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Abstract 

This study concerns the effects of test multidimensionality on 

recommended item bias statistics. Simulation data samples (N=1,000 each) on 

a 50 item test were generated using a factor model described and used by 

Drasgow and Parsons (1983) and Parsons (1982). Subpopulation differences on 

common factors led to item bias that was identified to some extent by both 

chi-square and item response theory (2 parameter logistic curve) bias 

indices. The signed indices were especially effective in distinguishing 

biased items from unbiased items. However, the use of either the signed 

chi-square or signed IRT index in multidimensional data clearly requires an 

a priori knowledge of which subpopulation is at a disadvantage. This rather 

unexpected finding suggests further study of the properties of signed 

indices as well as a reevaluation of previous simulation research that has 

appeared to support their validity. 



A MONTE CARLO STUDY OF ITEM BIAS DETECTION 

IN MULTIDIMENSIONAL TESTS 

May, 1984 Draft 

Mental tests have had a controversial history. Persistent differences 

between racial groups on standardized aptitude test scores have suggested 

the potential for unfair discrimination against members of different racial 

and ethnic subpopulations. Because many occupational and educational 

opportunities are affected by test scores, the issue of test bias has 

consequences for many people in our society. 

The study of test bias has intensified since the passage of the Civil 

Rights Act of 1964. Arvey (1979) provides a review of much of the research 

in this area. Some researchers have preferred to concentrate on item rather 

than test bias; logically inferring that a biased test must contain biased 

items. This approach allows the possibility that some items on a test are 

biased while others are not. 

More than a dozen statistical techniques have been proposed for 

detecting biased items. Varidus techniques have been studied theoretically 

and empirically with real and simulated data (see Hulin, Drasgow & Parsons, 

1983; Berk, 1982). 

There appears to be a preference for techniques based on a latent trait 

or item response theory (IRT) because sample estimates of population item 

parameters are invariant. This advantage occurs because, when the IRT model 

is valid, item parameters are invariant with respect to subpopulation 

ability distributions. Except for sampling error, any item should have 
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identical IRT item parameter estimates (within a linear transformation) in 

two or more subpopulations, regardless of ability distribution. Usually, 

the specific IRT model, has been the three parameter logistic model 

(Birnbaum, 1968) and has been referred to as Item Characteristic Curve-3 or 

ICC-3 though all IRT models have the parameter invariance property. 

The main drawback to ICC-3 is the costly estimation of model parameters 

and hence bias statistics. Therefore, some previous empirical research has 

focused on identifying less costly techniques that converge with IRT 

methods. 

Another aspect of item bias that deserves attention is the robustness 

of item bias statistics when assumptions of the IRT model are violated. For 

instance, the assumption of unidimensionality is likely to be violated on 

tests that are developed to predict external job or educational performance 

criteria. Much of the concern about unidimensionality is how to define it 

operationally (McDonald, 1981). Recently, Drasgow and Parsons (1983) and 

Parsons (1982) have shown that unidimensional IRT models can be applied and 

interpreted in multidimensional tests. These latter studies will be 

described later. However, the. consequences of multidimensionality for item 

bias statistics are unknown. This paper will proceed with a definition of 

item bias as well as a review of some studies that have compared the 

relative effectiveness of various statistical indices of bias. Then, a 

brief description of the Drasgow and Parsons (1983) methods for generating 

multidimensional data for item response simulations will be given. Finally, 

four cases of test multidimensionality and item bias will be described from 
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which sample. data will subsequently be generated and analyzed for the 

effectiveness of item bias statistics. 

Defining Item Bias  

Item bias is present when individuals from different subpopulations 

with the same amount of a latent ability tend to have different 

probabilities of responding correctly to an item. One cause of item bias 

would be the use of subpopulation specific information in an item (e.g., 

information not relevant to the construct or criterion of interest). In 

this case, members of one subpopulation have an unfair advantage and would 

have a higher probability of a correct answer. Note that biasing factors 

should be considered as continuous variables and not as distinguishing 

characteristics between subpopulations. Clearly, not all members of one 

group will have exposure to some culturally specific information, while all 

members of another group will have been denied exposure to the information. 

Just as mean differences on test score distributions are associated with 

mean differences but overlapping distributions on primary abilities, we will 

associate possible mean differences on secondary attributes with overlapping 

distributions. 

Item Bias Statistics  

There are a variety of statistics that have been suggested for 

identifying item bias. Rather than review them here, the reader is referred 

to an article by Ironson and Subkoviak (1979) or books by Hulin, Drasgow and 

Parsons (1983) and Beck (1982) for reviews. 
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Most previous studies have used an IRT index based on the logistic 

model and a Chi-Square index based on total score intervals. The general 

IRT approach will be described first. In item response theory, the 

probability of a correct response to an item is a function of one or more 

item parameters and the latent ability of the examinee. In the case of 

multiple choice tests, the logistic model could be the three parameter 

logistic model or: 

11 .( 0 ) = C. + ( 1-C.)/( 14'ex13 ( -aj( 0-13 .))) 	 (1) 
1 

where P.(0) is the probability of a correct response on item ifor a given 

level of 0 (latent ability), a i  is item discrimination, b i  is item 

difficulty, D is a scaling factor usually set to 1.702, and C i  is the 

pseudo-guessing parameter that reflects the probability of a correct 

response at very low levels of 0. Other possible logistic models are the 

one parameter model (Rasch, 1960; Wright, 1977) or the two parameter 

logistic model (Lord and Novick, 1968). Choosing among the models depends 

on the user's goals. Actual responding to multiple choice questions would 

seem best described by the three parameter model above, but others have 

argued that the mathematical properties of the one parameter model make it 

better in many cases. In the current study, the author chose to use the two 

parameter model because it best met the demands of the current study. This 

will be elaborated upon later in this paper. 

Regardless of the model chosen, item bias can be defined in a number of 

ways within the IRT framework. First, one can test for the difference 

between parameters estimated in two or more subpopulations (Lord, 1980). 

More common recently has been the computation of differences between two 
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item characteristic curves estimated in two subpopulations. Suppose that 

P
1
(0) represents the function relating e to the probability of a correct 

response for an item in Subpopulation 1 and P 2 (0) represents the 

corresponding function in Subpopulation 2. Then, the area between these two 

item characteristic curves could be approximated by: 

301 
ALGICC = 	(P (D.) - P (OM x .02 	 (2) 

j=1 
1 	2 j 

P
1
(0

j
) is the probability of a correct response at 0 level j in 

subpopulation 1 and P 
 2 j 
().) is the probability of a correct response at 0 

level j in group 2. The value .02 is the width of the theta interval. Note 

that this statistic would tend to reflect an average difference between 

curves with differences in different directions cancelling each other out. 

This approach will be called the Algebraic Sum approach and will be referred 

to as ALGICC in this paper. 

A statistic that does not average the differences between curves is the 

Absolute Sum approach and is computed as: 

301 
ABSICC = 1 ABS(P (0.) - P (0.)) x .02 	 (3) 

1 	2 3 

where ABS is the absolute value .function. In this case, regardless of the 

direction of the difference, it is still added to the bias statistic. 

