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SUMMARY

Graphs are used to represent data from a variety of sources. As the volume of infor-

mation available has exploded, there has been growing interest in the application of graph

analysis to real-time data. For example, graph analysis techniques can be applied to ac-

tivity from social networks, online communication, financial transactions, and sensor data.

Studying such datasets poses many challenges, including dealing with the high volume of

data and the speed with which it is generated and then transforming the relational informa-

tion into dynamic graphs. This dissertation addresses challenges that occur throughout the

graph analysis process.

Because many datasets are large and growing, it may be infeasible to collect and build

a graph from all the data that has been generated. This dissertation addresses the chal-

lenges created by large volumes of streaming data through new sampling techniques. The

algorithms presented can sample a subgraph in a single pass over an edge stream and are

therefore appropriate for dynamic data. This dissertation also presents a sampling algo-

rithm that can produce a temporally biased subgraph. Because this method emphasizes

edges with recent timestamps, it is useful for applications in which newer data is more

relevant.

Before graph analysis techniques can be applied, a graph must first be created from

the data collected. This is especially challenging when creating dynamic graphs, which

represent relationships that change over time. In particular, it is not obvious how to remove

old data, especially when edges are derived from interactions, which are not explicitly

reversed, but rather may decrease in relevance. This dissertation evaluates several methods

of aging old data to create dynamic graphs. In addition to methods used in the literature, a

new approach is proposed, based on the concept of preserving edges in active portions of

the graph. The method of aging data is important and should be carefully chosen because

it will affect the structure of the dynamic graph and therefore the result of algorithmic

xiv



analysis.

This dissertation also contributes new techniques for dynamic community detection and

analysis. In order to be useful for streaming data, community detection algorithms should

handle rapid changes to the graph. This work presents a new algorithm for local commu-

nity detection, which incrementally updates when the graph changes. By incrementally

updating, it can produce new results faster compared to re-computing from scratch with a

static algorithm. The creation of dynamic graphs allows us to study community changes

over time. This work addresses the topic of community analysis with a new vertex-level

measure of community change.

Together, these contributions advance the study of streaming relational data through

graph analysis. The dissertation addresses challenges arising in multiple stages of the pro-

cess, improving our ability to learn from the vast and ever-growing amounts of data at our

disposal.
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CHAPTER 1

INTRODUCTION

Every day, people log into social networks to consume content, make posts, and keep in

touch with contacts. All this activity generates an enormous amount of data. According to

the website Internet Live Statistics, which tracks internet use, there are currently over 300

million active users on Twitter, generating around 500 million tweets a day. Facebook has

over 2 billion active users, who create data by posting, reacting to others’ posts, sending

instant messages, and managing a list of contacts. Every second, hundreds of photos are

uploaded to Instagram, thousands of calls are placed with Skype, and millions of emails are

sent [1]. Another large source of data generation is personal tracking. It is now common to

track activities such as exercise, location, and sleep. One example is Strava, a platform on

which users can upload their rides and runs, react to friends’ activity, and see which other

users they came into contact with while exercising. This platform was recently in the news

when it was discovered that data collected by users revealed locations of military bases and

even road networks inside them.

Much of this data stores relationships between entities. This relational data can there-

fore be represented as a graph of vertices and edges. An edge between two people may

represent interaction between them, such as one user re-tweeting another’s post. On Face-

book, edges can be formed from interaction such as reacting to a post or tagging a contact

in a photo. Communication graphs can be created from email or instant messaging contact

between people. Edges can also represent explicit relationships, such as friend or contact

lists.

Graph analysis can provide insight into the structure of relational data and the under-

lying processes and behaviors that generate it. Here we use the term relational to refer to

data that expresses relationships between entities. Applying graph analysis to data from

1



sources such as online activity, however, is not straightforward. Challenges include the

large volume of data, the speed with which it is generated, and the transformation of the

data into graphs. First, data must be collected. For applications in which it is continually

being generated, the collection process must take into account this streaming nature. For

example, the data may be available only as a stream of elements of unknown order. Very

large datasets may be too large to fully store or to run computationally intensive analytics.

If so, it may be necessary to sample only a portion of the dataset. Once data is collected, a

graph must be created from it and the method of doing so is not always straightforward. If

dynamic graph analysis is performed, then it is necessary to decide how a changing graph

will be built from temporal data. Finally, once a graph is created, structural properties can

be evaluated with graph metrics. The graph algorithms must scale to the size of the data

and be able to keep up with the pace of change.

1.1 Contributions

This dissertation contributes to the field of dynamic graph analysis by addressing several of

the challenges described above. Because many real-life datasets are large and continually

growing, it is often infeasible to collect, store, and build a graph from the entire dataset.

In these cases, a representative portion of the data may be sampled. When sampling a

graph, the goal is typically to obtain a sampled subgraph that is structurally similar to

the graph that would be obtained from the full dataset. If the dataset is dynamic, with

new relational edges continually generated, then it may only be available as a stream of

edges. For these cases, sampling algorithms will need to process a stream of edges in a

single pass. Most graph sampling algorithms from the literature, however, sample a static

graph and assume random access. Chapter 3 presents new algorithms for sampling a graph

from a stream of edges in a single pass. The algorithms Weighted Edge Sampling and

Randomly Induced Edge Sampling produce a non-temporally biased subgraph with a pre-

determined number of edges. Experiments show that these new algorithms perform better

2



than previous methods from the literature. Chapter 3 also describes Temporal Weighted

Edge Sampling, a new algorithm that samples an edge stream to produce a temporally

biased subgraph. Because this method includes more edges with recent timestamps, it is

useful in applications where newer data is considered more relevant.

Dynamic graphs represent relationships that change over time. Therefore, they can be

created from a stream of edge data. For example, new edges may be added to reflect new

relationships and edges may be removed when the underlying relationships lose relevance.

In graphs with edge weights, weight changes will represent an increase or decrease in the

strength of a relationship. There exists a large body of work presenting algorithms for

dynamic graph analysis. However, before any such analysis can be performed, a dynamic

graph must first be created. It is necessary to decide under which conditions edges will be

added, modified, and removed. The way in which this is done will affect the structure of the

graph and therefore analysis results. While it is typical for new edges to always be added

to a graph, the question of when to remove or down-weight edges is less straightforward.

Chapter 4 evaluates methods of removing old data, or aging, that have been used in the

literature. It also presents a new approach based on the concept of preserving edges in

active portions of the graph. The motivation for the new method is to preserve information

about relationships between important entities in the network. Because the method of aging

data may affect results of algorithmic analysis, it should be carefully chosen.

Once a dynamic graph has been created, graph metrics may be computed and analy-

sis performed. Chapters 5 and 6 contribute new algorithms for community detection and

analysis on dynamic graphs. Chapter 5 presents Ordered Dynamic Seed Expansion, a new

algorithm for finding local communities for seed vertices of interest. The algorithm finds

a community relevant to a given seed or set of seeds and incrementally updates the result

when the graph changes. By incrementally updating, Ordered Dynamic Seed Expansion

can produce new results faster than re-computing from scratch with a static algorithm. This

makes it more able to keep up with a fast pace of new incoming data. Once communities
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are computed, it is possible to analyze how they change over time. For example, one can

track their evolution, flagging events such as new communities appearing or communities

merging together and splitting apart. Vertex level events can also be found. Chapter 6

presents a new measure to detect when vertices switch communities. This local measure

uses changes in a vertex’s neighborhood to flag a community change. Because it is local, it

works well when global communities are unstable over time. The measure can be helpful

in flagging entities with unusual behavior for further analysis.
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CHAPTER 2

BACKGROUND

2.1 Graph Analysis

Graphs are used to represent relationships from a variety of data sources, such as online

communication, biological networks, and financial transactions. A graph G = (V,E) is

composed of a set of vertices V and edges E connecting the vertices. In the most basic

case, an edge is a tuple of two vertices (u, v). However, edges may also have a weight,

timestamp, and additional attributes. In this dissertation, edges are undirected and may

contain a weight attribute (u, v).weight and a time attribute (u, v).time. Edge weights may

represent the relative importance of particular edges in graph analysis; for example, they

may be related to edge aging, as explained later herein. Edge timestamps may correspond to

times when edges are created based on an input data stream, or to other events underlying

the input data. In the case when a graph has no time attributes, the timestamp may be

omitted. For unweighted graphs, the weight of each edge is simply 1 and may also be

omitted. Each vertex has a set of neighbors N(v), which are the vertices it is connected to

through an edge. The weighted degree of each vertex is then the sum of all its edge weights.

2.1.1 Static Analysis

Graph analysis is used to interpret relational data and provide insights into the underlying

real life processes that generate the relationships. Here we use the term relational to refer to

data that expresses relationships between entities. Such data can be represented as a set of

vertices and edges. The structure of the data can be characterized with various graph mea-

sures. A basic measure is the distribution of vertex degrees. Networks representing social

connections, for example, typically have a skewed degree distribution, with a small number
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of vertices with high degree and a large number with few neighbors. Road networks, on the

other hand, do not, as a single intersection can connect only a few streets. Another basic

metric is the diameter, or the maximum distance between any pair of vertices. A path of

length h between vertices u and w is a sequence of h edges ((u, v1), (v1, v2), . . . , (vh−1, w))

in G. The distance between two vertices is then the length of the shortest path between

them. Social networks tend to be “small world” graphs with low diameter in which each

entity is only a few hops away from any other entity. Along with the diameter, other statis-

tics of the distribution of shortest path lengths between vertices are used to understand

graph structure. They may be useful, for example, in understanding how information or

diseases spread.

Triangles are a heavily studied graph feature. A triple is a set of three vertices for

which at least one is connected to the other two. A triangle, or closed triple, is a set of

three vertices, each of which is connected to the other two. Graphs with many triangles are

heavily clustered, meaning that two connections of an entity are also likely to be connected.

This concept is measured with the clustering coefficient. The local clustering coefficient

of a vertex gives the ratio of the number of triangles it participates in over the number

of triples it participates in. The global clustering coefficient is the ratio of the number of

triangles to the number of triples within the entire graph.

Another feature used to analyze the structure of graphs is vertex centrality. Several

different types of centrality have been proposed in the literature, each measuring vertex

importance in some way. The simplest, degree centrality, refers to the number of neighbors

of a given vertex. Closeness centrality measures the distance of a vertex to other vertices.

Betweenness centrality measures the number of shortest paths between all vertex pairs that

pass through a given vertex. Centrality measures can be used to identify important vertices

which are key to the spread of information or diseases. For example, betweenness centrality

was used to find important Twitter accounts that disseminated information during the H1N1

influenza outbreak and a flood in Atlanta, Georgia [2].
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The measures discussed above all apply to static graphs, which do not change and

have a constant set of vertices and edges. Such graphs represent permanent relationships,

whose existence may be possible because the underlying data is fully available and does

not change. Alternatively, data spanning a certain period of time may be collected and

then used to create a static graph, thus ignoring any data created earlier or later. Analysis

of static graphs ignores any possible temporal relationships that might be present in the

source data and thus provides only limited insights into relationships and processes that

gave rise to that data.

2.1.2 Dynamic Analysis

A dynamic graph represents time-changing relational data. In this dissertation, a dynamic

graph is a sequence of graph snapshots over time {G0, . . . , Gt}. Each Gt = (Vt, Et) is

a static graph representing the state of the dynamic graph at time t. In this work, time t

is a discretized variable and not continuous time. Dynamic graph analysis is used when

relationships may change and entities may enter or leave the network. This is represented

by the addition, deletion, or modification of edges from one snapshot to the next.

The static metrics discussed above may be applied to dynamic graphs by simply com-

puting and updating them for each new graph snapshot in time. For example, the clustering

coefficient may be maintained, either by computing it from scratch every time the graph

changes and an updated result is needed or by incrementally updating the value based on

the changes that occurred.

Dynamic graphs also allow for dynamic analysis, which measures how the graph changes

and detects important or unusual events. For example, Leskovec et al. study graph densifi-

cation over time and find that the diameter of graphs decreases as more edges are added [3].

By measuring and updating the centrality scores of vertices, it is possible to track the be-

havior of important vertices and detect changes in their behavior. For example, a vertex

with low importance suddenly becoming very central may be a significant event. Another
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example, dynamic community analysis, is discussed here in Section 2.2.4

2.2 Community Detection

A commonly studied feature of graphs is community structure. A graph community, or

cluster, may be broadly defined as a set of vertices that is densely connected. While there

is no single definition of communities, they should have high internal edge density and

few inter-community edges. For example, in graphs representing online social networks,

multiplayer games, or project management tools, graph communities can show groups of

friends or family, game teammates, or officemates who work together on the same project,

respectively.

Community detection is related to the task of graph partitioning because both attempt

to find sets of vertices that are strongly connected to each other and weakly connected to

the rest of the graph. However, the two tasks have different goals. Graph partitioning

divides a graph into a pre-determined number of groups, typically of similar size, while

minimizing the number of edges between them. A typical graph partitioning application

is dividing computational tasks between processors for parallel computation so that inter-

processor communication is minimized. This differs from community detection in several

ways. First, the number of partitions is determined by the number of processors and the

application and is therefore known at the outset. Second, the partitions should be of ap-

proximately equal size to load balance the problem. Third, the best partitions must be

returned regardless of whether the graph naturally divides well. Community detection, on

the other hand, seeks to determine what intrinsic structure exists in the graph. Therefore,

the number of communities to return is not pre-determined, but depends on the graph. The

sizes of communities may differ both in the number of vertices and edges they contain.

Finally, some community detection algorithms place each vertex in exactly one community

so that the communities form a partition of the graph. Others methods return overlapping,

or fuzzy, clusters by placing each vertex in one or more communities.
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A set of r communities in a graph G is represented by {C1, . . . , Cr}. When referring to

communities in a dynamic graph, the rt communities in snapshot Gt are {C1,t, . . . , Crt,t}.

In those cases where there is only a single community discussed, it is simply denoted C.

Let kCin be the sum of all edge weights interior to community C and kCout be the sum of all

edge weights on the border of C.

kCin =
∑

(u,v)∈E|u∈C∧v∈C

(u, v).weight (2.1)

kCout =
∑

(u,v)∈E|u∈C∧v/∈C

(u, v).weight (2.2)

2.2.1 Quality Measures

While there is no single definition of what constitutes a community in a graph or how to

measure its quality, many edges inside the community and few edges connecting it to the

rest of the graph are desired for the cluster to be considered well formed. One approach

defines and evaluates a community individually, focusing on the vertices and edges within

the community or adjacent to it and ignoring the rest of the graph. Such definitions often

require each member vertex to be sufficiently connected to a number of other members.

Several defintions are discussed in [4]. For example, an n-clan is a maximal subgraph for

which the distance between any pair of vertices, using edges within the subgraph, is not

greater than n. A k-core is a maximal subgraph for which each member is a neighbor of

at least k other members. Other definitions also impose limits on the number of edges

between the community and the rest of the graph. One example is an LS-set, a subgraph

in which each member vertex has more neighbors within the community than outside of

it. A relaxed version requires only the total number of edges within the community to be

greater than those connecting it to the rest of the graph. Such definitions, however, may be

too restrictive for many applications.
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Instead, sets of vertices can be evaluated as communities using quality measures, also

known as fitness measures. The higher the value of a quality measure, the better the com-

munity structure of the set. The community detection problem then becomes the task of

selecting those sets of vertices whose community fitness is sufficiently high. The intra-

cluster density fint(C) measures the ratio of the number of intra-community edges to the

maximum number that would be possible if all vertices were connected to each other.

fint(C) =
kCin

|C| (|C| − 1)/2
(2.3)

Another fitness measure is the relative density, which gives the ratio of the number of intra-

community edges to the total community degree. Lancichinetti et al. use fLFM(C), a

modification of relative density with a resolution parameter α, which controls the relative

importance of having many intra-community edges compared to having few border edges.

fLFM(C) =
2kCin

(2kCin + kCout)
α

(2.4)

Another fitness measure is fMONC(C), which further modifies the quality measure to allow

for singleton communities [5].

fMONC(C) =
2kCin + 1

(2kCin + kCout)
α

(2.5)

Instead of evaluating individual communities locally, communities forming a partition

of a graph can also be evaluated globally with a quality measure. A popular measure is

modularity, shown in Equation 2.6, which compares the number of intra-community edges

to the expected number under a random null model [6]. The motivation behind modularity

is that a random graph will not have community structure. A given partition with more

intra-community edges, and thus more community structure, than expected, will have a

higher modularity. The null model maintains the vertex degrees found in the graph, but
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with randomly rewired edges.

Q =
1

|E|
∑
Ci

kCiin −
(2kCiin + kCiout)

2

4 |E|
(2.6)

A good community assignment also minimizes the number of inter-community edges,

or the edge cut. However, considering only the number of inter-community edges alone

can lead to individual vertices forming singleton clusters. Therefore, quality measures

commonly used also take into account the size of communities. Two such measures are the

ratio cut [7], which divides the number of inter-community edges by the number of vertices

in each community, and the normalized cut [8, 9], which uses the total number of inter- and

intra-community edges as the normalizing factor.

RatioCut(C1, . . . , Cr) =
1

2

∑
Ci

kCiout
|Ci|

(2.7)

NCut(C1, . . . , Cr) =
1

2

∑
Ci

kCiout
2kCiin + kCiout

(2.8)

2.2.2 Detection Algorithms for Static Graphs

The most common type of community detection algorithm finds global, non-overlapping

communities that form a partition of the vertices. Such a global approach is useful when it

is necessary to know the structure of the entire graph. The results are simple to interpret and

to input to other algorithms because each vertex belongs to exactly one community and thus

receives a single label. However, many graphs are composed of overlapping communities

and in these cases non-overlapping algorithms may output low quality results.

An early algorithm by Girvan and Newman divides a graph into clusters by repeat-

edly removing the edge with highest betweenness centrality [10]. This removal eventually

disconnects the vertices and returns the resulting connected components as clusters. The in-
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tuition behind this approach is that highly central edges are likely to form bridges between

less connected portions of the graph. However, because the centrality measure must be

recomputed after each edge removal, the worst case complexity of O(m2n) for n vertices

and m edges is high, and the algorithm can only be run on smaller datasets.

Many algorithms used are greedy, agglomerative methods. The Clauset Newman Moore

algorithm greedily maximizes modularity by initially placing each vertex in its own single-

ton cluster and then repeatedly contracting edges [11]. At each iteration the change in

modularity that would result from joining two neighboring clusters into one is computed.

The pair with the highest change is chosen and the two communities are joined into one.

Multiple works have suggested improvements to this algorithm to achieve better modular-

ity optima or to speed up computation [12, 13, 14]. Riedy et al. present a parallel version

that uses a maximal edge matching to contract multiple edges at once [15]. The Louvain

algorithm is a popular and fast modularity maximizing method [16]. Each vertex also starts

as a singleton cluster. Next, for each vertex, the algorithm computes the change in modu-

larity that would result from moving it to the cluster of a neighbor and moves it to the best

one. At the end of this stage, all clusters are contracted into super-vertices and the same

process is repeated on the super-vertices. The process is repeated until no improvements to

modularity can be achieved. In general, the Louvain algorithm tends to output communities

with higher modularity than the Clauset Newman Moore algorithm.

Spectral methods provide an entirely different approach to community detection. When

a graph is represented by an adjacency matrix, the eigenvectors of the adjacency matrix, or

of other matrices derived from it, can be used to partition the graph into clusters [17, 18].

In spectral clustering, the eigenvectors of the Laplacian of the adjacency matrix are com-

puted. Each vertex can then be represented by an r dimensional vector from r eigenvectors.

Clustering these vectors with a technique such as k-means clustering assigns the vertices to

communities [4]. Newman computes a modularity matrix and uses its leading eigenvector

to repeatedly bisection the vertices [19]. At each stage vertices are divided based on their
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sign in the leading eigenvector, which increases the modularity of the partition.

Different community detection algorithms may produce differing clusters and it can

be difficult to know which to use. Instead of relying on the results of a single algorithm,

ensemble methods combine the output of multiple detection algorithms or of multiple runs

of a stochastic algorithm [20, 21, 22, 23].

While most methods partition the graph into mutually disjoint groups, there is a growing

body of work in detecting overlapping communities [24], where each vertex may belong to

multiple groups. These methods are valuable because in many real datasets, communities

of vertices do not form clean partitions. Rather, clusters may overlap each other or be

hierarchically nested. For example, in a social network, a single person may belong to

multiple clusters corresponding to work, family, and friends. Because they can account for

the cluster overlap that occurs in many real datasets, these algorithms are likely to output

better results. However, compared to non-overlapping algorithms, they are often more

computationally intensive and may require more parameter setting.

A well known algorithm for overlapping cluster detection is clique percolation, which

is based on the idea that communities are dense and likely to contain subgraphs in which

each vertex has an edge to every other vertex, called cliques [25]. A community returned

by the algorithm is a subgraph composed of overlapping cliques. Link partitioning takes an

entirely different approach by applying agglomerative clustering to edges instead of ver-

tices [26]. While a vertex may belong to multiple communities, each of its edges belongs

to only one. This intuition makes sense in the case of a social network. A person may be-

long to multiple groups, but typically has one primary relationship type with any particular

contact.

Label propagation is a technique that has been used to find both non-overlapping com-

munities [27, 28] and overlapping ones [29]. In this approach, each vertex is initialized with

its own unique community label. Next, a sweep of all vertices is performed in which each

is assigned one or more labels that occur most frequently among its neighbors. Successive
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sweeps are repeated until some convergence criteria are met, after which each vertex be-

longs to one or more communities based on its stored labels. These techniques are near

linear in time complexity and thus can be scaled to large graphs.

A fourth type of method to detect overlapping communities is through multiple local

expansions. In this approach, a local community is grown around a seed vertex or set

of seed vertices. By repeating such expansions multiple times, a graph is covered with

local communities, some of which may overlap. Lanchichinetti et al. repeatedly use a

random vertex as a seed and greedily expand to create a local community [30]. Overlapping

communities are produced by sequentially running expansions from a node not yet in a

community. A similar approach is used in [5], where the expansion technique differs, and

in [31], which uses maximal cliques as starting seeds.

Local community detection is the task of finding a relevant cluster for a set of vertices

of interest, called seed vertices. This problem is sometimes called seed set expansion and

we will use those two terms interchangeably. Because many graphs may now have millions

or billions of vertices, a full graph may be too large for certain tasks such as visualization,

human inspection of anomalies, and running computationally intensive algorithms. Local

community detection can be used in such cases to extract a smaller, but still relevant, sub-

graph. Additionally, as mentioned above, seed set expansion is used as a module in some

global, overlapping community detection algorithms [5].

Clauset presents a greedy method for seed expansion that starts from a single vertex

and then iteratively adds neighboring vertices to maximize the local modularity score [32].

The complexity of this approach for general graphs is O(c2d), where d is the average

degree and c the final community size, although this will depend on the graph structure.

Riedy et al. assume the the set of seed vertices given as input may belong to different

communities. Each vertex starts out in its own cluster. Merges may then occur between

a seed’s community and either another seed’s community or a singleton vertex in order

to maximize global modularity [33]. Bagrow and Bollt use a different approach in the L-
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shell method [34], in which vertices are added from successive shells. A shell is a set of

vertices at a fixed distance from the seed. Unlike in [32], multiple vertices are added to the

cluster at once. This will likely improve running time, but may lower quality of resulting

communities.

