage by 

supercapacitors. This research is focused on application of electrosorption in desalination 

of water by the CDI technology and in extraction of renewable energy based on 

capacitive double layer expansion. The aim of the study is to understand how the various 

system and operational parameters such as applied potential, solution temperature, and 

valence and size of ions influence the electrosorption mechanisms. Porous carbon 

materials are suitable electrodes for these applications as they have a high surface area 

and electrical conductivity. In the present study, self-assembled mesoporous carbon 

electrodes synthesized at the Oak Ridge National Laboratory (ORNL) were characterized 

to determine their sorption properties. Experimental results from CDI and neutron 

imaging experiments, and theoretical results from transport modeling have been obtained 

and compared to draw inferences on the sorption characteristics of mesoporous carbon 

electrodes.  

 The influence of temperature on sorption of ions by mesoporous carbon materials 

has been investigated by laboratory scale CDI experiments. Higher rates of sorption and 

regeneration were observed with solutions at higher temperature of around 40°C. The 
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experiments conducted with sodium chloride and Instant Ocean solutions at higher 

temperature revealed competition behavior between ions of various radii and valence. 

The cumulative mass of salt taken up by the electrodes was calculated by theoretical 

modeling and matched with the experimental data to obtain the diffusivity of ions. 

 In the next part of the thesis, neutron imaging has been applied to observe at a 

microscopic level, the ion transport phenomena occurring during electrosorption at the 

electrode-electrolyte interface. Neutron imaging of gadolinium ions was conducted to 

obtain the concentration profiles of ions across the electrodes as a function of time. 

Neutron imaging reveals interesting ion transport phenomena during the regeneration step 

in the CDI process. The information obtained on the ion transport behavior can aid in the 

optimization of the process. Fick’s second law of diffusion was applied to estimate the 

effective diffusion coefficient of gadolinium ions. The effective diffusivity of gadolinium 

ions increased by about 7 times on application of 1.2 V (direct current) DC potential as 

compared to the case when no potential was applied. Information on the values of the 

effective diffusivity of ions can aid in theoretical modeling of the CDI process as well as 

guide strategies for design of advanced electrode materials. 

 In the continuation of the study, neutron imaging was applied to visualize the 

transport of lithium ions in mesoporous carbon materials. The first set of experiments was 

conducted at a high concentration of lithium chloride to gain insight into the behavior of 

capacitive deionization with solutions of high ionic strength. It was found that the 

electrodes become saturated with salt during the sorption phase which inhibits the 

regeneration of ions on removal of external potential. It is proposed that by designing a 

membrane capacitive deionization setup for desalination of solutions of high ionic 
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strength, the saturation of electrodes can be prevented. Moreover, the effective diffusivity 

of lithium ions was estimated by employing Fick’s second law of diffusion. The study 

has applications in electrochemical energy storage devices such as lithium ion batteries 

and the results obtained can be utilized to improve the performance of these systems. 

  In the next part of the study, the effect of application of high-frequency and low-

amplitude alternating current (AC) signal superimposed on the DC potential was studied 

on the electrosorption process. It was observed that application of AC signal resulted in 

higher rates of sorption and regeneration in the CDI process. Furthermore, neutron 

imaging was employed to validate the results obtained with the laboratory-scale CDI 

experiments. Neutron imaging experiments conducted with gadolinium ions 

demonstrated enhanced ion transport under the influence of AC potential.  

 In the final part of the thesis, blue energy experiments were conducted to evaluate 

the feasibility of energy production based on the capacitive double layer expansion 

principle. Neutron imaging of the blue energy cycle was conducted to investigate the 

direction and magnitude of ion transport during the various steps of the blue energy 

cycle. For experiments conducted at 1.2 V no increase in potential was observed. An 

increase of 0.061 V and 0.054 V was observed for experiments conducted at 0.6 V and 

0.9 V respectively. Moreover from the sequences of neutron images obtained for each 

step of the blue energy cycle, information on the direction and magnitude of lithium ion 

transport was obtained. 

 The results obtained in this thesis provide insights into the fundamental ion 

transport mechanisms during electrosorption by mesoporous carbon materials. This 
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research has important implications for developing advanced systems for desalination of 

saline water and extraction of renewable energy based on salinity gradients.  
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CHAPTER 1 

INTRODUCTION 
 

 

 

1.1 Electrosorption of Ions from Aqueous Solutions 

 A layer of interaction between a solid and liquid electrolyte environment is 

commonly encountered in colloidal systems. The presence of a charged surface in an 

electrolyte solution results in the development of a potential gradient across the interface. 

This phenomenon results in the formation of a region with a high concentration of 

oppositely charged ions near the charged surface, called the electrical double layer 

(EDL). The study of EDL formation has significance in many processes such as filtration, 

coagulation, flocculation, sedimentation, energy storage, and purification of water by 

electrosorption. The electrosorption phenomenon involves the application of an electrical 

potential between electrode pairs submerged in brackish water, effectively “trapping” the 

ions in the EDL at the interface.  

 Electrosorption has significant applications in environmental engineering such as 

desalination of water by the capacitive deionization (CDI) technology. Capacitive 

deionization is an electrochemical method for water desalination based on the 

electrosorption of ions by electrically conductive electrodes of high surface area. The 

CDI technology has several advantages over conventional desalination methods including 

reversibility, operation at low voltages, low energy requirements, and reduction of 

secondary wastes. The potential for commercial application of CDI as an energy efficient 

technology for water treatment has been discussed in recent literature (Anderson et al., 

2010; Oren, 2008; Porada et al., 2013). Nanostructured, porous carbon materials are 
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promising electrode materials for CDI application as they have a low electrical resistivity 

and a high surface area.  

 Besides water desalination, electrosorption of ions by carbon materials can be 

utilized in energy applications. Based on the electrical double layer capacitor technology, 

energy can be extracted by mixing salt water and fresh water. Energy obtained from 

mixing fluids of different salinities, referred to as the Blue Energy, is a promising 

renewable energy source (Brogioli, 2009; Norman, 1974; Pattle, 1954). The 

electrosorption phenomenon also has energy storage applications; an EDL capacitor or a 

supercapacitor stores energy at the electrode-electrolyte interface. Supercapacitors have 

good reversibility, a high power density, a low internal resistance, and no chemical 

reactions are involved (Bispo-Fonseca et al., 1999; Hrubesh, 1998). 

 The phenomenon of EDL formation plays an important role in determining ion 

sorption and transport characteristics inside the pores of the carbon electrodes. Various 

factors such as the concentration and temperature of the electrolyte solution, ion valence, 

ion radii, and the applied potential affect the electrosorption capacity of the carbon 

electrodes. The desired electrosorption efficiency can be achieved by manipulation of the 

EDL formation in the confined space of nanopores. Therefore, an in-depth understanding 

of how these factors influence the formation of EDL is critical for improving the 

desalination efficiency in the electrosorption process. 

 Most of the research conducted in the field of capacitive deionization has been 

experimental, aimed towards the synthesis of novel electrode materials or modifications 

to standard electrode materials to obtain enhanced electrosorption capacity. A wide range 

of carbon materials such as carbon aerogel (Farmer et al., 1997; Farmer et al., 1996; 
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Gabelich et al., 2002; Jung et al., 2007; Miller and Dunn, 1999; Pekala et al., 1998; Wang 

et al., 1993; Xu et al., 2008; Ying et al., 2002; Zhang et al., 1999), activated carbon (Oh 

et al., 2006; Ryoo et al., 2003), mesoporous carbon (Li et al., 2009; Mayes et al., 2010; 

Zou et al., 2008a), graphene (Li et al., 2010a, b), carbon nanotubes (Chen et al., 2010; 

Gao et al., 2009; Gao et al., 2007; Pan et al., 2009; Tsouris et al., 2011; Wang et al., 

2006; Zhang et al., 2007), carbon fiber webs (Wang et al., 2010a), graphitized carbon 

material (Hou et al., 2006), and microporous carbon (Porada et al., 2012) have been 

utilized for application in the electrosorption of ions. Amongst all the forms of carbon 

investigated for application in CDI, carbon aerogels have been the most popular. 

Gabelich et al. (2002) investigated the influence of ion size and valence on the sorption of 

ions by carbon aerogels (Gabelich et al., 2002). Recently, mesoporous carbon materials 

have attracted interest because the presence of mesopores results in a greater access of 

ions to the pores. Zou et al. (2008) concluded that the presence of ordered structure in 

mesoporous carbon and control of micropores leads to a greater electrosorption capacity 

in mesoporous carbon (Zou et al., 2008a). Li et al. (2009) investigated a sol-gel process 

to synthesize ordered mesoporous carbon and deduced that mesoporous carbon obtained 

by addition of NiSO4.6H2O exhibited highest electrosorption capacity (Li et al., 2009).  

 The laboratory-scale cyclic voltammetry and capacitive deionization experiments 

provide an insight into how the various system parameters influence the electrosorption 

capacity of the carbon electrodes. Since the experiments are on a macroscopic level, the 

understanding is limited as we cannot observe the ion transport phenomena behind these 

observations. Therefore, neutron imaging experiments have been employed to gain an 

understanding at nanoscale of ion transport phenomena occurring at the electrode-
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electrolyte interface. Instead of focusing on the synthesis of novel materials, the aim of 

the study is to understand how the various system parameters affect the electrosorption 

capacity in the CDI process. In the current study, self-assembled mesoporous carbon 

(MC) electrodes synthesized at the Oak Ridge National Laboratory (ORNL) have been 

characterized to determine their properties, including specific capacitance and sorption 

characteristics under various operating conditions. 

 In the present study, a combination of experimental and modeling work is 

presented to understand how the factors such as properties of electrolyte, ion size, and 

applied potential influence the electrosorption behavior of mesoporous carbon materials.  

1.2 Scope and Objectives 

 This research combines experimental and modeling studies to investigate the ion 

transport mechanisms at the interface during electrosorption by carbon electrodes.  The 

research is relevant to the removal of ions by the CDI technology and the extraction of 

renewable energy from salinity difference.  

 The specific objectives of the present study are as follows: 

1. Evaluate and compare the specific capacitance of carbon aerogels and mesoporous 

carbon materials through cyclic voltammetry experiments.  

2. Investigate the influence of various system parameters such as ionic concentration, ion 

size and valence, temperature of the solution, and applied potential on the electrosorption 

characteristics in capacitive deionization experiments.  

3. Examine the transport behavior of ions in mesoporous carbon materials by neutron 

imaging experiments and estimate the transport parameters such as the diffusion 

coefficient.  
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4. Assess the ability to extract energy by mixing fluids of different salinities, based on the 

contraction and expansion of electrical double layers inside the pores of carbon 

electrodes.    

1.3 Organization of Thesis 

 Chapter 1 discusses the phenomenon of electrosorption, its applications in water 

purification and energy storage, and the motivation for this research. The scope and 

major objectives of the present work are discussed in this chapter. A literature review on 

the application of nanoporous carbon materials for electrosorption is described in Chapter 

2. The specific application of the electrosorption phenomenon in water desalination and 

in extraction of energy from mixing fluids of different salinities has been discussed in 

detail. Neutron imaging is discussed as a novel technique to study the electrosorption of 

ions by mesoporous carbon electrodes at a nanoscopic scale. 

 Chapter 3 describes the influence of temperature on electrosorption of ions from 

saline solutions via capacitive deionization experiments. Results from transport modeling 

are also presented to predict the influence of temperature and match the model 

predictions with experimental data. In Chapter 4, neutron imaging is presented as a tool 

to investigate the ion transport mechanisms during electrosorption at nanoscale. Neutron 

imaging of gadolinium ions has been carried out to estimate the effective diffusivity of 

gadolinium ions under different conditions of applied potential. The Fick’s second law of 

diffusion has been applied to match the modeling results with the experimental 

concentration profile of gadolinium ions in the carbon electrodes. In Chapter 5, neutron 

imaging of lithium ions is presented to study the behavior of electrosorption at high 
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concentrations of electrolyte. In addition, the effective diffusion coefficient of lithium 

ions is estimated by employing Fick’s second law of diffusion.   

 In Chapter 6, the enhancement of ion electrosorption rates in capacitive 

deionization experiments is reported by application of low-amplitude high frequency 

electrical signal. The results are validated by neutron imaging experiments and the image 

sequences show an enhanced transport of gadolinium ions under the influence of AC 

voltage. Chapter 7 discusses the application of neutron imaging technique to observe the 

ion transport behavior during the blue energy recovery cycle. The thesis is completed 

with the overall findings and conclusions and the recommendations for future work stated 

in Chapter 8. 
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CHAPTER 2 

BACKGROUND 

 

 

2.1 Nanoporous Carbon Materials for Electrosorption 

 To achieve a high sorption capacity in the electrosorption process, electrode 

materials of high specific surface area, electrical conductivity, and stability are required. 

Porous, nanostructured carbon materials are suitable electrode materials for 

electrosorption as they have a high conductivity and high surface area per unit mass. The 

nanostructured carbon materials can be specified as mesoporous (20 Å < pore diameter < 

500 Å) and microporous (< 20 Å) based on pore size. Most of the research done in 1990’s 

on the capacitive deionization technology has focused on carbon aerogel as the 

electrosorption material (Gabelich et al., 2002; Yang et al., 2001). Carbon aerogel 

materials have a low electrical resistivity (<40 mΩ) and high surface area (~400 m
2
/g) 

(Pekala et al., 1998; Wang et al., 1993; Zhang et al., 1999). The majority of surface area 

of this material is in pores of <10 Å, which do not contribute significantly to the 

electrosorption capacity (Hou et al., 2006). The presence of significant microporosity 

results in a greater surface area; however, micropores inhibit ion penetration, and the 

material is more susceptible to collapse at higher temperatures (Hou et al., 2006; Liang et 

al., 2008; Lin et al., 1999; Yoon et al., 2000). Ying et al. showed that a higher surface 

area associated with microporosity does not contribute to higher ion sorption capacity 

because of electrical double-layer overlapping (Ying et al., 2002).  

 Even though carbon aerogel has a relatively high surface area, its capacitance may 

not be as high as that of mesoporous carbon materials. Furthermore, as microporosity 
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limits mass transport rates, there may be some kinetic advantage in utilizing materials in 

which the surface area arises from mesopores. Therefore, in the recent years a wide range 

of carbon materials such as activated carbon cloth (Oh et al., 2006; Ryoo et al., 2003), 

ordered mesoporous carbon (Li et al., 2009; Zou et al., 2008a), graphene (Li et al., 2010a, 

b), carbon nanotubes (Chen et al., 2010; Gao et al., 2009; Gao et al., 2007; Li et al., 2011; 

Pan et al., 2009; Wang et al., 2006; Zhang et al., 2007), graphitized carbon (Hou et al., 

2006), and microporous carbon (Porada et al., 2012) have been developed and utilized for 

application in the CDI process. Tsouris et al. (2011) have investigated self-assembled 

mesoporous carbon (MC) electrodes synthesized at the Oak Ridge National Laboratory 

(ORNL) which have been used in the present study for application in the electrosorption 

process (Tsouris et al., 2011). The following sections describe the method of synthesis 

and the standard characterization techniques for mesoporous carbon materials and their 

application for desalination and energy storage. 

2.1.1 Materials Synthesis 

 The soft-template method for preparing mesoporous carbons has been discussed 

in detail in the following text. The phenolic precursors, i.e. resorcinol or phloroglucinol, 

are incorporated into the hydrophilic PEO arms of the structure-directing template, i.e. a 

copolymer such as Pluronic F127. This is followed by an aldehyde condensation 

involving formaldehyde or glyoxal, thus crosslinking the phenolics together while 

"locked" in place by the copolymer structure-directing template (Liang et al., 2008). 

During carbonization, the copolymer decomposes leaving void spaces in the phenolic 

carbon polymer, which become the pores. The narrow mesopore size distribution in soft-

templated carbon materials is directly related to the use of the copolymer template, while 
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the pore size is related to the hydrophobic block length in the copolymer template. 

Carbon aerogel does not have this level of pore control and therefore does not have a 

narrow mesopore size distribution due to the mesoporosity being introduced through a 

solvent extraction step prior to curing. The narrow pore size distribution found in 

templated carbons has the benefit of producing a higher surface area with similar pore 

volumes found in aerogels, but with pores predominantly in the mesopore regime. 

 It has been shown that hierarchical structures are good for increased mass-

transport throughout the carbon material (Mayes et al., 2010). A new ordered mesoporous 

carbon material was developed at ORNL using glyoxal, which exhibits a hierarchical 

structure arising from the cross linking reagent with pore sizes up to 200 nm. It was also 

shown that mesoporous carbon prepared by self-assembly of block copolymer and 

phloroglucinol-formaldehyde resin via the soft-template method can be activated by CO2 

and potassium hydroxide (Wang et al., 2010b). Activated mesoporous carbons exhibited 

high specific surface areas (up to 2000 m
2 

g
-1

) and large pore volumes (up to 1.6 cm
3
 g

-1
), 

while maintaining the mesoporous structure.  

 For gel-based electrodes, resorcinol (8.00 g) and Pluronic F-127 (8.00 g) (BASF) 

are dissolved in 34 mL ethanol (200 proof, Decon Labs, Inc.) and 34 mL of 3 M 

hydrochloric acid. After the addition of formaldehyde, the mixture is stirred for 50 

minutes, with phase separation occurring at 20 minutes after formaldehyde addition. The 

mixture is allowed to set and the gel separated followed by the addition of chopped 

carbon fibers (Toho Tenax 344). The gel-fiber composite is spread onto the roughened 

surface of graphite current collector plates and covered with a carbon fiber sheet 

(Hollingsworth and Vose) which is subsequently pressed into the gel lightly. The 



 10 

composite electrodes are allowed to dry and then cured at 353 K for 24 hours. The plates 

were carbonized at 1123 K under argon (Mayes et al., 2010; Wang et al., 2010b; Wang et 

al., 2008). Details about the templating mechanism can be found in Liang and Dai (2006) 

(Liang and Dai, 2006). The mesoporous carbon used to produce activated carbon (AC) is 

described in detail in literature (Wang et al., 2010b). Briefly, phloroglucinol (26 g) and 

Pluronic F127 (52 g) are refluxed in acidic ethanol (1.2 L 200 proof ethanol and 10 mL 

12 M HCl) followed by addition of formaldehyde (26 g). The solution is allowed to 

reflux 3 hrs followed by filtration and carbonization in a nitrogen atmosphere at 1123K. 

The resulting mesoporous carbon is physically mixed with potassium hydroxide in a 1:4 

ratio respectively and heated at 10 K/min to 1123 K for 2 hrs. The carbon is then rinsed 

with deionized water, stirred in warm dilute hydrochloric acid, and then washed to 

neutral pH with deionized water. The mesoporous carbon is incorporated into two types 

of CDI electrodes – activated carbon sheets (ACS), and mesoporous carbon coated 

graphite plates – as described below. 

 ACS preparation: Activation is performed by physically mixing the mesoporous 

carbon powder with solid potassium hydroxide (KOH) and heated in a nitrogen 

atmosphere at 10 K/min to 1123 K for 2 hours. After cooling, the activated carbon 

powder is treated with hydrochloric acid followed by washing in deionized water to a 

neutral pH. The activated carbon is ball milled with high-density zirconia media (Glenn 

Mills) in isopropanol to produce a carbon powder with an average particle size of 10 

microns. Slurries of activated carbon powder are made in an organic solvent with various 

concentrations of PVDF binder (polyvinylidene fluoride) with dimethylformamide 

(DMF) as the solvent. The slurry is heated to decrease the viscosity of the solution, and 
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spread onto a mold for drying. Non-woven carbon fiber paper (Hollingsworth and Vose) 

and bonded carbon fiber paper, EC-TP2-030 (Toray Industries) are used as both a non-

stick mold liner and as a nonporous layer for backing the carbon sheet. ACS samples are 

generated by drying the slurry under various conditions, including a final treatment at 

100°C in a rough vacuum [Figure 2.1 (a)]. 

 MC-coated graphite: The steps for generating MC-coated graphite plates are 

shown in Figure 2.1 (b). Prior to carbonization, the carbon polymer gel is cast onto 

graphite plates. The graphite plates must have a rough surface for good adhesion. The 

graphite plates with carbon polymer are then carbonized under nitrogen at 850°C to 

produce resorcinol-based (R-type) or phloroglucinol-based (P-type) MC-coated graphite 

planar CDI electrodes. The mesoporous carbon adheres well to the graphite and does not 

flake off during cutting with an abrasive disk. This strong adhesion suggests the 

mesoporous carbon may withstand exposure to liquid shear flows. The gel can be 

deposited on both sides of the graphite, enabling double-sided electrodes in CDI stacks.  