The chi-square approaches are conceptually similar to the IRT 

approaches but without the theoretical elegance. Scheunemann (1979) 

suggested that an investigator could sort examinees from each subpopulation 

into five intervals based on total test score. For each subpopulation in 

each interval, the proportion of correct responses is computed and compared 
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to the expected proportion. These proportions are then combined over total 

score intervals to compute a chi-square or: 

5 	(P . - P .)2 	(p 	- p . )2 
1j 	Tj 	 ` 23 	T3'  

ABSCHI = 	N. 	 + N 	 (4) 
j=1 	P Tj( 1 	P Tj) 	2j.   P Tj( 1 	P Tj )  

where P lj  represents the total correct on an item and N lj  is the number of 

examinees for subpopulation 1 in total score interval j, while P 2j  is the 

subpopulation 2. P Tj  and 	the 

proportion and sample size for both samples combined. In this case, as in 

ABSICC, the statistic does not reflect direction of difference. In order to 

include direction, an algebraic sum is computed as 

5 	( 	P -) 2 	(P 2j - P
Tj 	

) 2  
ALGCHI = 	S.N. 	Ti 	+ S.N fl . 	 (5) 

j=1 	P
Tj 

(1 - P
Tj 

) 	43 P
Tj 

(1 - P
Tj

) 

where S j  = 1 if P ij  < P 2j , Sj  = -1 if P lj  > P2j , and S j  = 0 if P ij  = P2j  and 

will be referred to as ALGCHI. 

Several recent studies have compared the effectiveness of these 

statistics. Rudner, Getson, and Knight (1980) compared two transformed item 

difficulty approaches, three IRT methods, and two chi-square approaches in 

simulated item response data sets generated from 112 different combinations 

of test conditions. Item responses were generated on the basis of the three 

parameter logistic model with varying degrees of bias built into the 

responses from different groups. Of particular interest in this study was 

the finding that the five interval signed chi-square index (ALGCHI) was 

found to perform quite well. The authors concluded that "with five total 

score intervals, the chi-square technique was found to be as effective as 

the three parameter item characteristic curve theory technique, under most 
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of the investigated conditions" (Rudner et al., 1980, p. 8). It should be 

noted that across all 112 test conditions, the three parameter logistic 

index correlated .80 with generated bias. While the 5 score interval Chi-

Square index correlated .73 with generated bias. Other results for their 

study showed that correlations with generated bias ranged from a low of .55 

for the one parameter IRT model to .68 for a transformed item difficulty 

index. 

Shepard, Camilli and Averill (1981) examined the performance of various 

indices in real data. They chose a total of 16 item bias indices which were 

variations of the transformed item difficulty method, the item discrimina-

tion method, the three parameter IRT method, the one parameter IRT method, 

and the chi-square method. They studied convergence of these methods in 

samples of 490 black, 551 Chicano, and 552 white pupils in the fourth, 

fifth, and sixth grades. The dimensionality of the utilized Lorge-Thorndike 

verbal and nonverbal tests was described on the basis of the size of the 

first principal factor relative to the other factors. Variance accounted 

for by the first factor ranged from 17.5% for the black sample to 19.7% for 

the white sample. The size of subsequent factors dropped to about 5%. The 

authors interpreted this as supporting the contention of one general factor 

in the test. 

Though this study could not determine correlations with true bias 

because the data were real and not based on a simulation model, a factor 

analysis of correlations between the 16 indices indicated that the full 

unsigned chi-square (ABSCHI) method loads on the same factor as the unsigned 

ICC-3 index (ABSICC). Also, the signed ICC-3 (ALGICC) and signed chi-square 
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(ALGICC) methods both loaded on another factor. Based on this and other 

results, the authors conclude that "it may be safe to recommend that the 

signed full chi-square technique could be used as the best substitute for 

the ICC-3 b differences and signed area" (Shepard et al., 1981). 

Multidimensionality and item Bias  

In studies of real data (e.g., Shepard et al., 1981) observed 

differences in various item statistics between groups could also be due to a 

lack of fit of the model to the data. One major concern has been that the 

data will most likely be multidimensional. The frequently used 

unidimensional IRT models (due to availability) can be fit to 

multidimensional data (Drasgow and Parsons, 1983; Reckase, 1979) but the 

conceptual meaning of item bias as well as the effect on computed bias 

statistics has not been given much attention. Researchers may regard 

multidimensionality as "spurious" bias rather than true bias. Spurious bias 

is that which tends to invalidate statistical indices of bias by including 

lack-of-fit and sampling error effects. For example, Shepard et al. (1981) 

state "that when parameter estimates are not linearly related across groups 

this may be due to a lack of model fit rather than bias. For example, a 

violation of unidimensionality assumption could be detected as bias when 

group differences are not the same across traits -- an effect that is still 

consistent with the interpretation of bias." Shepard et al. go on to say 

"If a test were multidimensional, differential differences in group 

abilities across factors would appear as bias." These authors seem to be 

implying that item bias requires that the test data be very well fit by the 
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unidimensional IRT model. On the other hand, Linn, Levine, Hastings, and 

Wardrop (1982) consider multidimensionality a form of bias because "it can 

lead to apparent differences in.the primary ability when, in fact, there are 

no such differences." Before forming research questions concerning 

multidimensionality and item bias, it is constructive to review the recent 

research on multidimensionality and IRT. 

Multidimensionality and Unidimeqsional IRT 

Of all possible IRT models, unidimensional IRT models have had, by far, 

the greatest application among IRT testing practitioners and theorists. In 

constructing tests, practitioners are advised to retain items that conform 

to the unidimensionality assumption. Only recently have researchers begun 

to investigate the implications of violating the assumption. 

Reckase (1979) provided an interesting demonstration of what happens 

when unidimensional IRT models are fit to tests with one or several major 

factors. It appeared that a test with one large first factor could be fit 

quite well in spite of the presence of other factors. On the other hand, 

when two major factors were present in the test, the unidimensional model 
appeared to fit only items that loaded highly on one of the two factors. 

In a Monte Carlo study, Drasgow and Parsons (1983) expanded the scope 

of Reckase's (1979) study by including finer gradations of the size of the 

major factor. They found that for both the two and three parameter logistic 

models, the unidimensional IRT model fit test data that had a surprisingly 

high degree of heterogeneity among items. Drasgow and Parsons suggested 
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that strict tests of unidimensionality might reject items and tests that 

they had found to be estimated satisfactorily. 

Parsons (1982), using the same Monte Carlo methodology, found that 

under the condition of oblique factors, additional factors in the test 

actually improved the fit of the IRT model. He pointed out that as the 

number of correlated factors approaches the number of items, the independent 

variance of each factor becomes small relative to the variance shared with 

the other oblique factors. This caused the test to conform better to an IRT 

model with only one dimension. Note that the above results were obtained 

with oblique, not orthogonal, factors. 

The Simulation Model  

The basic model of multidimensional tests used in this and previous 

studies (Drasgow and Parsons, 1983; Parsons, 1982) had a general latent 

ability that affected all items on the test and more specific abilities that 

were each limited to a subset of items on the test. 

Multidimensional data structures with potentially biasing specific 

ability factors can be represented by the common factor model (Thurstone, 

1947) but further transformation is necessary to adequately model 

dichotomously scored item responses. The common factor model represents 

continuous observed variables, x, as weighted linear combinations of 

hypothetical common traits or factors, y, that account for covariation among 

the variables and unique factors, e, that account for some variance of x but 

not covariance. This model can be written as 

x = Ay + Be 	 (6) 



11 

where x is a vector containing observed variables x
i
, A is the n-by-k matrix 

of loadings on the k common factors, y is a vector containing k common 

factor scores, y i , B is an n-by-n diagonal matrix with loadings along its 

diagonal and e is a vector containing the n unique factors e i . The unique 

factors are assumed to be mutually uncorrelated and uncorrelated with the 

common factors. For item response data, the x factors can be thought of as 

unobservable response propensity variables that underlie the observed 

dichotomous responses. Let aij 	
.th 

denote the loading of the 	response 

propensity variable on the 
.th 

	denote the single loading 

th 	 .th 
of the . 
	

response propensity variable on the 	unique factor. 

Lord and Novick (1968) show that for the two parameter normal ogive IRT 

model in unidimensional data, 

a. 
a. 