Local community detection has also been achieved through spectral methods. Andersen

et al. [35] use the Spectral PageRank-Nibble method. Their final community is formed by

adding vertices in order of decreasing PageRank values. In the random walk approach

of Andersen and Lang [36], some vertices in the seed set may not be placed in the final

community.

2.2.3 Detection Algorithms for Dynamic Graphs

While the community detection algorithms discussed thus far are applied to static graphs,

different methods can be applied to dynamic graphs. A survey of work involving commu-

nities in dynamic graphs can be found in [37] and [38]. When the community structure

must be computed for each snapshot Gt of a dynamic graph, any of the static algorithms

discussed above could be simply applied to each snapshot. Dynamic algorithms are used

instead for two reasons. First, a dynamic algorithm may seek to output a higher quality

sequence of communities over time by using multiple snapshots of the graph. To do so,

it may account for temporal relationships between graph snapshots and prevent formation

of drastically differing communities in consecutive time instances. Second, the algorithm

may reduce computation by reusing the previously found communities and incrementally

updating.

In the former case, the goal is typically to return a sequence of communities that are

both high in quality at each point in time and change smoothly over time. Multiple graph

snapshots {G1, . . . , Gt} may be used to compute the communities for a single snapshot.

If a graph is no longer changing and the entire history of temporal graph data is available

during computation, it may be used to obtain a sequence of communities [39, 40, 41].
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Because all snapshots of the graph are used as input, the output communities are likely to

both have good quality at each point in time and change smoothly over time. However,

such an approach can be computationally expensive and requires knowledge of all data. In

many real life applications, online results are needed at regular time intervals when the data

changes. This type of approach would need to be re-run whenever new data appears and

may produce different community histories for each run.

Instead, dynamic communities may be computed in an online fashion, with new clus-

ters found for each new snapshot of the dynamic graph as it appears. The online approach

can be achieved by both maximizing the quality of clusters in the new snapshot and mini-

mizing the transition cost from the previous community decomposition. Examples include

evolutionary clustering by Chakrabarti et al. [42] and FaceNet by Lin et al. [43].

The second body of work in dynamic community detection aims to reduce the compu-

tational cost of finding communities in quickly changing dynamic graphs. This is done by

using the previously found result as a starting point and incrementally updating the com-

munities to reflect changes in the graph. The workflow for many of these algorithms is

as follows. A current graph exists with previously detected communities. When a set of

updates occur, the previous community structure is modified based on the updates. In some

cases, a static community detection algorithm is then applied to this modified community

state. Some of these approaches are discussed below.

In [44], the authors present incremental spectral clustering by updating eigenvalues.

In [45] the authors use an incremental version of the Louvain algorithm [16]. When the

graph changes, instead of restarting from scratch, the previous community assignment is

used as a starting point. Each node can then move to a different community to increase

modularity. Shang et al. [46] also present an incremental algorithm to update the Louvain

method. After each update, communities either remain the same, are merged due to inter-

community edge addition, or new vertices are placed in an existing or new community.

Static Louvain clustering is then restarted. The MIEN algorithm [47] is an incremental
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version of greedy agglomerative community detection, such as CNM. After edges and ver-

tices are added and removed at a time step, all directly affected vertices, (endpoints of an

inserted or removed edge or a vertex that was added or removed) are moved into their own

singleton communities. Next, the chosen static community detection method is applied to

current community structure to obtain any further merges. Aktunc et al. [48] present an in-

cremental version of the SLM algorithm [49], which uses the clustering from the previous

time step as a starting point, with new vertices in their own singleton communities. Riedy

and Bader move vertices of inserted or deleted edges from their communities into singleton

clusters before restarting their static, parallel, agglomerative algorithm [50].

Takaffoli et al. [51] present an incremental version of the local community detection

algorithm from [52]. The static algorithm greedily adds the best neighboring vertex to the

community, based on a fitness function, after which all vertices are checked for removal.

The incremental version uses the connected components of communities found at the pre-

vious time step as starting points before continuing expansion with the static algorithm.

Many of these incremental approaches have a similar principle. Vertices directly af-

fected by graph updates are removed from their previous community and either moved to a

different one or placed as a singleton. A static algorithm then uses this modified community

state as a starting point.

2.2.4 Analysis of Communities

On static graphs, communities reveal group structure. On dynamic graphs, changes to this

structure can be discovered and unusual or important events flagged. Over time communi-

ties may grow, shrink, split apart, merge together, disappear, and reappear [53]. Detecting

these events requires both finding correct communities for each graph snapshot and match-

ing them across time. For example, communities Ci,t1 , Cj,t2 , Ch,t3 may be matched if they

share enough vertices. In [54], such a set of matched communities is labeled as a single

entity evolving over time. In addition to tracking community level operations, vertex level
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changes can be detected. Vertices can alter their behavior by moving from one community

to another or by changing the strength of their membership. Asur et al. define and detect

a variety of community and vertex level events using overlap of communities in consec-

utive graph snapshots [55]. One of the challenges in matching communities across graph

snapshots in this manner is cluster instability. Because the output of many algorithms is

sensitive to small variations in input, the communities assigned to consecutive snapshots

may differ even when the underlying structure has not changed much. Hopcroft et al. [56]

address this problem by using multiple runs to detect stable clusters, or natural communi-

ties, which are then tracked. Palla et al. use overlap to match communities over time in

a research paper co-authorship graph and a phone call graph to track how long they per-

sist [57]. Nevertheless, matching clusters from different graph snapshots is a challenge.

The way in which new edges are added to and old edges removed from dynamic graphs

will affect the stability of communities, and thus should be carefully chosen.

2.3 Graphs from Real Data

2.3.1 Edge Creation and Removal

Before computing any graph metrics and performing analysis, a graph must first be created

from relational data. Researchers will often use datasets in which vertices and edges have

already been defined, such as from the SNAP repository [58] or the Koblenz Network

Collection [59]. In such cases, a graph can be easily formed by reading a file and including

all edges listed in it. However, determining how to form edges is not always straightforward

and will affect results of analysis.

Edges may be created by inferring relationships between entities using interaction be-

tween them. It is then necessary to determine how much and what type of interaction

between two entities is sufficient to connect them with an edge. De Choudhury et al. [60]

examine how to transform raw email communication data into a single, static relationship

graph. Structurally different graphs will be formed based on what, if any, communica-

18



tion frequency or volume threshold is set for edge creation. For example, adding an edge

between every pair of people who send an email to each other at least once a day will cre-

ate a very different graph compared to adding an edge for those that exchange emails at

least once a year. The authors set a threshold on the geometric mean of the annual rate

of messages exchanged and study how the graph structure changes as the threshold varies.

Social network ties can also be determined using multiple different forms of interaction or

communication [61, 62, 63].

Physical proximity of people has also been used to infer relationships [64, 65, 66, 67,

68, 69, 70, 71]. Factors such as the duration of proximity, location, time of day, number

of people nearby, and number of encounters can be used to determine whether a relation-

ship between two people should be established. Such inferred relationships can then be

represented by an edge in a graph.

While the issue of determining what type of relationship constitutes an edge is a chal-

lenge of creating a static graph, creating dynamic graphs poses additional difficulties.

Given a graph snapshotGt, we must decide how to createGt+1 based on the passage of time

and new relational data. New edges that appear between times t and t+ 1 will typically be

added to create snapshot Gt+1. For example, if interactions occur between times t and t+1

to create new edges, these edges will be added to create snapshot Gt+1. However, as time

passes, the importance of old interactions may decrease and they may no longer indicate a

relationship. Therefore, it is also necessary to determine whether edges representing older

interactions will be removed or de-emphasized and if so, how.

Clauset and Eagle [72] create a dynamic graph of the Reality Mining dataset using

the sliding window approach and examine how the size of the sliding window affects pe-

riodicity. They also investigate a “natural” window size based on the power spectra of

metrics. The window size in the sliding window approach is also studied by Kossinets and

Watts [73], who find that vertex-level properties are less stable than global graph ones.

Saganowski et al. [74] study the effect on community evolution of using a sliding time
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window to build a dynamic graph compared to aggregating all past data. They examine

how the length and amount of overlap of the window size affects how many communities

continue, split, merge, dissolve, and appear between consecutive snapshots. Oliveira et

al. [75] also compare the sliding window approach to aggregating all data. Both works find

that removing old data with a sliding window approach causes more change in community

structure compared to aggregating all data.

2.3.2 Sampling

Another challenge in creating graphs is their collection and storage. Many graphs are too

large to store or analyze in their entirety. Moreover, they are often constantly growing as

new data is generated. Sampling techniques can be used to obtain a smaller, representative

subgraph that can then be processed and analyzed. In order for a sample to be representa-

tive, it should be structurally similar to the full dataset. Therefore, the quality of sampling

methods is typically evaluated by computing graph metrics, such as those discussed in Sec-

tion 2.1.1, on both the subgraph and the full graph and comparing their values. A sampling

method produces a subgraph GS = (VS, ES) where VS ⊆ V and ES ⊆ E. Typically,

VS ⊂ V and ES ⊂ E. Sampling algorithms will either target a reduced number of vertices

| VS | or limit the number of edges | ES |.

Static Graph Sampling

Most previous work on graph sampling applies only to static graphs. These methods as-

sume that the entire dataset is available beforehand and can be accessed as needed. Some

approaches assume random access ability, which may be infeasible on very large datasets,

while others are more suitable to reading large, disk bound graphs. However, they all as-

sume both that the entire dataset already exists and is not growing and that the whole graph

can be stored and accessed. Static graph sampling has been studied in [76, 77, 78].

A number of basic methods are described in detail in [76]. These include Random Edge
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sampling, which selects edges uniformly at random from G to form the sampled graph GS .

This strategy can produce sparsely connected graphs with a larger diameter, but can easily

be extended to the fully streaming context, as discussed later. Another is Random Node

sampling, in which nodes are chosen uniformly at random from G. The sampled graph GS

is then formed from all edges induced by the selected vertices (edges with both endpoint

vertices selected). Unlike in Random Edge sampling, the method can only target a specific

number of vertices in the sample, | VS |, but the resulting number of edges | ES | is not fixed

and will not be known ahead of time. Thus, the final size of memory needed to store the

graph cannot be specified. Variations of Random Node choose the vertices not uniformly,

but with some bias. These include Random Degree Node and Random PageRank Node,

where the vertices are chosen with probability proportional to their PageRank score and

degree, respectively. Because these methods require information about the structure of the

graph prior to sampling, they may not be useful for scenarios in which the full dataset is

too large to process.

Traversal based methods, which start with some initial vertices and expand by accessing

neighbors, can also be used to obtain a subgraph [76]. In Random Walk sampling, random

walks are performed from a starting node and GS is then formed from vertices encountered

and edges traversed. Snowball sampling performs a bread first search like traversal from

an initial seed vertex, but only a fixed number of neighbors is added for each vertex. In

Forest Fire sampling, the traversal is executed by starting with a seed vertex, visiting or

“burning” a geometrically distributed random number of its neighbors, and repeating this

recursively [76, 79]. Each vertex can only be “burned” or visited once.

Lindner et al. [80] present Local Degree Sparsification, in which for each node v, only

a fraction of neighbors with the highest degree are kept. This approach aims to select edges

that lead to high degree hubs in the graph.
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Streaming Graph Sampling

Streaming graph sampling techniques create and maintain a subgraph GS by processing

a stream of edges S. Each element of the stream is an edge (u, v), possibly along with

some attributes such as a weight or timestamp. While the entire stream of edges together

forms the full graph G, the stream may be never ending as new edge activity is generated.

Imagine, for example, tapping into a stream of Twitter activity such as re-tweets or users

“following” each other. The full dataset is extremely large and new data is rapidly being

generated. In such a scenario, static methods cannot be applied because new data is con-

stantly produced, while a static approach assumes access to the entire dataset. To address

this case, streaming graph sampling must be able to process a stream of edges in a single

pass.

Note that some static sampling algorithms work by performing several passes over the

edges of a graph. Although these methods are often called streaming, they are different

from what is here referred to as streaming sampling. In this work, streaming sampling

algorithms are those that can process a real time stream of continuously generated data.

The full dataset may never be stored so sampling must be performed in a single pass over

the edge stream.

While Reservoir sampling is not a graph-specific method, some streaming graph sam-

pling algorithms in the literature use the concept of Reservoir sampling [81]. This method

returns a fixed size sample from a stream so that each element has an equal chance of be-

ing returned in the sample, without needing to know the total number of elements in the

stream. To obtain a sample of size k, the first k elements are added to the reservoir. Each

subsequent element is added with decreasing probability. The ith element is added with

probability k/i for i > k and if added, replaces a random element of the reservoir.

The simplest form of streaming graph sampling is Random Edge sampling (RE), which

uses Reservoir sampling to select random edges from the stream. This approach is used for

structural compression of a stream in [82]. Tabassum and Gama [83] apply both Random
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Edge and a streaming edge sampling technique called Biased Random sampling on a phone

call graph. The Biased Random sampling method inserts each new edge into the sampled

graph, replacing an old edge if the sample has reached its size limit.

In addition to RE, which returns a subgraph with a predetermined number of edges,

two streaming sampling methods that limit the number of vertices have been proposed in

the literature. The first is Streaming Time Node sampling by Ahmed et. al [84], in which

the stream of edges is divided into time intervals, such as a day or hour of activity. Each

interval is selected with a certain probability and all vertices that appear within a chosen

interval are added to the sample. An edge from the stream is then inserted if both its

endpoint vertices are in the sampled subgraph. This is similar to the static Random Node

sampling with induced edges, except that in the streaming case edges are only included

if they appear after both vertices are selected. Edges occurring earlier in the stream are

not included. By choosing vertices that appear together within a given time interval, the

authors state that the vertices are more likely to be connected. The Streaming Time Node

sampling method cannot be used to sample from a true, real-time stream of edges because

it requires knowledge of the entire graph stream. In order to select a fraction φ of vertices

in the sample, the vertices present in each unit of time are selected with probability m/T ,

where T is the total number of timestamps and m is the average number of timestamps

needed to achieve the sampling fraction φ. This information is likely not present in a real

streaming sampling scenario, but rather calculated once the data is collected.

The second streaming sampling method that limits the number of vertices chosen is

Partially Induced Edge Sampling (PIES) [85, 86]. The PIES method is similar in principle

to Streaming Time Node Sampling, but eliminates the need to know beforehand informa-

tion about the entire graph stream, making it more suitable to real sampling use cases. This

approach uses Reservoir sampling to select a fixed number of vertices from the stream and

builds a subgraph from all edges whose endpoint vertices are in the reservoir. Since edges

are only included after their endpoint vertices are selected, the edges are partially, not fully,
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induced. Although the authors also consider an alternative in which vertices are indepen-

dently chosen, the PIES method samples on edges and either rejects the edge or adds both

endpoint vertices of the edge to the sample. This approach biases the sample towards higher

degree vertices because they will appear on more edges and thus have a higher probability

of being selected.

In addition to methods that limit the number of edges or the number of vertices in

the sample, some streaming graph sampling approaches do not limit the final size of the

graph. One such approach is used for the DOULION algorithm for streaming triangle

counting [87]. In order to reduce the amount of required computation, DOULION first

samples a stream of edges before performing triangle counting. The sampling approach

used selects each edge with a uniform probability. In a streaming environment in which

new data is being generated, the total number of edges in the stream will not be known and

this approach will therefore not restrict the final number of edges in the sample. Another

example of a sampling method that does not limit the number of vertices or edges in the

sample is the one used in the Graph Sample and Hold Framework [88]. There, each edge

is selected with varying probability depending on how it connects to the current sample.

Because edges are never removed, the size of the sample increases continually.
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CHAPTER 3

STREAMING GRAPH SAMPLING

3.1 Introduction

Graphs are widely used to represent relational datasets from a variety of domains, such as

online social networks, financial transactions, and biological data. In recent years, there has

been increasing interest in the analysis of large, real-world networks, especially from online

activity. However, many such online datasets are not only large, but constantly growing as

new data are rapidly generated. Both the size and streaming nature of these graphs present

challenges.

Datasets that are very large may not be able to be stored in their entirety. If they can be

stored, computation time may suffer as algorithms take longer to run. The issue of size can

be addressed through sampling. Several graph sampling algorithms have been presented in

the literature, but most sample static graphs. Sampling streaming data poses an additional

difficulty because the entire dataset cannot be accessed in any order desired. Many graph

sampling techniques rely on full access to the graph. For example, given a vertex, they may

require access to all of its edges and neighboring vertices. This type of access may not be

feasible in a real-life application, either because new edges are continually being generated

or because such random access is not available.

Therefore, this work focuses on streaming graph sampling: methods that can sample

a subgraph with a single pass over a stream of edges. The single pass requirement is

important in order to be able to tap into a stream of new data as it is produced and, in real

time, make a decision about what to include and what to forget. The goal of sampling

techniques presented in this chapter is to obtain a smaller subgraph because the full dataset

is too large to store or too large to run computationally intensive algorithms. Therefore,
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the sampling algorithms must limit the size of the sampled subgraph. This means that

sampling algorithms must limit not only the number of vertices, but also the number of

edges in the subgraph. This chapter addresses this need by introducing two new sampling

algorithms: Weighted Edge Sampling and Randomly Induced Edge Sampling. This work

was published in [89].

In addition to obtaining a structurally similar subgraph, applications may have other

requirements. In dynamic graph analysis and general stream processing, newer data may

be more relevant and therefore preferred. Aggarwal presents a method for general, non-

graph, stream sampling that returns a sample biased towards newer data [90]. Dynamic

graphs may be updated to include newest data and often old data is removed when it loses

relevance. This chapter addresses the need for temporally biased graph sampling with the

new Temporal Weighted Edge Sampling algorithm.

3.1.1 Contributions

This chapter introduces new algorithms for streaming graph sampling. Section 3.4 presents

two new algorithms that sample graph streams without temporally biasing: Weighted Edge

Sampling (WES) and Randomly Induced Edge Sampling (RIES). Each of these methods

can (1) sample a graph stream in a single pass, thus allowing for true sampling of real-time

data streams, and (2) limit the size of subgraph by restricting the number of edges. To the

best of our knowledge, the only previously proposed sampling algorithm that satisfies both

of these requirements is streaming Random Edge (RE). Other approaches discussed in the

literature either require more than a single pass over the data (or require random access to

the graph) or they only restrict the number of vertices in the sampled subgraph and not the

number of edges, which means that the final size of the subgraph is not known. Experiments

on several relational social network datasets compare the performance of RIES and WES

against the previously known RE. They show that the new algorithms produce subgraphs

that are more structurally similar to the original graph compared to RE. The main advantage
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of WES over RIES is that its parameters affect the sample in a more predictable manner

and are thus easier to set.

Section 3.5 presents a new algorithm for temporally biased graph sampling: Temporal

Weighted Edge Sampling (TWES). Like WES, RIES, and RE, TWES samples a subgraph

from a stream in a single pass while restricting the number of edges sampled. In addition,

it can return a sample that is temporally biased towards newer edges. Experiments show

that TWES samples subgraphs that are temporally biased and display similar quality to

non-temporally biased subgraphs produced by WES.

3.2 Background

3.2.1 Sampling Goals

Graph sampling may be used to achieve four categories of goals [86]. Firstly, it may be

performed to estimate specific graph parameters, such as the average degree or clustering

coefficient. For example, triangle counting has received much attention in the literature

[91, 92]. Another goal may be to obtain representative vertices in order to measure their

attributes. This may be useful, for example, in the social science setting where vertices

represent people in a network with features that need to be estimated. In this case, it is most

important to obtain an unbiased sample of vertices. Third, it may be performed to obtain a

representative set of edges in order to analyze their attributes. For example, in a network

where vertices have attributes, sampling edges can be used to measure the homophily of

such attributes: do vertices tend to connect to similar vertices or not? Finally, sampling

a graph can be used to obtain a smaller, but structurally similar subgraph. In this case,

simply obtaining representative vertices or representative edges is not sufficient. The goal

is to obtain a representative subgraph. This is useful when the entire dataset in question

is too large to either store or to analyze. Analysis may then be performed on the smaller

subgraph instead. Many graphs available and used in the literature for testing are in fact

samples themselves. This chapter addresses the fourth aforementioned goal of sampling:
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to obtain a smaller, but structurally similar subgraph that lends itself to further processing.

Streaming graph sampling creates and maintains a subgraph by processing a stream

of edges S, which may be never ending as new edge activity is generated. Imagine, for

example, tapping into a stream of Twitter activity such as re-tweets or users following

others. The full dataset is both extremely large and rapidly growing, with new data being

continually added to it. In such a scenario, static methods cannot be applied because new

data is constantly produced, while a static approach assumes we already have the entire

dataset. To address this case, streaming graph sampling must be able to process a stream

of edges in a single pass.

Note that some static sampling algorithms work by performing several passes over the

edges of a graph. Although these methods are often called streaming, they are different

from what we refer to as streaming sampling. In this work, streaming sampling algorithms

are those that can process a real time stream of continuously generated data without going

back in time to re-process previously stored data. The full dataset may never be stored so

sampling must be performed in a single pass over the edge stream.

3.2.2 Notation and Problem Statement

Given a full graph G = (V,E), a sampling algorithm can be used to obtain a sampled

subgraph GS = (VS, ES) where VS ⊆ V and ES ⊆ E. Since a sample should be smaller

than the original graph, typically both VS ⊂ V and ES ⊂ E. In static sampling, G already

exists and can be accessed directly. Often, random access is assumed so that all edges

of any vertex can be examined. In contrast, in the streaming sampling problem, the full

dataset can be accessed only one element at a time as a stream. Each element of the stream

is a tuple that represents an edge event. It must contain two vertices and may include other

features such as a timestamp and weight. In this work, the elements of a stream S are

tuples (u, v, t), where u and v are endpoint vertices and t is a timestamp. We assume there

is no weight parameter in the source data stream S, i.e. all input edges have the same
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initial importance. The timestamps represent discrete time in whatever units are used in the

application. In Section 3.5, the timestamps are used by the algorithms to introduce temporal

biasing, while algorithms in Section 3.4 do not take timestamps into consideration. The full

graph G = (V,E) is created by including all edges from the stream in E and all endpoint

vertices in V . If the stream is never-ending, then the full graph G may constantly grow.

Note that the word “edge” is used in this work to refer both to the edges of a graph G and

to the elements of a stream S. In other words, the graph G is constructed from edges of the

stream S as they arrive. However, as explained later, edges of G may include additional

weight parameters, even if edges in S are weightless.

The sampling algorithms presented in this chapter are flexible and can be applied to

multiple types of edge streams. The algorithms return a sample of the edges of S, denoted

SS , and the elements of SS can then be turned into a subgraph GS . We now describe how

this is done.

There are two main cases to consider. In the first case, the elements of S may corre-

spond one-to-one to edges of G. Since only one edge exists between any given pair of

vertices u and v in G, only one edge in S can then contain u and v. That is, the first two

components of the tuple, corresponding to the vertices, uniquely identify the tuple in S. In

this case, each edge in SS is simply added to ES and the endpoint vertices are added to VS .