2.1.2 Materials Characterization 

2.1.2.1 PSD Measurements  

 Nitrogen sorption analysis of nanostructured carbon materials is performed using 

a Micromeritics Gemini Analyzer. Surface area is calculated using the Brunnauer-

Emmet-Teller (BET) method or a comparative method (Kruk and Jaroniec, 2001). Pore 

size distributions are calculated in the 0.05 - 0.2 relative pressure region using the 

Barrett-Joyner-Halenda (BJH) method (Barrett et al.).  
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Figure 2.1 Schematics of the procedures for producing (a) sheets containing activated 

mesoporous carbon and (b) graphite plates coated with mesoporous carbon.   

 

 

 

 

 

 

 

 

(a)

(b)
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 Figure 2.2 shows representative results for nitrogen adsorption isotherms and BJH 

pore size distributions of the RMCG-FS, PMCG-FS, and commercial carbon aerogel. The 

commercial carbon aerogel used in these tests is a high surface area material, 289 m
2
/g, 

with a broad pore size distribution and a total pore volume of 0.70 cc/g. This is in 

contrast to the two templated carbon samples, where slightly lower specific pore volume 

is achieved with narrower pore size distributions. The surface areas for the RMCG-FS 

and PMCG-FS active materials on the graphite plates are 488 m
2
/g and 610 m

2
/g 

respectively. Both templated carbon materials have total pore volumes of ~0.54 cc/g. The 

difference in the surface areas for the templated carbons is a result of several parameters 

during synthesis, including reaction time and ambient humidity. Stopping the reaction 

early can result in a lower surface area as well as a less humid environment, which 

influences hydrogen bonding during self-assembly. 
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Figure 2.2 Nitrogen sorption isotherms and BJH pore size distributions for R-type, P-type 

MC carbon, and carbon aerogel materials. 
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 The primary difference between the RMCG-FS and PMCG-FS is the hierarchical 

porosity found in the PMCG-FS material. The PMCG-FS material has ~8 nm mesopores 

within a macroporous carbon matrix where pores from 50 nm to 300 nm can be observed 

(Mayes et al., 2010). This hierarchical porosity is believed to enable higher active surface 

area and increased transport rates of ions through the material. Without the hierarchical 

structure, the RMCG-FS material is believed to have slower ion sorption kinetics than the 

PMCG-FS carbon. The ACS electrode suffers a dramatic loss if surface area is compared 

to the starting material due to the use of PVDF as a binder from pore blockage or partial 

pore filling. The starting surface area of 1700 m
2
/g is reduced to 364 m

2
/g upon 

generation of the ACS electrode. This negatively affects the sorption capacity, as the 

capacity is directly related to the surface area of the porous electrode material.   

2.1.2.2 Cyclic Voltammetry 

 Cyclic voltammetry experiments are performed with a Bioanalytical Systems 

(BAS, West Lafayette, IN) voltammetric analyzer (CV-50W Version 2) connected to a 

BAS C2 cell stand. The experiments employ three types of electrodes: (1) the working 

electrode consists of a platinum wire with a small monolithic carbon sample clipped at 

the end; (2) the counter electrode is a platinum wire attached to a large piece of carbon 

aerogel, serving as a current collector; and (3) the BAS Model RE-1 (Ag/AgCl electrode 

immersed in a 3 M NaCl electrolyte solution) is used as the reference electrode. The 

carbon samples are immersed in the cell solution such that proper wetting conditions are 

maintained during the experiment. All experiments are carried out under a flow of 

nitrogen gas.   
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 For the analysis of CV data, the measured electrical current is divided by the scan 

rate and weight of the sample to yield the specific capacitance. The specific capacitance 

of carbon aerogel in CV experiments has been reported in previous studies (Hou et al., 

2006; Yang et al., 2003). Representative results in Figure 2.3 for a voltage range of 0.5 

V, a scan rate of 1 mV/s, with NaCl and CaCl2 salt solutions show that the activated MC 

sheets have approximately 50% higher specific capacitance than commercial carbon 

aerogel sheets. The capacitance for the high ionic-strength solutions is slightly higher, 

because more ions participate in the electrical double layer formation in solutions of 

higher ionic-strength. The results obtained indicate that the MC material has higher 

capacitance than carbon aerogel sheets.  

 

 

 

 

Figure 2.3 Cyclic voltammetry results with activated MC sheets (ACS) and commercial 

carbon aerogel using 10 mV/s scan rate. 
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2.2 Application of Electrosorption in Desalination and Energy Storage 

 The phenomenon of electrosorption of ions by porous carbon electrodes has 

applications in water treatment and energy storage by supercapacitors. Capacitive 

Deionization, a method for water desalination is based on the electrosorption of ions by 

charged carbon electrodes of high surface area. Moreover, during charging of carbon 

electrodes energy is stored which can be harvested during regeneration of electrodes. 

Electrical double layer (EDL) capacitors store energy by sorption of ions by porous 

carbon materials which are electrochemically stable and have a high surface area. The 

following sections discuss in detail the capacitive deionization technology and energy 

storage by the electrosorption phenomenon. 

2.2.1 Capacitive Deionization Technology for Desalination of Water 

 The laboratory-scale CDI reactor consists of a single pair of carbon electrodes and 

a pair of current collectors (Figure 2.4). For carbon aerogel and activated MC sheets, the 

current collectors are made of titanium plates, and the carbon sheets are taped at the edge 

on the current collectors. For the MC-coated graphite, the graphite plates play the role of 

both supporting material and current collectors. The electrodes are held at a spacing of ~6 

mm by a hollow piece of Plexiglas. The power is supplied to the cell by connecting the 

current collectors to a direct-current (dc) HP 3632A power supply (Hewlett Packard, 

Loveland, CO) with a voltage range of 0 to 15 V and a current range of 0 to 7 A. The 

conductivity is measured at the cell exit stream by using a conductivity meter (model 835 

Multi Cell (Au) with Model 3082 EC Meter, Amber Science, Inc., Eugene, OR). The 

aqueous solution made from Instant Ocean (Aquarium Systems) is continuously recycled  
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Figure 2.4 Single-cell capacitive deionization reactor with two half cells each of which 

containing (1) a Plexiglass cover, (2) a current collector, (3) a carbon electrode, and (4) a 

middle hollow plate. Right: STEM images of the P-type mesoporous carbon utilized to 

produce the MC-coated graphite electrode materials showing uniform pores of ~8 nm 

(bottom right) with a combined hierarchical meso- and macro-porosity (top right). 

 

 

 

through the system using a micropump until steady state conditions are obtained. A 

solution volume of 100 ml was maintained in the system. Regeneration is carried out by 

shorting the electrodes and discharging the cell at 0 V. 

 Experiments have been conducted to compare the carbon aerogel and the newly 

synthesized activated MC sheets and MC-coated graphite plates (Tsouris et al., 2011). 

Mesoporous carbon performed much better than carbon aerogel under the conditions of 

the experiment. It was associated with 25% drop in conductivity as compared to 2% drop 

for carbon aerogel (Figure 2.5).  
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 In a recent publication by Mayes et al. (Mayes et al., 2010), the R and P types of 

MC-coated graphite were compared for potential application in the CDI process. The 

main difference between these two materials is that the R-type has a narrow pore size 

distribution in the range of 6-10 nm whereas the P-type has the narrow mesopore size 

distribution with a maximum at 7.5 nm, coupled with macropores with sizes between 60 

and 300 nm. Because of the relatively wide pore size distribution, the P-type MC-coated 

graphite showed a faster deionization rate than that of the R-type (Mayes et al., 2010).  

The results obtained in these studies suggest that mesoporous carbon materials are 

superior to carbon aerogel for application in capacitive deionization. MC-coated graphite 

materials exhibit a higher capacity at higher concentrations of salts. Thus, these materials 

are a more suitable choice for carrying out desalination of salt water by the CDI process. 

Among the MC-coated graphite materials, the P-type material is most suited for high 

concentration of dissolved salt and faster deionization rates.  

2.2.2 Blue Energy Recovery Cycle  

 Energy obtained from mixing fluids of different salinities, referred to as Blue 

Energy, is a promising renewable energy source. In delta areas, where a river with low-

salinity water flows into the saline seawater, there is immense potential for harvesting 

energy. Mixing of a highly concentrated saline solution with fresh water dissipates more 

than 2.2 MJ of free energy per m
3 

of fresh water treated (Pattle, 1954). It has been 
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Figure 2.5 Representative capacitive deionization test results: carbon aerogel sheets and 

activated MC sheets. Conditions: 1000 ppm initial concentration of Instant Ocean, at 1.2 

V applied voltage. The electrical conductivity of the solution dropped by 2% for carbon 

aerogel and 25% for activated MC sheets. After ~2,500 s, the conductivity increased 

because the applied potential was turned to 0 and the electrodes were shorted.  

 

 

 

estimated that the total power generated from all large estuaries in the world could 

amount to 2 TW, which can cover 20% of the worldwide energy demand (Boon and van 

Roij, 2011; Wick and Schmitt, 1977).  Traditionally, pressure-retarded osmosis 

(Levenspiel and Godfrey, 1974; Loeb, 1976; Loeb et al., 1976; Thorsen and Holt, 2009) 

and reverse electrodialysis (Długołęcki et al., 2008; Post et al., 2008; Veerman et al., 

2009; Weinstein and Leitz, 1976) have been used to transform Blue Energy into 

mechanical or electrical work. However, high membrane cost and short life due to 

membrane fouling hinder the large-scale application of this process (Brogioli, 2009). 

Recently, a new method using high-capacitance carbon electrodes based on the 

contraction and expansion of electrical double layers inside the pores of carbon has been 

proposed (Brogioli, 2009). Reversible cycles that alternate charging and discharging in 
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supercapacitors using saline and freshwater streams have been developed (Boon and van 

Roij, 2011; Brogioli, 2009; Brogioli et al., 2011; La Mantia et al., 2011). The carbon 

electrode materials can help obtain a recovery efficiency as high as 74% of the free 

energy change (La Mantia et al., 2011). The charging-discharging process inside the 

nanopores of carbon electrode is influenced by the pore size distribution (Feng et al., 

2011; Huang et al., 2008a, b). Ionic competition comes into play when multivalent ions 

are present along with monovalent ions. In this case, transport of ions is influenced by the 

ion valence and diameter. Processes for ionic separation based on the difference in ionic 

charge have also been recently developed (Gao et al., 2009).  

2.3 Numerical Modeling of the Electrosorption process 

 Apart from durable and high-capacity electrode materials, fast exchange of ions 

between the electrodes and electrolyte solution is required for an efficient operation of 

the CDI process. Biesheuvel has presented a thermodynamic model for work required for 

ion removal during a cycle in the CDI process (Biesheuvel, 2009). Biesheuvel and Bazant 

(Biesheuvel and Bazant, 2010) have also presented a model for capacitive charging and 

desalination by ideally polarizable porous electrodes, excluding the effect of Faradaic 

reactions or specific adsorption of ions, valid in the case of a thin EDL. The authors have 

discussed the theory for the case of a dilute, binary electrolyte using the Gouy-Chapman-

Stern (GCS) model of the EDL. This model has been extended to include a dual-porosity 

approach with macropores and micropores (Biesheuvel et al., 2011).  Biesheuvel et al. 

(Biesheuvel et al., 2012) also presented a porous electrode theory based on electrodes 

composed of solid particles that are porous themselves. The pore distribution consists of 

macroporosity outside the particles through which the ions are transported, and the 
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micropores inside the particles, where the electrical double layers are formed. Bieshuevel 

and Bazant
 
neglected the Stern layer capacitance and this approximation led to two 

nonlinear partial differential schemes that were solved numerically.   

2.3.1 Model Description 

 The 1-D model for transport in porous media has been proposed by Biesheuvel 

and Bazant (Biesheuvel and Bazant, 2010). The porous electrode is divided into pore 

space filled with quasi-neutral electrolyte and a solid matrix. The solution inside the pore 

space exchanges ions with a charged, thin double-layer “skin” on the electrode matrix. 

The system is modeled using a porous electrode of thickness Lelec and a thin mass transfer 

layer just outside the electrode of length LSDL. The approach is based on Newman’s 

macroscopic porous electrode theory (Johnson and Newman, 1971; Newman and 

Tiedemann, 1975; Newman and Thomas-Alyea, 2004b) with the same assumptions 

applied. The porous electrode is treated as a homogeneous mixture of charged double 

layers and a quasi-neutral solution (Figure 2.6). 

2.3.2 Model Derivation  

 The relationship between the dimensionless potential in the solution filling the 

pore space () and the equivalent solid phase potential () can be calculated by using the 

Gouy-Chapman-Stern (GCS) model assuming dilute solution conditions. The double 

layer in the GCS model is described by a combination of a charge-free Stern layer of 

constant capacity and potential difference ΔS and a diffuse layer with potential 

difference ΔD.  
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Figure 2.6 (i) Sketch of the model problem. Porous electrode of thickness Lelec, relative to 

a bulk electrolytic solution separated by a stagnant diffusion layer of thickness Lsdl. 

Figure reproduced from reference (Biesheuvel and Bazant, 2010). (ii) Porous medium 

and representative elementary volume (REV). 

 

 

 

Ds  1              (2.1)                                                                                                     

 The electrical potentials (ψ) were converted to dimensionless potentials () after 

division by kT/e. The GCS model is described by three main equations. The first is 

)2/sinh(2 **

Dcq                    (2.2) 

where q
*
 is a dimensionless surface charge density, i.e., the excess charge in the diffuse 

layer divided by 2 λD C∞ ; c
*
 is the dimensionless ion concentration in the pore space at 

position x (C/C∞), where C and C∞ are obtained from Ni and Nio by dividing by the 

Avogadro number, and λD is the Debye screening length.   

      The second equation relates the voltage drop through the Stern layer to q
*
 by 

 /*

sq                                                                                                              (2.3)                              
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where δ = λS/λD and λS  is the effective thickness of the Stern layer. The third equation 

gives a formula for the dimensionless excess salt adsorption (w
*
): 

)4/(sinh4 2**

Dcw                          (2.4) 

            In order to close the porous electrode model, the dimensionless rate of charge 

removal from the liquid phase, J
*

charge, is related to the charge density, -q
*
, by 

*

arg

** / echJtq                          (2.5) 

and the dimensionless salt adsorption term J
*

salt 
 to w

*
 by  

*** / saltJtw                          (2.6) 

J
*

salt  and J
*
charge are made dimensionless by multiplying the rate of salt adsorption (j

*
salt) 

and the rate of charge removal (j
*

charge) by Lelec /(Jlim . lD), where Jlim = 2 DeffC∞/Lelec and 

Deff  is the effective diffusivity. 

      Originally proposed by Biesheuvel and Bazant (Biesheuvel and Bazant, 2010), the 

volume averaged transport equations inside the porous electrodes can be written in 

dimensionless form as: 

**2** / salt
*

eff
JcDtc                              (2.7) 

where t* is a dimensionless time obtained by rescaling the dimensional time d with d = 

Lelec
2
/Deff, and  = λD / hp; the pore thickness hp is defined as the ratio of the electrode 

porosity ( to the electrode specific surface area (av), hp = /av, and D
*

eff  is the 

dimensionless effective diffusivity given by the ratio of effective diffusivity and the bulk 

solution diffusion coefficient (Deff/D). 

      In dimensionless form, the charge conservation equation becomes 

  *

arg

*

ech
*

eff
J cD                           (2.8) 
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            In the stagnant diffusion layer (SDL), equations similar to (2.7) and (2.8) are 

used: 

*2** / ctc                          (2.9)  

and 0)( *  c                       (2.10) 

2.4 Neutron Imaging  

 Neutron imaging is a technique for non-destructive investigation of materials that 

has application in a wide range of disciplines including biology, medicine, materials 

science, paleontology, soil physics, various industrial sectors, and homeland security. 

Neutrons have several advantages for imaging over X-rays, electrons, and visible light, as 

they are non-perturbing, highly penetrating, and able to distinguish between different 

isotopes. They can determine atomic spacings and crystal structures and reveal magnetic 

fluctuations. In particular, neutron imaging has been applied to visualize water in fuel 

cells with an aim to improve performance of fuel cells (Aaron et al., 2011; Bellows et al., 

1999; Boillat et al., 2008; Mukundan and Borup, 2009; Park et al., 2008; Pekula et al., 

2005; Satija et al., 2004; Tang et al., 2010; Turhan et al., 2006). Neutron imaging has also 

been used to quantify lithium concentration across electrodes in lithium batteries (Kamata 

et al., 1997; Lanz et al., 2001; Siegel et al., 2011a). In addition, fields such as soil physics 

(Menon et al., 2007; Oswald et al., 2008) and biology (Adani and Fallone, 2000; Carey et 

al., 2008; Carey et al., 2006; Kamali Moghaddam et al., 2008; Kapadia et al., 2008; 

Sharma et al., 2007) have also utilized neutron imaging for noninvasive studies of various 

materials of interest.  

 The basic experimental setup for neutron imaging consists of a neutron source, a 

collimator which determines the geometric properties of the beam, neutron scintillator 
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screen, and the sample of study (Figure 2.7). The beam is transmitted through the object 

and recorded by a neutron scintillator detector. The detector records a 2-dimensional 

image that is a projection of the sample on the plane. Neutrons are converted to light 

using a scintillator screen, and the light is captured by the CCD camera. 

 The present study employs neutron imaging as a tool for observing the diffusion 

of ions inside mesoporous carbon electrodes. Neutron imaging provides information on 

the ion transport mechanisms at the electrode-electrolyte interface at nanoscale. A 

fundamental understanding of the ion transport behavior at the interface can aid in 

optimization and increasing efficiency in the desalination and energy storage applications 

in these systems. 

 

 

 

 

Figure 2.7 Schematic drawing of the experimental setup for neutron imaging. 
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CHAPTER 3 

INFLUENCE OF TEMPERATURE ON ELECTROSORPTION OF 

IONS FROM AQUEOUS SOLUTIONS USING MESOPOROUS 

CARBON MATERIALS 

 

 

 

Based on the electrosorption of ions by charged electrodes, the capacitive 

deionization (CDI) method was considered for ion removal from saline water using 

mesoporous carbon electrodes. Mesoporous carbon was synthesized via a self-assembly 

method, with a narrow pore size distribution in the range of 6 to 10 nm. It was found that 

the rates of ion sorption and release by mesoporous carbon electrodes increase with an 

increase in the temperature of the solution. A drift in the conductivity was observed 

during electrosorption of Instant Ocean solutions, which may be explained as the result of 

competition between ions of different valence and size. The diffusion coefficient of ions 

during electrosorption was evaluated as a function of temperature, and a transport model 

coupled with an electrical-double-layer model was employed to calculate the mass of salt 

adsorbed by the electrodes. The calculated cumulative mass of salt captured in the 

electrical double layers of the electrodes was compared to the experimental data at 

different temperatures. 

 

  

  

 



 27 

3.1 Introduction 

 The availability of clean affordable water is one of the major challenges facing 

our society in the present times. Therefore, there has been an interest in developing 

energy-efficient and economically viable technologies for desalination of water. The 

capacitive deionization (CDI) method, which is based on the phenomenon of 

electrosorption of ions, can be used to remove ions from aqueous solutions. 

Electrosorption involves application of an electrical potential between pairs of electrodes 

to force the cations and anions towards the oppositely charged electrodes. The ions are 

held in the electrical double layers (EDL) formed at the surface of the electrodes.  

 Porous nanostructured carbon materials of high conductivity and high specific 

surface area have attractive properties as electrode materials for the electrosorption 

process. Several studies have been carried out to investigate the electrosorption behavior 

of carbon electrodes (Ayranci and Conway, 2001a; Ayranci and Conway, 2001b; Ban et 

al., 1998; Kinoshita, 1988; Oren, 2008). A wide range of carbon materials such as carbon 

aerogel (Farmer et al., 1997; Farmer et al., 1996; Jung et al., 2007; Miller and Dunn, 

1999; Xu et al., 2008; Ying et al., 2002), activated carbon cloth (Oh et al., 2006; Ryoo et 

al., 2003), ordered mesoporous carbon (Li et al., 2009; Zou et al., 2008a), graphene 

(Mayes et al., 2010; Wang et al., 2010b), carbon nanotubes (Chen et al., 2010; Gao et al., 

2009; Gao et al., 2007; Li et al., 2011; Pan et al., 2009; Wang et al., 2006; Zhang et al., 

2007), and microporous carbon (Porada et al., 2012) have been utilized for application in 

the electrosorption of ions. Graphitized carbon has also been investigated for application 

in the CDI process (Hou et al., 2006).  
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 Apart from durable and high-capacity electrode materials, fast exchange of ions 

between the electrodes and electrolyte solution is required for an efficient operation of 

the CDI process. Biesheuvel has presented a thermodynamic model for work required for 

ion removal during a cycle in the CDI process (Biesheuvel, 2009). Biesheuvel and Bazant 

(Biesheuvel and Bazant, 2010) have also presented a model for capacitive charging and 

desalination by ideally polarizable porous electrodes, excluding the effect of Faradaic 

reactions or specific adsorption of ions, valid in the case of a thin EDL. The authors have 

discussed the theory for the case of a dilute, binary electrolyte using the Gouy-Chapman-

Stern (GCS) model of the EDL. This model has been extended to include a dual-porosity 

approach with macropores and micropores (Biesheuvel et al., 2011).  Biesheuvel et al. 