1 177:7. 

or the item discrimination parameter for item i, a i , is directly related to 

the factor loading a i. They also show that 

b. = 
7i 

 i ai 

or the item difficulty for item i, b i, is directly related to the z 

transformation of the common item difficulty statistic (proportion of 

population that gives incorrect  response). Drasgow and Parsons (1983) 

demonstrated that these relations hold very well in sample data generated 

for a three parameter logistic IRT. Therefore, common factors and factor 

scores can be used to create multidimensional simulation data. 
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In the proposed study, the common factor loading matrices, A, are 

specified to represent different characteristics of tests. First, factor 

loadings will range between .40 and .80 in the A matrix. This range was 

selected to represent items with low to high a parameters. Table 1 presents 

the loading matrix to be used in the present study. To achieve this loading 

matrix in aptitude test data, an oblique rotation would probably be 

necessary. Let 0 represent the matrix of first order factors after rotation 

to the simple structure in Table 1. It is fundamental to the simulation 

model presented here that there is one second order factor underlying the 

matrix of first order common factors. 

Schmid and Leiman (1957) describe a hierarchical factor model that is 

based on a transformation of the k oblique first order factors to a matrix 

with k+1 orthogonal factors where the additional factor is the general 

factor represented in terms of item response propensity variables rather 

than first order factors. Basically, the larger the values in 0, the 

stronger the general factor or the less the factor differentiation. 

The hierarchical factor matrix with k+1 columns is used to compute item 

response propensity scores, x i . To do this, a vector of k+2 factor scores 

is generated to represent the general factor, the k common first order 

factors, and the e. (unique) factor. Factor scores are generated as 

independent, normal variables by the International Mathematical and 

Statistical Library (IMSL) Fortran subroutine GGNPM. The mean of the factor 

score distribution can be varied for different subpopulations. Factor 

scores are linearly combined according to eq. (6). The continuous variable, 

x.,istransformedtoadichotomousvariable,u.,as follows. First, as 
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part of the simulation model, each item, i, is assigned a value, denoted by 

y., that is related to the desired proportion of examinees knowing the 

correct response (p). Then the continuous response propensity variable, x i , 

is compared to 	andd 

u. = 1 if x. > y. 
1 	1— 1 

and 

u.
1 
 = 0 if x.

1 
 < y.. 
 1 

y.1  equals that point on the abscissa of the normal distribution (mean 0, 

standard deviation 1) to which the desired proportion of the population 

knowing the correct response (p) is represented by the area under the curve 

to the right of Y. and 1-p lies to the left of Y.. See Lord & Novick (1968, 

p. 370) for further discussion of this transformation. For the proposed 

study, the 	aree presented in Table 1. These values were specified to 

represent items where the proportion of examinees in the majority 

population, knowing the correct response to an item, are .1, .2, .3, .4, .5, 

.6, .7, .8, .9. The values are equally represented among items by randomly 

selecting without replacement from 50 y i  values and assigning them 

sequentially to the 50 items. For any desired factor model, a simulated 

examinee's item score vector, U, 	u2 , 	, un) can be obtained by 

generating a vector, y, computing P(8) for each item and comparing this 

value to a random number drawn from a uniform distribution in the interval 

[0,1]. 

Item bias can be considered in data sets that earlier studies suggested 

had tolerable multidimensionality, assuming that more extreme cases would be 

identified as inappropriate by statistical procedures such as Reckase's 
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(1979) suggestion that the first principal component equal at least 202 of 

the total variance in a test or Drasgow and Lissak's (1983) parallel 

analysis method that requires more computation, but is more compelling than 

a 202 rule of thumb. The model used in the current study is based on a 

general factor (G) and two common factors (F
1 
and F

2
) where the population 

correlation matrix actually has rank 2 when communalities are in the 

diagonal of the matrix. The representation by three factors is the 

hierarchical factor structure that was developed by Schmid and Leiman (1957) 

and subsequently used by Humphreys (1962) in studies of human performance on 

cognitive ability tests. 

For the current study, the two common factors can be thought of as 

verbal ability and quantitative ability underlying performance on a test of 

mathematical reasoning with word problems. In the population of 

individuals, the fairly high correlations between these two factors and 

therefore communality between them can be represented by the general factor 

with the respective unique components being orthogonal to each other and to 

the general factor. We are interested in measuring the general factor 

although the unique portions of Verbal ability and quantitative ability 

affect performance on the test. In this context, items can be biased in a 

number of ways and will serve as the example for describing these ways. 

Suppose, for instance, that the intercorrelation between common factors 

F(verbal) and F(quant) is very high. Then the unique variance attributed to 

each common factor is trivial and for item parameter purposes, the test and 

resulting item response data are almost unidimensional. Note, a correlation 

of 1.0 between factors reduces to a single factor. 
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On the other hand, if the factors are only moderately correlated, then 

the general factor will be smaller though still present (by definition of 

the model). Item parameter estimates for a unidimensional model in this 

multidimensional data will be subject to two types of error. One is 

conceptually based and derives from the fact that a single factor or 

dimension simply cannot capture completely the systematic effects on item 

responses. This will be termed lack-of-fit error. The second type of error 

is sampling error. The lack of complete specification of ability by the 

unidimensional model leads to less reliable estimates of all parameters in 

the model. Analogously, estimation of item parameters is more accurate if 

true ability is known. When estimates of ability must be part of the total 

parameter estimation procedure, then logically there will be more error in 

item parameter estimates. 

In the above cases, we could consider two subpopulations and how an 

item could be biased against one subpopulation or the other. In one regard, 

the model is inappropriate for both groups (due to lack-of-fit), but not 

biased towards either group with regards to the other. However, larger 

parameter estimation errors that occur because of multidimensionality could 

lead to large observed ICC differences than under the condition of perfect 

model validity. 

Next, consider the cases where the distribultion of abilities underlying 

the factors differs between subpopulations. The unidimensional bias indices 

might identify appropriately multidimensional items as biased as follows. 

In the example where quantitative ability and verbal ability correlate 

rather highly, the common variance between factors is most closely 
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associated with test performance and hence the construct, mathematical 

reasoning. However, if subpopulation differences in ability distributions 

are present for the unique portion of verbal ability, then the lower verbal 

ability group would have lower probabilities of success on the items, even 

though the general factor loadings and general ability distributions are 

identical. 

Methods 

Simulated item response data were generated in the same manner as the 

Drasgow and Parsons (1983) and Parsons (1982) studies. A factor population 

factor model was specified with two oblique factors. The degree of 

correlation between factors was varied. Since higher correlation implies 

less factor differentiation, a factor intercorrelation of .5 was set as high 

differentiation (but within tolerable limits for logistic parameter 

estimation). Low differentiation will refer to a factor intercorrelation of 

.81. Factor intercorrelation of .50 was the approximate lower limit found 

by Drasgow and Parsons (1983) for a meaningful estimation of 0 in 

multidimensional data. 

Along with the two levels of factor differentiation, a subpopulation 

difference on a minor factor (secondary ability) was either present or not. 

Note that IRT parameter invariance properties have been defined for a 

unidimensional 0 which tends to represent the general factor in 

multidimensional data. Therefore, the equating of ability distributions 

between subpopulations does not directly affect known differences in 

secondary ability distributions. This model implies exactly the same factor 
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structure matrix for both subpopulations, with only the distribution of 

secondary ability differing between groups. These population structure 

matrices appear in Table 1. The oblique factor matrix is constant 

throughout all four cases. Only the transformation matrix affects the size 

of the loadings on the general and orthogonal common factors. 

Hypothetical ability vectors were created by using the Min subroutine 

GGNPM to generate four random factor scores from a normal distribution with 

mean=0 and standard deviation of 1. One random normal deviate represents an 

individual's general ability score, one deviate represented an individual's 

ability on factor 1 (F
1
) score, one deviate represented an individual's 

ability on factor 2 (F
2
) score, and one deviate represents the factor score 

unique to each item. If the vector of three common factor scores is 

represented by "y" and the factors that are unique to an item are 

represented by "e," then a vector of response tendency scores, x, was 

determined according to eq. 6. 