If GS needs to have timestamps, then the timestamp of the tuple may be used to set a time

(u, v).time for each (u, v) ∈ ES . This simpler case is of less practical importance, as it

requires that only one edge event may ever occur between any two vertices.

In the second, more general, case, multiple elements of S may contain the same two

vertices. For example, each element may correspond to a relational event such as an email

sent between two people. Since any two people may communicate repeatedly over time,

multiple edges in S may contain the same two vertices. They may even contain the same

timestamp if the events took place within the same interval of time. In this case, the sub-

graph GS will be created from SS as follows. For each element (u, v, t) ∈ SS , if the
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undirected edge (u, v) does not already exist in ES , it is added. Otherwise, the weight of

(u, v) ∈ ES can be incremented and if t > (u, v).time, its timestamp updated to reflect the

most recent time.

The algorithms presented in this chapter will take as input a stream S and return a

sample of the observed elements SS . The subgraph GS = (VS, ES) can then be created

as discussed above. In the experiments presented later in this chapter, edges in SS may

repeat. However, the sampling algorithms are flexible and could be adapted to applications

in which graphs must contain additional information. For example, an edge (u, v) ∈ GS

may need to have as a feature a list of all timestamps at which a relational event between u

and v occurred.

3.2.3 Related Work

Section 2.3.2 provides a broader overview of the existing literature on graph sampling

techniques. This section discusses work in streaming sampling that is directly relevant to

this chapter.

Reservoir Sampling

Reservoir sampling is a general stream sampling technique that has been utilized in graph

sampling [81]. This method processes a stream one element at a time to return a random

sample of predetermined size. At any point in time, each element that has been processed

has an equal chance of being in the sample. A uniformly random sample is simple to

achieve when the total number of elements to be processed is known. The techniques’s

value lies in the fact that a uniformly random sample is achieved without needing to know

the total number of elements in the stream. To obtain a sample of size k, the first k elements

are first added to the reservoir. Then, each subsequent element is added with decreasing

probability. For i > k, the ith element is added with probability k/i and if added, replaces

a random element of the reservoir. This simple technique assures that at any given time
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there are always k elements in the sample, and all i elements processed so far each may be

found in the sample with the same probability.

Efraimidis and Spirakis presented Weighted Reservoir sampling, in which each ele-

ment of the stream is included in the returned sample with probability proportional to its

weight [93]. Each element with weight w is assigned a random value r ∈ Uniform(0, 1)

in order to generate a key r
1
w . At the end of the stream, or whenever a sample should be

returned, the k elements with largest keys are returned. The Weighted Reservoir sampling

technique is utilized in the WES and TWES algorithms presented in this chapter. In this

work, edge weights do not come from the input stream edges but are appended to the data

based on edge timestamps or on how much they connect to the current sample.

Graph Sampling

Perhaps the simplest form of graph sampling involves creating a subgraph from a uniformly

random sample of edges. This approach is called Random Edge sampling (RE). RE can

be performed in a single pass over a stream of edges using reservoir sampling, as shown

in Algorithm 1. This is the only graph sampling technique from the literature that directly

limits the number of edges in the sampled subgraph and can be performed in a single pass

over a stream of edges. Therefore, it is used as a baseline for the new algorithms presented

in this chapter.

In addition to RE, other streaming algorithms have been discussed in the literature that

either limit only the number of vertices in the sample or impose no limit on the size of

the sample at all. The Streaming Time Node Sampling [84] and Partially Induced Edge

Sampling (PIES) [85, 86] algorithms sample a subgraph with a specified number number

of vertices. Since PIES is an improvement on Streaming Time Node Sampling, we use it

as our main reference when discussing our proposed algorithms. The PIES algorithm uses

Reservoir sampling to produce a subgraph formed from a predetermined number of vertices

from the stream. The Reservoir sampling is performed on edges so that if selected, both
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Data: stream S of edges, sample size k
Result: GS = (VS, ES)
initialize empty sample SS;
i = 0;
while S has edge ei do

(ui, vi) = ei;
if i < k then

add (ui, vi) to SS;
else

p = k
i
;

draw r from Uniform(0, 1);
if r < p then

remove random element from SS;
add (ui, vi) to SS;

end
end
i = i+ 1;

end
for edge (u, v) ∈ SS do

VS = VS ∪ {u, v};
end
create ES from edges in SS;
return GS = (VS, ES);

Algorithm 1: Streaming Random Edge (RE) Sampling
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endpoint vertices are added to the reservoir, replacing other vertices if full. A subgraph

is built by including all edges whose endpoint vertices are in the reservoir when the edge

is processed. If a vertex is removed from the reservoir, its edges are dropped as well.

Consequently, the number of edges in PIES cannot be predetermined even if the number of

vertices remains constant. Section 3.3 discusses why it is important to keep the number of

edges, instead of vertices, constant.

While RE keeps the number of edges in the sample at a predefined level and PIES

does the same with vertices, some streaming graph sampling approaches do not limit the

final size of the graph. In order to reduce required computation, the DOULION algorithm

samples a stream of edges before performing triangle counting [87]. Each edge is selected

with a predetermined uniform probability. In a streaming environment in which new data

is being generated, the total number of elements in the stream cannot be known. There-

fore, with any predetermined probability chosen, the final number of edges selected cannot

be known. Another such example is the method used in [88], in which each edge is se-

lected with varying probability depending on how it connects to the current sample. Edges

are never removed and thus the size of the sample increases as more stream elements are

processed.

3.3 Targeting a Vertex Versus Edge Size

Sampling methods typically create a subgraph GS with either a specific number of vertices

| VS | or a specific number of edges | ES |. For example, in static node based sampling,

described in Section 2.3.2, k vertices will be randomly chosen and all edges induced by

these k vertices are included in ES . The resulting number of edges | ES | in the sample

cannot be predicted and can be as low as k
2

or as high as k∗(k−1)
2

. The same phenomenon

applies to the PIES method, where k vertices are sampled from a stream and edges are

included if both endpoint vertices belong to the stream. Given the fact that most social

network type graphs are sparse, a bound of O(k2) edges for k vertices is not relevant
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Figure 3.1: The number of vertices and edges for subgraphs sampled with RE and PIES is
shown. For samples with the same number of vertices, the PIES method results in many
more edges compared to the RE method.
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in practice. The resulting number of edges is especially hard to determine in streaming

sampling because the dataset is not available ahead of time and average degree estimation

cannot be performed.

This is a problem when the purpose of graph sampling is to obtain a smaller subgraph

because the full dataset is too large to be stored. The size of GS = (VS, ES) depends on

the number of edges | ES |. Note that | VS |≤ 2 | ES | so that bounding the number

of edges does bound the entire size of the graph. In cases when sampling is performed

because computationally expensive analytics cannot be run on the full dataset, it is also

important to limit | ES | because the running time of most algorithms will depend in part

on the number of edges.

To further motivate the need to consider the full size of the sampled graph, Figure 3.1

compares the number of vertices and edges in subgraphs created with PIES and RE on test

datasets described in Section 3.4.3. Because in PIES it is not possible to target a specific

number of edges, we repeatedly sample subgraphs with increasing numbers of vertices and

plot the resulting number of edges against the number of vertices. Similarly, in streaming

RE, it is not possible to target a specific number of vertices, so we repeatedly sample

subgraphs with increasing numbers of edges and plot the number of edges against the

resulting number of vertices. Figure 3.1 shows two important points. First, for subgraphs

with a given number of vertices, those subgraphs created by PIES tend to have many more

edges compared to subgraphs created by RE. This is as expected because PIES includes all

induced edges going forward in time. Second, for any target number of vertices, the number

of resulting edges will vary depending on the graph. Thus, it is impossible to predict | ES |

based on a selected | VS | without additional knowledge about the dataset.

3.4 Non-Temporal Graph Sampling

This section presents two new algorithms for streaming graph sampling, WES and RIES.

Each processes an edge stream in a single pass and outputs a sample of a specified number
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of edges. In this section, the timestamps of edges are not considered. The goal of the

sampling algorithms is to create a subgraph that is structurally similar to the full graph.

With this goal in mind, the quality of samples produced by WES and RIES is compared to

the baseline RE algorithm in Section 3.4.3.

3.4.1 Weighted Edge Sampling (WES) Algorithm

The first new streaming graph algorithm presented is Weighted Edge Sampling (WES).

The method samples ke edges from a graph stream S. The source stream S may have any

number of elements or be never ending if edges are constantly generated. WES uses the

concept of Weighted Reservoir sampling to give more bias to edges that connect to the

current sample SS at the the time when the edge is processed. By biasing towards such

edges, WES creates a subgraph that is more connected compared to RE. Specifically, WES

has three parameters, w0, w1 and w2. When a new edge is processed in the stream, it is

given a weight that indicates how likely it is to be included in the final sample. Edges that

have no endpoint vertices in the sample when they are processed are assignedweight = w0,

those that have one endpoint vertex in the sample are assigned weight = w1, and those for

which both vertices are already included in the sample are assigned weight = w2. Since

only the relative weights are important, w0 is always set to 1 in experiments shown in this

section.

For each edge, after its weight is set, a random number r is drawn from Uniform(0, 1).

The key for the edge is then set to be r1/weight. At any point in the stream, the ke edges with

largest keys seen so far form the sample. The probability that an edge is in the sample is

proportional to its weight [93]. By setting w0 ≤ w1 ≤ w2, WES biases towards edges that

will connect to the current sampled subgraph. Full details of WES are given in Algorithm 2.

In streams with repeated edges, each instance is sampled and stored separately. Top keys

can be stored and retrieved using a min-heap, which allows the element with lowest value

to be accessed in O(1) time.
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Data: stream S of edges, edge limit ke, parameters w0, w1, w2

Result: GS = (VS, ES)
initialize empty min-heap M ;
VS = ∅, i = 0;
while S has edge ei do

(ui, vi) = ei;
if ui ∈ VS and vi ∈ VS then

weight = w2;
else if ui ∈ VS or vi ∈ VS then

weight = w1;
else

weight = w0;
end
draw r from Uniform(0, 1);
keyi = r1/weight;
if |M |< ke then

add (ui, vi) to M with key ki;
VS = VS ∪ {ui, vi};

else if keyi > smallest key in M then
Remove element (uj, vj) with smallest key from M ;
if uj has no more edges in M then

VS = VS \ uj;
end
if vj has no more edges in M then

VS = VS \ vj;
end
add (ui, vi) to M with key keyi;
VS = VS ∪ {ui, vi};

end
i = i+ 1;

end
create ES from edges in M ;
return GS = (VS, ES);

Algorithm 2: Weighted Edge Sampling (WES)
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3.4.2 Randomly Induced Edge Sampling (RIES) Algorithm

Randomly Induced Edge Sampling (RIES) is a streaming graph sampling algorithm which

creates a subgraph with no more than kv vertices and no more than ke edges. RIES is a

modification of the streaming algorithm PIES described in Section 3.2.3. Recall that PIES

randomly selects k vertices in pairs by sampling on edges and either accepting an edge and

adding both its endpoint vertices to the sample or rejecting the edge. In addition, PIES

adds all edges in the stream whose two endpoint vertices are in the sample VS at the time

the edge arrives. RIES, on the other hand, includes two levels of stream sampling. On the

first level, kv vertices are sampled from the stream in pairs as in PIES. On the second level,

Reservoir sampling is performed on all edges in the stream whose two endpoint vertices are

in the sample at the time that the edge arrives. Thus, instead of including all future induced

edges, only ke such induced edges are sampled among all those encountered in the stream.

This process is shown in Algorithm 3.

Using RIES requires choosing both a maximum number of vertices kv and maximum

number of edges ke. The number of vertices kv can be set by selecting an assumed average

degree d = ke
kv

of the subgraph. This choice of d can be difficult to make because in

the streaming context, the full dataset is never available and information about the degree

distribution cannot be obtained. Choosing a low value of d will cause the exclusion of

many of the induced edges that would have been included with PIES. On the other hand,

choosing too high a value of d will mean that the number of vertices kv is too small to

collect ke edges and therefore the sampled graph will be smaller than it could have been.

For experiments presented in Section 3.4.3, d is chosen based on values of average degree

typically seen when running PIES.
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Data: stream S of edges, vertex limit kv, edge limit ke
Result: GS = (VS , ES)
initialize empty sample SS , VS = ∅, i = 0,m = 0, j = 0;
while S has edge ei do

(ui, vi) = ei;
if | VS |< kv then

VS = VS ∪ {ui, vi};
m = m+ 1;

else
p = m

i ;
draw r from Uniform(0, 1);
if r < p then

if ui 6∈ VS then
choose random vertex q ∈ VS ;
VS = VS \ q;
remove all edges from SS with endpoint vertex q;
VS = VS ∪ ui;

end
if vi 6∈ VS then

choose random vertex q ∈ VS ;
VS = VS \ q;
remove all edges from SS with endpoint vertex q;
VS = VS ∪ vi;

end
end

end
if ui ∈ VS and vi ∈ VS then

j = j + 1;
if | SS |< ke then

add (ui, vi) to SS ;
else

p = ke
j ;

draw r from Uniform(0, 1);
if r < p then

remove random element from SS ;
add (ui, vi) to SS ;

end
end

end
i = i+ 1;

end
VS = ∅ for edge (u, v) ∈ SS do

VS = VS ∪ {u, v};
end
create ES from edges in SS ;
return GS = (VS , ES);

Algorithm 3: Randomly Induced Edge Sampling (RIES)
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Table 3.1: Datasets used

Dataset | V | | E |
com-dblp 317,080 1,049,866
ca-AstroPh 18,771 198,050
dblp-cite 12,591 49,743
cit-HepTh 27,770 352,807
cit-HepPh 34,546 421,578
digg-reply 30,398 87,627
facebook 46,952 876,993
twitter 465,017 834,797

3.4.3 Quality Results

Experimental Setup

As discussed earlier, the goal of streaming sampling is to obtain a subgraphGS = (VS, ES)

that is structurally similar to the full graph G = (V,E). The sampling algorithm returns

a sample of the stream SS and GS is created by including all edges and vertices from

SS as described in Section 3.2.2. The full, baseline graph G is similarly constructed by

adding all edges from the entire stream S. Of course, in a real-life streaming applications

new data may be continually generated so that S has no end and the full graph G grows.

In the experiments presented here, however, we use existing test datasets and simulate

streaming. Because the streams have a definite beginning and end, the full graph G can be

built. The datasets used are publicly available social networks from the Koblenz Network

Collection [59] and are listed in Table 3.1. Each dataset contains a list of edges, which are

here randomly permuted to form S.

The quality of subgraphs created by RIES and WES is compared to those created by the

baseline RE from the literature. We evaluate to what extent the subgraphs created by each

method are structurally similar to the full graph. This is done by comparing the following

structural properties: vertex degrees, lengths of shortest paths, clustering coefficients, and

weakly connected components. In order to compare vertex degrees, the degree distribution

found in a sampled subgraph is compared to the distribution from the full graph using the
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two sample Kolmogorov-Smirnov (K-S) statistic. The statistic is defined as

D = maxx{| F1(x)− F2(x) |} (3.1)

where F1 and F2 are two empirical cumulative distribution functions (CDFs). In this case,

F1 would be the degree distribution inGS and F2 the degree distribution inG. The lower the

value, the more similar the distributions. The K-S statistic is a standard way of comparing

how structurally similar a sampled graph is to the full graph and has been used in previous

work on static sampling [76] and streaming sampling [85] [86]. Path length similarity is

also evaluated in this manner. The shortest paths between random pairs of vertices are

computed for GS and G and the two resulting distributions are compared using the K-S

statistic. Because the total number of pairs is very large, the distribution is estimated by

selecting random pairs. Clustering similarity in GS and G is evaluated by comparing the

two distributions of local clustering coefficients. Local clustering coefficients are the ratios

of the number of triangles a vertex participates in over the number of triples it participates

in.

In contrast to other metrics, the connected components of GS and G are not compared

using distributions. The reason for this is that many of the test graphs are close to fully

connected and have few components. If only a single component exists, a proper non-trivial

distribution of sizes cannot be formed. Distributions cannot not be compared meaningfully

unless the number of connected components is large. Therefore, the similarity of connected

components is evaluated by computing, for both GS and G, the percentage of vertices

in the largest connected component. In the results, this measure is referred to as global

connectivity. A sampling algorithm has good quality for this graph feature if GS and G

have a similar global connectivity value.

For results shown in Figures 3.2-3.6, the sampling size ke is varied between 0.5% and

20% of the original graph size. While results are shown in terms of the percent of edges
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sampled, it is important to note that WES and RIES take as input not a percentage, but a

fixed number of edges ke to include in the sample. It is not necessary to know ahead of

time how many edges will be processed in the stream. The sampling size ke is shown as

a percentage of total edges so that results on differently sized test datasets can be easily

shown together and compared.

For RIES, an average degree d = 4 is used and kv is then set to kv = ke
d

accordingly.

For WES, we use a w0 = 1, w1 = 1, and w2 = 100. We found that biasing heavily

towards edges with two endpoint vertices already in the sample created the best results in

terms of similarity to the full graph. The particular chosen value of w2 yielded good results

across datasets and sampling percentages. In Section 3.4.3 we discuss the effect of different

parameter settings of both WES and RIES. For each value of ke and each sample size, 10

runs are performed and mean results plotted. For each run, the edges from the dataset are

randomly permuted to vary the order of the edge stream.

Results

Figures 3.2, 3.3, and 3.4 show the mean K-S statistic for shortest path length distribu-

tions, degree distributions, and clustering coefficient distributions plotted against sample

size. The mean is taken over 10 runs, each on a randomly permuted edge stream. Values

near zero indicate that the sampling method produces distributions that are very similar to

that of the full graph, while values near one indicate dissimilar structure. For each sampling

percentage shown on the y-axis, ke is set to that percent of the total number of edges in the

full graph. K-S values are plotted against edge percentages instead of the actual number of

edges ke in order to make comparisons between datasets easier and to show what propor-

tion of edges is needed for good results. However, WES, RIES, and RE all take as input a

fixed number of edges to include in the sample, not a percentage.

Figure 3.2 shows that both WES and RIES produce much better results in terms of
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Figure 3.2: The similarity of shortest path lengths between the sampled subgraph GS and
the full graphG is shown for WES, RIES, and RE. Lower K-S values indicate better results.
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Figure 3.3: The similarity of vertex degrees between the sampled subgraph GS and the full
graph G is shown for WES, RIES, and RE. Lower K-S values indicate better results.
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Figure 3.4: The similarity of local clustering coefficients between the sampled subgraph
GS and the full graph G is shown for WES, RIES, and RE. Lower K-S values indicate
better results.
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Figure 3.5: The percentage of vertices in the largest connected component is plotted for
both the full graph and subgraphs sampled by WES, RIES, and RE. Values similar to the
full graph (higher) are better.
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Figure 3.6: This plot shows the CDFs of shortest path lengths between pairs of vertices,
vertex degrees, and local clustering coefficients for the com-dblp graph. CDFs are shown
for the full graph, and samples of 10% of edges using the RE, WES, and RIES methods.
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shortest path lengths compared to RE. Overall WES and RIES perform similarly well, with

WES performing better on some datasets and RIES on others. To understand the cause of

these K-S values, we can examine the left panel of Figure 3.6, which shows the distribution

of shortest path lengths for the full graph and for subgraphs created by RE, WES, and RIES.

This example is for the com-dblp graph and sampling percentage of 10%. In this case, RE

performs poorly because it creates a subgraph with shortest paths that are longer than those

found in G. That is, pairs of vertices tend to be at a greater distance compared to the full

graph. WES and RIES, on the other hand, are able to create a subgraph with path lengths

closer to those of the original graph. This is because RE samples edges from the input

stream without considering the previously sampled edges, while both WES and RIES take

into account how stream elements connect to the already existing sample.

For most datasets, there is a dip in the path length K-S values for RE (and sometimes

RIES) at a sampling percentage of 1% or 2.5%. The com-dblp dataset can be used as an

example to explain this behavior. At sampling percentages of 0.5% and 1%, the subgraphs

created by RE are very disconnected. There may be many small connected components

containing only single edges or a small number of edges. If a connected component has

only n edges, the maximum path length between any of its vertices is n. Therefore, for these

low sampling sizes of RE, path lengths are much lower than in the full graph, resulting

in high K-S values. As the sampling size increases, larger connected components form,

allowing for longer path path lengths. At 5%, however, the path lengths are typically higher

in the subgraphs created by RE than in the full graph. This also results in high K-S values.

As the sampling rate increases and the path lengths change from being too short to being

too long, the crossover point occurs around 2.5%. The dip in K-S values corresponds to

this crossover point. Then, for all sampling rates between 5% and 20%, the subgraphs of

com-dblp created by RE have shortest path lengths that are longer than those in the full

graph.

Figure 3.3 and the middle panel of Figure 3.6 show results for vertex degree distribu-
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tions. Again, WES and RIES tend to sample subgraphs with more similar structure to that

of the full graph. This is due to the fact that both methods obtain higher vertex degrees

compared to RE. WES achieves this by biasing to edges that already have endpoint ver-

tices in the sample (thus targeting vertices with multiple edges), while RIES does so by

including only edges that connect the relatively small set of sampled vertices.

Clustering coefficient similarity is shown in Figure 3.4 and the right panel of Figure 3.6.

For most graphs, especially those with many triangles, all methods underestimate the num-

ber of triangles and therefore the local clustering coefficients. However, both RIES and

WES perform better than RE, with RIES producing the best clustering results.

Finally, connected component results are plotted in Figure 3.5, which shows the per-

centage of vertices that are in the largest connected component both for the full graph and

for each sampling method. Note that unlike in Figures 3.2, 3.3, and 3.4, the y-axis in

Figure 3.5 does not plot either a distance or similarity metric. Good results are instead in-

dicated by values that are close to those of the full graph. Because the test graphs we used

are highly connected, the majority of vertices in the full graph are in the largest connected

component. Therefore, for these particular experiments, higher values indicate better re-

sults. WES creates the most connected samples and thus performs best, while RE creates

the most disconnected graphs. The reason why WES creates more connected subgraphs

than RIES is because the method automatically biases towards including edges that con-

nect the rest of the sample. In RIES, the connectivity will depend on whether the randomly

chosen vertices will tend to connect or not, so this may vary quite a bit.

Effect of Method Parameters

The previously discussed results for WES and RIES were obtained using a single parameter

setting for each. In Figure 3.7, the effect of varying method parameters is shown. Degree

and shortest path length results are plotted for different parameter settings for both WES

and RIES. Figures 3.7a and 3.7c show K-S statistic values on three graphs sampled with
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(a) Degree results when varying parameter settings of WES
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(b) Degree results when varying parameter settings of RIES
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(c) Shortest path length results when varying parameter settings of WES
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(d) Shortest path length results when varying parameter settings of RIES

Figure 3.7: The effect of varying method parameters of WES and RIES is shown.