(Biesheuvel et al., 2012) also presented a porous electrode theory based on electrodes 

composed of solid particles that are porous themselves. The pore distribution consists of 

macroporosity outside the particles through which the ions are transported, and the 

micropores inside the particles, where the electrical double layers are formed. The 

authors used a modified-Donnan (mD) method for the micropores, valid for overlapping 

double layers. 

 Saline water generated by gas/oil operations, also known as produced water, 

reaches the surface at elevated temperatures (40-50°C) (Ray and Engelhardt, 1993) and 

often needs to be treated before reuse or disposal. Since produced water contains 

relatively high concentrations of dissolved solids, a deionization method is often required 

to remove ions. Johnson et al. have reported the influence of temperature on desalination 

performance in electrosorption by porous carbon electrodes. The study reported that there 

is an improvement in desalination performance when the temperature is increased from 
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25°C to 50°C, but little improvement in performance is obtained at higher temperatures 

under 80°C (Johnson et al., 1970). Experimental information and modeling results 

presented in this study are focused on elucidating the influence of temperature on the 

electrosorption of ions during the CDI process. Experimental work with CDI is based on 

novel mesoporous carbon (MC) materials synthesized at the Oak Ridge National 

Laboratory (Mayes et al., 2010; Wang et al., 2010b; Wang et al., 2008) including 

resorcinol-based MC-coated graphite with fibers (RMCG-FS), and activated, self-

standing MC sheets. Additional information about the application of these materials for 

the electrosorption of ions can be found in reference (Tsouris et al., 2011). It has been 

shown that the RMCG-FS electrodes exhibit a slightly higher removal capacity than the 

activated MC sheets. These materials provide high surface area over a narrow pore size 

distribution that is ideal for both EDL formation and transport of ions. 

 In the present study, activated MC sheets and RMCG-FS were used in CDI 

experiments of sodium chloride and Instant Ocean solutions at different temperatures. A 

comparison of the results leads to conclusions on the influence of temperature on the 

performance of mesoporous carbon materials in the deionization process. These 

conclusions are supported by theoretical results from transport modeling coupled with the 

EDL theory for sodium chloride and Instant Ocean solutions. A practical implication of 

the present work is determining whether it would be more effective to treat produced 

water at its original temperature rather than after it reaches equilibrium with the 

environmental conditions. 
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3.2 Materials and Methods 

3.2.1 Mesoporous Carbon Materials 

 Details of the mesoporous carbon used in this study can be found in recent 

literature (Mayes et al., 2010; Wang et al., 2010b; Wang et al., 2008). In summary, 

activated mesoporous carbon was synthesized by carbonization of nanostructured 

polymeric composites, obtained by self-assembly of the triblock copolymer Pluronic 

F127 and phenol resin in acidic conditions and ethanol. The mixture was heated with 

continuous stirring while formaldehyde was added. After the solution was heated for 2 

hours, the resultant F127 phenol resin polymeric composite particles were separated from 

the remaining solution. The particles were then washed with ethanol and dried in an oven 

for 3 hours. Carbonization was carried out under flowing nitrogen gas by heating the 

polymer particles at 850°C for 2 hours. KOH activation was performed by heating a 

physical mixture of solid KOH and mesoporous carbon particles in a tube furnace under 

flowing nitrogen gas. 

 A fabrication method developed to produce mesoporous carbon sheets involved 

forming a paper-like product from a slurry or paste containing activated carbon powder, a 

binder, and a solvent. After activation, the carbon products were ball milled with high-

density zirconia media (Glenn Mills) to produce a fine powder. Polyvinylidene fluoride 

(PVDF, Aldrich Chemicals) was used as the binder or bonding agent, due to its inert 

interaction with other materials involved in CDI and with dimethylformamide as the 

slurry solvent. Slurries were made with varying amounts of the PVDF binder. A typical 

slurry for a 75 mm by 150 mm by 1 mm thick final sheet consisted of 5 grams of carbon 

with different weights of PVDF in approximately 15-17 grams of solvent. The slurry was 
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prepared by stirring the carbon into the solvent in which the PVDF was previously 

dissolved. The slurry was then heated to 50°C to decrease the viscosity of the solution 

and spread onto a mold for drying. Bonded carbon fiber paper (Toray Industries) and a 

non-woven carbon fiber paper (Hollingsworth and Vose) were used as a support for the 

carbon sheet. The samples were then dried under vacuum at 100°C for CDI experiments. 

Samples from the sheets were also prepared for BET (Brunauer-Emmett-Teller) surface 

area measurements. 

 MC-coated graphite plates were also generated by applying the precursor 

templated resorcinol gel directly onto a graphite current collector plate of dimensions 100 

mm × 200 mm × 1 mm. The gel was carbonized to produce R type (for resorcinol) MC- 

coated graphite plates (RMCG). It was found that the mesoporous carbon adheres well to 

the graphite, which also provides mechanical strength, so the combination of mesoporous 

carbon and graphite is acceptable for a CDI reactor. MC-coated graphite was not 

chemically activated like the activated MC sheets; however, its specific surface area was 

greater than 600 m
2
/g and slightly lower than the specific surface area of the activated 

MC sheet (in the range of 1000 m
2
/g). Due to the addition of PVDF, the specific surface 

area of MC sheets was lower than that of the original MC powder by as much as 500 

m
2
/g. Another potential advantage of MC-coated graphite over MC sheets is better 

connectivity to the charge collector, thus providing a lower resistance to current flow. 

3.2.2 Capacitive Deionization Experiments 

 Capacitive deionization (CDI) experiments were performed using an 

electrosorption cell consisting of a pair of electrodes made of activated MC sheets 

attached to titanium plates or MC-coated graphite plates (Figure 3.1). The electrodes 
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were kept separated by a central hollow piece Plexiglass at a distance of 0.6 cm. Each 

half of the electrode cell consisted of a Plexiglass outside wall, a titanium plate with 

activated MC sheet or MC-coated graphite, and Viton gaskets. The two titanium or 

graphite plates were supplied electrical potential through a direct-current (dc) power 

supply (Hewlett Packard model 3632A, Loveland, CO) operating at a range of 0-15 V 

and 0-7 A. In order to measure the capacitance of MC, a 100-ml solution was maintained 

and continuously recycled through the system until steady state conditions were obtained. 

 The conductivity was measured at the cell exit stream by using a conductivity 

meter (model 835 Multi Cell (Au) with Model 3082 EC Meter, Amber Science, Inc., 

Eugene, OR). The system was assumed to reach equilibrium when the conductivity 

reached a constant value. 

 The solutions used in the experiments were sodium chloride and Instant Ocean 

solutions (Instant Ocean, Blacksburg, VA), and the temperature was maintained at either 

25°C or 40°C for experiments at room temperature and elevated temperature, 

respectively. Instant Ocean solution is a synthetic seawater formulation consisting of salts 

providing major ions (Cl
-
, Na

+
, Mg

2+
) , minor ions (HCO3

-
, Br

-
), and trace elements (Cu, 

Fe, Ni) found in natural ocean water (NaCl - 23.50 g/L, Na2SO4 - 4.00 g/L, KCl - 0.68 

g/L, H2BO3 - 0.02 g/L, MgCl2.2H2O - 10.78 g/L, CaCl2.2H2O - 1.47 g/L, NaHCO3 - 0.19 

g/L, Na2SiO3.9H2O - 0.03 g/L). Instant Ocean solution was used to investigate the 

influence of competition between ions of different valence and size. Regeneration was 

carried out by removing the applied potential and shorting the two electrodes with a 

cable. 
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Figure 3.1 Single-cell capacitive deionization reactor with two half cells containing a 

current collector, a carbon electrode, and a spacer. Left bottom: a temperature controller 

is used to control the temperature of the cell by providing heat via a heating tape wrapped 

around the capacitive deionization cell. 

 

 

 

3.2.3 Modeling  

 The 1-D transport model in porous media used in this work is similar to the one 

proposed by Biesheuvel and Bazant (Biesheuvel and Bazant, 2010). The porous electrode 

was divided into pore space filled with quasi-neutral electrolyte and a solid matrix. The 

solution inside the pore space exchanged ions with a charged, thin double-layer “skin” on 

the electrode matrix. The system was modeled using a porous electrode of thickness Lelec 

and a thin mass transfer layer just outside the electrode of length LSDL. The approach is 

based on Newman’s macroscopic porous electrode theory (Johnson and Newman, 1971; 
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Newman and Tiedemann, 1975; Newman and Thomas-Alyea, 2004b) with the same 

assumptions applied. The porous electrode was treated as a homogeneous mixture of 

charged double layers and a quasi-neutral solution. 

 

 The relationship between the dimensionless potential in the solution filling the 

pore space () and the equivalent solid phase potential () can be calculated by using the 

Gouy-Chapman-Stern (GCS) model assuming dilute solution conditions. The double 

layer in the GCS model is described by a combination of a charge-free Stern layer of 

constant capacity and potential difference ΔS and a diffuse layer with potential 

difference ΔD.  

Ds  1                                                                                                     (3.1) 

 The electrical potentials (ψ) were converted to dimensionless potentials () after 

division by kT/e. The GCS model is described by three main equations. The first is 

)2/sinh(2 **

Dcq  ,                                                                                        (3.2) 

where q
*
 is a dimensionless surface charge density, i.e., the excess charge in the diffuse 

layer divided by 2 λD C∞; c
*
 is the dimensionless ion concentration in the pore space at 

position x (C/C∞), where C and C∞ are obtained from N and No (number of ions per unit 

volume) by dividing by the Avogadro number (Nav), and λD is the Debye screening 

length.   

 The second equation relates the voltage drop through the Stern layer to q
*
 by 

 /*

sq 
                                                                                                          (3.3) 

where δ = λS/λD and λS  is the effective thickness of the Stern layer. The third equation 

gives a formula for the dimensionless excess salt adsorption (w
*
): 
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)4/(sinh4 2**

Dcw                                                                                      (3.4) 

 In order to close the porous electrode model, the dimensionless rate of charge 

removal from the liquid phase, J
*

charge, is related to the charge density, -q
*
, by 

*

arg

** / echJtq 
                                                                                                (3.5) 

and the dimensionless salt adsorption term J
*

salt  to w
*
 by  

*** / saltJtw 
                                                                                                (3.6) 

J
*

salt and J
*
charge are made dimensionless by multiplying the rate of salt adsorption (j

*
salt) 

and the rate of charge removal (j
*

charge) by Lelec /(Jlim . λD), where Jlim = 2 DeffC∞/Lelec and 

Deff  is the effective diffusivity. 

 Originally proposed by Biesheuvel and Bazant (Biesheuvel and Bazant, 2010), the 

volume averaged transport equations inside the porous electrodes can be written in 

dimensionless form as: 

**2** / salt
*

eff
JcDtc 

                                                                                    (3.7) 

where t* is a dimensionless time obtained by rescaling the dimensional time d with d = 

Lelec
2
/Deff, and  = λD / hp; the pore thickness hp is defined as the ratio of the electrode 

porosity ( to the electrode specific surface area (av), hp = /av, and D
*

eff is the 

dimensionless effective diffusivity given by the ratio of effective diffusivity and the bulk 

solution diffusion coefficient (Deff/D). 

 In dimensionless form, the charge conservation equation becomes 

  *

arg

*

ech
*

eff
J cD  

                                                                                    (3.8) 
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 In the stagnant diffusion layer (SDL), equations similar to (3.7) and (3.8) are 

used: 

*2** / ctc                                                                                                  (3.9)  

and 0)( *  c                                                                                               (3.10) 

 In their original work, Biesheuvel and Bazant (Biesheuvel and Bazant, 2010) did 

not solve the full set of equations. They neglected the Stern layer thickness, and this 

approximation led to two nonlinear partial differential equations that were solved 

numerically. They also conducted a detailed study of the dynamical behavior of the 

aforementioned equations using an asymptotic analysis involving the small parameter 

(λD/hp). In the present work, we have solved the full model equations without neglecting 

any variable.   

 The solution of the full problem requires solving simultaneously equations (3.7) 

and (3.8) for the dimensionless salt concentration and potential inside the porous 

electrode together with equations (3.5) and (3.6) for the evaluation of the source terms 

J
*

salt and J
*

charge. The q* and w* values to be used in equations (3.5) and (3.6) are 

calculated using the GCS model from equations (3.1) through (3.5). Equations (3.9) and 

(3.10) are solved to calculate the dimensionless salt concentration and potential outside 

the porous electrode.   

 Equations (3.1) through (3.4) are non-linear algebraic equations, equations (3.7) 

and (3.9) are parabolic partial differential equations, while equations (3.8) and (3.10) are 

elliptic partial differential equations. Thus, a numerical procedure was adopted to solve 

the system. Parabolic equations were solved using an explicit finite differences scheme, 

while the elliptic equations were solved using an over relaxation iterative scheme. The 
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nonlinear algebraic solutions were solved using iterative schemes. It was found that a 

global solution scheme worked well to solve the combined system simultaneously. 

Instead of solving individual equations in sequence, the global system was solved 

iteratively at the same time. In one system iteration, all equations were solved once using 

a combination of old values and just calculated values at the same time. In this way, new 

values were used as soon as they were calculated.      

 The following procedure was used: 

1. A time value was set.   

2. An iterative procedure was used for all the equations, and the solution of the 

GCS model was started.   

3. The values of q* and w* were calculated iteratively from equations (3.5) and 

(3.6) for all x values inside the electrode.   

4. The values of c* and  were calculated numerically for all x values inside the 

porous electrode.   

5. The values of c* and  were calculated numerically for all x values inside the 

SDL.   

6. Convergence was checked by comparing a square norm of the profile inside 

the electrode with the value of the same profile in the previous iteration.   

7. In case of convergence, a new time value was set and the procedure was 

started again. If there was no convergence, the most recent values were used 

in a new iteration for the same time.   
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            3.3 Results and Discussion 

3.3.1 Materials Characterization 

 Barrett-Joyner-Halenda (BJH) pore size distributions and nitrogen sorption 

isotherms for the activated MC sheets and activated MC powder that was used to make 

the sheets are shown in Figure 3.2. The mesoporous carbon maintains the mesoporous 

structure after activation with base (Wang et al., 2010b) resulting in a bimodal porosity 

arising from the mesopores (dictated by the Pluronic F127 template used) and micropores 

(from KOH activation). The use of polymeric binders is a common method to form 

monolithic materials from powders. This method, however, can block or partially fill 

pores as the polymer encapsulates and glues the particles together. The use of PVDF as a 

binder is common in battery and supercapacitor research. However, it is known to block 

or partially fill pores due to the polymer untangling in the solvent used, i.e., 

dimethylformamide (DMF) or N-methylpyrrolidone (NMP) (Park and Choi, 2010).  The 

effect of the pore blockage or filling is observed in the nitrogen sorption isotherms. The 

decrease in surface area (1567 m
2
/g for the activated carbon vs. 1040 m

2
/g for the 

activated carbon-PVDF composite) and pore volume (1.26 cc/g for the activated carbon 

vs 0.96 cc/g for the activated carbon-PVDF composite MC sheet) is another indication of 

either pore blockage or partial filling of the pores. A direct implication of this loss of 

surface area is a loss of ion capacity. Indirectly, ion diffusion can be impacted through a 

more tortuous route created in the polymer-mesoporous carbon composite. The ion 

diffusion would then impact charge-discharge rates and the overall efficiency of the 

electrode by masking the true capacity and charge-discharge rates. 
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Figure 3.2 (a) Barrett-Joyner-Halenda (BJH) pore-size distributions and (b) Nitrogen 

adsorption isotherms for the activated MC sheets used in the capacitive deionization 

experiments. 

 

 

 

3.3.2 Influence of Temperature on Electrosorption from Instant Ocean Solution 

3.3.2.1 CDI Experiments 

 The produced water temperature (40-50°C) is typically higher than the surface 

temperature. Since application of CDI is being considered for the treatment of produced 

water, CDI experiments were conducted to determine whether it would be more effective 

to treat water as it is produced rather than storing it and letting its temperature equilibrate 

with the environment. As shown in Figure 3.3, the sorption rate was higher at a higher 

temperature. Specifically, 49% faster sorption was recorded during the first 1000 seconds 

at 40°C in electrosorption from Instant Ocean solution of initial concentration 5000 ppm. 

At 25°C, the conductivity dropped by 1.8 mS/cm within 4500 seconds, while at 40°C, it 

dropped by 2.1 mS/cm within 3500 seconds.  
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 The regeneration was also faster at a higher temperature, with a 0.4 mS/cm higher 

conductivity reached within 1000 seconds at 40°C (Figure 3.4). It should be noted that 

the conductivity was corrected for the direct effect of temperature using a calibration 

procedure, thus the comparison is done essentially for the ambient temperature. The final 

conductivity at 40°C was 0.7 mS/cm higher after 5000 seconds, as compared to the value 

at 25°C. Figure 3.5 illustrates the drifting in conductivity observed at a higher 

temperature of 46°C in ion electrosorption from Instant Ocean solution of initial 

concentration of 945 ppm. Thus, interesting observations were made with Instant Ocean 

solution at a higher temperature, such as drifting of conductivity before regeneration and 

a drop in conductivity as soon as the potential was removed, as illustrated in Figures 3.4 

and 3.5. 

 Another set of experiments were conducted to compare the performance of MC-

coated graphite at different temperatures for 5000 ppm Instant Ocean solution (Figure 

3.6). The rates of sorption and regeneration for MC-coated graphite were higher at a 

higher temperature of 40°C. The results suggest that MC coated graphite (R type) is a 

suitable material for CDI at elevated temperatures. There is also a drift in the 

conductivity before regeneration at 40°C (Figure 3.6b). The hypothesis for the 

observations of drifting in conductivity during electrosorption and initial drop in 

conductivity during regeneration observed with Instant Ocean solution is that these 

phenomena are the result of competition between ions of different size and valence.  
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Figure 3.3 Influence of temperature on ion electrosorption from Instant Ocean solution of 

initial concentration 5000 ppm with activated MC sheets: the sorption rate is 49% higher 

at 40°C during the first 1000 seconds.  

 

 

Figure 3.4 Influence of temperature on ion desorption (regeneration) in Instant Ocean 

solution with activated MC sheets: faster regeneration is observed at 40°C.  
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Figure 3.5 Ion electrosorption from Instant Ocean solution with activated MC sheets. 

Temperature = 46°C, initial concentration = 945 ppm. 
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Figure 3.6 Comparison of CDI performance with mesoporous-carbon-coated graphite (R 

type) in 5000-ppm Instant Ocean solutions: (a) at room temperature (25°C); (b) at higher 

temperature (40°C).  
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3.3.3 Influence of Temperature on Electrosorption from Sodium Chloride Solutions 

3.3.3.1 CDI Experiments 

 Another set of experiments were conducted to test the hypothesis proposed in the 

previous section (Section 4.2.1) that the behavior observed with mixtures of ions at 

higher temperature is due to the competition of ions of different size and valence (Figure 

3.7). In these experiments, NaCl solution was used to compare the data obtained with 

Instant Ocean solution. Experiments were conducted with NaCl solution at 5000 ppm, 

and the abnormal behavior with Instant Ocean solution (Figures 3.4, 3.5 and 3.6b) was 

not observed with NaCl solution. Drifting and conductivity drop during regeneration did 

not occur when the experiments were conducted with NaCl solution. Unexpected 

phenomena occurring with Instant Ocean solution at higher temperatures can be 

explained by the higher mobility of smaller ions, which are not very effective charge 

carriers to counterbalance the surface charge. As soon as the electrodes are charged, 

small ions of higher mobility enter the pores to counterbalance the charge. Multivalent 

ions, which can more effectively neutralize the surface charge, enter the pores slowly and 

replace smaller monovalent ions. This behavior can explain the drifting that is observed 

with Instant Ocean solution after 2000 seconds in Figure 3.5. During regeneration, when 

the pores are occupied by mostly large multivalent ions, which diffuse very slowly from 

the pores to the bulk solution, smaller counterions diffuse inside the pores to 

counterbalance the charge before coions and counterions start diffusing from the pores to 

the bulk solution. This behavior causes the conductivity to drop first, before increasing 

during regeneration. These phenomena occurred only for Instant Ocean solutions at 

elevated temperatures (Figure 3.4, 3.5, 3.6b) because of the much higher mobility of the 
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smaller ions as compared to the mobility of the larger, multivalent ions. When sodium 

chloride solution was used instead of Instant Ocean (Figure 3.7), the phenomena 

described above were not observed. 