To clarify the combinations of factor correlations and ability 

distributions to be analyzed, I will nominally label low factor 

differentiation and no secondary ability difference as Case 1, low factor 

differentiation and mean secondary ability difference of 1.0 as Case 2, high 

factor differentiation and no secondary ability difference as Case 3, and 

high factor differentiation and mean secondary ability difference of 1.0 as 

Case 4. To specify the true effect of these combinations on the probability 

of correct answer to each item by different subpopulation, the item response 

probability surface can be approximated by assuming that for any given 

ability level for the general factor, the secondary abilities will have a 
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mean ability level equal to their mean. That is, the distributions are 

multivariate normal and variance is homoscedastic. The "average" item 

response surface is then reduced to a line and an item characteristic curve. 

For example, when G=-3.0, the mean Fl score is -.5. Therefore, the correct 

response propensity on item 1 in Table 1 is .021 when G=-3.0. If the mean 

Fl score is +.5 (a different subpopulation), then the probability of a 

correct response on item is .033 when G=-3.0. The differences between each 

pair of item response surfaces (different subpopulations) were computed 

between G=-3.0 and G=3.0 at intervals of .02, the difference multiplied by 

.02, and summed over the 301 intervals or: 

301 
ALGDIF = 	

[(P li (G) 	
P
21 
.(G)) x .02] 

i=1 
(8) 

These differences can serve as population level item bias indices for the 

true underlying item response model. Note that when there is no difference 

in mean ability on either Fl or F2, there will not be any difference in the 

true item response surfaces. The population level bias indices ranged from 

.194 to .484 in Case 2 (low factor differentiation) and from .302 to .994 in 

Case 4 (high factor differentiation). In both cases, bias was present for 

the first 25 items only. 

For each Case, two samples of 1,000 simulated item response vectors 

were generated for a total of eight samples. The sample size was chosen for 

the two parameter model because earlier studies by Drasgow and Parsons 

(1983) had demonstrated good parameter estimation with this sample size. 

For each case, the two samples were input to LOGIST, a maximum likelihood 

parameter estimation program (Wood, Wingersky, & Lord, 1976). Default 
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program parameters were chosen in all cases except the choice of the "c" 

parameter which was fixed at zero. 

All parameter estimates were'equated between subpopulations before any 

comparisons were made or IRT bias indices computed. Since the scaling of 0 

is arbitrary and LOGIST estimates of 0 have a mean 0 and standard deviation 

1, item parameters were rescaled within each subpopulation so that the b's 

had mean = 0 and standard deviation = 1. The equating constant for each 

sample were "SD" = Standard Deviation of b's and "MN" = mean of b's after 

eliminating all extreme b's (absolute value greater than 3.0). Then 

b 
* 

=
b - MN 

and 

* 
a =ax  SD 

* 	* 
where b and a are the transformed values. 

In past studies, the computation of IRT curve differences is as 

follows. First, because the c parameter is frequently poorly estimated, 

Lord (1980) has recommended that samples be combined for estimation of c's 

to obtain more stable estimates. Then, a's and b's are estimated in each 

sample with the c's fixed at their earlier estimated level. This procedure 

suggests that bias in the c parameter will not usually be detected because 

of sampling error. For this reason, in the current study, c i s were fixed at 

0 for both generating item responses and estimating the parameters. This 

special two parameter case of the three parameter model does reduce the 

generalizability of the results, but should reduce the number of response 

SD 
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vectors necessary for parameter estimation and also the cost of the 

parameter estimation. 

The item bias statistics can then be computed by comparing equated 

estimated item characteristic curves. As in the true item response 

functions, the estimated curves were compared in the interval of 9=-3 to +3. 

The difference between subpopulations in estimated response probabilities 

were computed at intervals of .02 and summed across the 301 intervals. Both 

the algebraic sum and the sum of the absolute value of the differences were 

computed. The formulas were given in equation 2 and equation 3. These 

summed area differences were computed for the four cases described above. 

In addition to the IRT item bias index, the method based on the 

proportion of individuals in each sample who got each item correct in five 

total score intervals was also used. This is the full Chi-Square method 

suggested by Camilli et al. (1980) which has received some empirical support 

as a reasonable approximation to the more costly IRT models. The index is 

given in equation 4 and equation 5. 

• Results 

The results will be presented on a case by case basis with comparisons 

and generalizations made at the end. 

Case 1 results concern the case where there is low differentiation and 

no mean difference on F 1 . As noted in the discussion of true differences in 

item response surfaces, there is no population level bias in Case 1. Any 

observed large values in item bias statistics is solely due to lack of model 

fit and sampling error. Table 2 presents the estimated item parameters, the 
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chi—square statistics, and the IRT curve differences, In general, the 

estimated parameters appear similar between the two samples. Figures 1 and 

2 show the relationship between equated a and b parameter estimates 

respectively. Note that the estimated a parameters show more scatter than 

the estimated b parameters. The correlation between a's is .93 and between 

b's is .98. Thus, at the level of item parameter estimates, there seems to 

be a good deal of agreement between the two samples. 

Averaging the four item bias indices for the first 25 items and then 

the second 25 items in Table 2 shows that there is little difference for any 

of the bias indices. For the signed chi—square index (ALGCHI), the mean is 

—.300 for the first 25 items and —.636 for the second 25 items. For the 

unsigned chi—square index (ABSCHI), the means are respectively 5.26 and 

4.71. For the signed IRT index (ALGICC), the means are .013 and .032 

respectively. Finally, the means for the unsigned IRT index (ABSICC) are 

.135 and .147. The distinction between first and second 25 items is only 

for comparison to Cases 2 and 4 where there was a difference in the response 

probability surface. 

Case 2 results are for the situation where there is low factor 

differentiation and a mean difference in F 1 . The item parameter estimates 

and bias indices appear in Table 3. The correlation between equated a's is 

.92 and between equated b's is .98. Figures 3 and 4 show the relationship 

between the estimated a's and b's respectively. 

The signed IRT index and the signed chi—square index tend to be higher 

in the first 25 items (mean ALGCHI = 11.52, mean ALGICC = .086) than the 

second 25 items (mean ALGCHI = —9.81, mean ALGICC = —.166). The unsigned 
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indices are both about equal in the two sets of items. For the unsigned 

chi-square index, the first 25 items had an average chi-square equal to 

14.46 and the second 25 items had an average chi-square of 11.48. This 

difference is in the expected direction but both tend to be above the 

critical value for chi-square. For the unsigned IRT index, the mean was 

.174 for the first 25 items and .182 for the second 25 items. Based on 

these results, it appears that both the signed indices and possibly the 

unsigned chi-square index are effective when there is only slight 

differentiation between factors, but actual bias due to a subpopulation mean 

difference on a factor other than the general factor. 

In case 3, there is a higher degree of factor differentiation and 

therefore poorer model fit. However, there is no population level bias for 

any of the items. Table 4 shows the item parameter estimates and bias 

statistics. The correlations between estimated a's is .92 and between b's 

is .98. Figures 5 and 6 show these plots and show that there are no 

outliers and generally better agreement for the b's. 

When averaged for the two sets of 25 items, the bias statistics in 

Table 4 show that there is virtually no mean difference for ALGICC (.080 vs. 

.030) or for ABSICC (.149 vs. .137). For the Chi-Square indices, the mean 

differences were small for ALGCHI (.590 vs. -1.931) and somewhat larger for 

ABSCHI, but in the wrong direction (3.82 vs. 5.53). Again, there is no 

population level bias to explain this so it can be considered sampling 

error. 