49



WES. The parameter settings used are w2 = 10, 25, 50, 100, 200, with w0 = 1 and w1 = 1

held constant. Increasing the value of w2 creates consistent results: both the distribution

of shortest path lengths and the degree distribution become more similar to that of the full

graph and the K-S statistic decreases. This occurs because a higher value of w2 compared

tow0 andw1 creates a more connected graph with higher average degrees, higher clustering

coefficients, and shorter distances between pairs of vertices. Because the social network

datasets used here are highly connected with small diameter, skewed degree distribution,

and many triangles, a higher w2 parameter usually results in samples more similar to the

full graph. This does not mean that increasing the w2 parameter always produces better re-

sults. For example, if a graph has very low clustering coefficients or is very disconnected,

a high w2 might create a subgraph with too many triangles and too few connected compo-

nents. However, the effect of increasing w2 on the structure of the subgraph is predictable.

Conversely, increasing w0 relative to w1 and w2 has the opposite result. The fact that the

effect of increasing or decreasing the parameters of WES is predictable is important for the

method to be useful in practice. Section 3.5.3 further shows how the parameters of WES

can be adjusted to achieve specific sample features.

Figures 3.7b and 3.7d show results for RIES with d = 1, 2, 4, 10. As the edge sample

size ke increases, kv is set so that kv = ke
d

. Unlike with WES, the effect of the parameter d is

not predictable as it varies both across datasets and different edge sample sizes. Figure 3.7b

shows that lower values of the assumed average degree d produce better results for smaller

edge sample sizes. As the edge sample size increases, the relative performance for higher

values of d improves. If the value of d is set too high, then the number of vertices sampled

kv will be too low to obtain ke edges and the final sample will be smaller than desired. In

the streaming context, information about the degree distribution will likely not be available,

making it more difficult to choose a value for d. While both RIES and WES perform better

than RE, the main advantage of WES over RIES is that the parameters can be set more

easily and their effect is more predictable.
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3.5 Temporal Graph Sampling

For many applications, a sample may become less relevant over time and newer data may

be needed. For these cases, sampling algorithms should be able to produce a temporally

biased sample. That is, newer data points will be more likely to be included in the sample.

This section addresses the topic of streaming graph sampling with a temporal bias. A new

algorithm, Temporal Weighted Edge Sampling (TWES), is presented. Just like WES and

RIES, TWES processes an edge stream of unknown length in a single pass to produce a

sample with a fixed number of edges. In addition, TWES can bias towards edges with

newer timestamps and the degree of bias is parametrically controlled.

3.5.1 Temporal Weighted Edge Sampling (TWES) Algorithm

TWES extends the previously described WES algorithm by using two separate bias factors.

In addition to biasing towards edges that connect to the current sample, TWES also biases

towards edges with newer timestamps. Recall that when an edge is processed using WES,

it is assigned a weight based on how connected it is to the current sample. Let this con-

nectivity weight component be denoted WC . In TWES, the weight assigned to an edge is a

product of WC and a temporal weight component WT .

The first weight component, WC , is obtained the same way as for WES. One of three

values is chosen, depending on how many endpoint vertices of the edge are already in

the sample at the time the edge is processed. If both endpoint vertices are in the sample,

WC = w2, if only one is, WC = w1, and if neither is, WC = w0.

The second weight component, WT , is derived from the timestamp of the edge. In this

work, timestamps represent discrete units of time. For example, if time is measured in the

granularity of days, a timestamp may refer to the number of days that have passed since a

baseline time. The degree of temporal bias should be tunable, so that anything from strong

temporal bias to no temporal bias is possible. When temporal bias is used, more recent
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timestamps should yield higher weights WT . This is achieved using exponential decay to

obtain weights from timestamps. Under exponential decay, the temporal weight component

of an edge with timestamp t is at time tcurr given by e−α(tcurr−t). The weight depends on

the edge’s age tcurr − t, where the lower the timestamp of the edge, the greater its age is

and the lower WT is. Exponential decay has been used in many applications, including in

graph analysis for down weighting old data [94, 95, 96, 97].

The problem with using standard exponential decay is that the weight depends on the

age of the edge, which changes whenever the current time increases. This poses challenges

for stream sampling. Recall that an edge’s weight is set to be WCWT . After drawing a

random number r ∈ (0, 1), its key is set to key = r1/(WCWT ). Therefore, whenever an

edge’s age increases, WT decreases and its key must be recomputed. While this approach

is feasible, it requires all keys of the sample to be modified whenever the current time

moves forward.

To minimize computation, TWES instead utilizes the method described in [98]. In

[98] this is called forward exponential decay, but it may more intuitively be described

as exponential growth. Instead of using an element’s age, which constantly changes, the

forward decay model uses the amount of time between its timestamp t and a fixed point in

time L, called the landmark time. Elements that appear more recently have higher values

t − L and these values do not change as the current time tcurr progresses. For forward

exponential decay, the temporal weight WT of an edge with timestamp t is at time tcurr

given by
eα(t−L)

eα(tcurr−L)
(3.2)

This coincides with standard, or backward, exponential decay.

eα(t−L)

eα(tcurr−L)
= eαt−αL−αtcurr+αL = e−α(tcurr−t) (3.3)

In Weighted Reservoir sampling, elements with the highest keys are chosen and the
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Figure 3.8: The distribution of edge timestamps in samples created by TWES is shown for
the com-dblp dataset. In each column, the connectivity weight parameter w2 changes. In
each row, the temporal weight parameter α changes.

absolute values of the keys are not relevant. Therefore, only relative weights need to be

computed and the denominator of forward exponential decay, which is the same for all

elements at any given tcurr, can be dropped. The temporal weight component of each edge

is then given by WT = eα(t−L). As this definition depends only on the edge’s timestamp t,

which does not change, WT and the resulting key do not need to be recomputed when time

moves forward. Thus, the use of forward exponential decay reduces computation compared

to normal, backward decay.

Full details of TWES are given in Algorithm 4. In practice, the precision of keys gen-

erated with Weighted reservoir sampling are restricted by floating point precision. Imple-

mentation solutions related to floating point precision are discussed in Section 3.5.4.
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Data: stream S of edges, edge limit ke, parameters w0, w1, w2, α
Result: GS = (VS, ES)
initialize empty minheap M ;
VS = ∅, i = 0;
while S has edge gi do

(ui, vi, ti) = gi;
WT = eα(ti−L);
if ui ∈ VS and vi ∈ VS then

WC = w2;
else if ui ∈ VS or vi ∈ VS then

WC = w1;
else

WC = w0;
end
weight = WCWT ;
draw r from Uniform(0, 1);
keyi = r1/weight;
if |M |< ke then

add (ui, vi, ti) to M with key keyi;
VS = VS ∪ {ui, vi};

else if keyi > smallest key in M then
Remove element (uj, vj, tj) with smallest key from M ;
if uj has no more edges in M then

VS = VS \ uj;
end
if vj has no more edges in M then

VS = VS \ vj;
end
add (ui, vi, ti) to M with key keyi;
VS = VS ∪ {ui, vi};

end
i = i+ 1;

end
create ES from edges in M ;
return GS = (VS, ES);

Algorithm 4: Temporal Weighted Edge Sampling (TWES)
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3.5.2 Quality Results

This section evaluates the quality of TWES using the same social network datasets shown

in Table 3.1 and used in Section 3.4.3. As before, the edges of each dataset form the stream

S. Timestamps between 1 and 10 are assigned to each edge in increasing order and the

landmark time is L = 0. Because TWES is an extension of WES that allows for temporal

bias, results for TWES will be the same as for WES when α = 0 and no temporal bias is

used. Therefore, this section evaluates quality with temporal bias. To achieve good results,

TWES should exhibit two properties. First, the temporal bias should allow for higher rep-

resentation of newer edges over older ones. Second, the sampled subgraph quality should

remain high even when temporal bias is used.

To satisfy the first goal the edges of a sample produced by TWES with α > 0 should

be biased towards higher timestamps. Higher values of α should produce more biased

results as long as there are enough edges with high enough timestamps to fill the sample.

Figure 3.8 shows that TWES does produce temporally biased samples. Each plot shows the

histogram of timestamps in a sample produced by TWES with different parameter settings.

Both the connectivity bias (w2) and temporal bias (α) are varied. In each row, the temporal

bias parameter α increases from left to right. As α increases, the timestamp histograms

become more skewed, showing that temporal bias is achieved as desired. The top row

shows results when w0 = 1, w1 = 1, and w2 = 1, which means that there is no bias

towards edges that connect to the sample. In this case the only bias is temporal. In the

second and third rows, however, w2 increases and TWES biases towards edges that connect

to the sample. There is both temporal and connectivity bias and these two biases may

compete. Even with high values of w2, however, the samples produced by TWES are

temporally biased and as α increases, the bias increases as well.

In addition to producing temporally biased samples, TWES should continue to pro-

duce subgraphs that are structurally similar to the full graph. As before in Section 3.4.3,

four graph features are used to measure how structurally similar a sampled subgraph GS
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Figure 3.9: The similarity of shortest path lengths between the sampled subgraph GS and
the full graph G is shown for TWES with different degrees of temporal bias. Lower K-S
values indicate better results.
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Figure 3.10: The similarity of vertex degrees between the sampled subgraph GS and the
full graphG is shown for TWES with different degrees of temporal bias. Lower K-S values
indicate better results.
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Figure 3.11: The similarity of local clustering coefficients between the sampled subgraph
GS and the full graphG is shown for TWES with different degrees of temporal bias. Lower
K-S values indicate better results.
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Figure 3.12: The percentage of vertices in the largest connected component is plotted for
TWES with different degrees of temporal bias.
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Figure 3.13: The effect of varying temporal bias is shown. The quality (average shortest
path length K-S statistic at 15% sampling) of samples produced by TWES is plotted against
the temporal bias parameter α.
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is to the full graph G. These are the degree distribution, shortest path length distribution,

clustering coefficient distribution, and the percentage of vertices in the largest connected

component. As in Section 3.4.3, the similarity of distributions in GS and G is measured

using the two sample Kolmogorov-Smirnov (K-S) statistic. The K-S statistic measures the

distance between two CDFs, so lower values indicate more similar graph structure. The

similarity of connected components in GS and G is not computed using distributions be-

cause in some graphs tested, only a few connected components exist, making distribution

comparison infeasible. Instead, the percentage of vertices in the largest connected compo-

nent is computed.

Figures 3.9 – 3.12 show mean results for the four graph properties discussed. The mean

is taken over 10 runs, each on a randomly permuted edge stream. For each permutation,

timestamps between 1 and 10 are assigned to each edge in increasing order. Results are

shown for TWES where w0 = 1, w1 = 1, w2 = 100, and the temporal bias parameter

α is varied. When α = 0.0, no temporal bias exists and results are the same as for WES.

Overall, Figures 3.9 – 3.12 show that TWES produces similar quality results when α = 0.0,

α = 0.1, α = 0.5, and α = 1.0. This means that even with temporal bias, TWES produces

similar quality subgraphs to those produced by WES. TWES can produce temporal bias

while still producing subgraphs that are structurally similar to the full graph, compared to

RE from the literature.

On the datasets used, it is possible to both bias towards edges with newer timestamps

and to bias towards edges that connect to the sample. For some data streams, however, there

may be a trade-off. This may occur if the vertices that appear in a stream change quickly

because then new edges would not tend to share vertices with the sample. Futhermore, if

temporal bias is high enough, it may dominate over connectivity bias. In the extreme case,

the most recently processed edges will form the entire sample.

As Figures 3.9 – 3.12 show, a higher temporal bias parameter α can produce either bet-

ter or worse structural similarity results, depending on the nature of the dataset in question.
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The effect of varying temporal bias through α is explored next. Figure 3.13 shows the K-S

statistic for path length distribution as α varies from 0.0 to 2.0. Results are shown for a

single sampling percentage of 15%. For all graphs, a similar trend exists. Increasing α

from 0.0 initially produces better, more structurally similar, subgraphs. As the temporal

bias continues to increase, however, the subgraph quality worsens. The decreased quality

for high values of α is intuitive. Because TWES biases both structually and temporally, a

trade-off may exist with enough temporal bias. At a high value of α, temporal bias may be

strong enough that most or all edges with highest timestamps are included in the sample,

regardless of how much they connect to the sample. Then, results may become similar to

those seen in RE.

The initial improvement in quality when α rises above 0.0 is less intuitive. It occurs

when TWES strongly biases towards edges for which both endpoint vertices are in the sam-

ple (w2 � w1 and w2 � w0). In this case, most edges that are added to the sample do

not add any new vertices to the subgraph. Let us refer to these edges as fully connected.

When a fully connected edge is added, it replaces an edge that was previously in the sam-

ple. The new edge will not add any new vertices to VS . However, if the old edge (u, v) it

replaces was the only edge in the sample with endpoint vertex u or v, then | VS | decreases.

Therefore, every time a new fully connected edge is added to the sample, replacing a pre-

viously chosen edge, | VS | is more likely to decrease than increase. The number of edges

in the sample will stay the same. It follows that the more such replacements occur, the

higher the average degree of the sampled subgraph will be. The subgraphs will also be

more connected, have shorter path lengths, and have higher clustering coefficients. Values

of α greater than 0.0 initially yield better results because they produce temporal bias. With

temporal bias, newer edges will have higher weights and will replace previous elements

from the sample more frequently. As explained above, this increase in edge replacements

can yield more connected, denser subgraphs that are more similar to the full graph.
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3.5.3 Parameter Settings

This section discusses how the parameters of WES and TWES can be tuned to produce

sampled subgraphs with desired structure. Both algorithms share the same parameters w0,

w1, and w2. They assign relative weights to edges that share zero, one, and two vertices,

respectively, with the sample when the edge is processed. These parameters can each be

increased and decreased during the sampling process to change the structure of the sam-

pled subgraph. Relatively high values of w2 compared to w0 and w1 create denser, more

connected subgraphs. These tend to have higher average degrees, fewer connected compo-

nents, more triangle formation, and shorter distances between pairs of vertices. Therefore,

if a denser subgraph is desired, w2 should be increased or kept at a high value. On the other

hand, a higher value of w1 relative to w0 and w2 will create a more disconnected subgraph

with fewer triangles. If these qualities are desired w1 can be increased. A high value of w0

relative to w1 and w2 will produce the most disconnected, sparse subgraph.

Using this information, it is possible to target specific properties by modifying parame-

ters during sampling. The simplest to target is the average graph degree, but others may be

possible as well. Figure 3.14 shows results for the standard sampling procedure, in which

parameters are constant and for the targeted version, in which parameters are flexible. For

the constant parameter version the settings are α = 0.5, w0 = 1, w1 = 1, and w2 = 100.

For the flexible parameter version, α = 0.5 and w0 = 1, but w1 and w2 change as the

stream is processed, depending on the current characteristics of the sampled subgraph. In

the experiment, the goal of the flexible method was to produce a subgraph with a target

degree, shown in the plot in solid blue. If the average degree of GS was below the target

value, then w1 = 1 and w2 = 100 to make GS more dense. If it was above the target value,

then w1 = 100 and w2 = 1 to make GS less dense.

In Figure 3.14, both sampling versions start out with subgraphs of average degree below

the target. Once the target is reached, however, the flexible parameter version is able to

maintain the desired average degree target value. In fact, by targeting a stable average
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Figure 3.14: The average degree of subgraphs sampled by TWES is shown both for con-
stant parameter settings and when parameters are tuned to achieve a target average degree.

degree value, the average clustering coefficient and the average shortest path length are

also stabilized. This experiment suggests that WES and TWES can be used to sample

subgraphs with specific structural properties.

3.5.4 Implementation

In the TWES algorithm, the weight assigned to each edge of the stream is WCWT , where

WC represents the connectivity component and will be set equal tow0,w1, orw2, depending

on how many of its endpoint vertices are in the sample when the edge is processed. The

temporal component biases towards more recent edges and is WT = eα(t−L) for timestamp

t. In order for TWES to bias towards edges that have higher timestamps and that are more

connected to the sample, higher keys should be assigned to edges with higher weights

WCWT .
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However, if timestamps reach a high enough value, the possibility of distinguishing be-

tween keys of edges will diminish due to floating point precision. Recall that for each edge,

a random number r ∈ Uniform(0, 1) is drawn and then key = r1/(WCWT ). Therefore, as

timestamps increase, the temporal weight component WT will also increase and values of

keys will rise and be closer to 1. For example, for L = 0, α = 0.5, r = 0.5, WC = 1,

and t = 1, the key is approximately 0.657. If the timestamp rises to t = 5, the key rises to

approximately 0.945. When the keys shift closer to 1, they also shift closer together. Very

high keys may be rounded up to 1. Thus, the ability to distinguish between edges with dif-

ferent weights diminishes due to a limitation of floating point precision. Once timestamps

are high enough to meet cutoff criteria, a timestamp shift must be performed. First the

cutoff condition is described and later, the timestamp shift is explained.

The timestamp cutoff occurs when t−L is large enough that, for a pre-determined high

value of r ∈ (0, 1) (r = 0.999 in the implementation),

r1/(w2exp(α(t−L))) = r1/(w2exp(α(t+1−L))) (3.4)

If the above condition is satisfied, then for the same random r drawn, a higher timestamp

does not yield a higher key and the temporal bias component of TWES will be weakened.

Given two edges ei and ej , if ei has timestamp ti, ej has a higher timestamp tj = ti+1, both

have the same connectivity weight WC = w2, and both edges draw the same r ∈ (0, 1),

then the the key of ej should be greater than the key of ei. If not, then the temporal bias will

not be correct. The above condition will be met for higher values of r at lower timestamps.

Therefore, in order to be conservative, our implementation of TWES plugs in a high value

of r = 0.999 and checks for the lowest timestamp for which the condition is satisfied.

99.9% of edges draw a lower value of r and temporal bias will work well overall.

When the condition above is met, a timestamp shift occurs. The landmark time L is

increased so that the relative time t−L is lowered. Then, for all edges stored in the sample,
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their weight and key must be adjusted. If L increases to L + D, the temporal component

WT of each edge is multiplied by e−αD and the key is recomputed with the same values

of r and WC as before. This adjustment produces the correct new value of WT because

eα(t−L)e−αD = eα(t−(L+D)).

Claim: Performing this temporal shift will preserve the relative order of all keys in the

reservoir. If keyi > keyj before the shift with landmark L, then keyi ≥ keyj after the shift

with landmark L+D.

Proof: For edge ei, let the connectivity weight component be denoted WCi. Before the

shift, its key is then r1/(WCiexp(α(ti−L)))
i and after the shift it is r1/(WCiexp(α(ti−L−D)))

i .

r
1/(WCiexp(α(ti−L)))
i > r

1/(WCjexp(α(tj−L)))
j

=⇒ (r
1/(WCiexp(α(ti−L)))
i )exp(αD) > (r

1/(WCjexp(α(tj−L)))
j )exp(αD)

=⇒ r
1/(WCiexp(α(ti−L))exp(−αD))
i > r

1/(WCjexp(α(tj−L))exp(−αD))

j

=⇒ r
1/(WCiexp(α(ti−L−D)))
i > r

1/(WCjexp(α(tj−L−D)))

j

(3.5)

The equality condition will only hold if the new keys both are rounded to the same value

due to floating point precision. �

It is important to note that the time shift preserves the ability of TWES to distinguish

between keys of edges with newer, higher timestamps. The trade-off for this is that it

becomes more difficult to distinguish between the keys of edges with lowest timestamps.

When t− L is already low, shifting it lower will eventually result in negative values t− L,

which moves keys towards 0 and leads to precision issues again. However, this trade-off has

very limited effect on TWES. Temporal bias indicates that newer edges are most important

and few edges with low timestamps will be in the sample.
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3.6 Conclusion

This chapter presented new algorithms for streaming graph sampling, WES and RIES.

These methods sample a subgraph from an edge stream in a single pass without assuming

any order of the edges and without requiring any information about the full graph or size

of the stream. Because our goal in sampling is to obtain a smaller subgraph, the methods

restrict the number of edges and not only the number of vertices. The other streaming

approach from the literature that meets this requirement is RE. Experiments on several

social network datasets show that WES and RIES create sampled subgraphs that are more

structurally similar to the full graph than does RE. While both methods perform well, the

advantage of WES over RIES is that there is no need to set the average degree of the

subgraph and the effect of the parameter setting is more predictable.

For many applications, new data is considered more relevant and may be preferred in

a sample. This work also addressed the topic of temporally biased sampling on graph

streams through the TWES algorithm. TWES, which also samples an edge stream in a sin-

gle pass, can bias output towards newer edges and the degree of this bias is parameterized.

Experiments show that TWES can produce subgraphs that are both temporally biased and

structurally similar to those produced by WES. By adjusting parameters in real time as the

stream is processed, both WES and TWES can sample subgraphs with targeted structural

properties. This suggests that they can be useful in real-life applications.

The algorithms presented in this chapter produce a global sample of a graph. For certain

applications, however, it may be useful to sample a local subgraph around a seed vertex or

set of seed vertices of interest. Future work may explore the application of techniques used

in WES and TWES to local streaming graph sampling.
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CHAPTER 4

CREATING DYNAMIC GRAPHS FROM DATA STREAMS

4.1 Introduction

Dynamic graphs are used to represent relational data as the relationships change over time.

Typically, a dynamic graph is a sequence of graph snapshots, each corresponding to the

state of the graph at some particular point in time. Changes in the underlying data are then

represented both by the addition of new edges as new relationships are added, the removal

of old edges as old relationships disappear, or by the alternations of edge weights as exist-

ing relationships strengthen or weaken. Whenever dynamic graph analysis is performed,

it is first necessary to decide how to add, remove, or modify weights of edges to create

a dynamic graph from temporal data. In particular, the question of how to remove past

data is not straightforward, especially when edges are derived from interaction data. Once

interaction occurs, it is not explicitly reversed, but rather may decrease in relevance over

time. Therefore, it is not obvious when to delete edges. This method of removing or de-

emphasizing edges is important because the way in which it is done will affect the structure

of the dynamic graph and how it changes and therefore the result of algorithmic analysis.

Competing goals include preserving graph stability and detecting new changes.

This chapter addresses the problem of how to age past data when creating a dynamic

graph from a stream of temporal data. By aging, we refer to any process that decreases

the influence of historical data in a graph. The goals are to provide practitioners with

quantitative comparisons of available methods and to provide and compare new alternative

approaches. Section 4.2 presents two new methods, called Active Vertex and Active Edge,

and discusses two existing methods from the literature, Sliding Window and Weight Decay.

Through experiments on temporal graphs from five social networks in Section 4.3, these
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approaches are compared and contrasted to find patterns that consistently appear. This

work was published in [99].

The work most similar to this is that of Saganowski et al. [74] and Oliveira et al. [75],

who evaluate how two different ways of building dynamic graphs affect communities found

and how they change. They consider the aggregate approach, in which edges are only added

and never removed, and the sliding window method, in which older edges are removed.

Both find that removing edges with the sliding window method causes more change and

instability in community structure compared to aggregating. While this previous work stud-

ies only the sliding window approach, this chapter presents two newly developed methods

and compares them to two previous techniques. In addition, this work examines aging per-

formance on multiple datasets, whereas [75] and [74] each use only a single one. By using

multiple datasets, it is possible to study which patterns occur consistently for a variety of

data sources.

4.2 Aging Methods

This section describes and discusses methods for creating dynamic graphs from tempo-

ral data. Static graphs are created from a collection of actions or relationships. Deciding

how these actions are transformed into edges and vertices of a static graph is not always

straightforward. For example, in the case of a graph built from interactions between people,

it is necessary to determine under what circumstances such communication should form an

edge. One approach is to set a threshold for the frequency of communication over time be-

fore an edge is created. Different thresholds will produce very different graphs [60]. When

forming a static graph of relationships between people based on common event attendance,

various approaches may differently factor how many events two people attended and the

number of people at each event [100], again with differing results.