3.3.4 Modeling the Influence of Temperature during Transport in Porous Media 

 Theoretical results were obtained using the transport model developed by 

Biesheuvel and Bazant (Biesheuvel and Bazant, 2010). The effective diffusion 

coefficient, Deff, needed in equation (3.7) within the mesoporous carbon electrodes was 

estimated  based on the solution diffusion coefficient and the equations reported by Ryan 

et al. (Ryan et al., 1981) by matching the experimental data with the theoretical results.  

 

 

 

Figure 3.7 Ion electrosorption from NaCl solution with activated MC sheets. Temperature 

= 40°C, initial concentration = 5000 ppm. 

 

0

0.2

0.4

0.6

0.8

1

1.2

0

2

4

6

8

10

0 5000 10000 15000 20000

C
u

rr
en

t 
(A

)

V
o
lt

a
g
e 

(V
) 

o
r 

C
o
n

d
u

ct
iv

it
y
  

  

(m
S

/c
m

) 
  
  
  
  
  
  
  
  
  
 

Time (s)

Voltage

Conductivity

Current



 46 

 In the first method, employed for NaCl electrolyte solution, an isotropic porous 

medium was assumed to estimate the influence of geometry on the effective diffusivity 

value. The equation used, obtained from Ryan et al. data  (Ryan et al., 1981), was: 

  0.7452  0.7458 -   /  23
  DDeff                                                                     (3.11) 

where  is the electrode porosity and D is the bulk solution diffusion coefficient.   

 The solution diffusion coefficient of the salt (D) was calculated based on the 

procedure by Neumann and Thomas-Alyea (Newman and Thomas-Alyea, 2004a). 

)/()]([   DzDzzzDDD                                                                      (3.12) 

             This expression applies to a binary salt based upon the individual ionic 

diffusivities (D+ and D-) and ionic valences (z+ and z-). The ionic diffusivities vary with 

temperature following the temperature dependence proposed by Newman and Thomas-

Alyea (Newman and Thomas-Alyea, 2004a): 

TD Ii / Constant                                                                                                 (3.13) 

where I is the solution viscosity, which also depends on temperature. Figure 3.8 shows 

the variation of the NaCl solution diffusivity with temperature based on equations (3.12) 

and (3.13). Experimental data reported in reference (Newman and Thomas-Alyea, 2004a) 

at 25°C were used to obtain the diffusivity values of D+ and D- as functions of 

temperature. 

3.3.4.1 Influence of Temperature on Ion Transport in the Pores for Instant Ocean Solution 

 The experimental data of cumulative salt mass taken up by the electrodes vs time 

presented in Figure 3.3 are again depicted in Figure 3.9 and compared with the modeling 

results that were obtained by using the transport model for sodium and chloride ions. The 
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cumulative mass includes the ions adsorbed on the electrode surface plus the salt mass 

trapped in the solution inside the pores of the solid electrodes.  

 Through an iterative procedure, a good description of the experimental data for 

one temperature was obtained by adjusting the three parameters: porous medium 

effective area (Aeff), the dimensionless effective diffusivity (D
*

eff  =Deff/D), and the ratio of 

Stern layer thickness and Debye length). The value of dimensionless effective 

diffusivity (D
*

eff  =Deff/D) represents the transport influence on the uptake process, and 

(λs/ λD) value represents the electrostatic effects related to changes in the EDL structure. 

The dimensionless effective diffusivity is a function of the porous electrode void fraction 

as given by equation (3.11). The void fraction of the electrodes used in this work is 0.5; 

therefore, D
*

eff  is equal to 0.3089. A typical value of the parameter  used was 0.5 as it 

ensured stable behavior of the numerical procedure. The goal was to determine if the 

effective diffusivity changed with temperature as given by equation (3.13).  

 The uptake curve at 313 K (40°C) was arbitrarily selected to match the 

experimental data. Repeated runs of the simulation based on the transport model showed 

that the values of Aeff determined the quantity of the cumulative salt mass taken by the 

electrodes, while D
*

eff  and  determined the slope of the cumulative mass vs time curve. 

A typical simulation was started with the standard values of D
*

eff  = 0.3 and  = 0.5. Then, 

different values of Aeff were assigned until matching was achieved. The same values of 

parameters D
*

eff, , and Aeff were used to match the experimental curve measured at 

another temperature. In case this was not possible for the second curve, D
*

eff was varied 

until a good matching was achieved. Matching of the second curve with the same set of 

parameters would imply that D
*

eff  varies according to equation (3.13) and that only 
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temperature influences the transport process. If matching with the same set of parameter 

values was not obtained, it implies that the variation in temperature produces more 

complex changes in the electrosorption process.  

 Figure 3.9 shows that the cumulative salt mass taken by the electrodes increased 

fast at short times, due to the high initial salt adsorption on the electrode surface. This 

process was accompanied by a sharp decrease in the salt concentration inside the 

electrode pores. At medium and long times, absorption saturation was reached and the 

salt concentration inside the pores increased continuously due to diffusion from the 

solution outside the electrodes. 

 

 

 

 

 

Figure 3.8 Temperature variation of the salt diffusion coefficient as proposed by  

Neumann and Thomas-Alyea (Newman and Thomas-Alyea, 2004a). 
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Figure 3.9 Comparison of transport modeling results and experimental data for Instant 

Ocean solution. Modeling curves have same  (ratio of effective thickness of the 

Stern layer over the Debye screening length) and Aeff = 2.8E7 m
2
/m

3
 (porous medium 

effective area), but different D
*

eff  (D
*

eff = Deff /D).  

  

 

 

 

 This process was first described by Biesheuvel and Bazant (Biesheuvel and 

Bazant, 2010). Experimental evidence is provided by electric current measurements 

(Figure 3.7).  

 A good agreement for both curves at different temperatures using the same set of 

parameters could not be obtained. However, a fair agreement was found for slightly 

different Deff values. This result suggests that there is a transport effect that leads to 

unsatisfactory fitting of the curves at both temperatures. The different Deff values also 

imply that the difference in cumulative salt mass values cannot be explained only on the 

basis of the temperature difference.  
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3.3.4.2 Influence of Temperature on Ion Transport in the Pores for Sodium Chloride 

Solution 

 Cumulative salt mass trapped in the electrodes vs time obtained from the 

experimental data for NaCl solution is depicted in Figure 3.10. The same procedure as 

described in the previous section was used to describe the data, and the same qualitative 

behavior was observed. However, in this case curve matching was obtained using 

different values. These results suggest that the difference in cumulative salt mass 

cannot be explained based only on transport effects, and there is an electrostatic (charge) 

effect related to changes in the EDL structure, which produces the different results. 

 In both cases, higher values of cumulative mass were observed at higher 

temperatures. The different behavior observed with the Instant Ocean and NaCl solutions 

can be due to competition among ions of different valence and diameter. At short times, 

lighter monovalent ions are adsorbed faster on the electrodes than heavier divalent ones. 

However, at medium and long times the higher-charge ions displace the monovalent ions  

due to stronger electrostatic forces. This effect can occur only for the Instant Ocean 

solution.  

3.4 Conclusions 

  This study is focused on the influence of temperature on the electrosorption of 

ions in the CDI process. Higher sorption and regeneration rates were observed at higher 

temperatures. A comparison of the electrosorption experiments with sodium chloride and 

Instant Ocean solutions revealed competition effects between ions of different size and 

valence. The cumulative salt mass adsorbed predicted by the transport model can be  
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Figure 3.10 Comparison of simulation results and experimental data for NaCl solutions. 

The porous media parameters (Aeff=2.5E7 m
2
/m

3
, D

*
eff =0.15) are the same for the two 

temperatures, while  =0.5 for T=40°C and  =0.75 for T=25°C. Modeling results 

describe the experimental data at 25°C and 40°C reasonably well.  
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even though different mechanisms are involved. The results of this study have significant 
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CHAPTER 4 

NEUTRON IMAGING OF GADOLINIUM ION TRANSPORT IN 

MESOPOROUS CARBON MATERIALS 

 

 

 

 

 Neutron imaging is presented as a tool for quantifying the diffusion of ions inside 

porous materials, such as carbon electrodes used in the desalination process via 

capacitive deionization (CDI) and in electrochemical energy-storage devices. Monolithic 

mesoporous carbon electrodes of 10 nm pore size were synthesized based on a soft-

template method. The electrodes were used with an aqueous solution of gadolinium 

nitrate in an electrochemical flow-through cell designed for neutron imaging studies. 

Sequences of neutron images were obtained under various conditions of applied potential 

between the electrodes. The images revealed information on the direction and magnitude 

of ion transport within the electrodes. From the time-dependent concentration profiles 

inside the electrodes, the average value of the effective diffusion coefficient for 

gadolinium ions was estimated to be 2.09 ± 0.17 × 10
−11

 m
2
 s

−1
at 0 V and 1.42 ± 0.06 × 

10
−10

 m
2
 s

−1
 at 1.2 V. The values of the effective diffusion coefficient obtained from 

neutron imaging experiments can be used to evaluate model predictions of the ion 

transport rate in CDI and electrochemical energy-storage devices. 
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4.1 Introduction 

 Electrosorption is the phenomenon in which ions in an aqueous solution are 

forced towards the electrodes through the application of an electrical potential. Ions are 

held in the electrical double layer (EDL) near the surface of the electrodes. 

Electrosorption has applications in energy storage (Conway, 1999; Conway et al., 1997; 

Frackowiak and Béguin, 2001; Simon and Gogotsi, 2008) and water purification 

(Gabelich et al., 2002; Hou et al., 2006; Oren, 2008; Yang et al., 2001; Ying et al., 2002; 

Zou et al., 2008a). A supercapacitor or EDL capacitor stores energy at the electrode-

electrolyte interface. Supercapacitors have good reversibility, high power density, and a 

low internal resistance (Simon and Gogotsi, 2008). Electrosorption of ions by electrodes 

of high surface area is also employed in capacitive deionization (CDI), an 

electrochemical method for water purification. CDI involves application of an electrical 

potential between electrode pairs submerged in brackish or seawater, effectively 

“trapping” the ions in the EDL at the solid-liquid interface, resulting in a reduction of the 

bulk ion concentration. CDI has several potential advantages over other desalination 

methods such as ease of regeneration by removing the applied potential, reduction of 

secondary wastes, operation at low voltages, and simple operation since membranes or 

chemicals are not involved. Attempts towards commercial application of CDI and its 

advantages over other water purification methods have been discussed in recent review 

articles (Anderson et al., 2010; Oren, 2008). Carbon aerogel (Gabelich et al., 2002; Hou 

et al., 2006; Xu et al., 2008; Yang et al., 2001; Ying et al., 2002),  mesoporous carbon (Li 

et al., 2009; Tsouris et al., 2011; Zou et al., 2008a), graphene (Li et al., 2010a, b), carbon 

nanotubes (Chen et al., 2010; Gao et al., 2009; Pan et al., 2009; Wang et al., 2006), and 
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carbon electrodes coupled with ion-exchange membranes (Biesheuvel and van der Wal, 

2010; Biesheuvel et al., 2011) have been investigated for application in the 

electrosorption of ions for water treatment. Porous carbon materials exhibit high 

electrical conductivity and high surface areas, resulting in materials that are suitable as 

CDI electrodes. This study presents neutron imaging as a technique to quantify the 

transport of ions inside mesoporous carbon electrodes used for desalination and energy 

storage applications. 

 Neutron scattering techniques are analogous to X-ray scattering, except that, 

while X-rays probe the electron clouds around the atoms, neutrons probe the atomic 

nuclei. This feature provides several advantages for imaging over X-rays, electrons, and 

visible light, as neutrons are highly penetrating. Neutron imaging is a non-destructive 

technique with applications in a wide range of disciplines including engineering, 

materials science, paleontology, soil physics, and others. It can be used as a 

complementary technique to the conventional X-ray radiography due to the different 

sensitivities of the two methods (Deschler-Erb et al., 2004). In particular, neutron 

imaging has been applied to visualize water in fuel cells with the aim to improve the 

performance of fuel cells (Aaron et al., 2011; Bellows et al., 1999; Boillat et al., 2008; 

Mukundan and Borup, 2009; Park et al., 2008; Pekula et al., 2005; Satija et al., 2004; 

Tang et al., 2010; Turhan et al., 2006). Neutron imaging has also been used to quantify 

lithium concentration in electrodes in lithium batteries (Goers et al., 2004; Kamata et al., 

1997; Lanz et al., 2001; Nanda et al., 2012; Siegel et al., 2011a). In addition, neutron 

imaging has been utilized to investigate plant-soil interactions (Menon et al., 2007; 

Oswald et al., 2008), archaeological specimens (Jacobson et al., 2011; Van Langh et al., 
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2009), and in the fields of biology and medicine (Adani and Fallone, 2000) for 

noninvasive studies of various materials of interest. Study of ion transport phenomena in 

porous carbon materials by neutron imaging provides an avenue for improvement in 

electrode materials employed in CDI and supercapacitors.  

4.2 Materials and Methods 

4.2.1 Capacitive Deionization Cell for Neutron Imaging 

 A specially designed flow-through CDI cell for neutron imaging was constructed 

as shown in the inset of Figure 4.1. The solution was allowed to circulate from a beaker 

through the cell, while ions were taken up by the carbon electrodes via electrosorption. 

4.2.2 Materials Synthesis and Characterization 

 The electrodes used in neutron imaging were composed of monolithic, 

mesoporous carbon synthesized via a previously reported procedure at the Oak Ridge 

National Laboratory (ORNL). The method of synthesis results in a mesoporous carbon 

material with high porosity. Phloroglucinol was dissolved in ethanol (200 Proof, Decon 

Labs, Inc.) with the structure-directing template Pluronic F127 (BASF), hydrochloric 

acid (3M, Fisher Scientific), and glyoxal (40 wt. % aq., Sigma Aldrich). The resulting 

phenolic carbon polymer was isolated from the solvent after phase separation and dried at 

80°C. The agglomerated and partially fused material was then broken up into a powder 

form by shredding the clumps in a blender in small 50-g portions for 1 to 2 minutes. The 

material was subsequently sieved to 40 mesh, and the fraction that was not broken up was 

processed for an additional 1 to 2 minutes. Portions of the sieved material were mixed 

with Toho Tenax 344 milled carbon fiber to produce a blend that is 20 wt% carbon fiber.  
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Figure 4.1 Neutron imaging basic setup: inset (a) shows a picture of the flow-through cell 

with the electrodes constructed of ORNL mesoporous carbon. (i) STEM (Scanning 

Transmission Electron Microscopy) image of mesoporous carbon and (ii) high-resolution 

STEM image of the mesopores in the carbon matrix are also shown. 
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 Portions of the polymer-carbon-fiber blend material were pressed into 7.6-cm 

diameter discs at 68 and 136 atm to a final thickness of ~3.8-mm thick. The discs were 

carbonized at 1123 K at 2 K/min under a nitrogen atmosphere. The carbonized discs were 

machined into rectangular bars for the test apparatus. A 0.76-mm hole was then drilled 

into the end of each bar to a depth of over 10 mm. A platinum wire was pressed into the 

end of each electrode bar for electrical connection and glued at the tip of the electrode. 

 Surface area measurements were performed with a Micromeritics Tristar 3000 at 

77 K with nitrogen as the adsorbate. Cyclic voltammetry (CV) experiments for 

electrochemical characterization were conducted on the samples from which the carbon 

electrodes for the imaging experiments were constructed. CV experiments were 

performed with a Bioanalytical Systems (BAS) (West Lafayette, IN) voltammetric 

analyzer (CV-50W Version 2), which was connected with a BAS C2 cell stand. The BAS 

Model RE-1 (Ag/AgCl electrode in a 3 M NaCl electrolyte solution) was used as the 

reference electrode. The experiments were conducted with 0.1 M NaCl solution at room 

temperature (25°C) at a scan rate of 1 mV/s.  

4.2.3 Neutron Imaging Principle 

 The High Flux Isotope Reactor (HFIR) CG-1D neutron imaging beamline at 

ORNL was used in this study (Bilheux et al., 2013). Neutron imaging is based on the 

principle that radiation passing through matter is attenuated depending on the properties 

and structure of the material. In neutron imaging, a camera captures the attenuation of a 

neutron beam passing through a sample (Figure 4.1). A two-dimensional projection of the 

sample on the detector plane is collected by the detector. The detection system consists of 

a neutron sensitive LiF/ZnS scintillator screen, which converts the neutrons to visible 
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light. The pixelated image is then captured by the charge coupled device (CCD) camera. 

The L/D ratio contributes to the image spatial resolution, where D is the diameter of the 

inlet aperture or pinhole and L is the distance from the aperture to the detector plane.  

 The attenuation of beam caused by a uniformly thick, homogeneous sample is 

given by the Beer-Lambert equation:  

 eII o                                                                                                                (4.1) 

where μ is the linear attenuation coefficient given by: 

M

N A
 

                                                                                                              (4.2) 

I  is the intensity of neutron beam after attenuation, Io is the intensity of the incident 

beam, δ is the thickness of the sample,  is the material-specific total cross section for 

neutrons,  is the material density, NA is the Avogadro number, and M is the molar mass. 

 For a real sample consisting of several components, the total neutron attenuation 

can be calculated as the summation of attenuation due to each component weighted with 

the molar concentration of that material. For the cell used in the present study, the total 

attenuation at a point can be written as the sum of two components, one that is constant 

and another that changes over time (attenuation due to gadolinium ions): 
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                                                (4.3) 

where I(t) is the intensity of neutron beam after attenuation at time t, and c is the molar 

concentration. Changes in the neutron beam intensity as a function of position, measured 

by the CCD camera, depend on variations of gadolinium concentration vs position and 

time. 
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 The optical density (denoted by OD), which is the negative logarithm of the ratio 

of two measurements of neutron intensity taken at times t1 and t2, is directly proportional 

to changes in gadolinium ion concentration (Siegel et al., 2011b). It should be noted that 

the cell creates an offset in neutron transmission, while the solution does not attenuate 

enough to create any significant change in neutron transmission. 

                 (4.4) 

                                                                                                

                                                                                   (4.5) 

 

4.2.4 Neutron Imaging Experiments 

 The experimental setup for neutron imaging is shown in Figure 4.1. The inset (a) 

in the figure is a picture of the electrochemical flow-through cell containing the 

mesoporous carbon electrodes. Upward flow of the electrolyte solution through the cell 

was provided through Teflon tubing by a gear pump. A flowrate of 30 mL/min was 

typically used in the experiments. Vertical glass fibers below the carbon electrodes were 

used to maintain electrical separation of the electrodes. The electrodes in the cell were 

connected to a power supply (HP 3632A; Hewlett Packard, CO) through the platinum 

wire leads, so that the applied potential could be remotely adjusted away from the beam. 

The cell was placed in the neutron beam with the electrodes aligned in the direction of the 

beam, and the CCD camera captured the intensity of the attenuated neutron beam after 

passing through the cell. 

 A 100-mL volume of 3000 ppm solution of gadolinium (III) nitrate [Gd (NO3)3] 

in D2O was continuously recycled through the cell throughout the experiment at room 
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temperature (25°C). Gadolinium ions were used because of their large cross section for 

neutron absorption; however, other ions, such as lithium or hydrogen-containing ions can 

also be used. Deuterium oxide was used instead of normal water to increase the imaging 

contrast for gadolinium ions since deuterium has a much smaller cross section for neutron 

capture than hydrogen. The first set of experiments was carried out without voltage 

applied to provide a baseline attenuation of an image with no electrosorption. In the 

subsequent experiments, a DC voltage of 1.2 V was applied between the two electrodes 

to observe the influence of the electrical potential. For all the experiments, images were 

captured at a time interval of 5 minutes. The concentration of the solution in the space 

between the electrodes was assumed constant at 3000 ppm (0.00874 M) throughout the 

experiment. This assumption did not affect the results because the solution attenuation 

did not change with time. 

4.2.5 Image Analysis 

 The image analysis was carried out by using ImageJ (Rasband et al., 1997-2011) 

software developed at the National Institutes of Health. The intensity values were 

obtained at various points of the images. The transmission value (I/Io) was calculated by 

dividing the intensity values measured at each pixel of the image by the incident beam 

intensity at each pixel. 

 Since gadolinium ions absorb neutrons, a higher quantity of gadolinium ions at a 

point on the electrode would result in a lower transmission value. The initial value of 

attenuation in the electrodes corresponds to essentially zero concentration of gadolinium. 