The final results are for Case 4 which had high factor differentiation 

and a mean difference of 1.0 in F 1. Table 5 presents the estimated item 
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parameters, the two ICC difference statistics, and the two chi-square 

statistics for the 50 items. Note that in general, the estimated parameters 

again appear somewhat similar. The comparison of the transformed a's in the 

two samples is shown in Figure 7. The correlation between a's was .90. The 

comparison between b's is shown in Figure 8. The correlation between b's 

was .96. 

The means for the two item sets on the four bias indices in Table 5 

also show that both IRT indices and the signed chi-square index tend to be 

higher for those items that were inherently biased (the first 25 items) than 

for those items that were unbiased (the second 25 items). For ALGICC, the 

means were .326 and -.076. For ALGCHI, the means were 17.68 and -16.62. 

For ABSICC, the means were .340 and .187. On the other hand, for ABSCHI, 

the means were 18.97 and 17.29, which does not suggest much detection 

effectiveness. 

Next, some analyses will be conducted to compare the results across 

cases. As mentioned in the introduction, item bias statistics are used to 

identify  items that are biased. Two types of errors can be made in this 

identification. First, failing to identify a biased item as such is false 

negative error and falsely identifying a non-biased item as biased is a 

false positive error. Detection at the chance level means that items are 

labelled as biased in proportion to their presence in the test. That is, if 

10 items were biased in a 50 item test and a bias index only detected at the 

chance level, then for any number of items labelled as "biased", on the 

average .20 (10/50) would be actually biased and .80 (40/50) would not be 

biased. By rank ordering the items by each item bias statistic and noting 
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the proportion of biased items identified as such at various levels of 

chance detection, we can gain some idea of the effectiveness of each. These 

analyses will only be conducted for all four cases even though only in Cases 

2 and 4 was there actually any population level bias. 

Figures 9, 10, 11, and 12 represent the results for the respective 

cases. Note first of all that in Figures 9 and 11, all four bias indices 

tend to follow the diagonal which represents chance detection. This is 

appropriate because there were no population biased items and the first 25 

items were only nominally labelled as such. Therefore, it appears that 

none of the indices is over or under identifying the two sets of 25 items 

when there is no inherent bias. 

Looking at Figure 10, it is clear that the two signed indices (ALGCHI 

and ALGICC) lie above the chance diagonal with neither one clearly superior 

to the other. The unsigned chi-square index, ABSCHI, does better than 

chance at low numbers of items identified, but not the higher numbers. In 

Figure 12, the two IRT indices and Chi-Square signed index again rise above 

the diagonal, showing good detection. The unsigned IRT index is slightly 

below, but still better than chance. Only the unsigned chi-square index 

appears to detect only at chance levels. 

There is another perspective to consider on the various bias indices in 

the four cases. If an investigator has no a priori  knowledge of the group 

that is disadvantaged by the items on a test, then the final sign associated 

with a computed index cannot be used to aid identification. For instance, 

if an item has a signed Chi-Square of 15.00 or -15.00, it will still be 

labelled as biased against one group or the other. In the cases where there 
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was an ability difference (Cases 2 and 4), both signed indices tend to have 

larger negative values for items that are population unbiased. For chi-

square, the mean value is -12.72 across Cases 2 and 4 (ability difference) 

as compared to -1.28 in Cases 1 and 3 (no ability difference). For ICC, the 

mean value is -.121 for an ability difference and .031 for no ability 

difference. For both chi-square and ICC, these values are large enough to 

cause to misidentification. 

Discussion 

This study examined the effects of multidimensionality and 

subpopulation differences in secondary abilities on commonly used item bias 

indices. The results were quite clear and suggest that in cases where the 

general factor is quite strong (though the test is not unidimensional) and 

where the general factor is not as strong (the test is clearly multidimen-

sional, though all common factors are correlated), both the difference 

between estimated item characteristic curves and Camilli's (1980) full chi-

square method will identify items biased because of subgroup differences on 

secondary ability. This study also suggests that the signed index is best 

in both cases. Both conclusions assume that the investigator has a priori  

knowledge of which group is at a disadvantage on the items. 

The more traditional definition of item bias assumes a single latent 

ability IRT model where different subpopulations have different item 

characteristic curves. The current findings suggest that the unidimensional 

models can approximate multidimensional data and identify bias that is 

occurring in distributions of secondary abilities rather than item parameter 
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differences. This is an important finding, because in real data, the 

unidimensional model is unlikely to be totally valid. In addition, if the 

general factor represents the only valid variance in observed test scores 

then bias that results from differences on secondary abilites is still bias 

and presents a disadvantage to the members of the group that 	is lower 

on this ability. To repeat, the notion of bias only holds if the secondary 

ability is irrelevant to the construct or criterion of interest. 

As mentioned in the introduction, the three parameter logistic model 

has received most of the attention as a model for detecting item bias. The 

current study can be viewed as a special case where the c parameter is held 

constant at 0. Drasgow and Parsons (1983) had studied the effects of 

multidimensionality on IRT parameter estimates and found that the two 

parameter model fit slightly better than the three parameter model. 

Therefore, the current effects would likely be similar for item bias indices 

in the three parameter model. As noted in the introduction, the recommended 

procedures for using the three parameter bias index includes setting the 

estimated c's to a common value for the two groups suggesting that sampling 

error will swamp any true difference in c parameters. Therefore, little or 

no generalizeability is lost by foregoing the estimation of the parameter in 

the current study. However, it is still an empirical question and worth 

future consideration. 

Besides generalizing to the three parameter model, there are also many 

other issues worth studying in the general area of item bias and multi-

dimensionality. For instance, it would be useful to know how the ratio of 

biased to unbiased items affects detection effectiveness. The current study 
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used 25 items of each. A smaller number of item biased by subpopulation 

differences on a secondary factor would mean that the secondary factor 

itself was smaller. Therefore, the unidimensional IRT model would fit the 

data better. But the current results suggests that under the null condition 

of no biased items, simply increasing differentiation among factors does not 

appreciably increase bias indices. That is, lack-of-fit error by itself 

does not lead to misidentification of unbiased items as biased. 

Probably the most important issue to be studied is how to interpret the 

signed indices when the investigator does not a priori  designate one group 

as disadvantaged. In multidimensional data, this would lead to correctly 

identifying some biased items, but also misclassifying some unbiased items. 

Earlier studies have not confronted this issue either. 

In summary, the current study demonstrated that item bias resulting 

from subpopulation differences on a secondary ability will be detected as 

such. A non-trivial degree of multidimensionality can be tolerated by both 

the IRT and Chi-Square indices. Research on the interpretation of signed 

bias indices is still required. 
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Item 