Creating dynamic graphs poses additional complications. In addition to the problems

found in the static case, it is necessary to decide when new data is added, when old data is
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removed, and how the two processes are combined.

As time passes, new actions take place and relationships change. A dynamic graph

should reflect this change. In order for a graph to represent the evolving nature of the un-

derlying data, new edges, representing new relationships, may be added, and old edges,

representing old relationships, may be removed. Edge weights may be increased if sup-

ported by new data or decreased if the relationship loses relevance.

4.2.1 Definitions

It is necessary to distinguish between the stream of edges that represent interactions or

events occurring over time and the graphs built from the stream. Let S be a stream of edges

in time, where each (u, v, weight, time) ∈ S is a tuple of the two endpoint vertices, the

edge weight, and the time of the event represented by the edge. The edges occurring during

a specific time interval are represented by Sl,k = {(u, v, weight, time) ∈ S | l < time ≤

k}.

Let G = (V,E) be a static graph where V are the vertices of G, and E are the edges.

For our notation, each edge (u, v) ∈ E has additional features: a weight (u, v).weight

and a timestamp (u, v).time corresponding to the most recent time it appeared in S. Each

vertex v ∈ V has a timestamp v.time, corresponding to the latest time of any of its edges.

G may be created from data in S using Algorithm 5.

A dynamic graph is then represented by a series of graph snapshots over time {G1, G2,

. . . , Gn}, where Gt = (Vt, Et) is the state of the dynamic graph at time index t. As time

moves and the underlying data changes, vertices and edges will be added, removed, and

modified to create a new graph snapshot. The time t may represent any discretized unit of

time. It is not continuous time. For example, if months are used, G1 is the graph after the

first month, G2 is the graph after the second month, and S0,2 contains the edges with times

within the first two months.

In this work we assume all graphs are undirected. Therefore, the vertices of each edge in
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S are also undirected. To remove ambiguity, we assume that for all (u, v) ∈ Et, u < v and

for all (u, v, weight, time) ∈ S, u < v. The aging algorithms presented in this chapter will

therefore also process edges in an undirected manner. In practice the implementation of an

undirected graph may vary. It is common for implementations to include both (u, v) in a list

of edges of u and (v, u) in a list of edges of v to allow for faster accessing of all neighbors.

However, we treat implementation issues as “under the hood”. For implementations that

require two directions, when an edge (u, v) is added, both directions (u, v) and (v, u) are

added. Similarly, if an edge is removed or its weight or time features modified, this is done

for both directions.

4.2.2 Sliding Window

The Sliding Window approach builds a dynamic graph by creating graph snapshots from

intervals, or windows, of a stream of edges. Only the most recent data in the stream, inside

the current window, is used to create a graph, while all previous data is forgotten. For

example, a daily sliding window would create the most recent graph snapshot using only

activity from the last 24 hours. For Sliding Window, each graph snapshot Gt is created as

defined below, where λ is the window size and ToGraph is defined in Algorithm 5.

Gt = ToGraph(St−λ,t) (4.1)

If the unit of time is one week, then λ = 3 means that the sliding window size is three

weeks and the window shifts by one week, causing a 2/3 overlap between consecutive

windows.

Consecutive windows can overlap to varying degrees, or not at all, with a higher degree

of overlap causing smoother and more gradual changes. Sliding Window is easily inter-

preted because it is clear what data each graph snapshot represents. The emphasis on new

versus historical data can be adjusted with the window size. However, it does not distin-

71



Data: Sl,k
Result: G
initialize empty G = (V,E);
for (u, v, w, t) ∈ Sl,k do

if u /∈ V then
V = V ∪ u;

end
if v /∈ V then

V = V ∪ v;
end
u.time = t;
v.time = t;
if (u, v) ∈ G then

(u, v).weight+ = w;
else

E = E ∪ (u, v);
(u, v).weight = w;

end
(u, v).time = t;

end
Algorithm 5: ToGraph

guish well between temporary and persistent relationships. For example, graph vertices

that correspond to two people who communicate regularly over time, but did not com-

municate in a given week will have no edge connecting them in the graph when using a

weekly sliding window. Therefore, the resulting dynamic graph may change greatly be-

tween consecutive snapshots. This method is best suited for applications where a graph

should represent only the most recent actions, not a balance of historic and new data, and

it requires a careful choice of window size and overlap.

Sliding Window has been used to create dynamic graphs in many works. Non-overlapping

windows are used to study the incremental k-clique clustering algorithm [101] and to test a

framework for tracking community evolution on the Enron dataset [102]. Overlapping slid-

ing windows have been used to create dynamic graphs to predict vertex centrality [103], to

test the DENGRAPH algorithm for incremental community detection [104], and to study

community dynamics [105, 106]. In [73], a sliding window of 60 days is used to create
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graphs of email exchanges. Unlike many other sliding window based approaches, instead

of summing the number of edges to obtain a weight, the weight in [73] is set to the geo-

metric rate of bilateral email exchange during the 60 day window. Clauset and Eagle [72]

analyze a network of physical contact from the Reality Mining study and investigate the

effect of the size of the window.

4.2.3 Edge Weight Decay

The second method discussed in this work is the edge weight decay approach in which,

over time, the weight of old edges is decreased. The philosophy behind this approach is

to treat new data as more important than old data, while also allowing stronger (higher

weight) relationships to last longer than weaker (lower weight) ones. This is done by

creating a new graph snapshot from a weighted combination of the previous graph and the

new edges. Edges below a weight threshold ε are removed to eliminate relationships that

are no longer relevant. Throughout the text we refer to this method as Weight Decay. Each

graph snapshot created by Weight Decay is defined as:

Gt = Decay(Gt−1, α, ε) + β ∗ ToGraph(St−1,t) (4.2)

where Decay is defined in Algorithm 6.

In Weight Decay, edges that represent frequent communication or strong relationships

will last for a longer time, which may create a dynamic graph with smoother transitions

between snapshots compared to the Sliding Window. The parameters α and β control the

relative importance of historic and new data, while ε represents the lowest weight edge that

will remain in the graph. Compared to the sliding window approach, the interpretation

of a graph snapshot based on the parameters is more difficult because there is no simple

interpretation, such as “activity from the past week”.

Variations of this method have been used in the literature to create dynamic graphs.
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Data: G = (E, V ), α,ε
Result: G
for (u, v) ∈ E do

(u, v).weight = (u, v).weight ∗ α;
if (u, v).weight < ε then

E = E \ (u, v);
if degree(u) == 0 then

V = V \ u;
end
if degree(v) == 0 then

V = V \ v;
end

end
end

Algorithm 6: Decay

Chen et al. predicts future links in a co-authorship network by exponentially decaying

weights, to strike a balance between the the recency of a co-published paper and the num-

ber of co-published papers [94]. Cortes et al. summarize past behavior by using a linear

combination of new and historical data and keeping only the top k edges for each ver-

tex [95]. This same method is used in [96] to predict future data. Chan et al. predict future

edges in a mobile network using exponential aging [97].

4.2.4 Active Graph

In addition to Sliding Window and Weight Decay from the literature, this chapter also pro-

poses a new approach to creating a dynamic graph from a stream of edges. The idea behind

the new approach stems from the fact that entities join and leave social networks and the

amount of time a given entity or relationship is active in the network varies greatly. For ex-

ample, many users join an online social network and soon become inactive [107, 108]. The

edges representing their initial activity upon joining can likely be removed quickly because

they no longer participate. Other users, however, remain active in the social network. Their

information may be more important and therefore kept in the dynamic graph for longer. In

such cases, it may be advantageous to retain even very old edges in the graph if they are
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connecting two very active users, so that all edge, or connection data for the active users is

preserved

The two variations presented are the Active Vertex and Active Edge methods. Active

Vertex keeps track of the last time each vertex was active (had a new edge in the stream S).

Vertices whose last activity is within a specified window of time, τV , are considered active

and we keep all edges whose two endpoint vertices are active. All other edges are removed.

Each graph snapshot using Active Vertex is defined as:

Gt = CheckActiveVertices(Gt−1 + ToGraph(St−1,t), t, τV ) (4.3)

where CheckActiveVertices is defined in Algorithm 7.

For the second variation, Active Edge, we keep track of the last time an edge’s weight

was incremented (the last time an activity occurred between the two vertices). Edges whose

last activity is within a specified window, τE , are considered active and their weights do not

decrease. Inactive edges are removed from the graph regardless of their weights. Each

graph snapshot using Active Edge is defined as:

Gt = CheckActiveEdges(Gt−1 + ToGraph(St−1,t), t, τE) (4.4)

where CheckActiveEdges is defined in Algorithm 8.

The Active Vertex and Active Edge methods can be useful in representing the history of

activity in active parts of the graph, while forgetting the inactive portions. They may also be

useful in storing important parts of the graph when memory size is limited because edges

are either preserved with cumulative weights, or removed completely. Similarly, they may

be useful for visualization to represent accumulated relationships only of active vertices,

thus reducing visual clutter.
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Data: G = (E, V ),t,τV
Result: G
for (u, v) ∈ E do

if t− u.time > τV or t− v.time > τV then
E = E \ (u, v);

end
end
for v ∈ V do

if v.time > τV or degree(v) == 0 then
V = V \ v;

end
end

Algorithm 7: CheckActiveVertices

Data: G = (E, V ),t,τE
Result: G
for (u, v) ∈ E do

if t− (u, v).time > τE then
E = E \ (u, v);

end
end
for v ∈ V do

if degree(v) == 0 then
V = V \ v;

end
end

Algorithm 8: CheckActiveEdges
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Table 4.1: Datasets and parameters used.

Graph Vertices Edges
Time
Unit

Window
Size

dblp 1,314,050 18,986,618 1 year 3 years
enron 87,273 1,148,072 4 months 1 year
slashdot 51,083 140,778 1 month 3 months
youtube 3,223,589 9,375,374 2/3 months 2 months
facebook 46,952 876,993 4 months 1 year

4.2.5 Setting Parameters for Each Aging Method

Section 4.3, compares the four methods described. To make a fair comparison, the various

parameters are set to make all methods as similar as possible. To make Weight Decay

with parameters α and ε similar to Sliding Window with parameter λ, we set α = ε
1
λ . An

edge with weight 1 in Weight Decay method will persist for λ snapshots, just as it would

in Sliding Window. Higher weighted edges will stay in the graph for longer. We also set

β = 1 so that new data has the same weight as in the other methods.

For Sliding Window, only data within λ time of the current time is included in a graph

snapshot. For Active Vertex, the threshold of a vertex being active τV is set equal to λ from

Sliding Window. Similarly, for Active Edge, τE is set equal to λ. Note that setting τV = λ

means that the set of vertices with degree greater than zero of a graph snapshotGt produced

by Sliding Window and by Active Vertex will be the same. Similarly, setting τE = λ causes

the set of edges in a graph produced by Sliding Window and by Active Edge to be the same

(the edge weights may differ though).

4.3 Results

4.3.1 Experimental Setup

The four methods for creating dynamic graphs are compared using the five social network

datasets listed in Table 4.1. These five data sets are publicly available at the Koblenz

Network Collection [59]. The dblp set describes co-authorship relationships in academic
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Figure 4.1: Global properties of the dynamic graphs are shown over time. The x-axis shows
the graph snapshot count.
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papers. In the enron set the edges correspond to e-mails exchanged between Enron em-

ployees. The slashdot set includes an edge between users who reply to each others posts

online. The youtube data contains friendship relationships on the website and the facebook

set contains edges between users who post on each other’s walls. For a proper comparison,

the parameters of each method are set as described in Section 4.2.5. The unit of time is the

same for each aging method and given in Table 4.1. For each dataset apart from dblp, the

beginning and ending times with too few edges are removed and then the unit of time is set

so that when λ = 3, approximately four non-overlapping windows fit into the time range.

Because the dblp dataset had a much longer history, 30 years of data from 1984 to 2014

were used with a window size of 3 years based on the assumption that research relation-

ships may change significantly over this time interval. For Sliding Window, we used λ = 3,

yielding a 2/3 overlap between consecutive windows. For example, each graph snapshot

from dblp represented edges from three years and consecutive snapshots would have two

years worth of edges in common. Parameters of other methods are then set as described

in Section 4.2.5. Both τV and τE are set to equal λ. A small value of ε = 0.1 is used and

therefore α = 0.1
1
3 ≈ 0.464.

The above parameters are used for results in Figures 4.1 – 4.8. In the experiments

shown in Figures 4.9 – 4.12, the amount of overlap between consecutive windows of Sliding

Window is varied, while keeping the number of months in each sliding window the same as

shown in Table 4.1. The details are further explained in Section 4.3.4.

4.3.2 Global Properties

Based on the chosen parameters, Sliding Window and Active Vertex will result in graphs

with the same number of vertices, while Sliding Window and Active Edge will produce

graphs with both the same number of vertices and edges. Weight Decay will output graphs

with at least as many vertices and edges as Sliding Window.

In Figure 4.1a, the sum of edge weights of the dynamic graphs is shown over time.
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For all graphs, Active Vertex produces the highest edge weight sum. Interestingly, Weight

Decay, although it stores more edges than Sliding Window and Active Edge, produces the

lowest edge weight sum. This suggests that edge weights in the graphs produced by these

datasets are generally low and fall below the removal threshold ε quickly.

Figure 4.1b shows the number of weakly connected components of the dynamic graphs

over time. The weakly connected components of a graph are the maximal sets of vertices

that have no edges to any other vertices. Only vertices with non-zero degree are consid-

ered. The effect of Active Vertex and Weight Decay is the opposite on graph connectivity.

Figure 4.1b shows that Weight Decay produces graphs with a larger number of connected

components, meaning that it creates a more disconnected graph. Active Vertex, on the

other hand, produces the fewest connected components, meaning that the graph is more

connected.

It is interesting to see that while the scores produced by different methods differ, they

follow the same pattern by increasing and decreasing at the same time. This suggests that

when the method parameters are matched using the method described in Section 4.2.5, sim-

ilar types of changes can be detected by any of the four methods. For example, the points in

time at which a graph disconnects will be approximately the same for each method, marked

by an increase in the number of connected components.

4.3.3 Vertex Properties

Figures 4.2 – 4.7 show results for several vertex-level centrality scores over time. The x-

axis of each shows the graph snapshot count and the y-axis of each represents how much

the centrality scores have changed from the previous graph snapshot to the next. This is

computed using two measures. The first is the Spearman rank correlation and the second is

the Jaccard Index.

The Spearman rank correlation measures the strength of association between two ranked
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Figure 4.2: The Spearman’s rank correlation of unweighted degrees is shown over time for
each method.
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Figure 4.3: The overlap (Jaccard index) between the top 1% of vertices based on un-
weighted degree from consecutive snapshots is shown.
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Figure 4.4: The Spearman’s rank correlation of weighted degrees is shown over time for
each method.
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Figure 4.5: The overlap (Jaccard index) between the top 1% of vertices based on weighted
degree from consecutive snapshots is shown.
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Figure 4.6: The Spearman’s rank correlation of betweenness centrality is shown over time
for each method.
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Figure 4.7: The overlap (Jaccard index) between the top 1% of vertices based on between-
ness centrality from consecutive snapshots is shown.
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variables. Here, it can be used to determine how much the ranking of vertices according

to a particular property (such as degree) changes from one snapshot to the next. Given the

vertex centrality scores in Gt a rank vector Xt can be constructed. For example, the vertex

with highest centrality will have rank 1 and the vertex with second highest centrality will

have a rank of 2. The Spearman rank correlation at time t is then computed by computing

the Pearson correlation between Xt−1 and Xt. The lengths of Xt−1 and Xt are the same

and the ith element of each refers to the rank of the same vertex in the two consecutive

snapshots. Values near 1 suggest that centrality properties of the graph have not changed

much. Vertices what were highly central tend to remain so.

The Jaccard Index measures the overlap between two sets. Here it is used to determine

how much the set of most central vertices has changed. For a given centrality measure,

let Yt be the set of vertices with values in the top 1%. The Jaccard measure of the top 1%

central vertices at time t is then given by

|Yt−1 ∩ Yt|
|Yt−1 ∪ Yt|

(4.5)

While we use the Spearman correlation to compare the change in centrality among all

vertices, the Jaccard Index is used to compare the change in vertices with highest centrality.

In many applications, centrality is computed to find only these top vertices, which may be

particularly influential. For both measures, higher values indicate more stable changes of

the dynamic graph.

Figures 4.2 and 4.3 show the Spearman’s rank correlation and Jaccard Index of un-

weighted degree centrality between consecutive snapshots. Higher scores show that Active

Vertex produces dynamic graphs with least variability of vertex centrality over time, fol-

lowed by Weight Decay. Note that for statistics using unweighted edges, results for Active

Edge are the same as for Sliding Window. Figures 4.4 and 4.5 show the Spearman’s rank

correlation and Jaccard Index of weighted degree centrality between consecutive snapshots.
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Again, Active Vertex produces dynamic graphs with the least centrality change. The results

for Weight Decay, on the other hand, are very different. For this weighted statistic, Weight

Decay results in dynamic graphs with the most centrality change over time. While the

number of edges each vertex has is relatively stable, the edge weights change a great deal

with Weight Decay. Finally, Figures 4.6 and 4.7 show results for betweenness centrality

scores, with similar results as for the unweighted degree.

For all centrality measures, the score rank correlation coefficients and top 1% overlap

are highest for Active Vertex. This means that Active Vertex reduces the variability of vertex

centrality over time. It produces graphs that are less sensitive to quick changes. This can be

useful for applications in which the graph should change gradually over time. On the other

hand, Sliding Window has the lowest rank correlation scores and the lowest overlap of the

top 1% of vertices. This means that Sliding Window produces dynamic graphs with a high

variability of vertex centrality over time. High degree vertices will more easily become

low degree vertices and vice versa. Because the graphs produced by Sliding Window may

change quickly, it may be less suitable for applications that require gradual evolution. On

the other hand, it may be more appropriate for creating graphs that are sensitive to recent

changes.

As with the global properties, the local, vertex-level properties produced by each method

increase and decrease approximately at the same time. The graphs produced by each

method change in similar ways at similar points in time, even though the magnitude of

change may be different.

The observation that Active Vertex and Weight Decay reduce the variability of vertex

centrality compared to Sliding Window is even more pronounced when we consider only

medium and high degree vertices instead of all vertices. Figure 4.8 provides a closer look

into the rank correlation of betweenness centrality that was previously shown in Figure 4.6.

Here we compare this measure when calculated for all vertices vs. when calculated only

for vertices whose degree is greater than 9 in at least one of the two consecutive snapshots.
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Figure 4.8: The ratio of the average betweenness centrality rank correlation of Active Vertex
(top) and Weight Decay (bottom) compared to that of Sliding Window is shown. Plots on
the left show rank correlations using all vertices and those on the right use only vertices
with degree greater than 9 in either consecutive snapshot.
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Figure 4.9: The Spearman’s rank correlation of unweighted degree centrality is shown. The
x-axis shows the overlap between consecutive snapshots produced by the sliding window
method.

In the top plots, each bar shows the ratio of the average betweenness centrality rank

correlation of Active Vertex compared to the average rank correlation of Sliding Window.

Values above 1 indicate that Active Vertex produces higher rank correlations than Sliding

Window. The higher the value, the greater the difference between aging methods. The

bottom plots show the same ratio for Weight Decay compared to Sliding Window.

Plots on the left show rank correlations using all vertices and those on the right use

only vertices with degree greater than 9 in either consecutive snapshot. It is clear that ratios

are higher when the rank correlation uses only the vertices of degree greater than 9. This

means that the variability of betweenness centrality of medium and high degree vertices is

more affected by the choice of aging method than is the variability of low degree vertices.
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Figure 4.10: The overlap between the top 1% of vertices from consecutive snapshots based
on unweighted degree centrality is shown. The x-axis shows the overlap between consecu-
tive snapshots produced by the sliding window method.
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Figure 4.11: The Spearman’s rank correlation of betweenness centrality is shown. The
x-axis shows the overlap between consecutive snapshots produced by the sliding window
method.
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Figure 4.12: The overlap between the top 1% of vertices from consecutive snapshots based
on betweenness centrality is shown. The x-axis shows the overlap between consecutive
snapshots produced by the sliding window method.
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4.3.4 Effect of Overlap

The experiments for Figures 4.2 – 4.8 used parameters based on consecutive snapshots of

Sliding Window overlapping by 2/3, as described in Section 4.3.1. This section explores

how the average scores of different methods change as the amount of overlap between

consecutive snapshots Gt and Gt+1 increases. For Sliding Window, overlaps of 0, 1/2, 2/3,

3/4, and 4/5 between consecutive graph snapshots are tested, while keeping the range of

time in each graph snapshot constant. For example, regardless of the amount of overlap, a

snapshot of the YouTube graph represents edges from the last two months. Because setting

λ = h creates an overlap of h−1
h

, increasing the overlap requires increasing λ. Therefore,

in order to keep the range of time represented by each snapshot constant, when λ increases

the unit of time must decrease (fewer new edges are added to the new snapshot).

The parameters of the other methods are set to match as described in Section 4.2.5. For

Active Vertex and Active Edge, τV and τE are set equal to λ. For Weight Decay, ε = 0.1 and

values of α = ε
1
λ are then 0.0999, 0.316, 0.464 0.562, and 0.630 for the overlap parameter

values of 0, 1/2, 2/3, 3/4, and 4/5, respectively. The unit of time is the same for each

method.

Figures 4.9 – 4.12 show how the average scores change as the amount of overlap be-

tween consecutive snapshots changes. For each plot, the x-axis shows the overlap between

consecutive snapshots produced by Sliding Window. From left to right, there is less change

between Gt−1 and Gt. For each plot, the y-axis shows the average vertex centrality sim-

ilarity for that amount of overlap. Figure 4.9 plots the Spearman rank correlation for un-

weighted degree, Figure 4.10 shows the Jaccard index of the top 1% vertices by unweighted

degree, Figure 4.11 plots the Spearman rank correlation for betweenness centrality, and

Figure 4.12 shows the Jaccard index of the top 1% vertices with greatest betweenness cen-

trality.

Overall, the difference between Weight Decay scores and Sliding Window scores de-

creases as the amount of overlap increases. This means that when a large amount of data
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is added and removed between graph snapshots, Weight Decay reduces the variability over

time of vertex centrality even more when compared to Sliding Window. However, the less

the graph changes, the smaller the difference between the methods. The same holds to a

lesser degree for Active Vertex.

4.4 Conclusion

This chapter addressed the question of aging data for the creation of dynamic graphs. In

addition to previously used methods, a new approach was proposed, based on the concept

of active vertices and edges. The new approach may allow us to better preserve in the

graph information that is relevant to its most prominent or significants actors. By analyzing

several global and vertex-level graph properties, we find the differences and similarities

between dynamic graphs created by each aging approach.