The change in the intensity (decrease in transmission) at various points within the 

electrodes, as the experiment progresses, is due to changes in gadolinium concentration 
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due to diffusion of ions inside the electrodes (by assuming that the other cell components 

are not changing or moving). The ratio of measurements of neutron intensity, taken at 

times t1 and t2, is directly proportional to the change in gadolinium ion concentration (for 

constant neutron path length through the different components of the cell). The increase 

in the concentration of gadolinium ions in the negative electrode was obtained from 

equation (4.5). 

4.3 Results and Discussion 

4.3.1 Materials Characterization 

  Nitrogen sorption isotherms and BJH pore size distributions for mesoporous 

carbon are shown in Figure 4.2. The type H2 hysteresis observed is indicative of large 

and uniform mesopores, consistent with cylindrical shape, as expected based on the 

utilization of soft-templating to produce the carbon material (Kruk and Jaroniec, 2001). 

The extension of the hysteresis to lower relative pressures indicates constrictions in some 

of the pores. The BET surface area of the mesoporous carbon was calculated to be 633 

m
2
/g with the BJH average pore diameter centered at 10 nm. The total pore volume 

calculated at P/Po = 0.995 is 0.626 cm
3
. CV characterization was performed to compare 

different carbon materials and select one with an appropriate rate of ion uptake for 

neutron imaging experiments.  
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Figure 4.2 (a) Nitrogen adsorption isotherms and (b) BJH pore-size distributions for the 

mesoporous carbon used in neutron imaging experiments. 

 

 

 

  The specific capacitance was calculated by dividing the current by scan rate and 

weight of the carbon sample: 
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                                                                                                                                             (4.6) 

where C is the specific capacitance in (F/g), I is the current measurement, dV/dt is the 

potential scan rate, and m is the mass of the carbon sample. The CV results demonstrate 

that the rate of electrosorption and the specific capacitance increase when the pressure 

used to make the samples decreases (Figure 4.3). Samples of mesoporous carbon discs 

prepared at 68 atm were selected for the preparation of electrodes for use in the neutron 

imaging experiments. For a specific capacitance value of 50 F/g corresponding to the 

materials prepared at 68 atm, which had a surface area of 633 m
2
/g, the normalized  
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Figure 4.3 Influence of pressure used while synthesizing carbon samples from 

mesoporous carbon powder: A higher electrosorption rate and a higher capacitance are 

observed when the pressure used to synthesize samples decreases from 136 atm to 68 

atm.  

 

 

 

capacitance was 0.08 F/m
2
. The CV patterns are slightly distorted because of differences 

in the transport rates of the cations and anions. It appears that the cation diffusion is 

slightly higher than that of the anion. Materials generated under pressures lower than 68 

atm may also be appropriate for imaging experiments, as long as the ion diffusion time 

from one end of the electrode to the other is much greater than the time needed to 

construct one neutron image, which in this case is five minutes. 

4.3.2 Image Sequences 

 A series of images obtained with no potential applied is presented in Figure 

4.4(a). In the first image of the series, the cell contained pure D2O without ions. In 

subsequent images of the same series, the solution contained 3000-ppm gadolinium (III) 
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nitrate in D2O. With no voltage applied, cations diffused mostly onto the periphery of 

both electrodes during the two-hour period of the experiment. In Figure 4.4(b), a DC 

voltage of 1.2 V was applied between the two electrodes. Under the influence of 

electrical potential, gadolinium cations migrated into the pores throughout the negative 

electrode. It is assumed that nitrate ions migrated to the positive electrode to balance 

charges. From a qualitative comparison of the two time-series of images, it was found 

that the application of an electrical potential increased the ion adsorption capacity and the 

uptake rate, as counterions in the solution were adsorbed by the oppositely charged 

electrodes to balance the applied potential. This phenomenon is a result of the higher 

surface charge when an electrical potential is applied. Counterions are attracted by the 

electrodes to neutralize the surface charge, thus the electrosorption capacity increases 

with increasing the applied potential. As the capacity increases, the driving force for 

electrosorption also increases leading to faster ion uptake rates. The change in the bulk 

concentration of gadolinium ions depends on the transmission value at that point 

(equation 4.4). Thus, the amount of gadolinium ions adsorbed as a function of time can 

be estimated from the images.  

 Figure 4.5 presents the transmission of neutrons at various heights along the entire 

width of the two electrodes corresponding to the series of images in Figure 4.4. From the 

transmission plots at the height 21 mm above the reference level, it can be inferred that, 

when gadolinium nitrate solution was added in the cell, gadolinium ions were adsorbed 

by the carbon electrodes (0-V series). Adsorption of gadolinium ions by the mesoporous 

carbon results in lower transmission values in the electrode region of the images. 

 Application of a DC voltage of 1.2 V resulted in further penetration of gadolinium 
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ions by electrostatic attraction. The plots for gadolinium 1.2-V series illustrate that lower 

transmission values for the left electrode can be attributed to the application of the 

electrical potential, which results in greater penetration of gadolinium ions inside the 

pores of the electrode. Specifically the average transmission value through the left 

electrode when 1.2 V potential had been applied for 105 minutes was about 24.7% lower 

than the transmission value in the case no potential was applied (corresponding to an OD 

of 0.284). The total amount of gadolinium adsorbed by the left electrode after 1.2 V had  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Time sequences of neutron images for (a) no potential applied and (b) 1.2-V 

DC potential applied. In (b), the left electrode is negatively charged. 
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Figure 4.5 (i) Representative image of the set of electrodes showing the height levels 

chosen for analysis (ii) Transmission of neutron beam at various points across the width 

of the left electrode (at height 21 mm above the reference level denoted as 0 mm) for 

three conditions: (a) cell filled with only D2O solution, (b) cell filled with gadolinium 

nitrate solution, and (c) cell filled with gadolinium nitrate and negative potential applied 

to the left electrode for 240 minutes. The arrow in the left electrode region on the graph 

for 1.2-V applied indicates the decrease in transmission value with the progression of 

time. 

 

 

 

been applied for 340 minutes was estimated at 1 mg of Gd in a volume of 0.6 cm
3
 of the 

electrode. 

 Figure 4.6 (a) presents a series of images obtained from a second set of 

mesoporous carbon electrodes with 3000 ppm gadolinium (III) nitrate solution in D2O. 

The first image at time t = 0 minutes was taken after a DC potential of 1.2 V had been 

applied between the two electrodes for about 6 hours. The electrode on the right was 

negatively charged; therefore, gadolinium ions accumulated within this electrode, while 
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nitrate ions (not visible in neutron imaging) accumulated in the left electrode to counter 

balance the charge. After the first image was obtained, the external DC potential was 

removed and the two electrodes were shorted. It was observed that the left electrode 

initially became darker as some of the gadolinium ions migrated into the left electrode 

after the removal of the potential. Figure 4.6 (b) illustrates the transport of Gd ions by 

presenting the decrease in the average transmission value across the width of the left 

electrode after the DC potential was removed [corresponding to images in Figure 4.6 

(a)].(Bevington, 1969) The average transmission value across the left electrode decreased 

by 18.4% (at t=250 minutes) from the value at t=0 minutes when the potential was 

removed (corresponding to an OD of 0.203). The decrease in transmission corresponds to 

an increase in gadolinium ion concentration on the left electrode. The transmission in the 

region between the electrodes did not change significantly, as the solution was being 

circulated continuously through the cell from a relatively large reservoir.  

 The observations in Figure 4.6 may be described in terms of transport properties 

of ions. When a potential is applied between the electrodes, counterions from the solution 

diffuse into the pores to counterbalance the surface charge. Trivalent gadolinium ions 

move into the negatively charged electrode and monovalent nitrate ions move into the 

positively charged electrode. After equilibrium has been established, as soon as the 

applied potential is removed, there is an excess positive charge in the pores of the first 

electrode and an excess negative charge in the pores of the other electrode due to the 

presence of gadolinium and nitrate ions, respectively. This charge accumulation needs 

neutralization that can happen by ion diffusion from the pores back to the solution and 

counterion diffusion from the solution to the pores. 
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(a) (b)

 

 

 

Figure 4.6 (a) Time sequence of neutron images after 1.2 V DC potential was removed 

and the electrodes were shorted at t = 0 min. As expected, gadolinium ions were released 

from the right electrode to the recycled solution between the electrodes (dark arrows). 

However, gadolinium ions were also taken up from the solution by the left electrode 

(light arrows). The left electrode became darker as the gadolinium ions moved towards 

the left electrode to balance the charge. (b) Average transmission of the neutron beam 

across the left and the right electrodes, after the DC voltage was removed. The 

transmission through the right electrode, which is initially loaded with gadolinium, 

increased due to the loss of gadolinium ions. The transmission through the left electrode 

decreased considerably in the beginning before starting to increase, indicating initial 

transport of gadolinium ions to the left electrode. 
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 The experimental results shown in Figure 4.6 demonstrate that, initially, 

counterions diffuse from the solution into the pores to neutralize the surface charge. It 

can be observed that after about 100 minutes, the left electrode stopped adsorbing Gd 

ions and, from that time on, both electrodes appeared to lose Gd ions. 

 Another experiment was conducted with a different set of electrodes to examine 

the effect of reversing the polarity on the transport characteristics of ions. After the 

gadolinium ions had been loaded onto the left electrode, the polarity of the applied 

voltage was reversed from +1.2 V to -1.2 V. The combined transport of Gd ions out of 

the left electrode and from the solution into the right electrode was faster than the 

transport of Gd ions when a voltage change from 0 V to 1.2 V was applied. This 

phenomenon is due to a larger overall driving force. When the polarity is reversed, two 

factors play a role in the transport of ions: electrical potential and concentration gradient 

between the two electrodes due to which a relatively faster migration of gadolinium ions 

occurs. 

4.3.3 Measurements 

 The equation for Fick’s second law of diffusion was considered: 
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                                                                                                (4.7) 

with the following boundary conditions for the negative electrode in the system: 

C = C1,          x = 0,          t ≥ 0, 

C = C2,          x = l,           t ≥ 0, 

C = 0,      0 < x < l,           t = 0.        
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 The electrode on the left is the negative electrode in our system. An analytical 

solution is obtained in this case (Crank, 1979): 
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where Deff is the effective diffusion coefficient, C is the concentration of ions (defined as 

the total number of gadolinium ions in a volume of solution or electrode), x is the 

distance from the right edge of the electrode, t is the time, C1 is the concentration at the 

right edge of the left electrode (0.00874 M), C2 is the concentration at the left edge of the 

electrode (0.00874 M), and l is the width of the electrode. Since the only unknown in the 

equation (4.8) is Deff, the value of the diffusion coefficient can be obtained by matching 

the experimental data with calculated concentration histories. The value of the diffusion 

coefficient was obtained through this optimization process using the MATLAB(Matlab 

Users Guide et al., 1998) Optimization toolbox.  

 When a potential of 1.2 V was applied between the two electrodes, the solution 

given by equation (4.8) was used to estimate the value of the effective diffusion 

coefficient. It should be noted that the solution of Fick’s diffusion law was adopted here 

mainly for the purpose of comparison of ion transport rates in the cases of 0 V and 1.2 V 

applied potential. The Nernst-Planck equation extends the Fick’s law of diffusion to the 

case where two factors, electrical potential and concentration gradient, drive the transport 

of ions. The solution of Nernst-Planck equation would account for the migration of ions 

due to the application of the electric field; however, the solution of the Nernst-Planck 

equation for an asymmetric electrolyte, such as the trivalent gadolinium ions and 

monovalent nitrate ions, is beyond the scope for the present analysis. Recent studies have 

been focused on the solution of the Poisson-Nernst-Planck equation for symmetric and 
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asymmetric electrolytes (Biesheuvel et al., 2012; Golovnev and Trimper, 2009), but the 

numerical solutions offered cannot be easily adopted here because of the asymmetric 

electrolyte. Since the influence of the electric field has not been taken into account in the 

diffusion equation, an increase in the effective diffusion coefficient of ions through the 

electrodes can reflect the influence of the applied electric potential on the transport of 

ions in the electrodes. 

 From the series of images in Figure 4.4, the concentration data were analyzed 

using equation (4.8) to obtain the values for the effective diffusion coefficient: 2.09±0.17 

× 10
-11

 m
2
/s at 0 V and 1.42±0.06 × 10

-10
 m

2
/s at 1.2 V. Figure 4.7 shows a comparison of 

experimental data and modeling results for history of gadolinium concentration with and 

without applied voltage. The modeling results were obtained by substituting the value of 

the diffusion coefficient in equation (4.8). Thus, the effective diffusion coefficient 

obtained in the case of 1.2 V applied potential between the carbon electrodes is 

approximately 6.8 times higher than the 0-V diffusion coefficient. Previous studies have 

reported the bulk diffusion coefficient of gadolinium ions at various electrolyte 

concentrations (Latrous and Oliver, 1992; Rafik et al., 2010). Rafik et al. (2010) reported 

the bulk diffusion coefficient of gadolinium ions in a solution of gadolinium nitrate as 

5.71 × 10
-10

 m
2
/s at 0.002 M and 5.81 × 10

-10
 m

2
/s at 0.0002 M. As expected, those values 

are much higher (about 25 times) than the diffusion coefficient estimated in this study 

because diffusion in the solution is significantly faster than diffusion in the mesopores of 

a solid matrix. In principle, the diffusion coefficient should be independent of applied 

potential; however, because a simple diffusion model was employed that does not 

consider the effect of the electrical potential, the increase in transport due to the electrical 



 72 

potential is incorporated in the effective diffusivity. For the experiments in which the 

polarity of the applied potential was reversed from +1.2 V to -1.2 V, the analysis was 

done using equation (4.8) to obtain the value of the effective diffusion coefficient of 

gadolinium ions with a different set of electrodes. The diffusivities were estimated as 

8.28±0.44 × 10
-11

m
2
/s at 1.2 V, and 2.68±0.37 × 10

-10
 m

2
/s at 1.2 V applied potential with 

polarity reversed. Thus, the value of effective diffusion coefficient in the case of reversed 

polarity is about 3.2 times higher than the value with 1.2 V applied. A higher driving 

force when the polarity is reversed is reflected in a higher value of diffusion coefficient. 

 Future experiments with symmetric electrolytes will be conducted to compare the 

increase in the transport rate, due to the application of electrical potential, with modeling 

results. In previous studies, the electrochemical impedance spectroscopy (EIS) technique 

has been utilized for estimating the diffusion coefficient of lithium ions in carboneous 

materials such as graphite and carbon fibers.(Morita et al., 1993; Takami et al., 1995; Yu 

et al., 1999) Takami et al. reported the diffusion coefficient of lithium ions to range 

between 1 × 10
-12

 to 3 × 10
-11

 m
2
/s in carbon fibers. The diffusion coefficient of 

gadolinium ions reported here, i.e., 2.09±0.17 × 10
-11

 m
2
/s at 0 V applied, is within this 

range. It should be noted, however, that the value of diffusion coefficient depends on the 

structural properties of the carbon material. 

 Neutron imaging has thus been demonstrated as a useful technique to observe the 

transport behavior of ions during electrosorption in efforts to provide a better 

understanding of the electrolyte transport mechanisms.  
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Figure 4.7 Concentration histories of gadolinium ions as a function of time at 0.84 mm 

from the right end of the electrode for the case of (a) 0 V and (b) 1.2 V applied potential 

at a height of 20.52 mm above the reference level shown in Figure 4.5.  
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4.4 Conclusions 

 This study describes the application of neutron imaging in observing ion transport 

inside porous carbon electrodes. Images of the mesoporous carbon electrodes acquired 

over time can yield kinetic information on the transport of ions inside the pores. This 

technique can be employed to quantify an effective diffusion coefficient of ions through 

porous materials, and subsequently validate transport models of ions in porous carbon. 

The value of the effective diffusion coefficient of trivalent gadolinium ions through 

mesoporous carbon electrodes synthesized in our laboratories has been estimated to be 25 

times smaller than the bulk diffusion coefficient. This behavior is a property of the 

mesoporous carbon used in the experiment and is expected to range widely for different 

types of carbon materials. When a potential of 1.2 V was applied between the electrodes, 

the effective diffusion coefficient increased approximately 6.8 times. Furthermore, when 

the potential was reversed, an even higher rate of diffusion was observed because of a 

higher driving force. Information about the effective diffusion coefficient under different 

conditions of applied voltage can be utilized to guide material design in the production of 

electrodes with enhanced transport properties. In-depth information about the transport 

characteristics of ions through porous materials can help guide materials design to 

optimize transport characteristics and cell efficiency. 
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CHAPTER 5 

NEUTRON IMAGING OF LITHIUM IONS IN MESOPOROUS 

CARBON MATERIALS 

 

 

 

 Neutron imaging technique has been applied to visualize the transport of lithium 

ions in mesoporous carbon materials that have applications as electrodes in the capacitive 

deionization process for water desalination. The experiments were conducted with a flow 

through capacitive deionization cell designed for neutron imaging and with lithium 

chloride (
6
LiCl) as the electrolyte. Sequences of neutron images have been obtained at 

1.5 M and 0.5 M concentration of lithium chloride solution. The experiments conducted 

at high concentration of lithium chloride solution provide an insight into why capacitive 

deionization is not efficient for desalination of high ionic strength solutions. Furthermore, 

the effective diffusivity of lithium ions has been estimated by solving Fick’s second law 

of diffusion. The information on ion transport mechanisms can help in better design of 

the capacitive deionization experiments to improve the process efficiency. The value of 

effective diffusion coefficient of lithium ions obtained from these experiments can also 

aid in the design of electrochemical energy storage devices such as lithium-ion batteries.  
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5.1 Introduction 

 With the rapid population growth and expanding industrialization, the scarcity of 

water resources is one of the major challenges of the present time. Apart from better 

water management practices, we need to rely on energy-efficient methods for water 

desalination to increase the supply of available water resources. Since approximately 

98% of water on earth is in the form of seawater, desalination is a viable option for 

obtaining fresh water and adding to the current supply. In addition, water produced from 

gas and oil operations, such as hydraulic fracturing (fracking), needs to be treated for 

organics and salts removal prior to recycling and reuse. Thus, desalination processes can 

be used to produce drinking water and treat gas/oil-produced water for recycling/reuse. 

 The current widely applied desalination technologies are reverse osmosis and 

thermal desalination. These technologies have some limitations that need to be addressed. 

Thermal desalination is a high-energy-demand process, while membrane fouling and 

scaling are severe issues in reverse osmosis of fracking water. Capacitive deionization 

(CDI), which is based on the electrosorption of ions by charged porous carbon electrodes, 

has attracted interest as an alternative desalination technology, as it has low-energy 

requirements (Anderson et al., 2010; Farmer et al., 1997; Farmer et al., 1996; Oren, 2008; 

Ying et al., 2002). CDI operates at low potentials in the range of 1-1.4 V, and membranes 

and high-pressure pumps are not required for its operation, so problems of scaling and 

fouling are avoided. When an electrical potential is applied across porous electrodes, 

dissolved ions are adsorbed in the electrical double layer (EDL) formed at the electrode-

liquid interface. Regeneration of electrodes is carried out by electrically discharging the 

electrodes, which leads to the release of ions back into the solution. The electrosorption 
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capacity in this process depends significantly on the physical properties of the electrode 

material. Porous nanostructured carbon electrodes have been used, as they have a high 

surface area (400-2000 m
2
/g) and low electrical resistivity. Many studies have been 

carried out with the aim of improving the desalination performance of the CDI process, 

specifically by synthesizing improved carbon materials for the electrodes. Various carbon 

materials have been investigated as electrodes for CDI including carbon aerogel 

(Gabelich et al., 2002; Xu et al., 2008), activated carbon (Ryoo et al., 2003; Zou et al., 

2008b), carbon nanotubes (Gao et al., 2009; Wang et al., 2006), graphene (Li et al., 

2010a, b), and mesoporous carbon (Li et al., 2009; Tsouris et al., 2011; Zou et al., 

2008a).   

 The salt removal capacity of carbon electrodes in the CDI process depends highly 

on the pore size and surface area of electrodes. When an electrical potential is applied 

across the electrodes, ions are adsorbed from solution present in the pores to the surface 

of the pores and co-ions are expelled from the electrodes. Andelman (2002) suggested 

that CDI is energy inefficient due to dissolved salt present in the pore volume of the 

electrodes (Otowa, 1996), and this effect becomes more pronounced at higher electrolyte 

concentrations. To solve this issue, Andelman (Otowa, 1996) suggested a charge barrier 

to be placed next to the electrode to compensate for losses associated with ions present in 

the pores of the electrode. Recently, Lee at al. (2006) developed a membrane capacitive 

deionization (MCDI) system, in which anion- and cation-exchange membranes were 

placed onto the external surface of the carbon electrodes (Lee et al., 2006), and reported a 

19% higher salt removal efficiency with the MCDI setup compared to the conventional 

CDI setup. Motivation for the MCDI system came from the fact that regeneration can 
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occur fast by reversing the polarity of the applied potential. Li et al. (2008) developed a 

new MCDI device using ion exchange membranes with carbon nanotubes and nanofibers 

(Shannon et al., 2008), and reported that the removal capacity with MCDI was 

approximately 50% higher compared to the conventional CDI system. In these studies, it 

has been demonstrated that the MCDI setup can enhance the desalination efficiency. 