Orthogonal 

Oblique Factor 
Fl 	F2 

Table 1 

and Oblique Population 

Orthogonal Factors 
High Differentiation 

6 	Fl 	F2 

Structure Matrices 

Orthogonal Factors 
Low Differentiation 
6 	Fl 	F2 

1 0.400 0.000 0.287 0.283 0.000 0.360 0.174 0.000 
2 ,, 0.500 0.000 0.354 0.354 0.000 0.450 0.218 0.000 
3 0.600 0.000 0.424 0.424 0.000 0.540 0.262 0.000 
4 0.700 0.000 0.495 0.495 0.000 0.670 0.305 0.000 
5 0.800 0.000 0.566 0.566 0.000 0.720 0.349 0.000 
6 0.400 0.000 0.283 0.283 0.000 0.360 0.174 0.000 
7 0.500 0.000 0.354 0.354 0.000 0.450 0.218 0.000 
8 0.600 0.000 0.424 0.424 0.000 0.540 0.262 0.000 
9 0.700 0.000 0.495 0.495 0.000 0.630 0.305 0.000 
10 0.800 0.000 0.566 0.566 0.000 0.720 0.349 0.000 
11 0.400 0.000 0.287 0.283 0.000 0.360 0.174 0.000 
12 0.500 0.000 0.354 0.354 0.000 0.450 0.218 0.000 
17 0.600 0.000 0.424 0.424 0.000 0.540 0.262 0.000 
14 0.700 0.000 0.495 0.495 0.000 0.630 0.705 0.000 
15 0.800 0.000 0.566 0.566 ►.000 0.720 0.349 0.000 
16 0.400 0.0 ►0 0.283 0.287 0.000 0.360 0.174 0.000 
17 0.500 0.000 0.354 0.354 0.000 0.450 0.218 0.000 
18 0.600 0.000 0.424 0.424 0.000 0.540 0.262 0.000 
19 ►.700 0.000 0.495 0.495 0.000 0.630 0.305 0.000 
20 0.800 0.000 0.566 0.566 0.000 0.720 0.349 0.000 
21 0.400 0.000 0.287 0.283 0.000 0.360 0.174 0.000 
22 -I-1  0.500 0.000 0.354 0.354 0.000 0.450 0.218 0.000 
27 0.600 0.000 0.424 0.424 0.000 0.540 0.262 0.000 
24 0.700 0.000 0.495 0.495 0.000 0.630 0.705 0.000 
.,., 0.800 0.000 0.566 0.566 0.000 0.720 0.349 0.000 
26 0.000 0.400 0.287 0.000 0.283 0.760 0.000 0.174 
27 0.0 ►►  0.500 0.354 0.000 0.354 0.450 0.000 0.218 
28 0.000 0.600 0.424 0.000 0.424 0.540 0.000 0.262 
29 0.000 0.700 0.495 0.000 0.495 0.670 0.000 0.705 
70 0.000 0.600 0.566 0.000 0.566 0.720 0.000 0.349 
71 0.000 0.400 0.287 0.000 0.283 0.360 0.000 0.174 
32 0.000 0.500 0.354 0.000 0.354 0.450 0.000 0.218 
-- 0.000 0.600 0.424 0.000 0.424 0.540 0.000 0.262 
74 0.00 ►  0.700 0.495 0.000 0.495 0.670 0.000 0.705 
35 0.000 0.800 0.566 0.000 0.566 0.720 0.000 0.349 
36 0.000 0.400 0.283 0.000 0.283 0.760 0.000 0.174 
37 0.000 0.500 0.354 0.000 0.354 0.450 0.000 0.218 
38 0.000 0.600 0.424 0.000 0.424 0.540 0.000 0.262 
39 0.000 0.700 0.495 0.000 0.495 0.670 0.000 0.705 
40 0.000 0.800 ►.566 0.000 0.566 0.720 0.000 0.749 
41 0.000 0.400 0.287 0.000 0.283 0.360 0.000 0.174 
42 0.000 0.500 0.354 0.000 0.354 0.450 0.000 0.218 
43 0.000 0.600 0.424 0.000 0.424 0.540 0.000 0.262 
44 0.000 0.700 0.495 0.000 0.495 0.630 0.000 0.705 
45 0.000 0.800 0.566 0.000 0.566 0.720 0.000 0.349 
46 0.000 0.400 0.283 0.000 0.283 0.360 0.000 0.174 
47 0.000 0.500 0.354 0.000 0.354 0.450 0.000 0.218 
48 0.000 0.600 0.424 0.000 0.424 0.540 0.000 0.262 



Table 2 

Estimated Item Parameters and Item Bias Indices for Case 1 

Item 	Low 	 High 	ALGCHI ABSCHI ALGICC ABSICC 
a b a 

1 0.376 2.299 0.315 2.977 -4.048 5.452 -0.190 0.201 
2 0.573 -1.236 0.494 -1.275 -3.803 5.677 -0.036 0.086 
3 0.812 -1.426 0.724 -1.440 -4.703 6.963 -0.052 0.061 
4 1.067 -0.421 0.932 -0.372 -4.358 5.334 -0.057 0.067 
5 1.747 0.705 1.280 0.369 -1.289 1.926 -0.041 0.041 
6 0.545 -2.817 0.425 -3.466 -7.666 6.367 0.167 0.204 
7 0.578 1.090 0.507 1.087 2.787 4.709 0.029 0.029 
8 0.739 -1.776 0.794 -1.409 7.715 11.004 -0.032 0.088 
9 0.902 -0.134 1.001 0.001 -6.997 7.145 -0.102 0.125 
10 1.255 1.712 1.514 1.655 -0.503 4.484 0.085 0.119 
11 0.516 3.175 0.337 4.260 2.802 9.961 -0.136 0247 
12 0.725 -2.222 0.400 -3.544 -3.940 12.294 0.479 0.579 
17 0.647 0.970 0.702 0.883 1.337 2.353 0.071 0.121 
14 0.944 -0.734 1.142 -0.676 7.587 4.891 -0.077 0.141 
15 1.147 -0.005 1.145 -0.034 2.787 3.008 0.008 0.025 
16 0.470 -1.841 0.388 -2.228 -0.797 4.618 0.112 0.160 
17 0.707 -2.266 0.584 -2.787 2.986 3.117 0.206 0.213 
18 0.744 1.457 0.643 1.637 -0.159 0.786 -0.062 0.085 
19 1.079 0.077 0.972 -0.095 10.771 10.940 0.104 0.108 
20 1.249 -0.305 1.408 -0.324 2.672 3.318 -0.008 0.071 
21 0.467 -3.276 0.368 -3.714 -2.494 2.494 0.011 0.122 
22 0.534 -2.873 0.548 -2.726 -0.821 3.282 -0.154 0.156 
23 0.691 0.840 0.751 0.940 -4.458 4.458 -0.050 0.107 
24 0.836 1.711 1.020 1.260 -3.174 3.676 0.063 0.152 
25 1.169 0.002 1.299 0.012 0.300 3.286 -0.017 0.071 
26 0.329 -1.876 0.444 -1.379 0.498 10.302 -0.249 0.397 
27 0.595 2.672 0.761 2.715 -6.403 10.466 0.216 0.268 
28 0.899 -1.356 0.689 -1.649 0.697 3.066 0.124 0.177 
29 1.041 -0.718 0.845 -0.400 2.968 5.869 0.031 0.093 
30 1.236 0.366 1.329 0.278 3.790 4.148 0.060 0.074 
31 0.366 -3.712 0.527 -2.825 1.711 1.985 -0.336 0.421 
32 0.433 -0.075 0.439 0.104 -3.106 3.199 -0.122 0.126 
77 0.682 1.550 0.762 1.429 0.270 1.818 0.107 0.145 
34 0.881 0.899 1.041 0.750 3.946 4.817 0.115 0.158 
00 1.635 -1.578 1.559 -1.506 -1.956 3.887 -0.112 0.112 
36 0.466 -2.097 0.543 -1.705 -5.605 9.614 -0.268 0.298 
37 0.550 0.614 0.505 0.569 1.601 1.676 0.042 0.046 
38 0.709 -0.397 0.765 -0.470 2.556 2.556 0.024 0.097 
39 0.929 -0.905 0.871 -0.806 -7.703 3.817 -0.106 0.106 
40 1.459 1.592 1.249 1.763 -1.108 1.696 -0.065 0.071 
41 0.455 1.121 0.422 1.320 -2.554 4.842 -0.084 0.084 
42 0.598 2.598 0.678 2.385 1.048 2.208 0.161 0.168 
43 0.723 -2.345 0.744 -2.306 -0.076 7.559 -0.104 0.109 
44 1.186 -1.795 1.314 -1.699 1.605 6.739 -0.134 0.140 
45 1.195 -0.376 1.388 -0.365 1.741 2.057 -0.030 0.089 
46 0.374 -1.726 0.414 -1.337 -4.564 6.853 -0.246 0.264 
47 0.533 1.837 0.672 1.615 -2.300 5.605 0.139 0.245 
48 0.701 0.459 0.634 0.611 -6.268 10.019 -0.089 0.091 
49 0.92• -1.255 1.039 -1.242 2.292 2.973 -0.061 0.107 
50 1.317 -0.032 1.161 -0.010 -1.833 5.589 -0.025 0.078 