The Active Vertex and Weight Decay methods each reduce the variability of vertex cen-

trality scores over time, especially for medium and high degree vertices, as compared to

Sliding Window and Active Edge. This difference is greater when more changes are accu-

mulated between consecutive graph snapshots. In practice, Active Vertex or Weight Decay

may be more useful if graph stability is preferred, while Sliding Window or Active Edge

may be chosen if a faster reflection of changes in the underlying data is needed. The choice

of method matters more when more data is added between snapshots. However, Active Ver-

tex and Weight Decay have opposite effects on graph connectivity. Active Vertex decreases

the number of connected components, while Weight Decay increases it.

This means that Active Vertex may be more suitable if it is desirable to avoid graph

fragmentation into several mutually disconnected parts. This is consistent with our original

motivation to introduce the Active Vertex approach, which was to avoid deleting even very

old edges if they connect continually active vertices. Keeping such edges can prevent the

breaking up of the graph into disjoint components and will preserve information about old

associations between a networks important entities. In practical terms it may useful in the
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tracking, for example, of criminal groups, when even very old connections between active

entities may prove very significant.

Despite these differences, if each method’s parameters are carefully chosen, they all

produce dynamic graphs with very similar patterns. The dynamic graphs produced by each

method experience similar types of changes at approximately the same time. This is an

important consideration for applications where the goal is to monitor the graph and detect

change-points in time.

The effects on the graph properties studied here will help practitioners understand the

consequences of choosing a particular method of removing old data. Because the topic

of aging data in dynamic graphs was previously largely unexplored, the focus here was

on basic graph properties. Future work should study the effect on more complex graph

measures, such as community evolution. The method chosen to age data will likely have

a strong effect both on the communities found and on how much they change between

consecutive snapshots.
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CHAPTER 5

LOCAL COMMUNITY DETECTION ON DYNAMIC GRAPHS

5.1 Introduction

Previous chapters have discussed issues that must be addressed before graph analysis takes

place: namely, how to collect edges with sampling and how to build dynamic graphs that

represent changes in relationships over time through aging. This chapter focuses on the

analysis of graphs through local community detection. As discussed in Section 2.2, local

community detection, also referred to as seed set expansion, is the task of finding a com-

munity relevant to a chosen seed vertex or set of seed vertices. The contribution of this

chapter is a new algorithm for local community detection on dynamic graphs, Ordered Dy-

namic Seed Expansion (ODSE), which maintains a community over time by incrementally

updating it as the underlying graph changes. The algorithm outputs high quality commu-

nities that are similar to those found when using a standard static algorithm. It works well

both when beginning with an already existing graph and in the fully streaming case when

starting with no data. The dynamic approach is also faster than re-computation when low

latency updates are needed. This work was published in [109] and [110].

5.1.1 Problem Statement

The new dynamic local community detection algorithm, ODSE, incrementally updates lo-

cal communities when the underlying graph changes. Since incremental updates are faster

than re-computation, this method can be used to improve performance for any application

of seed set expansion, such as those described in Section 2.2. We begin with an initial

graph G and find an initial local community C using a static seed expansion method. Next,

a sequence of updates is applied to G and after each such update, the new algorithm in-
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crementally updates C to reflect changes in graph structure. Each graph update is of the

form (u, v,∆ω), where u and v are edge endpoint vertices and ∆ω is an increment or a

decrement in edge weight. An edge insertion is represented by a weight increment to a

non-existent edge, while a deletion is represented by a decrement of the edge weight to 0.

The goal of ODSE is to output a community that is similar to what would have been

returned by re-running a static, greedy algorithm whenever the graph changes. This static

algorithm is described in Algorithm 9 and is the approach used in [32, 31, 5]. The com-

munity is iteratively expanded by adding the neighboring vertex that maximizes the chosen

fitness function. The algorithm terminates when there exists no vertex whose inclusion in

the community increases the fitness score. In Algorithm 9, seed represents the initial set

of seed vertices, f(C) the fitness score for a community C, and N(C) the set of vertices

not in C with at least one neighbor in C. For the experiments of Section 5.4 the fitness

metric f(C)MONC from Equation 2.5 is used, although the approach will work for other

appropriate fitness functions as well. This metric was chosen because unlike modularity, it

is local in nature. Note that, as for any greedy method, the output of Algorithm 9 depends

on the particular order in which the set N(C) is traversed in the for loop, and does truly

optimize the fitness metric over all possible expansions of C.

5.1.2 Sources of Edge Updates

As described above, the input to ODSE is a sequence of edge insertions, deletions, or edge

weight modifications. These updates may come from a dynamic graph created through one

of the aging methods described in Chapter 4. Recall that a dynamic graph is represented

by a sequence of graph snapshots {G0, . . . , Gt}, each snapshot representing the state of the

graph at that point in time. Once a dynamic graph is created, edge updates are then the

differences between consective snapshots Gt and Gt+1. If Gt+1 contains an edge not in Gt,

an update (u, v,∆ω), where ∆ω > 0, is necessary. Similarly, if Gt+1 is missing an edge

contained in Gt, an update (u, v,∆ω), where ∆ω < 0, is formed. Typically, there will be
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Data: graph G and seed set seed
C = seed;
while progress do

maxscore = −1;
maxvtx = −1;
for v ∈ N(C) do

s(v) = f(C ∪ v)− f(C);
if s(v) > maxscore then

maxscore = s(v);
maxvtx = v;

end
end
if maxscore > 0 then

C = C ∪maxvtx;
end

end
Algorithm 9: Static Seed Expansion (SSE)

multiple edge changes between consective snapshots. ODSE may update communities after

every single edge update or collect all changes that occur between consecutive snapshots

as a batch and take this batch as input.

If a dataset with timestamps has already been collected, the edges with timestamps

can be used to create the entire dynamic graph. Then, ODSE can be applied to get local

communities for all graph snapshots. In some real-life applications, the full dataset is not

available at the time of computation. As new data is generated, the dynamic graph changes

and new edge insertions and deletions are formed. These edge updates are then input to

ODSE. Because it is faster than recomputing, ODSE is more likely to be able to keep up

with a fast pace of updates.

5.2 Motivation

To motivate the new ODSE algorithm presented in this chapter, a simple, alternative algo-

rithm is first considered and the problems it may run into are discussed. The detection of

global communities in dynamic graphs has been studied extensively and many algorithms
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Should be 
removed 

(a) Undetected community splitting. (b) Undetected seed migration.

Figure 5.1: Shortcomings of the Simple Dynamic Seed Expansion (SDSE) algorithm. Un-
desired community evolution shown left to right.

have been presented in the literature. The MIEN algorithm [47] updates communities ini-

tially found with the static Louvain method [16] using a simple update procedure. All

vertices incident to newly removed, inserted, or updated edges are removed from their cur-

rently assigned communities and placed in their own singleton communities. Using this

new assignment as a starting point, the iterative Louvain method is restarted. A similar

approach is used in the algorithm presented in [50], which updates communities found

with a parallel version of CNM [15]. In [50], only vertices that are endpoints of inserted

inter-community edges or deleted intra-community edges are removed from their clus-

ters and placed into single communities. The reasoning is that inserting inter-community

edges and deleting intra-community edges weakens the current community structure, and

thus changes may need to occur, while deleting inter-community edges or inserting intra-

community ones strengthens it. This method can naturally be extended to the local com-

munity problem. It is a simple, first-pass attempt which can function as a comparison for

ODSE. We apply the method from [50] to local communities and call this method Simple

Dynamic Seed Expansion (SDSE).

SDSE works as follows. If an edge is inserted or incremented on the border of the

local community, the member vertex is removed. If an intra-community edge is deleted or

decremented, both vertices are removed. Then, Static Seed Expansion is restarted to allow

any vertices to be added to C. This last step allows the vertices that were just removed to

be re-added if this increases the fitness score. This process is shown in Algorithm 10 for a

single edge update. It is naturally extended to processing batches of multiple edge updates
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Data: edge (u, v,∆ω)
if u ∈ C and v /∈ C and ∆ω > 0 and u 6= seed then

C = C \ u;
else if u ∈ C and v ∈ C and ∆ω < 0 then

if u 6= seed then
C = C \ u;

end
if v 6= seed then

C = C \ v;
end

while progress do
maxscore = −1;
maxvtx = −1;
for v ∈ N(C) do

s(v) = f(C ∪ v)− f(C);
if s(v) > maxscore then

maxscore = s(v);
maxvtx = v;

end
end
if maxscore > 0 then

C = C ∪maxvtx;
end

end
Algorithm 10: Simple Dynamic Seed Expansion (SDSE)
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at once. Each edge update is processed as above before Static Seed Expansion is restarted.

Unfortunately, SDSE has shortcomings. For example, the community may split apart

and the algorithm may not be able to detect this because the neighbors of removed vertices

remain in the community. This is illustrated in Figure 5.1a, where the previously correctly

detected community (shown on the left) has actually split into two natural communities

(shown on the right) because of the deletion of five intra-community edges. The desired

action of the algorithm would be to remove some vertices from the community, so that

the resulted updated community is well-connected. However, SDSE may fail to prune the

community correctly. In the set of vertices that has split off and should be removed, most

neighbors of each vertex are also in the community and therefore no vertex will be removed.

Even if we evaluate multiple vertices at once for removal, the same problem may occur if

the set that has split off is large enough.

SDSE may fail even when it outputs a valid community in the graph. This is because

seed set expansion differs from global community detection in an important way: the local

community is chosen for a particular seed set. The task is not simply to find any good

community in the graph, but rather the appropriate community for the seed. Changes to the

graph may shift the community C to one not centered around the original seed, as shown

in Figure 5.1b. On the left hand side of the Figure, the detected community includes the

seed vertex, shown in red. On the right hand side, the original seed has been removed from

the community because of the deletion of one intra-community edge and insertion of one

border edge. While C may still have a good fitness score, it may not be a local community

of the seed and would not be produced by a complete re-computation using Static Seed

Expansion.

Given these considerations, quality evaluation for an updated community of a seed is

more difficult than for general communities. We must consider not only the degree to which

the chosen set of vertices resembles a community, but also whether it is a good community

for the particular seed. A static seed set expansion algorithm detects a community for the
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seed set using full information. Thus, one method of determining quality is to use the

community found using Static Seed Expansion as a baseline and consider an incremental

updating algorithm to be successful if it produces similar results.

5.3 Dynamic Seed Set Expansion Algorithm

5.3.1 Algorithm Overview

This section presents Ordered Dynamic Seed Expansion (ODSE), the new dynamic algo-

rithm for seed set expansion. ODSE updates a local community C that was produced by

Static Seed Expansion (SSE) (Algorithm 9). SSE iteratively adds to C the vertex that most

increases the fitness score. Therefore, the member vertices of C can be arranged as a se-

quence, in the order in which they were added, and this induces a sequence of increasing

fitness scores. The new algorithm ODSE works by treating C as this sequence of members.

When the graph changes, the sequence is pruned as needed so that the resulting fitness

score sequence remains monotonically increasing. This approach will not suffer from the

pitfalls shown in Figures 5.1a and 5.1b. In the case of Figure 5.1a, the set of four vertices

that are barely connected to the natural community would not be included. The first of

those four vertices to appear in the vertex sequence would cause a drop in fitness score. In

the case of Figure 5.1b, none of the vertices connect to the seed, so their inclusion would

also cause a drop in fitness score.

Let mi denote the ith vertex added as a member of the community in Algorithm 9 and

Mi = {mj | j ≤ i}. Mi thus is a set of the first i vertices added to community C and it has

an interior edge weight sum of kini, a border edge weight sum of kouti, and a fitness score

of si. Note that kini is equal to kMi
in and kouti is equal to kMi

out as in Equations 2.1 and 2.2. If

the ith vertex of the community mi is vertex v, then we say that v has position i or ρ(v) = i

in the community. The entire sequence of members is refered to as (m). The corresponding

sequences of interior edge weights, border edge weights, and fitness scores are refered to

by (kout), (kin), and (s). Here end is used to represent the last position in the sequences,
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Table 5.1: Community sequences (m),(kin),(kout), and (s)

position 0 1 2 . . . n
members m0 m1 m2 . . . mend

inner edges kin0 kin1 kin2 . . . kinend
border edges kout0 kout1 kout2 . . . koutend
fitness score s0 s1 s2 . . . send

so that (m) = {m0, . . .mend} and Mend is the current community, which we also call C.

Table 5.1 shows the sequences (m),(kin),(kout), and (s).

The dynamic algorithm works as follows. In phase A, we start with the initial graph

and find an initial community with Static Seed Expansion (Algorithm 9) to produce the

sequences (m),(kin),(kout), and (s). In phaseB, a stream of graph updates is applied. With

each graph update, ODSE updates the community by modifying (m), (kin),(kout), and (s)

in order to make sure that (s) remains monotonically increasing. That is, we require the

updated community to contain vertices that, if added one by one as in the static algorithm,

result in an increasing sequence (s). This helps the resulting community to remain relevant

to the source seed. ODSE detects any decreases in (s) and removes vertices from (m) to

eliminate any such decrease. Note that a change in (m) will cause a change in (kin) and

(kout), which will in turn modify (s). Removing a vertex from (m) (and thus from C),

makes some previously internal edges into border edges, so that (kin) and (kout) must be

modified. The fitness scores then change so (s) is updated. After ODSE removes vertices

from the community, it may add new vertices using the Static Seed Expansion method of

Algorithm 9.

This process is shown in Figure 5.2. The seed vertex v0 is in red and all members of the

community have a black border. The top image shows a community centered around the

seed vertex. The order of the community members is shown along with the corresponding

scores. The second image shows the state of the community after edges have been inserted

into and removed from the graph. The members of the community still remain the same,
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v0 

v1 
v3 

v4 

v2 
v5 

v6 

v7 

Posi%on	 0	 1		 2	 3	 4	 5	 6	

Member	 v0	 v1	 v2	 v3	 v4	 v5	 v6	

Score	 0.25	 0.5	 0.78	 0.92	 0.85	 0.94	 0.88	

A<er	edge	inser%ons	
and	dele%ons,	the	
sequence	of	community	
scores	changes,	
resul%ng	in	a	decrease	
at	vertex	v4.	

v0 

v1 
v3 

v4 

v2 
v5 

v6 

v7 

Posi%on	 0	 1		 2	 3	 4	

Member	 v0	 v1	 v2	 v3	 v5	

Score	 0.25	 0.5	 0.78	 0.92	 1	

The	community	is	
updated	using	the	
dynamic	algorithm.	
Ver%ces	v4	and	v6	are	
removed.	

v0 

v1 
v3 

v4 

v2 
v5 

v6 

v7 

Posi%on	 0	 1		 2	 3	 4	 5	 6	

Member	 v0	 v1	 v2	 v3	 v4	 v5	 v6	

Score	 0.25	 0.5	 0.7	 0.85	 0.88	 0.95	 1	

A	correct	local	
community		

(1) 

(2) 

(3) 

Figure 5.2: The process of storing and maintaining the sequences (m),(kin),(kout), and (s)
for a community is shown. The seed vertex v0 is in red and all members of the community
have a black border.
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but the number of internal and border edges has changed. As a result, the sequence of

scores is no longer increasing and the community is inappropriate. In the bottom image,

ODSE has been applied to update the community. Vertices v4 and v6 are removed and the

sequence of scores is once again increasing.

5.3.2 Algorithm Details

For each batch of edge updates, the following four steps are performed. Some may be

omitted depending on particular properties of edges being updated. Further details are

given later.

1. The sequences (kin),(kout), and (s) are updated to reflect new internal and border

edges.

2. Vertices that are endpoints of an updated edge are checked for removal. If a ver-

tex z is removed, the community members are further pruned. When members are

removed from C, (m), (kin),(kout), and (s) are updated.

3. The sequence (s) is scanned to check that the fitness scores are still monotonically

increasing. If a dip exists at position i, all sequences are truncated after position i. We

set end=i − 1 so that (m) = {m0, . . . ,mi−1}, (kin) = {kin0, . . . , kini−1}, (kout) =

{kout0, . . . , kouti−1}, (s) = {s0, . . . , si−1}.

4. Algorithm 9 is restarted to check whether neighboring vertices in N(C) should be

added to the community.

The four steps of ODSE are given in Algorithm 11. To make subsequent discussion

easier to interpret, three simplifying assumptions are made. First, as edges are undirected,

the order of vertices in an edge update (u, v,∆ω) is arbitrary. Therefore, we only consider

ρ(u) < ρ(v). Second, we assume one seed vertex, referred to as seed. The algorithm

can handle any number of seed vertices, though this only makes sense if there is prior
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Data: edge (u, v,∆ω)
//Step 1
if u ∈ C and v ∈ C then

for p = ρ(u) to ρ(v)− 1 do
koutp+ = ∆ω;
update sp;

end
for p = ρ(v) to end do

kinp+ = ∆ω;
update sp;

end
else if u ∈ C and v /∈ C then

for p = ρ(u) to end do
koutp+ = ∆ω;
update sp;

end
//Step 2
if ∆ω < 0 and u ∈ C and v ∈ C then

Queue← v
else if ∆ω > 0 and u ∈ C and v /∈ C and u 6= seed then

Queue← u
else if ∆ω > 0 and u ∈ C and v ∈ C and u 6= seed then

Queue← u
while Queue not empty do

x← Queue;
if x ∈ C and sρ(x)−1 ≥ sρ(x) then

remove x from C and update (m),(kin),(kout), and (s);
for neighbors z of x do

if z ∈ C and ρ(z) > ρ(x) then
Queue← z;

end
end

end
end
//Step 3
for i = max(ρ(u), 1) to end do

if si−1 ≥ si then
end← i− 1;
C = Mi−1;
break;

end
end
//Step 4
Check for new members using Static Seed Expansion process;

Algorithm 11: Ordered Dynamic Seed Expansion (ODSE)
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knowledge that all those vertices will belong to the same community. Third, we only

consider a single edge update, even though the algorithm can handle batches of more than

one update. To process a batch, several edge updates are accumulated before updating the

graph and the community. Step 1 is first performed for each update in the batch, then step

2 is performed for each update, and finally steps 3 and 4 are only executed once per batch.

Because steps 3 and 4 of the algorithm can be performed once per batch, accumulating a

larger set of updates before processing results in a faster running time. On the other hand,

if larger batches are used, the community is not updated as frequently. Using a larger batch

size can be thought of as a compromise between a fully dynamic algorithm, which updates

results immediately, and infrequently using the static algorithm to recompute communities.

The complexity of obtaining one community with Static Seed Expansion is O(n2d),

where n is the final community size and d is the average vertex degree, though this is an

overestimate for graphs whose vertices share many neighbors. In each iteration, in order

to determine the best candidate for addition into the community, all vertices neighboring

the current set (the border set) are checked and the corresponding change in fitness score is

computed. With n current member vertices of average degree d, there may be nd distinct

border set vertices to check, resulting in a time complexity of O(nd). In reality, however,

many member vertices will have the same neighbors, so not all nd are distinct. By main-

taining a list of current border set vertices, such as with a hash map, it is only necessary

to process unique neighbors in each iteration. Thus, in practice, the time complexity of

checking neighboring vertices in each iteration may be less than O(nd). Assuming the

community and border set are each represented with a hash map, adding a vertex v has

worst case O(d) complexity because each of v’s neighbors may need to be either added to

the border set or have their count of edges touching the community updated. To obtain a

final community of size n, n iterations must be completed.

In the worst case, ODSE must recompute a large portion of the community. Because

this re-computation is performed with the static expansion, the worst case time complexity
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isO(n2d) as well. In practice, many of the updates result in no decrease in the fitness score

sequence so that only a scan of sequences (m),(kin),(kout), and (s) is needed. In this case

the complexity becomes O(n). The time complexity of each step is given next. Step 1

updates the values of (kin), (kout), and (s) by iterating once over each. The complexity

is O(n) where the n is the size of the community. In step 2, if no vertices are removed,

the complexity is O(1). The complexity of removing a vertex z with degree d in step 2 is

O(d) because each neighbor of z must either also be checked for removal if it is a current

community member or else have its count of edges touching the community decreased.

With a community size of n, at most n vertices can be removed in step 2, for a worst

case O(nd) complexity. Step 3 requires a scan of (s) and takes O(n) time. Step 4 uses

Algorithm 9 and therefore has a worst case complexity of O(n2d). The data structures

required are a representation of the community and of the set of border vertices, both of

which may be, for example, a hash map. The sequences (m),(kin),(kout), and (s) are each

an array with length n. Additional details of each step are given next.

Step 1: First, (kin), (kout), and (s) are updated to reflect new edges internal to and on

the border of the community. The input is (u, v,∆ω), where u and v are vertices and ∆ω

the corresponding change in weight.

Step 2: Due to the update in step 1, (s) may no longer be monotonically increasing. Step

2 is only performed if there is a specific candidate vertex for removal, which will always be

an endpoint of an updated edge. An edge update (u, v,∆ω), can cause the removal of one

of its endpoints z in three cases. Recall the simplifying assumption that ρ(u) < ρ(v). The

first case is a an edge decrement with u ∈ C, v ∈ C; then the edge vertex to be examined

is z = v. The second is an edge increment with u ∈ C and v /∈ C; then the vertex to be

examined becomes z = u. The third case is an edge increment with in u ∈ C and v ∈ C.

Then the vertex to be examined will be z = u. For each case, if sρ(z) ≤ sρ(z)−1, z will be

removed.

This third case may seem counter-intuitive because an intra-community edge is incre-
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mented, densifying the community. However, we must maintain an increasing sequence of

fitness scores (s). As u was added to C before v, the edge between u and v is a border edge

at position ρ(u), and becomes internal only starting at position ρ(v). Thus, by incrementing

it, the sum of border edges koutρ(u) increases. If, due to this increase, sρ(u) ≤ sρ(u)−1, then

u would have to be removed from C. In a later step, u could be re-added to C, but it would

have to be removed from its current position due to causing a non-increase of (s).

If a candidate z is removed, (m) is updated and values of (kin), (kout), and (s) for

ρ(z) ≤ i ≤ end must be recalculated to reflect the fact that edges of z are no longer inside

C. For each edge (z, x), if x ∈ C, the edge changes from an internal community edge

(contributing to (kin)), to a border edge (contributing to (kout)). If x /∈ C, the edge changes

from a border edge to an edge with no influence on the fitness score. Only sequence ele-

ments after position ρ(z) must be updated because earlier elements reflect a state in which

z was not yet in the community. The positions of all member vertices in the sequences must

be updated to reflect the fact that an element has been removed.

The removal of a vertex z from C in step 2 may cause other vertices in C to be removed

as well. Candidate vertices are neighbors of z that were added to C after z. Let x be

such a neighbor. At the time of x’s inclusion in C, adding x increased the fitness score by

increasing (kin), which was due to x having neighbors already in the community. However,

at least one such neighbor was z, which is now no longer in C. Thus, it is possible that

without z in C, x would not have enough neighbors in C to be added. We can check this

by testing if sρ(x)−1 ≥ sρ(x). Therefore, if z is removed from C, all such neighbors x of

z in C are also checked. If any neighbor x of z is removed, then we must in turn check

neighbors of x that were added to C after x. In order to perform the entire pruning process,

a selective breadth first search beginning from z is performed, as in step 2 of Algorithm 11.

Note that neighbors of z added to C before z (ρ(x) < ρ(z)) need not be checked because

they were added to C without the assistance of z. We know that their addition improved

the community fitness score even without accounting for z so their corresponding fitness
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scores are guaranteed to be increasing also after the removal of z.