More recently, Biesheuvel et al. presented a theoretical model for the MCDI process, 

which describes the time-dependant electric current and effluent ion concentration during 

the sorption and regeneration phases (Biesheuvel and van der Wal, 2010).  

 As a desalination method, conventional CDI has not been found to be an energy-

efficient method for the treatment of high-salinity solutions when compared to reverse 

osmosis (Oren, 2008) . Therefore, the process efficiency of CDI needs to be improved in 

order to become viable for treatment of high salinity solutions. Desalination of high-

salinity solutions has relevance in the treatment of seawater and water produced in the 

hydro-fracking process, as well as other oil/gas operations. In this context, MCDI 

technology has the potential for being energy efficient for solutions of high ionic 

strength. In the present work, neutron imaging of lithium-6 ions was conducted to 

observe the electrosorption and regeneration behavior during CDI at varying electrolyte 

concentrations. Neutron imaging reveals the ion-transport behavior during the 

regeneration phase at a high electrolyte concentration, which can aid in making the CDI 

process more efficient for desalination of seawater or fracking water. Neutron imaging 

results reveal the reason why desalination of high-salinity solutions by CDI is challenging 

and point to a solution for more efficient regeneration. Furthermore, we have evaluated 

the effective diffusivity of lithium ions by employing Fick’s second law of diffusion.   
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5.2 Materials and methods 

5.2.1 Capacitive Deionization cell for Neutron Imaging 

 A specially designed CDI cell, containing mesoporous carbon electrodes in 

electrolyte solution, was used in the study. The cell was filled up with 70 mL of lithium-6 

chloride (
6
LiCl) solution of 1.5 M concentration, and the experiments were conducted in 

a batch mode. Lithium-6 isotope was used as it has a high neutron attenuation coefficient 

of 940.97 barns. Deuterium oxide was used instead of normal water as hydrogen has a 

high neutron scattering cross section which can inhibit the visualization of the lithium 

ions in the experiments. 

5.2.2 Materials Synthesis and Characterization 

 The electrodes used in neutron imaging were composed of monolithic, 

mesoporous carbon synthesized at the Oak Ridge National Laboratory (ORNL), as 

previously reported (Sharma et al., 2013a). The synthesis method results in a mesoporous 

carbon material with high porosity. A platinum wire was pressed into the end of each 

electrode bar for electrical connection and glued at the tip of the electrode. Surface area 

measurements were performed with a Micromeritics Tristar 3000 at 77 K with nitrogen 

as the adsorbate.  

5.2.3 Neutron Imaging Principle 

                The experiments were conducted at the CG-1D neutron imaging beamline at 

the High Flux Isotope Reactor (HFIR) at ORNL (Bilheux et al., 2013). Neutron Imaging 

is based on the Beer-Lambert law which states that radiation passing through matter is 

attenuated depending on the thickness and structural properties of the material (Sharma et 
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al., 2013a). The attenuation of the beam caused by a uniformly thick, homogeneous 

sample is given by the Beer–Lambert equation:  

 eII 0                                                                                                                   (5.1) 

where I is the intensity of the neutron beam after attenuation, I0 is the intensity of the 

incident beam, μ is the attenuation coefficient, and δ is the thickness of the sample. 

5.2.4 Neutron Imaging Experiments 

 The experimental setup for neutron imaging is shown in Figure 5.1. In the 

experiments conducted in the present study, the specially designed CDI cell was filled up 

with lithium chloride (
6
LiCl) solution in deuterium oxide. The electrodes in the cell were 

connected to a power supply (HP 3632A; Hewlett Packard, CO) through the platinum 

wire leads, so that the applied potential could be remotely adjusted away from the beam.  

5.3 Results and discussion 

5.3.1 Materials Characterization 

 From the characterization studies, the pore surface area of the mesoporous carbon 

for rectangular and cylindrical electrodes was determined to be 365 m
2
/g. Also, the pore 

volume at P/Po = 0.995 is 0.43 cm
3
/g and the average pore size is centered at 15 nm. 

Nitrogen sorption isotherms and BJH pore size distributions for mesoporous carbon are 

shown in Figure 5.2.  
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Figure 5.1 The basic experimental setup for neutron imaging consists of a neutron source, 

a collimator which determines the geometric properties of the beam, neutron scintillator 

screen, and the sample of study (mesoporous carbon electrodes in the present study). The 

beam is transmitted through the object and recorded by a neutron scintillator detector. 

The detector records a 2-dimensional image that is a projection of the sample on the 

plane. Neutrons are converted to light using scintillator screen, and the light is captured 

by the CCD camera.  
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Figure 5.2 (i) Nitrogen adsorption isotherms and (ii) BJH pore-size distributions for the 

mesoporous carbon used in neutron imaging experiments. The plot (a) corresponds to the 

rectangular electrodes and (b) corresponds to the cylindrical electrodes. The pore surface 

area of the mesoporous carbon is 365 m
2
/g, and the average pore size is around 15 nm. 
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5.3.2 Image Sequences 

 Figure 5.3 represents a series of images from a sorption/regeneration experiment 

carried out with 1.5 M lithium chloride in D2O. The images presented are shown as 

differences from the first image in the series, thus lighter color means less 
6
Li

+
 ions and 

darker color means a higher concentration of 
6
Li

+
 ions. Images in Series (a) were 

obtained during electrosorption, while images in series (b) were obtained during 

regeneration. 

 

 

 

Figure 5.3 Time sequences of neutron images for CDI cell with 1.5 M LiCl solution in 

D2O: (a) 1.2 V DC potential applied, the right electrode is negatively charged and (b) 

electrodes short-circuited during regeneration.  
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 During electrosorption, the left electrode is positive and the right electrode 

negative, thus, 
6
Li

+
 ions transfer from the solution to the right electrode and Cl

-
 ions 

transfer from the solution to the left electrode. We also observe that 
6
Li

+
 ions on the right 

electrode are adsorbed throughout the width of the electrode. For the regeneration step 

[images in Series (b)], the electrode charge was removed by short-circuiting the 

electrodes. In the images of Series (b) of Figure 5.3, we observe that, as soon as the 

electrodes were discharged, the left electrode which was loaded with chloride ions, 

instead of releasing the Cl
-
 ions, adsorbed 

6
Li

+
 ions to neutralize the charge of the Cl

-
 

ions. The right electrode, which was loaded with 
6
Li

+
 ions, remained dark with time 

suggesting that, instead of releasing 
6
Li

+
 ions, it adsorbed Cl

-
 ions to neutralize the charge 

of the 
6
Li

+
 ions. We expected adsorption of some counterions (lithium ions in this case) 

by the left electrode before the ions diffused out of the electrodes into the solution, as 

observed in a previous study (Sharma et al., 2013a). However, in this case another 

interesting observation is that, even after a period of approximately 10 hours, both 

electrodes are very dark, which means that regeneration failed. It is possible that this 

failure occurred due to precipitation of solid 
6
LiCl salt in the pores of the electrodes 

owing to the localized high concentration of both 
6
Li

+
 and Cl

-
 ions in both electrodes. 

 It should be noted that the phenomenon of counterion adsorption for 

neutralization after electrode discharging was also observed in the case of gadolinium 

nitrate in our previous work [18]. Thus, the commonly accepted behavior during the 

regeneration cycle, where we simply expect the adsorbed ions to diffuse out of the 

electrodes into the solution is not totally accurate. Instead, counterions first diffuse into 

the electrode pores. In the case of low salt concentration in the original solution, it was 
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observed [18] that after a certain period of counterion diffusion into the electrode pores, 

both types of ions diffuse back from the electrodes into the solution. However, in the case 

of high salt concentration, as it is the case of seawater or fracking water, as counterions 

diffuse into the electrode pores during regeneration, the temporally high concentration of 

positive and negative ions in the pores leads to precipitation of solids. The result of this 

behavior is that the CDI process becomes irreversible and cannot operate as planned. 

 The neutron imaging data presented here provide insight into the ion transport 

behavior during CDI, and reveal the mechanism of failure of CDI with high-salinity 

solutions, such as seawater and oil/gas produced or fracking water. Furthermore, the 

neutron imaging data can be used to improve the CDI process. Specifically, the saturation 

of electrodes during regeneration can be prevented by placing anion- and cation-

exchange membranes adjacent to the electrodes, as is done in the MCDI setup. Figure 5.4 

further illustrates the direction of ion transport during the regeneration step and shows 

how placing anion- and cation-exchange membranes can eliminate the transport of 

counterions into the electrodes during regeneration and, thereby, prevent undesirable 

saturation of the electrodes and precipitation of salt. Thus, the MCDI setup can play a 

significant role in desalination applications of high-salinity solutions, including seawater 

and fracking water. From the work of Lee at al. (2006) [13], where it was reported that 

MCDI is 19% more efficient than CDI (for low-salinity systems), it can be argued that 

the higher efficiency is due to blocking the counterion diffusion into the electrodes during 

regeneration. Based on the work of Lee et al. (2006), it is also expected that MCDI will 

work efficiently for the desalination of high-salinity solutions. 
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 Figure 5.5 presents the neutron images for a sorption experiment carried out with 

0.5 M lithium chloride in D2O at 0 V and 1.2 V. The concentration profiles were obtained 

from the series of images to obtain the effective diffusivities at 0 V and 1.2 V. The 

images presented are difference from the first image in the series to show the relative 

transport of lithium ions as the experiment progressed. 

5.3.3 Measurements 

 The equation for Fick’s second law of diffusion was considered: 

2

2

x

C
D

t

C
eff










                                                                                                (5.2) 

with the following boundary conditions for the negative electrode in the system: 

C = C1,          x = 0,          t ≥ 0, 

C = C2,          x = l,           t ≥ 0, 

C = 0,      0 < x < l,           t = 0.        

 

 

Figure 5.4 (a) Ion transport behavior during regeneration. The plot shows the decrease in 

transmission profile across the left electrode, which indicates adsorption of neutron 

blocking cations. (b) The schematic for membrane capacitive deionization setup shows 

how the ion exchange membranes can prevent adsorption of counter-ions during 

regeneration of electrodes.  
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Figure 5.5 Time sequences of neutron images for the CDI cell with 0.5 M LiCl solution 

in D2O: (a) no potential applied and (b) 1.2 V DC potential applied. In (b), the right 

electrode is negatively charged. 
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where Deff is the effective diffusion coefficient, C is the concentration of ions (defined as 

the total number of gadolinium ions in a volume of solution or electrode), x is the 

distance from the right edge of the electrode, t is the time, C1 is the concentration at the 

right edge of the left electrode (0.00874 M), C2 is the concentration at the left edge of the 

electrode (0.00874 M), and l is the width of the electrode. Since the only unknown in the 

equation (5.3) is Deff, the value of the diffusion coefficient can be obtained by matching 

6 min 12 min 18 min 24 min 30 min 36 min 42 min 48 min 54 min

6 min 12 min 18 min 24 min 30 min 36 min 42 min 48 min 54 min



 88 

the experimental data with calculated concentration histories. The value of the diffusion 

coefficient was obtained through this optimization process using the MATLAB(Matlab 

Users Guide et al., 1998) Optimization toolbox.  

 From the series of images in Figure 5.5, the concentration profiles obtained from 

experiments were analyzed using Fick’s second law (equation 5.3) to obtain the value of 

effective diffusion coefficient of lithium ions as: 3.56×10
-11

 m
2
/s at 0 V and 2.06×10

-10
 

m
2
/s at 1.2 V. The effective diffusivity of lithium ions increased by about 6 times on 

application of 1.2 V DC potential. Figure 5.6 shows a comparison of experimental data 

and modeling results for history of lithium ion concentration with and without applied 

voltage.  

5.4 Conclusions 

           Neutron imaging has been demonstrated to be a useful tool to reveal the ion 

transport phenomena during the different cycles of the CDI process. With experiments 

conducted with 1.5 M lithium chloride solution, it was observed that the electrode pores 

became saturated with salt due to which the regeneration of electrodes did not occur. 

Thus neutron imaging gives an insight into why the CDI process is not efficient for 

desalination of solutions of high ionic concentration. When a potential of 1.2 V was 

applied between the electrodes, the effective diffusion coefficient of lithium ions 

increased approximately 6 times (at 0.5 M concentration). Information on the diffusivity 

of lithium ions in carbon materials at different values of applied potential can also aid in 

the design of lithium ion batteries. Electrical energy storage (EES) devices such as 

lithium batteries are an important tool for converting intermittent renewable energy into 

continuous peak energy. 
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 An in depth knowledge about the ion transport mechanisms will help in 

developing advanced systems with higher capacity and better dynamic behavior, so that 

we can make renewable energy sources more reliable and economical. A fundamental 

knowledge of ion transport characteristics at the electrode/electrolyte interface will 

contribute immensely in the development of new electrode materials having longer 

durability and higher power generation.  

 

 

 

 

Figure 5.6 Concentration histories of lithium ions as a function of time at 0.80 mm from 

the right end of the electrode for the case of (a) 0 V and (b) 1.2 V applied potential. 
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CHAPTER 6 

ENHANCEMENT OF ELECTROSORPTION RATES USING LOW-

AMPLITUDE, HIGH-FREQUENCY ELECTRICAL POTENTIAL 

 

 

 

 The influence of low-amplitude, high-frequency, alternating-current (AC) 

electrical potential on ion transport in mesoporous carbon electrodes has been 

investigated. Mesoporous carbon electrodes of approximately 10-nm average pore size 

were synthesized based on a soft-template method. The carbon electrodes were used in 

capacitive deionization (CDI) experiments with salt solutions consisting of a mixture of 

ions of concentrations ranging from 5000 ppm to 10,000 ppm to investigate the effect of 

an AC potential on the ion removal rate. Higher rates of sorption and regeneration were 

observed when the AC potential was superimposed on a direct current (DC) offset of 1.2 

V that is typically applied in CDI. The rate of ion sorption in CDI experiments was a 

dependant on the amplitude and frequency of the AC potential. Conductivity 

measurements showed enhancement in transport rates due to AC potential up to 130%. 

The effect was stronger during regeneration. Neutron imaging, a visualization technique, 

was also employed to quantify the diffusion of ions through mesoporous carbon 

electrodes under different conditions. Sequences of neutron images showed enhanced 

transport of gadolinium ions under the influence of AC potential. From the concentration 

histories of gadolinium ions inside the carbon electrodes, the effective diffusion 

coefficient of gadolinium ions was estimated to be 8.3±0.4×10
-11

 m
2
/s at 1.2 V DC and 

1.1×10
-10

 m
2
/s at 1.2 V DC with AC potential added. 
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6.1 Introduction 

 Inadequate access to clean drinking water is one of the major global challenges 

afflicting mankind. About 97.5% of water on earth is in the form of seawater (Shannon et 

al., 2008). To increase the supply of water resources, we need to adopt efficient recycling 

and conservation practices while devising new desalination technologies. The major 

desalination technologies currently in use are reverse osmosis (RO), multi-stage flash 

(MSF), and multi-effect distillation (MED). MSF distillation is a thermal-based 

desalination technology involving the phase change to water vapour, thus requiring large 

amounts of energy for operation (Anderson et al., 2010). Biofouling, scaling, and the 

need for energy intensive high-pressure pumps pose operational challenges in reverse 

osmosis (Oren, 2008). To address these challenges, we need to develop new low-cost 

energy-efficient methods for water desalination, which are simple in operation and have 

minimal impact on the environment.  

 Capacitive deionization (CDI), a method based on the electrosorption of ions by 

charged porous electrodes of high surface area, has been investigated in recent years as 

an alternative method for desalination of saline water. When an electrical potential is 

applied, ions in the solution accumulate in the electrical double layer formed at the solid-

liquid interface of electrodes to counterbalance the surface charge. Regeneration of 

electrodes can be achieved by discharging the electrodes. The process operates at a low 

voltage, typically on the order of 1.2 V, and no secondary waste, other than concentrated 

brine, is produced during regeneration. CDI presents potential operational advantages 

over other water purification methods such as reverse osmosis since membranes or high-

pressure pumps are not involved in its operation. The electrode material is an important 
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factor affecting the performance of the CDI process. A suitable electrode material for 

CDI should have a high surface area and low electrical resistivity to allow a rapid 

response of the entire surface area to charging and discharging of the electrodes. Carbon 

materials such as carbon aerogel (Gabelich et al., 2002; Hou et al., 2006; Xu et al., 2008; 

Yang et al., 2001; Ying et al., 2002), activated carbon (Oh et al., 2006; Ryoo et al., 2003), 

carbon nanotubes (Chen et al., 2010; Gao et al., 2009; Gao et al., 2007; Li et al., 2011; 

Pan et al., 2009; Wang et al., 2006; Zhang et al., 2007), graphene (Li et al., 2010a, b), and 

mesoporous carbon (Li et al., 2009; Tsouris et al., 2011)  have been investigated as 

potential electrode materials. Recent review articles have discussed the various 

operational modes, electrode materials and cell geometries for the CDI technology 

(Anderson et al., 2010; Oren, 2008; Porada et al., 2013). 

 Besides developing high performance electrode materials, understanding the ion 

transport phenomena occurring at the electrode-electrolyte interface during 

electrosorption is critical in improving the efficiency of the process. Various parameters 

such as applied voltage, salinity, and size of ions in the solution govern the 

electrosorption behaviour of nanoporous carbon electrodes. Elucidating the underlying 

physics of the process can lead to enhancement in the transport rates of ions into the 

pores through tailoring electrode materials and charging/discharging strategies to the 

specific CDI application. In this study, it is hypothesized that one of the factors affecting 

the transport rate of ions in the porous carbon electrodes is the attractive electrostatic 

image force. This force arises between a charged ion and its image ion on the opposite 

side of a conducting planar surface. The image particle arises due to polarization of the 

conducting surface material by the charged particle. The coulombic interaction between 
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the charged ion and its image is attractive. During sorption of ions, the electrostatic image 

force in the nanopores causes the conductive wall to behave like a sticky surface for the 

ions and slows down ionic mobility in conductive membranes. It is proposed here that an 

oscillating electrostatic coulombic force can reduce the effect of the image force, thereby 

enhancing the transport rate of ions. 

 In this respect, we examine the influence of application of a low‐amplitude, 

high‐frequency, alternating-current (AC) potential on the charging and discharging rates 

during the CDI process. The influence of the AC potential superimposed on the direct-

current (DC) potential has been found to increase desalination performance in the 

electrodialysis process (Barragán et al., 2002). In the present study, the effect of an AC 

potential (superimposed on the DC potential) on ion-transport rates during 

adsorption/desorption of ions by mesoporous carbon electrodes during electrosorption 

has been investigated. The study also presents neutron-imaging experiments of a CDI cell 

to observe the influence of application of AC potential on ion- transport in mesoporous 

carbon electrodes.  

6.2 Materials and Methods 

6.2.1 Materials Synthesis 

 Details of the synthesis and characterization of mesoporous carbon materials 

suitable for CDI have been described elsewhere (Sharma et al., 2013b; Tsouris et al., 

2011). In summary, activated mesoporous carbon was synthesized by carbonization of 

nanostructured polymeric composites, obtained by the self-assembly of the triblock 

copolymer Pluronic F127 (BASF) and a phenolic resin, comprised of phloroglucinol and 

formaldehyde, in acidic conditions and ethanol. Formaldehyde was added while heating 
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the mixture. After heating the solution for 2 hours, the resultant F127-phenolic resin 

particles were separated from the remaining solution. The particles were washed in 

ethanol and dried in an oven for 3 hours. The polymer particles were carbonized in a 

nitrogen atmosphere at 1123 K for 2 hours. A physical mixture of solid KOH and 

mesoporous carbon particles was heated under flowing nitrogen gas to 1123 K for one 

hour. The mesoporous carbon (MC) powder was transformed into activated carbon sheets 

(ACS) through the use of non-porous carbon paper (Hollingsworth and Vose) with a 

polyvinylidene fluoride binder. For ACS, a slurry was prepared with activated MC 

powder with 7.5% wt PVDF (polyvinylidene fluoride) and dimyethyl formamide (DMF). 

The slurry was heated and spread onto the carbon fiber paper in a mould for drying. The 

samples were dried at 373 K under rough vacuum.  

 For preparing PMCG (phloroglucinol-based MC-coated graphite) electrodes, 

pholoroglucinol and Pluronic F-127 were dissolved in ethanol, and 3 M hydrochloric acid 

(HCl) (Mayes et al., 2010). Glyoxal was added and phase separation was observed after 

20 minutes of stirring at room temperature. The mixture was stirred for another 30 

minutes and the gel was separated from the solvent. The gel was spread onto the graphite 

plates and allowed to dry overnight at room temperature followed by 24 hours at 353 K. 