Table 3 

Estimated Item Parameters and Item Bias Indices for Case 2 

Item 	Low 	 High 	ALGCHI ABSCHI ALGICC ABSICC 
a b a 

1 0.458 2.215 0.780 2.017 -3.174 8.146 0.014 0.156 
2 0.639 -0.770 0.561 -1.312 -5.741 8.506 0.157 0.175 
3 0.710 -1.231 0.770 -1.732 -13.929 13.929 0.142 0.142 
4 0.845 -0.148 0.902 -0.742 30.620 30.620 0.197 0.197 
5 1.462 0.522 1.2•5 0.058 20.640 20.640 0.114 0.122 
6 0.390 -3.519 0.424 -3.426 -1.850 8.668 -0.125 0.130 
7 0.467 1.602 0.524 0.993 7.276 8.870 0.174 0.184 
8 0.630 -1.368 0.656 -1.886 9.770 9.861 0.151 0.151 
9 0.665 0.238 1.000 -0.220 7.410 9.310 0.111 .0.124 
10 1.382 2.051 1.243 1.408 26.633 26.638 0.221 0.221 
11 0.429 3.670 0.382 3.444 2.319 2.542 0.019 0.071 
12 0.614 -2.339 0.768 -2.296 1.910 3.914 -0.165 0.205 
13 0.720 1.145 0.640 0.693 13.512 13.512 0.107 0.125 
14 0.849 -0.559 1.010 -1.024 17.991 17.991 0.118 0.138 
15 1.257 0.282 1.356 -0.251 28.944 28.944 0.158 0.158 
16 0.465 -1.931 0.471 -2.086 -0.982 1.384 -0.063 0.063 
17 0.618 -2.246 0.565 -2.869 3.029 3.029 0.188 0.190 
18 0.664 1.725 0.724 1.207 4.993 5.009 0.137 0.140 
19 0.824 0.304 1.049 -0.230 21.165 21.165 0.158 0.189 
20 1.270 0.024 1.382 -0.597 44.414 44.414 0.217 0.213 
21 0.371 -3.318 0.631 -2.660 6.575 6.535 -0.709 0.471 
22 0.439 -3.300 0.538 -3.125 3.057 3.897 -0.153 0.195 
23 0.665 1.285 0.696 0.723 9.209 9.209 0.169 0.169 
24 0.971 1.571 1.177 0.932 18.721 19.246 0.219 0.2'7 
25 1.010 0.259 1.240 -0.338 35.505 35.505 0.197 0.203 
26 0.395 -1.508 0.419 -1.255 -12.430 12.691 -0.288 0.288 
27 0.775 2.337 0.588 2.571 3.203 5.475 -0.260 0.294 
28 0.791 -1.386 0.727 -1.456 -8.428 8.428 -0.127 0.129 
29 0.872 -0.377 0.997 -0.429 -6.941 7.618 -0.114 0.140 
70 1.279 0.321 1.220 0.243 -12.322 12.322 -0.125 0.125 
31 0.549 -2.724 0.528 -3.007 -0.390 7.987 -0.002 0.029 
32 0.469 -0.038 0.510 • 0.058 -15.494 15.494 -0.225 0.225 

0.724 1.479 0.790 1.377 -7.035 7.076 -0.115 0.116 
34 1.070 0.745 0.885 0.731 8.455 9.966 -0.165 0.172 
75 1.238 -1.819 1.729 -1.584 -7.677 7.682 -0.314 0.317 
36 0.374 -2.339 0.470 -1.831 -10.416 11.569 -0.366 0.387 
37 0.526 0.641 0.527 0.494 -5.138 6.181 -0.080 0.080 
38 0.694 -0.417 0.657 -0.522 -10.677 11.024 -0.106 0.107 
39 1.044 -0.741 0.998 -0.818 -10.065 10.065 -0.123 0.123 
40 1.254 1.665 1.799 1.475 -12.822 12.822 -0.060 0.130 
41 0.723 1.602 0.385 1.423 -12.457 13.577 -0.107 0.171 
42 0.555 2.991 0.473 3.133 1.740 3.859 -0.160 0.180 
43 0.900 -1.965 0.874 -1.987 -5.678 5.678 -0.154 0.154 
44 1.027 -1.813 1.214 -1.658 -6.261 6.696 -0.263 0.264 
45 1.266 -0.383 1.507 -0.317 -36.489 36.822 -0.213 0.213 
46 0.439 -1.277 0.403 -1.318 -6.015 6.015 -0.146 0.150 
47 0.574 1.618 0.760 1.440 -16.932 16.932 -0.083 0.201 
48 0.632 0.497 0.729 0.533 -22.701 22.701 -0.197 0.203 
49 0.932 -1.285 1.002 -1.234 -9.080 9.161 -0.200 0.200 
50 1.286 -0.057 1.398 -0.075 -23.223 23.223 -0.161 0.161 
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Table 4 

Estimated Item Parameters and Item Bias 

Low 	 High 	ALGCHI 
a 	 b 	 a 

Indices 

ABSCHI 

for Case 

ALGICC 

3 

ABSICC 

0.428 2.092 0.418 2.201 0.426 1.362 0.010 0.028 
0.544 -1.138 0.486 -1.378 4.766 5.649 0.209 0.221 
0.730 -1.423 0.697 -1.416 0.015 1.404 0.089 0.093 
0.890 -0.382 0.996 -0.798 7.792 3.792 0.102 0.110 
1.193 0.274 1.307 0.362 -1.045 1.528 0.022 0.041 
0.452 -3.295 0.363 -3.782 -0.879 1.800 0.164 0.216 
0.482 1.042 0.481 1.177 -6.447 1.049 -0.014 0.018 
0.783 -1.562 0.696 -1.431 -2.069 6.701 0.000 0.094 
0.902 -0.069 0.919 0.020 5.175 6.134 0.024 0.024 
0.977 2.016 1.284 1.616 -0.968 6.064 0.378 0.343 
0.368 3.801 0.443 3.384 -1.567 1.458 0.079 0.120 
0.570 -2.658 0.368 -7.852 -1.508 7.111 0.477 0.576 
0.624 0.935 0.694 0.892 1.560 3.881 0.098 0.114 
0.871 -0.975 0.800 -0.780 -4.486 4.640 -0.016 0.037 

1.119 0.009 1.206 -0.006 5.901 6.577 0.097 0.098 
0487 -1.898 0.434 -2.056 -0.291 1.125 0.152 0.177 
0.585 -2.619 0.684 -2.453 3.884 3.886 0024 0.098 
0.594 1.558 0.718 1.312 0.708 4.051 0.210 0.277 
0.843 -0.166 1.167 -0.055 -3.545 6.103 0.009 0.181 
1.086 -0.367 1.111 -0.326 5.070 6.590 0.061 0.061 
0.400 -7.615 0.531 -2.684 -1.157 1.848 -0.274 0.317 
0.539 -2.707 0.692 -2.168 -0.606 1.758 -0.193 0.246 
0.696 0.808 0.689 0.865 0.077 1.204 0.039 0.079 
0.819 1.415 0.910 1.179 7.799 9.005 0.274 0.274 
1.353 -0.046 1.314 0.006 0.191 0.763 0.050 0.051 
0.777  -1.822 0.428 -1.272 -5.806 6.658 -0.177 0.277 
0.402 3.447 0.606 2.521 -0.739 3.094 0.296 0.366 
0.665 -1.613 0.560 -1.948 3.241 9.111 0.296 0.709 
0.677 -0.598 0.719 -0.438 -1.477 7.116 -0.021 0.041 
0.942 0.274 0.938 0.438 -5.093 5.093 -0.060 0.060 
0.429 -3.685 0.730 -4.217 -3.378 4.177 0.101 0.191 
0.417 -0.220 0.491 -0.006 -1.890 3.074 -0.063 0.156 
0.548 1.637 0.622 1.543 -0.753 2.362 0.104 0.129 
0.808 0.712 0.865 0.911 -6.034 6.034 -0.062 0.066 
1.033 -1.975 1.071 -1.737 -7.158 9.308 -0.077 0.077 