Step 3: Next we scan all of (s) to check if values are still monotonically increasing. If

si−1 ≥ si, we truncate (m),(kin),(kout), and (s) at position i− 1 and set end = i− 1. The

community is now C = Mi−1 with fitness score si−1.

Step 3 differs from step 2 because instead of a selective pruning, all of (m) after the

chosen position is deleted. Step 2 is performed only when there is a specific candidate

vertex to check for removal from C. Step 3 can check all vertices and is necessary because

after step 2, (s) may still not be monotonically increasing. For example, let the update

be (u, v,∆ω), with u ∈ C, v ∈ C, ρ(u) < ρ(v), and ∆ω > 0. By incrementing an

intra-community edge, kρ(u),in increases and the set Mρ(v) becomes denser. Thus, any

vertex added after position ρ(v) may no longer increase the fitness score and all scores

after position ρ(v) must be scanned for a dip.

Although step 3 could replace the previous step entirely, it is still beneficial to perform

step 2 because it can reduce computation. In step 2, we inspect for removal only endpoints

of updated edges and then iteratively neighbors of all vertices removed in the process.

These are the community members most likely needing to be removed. This is why running

step 2 is advantageous before executing step 3. After step 2 has been run, the likelihood of

finding non-monotonically increasing members in C is lower, and step 3 will need to prune

the community less often, reducing computation.

Step 4: Finally, new vertices can be added to the community. Vertices neighboring C

are checked for inclusion by running the loop in Algorithm 9. For every vertex added to C,

a new entry is appended to (m),(kin),(kout), and (s).

5.3.3 Fully Streaming Version

ODSE, as described above, begins with an initial existing graph and an initial community

for this graph. However, the method can be extended to work on a fully streaming graph.

Instead of starting with an initial graph and running Static Seed Expansion, it is possible to
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Table 5.2: Datasets used as test graphs with the number of edges and vertices and the size
of the sliding window.

Graph Vertices Edges Sliding Window
facebook 46,952 876,993 292,331
slashdot 51,083 140,778 46,926
contact 274 28,244 9,414
digg 30,398 87,627 29,209
ucirvine 1,899 59,835 11,240
manufacturing 167 82,927 9,214

begin with an empty graph. ODSE can then build and maintain a community from scratch.

Given a seed vertex v (or set of seed vertices), the community will be initialized containing

only v (or the set of seeds), with no interior or border edges. After each edge insertion

or deletion (or batch of such updates), ODSE will update the community as explained

above. The community will begin to grow as edges are inserted around v. We show results

for ODSE both when beginning with an initial graph and for a fully streaming graph in

Section 5.4.

5.4 Results

5.4.1 Experimental Setup

We test Ordered Dynamic Seed Expansion on six social network graphs, listed in Table 5.2.

All datasets were obtained from the Koblenz Network Collection [59]. The facebook

dataset represents wall posts between users. In the slashdot and digg datasets, an edge

occurs when one user replies to another in a thread. The contact dataset represents con-

tact between users carrying wireless devices. In the ucirvine dataset, vertices are users

and forums, with an edge occurring when a user posts on a forum. Finally, manufacturing

represents email contact. As these graphs represent social interactions, they are likely to

display group structure. These graphs were chosen because they contain timestamped data,

allowing us to track real community evolution. We can insert and remove edges in the order
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given by timestamps.

We perform two types of experiments with each of these real social networks. In the

first type, an initial graph is formed out of the first one third of edges. Static Seed Expan-

sion is run on this initial graph as in Algorithm 9. The remaining two thirds of edges are

streamed in as edge insertions or edge weight increments. Edge deletions and edge weight

decrements are created by removing old edges with a sliding window approach. Edges are

inserted and removed in the same timestamped order, but with edge deletions lagging by

a gap. This gap is the window size, which is given in Table 5.2. The update stream ends

when no new edges can be inserted. The removal of old interactions as new interactions

are added allows communities to evolve. For all graphs except manufacturing, the sliding

window gap is set to one third of the edges. Because the the manufacturing graph is very

dense, we set both the initial number of edges and the sliding window gap to one ninth,

instead of one third, of the edge count.

The second type of experiment performed on each graph ODSE in a fully streaming

manner. Instead of beginning with an existing initial graph, we begin with an empty graph

and process all edge insertions and deletions as a stream. Because there is no initial com-

munity for the dynamic algorithm to begin with, this approach is more challenging. Any

community must be incrementally built.

For seed vertices, we chose from each of the facebook, slashdot, digg, and ucirvine

graphs 100 random vertices whose degree was in the top 75th percentile for the given

graph and 100 random vertices whose degree was in the top 99th percentile. Both medium

and high degree vertices were chosen to allow variety in the experiments. We did not

choose low degree vertices because the graphs tended to have skewed degree distributions

so vertices with low degree percentiles appeared only a few times in the dataset. For the

contact and manufacturing graphs, because the total number of vertices was small, we

simply chose 100 random vertices as seeds. We use the fitness function fMONC , defined

in Section 2.2, with parameter α = 1.0 and α = 0.8. A smaller α allows for larger
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communities. A value of α = 1.0 is recommended [31, 30] and we used α = 0.8 to also

obtain slightly large communities. Two α parameters were chosen to evaluate results for

different types of communities. Our results consist of the two experiment types for all seed

vertices of the six datasets with both α parameters. The code was implemented in C and

run on an 8 core Intel i7-2600K CPU at 3.40GHz.

5.4.2 Quality of Communities

In order to compare the communities output by ODSE to those from Static Seed Expansion,

we repeatedly re-run SSE as a graph is updated. This means that at any point in time (after

each number of graph updates) for each seed vertex of each graph, we have the community

computed with ODSE and the community computed by SSE. The community obtained by

SSE can serve as a reference for comparison purposes. Of course, in many real-life datasets

there may be more than one good local community for a seed vertex, but in the absence of

real ground truth, using the results of the static algorithm is suitable.

The algorithm performance is measured by four metrics. The first is the ratio of the

fitness scores in the dynamic algorithm vs. those obtained by re-computation. The second

is the ratio of the size of the community output by the two methods. Because ODSE

maintains vertices that induce increasing fitness scores, the output will be relevant to the

seed. Therefore even if the vertex members of the two sets differ, as long as the scores and

sizes are similar, we can say that the communities are comparable in quality. Communities

in real-life graphs are often overlapping, so there may be multiple sets for an algorithm to

return. The third and fourth metrics used are the precision and recall, which compare the

overlap between the members of communities output by the dynamic algorithm and those

output by SSE. For a given graph update, let CU be the community produced by ODSE and

CR be the community output by SSE. Then Equations 5.1 and 5.2 give precision and recall.

precision =
|CU ∩ CR|
|CU |

(5.1)
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recall =
|CU ∩ CR|
|CR|

(5.2)

Table 5.3 shows the mean score ratio, size ratio, precision, and recall for each graph.

In both tables, the top section shows results when the first third edges are used to form

an initial graph before updating with a dynamic algorithm. The bottom section shows

results when starting with an empty graph. A batch size of 1 is used, which means that

communities are updated after each edge.

Table 5.3a shows results for ODSE. While both the fitness score and community size

tend to be higher for the dynamic algorithm, the values are near 1 for most graphs, showing

similar quality. Recall is higher than precision, which makes sense given that community

sizes of the dynamic method are larger. The fact that average recall is high, with most values

at or above 0.9, means that all relevant vertices are returned, which may be important for

many applications. At the same time, the size of the community is not on average much

larger, so not many additional vertices are returned. While precision is not as high as recall,

the average is above 0.8 for half the graphs and above 0.7 for most graphs. As mentioned

before, the lack of perfect overlap does not signify poor quality because a different equally

good community may be returned. The fact that the fitness function score is high with

community size similar to re-computation indicates good results.

The results of ODSE are slightly closer to those of SSE when beginning with an initial

graph, seen in the top half of Table 5.3a, compared to the fully streaming case, seen in the

bottom half. This result intuitively makes sense as the dynamic algorithm does not start

with a pre-computed community in the latter case. However, the results are still good in the

fully streaming case. The recall and precision remain fairly high, the score ratio is close to

1 for all graphs, and the size ratio is below 2 for all but two graphs. This shows that ODSE

still works well when applied in a fully streaming manner.

Table 5.3b shows the results of SDSE described in Section 5.2. It is clear that this

simple approach grows very large communities with low precision. However, the problem
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Table 5.3: The average score ratio, size ratio, precision, and recall for each graph with a
batch size of 1. Recomputing with SSE is used as the baseline. The bottom section of each
table shows results for the fully streaming case.

(a) Results for Ordered Dynamic Seed Expansion (ODSE)

Ordered Dynamic Seed Expansion
Type Graph Score Ratio Size Ratio Precision Recall

Starting With
Initial Graph

facebook 1.07 1.56 0.72 0.86
slashdot 1.02 1.17 0.84 0.90
contact 1.09 1.23 0.98 0.99
digg 1.06 1.33 0.77 0.92
ucirvine 1.14 2.13 0.67 0.81
manufacturing 1.23 2.22 0.88 0.95

Fully Streaming

facebook 1.08 1.83 0.63 0.84
slashdot 1.02 1.20 0.81 0.90
contact 1.12 1.30 0.98 0.99
digg 1.07 1.41 0.75 0.92
ucirvine 1.27 3.94 0.59 0.80
manufacturing 1.29 2.75 0.85 0.94

(b) Results for Simple Dynamic Seed Expansion (SDSE) from Section 5.2

Simple Dynamic Seed Expansion
Type Graph Score Ratio Size Ratio Precision Recall

Starting With
Initial Graph

facebook 1.69 29.95 0.28 0.78
slashdot 1.44 15.82 0.34 0.86
contact 2.20 6.00 0.94 0.99
digg 1.57 33.00 0.21 0.84
ucirvine 2.63 33.53 0.23 0.86
manufacturing 3.49 22.06 0.51 0.98

Fully Streaming

facebook 2.44 196.21 0.17 0.78
slashdot 1.95 173.86 0.25 0.85
contact 2.61 7.98 0.90 0.99
digg 2.36 212.98 0.12 0.84
ucirvine 3.16 56.60 0.12 0.89
manufacturing 3.53 23.30 0.48 0.94
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Table 5.4: The average score ratio, size ratio, precision, and recall across all graphs binned
by community size. A batch size of 1 is used. Recomputing with SSE is used as the
baseline. The bottom section of each table shows results for the fully streaming case.

(a) Results for Ordered Dynamic Seed Expansion (ODSE)

Ordered Dynamic Seed Expansion
Type Size Range Score Ratio Size Ratio Precision Recall

Starting With
Initial Graph

1-4 1.00 1.02 0.98 0.99
5-9 1.04 1.27 0.84 0.94
10-24 1.05 1.34 0.78 0.89
15-49 1.07 1.44 0.71 0.83
50-99 1.14 1.98 0.73 0.84
100-499 1.41 3.34 0.76 0.91
500+ 1.99 11.35 0.52 0.92

Fully Streaming

1-4 1.00 1.02 0.98 0.99
5-9 1.04 1.31 0.84 0.95
10-24 1.05 1.44 0.74 0.88
15-49 1.08 1.64 0.67 0.83
50-99 1.16 2.17 0.67 0.82
100-499 1.58 5.23 0.69 0.90
500+ 2.77 25.87 0.32 0.91

(b) Results for Simple Dynamic Seed Expansion (SDSE) from Section 5.2

Simple Dynamic Seed Expansion
Type Size Range Score Ratio Size Ratio Precision Recall

Starting With
Initial Graph

1-4 1.02 1.04 0.99 1.00
5-9 1.12 2.01 0.65 0.93
10-24 1.20 3.05 0.49 0.88
15-49 1.22 4.67 0.35 0.82
50-99 1.32 7.65 0.27 0.79
100-499 2.85 23.46 0.30 0.87
500+ 3.64 61.95 0.10 0.90

Fully Streaming

1-4 1.03 1.07 0.98 1.00
5-9 1.22 2.22 0.61 0.92
10-24 1.22 3.49 0.46 0.90
15-49 1.24 5.06 0.31 0.81
50-99 1.33 9.63 0.22 0.79
100-499 2.87 24.25 0.27 0.87
500+ 3.76 85.00 0.06 0.92
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is not restricted to the large size of the clusters. For half the graphs, the recall of SDSE

is lower than that of ODSE. Therefore, the communities also contain fewer of the ground

truth members compared to ODSE. When run with a small batch size, ODSE performs

better. With a large enough batch size, we expect that the quality of SDSE would improve

because most vertices would be removed from the community at each update. However,

that would be very similar to re-computing from scratch with SSE.

Table 5.4 shows the average score ratio, size ratio, precision, and recall of both dynamic

approaches (again with the results of SSE as a baseline) for different community sizes.

Averages are taken across communities output for all seed vertices on all six graphs. The

runs for each seed vertex on each graph are divided by the average size of the community

output by the dynamic algorithm. If the size of a community for a seed vertex is on average

20, the values for that experiment will contribute to the 10−24 size bin in Table 5.4. Again,

results are shown separately for the case when we start with an initial graph and the fully

streaming case where we begin with an empty graph.

The results in Table 5.4a show that when ODSE outputs smaller communities, the re-

sults are more similar to the output of SSE. However, the quality of the results remains

high up to a size of 500 so ODSE performs well on a wide range of sizes. Table 5.4b shows

these statistics for SDSE. Even for the same community sizes, the precision of SDSE is

much worse than that of ODSE.

Figure 5.3a shows the average precision and recall of ODSE, compared to SSE, against

the number of updates applied to the graph. We begin with the first third of the edges as an

initial graph before streaming updates. A batch size of 1 is used. Averages are taken across

multiple independent expansions, each with its own seed. The x-axis represents the number

of insertions and deletions applied to the graph and the y-axis shows the average precision

or recall of communities output by the dynamic algorithm after that many updates. Thus,

left to right shows how average precision and recall change as the graph changes. For each

graph, all edges are inserted and edges are removed with a sliding window. The number of
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(a) Starting with one third of the dataset as the initial graph before streaming updates.
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(b) Fully streaming version: starting with an empty graph and streaming the entire graph
as updates.

Figure 5.3: The precision and recall of ODSE, using results of re-computation with SSE as
a baseline, are shown over time for all graphs.
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edge insertions and size of the deletion sliding window can be found in Table 5.2. Apart

from facebook, there is no downward trend in either precision or recall of our approach as

the number of insertions and deletions increases. This shows that we can use ODSE for a

large number of updates before a static recalculation should be applied. In fact, for these

datasets, there is no indication that a static re-computation would be necessary.

Figure 5.3b shows the precision and recall of ODSE for the fully streaming case when

we begin with an empty graph. For several of the graphs, the precision and recall are lower

in the fully streaming case, which makes sense given that ODSE begins with no initial

community. However, the values are still high in most cases with no downward trend. In

fact, for the digg, ucirvine, and slashdot graphs, the precision increases at the beginning.

5.4.3 Performance Results

In this section we evaluate the performance of using various batch sizes of updates with

ODSE. Using a batch size of x means that x edge updates are accumulated before applying

them to the graph and updating the community. A smaller batch size provides updated

results more frequently. When working with Static Seed Expansion, in order to produce

updated results for each batch, the algorithm must be re-run. For example, if there are 2000

edge insertions and deletions, then using a batch size of 1 would require 2000 batches to

be processed, while using a batch size of 10 would require processing 200 batches. With a

batch size of 10 and 200 batches, our algorithm, or the static algorithm, would be run 200

times, each time processing 10 updates.

In Figure 5.4, we compare the running times of ODSE and SSE. For each seed set

of each graph, the running time is measured as the total time taken to process all edge

insertions and deletions. This is not the time of processing a single batch, but the time to

process all batches. To fairly compute the running time of the static algorithm, we only

recompute with SSE when an edge update occurs that may affect the community result.

Many edge updates will affect vertices not related to the community and we need not update
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(b) The mean running time over all seed sets is
shown for both ODSE and SSE.
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Figure 5.4: Subfigures a, c, and d show the speedup of ODSE compared to re-computing
with SSE. A speedup of x means that using ODSE is x times faster than recomputing with
SSE. Subfigure b shows the running time.
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the community in those cases. When accumulating a batch, we only count edge insertions

with at least one endpoint vertex in the current community. We count edge deletions with

at least one endpoint vertex either in the community or with neighbors in the community.

Figure 5.4a shows the mean, median, and quartiles of the speedup of ODSE over SSE.

The speedup is the ratio of the running time of SSE over the running time of ODSE. This

speedup ratio is computed for every seed set of every graph. A speedup of x means that

using ODSE is x times faster than SSE, so higher values are better. The x-axis shows the

batch size used and the y-axis shows the speedup, both on a log scale.

It is clear that the advantage of ODSE is greatest for small batch sizes. This is expected

because the total running time of SSE decreases proportionally as the batch size increases.

When the batch size is increased by a factor of x, there are x times fewer batches and

re-computation occurs x times less frequently. Because the running time of SSE does not

depend on the batch size, when the number of batches decreases by a factor of x, the total

running time also decreases by a factor of x. ODSE, however, performs more work as the

batch size increases. Steps 3 and 4 are only run once per batch, but the decrease is not by

a factor of x as some steps must occur the same number of times, once per edge update,

regardless of the batch size. This can be seen in Figure 5.4b, which shows the mean running

time, across all seed sets of all graphs.

For batch sizes of 1, 10, and 100, using ODSE is faster than using SSE. Of course,

ODSE performs less work and solves a slightly different problem because it updates the

results instead of computing from scratch. However, for applications where it is desirable to

continually know the current community as the underlying graph changes, the community

must be updated when the graph is modified. In such cases, the comparison of the dynamic

and static algorithms is warranted and fair. The updated output can be obtained either by

re-computation with SSE or incrementally with ODSE.

Figure 5.4c shows the mean dynamic speedup over re-computation for each graph. For

a batch size of 1, we achieve mean speedups of two orders of magnitude on some graphs.
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ODSE is faster for batch sizes of up to and including 100. Figure 5.4d shows the mean

dynamic speedup over re-computation for different community sizes. Each point shows the

mean using all expansions with an average community size in the specified range. ODSE

performs relatively better for communities of size 25 and up. This is not surprising because

SSE will take longer to recompute a large community.

5.5 Community Operations

Tracking the evolution of communities through operations is an important topic when

studying dynamic graphs [53, 38]. When dealing with global clusters, it is typical to

compare the overlap of communities found at different times in order to detect continu-

ing, growing, shrinking, merging, splitting, appearing, and disappearing communities. The

focus of our work has been to present an algorithm that maintains a local community over

time by incrementally updating. However, we will briefly discuss potential approaches to

detecting community operations to motivate future work.

First, it is necessary to address the number of seed vertices used to expand a single

community and the implications in a dynamic context. Although each seed set consists of

a single vertex in our experiments, ODSE can be run with a seed set of multiple vertices

of interest. However, because a single community is found for the seed set, it only makes

sense to use multiple vertices if there is reason to believe that there exists some community

containing all of them. In a dynamic graph the seed vertices should remain in a single

community over time. Therefore, for the community operations addressed below, we limit

our discussion to the use of one seed vertex per community.

We can track the evolution of individual local communities and detect interactions be-

tween them. A community can grow, shrink, or disappear, all of which can be detected

by the size of the community. The volatility of a single cluster could be measured by

comparing the members of consecutive times.

Independent local communities can merge and split by increasing and decreasing their
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Figure 5.5: This figure illustrates tracking key vertex interactions using seed set expansion.

overlap. If, for example, two seed vertices have highly overlapping communities, then this

indicates similarity or interaction between them. A metric based on overlap, such as the

Jaccard index, and a threshold could be used to determine when the communities of two

seeds have merged or split. A simpler option marks a merge, or beginning of interaction,

when the community of one seed includes another seed vertex. A split, or end of interaction,

is marked when when the latter seed is no longer included in the former seed’s community.

This is shown in Figure 5.5, where vertices of interest are used as seeds and shown in

red. Communities are marked with shaded ovals. Left to right marks the beginning of

interaction between two seed vertices when the community of one seed grows to include

another seed. Right to left marks the end of an interaction.

5.6 Conclusion

We have presented Ordered Dynamic Seed Expansion, a new algorithm that incrementally

updates the local community of a seed set when the underlying graph changes. For a vari-

ety of social networks with timestamps, ODSE produces communities that have both high

fitness scores and high overlap with the communities produced by Static Seed Expansion.

ODSE works well both when beginning with an initial existing graph and in a fully stream-

ing manner when beginning with no initial data. The dynamic method is faster than Static

Seed Expansion, which must be re-run whenever the graph is updated, and the performance

improvement is greatest when low latency updates are needed. The speedup achieved varies
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based on the size of a local community, with ODSE performing relatively better on large

communities. It is easily parallelized across independent expansions. This chapter also

discussed an approach for tracking vertex interaction over time using local communities.
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CHAPTER 6

A LOCAL MEASURE OF COMMUNITY CHANGE IN DYNAMIC GRAPHS

6.1 Introduction

Dynamic graphs represent relational data over time and can be used to discover how these

relationships change. Recall that a dynamic graph can be represented as a sequence of

graph snapshots {G0, . . . , Gt}, where each snapshot Gt = (Vt, Et) represents the state at

that point in time. A simple extension of static graph analysis to dynamic graphs involves

computing a standard static measure on each graph snapshot. For example, the centrality

value of each vertex may be computed, or communities can be found and a selected fitness

score may be evaluated for all clusters currently identified. However, the creation of a

dynamic graph also allows for new types of dynamic analysis that study how the graph

changes over time.

This chapter presents a new local, vertex-level measure of community change. In a

dynamic graph, communities may evolve over time in a variety of ways and vertices may

move between communities. Here, we focus on finding vertices that experience a particular

type of change in their local community behavior, and refer to them as allegiance switching

vertices. For example, consider a paper co-authorship network, in which vertices represent

researchers and an edge indicates that two researchers have co-authored a paper within the

time period under consideration. A community in such a graph may represent a group of

researchers who collaborate with each other if the clusters are small, or researchers who

are working on the same topic if the clusters are larger. In such a graph, we may wish to

detect researchers who move to a different lab or university or change the field in which

they publish. The contribution of this chapter is a new local measure of community change,

with the following properties: (1) sensitivity: it detects vertices that have a change in their
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community and (2) stability: the community change detected is related to the interactions

(edges) of the particular vertex and not only caused by global community shifts. This work

was published in [111].

6.2 Allegiance Changing Vertices

6.2.1 Motivation

Typically, dynamic community analysis is done by first finding communities on each snap-

shot of a dynamic graph and then matching communities found in different snapshots using

their overlap, as in [53, 54, 55]. If communities Ci,t1 ∈ Gt1 and Cj,t2 ∈ Gt2 share a high

proportion of the same vertices, then they are considered to have a high overlap and may

be matched, meaning that Cj,t2 is a continuation of C1,t1 . If Ch,t3 ∈ Gt3 is also matched

as a continuation of Cj,t2 ∈ Gt2 the three clusters may then be considered to be manifes-

tations at different points in time of the same community of vertices. By considering the

overlap, it may also be possible to detect a community splitting into multiple components

or multiple clusters joining together. Once this matching process is performed, it could be

possible to detect vertex level events, such as when a vertex moves from one community to

another [55].