The mesoporous carbon coated graphite electrodes were carbonized at 1123 K under 

nitrogen. 

 The procedure for synthesis of monolithic carbon electrodes used in neutron 

imaging experiments has been described elsewhere (Sharma et al., 2013a). Briefly, 

phloroglucinol was dissolved in ethanol with the structure-directing template Pluronic 

F127, hydrochloric acid, and glyoxal. The phenolic carbon polymer was separated from 
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the solvent and dried at 353 K. The material was then made into a powder form, sieved to 

40 mesh and mixed with Toho Tenax 344 milled carbon fiber to produce a blend. The 

polymer-carbon-fiber blend material was pressed into discs at 68 atm. The discs were 

carbonized at 1123 K at 2 K/min under a nitrogen atmosphere. The carbonized discs were 

machined into rectangular bars and a hole was then drilled into the end of each bar. A 

platinum wire was inserted into the end of each electrode bar and fixed with glue. 

 Nitrogen sorption analysis was performed using a Micromeritics Gemini 

Analyzer. Surface area was calculated using the Brunnauer-Emmet-Teller (BET) method. 

Pore size distributions were calculated in the 0.05 - 0.2 relative pressure region using the 

Barrett-Joyner-Halenda (BJH) method. Surface area analysis for the ACS sheets was 

done on the composite material, i.e., the activated carbon with binder and the carbon fiber 

backing, while the analysis of the MC-coated graphite electrodes was performed on a 

composite of mesoporous carbon and carbon fiber scraped off the graphite current 

collector.  

6.2.2 Capacitive Deionization Experiments 

 Figure 6.1 illustrates the setup of the CDI experiments with AC potential 

superimposed on a DC potential applied to the electrodes. The experiments were 

conducted in a batch mode, while the salt solution was recycled continuously. A micro 

pump was used to recycle the salt solution (Instant Ocean® or sodium chloride, 150 ml 

total volume) from a reservoir to the CDI unit cell and back to the reservoir at a flow rate 

of 30 ml/min. 

 The conductivity of the solution was measured at the cell exit stream by using a 

conductivity probe [model 835 Multi Cell (Au) with Model 3082 EC Meter, Amber 
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Science, Inc., Eugene, OR]. The conductivity probe fed conductivity and temperature 

measurements into the EC meter. The data acquisition system recorded voltage, current, 

and conductivity for a certain time interval prior to turning on the voltage. Then, the 

power source was switched on, and the conductivity, current, voltage, and temperature 

were recorded for the duration of the experiment. Application of electrical potential 

resulted in the transport of ions from the salt solution into the electrodes. Regeneration of 

electrodes was accomplished by discharging the electrodes.  

 6.2.3 Neutron Imaging 

 Neutron imaging is a non-destructive technique based on the interaction of 

neutrons with the nuclei of atoms. Neutrons have several advantages for imaging as they 

are non-perturbing, highly penetrating, and can distinguish between different isotopes of 

the same element. Neutron imaging has been utilized to visualize water in fuel cells in 

order to improve the water management system of the cell (Aaron et al., 2011; Bellows et 

al., 1999; Boillat et al., 2008; Mukundan and Borup, 2009; Park et al., 2008; Pekula et al., 

2005; Satija et al., 2004; Tang et al., 2010; Turhan et al., 2006). Neutron imaging has also 

been used to visualize the transport of lithium ions across the electrodes in lithium 

batteries (Kamata et al., 1997; Lanz et al., 2001; Siegel et al., 2011a). In the present work, 

neutron imaging of gadolinium ions was conducted to reveal ion transport phenomena in 

mesoporous carbon under different conditions of applied potential. In particular, we have 

studied the effect of application of low‐amplitude, high‐frequency electrical potentials on 

the diffusion of ions in mesoporous carbon electrodes.   
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Figure 6.1 Schematic diagram of the setup for CDI experiments. 

 

 

 

6.2.3.1 Neutron Imaging Principle 

 Neutron imaging is based on the Beer-Lambert principle, which relates the 

absorption of radiation passing through an object to the properties and thickness of the 

material. In neutron imaging, a neutron-sensitive 
6
LiF/ZnS scintillation screen collects a 

two-dimensional projection of the sample and converts the neutrons to visible light. The 

image is then captured by a charge coupled device (CCD) camera. The attenuation of 

neutron beam caused by an object is given by the Beer-Lambert law:  

 eII o                                                                                                (6.1) 

where μ is the linear attenuation coefficient given by: 
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M
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 

                                                                                                           (6.2) 

I  is the intensity of the attenuated neutron beam, Io is the intensity of the incident beam, δ 

is the uniform thickness of the object,   is the material-specific total cross section for 

neutrons,  is the material density, NA is the Avogadro constant, and M is the molar mass. 

Details of the methodology used in image analysis and how the concentration history of 

gadolinium ions is obtained can be found in previous work.(Sharma et al., 2013a) 

Gadolinium ions were used as they have a high neutron scattering cross-section of 

260044 barn.(Sears, 1992) The change in the concentration of gadolinium ions can be 

obtained by the ratio of measurements of neutron intensity taken at times t1 and t2 (Siegel 

et al., 2011b) : 

GdGdGdAGd ctctcNtItI  ))()(())(/)(ln( 1212 
                       (6.3) 

6.2.3.2 Neutron Imaging Experiments 

 The experimental setup for neutron imaging is shown in Figure 6.2 with the flow-

through CDI unit cell constructed for neutron imaging experiments (Figure 6.2a). Details 

of the neutron-imaging experimental setup and electrode materials have been described in 

earlier work (Sharma et al., 2013a). Gadolinium (III) nitrate [Gd(NO3)3] in D2O (100mL, 

3000 ppm) was recycled through the CDI cell at a flow rate of 30 mL/min using a 

micropump. The experiments were conducted at the CG-1D neutron imaging beamline of 

the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). 
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6.2.3.3 Image Analysis 

 Image analysis was carried out by using the ImageJ (Rasband et al., 1997-2011) 

software developed at the National Institutes of Health. The transmission values were 

calculated at various points of the image. Since gadolinium ions block neutrons, a higher 

quantity of gadolinium ions in the electrode pores result in a lower transmission value at 

the particular point on the image. The increase in the concentration of gadolinium ions in 

the negative electrode was obtained from equation (6.3).  

6.3 Results and Discussion 

6.3.1 Materials Characterization 

 The nitrogen adsorption isotherms and BJH pore size distributions for the PMCG-

FS (MC-coated graphite with a fiber sheet), and activated carbon sheet have been 

discussed in previous work (Sharma et al., 2013b; Tsouris et al., 2011). The pore size 

distribution for activated carbon sheets is in the range of 5-15 nm while that for the 

PMCG-FS material is around 5-20 nm. The surface area for the PMCG-FS material is 

610 m
2
/g, while that of the activated carbon sheet is 1040 m

2
/g. The PMCG-FS material 

has a total pore volume of ~0.54 cc/g. The PMCG-FS has hierarchical porosity which is 

believed to enable higher active surface area and increased transport rates of ions through 

the material.  

6.3.2 Capacitive Deionization Experiments 

 CDI experiments were conducted with activated mesoporous carbon sheet 

electrodes to study the influence of a square wave AC potential superimposed on a DC 

voltage of 1.2 V with a 5000 ppm aqueous sodium chloride (NaCl) solution. An AC 

potential of 10 mV amplitude and 100 kHz frequency was superimposed on a DC 
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Figure 6.2 Neutron imaging setup. Inset (a) shows a picture of the flow-through cell used 

in the experiments with the electrodes constructed of ORNL mesoporous carbon.  

 

 

 

potential of 1.2 V (Figure 6.3). The potential was turned on at t = 700 s and removed at 

t=3,200 s. Higher rates of sorption and regeneration of ions were observed in the case AC 

potential was applied, but it was observed that the effect of the AC potential was stronger 

in the case of desorption. Further experiments were conducted with PMCG electrodes to 

validate the observation made with activated carbon sheets (Figure 6.4). It was again 

observed that the sorption and regeneration rates were higher in the case an AC potential 

was added on to the DC potential.  

 The influence of AC potential on the ion removal rate was also investigated for 

Instant Ocean® solution of approximately 10,000 ppm concentration as illustrated in 

Figure 6.5. It was observed that the addition of AC potential had a stronger effect on the 

rate of regeneration. During regeneration without AC voltage, a delay was observed in 
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the increase of conductivity with time. The addition of AC potential eliminated this 

delay. 

6.3.2.1 Influence of Amplitude of AC potential  

 The effect of amplitude of AC potential on sorption and desorption of ions was 

also investigated. The experiments were conducted with 1, 10, and 100 mV amplitude 

pulsed potential. Experiments conducted with 1 mV amplitude pulsed potential showed 

no significant difference from the case in which no pulsed potential was applied. The 

results tabulated in Table 1 show the sorption/regeneration behavior when the amplitude 

of AC potential varied from 10 mV to 100 mV. A sweeping frequency of the AC 

potential between 100 and 10 kHz was used in these experiments. The results of Table 1 

show that the percentage increase in sorption rate is higher at higher amplitude of the AC 

potential with about 130% increase in sorption rate observed at 100 mV amplitude of AC 

potential.  

6.3.2.2 Influence of Frequency of AC potential  

 The effect of the frequency of the AC potential was studied for amplitude of 10 

mV. The frequency of AC potential was varied from 0.1 kHz to 100 kHz (Table 2), and it 

was observed that the enhancement in sorption rate increases with frequency up to 10 

kHz.  
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Figure 6.3 Influence of pulsed potential (10 mV, 100 kHz superimposed on 1.2 V DC) on 

ion sorption and desorption in solutions of approximately 5,000 ppm NaCl concentration 

with activated-carbon-sheet electrodes. 

 

 

Figure 6.4 Influence of pulsed potential (10 mV, 100 kHz superimposed on 1.2 V DC) on 

ion sorption and desorption in solutions of approximately 5,000 ppm NaCl concentration 

with PMCG electrodes. 
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Figure 6.5 Influence of pulsed potential (100 mV, 100 kHz superimposed on 1.2 V DC) 

on sorption and desorption in solutions of approximately 10,000 ppm concentration of 

Instant Ocean with PMCG electrodes. (a) DC potential: sorption rate: 65 mg for the first 

1000 s; regeneration rate: 28 mg for the first 1000 s. (b) pulsed potential: sorption rate: 80 

mg for the first 1,000 s; regeneration rate: 89 mg for the first 1,000 s. The initial sorption 

and desorption rates were increased by 23% and 218%, respectively, when a pulsed 

potential of 100 mV amplitude was superimposed on the DC voltage. 

 

 

 

Table 6.1 Influence of amplitude of pulsed potential on sorption/desorption of ions.  

 Sorption rate (ppm/min)                         Desorption rate (ppm/min) 

10 mV amplitude   

Without pulsed potential 27.6 26.4 

With pulsed potential 36.6 48.6 

% Change in rate +33% +84% 

100 mV amplitude   

Without pulsed potential 34.8 17.4 

With pulsed potential 77.9 34.2 

% Change in rate +130% +99% 

 

 

Table 6.2 Sorption rate (ppm/min) as a function of frequency for 10 mV pulsed potential. 

 100 kHz 10 kHz 1 kHz 0.1 kHz 

Without pulsed potential 27.6 25.2 32.4 35.4 

With pulsed potential 36.6 37.8 40.2 37.8 

% Change +33% +50% +24% +6.4% 
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6.3.3 In-situ Electrode Characterization by Neutron Imaging 

6.3.3.1 Image Sequences 

 The transmission values for the neutron images obtained with 1.2 V DC potential 

applied without and with a square wave AC potential of frequency 10 kHz and amplitude 

0.1 V are presented in Figure 6.6. Since gadolinium ions absorb neutrons, an increase in 

gadolinium ion concentration results in a lower transmission value. The decrease in the 

transmission value at the electrode is greater in the case the AC potential was added onto 

1.2 V DC potential, indicating a greater transport rate of gadolinium ions to the left 

(negative) electrode. 

 Figure 6.7 (a) presents a series of images obtained after 1.2 V DC potential had 

been applied with a square wave AC potential (10 kHz frequency, 100 mV amplitude) 

across the two electrodes for about 3 hours. At t = 0 minutes the DC potential was 

removed, and the AC potential was still kept applied across the electrodes. It was 

observed that the right electrode initially became darker as some of the gadolinium ions 

diffused into the right electrode after the removal of DC voltage. Figure 6.7 (b) further 

illustrates the direction of ion transport by presenting the decrease in transmission value 

across the right electrode after the removal of DC voltage. The average transmission 

value across the right electrode decreased by 11.5% (at t = 70 minutes) from the initial 

transmission value at t = 0 minutes (corresponding to an OD of 0.122). The decrease in 

transmission across the right electrode indicates the transport of gadolinium ions to the 

right electrode. It can be observed that after 70 minutes, the transmission across the right 

electrode started increasing indicating that the electrode stopped adsorbing gadolinium 

ions. This adsorption of counterions by the electrode occurs to counter the charge 
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imbalance in the electrode pores after the removal of the external potential. This 

phenomenon was observed for the case when no AC signal was applied (Sharma et al., 

2013a), and as demonstrated in Figure 6.7, the phenomenon persists in the case of AC 

voltage applied. 

6.3.3.2 Quantitative Measurements 

 The effect of the AC potential on the transport of ions from the solution to the 

electrodes was analyzed in terms of changes of the effective diffusivity of ions in the 

negative electrode. For this purpose, the equation for Fick’s second law of diffusion was 

considered: 

2
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                                                                                                (6.4) 

Figure 6.6 Average transmission of the neutron beam across the negative electrode after 

the external potential was applied. The transmission through the negative electrode 

decreases indicating uptake of gadolinium ions. Adding 100 mV amplitude pulsed 

potential accelerated the decrease in the transmission values due to a higher uptake rate of 

gadolinium ions.  
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Figure 6.7 (a) Time sequence of neutron images after 1.2 V DC potential was removed at 

t = 0 min (with pulsed potential on). As expected, gadolinium ions were released from the 

left electrode to the solution between the electrodes (white arrows). However, gadolinium 

ions were also taken up by from the solution by the right electrode (black arrows) (b) 

Average transmission of neutron beam across the left and right electrodes, after the DC 

voltage was removed, and pulsed potential remained on. The transmission through the 

right electrode decreased in the beginning before starting to increase indicating initial 

transport of gadolinium ions to the right electrode.  

 

 

 

 The following boundary conditions apply for the negative electrode: 

C = C1,          x = 0,          t ≥ 0, 

C = C2,          x = l,           t ≥ 0, 

C = 0,      0 < x < l,           t = 0.        

 An analytical solution for the concentration of ions, C as a function of time is 

obtained (Crank, 1979): 
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x is the distance from the edge of the electrode, t is time, Deff is the effective diffusivity, C 

is defined as the number of gadolinium ions in a volume of solution or electrode, C1 and 
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C2 are the concentrations at the right and left edge of the electrode correspondingly 

(0.00874 M), and l is the width of the electrode. C1 and C2 have the same values because 

both sides of the electrodes are in contact with the solution flowing through the cell. The 

bulk solution concentration is considered constant because of the continuous flow of the 

solution through the cell. The value of diffusion coefficient (Deff) was obtained through 

equation (6.5) using the MATLAB Optimization toolbox (Matlab Users Guide et al., 

1998). 

 It should be noted that Fick’s second law of diffusion was adopted mainly with 

the purpose of comparing the transport rates with and without AC potential applied. The 

Nernst-Planck equation includes both the electric-field and concentration-gradient forces 

driving the transport of ions. However, the solution of the Nernst-Planck equation for an 

asymmetric electrolyte is not the focus of the present analysis. From the concentration 

data and using equation (6.5) the effective diffusion coefficient at 1.2 V DC was 

determined to be 8.3±0.4×10
-11

 m
2
/s and 1.1±0.03×10

-10 
m

2
/s at 1.2 V DC with AC 

potential superimposed. Thus the diffusion coefficient of ions with an applied AC 

potential superimposed on a DC potential was 35% higher than in the case where only a 

DC potential was applied.  

 It is expected that the AC effect depends strongly on the type of porous material 

used. In the case discussed here, mesoporous carbon of a narrow pore size distribution in 

the range of 10 nm was used, thus the effects reported here refer to similar materials. 

Information on the diffusivity of ions under the influence of an AC potential can be 

employed to produce electrode materials with desirable porosities for efficient ion 

removal in the CDI process.  
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6.4 Conclusions 

 This study is focused on the influence of an AC potential, superimposed on the 

DC potential that is normally applied to CDI systems, on ion transport in mesoporous 

carbon materials. Capacitive Deionization experiments showed an increase in ion 

removal rates when an AC potential was superimposed on the DC offset. The influence 

of the AC potential was greater on the regeneration rate. Neutron imaging was also 

employed to quantify the influence of AC potential on the transport characteristics of ions 

in mesoporous carbon electrodes. The effective diffusion coefficient increased by 35% 

when an AC potential of ±100 mV was superimposed onto to the applied DC potential of 

1.2 V during electrosorption. The hypothesis for the AC potential effect reported here is 

that there is an electrostatic attractive force that hinders a rapid transport of ions through 

the pores of the carbon material. With the application of an AC potential, due to a 

reduction in the electrostatic attractive force, the transport rate of ions in the electrodes 

increases. Furthermore, electrode specific sorption and regeneration rates can be 

optimized by varying the frequency and amplitude of the AC potential to achieve a more 

efficient desalination device. 
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CHAPTER 7 

NEUTRON IMAGING OF BLUE ENERGY RECOVERY CYCLE 

 

 

 

 The mixing process of fresh water and sea water releases a significant amount of 

energy and is potentially an enormous source of renewable energy. The so called ‘blue 

energy’ or salinity gradient energy can be harvested by a device consisting of carbon 

electrodes immersed in an electrolyte solution, based on the principle of capacitive 

double layer expansion (CDLE). In this study, we have investigated the feasibility of 

energy production based on the CDLE principle. Mesoporous carbon materials 

synthesized at the Oak Ridge National Laboratory (ORNL), were used as electrode 

materials in this work. Neutron imaging of the blue energy cycle was conducted with 

cylindrical mesoporous carbon electrodes and 0.5 M lithium chloride as the electrolyte 

solution. For experiments conducted at 0.6 V and 0.9 V applied potential, a voltage 

increase of 0.061 V and 0.054V was observed respectively. Moreover from the sequences 

of neutron images obtained for each step of the blue energy cycle experiments, we 

obtained information on the direction and magnitude of lithium ion transport.  
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7.1 Introduction 

 The depletion of fossil fuels drives the need for new clean, renewable sources of 

energy. The mixing of saline water with fresh water that takes place at the mouth of 

rivers, leads to dissipation of free energy, due to an entropy increase experienced by the 

mixing solutions. This entropy increase due to controlled mixing of two solutions of 

different salinity can be harnessed to obtain electrical energy (Norman, 1974). The 

process is clean and no green-house gases or secondary byproducts are formed which 

could have harmful impact on the environment.  

 The free energy release is around 2.4 kJ when one liter of freshwater is mixed 

with salt water, which is equivalent to a waterfall of 200 m (Pattle, 1954). The potential 

of energy extraction from all the river estuaries worldwide is estimated at around 2 TW, 

which could account for about 20% of the global energy demand (Post et al., 2008; Wick, 

1978). This renewable source of energy known as ‘blue energy’ or salinity gradient 

energy has been discovered since the 1950’s, but a commercially viable method to tap the 

energy has not been devised until recently. The energy can be harvested by interposing a 

suitable device between the salt and the fresh water, so that mixing takes place in a 

controlled way. 

 The technologies which have been investigated include pressure retarded osmosis 

(PRO) (Achilli et al., 2009; Thorsen and Holt, 2009), reverse electrodialysis (RED) 

(Długoł cki et al., 2009; Post et al., 2008; Veerman et al., 2009; Weinstein and Leitz, 

1976) and capacitive energy extraction. The PRO technique utilizes the osmotic pressure 

difference across a semi-permeable membrane that is interposed between fresh and saline 

water. The pressure difference that drives the flow of water across the membrane, is 
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converted into electrical power by the means of a turbine and pressure exchanger. 