0.406 -2.269 0.463 -2.005 0.048 1.128 -0.028 0.107 
0.412 0.571 0.562 0.674 -5.583 6.111 -0.032 0.277 

0.565 -0.658 0.651 -0.486 -7.047 4.921 -0.027 0.114 
0.889 -0.902 0.872 -0.861 0.877 1.945 0.066 0.066 
0.856 1.935 1.089 1.840 -3.726 3.726 0.119 0.162 
0.344 1.590 0.792 1.365 1.107 1.141 0.140 0.165 
0.470 3.248 0.509 3.016 -0.906 4.308 0.117 0.115 
0.853 -2.206 0.684 -2.291 -6.372 6.526 0.134 0.194 
0.773 -2.421 0.685 -2.337 6.991 7.316 0.024 0.091 
0.809 -0.564 0.932 -0.355 -2.375 10.799 -0.057 0.097 

0.709 -1.867 0.337 -1.522 -1.696 3.083 -0.085 0.102 
0.461 1.937 0.484 2.097 -1.589 3.071 -0.050 0.050 

0.587 0.318 0.673 0.378 0.694 5.402 0.035 0.108 
0.728 -1.527 0.799 -1.330 1.806 9.546 -0.036 0.065 

0.913 -0.161 1.059 -0.016 -5.412 13.391 -0.015 0.080 



Table 5 

Item 

Estimated 

Low 
a 

Item Parameters and Item Bias 

High 	ALGCHI 
b 	a 

Indices 

ABSCHI 

for Case 4 

ALGICC ABSCHI 

1 0.426 2.574 0.404 1.829 10.559 11.450 0.337 0.377 
2 0.575 -0.767 0.530 -1.511 -13.158 10.421 0.315 0.715 
3 0.616 -1.119 0.837 -1.697 23.376 27.376 0.222 0.301 
4 0.850 0.003 0.813 -0.758 22.761 22.761 0.356 0.356 
5 1.135 0.658 1.158 -0.023 22.457 22.457 0.320 0.720 
6 0.421 -3.231 0.478 -7.310 1.240 4.849 -0.046 0.117 
7 0.504 1.497 0.478 0.651 15.123 15.127 0.419 0.419 
8 0.558 -1.373 0.692 -1.897 15.829 16.073 0.186 0.241 
9 0.821 0.361 0.897 -0.368 20.310 20.710 0.344 0.344 
10 1.255 2.043 1.195 1.366 11.764 11.768 0.349 0.349 
11 0.488 3.39: 0.453 2.827 4.570 5.764 0.247 0.243 
12 0.528 -2.321 0.575 -2.929 8.271 9.191 0.208 0.208 
17 0.596 1.455 0.675 0.591 15.110 15.110 0.433 0.434 
14 0.890 -0.422 0.891 -1.215 26.078 26.063 0.368 0.368 
15 0.964 0.399 1.178 -0.366 36.834 36.834 0.368 0.371 
16 0.767 -2.100 0.453 -2.604 8.657 8.657 0.208 0.250 
17 0.610 -2.182 0.634 -2.774 4.000 4.000 0.192 0.192 
18 0.701 1.771 0.787 0.984 10.943 11.730 0.397 0.397 
19 0.794 0.303 0.938 -0.790 26.688 27.380 0.318 0.722 
20 1.003 0.045 1.076 -0.739 38.303 38.707 0.372 0.372 
21 0.796 -3.191 0.272 -5.900 10.108 10.191 0.556 0.561 
22 0.559 -2.263 0.609 -3.204 17.224 17.225 0.398 0.398 
23 0.684 1.361 0.716 0.472 24.310 24.307 0.461 0.461 
24 0.955 1.656 0.895 0.801 38.676 38.776 0.455 0.455 
20 1.505 0.413 1.250 -0.340 42.037 42.037 0.361 0.361 
26 0.349 -1.671 0.774 -1.565 -13.020 13.020 -0.179 0.190 
27 0.570 2.724 0.502 2.887 -4.526 5.730 -0.115 0.127 
28 0.715 -1.412 0.587 -1.740 -7.704 7.704 0.025 0.124 
29 0.902 -0.364 0.693 -0.582 -16.029 16.237 -0.010 0.157 
70 1.167 0.348 0.971 0.360 -42.443 42.444 -0.141 0.149 
:1 0.376 -3.916 0.357 -4.238 -3.146 5.248 -0.025 0.025 

0.498 0.090 0.501 -0.035 -14.380 17.655 -0.056 0.062 
77 0.650 1.434 0.736 1.457 -27.328 27.328 -0.132 0.155 
34 0.883 0.702 0.731 0.907 -41.155 41.155 -0.255 0.259 
35 0.909 -2.065 0.993 -1.880 -24.808 24.808 -0.304 0.705 
36 0.495 -1.775 0.352 -2.829 0.989 5.493 0.313 0.384 
37 0.503 0.408 0.397 0.651 -21.845 21.845 -0.251 0.290 
38 0.527 -0.657 0.530 -0.646 -24.102 24.145 -0.157 0.157 
39 0.837 -0.783 0.739 -0.920 -18.781 18.781 -0.071 0.086 
40 0.973 1.951 1.124 1.824 -15.673 15.673 -0.018 0.090 
41 0.283 1.833 0.440 1.301 -17.019 17.342 0.030 0.436 
42 0.486 3.015 0.697 2.190 -7.502 7.518 0.287 0.766 
43 0.587 -2.746 0.719 -2.520 -3.603 4.116 -0.275 0.298 
44 0.909 -1.904 0.898 -1.980 -11.204 17.498 -0.134 0.134 
45 1.063 -0.373 0.925 -0.385 -38.185 38.185 -0.143 0.146 
46 0.391 -1.405 0.299 -1.792 -9.118 9.118 -0.007 0.220 
47 0.505 1.994 0.538 1.853 -13.555 13.618 -0.026 0.076 
48 0.829 0.404 0.588 0.395 -16.430 16.430 -0.119 0.249 
49 0.808 -1.388 0.837 -1.460 -12.906 13.186 -0.124 0.125 
50 1.076 0.078 0.909 -0.112 -12.018 12.018 -0.016 0.074 



LnGIST Estirriate.d A (Low Sample3.) 

Figure 1.Comparison of Equated a Estimates for Case 1 Samples 
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Figure 2. Comparison of Equated b Estimates for Case 1 Samples 
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Figure 3. Comparison of Equated a Estimates for Case 2 Samples 
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Figure 4. Comparison of Equated b Estimates for Case 2 Samples 
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Figure 5. 	Comparison of Equated a Estimates for Case 3 Samples 
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Figure 7. Comparison of Equated a Estimates for Case 4 Samples 
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Figure 8. 	Comparison of Equated b Estimates for Case ,4 Samples 
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Figure 9. 	Bias Detection vs. Chance for Case 1 
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Figure 10. 	Bias Detection vs. Chance for Case 2 
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Figure 11. 	Bias Detection vs. Chance for • Case 3 
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Figure 12. 	Bias Detection vs. Chance for Case 4 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52