However, using such a global approach to detect vertex changes may produce unin-

tended results if the communities are not stable over time. In a dataset with a very smooth

community evolution, a global approach may work well; in practice however, a graph may

greatly change between two snapshots, causing the communities to change drastically as

well. In that case, a vertex may be flagged as moving between communities only because

the community structure was unstable. A re-arrangement of community composition may

prevent a high enough overlap between its communities at consecutive points in time to

allow them to match.

The global matching approach does not ensure that the detected community change of

a vertex is local and not only a global shift. Suppose vertex v has edges only to vertices w
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Figure 6.1: As the graph changes over time, vertex v has a high local measure of community
change. Its neighbor set is Nt−1(v) ∪ Nt(v) = {y, x, w, q, s, t}. The set of neighbors that
leave v’s community is Lt(v) = {y, x, w}. The set of neighbors that join v’s community is
Jt(v) = {q, s, t}. The set of neighbors that stay in the same community is St(v) = ∅.

and u. If w and u both move to a new community, v will likely move along with them and

exhibit a global change in community membership. However, the behavior of v will not

have changed (as it is still connected to the same two neighbors) and it will remain in the

same community as its neighbors.

We refer to such events, when a vertex changes communities, as allegiance changes

and the vertices that undergo such events are allegiance changing vertices. The detected

community change of a vertex v should be local: caused by a change in v’s actions (its

edges) and not only a global shift.

6.2.2 Proposed Method

Given a dynamic graph, for each snapshot Gt, a set of non-overlapping communities

{C1,t, . . . , Crt,t} is detected. Let Ct(v) represent the community that contains vertex v as

its member in Gt and Nt(v) the set of neighbors of vertex v in Gt. Using this community

decomposition three sets are defined for each vertex v ∈ Vt. St(v) is the set of neighbors of

v that were in the same community as v at the previous snapshot Gt−1 and stay in the same

community as v in Gt. Lt(v) is the set of neighbors of v that were in the same community

in Gt−1, but are no longer in Gt. Jt(v) is the set of neighbors of v that were not in the same

community as v in Gt−1, but are in Gt. Formally these are defined in Equations 6.1, 6.2,
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and 6.3 respectively.

St(v) = {w|w ∈ Nt−1(v) ∪Nt(v) ∧ Ct−1(v) = Ct−1(w) ∧ Ct(v) = Ct(w)} (6.1)

Lt(v) = {w|w ∈ Nt−1(v) ∪Nt(v) ∧ Ct−1(v) = Ct−1(w) ∧ Ct(v) 6= Ct(w)} (6.2)

Jt(v) = {w|w ∈ Nt−1(v) ∪Nt(v) ∧ Ct−1(v) 6= Ct−1(w) ∧ Ct(v) = Ct(w)} (6.3)

A large change in v’s neighborhood at time t occurs when three conditions occur simul-

taneously: (1) the set Lt(v) is large, indicating that many vertices with which v interacted

and which were in the same community as v are no longer in the same community as v; (2)

the set Jt(v) is large, indicating that v is now connected to vertices which were not previ-

ously in its community; and (3) the set St(v) is relatively small, so that a low percentage of

v’s neighborhood was and continues to be in the same community. Using St(v), Lt(v), and

Jt(v), two measures of community change severity αt(v) and βt(v) are defined below.

αt(v) =
|Lt(v)|

|St(v) ∪ Lt(v)|
(6.4)

βt(v) =
|Jt(v)|

|St(v) ∪ Jt(v)|
(6.5)

Figure 6.1 shows an example. Intuitively, a high value of αt(v) indicates that a large

percentage of neighbors of v have left v’s community (or v has left theirs). Similarly, a

high value of βt(v) means that a large percentage of v’s neighbors were not in the same
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community as v at time t − 1, but joined v’s community at time t (or v joined their com-

munity). Therefore, vertices v with high values αt(v) and βt(v) have experienced a large

change in their local neighborhood.

The focus of this community change characterization is on the community membership

of a vertex v relative to its neighbor set because the neighbors represent other entities v has

recently interacted with. With a larger number of hops, any relationship becomes much

weaker and more difficult to characterize. Vertex v may be in the same community as

many vertices with which it does not interact or which are not even in a two hop neighbor-

hood. Any community change associated with such distant vertices should not affect the

characterization of v’s allegiance. Therefore, our measure of community change is local.

6.2.3 Setting a Threshold

In order to mark a vertex as allegiance switching, it needs to have both high values of αt(v)

and βt(v). To combine the two values, both of which fall between 0 and 1, we can draw

from work from the field of fuzzy logic, where the logical conjunction of two values (“x

and y”) is represented by taking the minimum (min(x, y)), using Gödel’s t-norm, or by

taking the product (x ∗ y), using the Product t-norm [112, 113]. In experiments shown in

Section 6.3, both the minimum and the product of αt(v) and βt(v) are used to demonstrate

two different approaches of combining the two values, although other methods could be

used as well.

As in any extreme value problem, there can be various ways of setting a threshold,

depending on the application. A fixed threshold is easily interpreted and can be set by the

end user. For example, for a given application, it may be determined that both αt(v) and

βt(v) need to be above 0.8. On the other hand, it can be advantageous to use a threshold that

adjusts to the distribution of scores for a particular dataset. One option is to choose vertices

with a score within a a top percentile range. Another is to use the z-score and choose only

values that are at least a certain number of standard deviations above the mean.
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6.2.4 Alternative Approaches

In this section we consider two possible alternative approaches to detecting allegiance

changing vertices. The first is a global approach, which matches communities in con-

secutive snapshots. For each pair of consecutive graph snapshots Gt−1 and Gt, we compute

communities using the static Louvain algorithm [16]. Two communities, Cj,t−1 ∈ Gt−1 and

Ci,t ∈ Gt, are matched as equal if the Jaccard index |Cj,t−1 ∩ Ci,t|/|Cj,t−1 ∪ Ci,t| ≥ 0.75.

A vertex is flagged as allegiance switching if Ct−1(v) and Ct(v) are not matched. Ex-

periments in Section 6.3 compare the vertices flagged with the new local approach to those

flagged with this baseline global approach. Results show that this global approach identifies

a very large percent of vertices as community switching. This occurs because communities

change a lot between consecutive snapshots and therefore cannot be matched. The suc-

cess of the global approach may be increased by using a community detection algorithm

that tries to detect communities with smooth transitions by taking into account historical

data [42, 39]; however, such algorithms can be more computationally expensive.

Another possible alternative approach might be to compare the neighbors of a vertex

v at time t to those at time t − 1 and count how many have changed. However, doing so

would not capture community allegiance changing behavior. For example, consider the

co-authorship network example mentioned in Section 6.1. From year to year, a researcher

may change with whom he co-authors papers without changing his field or even his work

group. In the time represented by Gt−1 he may co-author with colleagues w and u and

during the time represented by Gt co-author with colleagues y and z. In this case, the set of

neighboring vertices would change completely with no overlap. However, if w, u, y, and z

all belong to the same lab or department and work together, then we would not consider v

to have changed behavior because he would be working within the same group. Therefore,

simply looking at the change in vertex’s neighbors will not capture the desired community

changing behavior.
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6.3 Experiments

6.3.1 Synthetic Graphs

This section evaluates performance of the new local approach using synthetic graphs built

with a stochastic block model, and provides insights into dependence of the algorithm on

its parameter setting. The method is also compared with the global alternative described in

Section 6.2.4. In an assortative stochastic block model, vertices within the same community

are connected by an edge with probability p, while vertices in different communities are

connected with probability q, where p > q is necessary to generate community structure.

The higher p and the lower q, the stronger the community structure is and the easier it is to

discover.

In the first experiment, dynamic graphs are generated by stochastic block model with 2

communities, 1000 vertices, p = 0.3, and q = 0.01. Each dynamic graph is composed of

two snapshots. After G1 is generated as described, 1% of vertices are chosen and moved

to a different community before generating G2. Both the global approach and our local

measure are able to identify all of the vertices that moved between communities because

the community structure is clear and only changes a little. The local approach assigns high

scores to all vertices that were moved from one community to the other. After 20 runs,

each on a randomly generated graph, vertices that moved between clusters all had high

allegiance changing scores, where αt(v) ∗ βt(v) values ranged from 0.93 to 1, while their

min(αt(v), βt(v)) values ranged from 0.96 to 1. To select which vertices will be flagged

as allegiance changing by the local method, the threshold for this experiment is chosen

using the z-score. Figure 6.2 shows how the false positive rate, the proportion of vertices

incorrectly flagged as moving communities, varies as the z-score threshold changes. It is

clear that combining αt(v) and βt(v) scores yields lower false positives, with the use of

αt(v) ∗ βt(v) giving best results. In this example, vertices cleanly move from one commu-

nity to another and both the global and local methods can detect the change.
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Figure 6.2: The false positive rate is shown for the simple non-hierarchial stochastic block
model experiment. Combining αt(v) and βt(v) scores yields fewer false positives.
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Figure 6.3: The rearrangement of communities in a hierarchical stochastic block model

However, in graphs created from real data, communities do not always persist over time

and when changes do occur, they are often not as clean as a simple joining of multiple com-

munities into one or splitting apart cleanly. Instead, they may break apart and re-arrange.

Such changes are simulated using a hierarchical block model. Each top level commu-

nity is composed of multiple, more tightly connected, sub-communities. Vertices within

the same sub-community are connected with probability p1, vertices within different sub-

communities, but the same community, share an edge with probability p2, and all others are

connected with probability q, where p1 > p2 > q. Community change is then created by

keeping each sub-community intact, but re-arranging them into different top level commu-

nities. This process is shown in Figure 6.3. The left and right images show a representation

of G1 and G2, respectively, as adjacency matrices. If the ith and jth vertices of the graph

are connected with an edge, entry A[i, j] of the corresponding adjacency matrix is filled

in. Therefore, the degree of shading in different regions of the matrix corresponds to the

percentage of vertices that are connected with edges. The darker the region, the higher the

connectedness between vertices. This way, the hierarchical community structure and its

re-arrangement can be visualized.

This example demonstrates the limitation of the global approach, which marks all ver-

tices as community changing, despite the fact that the sub-communities remain the same.
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As shown in Figure 6.3, each snapshot has two communities and each community has two

sub-communities. Therefore, the overlap between any pair of communities in G1 and G2

is 0.5 using the the Jaccard index. Therefore, no community from G1 will be matched with

one fromG2 and the global method will mark every vertex as community changing, despite

the fact that the four sub-communities in both graphs remain the same.

The local metric scores αt(v) and βt(v), however, remain low for all vertices. Fig-

ure 6.4 shows the number of vertices flagged as allegiance changing as the score threshold

increases. Lower numbers on the y-axis are better. As sub-communities do not change at

all, here the desired behavior is not to detect allegiance changes at all. We consider flag-

ging vertices as allegiance changing based on four values: αt(v), βt(v), min(αt(v), βt(v)),

and αt(v) ∗ βt(v). The top plot of Figure 6.4 shows how the number of flagged varies as

the threshold for each of these scores is set based on the z-score. The bottom plot shows

how the number flagged varies as the threshold is set based on the raw value. Combining

the αt(v) and βt(v) values by using either min(αt(v), βt(v)) or αt(v) ∗ βt(v) yields better

results because fewer vertices are incorrectly flagged as allegiance changing.

In this synthetic example, while the communities are globally unstable from one snap-

shot to the next, large portions of the communities remain the same. The global approach

only detects this global change, while the local measure detects that each vertex experi-

enced little change in its own community behavior.

6.3.2 Real-Life Datasets

The proposed local allegiance change metric is also evaluated on three dynamic graphs

built from datasets from the Koblenz Network Collection [59], listed in Table 6.1. The

dynamic graphs are created using the sliding window method described in Chapter 4, with

window size and overlap as listed in Table 6.1. A window size of 6 months with 4 month

overlap means that each snapshot contains edges from a 6 month period and consecutive

snapshots overlap by 4 months. In the experiments below, communities are found using the
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Figure 6.4: The number of vertices incorrectly flagged as community changing in the hier-
archical stochastic block model experiment is shown. A z-score and raw value threshold is
used on the x-axis on the top and bottom plots, respectively.
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Table 6.1: A description of the graphs and sliding window used to build snapshots is shown.

Graph Vertices Edges
Snapshot
Window

Window
Overlap

dblp 1,314,050 18,986,618 6 years 4 years
youtube 3,223,589 9,375,374 3 months 2 months
facebook 46,952 876,993 6 months 4 months

Table 6.2: The average percentage of vertices flagged is shown for all three datasets.

Graph Global % min(αt(v), βt(v)) % αt(v) ∗ βt(v) %
dblp 64.6 2.5 2.5
youtube 51.4 4.1 4.0
facebook 77.5 6.3 6.2

popular Louvain algorithm [16], although any other suitable algorithm can be used, as the

approach is agnostic to it.

By running the Louvain algorithm on each snapshot and computing the overlap of

communities in consecutive snapshots, communities can be matched as described in Sec-

tion 6.2.4. To increase the number of communities matched, the overlap was computed

using only vertices with non-zero degree in both consecutive snapshots. Many communi-

ties, especially larger ones, were not matched. This does not mean that all non-matched

communities necessarily dissolve completely. Rearranged communities, such as in the

stochastic block model example, will also fail to match. The smoothness of community

evolution will of course depend on both the particular community detection algorithm and

sliding window used. However, results suggest that we cannot rely on the dataset in ques-

tion to have smooth transitions between communities of different snapshots, which makes

the global metric sensitive to many factors. In contrast, the local allegiance change measure

does not require stable clusters between snapshots because it only considers the community

of a vertex relative to that of its neighbors. Clusters can be locally stable, without being

globally stable.

Table 6.2 shows the average (over all snapshots) percentages of vertices flagged by the

local measure using both the minimum and product to combine αt(v) and βt(v). Minimum
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Table 6.3: The average percentage of vertices flagged using varying overlaps of the dblp
dataset is shown. Each snapshot contains data from 6 years and consecutive snapshots
overlap by the amount shown.

Overlap Global % min(αt(v), βt(v)) % αt(v) ∗ βt(v) %
0 years 77.0 19.5 18.7
2 years 67.2 7.0 6.7
4 years 64.6 2.5 2.5
5.5 years 56.8 0.9 0.9
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(a) Histogram of the αt(v) scores.
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(b) Histogram of the βt(v) scores.
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(c) Histogram of the min(αt(v), βt(v)) scores.
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(d) Histogram of the αt(v) ∗ βt(v) scores.

Figure 6.5: Histograms of individual and combined metrics for one snapshot of the dblp
graph.
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has a fixed threshold of 0.8 and product uses the top 1% score. The percentage flagged by

the alternative global metric is also shown. For all datasets, we see that the global metric

flags many more vertices than either local metric. Almost all vertices flagged by the local

method were also flagged by the global approach.

As discussed in Chapter 4, increasing the overlap between consecutive snapshots of a

dynamic graph will lead to smoother evolution, including more gradual changes in commu-

nity structure. This will naturally affect the number of communities matched and therefore

the number of vertices flagged as community changing. This effect is explored in Table 6.3,

which shows the percentage of vertices flagged as allegiance changing for various overlap

intervals for the dblp dataset. As expected, as the overlap between consecutive snapshots

increases, the percentage of vertices flagged as allegiance changing decreases. Neverthe-

less, even for a high overlap, the global method flags over half the vertices. Therefore,

for analysts wishing to tag allegiance changing vertices, the local metrics provide a much

smaller set of candidates than their global counterpart.

Finally, as with the synthetic experiments, we again consider the effect of combining

αt(v) and βt(v) values Figure 6.5 shows distributions of the scores for αt(v), βt(v), αt(v)∗

βt(v), and min(αt(v), βt(v)) for one snapshot of the dblp graph. This histograms show

that outliers can be spotted more clearly by combining αt(v) and βt(v) values. Figure 6.5d

especially shows a clear trend of a decreasing number of vertices as the score increases,

and then a spike in outlying vertices with a very high score.

6.4 Conclusion

This chapter presented a new local metric for identifying vertex-level community changes.

Experiments on synthetic graphs show that when communities change very little, both the

global and our local measures correctly detect vertices that switch communities. However,

when the communities of a graph change between snapshots in unexpected ways, the global

method may be unreliable, often flagging a majority of vertices, while the local method
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does not. Experiments on graphs representing real social networks show that the new local

approach flags far fewer vertices of interest compared to the global alternative. The results

suggest that the global approach is flawed when communities do not evolve smoothly be-

tween snapshots. While there is an increasing interest in dynamic networks and dynamic

community detection, finding community allegiance changing vertices is a relatively new

area. Measuring vertex level community-oriented changes pinpoints vertices with interest-

ing behavior, allowing for further investigation. The measure applies to any community

detection algorithm and could be extended to overlapping community detection methods.
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CHAPTER 7

CONCLUSION

This dissertation addressed several challenges of performing graph analysis on streaming,

relational datasets. Analyzing many real-life graphs is difficult due to the large volume of

data that is continually created. The size of the full dataset may be too large to store or large

enough that running computationally intensive analytics becomes infeasible. A solution to

this is to sample a smaller subgraph that is structurally similar to the graph created from the

full dataset. Further analysis can then be performed on the sampled subgraph. Chapter 3

contributed three new algorithms for streaming graph sampling: WES, RIES, and TWES.

These methods sample an edge stream in a single pass without requiring any information

about its properties. Therefore, they can be used to tap into a real-time stream of edges

as they are generated. The algorithms create samples with a specified number of edges

and are therefore appropriate to use when there is limited memory to store the dataset.

Experiments on several social network datasets show that the new sampling algorithms

produce better subgraphs than the RE method from the literature. This means that the

subgraphs sampled with WES, RIES, and TWES are more structurally similar to the full

graph than those created by RE are. WES and RIES both produce non-temporally biased

samples. The advantage of WES over RIES is that the effect of the parameter setting on the

structure of the sample is more predictable. TWES produces a temporally biased sample.

Newer edges with higher timestamps are more likely to be included, making TWES useful

for the applications in which new data is considered more relevant and may be preferred.

By adjusting their parameters as a stream is processed, both WES and TWES can sample

subgraphs with targetted structural properties, suggesting that they can be useful in real-life

applications.

Chapter 4 contributed to the topic of dynamic graph creation. Before dynamic graph

141



analysis is performed, a dynamic graph must first be created from temporal edge data. To

do so, it is necessary to decide how to add new data and remove old data. In particular, it is

not obvious how to remove past data, especially when edges are derived from interactions.

Once an interaction occurs, it is not explicitly reversed, but rather may decrease in relevance

over time. Chapter 4 evaluated several methods of aging data to create dynamic graphs. In

addition to methods used in the literature, a new approach was proposed, based on the

concept of active vertices and edges. The differences and similarities between dynamic

graphs created by each aging approach were evaluated using several global and vertex-level

graph properties. Because the topic of aging data to create dynamic graphs was previously

largely unexplored, the focus in this work was on basic graph properties. Future work

should evaluate the effect on more complex graph measures, such as community evolution.

The method chosen is likely to affect both the communities found and how much they

change.

While Chapters 3 and 4 addressed steps that are taken before analysis is performed,

Chapters 5 and 6 made contributions to community based graph analysis. Chapter 5 pre-

sented Ordered Dynamic Seed Expansion, a new dynamic algorithm for local community

detection. Ordered Dynamic Seed Expansion is useful when a dynamic graph quickly

changes and low latency community updates are needed. Because it incrementally updates,

computation is reduced. Experiments show that using Ordered Dynamic Seed Expansion

is indeed faster than recomputing with Static Seed Expansion. The quality of Ordered Dy-

namic Seed Expansion also remains high even after a large number of graph updates have

occurred. Finally, Chapter 6 focused on analyzing community changes over time. It con-

tributed a new measure to detect when vertices change communities. This measure uses

changes in a vertex’s neighborhood to flag a community change. Because the measure is

local to a vertex’s neighborhood, it is particularly suitable when the communities found

are unstable over time. Tracking community changes can reveal vertices with interesting

behavior, allowing for further investigation.
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Together, these contributions further the study of streaming edge data through graph

analysis. The work presented addresses challenges arising in multiple stages of the pro-

cess, improving our ability to learn from the vast and ever-growing amounts of data at our

disposal.
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communities and their hierarchy by locally calculating community-changing reso-
lution levels,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2011,
no. 01, P01023, 2011.

[6] M. E. Newman and M. Girvan, “Finding and evaluating community structure in
networks,” Physical Review E, vol. 69, no. 2, p. 026 113, 2004.

[7] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut partitioning and
clustering,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 11, no. 9, pp. 1074–1085, 1992.

[8] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[9] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, vol.
17, no. 4, pp. 395–416, 2007.

[10] M. Girvan and M. E. Newman, “Community structure in social and biological net-
works,” Proceedings of the National Academy of Sciences, vol. 99, no. 12, pp. 7821–
7826, 2002.

[11] A. Clauset, M. E. Newman, and C. Moore, “Finding community structure in very
large networks,” Physical Review E, vol. 70, no. 6, p. 066 111, 2004.

144

http://www.internetlivestats.com/
http://www.internetlivestats.com/


[12] L. Danon, A. Dı́az-Guilera, and A. Arenas, “The effect of size heterogeneity on
community identification in complex networks,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2006, no. 11, P11010, 2006.

[13] K. Wakita and T. Tsurumi, “Finding community structure in mega-scale social net-
works,” in Proceedings of the 16th international conference on World Wide Web,
ACM, 2007, pp. 1275–1276.

[14] P. Schuetz and A. Caflisch, “Efficient modularity optimization by multistep greedy
algorithm and vertex mover refinement,” Physical Review E, vol. 77, no. 4, p. 046 112,
2008.

[15] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader, “Parallel community
detection for massive graphs,” in International Conference on Parallel Processing
and Applied Mathematics, Springer, 2011, pp. 286–296.

[16] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2008, no. 10, P10008, 2008.

[17] W. E. Donath and A. J. Hoffman, “Lower bounds for the partitioning of graphs,”
IBM Journal of Research and Development, vol. 17, no. 5, pp. 420–425, 1973.

[18] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical Jour-
nal, vol. 23, no. 2, pp. 298–305, 1973.

[19] M. E. Newman, “Modularity and community structure in networks,” Proceedings
of the National Academy of Sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

[20] J. Dahlin and P. Svenson, “Ensemble approaches for improving community detec-
tion methods,” ArXiv preprint arXiv:1309.0242, 2013.

[21] R. Kanawati, “Yasca: An ensemble-based approach for community detection in
complex networks,” in International Computing and Combinatorics Conference,
Springer, 2014, pp. 657–666.

[22] C. L. Staudt and H. Meyerhenke, “Engineering high-performance community de-
tection heuristics for massive graphs,” in Proceedings of the 42nd International
Conference on Parallel Processing (ICPP), IEEE, 2013, pp. 180–189.

[23] M. Ovelgönne and A. Geyer-Schulz, “An ensemble learning strategy for graph clus-
tering.,” Graph Partitioning and Graph Clustering, vol. 588, p. 187, 2012.

145



[24] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community detection in
networks: The state-of-the-art and comparative study,” ACM Computing Surveys
(CSUR), vol. 45, no. 4, p. 43, 2013.
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