Thorsen and Holt (2009) presented results from a theoretical model that show 

approximately 40% of the mixing energy of freshwater with seawater or 1 MW/(m
3
/s) 

can be obtained with the PRO process (Thorsen and Holt, 2009). Achilli et al. (2009) 

developed a PRO model to predict water flux and power density and determine optimal 

membrane characteristics and configuration for design of a PRO system. Power densities 

of 2.7 and 5.1W/m
2
 were observed for 35 and 60 g/L NaCl draw solutions respectively 

(Achilli et al., 2009). In RED, compartments fed alternatively by fresh and saline water 

are separated by a stack of cation and anion exchange membranes. The chemical potential 

difference between fresh and salt water generates a voltage difference over each 

membrane. The total potential of the system is the sum of potential difference over the 

ion exchange membranes and the end electrodes. Długoł cki et al. (2008) developed a 

theoretical membrane model and predicted that the best available anion exchange 

membranes can reach a power density of more than 5 W/m
2
. Based on the model 

calculations, they proposed that higher power density could be obtained by using thin 

spacers and membranes with low membrane resistance and high permselectivity 

(Długołęcki et al., 2008). Veerman et al. (2009) reported the power density of a RED 

stack of 50 cells to be 0.93 W/m
2
 which is the highest value reported with RED. They 

proposed that a higher power density can be obtained with a more open spacer and 

manifold desgin (Veerman et al., 2009). The main drawbacks of PRO and RED 

technologies include the use of membranes that are expensive and prone to fouling. 

Moreover, the methods involve pumping and the need for energy converters and in 

addition, the membranes do not have high selectivity.   
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 A recent technology based on extracting energy by charging carbon electrodes in 

a saline solution, and discharging them in fresh water. Capacitive energy extraction is 

based on Capacitive Double-Layer Expansion (CDLE) (Brogioli, 2009; Brogioli et al., 

2012; Brogioli et al., 2013) or Capacitive energy extraction based on Donnan Potential 

(CDP) (Liu et al., 2012; Sales et al., 2012a; Sales et al., 2012b; Sales et al., 2010). When 

extracting energy based on the CDLE principle, fresh and saline water sequentially flow 

in the space between two electrodes connected via an external power source. When saline 

water flows through the cell, the electrodes are charged up. On switching to the flow of 

fresh water, the double layers in the electrode expand and the cell voltage increases 

spontaneously leading to power production.  

 There are four steps in the charging and discharging process to extract electrical 

energy by capacitive double layer expansion (Figure 7.1): 

Step I: The electrodes are charged in a concentrated saline solution. The circuit is closed 

and the current flows through the circuit. Salt water is being circulated across the cell. 

Step II: The circuit is opened and fresh water flows through the cell. The cell potential 

increases due the double layer expansion.  

Step III: The circuit is closed and the current flows in reverse direction.  

Step IV: The circuit is opened and saline water is allowed to circulate through the cell. 

This step closes the cycle. 

 In the present work, neutron imaging experiments were conducted to visualize the 

ion transport across mesoporous carbon electrodes during the various stages of the 

capacitive blue energy cycle.  
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7.2 Materials and Methods 

7.2.1 Capacitive Deionization Experiments 

 The setup for capacitive deionization (CDI) experiments was modified so that the 

circuit could be opened and closed by using a switch for the different stages of the blue 

energy cycle. A simple schematic of the CDI setup for blue energy experiments is shown 

in Figure 7.2. The saline solution used in the experiments was sea-water diluted with 

deionized water at approximately 6000 ppm concentration. After step I, the sea-water 

solution was replaced by deionized water. A flow rate of 46 ml/min was maintained in 

the experiment.  

7.2.2 Capacitive Deionization Cell for Neutron Imaging 

 A specially designed CDI cell, containing mesoporous carbon electrodes in 

electrolyte solution, was used in the study. The cell was filled up with 70 mL of lithium-6 

chloride (
6
LiCl) solution of 0.5 M concentration, and the experiments were conducted in 

a batch mode. After step I, the salt solution was drained out and the cell was filled with 

pure deuterium oxide (D2O). After step III, D2O was again drained out from the solution 

and replaced by 
6
LiCl solution. Lithium-6 isotope was used as it has a high neutron 

attenuation coefficient of 940.97 barns. D2O was used instead of normal water as 

hydrogen has a high neutron scattering cross section, which can inhibit the visualization 

of the lithium ions in the experiments. 

7.2.3 Materials Synthesis and Characterization 

 The electrodes used in neutron imaging were composed of monolithic, 

mesoporous carbon synthesized at the Oak Ridge National Laboratory (ORNL), as 
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Figure 7.1 Steps of the blue energy cycle based on the CAPMIX technique. The cell is 

filled with salt water in the beginning. The steps are (1) charging (Step I), (2) flow of 

fresh water (Step II), (3) discharging (Step III), and (4) flow of saline water (Step IV). 
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Figure 7.2 (a) Schematic view of the capacity energy extraction experimental setup. (b) 

Typical voltage-charge cycle.  

 

 

 

previously reported (Sharma et al., 2013a). The synthesis method results in a mesoporous 

carbon material with high porosity. A platinum wire was pressed into the end of each 

electrode bar for electrical connection and glued at the tip of the electrode. Surface area 

measurements were performed with a Micromeritics Tristar 3000 at 77 K with nitrogen 

as the adsorbate.  

7.2.4 Neutron Imaging Principle 

       The neutron imaging experiments were performed at the CG-1D beamline at the 

High Flux Isotope Reactor (HFIR) at ORNL (Bilheux et al., 2013). Neutron Imaging is 

based on the principle of Beer-Lambert law, which gives a linear relationship between the 

absorbance and concentration and the length of the path through the sample species that 

Load

Water outputPower source

Water Input

Spacer

Electrode

Graphite Plate

(a)

Voltage-charge cycles

V
ce

ll
(m

V
)

IV

II

I

III

Q(mC)

(b)



 116 

absorbs radiation. The attenuation of the beam caused by a uniformly thick, 

homogeneous sample is given by the Beer–Lambert equation:  

 eII 0                                                                                                          (7.1) 

where I is the intensity of the neutron beam after attenuation, I0 is the intensity of the 

incident beam, μ is the attenuation coefficient, and δ is the thickness of the sample. 

7.2.5 Neutron Imaging Experiments 

            The experimental setup for neutron imaging is shown in Figure 7.3. In the 

experiments conducted in the present study, the specially designed CDI cell was filled up 

with lithium chloride (
6
LiCl) solution in deuterium oxide (D2O). The electrodes in the 

cell were connected to a power supply (HP 3632A; Hewlett Packard, CO) through the 

platinum wire leads, so that the applied potential could be remotely adjusted away from 

the beam.  

            The experiment was conducted in four cycles typical for energy extraction by 

capacitive double layer expansion: 

Step I: The cell was filled up with 0.5 M 
6
LiCl salt solution. The electrodes were charged 

on application of external potential. The circuit was closed and there was current flow 

through the circuit.  

Step II: The circuit was opened and the cell was filled up with D2O solution. The 

potential across the electrodes was measured as a function of time.                        

Step III: The circuit was closed and the current flow was in reverse direction.  

Step IV: The circuit was opened and the cell was filled up with salt solution again. This 
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Figure 7.3 Neutron imaging experimental setup for blue energy experiments. 

 

step closed the cycle for each experiment. 

             During all four stages of the cycle, the potential across the electrodes was 

measured continuously as a function of time. 

7.2.6 Image Analysis 

 The image analysis was carried out by using the ImageJ (Rasband et al., 1997-

2011) software developed at the National Institutes of Health. The images shown have 

been normalized by dividing all the images by the first image in the series to visualize the 

transport of ions in each step of the blue energy cycle. 

7.3 Results and Discussion 

7.3.1 Materials Characterization 

From the characterization studies, the pore surface area of the mesoporous carbon for the  
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cylindrical electrodes used in the study was determined to be 365 m
2
/g. Also, the pore 

volume at P/Po = 0.995 is 0.43 cm
3
/g and the average pore size is centered at 10 nm. 

Nitrogen sorption isotherms and BJH (Barrett– Joyner–Halenda) pore size distributions 

for mesoporous carbon are shown in Figure 7.4.  

7.3.2 Capacitive Energy Extraction  

 The experiments were based on sequentially flowing fresh and saline water 

through the CDI cell. The voltage across the electrodes, current, and conductivity of the 

solution were continuously measured throughout the entire duration of the experiment.  

 

 

 

Figure 7.4 (i) Nitrogen adsorption isotherms and (ii) BJH pore-size distributions for the 

mesoporous carbon used in neutron imaging experiments. The pore surface area of the 

mesoporous carbon is 365 m
2
/g, and the average pore size is around 15 nm. 
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 The experiments were conducted to determine if there was a voltage increase 

across the electrodes during the switching step I (soaking step) when deionized water is 

flushed through the CDI cell.  

 For experiments conducted at 1.2 V, no increase in voltage was observed during 

step II, and the potential across the electrodes kept dropping as the external potential had 

been removed. For experiments conducted at 0.6 V, the potential increased up to 0.612 V 

from 0.6 V within 650 seconds.  

7.3.3 Image Sequences 

 A series of images obtained in the cycle with 0.6 V applied across the electrodes 

is shown in Figure 7.5. All the images shown have been obtained by dividing the 

respective images by the first image in the series to provide a good contrast for observing 

ion transport. In the series 7.5 (a), images corresponding to an applied potential of 0.6 

volts in the charging step of the cycle are shown. With the voltage applied across the 

electrodes, the lithium ions diffuse inside the left electrode that is negatively biased. It is 

assumed that chloride ions migrated to the right electrode to balance the charge. The 

series 7.5 (b) corresponds to the step II in which the cell is filled with D2O solution and 

the external potential is removed. Due to the concentration gradient, the lithium ions 

which were present in the pores of the electrode start diffusing out into the solution. This 

is evident from the image series as the region inside the electrodes (particularly near the 

edges) is getting lighter as time progresses. During this step the potential across the 

electrodes was continuously measured as a function of time, the potential rose from 0.601 

V to 0.662 V during a period of 5 hours. 
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Figure 7.5 Time sequences of neutron images for blue energy cycle (for 0.6 V applied 

potential) with 0.5M LiCl solution in D2O: (a) Step I, (b) Step II, (c) Step IV. 
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 In step III the circuit was closed and the electrodes were discharged to the initial 

potential. This step was quite fast and no images were acquired during that period. The 

step IV is shown in the series 7.5 (c). In this step the circuit was opened and the cell was 

again filled up with the salt solution. In the series 7.5 (c), the electrodes are getting 

darker, as the lithium ions diffuse inside the electrodes.  

 Figure 7.6 illustrates the change in average transmission value across the 

electrodes after the potential was removed and the cell flushed with D2O in the switching 

step. In this step, we expect the double layers in the pores of the electrode to expand due 

to the presence of low concentration solution outside the pores. As time progresses, we 

expect the concentration of salt solution in the electrode pores to decrease as lithium ions 

move out into the solution due to the concentration difference. This is evident from the 

increase in relative transmission value across the electrodes with time (Figure 7.6a). 

During step IV, the circuit is open and 
6
LiCl salt solution is introduced into the cell. Due 

to concentration gradient, lithium ions move inside the pores of the electrode, which is 

evidenced by the decrease in the average transmission value across the electrodes (Figure 

7.6b). 

 In Figure 7.7 (a), images corresponding to an applied potential of 0.9 V, in the 

charging step of the cycle, are shown. The image series in the experiments with 0.9 V 

applied followed the same behavior as with 0.6 V. After step I, when the external 

potential was removed, the potential increased from 0.9 V to 0.954 volts over a period of 

6 hours. Figure 7.8 further demonstrates the ion transport behavior by showing the 

change in transmission across the electrodes. The transmission increased during step II, 

as the lithium ions migrate out of the pores into the solution to counter the concentration  
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Figure 7.6 Relative transmission value at electrode for (a) Step II and (b) Step IV for blue 

energy cycle at 0.6 V.  
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Figure 7.7 Time sequences of neutron images for blue energy cycle (for 0.6 V applied 

potential) with 0.5M LiCl solution in D2O: (a) Step I, (b) Step II, (c) Step IV. 
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Figure 7.8 Relative transmission values at electrode for (a) Step II and (b) Step IV for 

blue energy cycle at 0.9 V. 

 

 

 

gradient. During the step IV, the electrodes were again saturated with lithium ions 

resulting in a decrease in transmission value with time.  

7.4 Conclusions 

 In the present study, neutron imaging of the blue energy cycle has been carried 

out to observe the direction of ion transport across the electrodes during the various 

stages of the cycle. In both the CDI and the neutron imaging experiments, the cycles 

conducted at 1.2 V applied potential did not yield satisfactory results and there was no 

voltage increase observed during step II. For the cycles carried out at 0.6 V and 0.9 V 

applied voltage, we observed an increase in voltage during the step II when water was 

flushed through the cell. Thus it can be deduced that a voltage range of 0.6-0.9 V is 

suitable for the operation of blue energy cycle. Neutron imaging was employed to 

visualize the transient behavior of ions during the different steps of the blue energy cycle. 

The transmission profiles across the electrodes as a function of time further provide 
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information on the direction and magnitude of ions transport. In depth knowledge on the 

ion transport mechanisms during the different steps of the blue energy cycle can help in 

devising strategies on how to maximize the energy produced per cycle.   
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

8.1 Conclusions 

 The work combines experimental and modeling studies to investigate the 

electrosorption mechanism of ions in the pores of mesoporous carbon materials. The 

main contribution of this research is examining the effect of operational parameters such 

as applied potential, temperature of solution, ionic concentration, and valence of ions on 

the electrosorption behavior of mesoporous carbon materials. Laboratory scale CDI 

experiments have been conducted to investigate the influence of operational parameters 

on sorption by mesoporous electrodes and their regeneration on removal of external 

potential. Furthermore, the ion transport mechanisms at the electrode-electrolyte interface 

have been studied at nanoscale by neutron imaging. The fundamental aspects of this 

research have significance in several applications such as desalination of water by 

capacitive deionization (CDI) and harvesting salinity gradient energy based on the 

principle of capacitive double layer expansion (CDLE).     

 Based on the experimental and modeling results presented in the thesis, the 

following specific conclusions can be stated: 

 Temperature of the solution is an important system parameter to be considered 

especially with regards to desalination of produced water which is released from 

oil/gas operations, and reaches the surface at higher temperatures. Higher rates of 

sorption and regeneration are observed in CDI experiments with solutions at 

higher temperature of around 40°C. At higher temperature, a comparison of the 
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results from CDI experiments with sodium chloride and Instant Ocean solution 

revealed competition between ions of various sizes and valence. The cumulative 

salt mass predicted by the transport model was matched with the experimental 

data for both sodium chloride and Instant Ocean solution. 

 Neutron imaging experiments aid in understanding at nanoscale the ion transport 

phenomena occurring at the electrode-electrolyte interface during electrosorption. 

Neutron imaging of gadolinium ions was conducted to obtain information on the 

direction and magnitude of ion transport during the sorption and regeneration 

phases of the capacitive deionization process. From the ion concentration profiles, 

the effective diffusion coefficient of gadolinium ions was estimated at various 

conditions of applied potential (0 V, 1.2 V, 1.2 V DC+AC). The value of effective 

diffusion coefficient of gadolinium ions through mesoporous carbon was 

estimated to be 25 times smaller than the bulk diffusion coefficient. When a DC 

potential of 1.2 V was applied between the electrodes, the effective diffusivity of 

gadolinium ions increased by approximately 7 times. The value of effective 

diffusion coefficient of ions under various values of applied potential can provide 

valuable insights into the transport properties of ions and aid in synthesis of 

electrode materials with better sorption properties. The value of effective 

diffusivity of ions is also required in theoretical modeling of CDI process and thus 

the results obtained can aid in the validation of transport models of ions in porous 

carbon materials. 

 Neutron imaging experiments with lithium chloride (
6
LiCl) salt solution were 

conducted to observe the behavior of the CDI process at high concentrations of 
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electrolyte. The neutron imaging experiments revealed that during the 

regeneration phase the electrodes became saturated with salt due to precipitation. 

This occurred due to the migration of counterions into the electrodes to neutralize 

the surface charge. Thus, neutron imaging gives an insight into why the CDI 

process does not work well at high ionic concentrations. It is proposed that 

placing an ion-exchange membrane next to the carbon electrodes can solve the 

issue by preventing the migration of counterions and thus avoid the saturation of 

electrode pores.                       

 The effective diffusion coefficient of lithium ions was estimated at 0 V and 1.2 V 

by employing Fick’s second law. The effective diffusivity of lithium ions 

increased by about 6 times when 1.2 V DC potential was applied across the 

electrodes.  

 A high frequency, low amplitude alternating current (AC) signal when 

superimposed on a direct current (DC) signal results in the enhancement of 

sorption rates. The CDI experiments showed an increase in the sorption and 

regeneration rates when AC potential was superimposed on the DC potential. It 

was found that the amplitude and frequency of the AC signal also had an effect on 

the sorption and regeneration rates. Furthermore, neutron imaging was employed 

to observe the effect of application of AC signal with the DC signal. The effective 

diffusivity of gadolinium ions increased by 35% when an AC potential was 

superimposed on DC potential than in the case when only a DC potential was 

applied. Therefore, the desalination efficiency in the electrosorption process can 

be increased by optimizing the applied potential. 
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 Blue energy experiments were conducted to assess the feasibility of generating 

energy based on the principle of capacitive double layer expansion. Neutron 

imaging experiments were conducted to investigate the ion transport behavior 

during the various steps of the blue energy cycle. It was deduced that a voltage 

range of 0.6-0.9 V is optimal for the operation of blue energy cycle. Transmission 

profiles across the electrodes as a function of time provide valuable information 

on the direction and magnitude of ion transport during all the steps of the blue 

energy cycle. Information on ion transport mechanisms at the electrode-

electrolyte interface can further aid in the optimization of the blue energy 

recovery cycle.  

 In summary, the experimental results obtained from CDI experiments and 

transport modeling results help in identifying the ion transport mechanisms inside the 

nanopores of carbon materials. The electrosorption process using nanostructured 

mesoporous carbon electrodes has been proved to be a promising technique for the 

removal of ionic species from aqueous solutions and as a potential method for energy 

storage. The CDI experiments provide an insight into how the operational parameters 

affect the electrosorption capacitance of the carbon electrodes. At nanoscale, the neutron 

imaging experiments provide more in depth information on the ion transport phenomena 

during electrosorption. A combination of these experimental studies can aid in devising 

strategies for efficient desalination of seawater. Improved desalination systems will 

enable increased supply of fresh water for industrial and domestic applications. Thus, the 

present work has implications in efforts towards solving the current scarcity of water 

resources and the energy demand. 
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8.2 Recommendations 

 The results presented in the thesis, provide valuable information on how to 

improve the electrosorption efficiency in the CDI process. Further work needs to be done 

to study the effect of various operational parameters on the efficiency of the CDI process. 

Since a major application of CDI is for desalination of seawater or fracking water, which 

consists of a mixture of salts, more studies need to be conducted with Instant Ocean 

solution. It is recommended to conduct more CDI experiments with Instant Ocean 

solution under various values of applied potential and solution temperature to study the 

competition between ions of various valence and radii. The results can be validated by 

neutron imaging experiments conducted under similar operating conditions. 

 Since neutron imaging experiments provide a valuable tool to study the ion 

transport mechanisms at a microscopic level, it is suggested that further experiments be 

conducted to study the competition between ions of various radii and valence. These 

experiments can provide valuable information on sorption and regeneration 

characteristics during desalination of seawater. For neutron imaging experiments 

conducted with lithium ions, solution of Nernst-Planck model should be adopted for 

estimating the effective diffusivity of lithium ions taking into account the influence of 

electric potential and concentration gradient. Neutron imaging experiments with boron 

should be conducted to study the sorption characteristics with boron, since it is an 

important element found in seawater. Boron is one of the elements that have a high 

neutron attenuation coefficient; hence imaging experiments with boron can provide a 

high contrast for visualizing the transport of ions.  
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 Since electrosorption involves the formation of an electrical double layer (EDL) 

in the nanopores of porous carbon materials, valuable information can be obtained by 

studying the formation of EDL at nanoscale. Neutron Reflectometry is a powerful tool 

which provides structural information near the interface, in the direction normal to the 

surface. It is recommended that neutron reflectometry experiments should be conducted 

with salts such as 
6
LiCl at various ionic concentrations and applied potential to study the 

structure of EDL under various system conditions. Information on the thickness and 

structure of EDL under different system conditions can provide insight into the 

electrosorption mechanisms.  

 Further work needs to be done with blue energy experiments to estimate the 

energy produced per cycle and varying the experimental conditions to maximize the 

energy produced. Neutron imaging experiments can complement laboratory scale CDI 

experiments to visualize the transport of ions and obtain valuable information on the 

direction and magnitude of ion transport.  

 A better understanding of EDL formation and the electrosorption mechanisms at 

nanoscale can lead to improved system designs in desalination technologies, and in 

energy storage systems. Information on the effective diffusivities of various ions in 

porous carbon materials under various system conditions can provide insight into the 

design of better electrode materials for electrosorption applications.  
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